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ABSTRACT

Numerical Solution of Stochastic Control Problems

Using the Finite Element Method

by

Martin G. Vieten

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Richard H. Stockbridge

Based on linear programming formulations for infinite horizon stochastic control problems,

a numerical technique in fashion of the finite element method is developed. The convergence

of the approximate scheme is shown and its performance is illustrated on multiple examples.

This thesis begins with an introduction of stochastic optimal control and a review of the

theory of the linear programming approach. The analysis of existence and uniqueness of

solutions to the linear programming formulation for fixed controls represents the first contri-

bution of this work. Then, an approximate scheme for the linear programming formulations

is established. To this end, a novel discretization of the involved measures and constraints

using finite dimensional function subspaces is introduced. Its convergence is proven using

weak convergence of measures, and a detailed analysis of the approximate relaxed controls.

The applicability of the established method is shown through a collection of examples from

stochastic control. The considered examples include models with bounded or unbounded

state space, models featuring continuous and singular control as well as discounted or long-

term average cost criteria. Analyses of various model parameters are given, and in selected

examples, the approximate solutions are compared to available analytic solutions. A sum-

mary and an outlook on possible research directions is given.
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Introduction

I.1 On Mathematical Control

The area of mathematical control considers dynamic systems and investigates how they can

be influenced, or controlled, in a desired way. Inherently, this requires that one is able to

describe the evolution of the dynamic system with appropriate mathematical models. Fur-

thermore, a terminology has to be established to specify what a desired influence on the

given dynamic system is.

The description of the dynamics can have various forms depending on the object under

consideration. Classically, one distinguishes between models that describe the state of the

system at discrete time points, and models that describe it in continuous time. In the same

manner, one can either consider models that assume that the dynamic system can take finite,

or countably infinite different states on the one hand, or consider models that allow the states

to lie in a continuous, uncountable infinite set on the other hand. Evidently, the illustrated

approaches for the time points and the states can be combined to most suitably model a

given dynamical system. The type of model is referred to as a discrete, or continuous time

and discrete, or continuous state space model, respectively. Across all possible four types of

models, one can further distinguish between models that show deterministic behavior, and

such models that include stochastic behavior.
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Depending on the type of the model, the mathematical formulation of the dynamics takes

different forms. Deterministic models in continuous time with a continuous state space can

be modeled using ordinary differential equations. If the considered dynamical system also

shows random behavior, stochastic differential equations can be chosen as a suitable model.

In a discrete state space setting including randomness, one can use stochastic processes given

by Markov chains, while in the deterministic case, an automaton model could be chosen as

a model.

Key to all these choices is that the respective mathematical formulation must include, to

some extent, a way in which the system can be influenced. For example, using an automaton

model, it is possible that the transition from one state to another depends on an input given

by an entity referred to as the control. In a stochastic model, that transition might not com-

pletely underlie the control’s discretion, but the transition probabilities can be influenced in

accordance to the control’s preference. Using differential equation models, such influence is

given through the coefficient functions that are found in the differential equation, such as

drift and diffusion coefficients.

Given an appropriate model for the dynamics and the influence the control is able to enact,

the objective which the control seeks to fulfill has to be formulated. For example, it might

be desirable that at a given point in time, the dynamical system is in a specific state, or one

might simply decide to stop the system as soon as it reaches a specific state. Further, the

control might be interested in minimizing a running cost that accrues as the system evolves

over time, depending on the state and also, on the influence enacted by the control.

It is also necessary to distinguish between systems which are running for a finite amount of

time, systems which can be stopped at a desired time, and systems that are assumed to be

running an infinite amount of time. The first case is called a finite time horizon, the second

case is referred to as a problem of optimal stopping while the last case is called an infinite

time horizon problem. A measure that specifies how well any of the described objectives is

met is called an optimality criterion. It can, for example, take the form of a functional on

2



the paths that the dynamical system takes, or simply a function on the state space which is

evaluated as soon as the system stops evolving.

The choice of an optimal control which fulfills a given objective is a complex mathematical

problem. In all of the cases we have introduced, analytic solution methods as well as ap-

proximate numerical methods are available.

The contribution of this thesis is to investigate an approximate numerical method for models

that feature a continuous time domain, and a continuous state space and include random

behavior. The considerations are limited to infinite time horizon models. Generally, the con-

sidered problems lie in the area of stochastic optimal control, or simply stochastic control.

The next section gives a more precise description of the models which are considered in this

thesis, introduces the relevant literature and elaborates on the scope of this work.

I.2 Motivation and Overview

Connecting to the preceded introduction to mathematical control, in this section we specify

the type of stochastic control problem under investigation in the present thesis. This is

followed by an overview of scientific problems that can be solved with such stochastic control

problems. The existing literature, especially on approximate techniques for the formulated

problems, is reviewed and it is illustrated in which way this work contributes to the current

state of research on these techniques. Finally, an outline of this thesis is given. Although

mathematical language is used to a certain extent in this section, we partially omit references

to the literature and hereby point to the following chapters for a rigorous treatment of the

mathematical ideas pertinent to this thesis.

The basis for the control problems considered in this thesis is given by a description of the

dynamics by stochastic differential equations (SDEs) given by their integral form

Xt = x0 +

∫ t

0

b(Xs, us)ds+

∫ t

0

σ(Xs, us)dWs + ξt (2.1)

3



where Xt describes the state of the system at time t, and ut specifies the control at time t.

At time t = 0, X0 is assumed to be in the state x0, called the starting value. The choice

of ut influences the coefficient functions b and σ, called drift and diffusion, respectively.

Obviously, drift and diffusion are crucial to the evolution of the system. The process ξ can

be used to model behavior that does not evolve continuously with time, like instantaneous

jumps, or reflections of the process. The term dWs refers to an increment of a Brownian

motion process, which is a classic model used in stochastic analysis. As soon as ξ is non-

zero in a given model, we speak of a singular stochastic control problem, as opposed to a

stochastic control problem where ξ ≡ 0.

We assume that the system runs for an infinite amount of time. An example for an optimality

criterion in this case is given by the so-called infinite horizon discounted criterion given by

two positive cost functions c0 and c1, a discounting rate α and the expression

E
[∫ ∞

0

e−αsc0(Xs, us)ds+

∫ ∞
0

e−αsc(Xs, us)dξs

]
.

A precise and in-depth treatment of the stochastic differential equation models and cost

criteria can be found in Section II.1. Note that it is totally arbitrary whether one tries

to minimize costs or maximize reward. Unless stated differently, this thesis deals with the

minimization of costs.

Problems of the aforementioned type have their origins in defensive and strategic analysis.

In order to intercept hostile missiles one tries to imitate the flight path of an object, modeled

by a Brownian motion process W , with a deterministic process given by integrating over the

drift b. This classical ‘bounded follower’ problem is dealt with in Benes et al. (1980). Another

classic reference is Bather and Chernoff (1967), which considers the control of a spaceship

trying to reach a certain target. This setting can easily be transferred to a scientific problem

where random movements of particles have to be countered by a deterministic drift, for

4



example to keep these particles within certain bounds.

A large area of research concerns itself with evaluating ecologic or economic systems. Optimal

harvesting problems, which consider the growth of a population under both deterministic and

random influence, with some entity reducing the population by harvesting, give an example.

The growth behavior of the population is often described by a stochastic logistic growth

model, as seen in Lungu and Øksendal (1997) and Framstad (2003). A more general growth

model is considered in Stockbridge and Zhu (2013).

Another application is inventory control, where unpredictability of demand and possible

returns in conjunction with cost for holding items on stock pose an involved control problem.

A specific control policy was analyzed in Helmes et al. (2017), and the references therein

provide a good overview on this field of study.

The rise of quantitative analysis in finance and business has posed a line of interesting

stochastic control problems. An optimal investment model is considered in Guo and Pham

(2005). With asset prices frequently described by geometric Brownian motion processes

or mean-reverting models like the Ornstein-Uhlenbeck processes, derivative pricing or asset

allocation problems can also be expressed in terms of stochastic control problems. See Davis

and Norman (1990) for a consideration of the classic Merton problem. A paper from Lu

et al. (2017) presents a stock allocation problem, and the references therein give an overview

on financial trading rules based on mathematical models. More applications of stochastic of

stochastic control can as well be found in Yong and Zhou (1999) or Pham (2009).

As in many areas of applied mathematics, approximate numerical methods are needed to

solve involved problems. This is due to several reasons. First and foremost, many models

pose problems whose analytic solution is not attainable, and thus has to be approximated.

This might be the case where the structure of the underlying dynamics is too complicated.

Note that there is only a small class of SDEs of the type (2.1) for which solutions are known.

The same is true when analytic expressions for the involved coefficient functions are unavail-

able - that is if b and σ in (2.1) can only be evaluated pointwise, perhaps by a complex

5



numerical procedure itself. On the other hand, analytic investigations of stochastic control

problems are time-consuming. Even if a solution to the underlying dynamics can be found,

finding the optimal control is another challenging task which usually can only be solved for

fairly ‘obvious’ problems, or with a considerable number of simplifying assumptions. The

use of approximate numerical techniques can help circumvent this time intensive process.

The classic solution approach for stochastic control problems is based on the dynamic pro-

gramming principle. It derives a differential equation, called the Hamilton-Jacobi-Bellman

(HJB) equation, that characterizes the so-called value function. The value function describes

the value of a cost criterion under the optimal control. A fundamental treatment of this ap-

proach, for both deterministic and stochastic control problems, can be found in Fleming and

Rishel (1975). A more recent text, focusing on stochastic control, is given by Pham (2009).

An overview of analytically solvable stochastic control problems can be found in Benes et al.

(1980), which is mainly concerned with tracking a Brownian Motion process under certain

restriction on the control. Another analytic example, featuring optimal harvesting, can be

found in Lande et al. (1995).

As the HJB equation is usually fairly irregular (given by a second-order non-linear partial

differential equation), the most successful solving techniques are based on viscosity solutions,

as introduced in Crandall et al. (1992). The application of the notion of viscosity solution

to stochastic control is presented in Lions (1983a) and Lions (1983b).

Numerical methods based on the dynamic programming principle have been state-of-the-art

in deterministic and stochastic control, and can generally be split up in two branches. The

first branch seeks to discretize the dynamics in such a way that a discrete time, discrete state

space model is obtained. An overview of such techniques is presented in Kushner (1990), and

an extensive treatment of finite-difference based approaches is given by Kushner and Dupuis

(2001). The second branch considers fully analytic HJB equations and seeks to solve them

using solvers for partial differential equations. In their paper, Barles and Souganidis (1991)

6



present a general framework to approximate viscosity solutions to the HJB equations, and

an implementation of this framework, using finite element approximations, is described in

Jensen and Smears (2013). In both branches, the techniques of value iteration and policy

iteration (see Puterman (1994) for an introduction in discrete time and space) can be used to

solve the discrete optimal control problem as soon as the problem is discretized. A different

numerical technique using dynamic programming was analyzed in Anselmi et al. (2016).

An alternative approach to stochastic optimal control is given by the so-called linear pro-

gramming approach, which considers infinite-dimensional linear programs for measures that

describe the ‘average’ behavior of the dynamics. This approach has been used to control the

running maximum of a diffusion in Heinricher and Stockbridge (1993), solve optimal stop-

ping problems in Cho and Stockbridge (2002) and to consider regime-switching diffusions in

Helmes and Stockbridge (2008). Frequently, authors have considered models with singular

dynamics, like reflection or jump processes or even singularly controlled processes. The fun-

damental theory of the linear programming approach in stochastic control is presented in

Kurtz and Stockbridge (2017).

The linear programming approach relies on a relaxed formulation of the dynamics in the

form of martingale problems. This relaxation allows for a mathematically more suitable

treatment of stochastic control problems. An example can be found in Stockbridge and Zhu

(2013), which deals with a harvesting model for which the dynamic programming approach

indicated the use of a ‘chattering’ control, harvesting at an infinite rate for small portions

of time, see Alvarez (2000).

While being instrumental in providing analytic solutions to a line of control problems, the

linear programming approach has led the way for the introduction of novel approximation

techniques in stochastic control. A very general setting is presented in Mendiondo and Stock-

bridge (1998). Moment-based approaches were extensively studied in a line of publications,

as can be seen in Helmes et al. (2001), Helmes and Stockbridge (2000) and Lasserre and
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Prieto-Rumeau (2004). These methods rely on a computation of the moments of the in-

volved expected occupation measures in order to approximate cost criteria.

Recent research has investigated a different numerical approach to infinite-dimensional linear

programs. The structure of the linear constraints in form of an operator-integral equation,

similar to variational equalities encountered in solving partial differential equations has sug-

gested the use of finite element type approximations. The idea of the finite element method

(see Solin (2006) for an example) is to introduce finite dimensional subspaces of the involved

function spaces, and solve the discrete problem that results from this discretization. The

initial work on this approach was conducted in Kaczmarek et al. (2007), which features

using an approximation of both constraints and measure densities by continuous piecewise

linear functions. Furthermore, the performance of this method is compared to state-of-the-

art methods presented by Kushner and Dupuis (2001), indicating a better performance of

the finite element approach on a selected numerical example. The thesis of Rus (2009) con-

ducted a more thorough and theoretical investigation of this idea by using a least squares

finite element approach with cubic Hermite polynomial basis functions for both constraints

and measures. A comparable performance to Kaczmarek et al. (2007) could be observed,

however, the underlying linear structure of the problem was not exploited for the optimiza-

tion. Finally, Lutz (2007) applied similar ideas to price American lookback options, again

using continuous piecewise linear basis functions.

While indicating strong numerical performance of finite element-type approximate methods,

all three aforementioned papers (Kaczmarek et al. (2007), Rus (2009), Lutz (2007)) fail to

provide a complete convergence proof of the suggested numerical scheme. Furthermore, the

techniques presented were only used on a limited selection of problems. The broad applica-

bility of these methods remains in question.

The contribution of the present work is to provide an adjusted approximation scheme for

which the convergence can be shown analytically, and apply it to a broad range of stochas-

tic control problems. In contrast to previous work, the constraints and measures are dis-
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cretized using distinct function spaces tailored towards the analysis conducted in the conver-

gence proof, which imparts detailed insight on the approximation properties of the proposed

method. The arguments presented are general enough to be applied to models with or with-

out singular behavior, models with singular control, and models with both a bounded or an

unbounded state space. Furthermore, the cases of optimization and plain evaluation of a

given control policy are distinguished. As a side product of the latter, existence and unique-

ness of analytic solutions to the linear constraint given by the linear program are shown. To

demonstrate the method’s flexibility, it is tested on a variety of stochastic control problems.

These include the example calculated in Kaczmarek et al. (2007) and Rus (2009), for which

an analytic solution can be found and the convergence can be investigated. Several new

examples are presented, featuring models with costs of control, singular control, unbounded

state space and additional constraints on the use of the control. In many examples, an anal-

ysis of the influence of the model parameters is provided, supporting the relevance of the

present method.

This thesis is structured as follows. The second chapter, ‘Stochastic Control and Mathe-

matical Background’, thoroughly introduces the stochastic control problems of interest and

discusses the linear programming approach. A first contribution is given by the analysis of

existence and uniqueness of solution to certain linear constraints given by a fixed control.

Mathematical concepts pertinent to the understanding of this thesis are also introduced.

The third chapter, ‘Approximation’ introduces the numerical scheme used for the proposed

method. On the one hand, we consider how a finite-dimensional linear program can be

obtained from the infinite-dimensional formulation. On the other hand, we describe how

similar techniques can be used to evaluate the optimality criterion for a fixed, not neces-

sarily optimal, control. Further attention is directed to the computational adaption of the

approximation. Chapter IV, ‘Convergence Analysis’ provides the theory proving that the

proposed numerical scheme produces solutions converging towards the analytic optimal solu-
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tion. Again, some attention is brought towards the case of evaluating a fixed, not necessarily

optimal control. The fifth chapter, ‘Numerical Examples’ shows the performance of the

developed numerical method when solving a collection of example problems from various

scientific fields. Finally, an outlook is given indicating future research directions and exten-

sions to this thesis. An appendix providing material omitted in the main document for the

sake of readability and including a list of frequently used abbreviations is to follow. The

bibliography and a curriculum vitae conclude this thesis.

We use a continuous numbering scheme for equations, lemmas, propositions, theorems, corol-

laries, remarks and examples in the following. These objects will be referenced by a roman

numeral indicating the chapter, followed by an arabic number indicating the section and

a second arabic number representing the consecutive number of the object in that section,

separated by a period, respectively. To give an example, ‘(III.2.1)’ is the first object, an

equation, appearing in the second section of Chapter III. The next object in this section is a

definition - and is thus referenced by ‘Definition III.2.2’. However, for the sake of readabil-

ity, the roman numerals are omitted when the object lies in the same chapter from where

it is referred to. So, the aforementioned ‘Definition III.2.2’ will appear as ‘Definition 2.2’ in

Chapter III, and as ‘Definition III.2.2’ in any other chapter.

Figures and tables follow separate continuous numbering schemes, both consisting of a ro-

man numeral to indicate the chapter, and an arabic number representing the consecutive

number of the figure or table, respectively, within the given chapter. Throughout the text,

they are referenced using both the roman numeral and the arabic number. For example,

‘Figure V.27’ is the 27th figure in Chapter V, and ‘Table V.35’ is the 35th table in Chapter

V.
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Stochastic Control and Mathematical

Background

This chapter rigorously introduces the topic of stochastic control and the mathematical

background needed for this thesis. The first section introduces the mathematics of stochas-

tic control, in particular the linear programming approach. The analysis of existence and

uniqueness in the linear programming setting, conducted in the second section of this chap-

ter, represents a first contribution of the present thesis. Sections reviewing weak convergence

of measures and cubic spline interpolation close this chapter.

II.1 Stochastic Control Problems

This section thoroughly introduces the mathematical formalism used to describe the stochas-

tic control problems of interest in this thesis. We start by considering a formulation involving

stochastic differential equations. Then we show how this formulation can be transformed

into an infinite-dimensional linear program, which is the basis for the method we will propose

in Section II.4.

II.1.1 Models Using Stochastic Differential Equations

In this subsection, we will introduce specific stochastic differential equations (SDEs) mod-

eling the dynamical system that are of interest in this thesis. For a thorough introduction

to stochastic differential equations, the interested reader is referred to Karatzas and Shreve

11



(1991). A condensed exposition suited for the application of stochastic control can be found

in Pham (2009).

Let the state space E and the control space U be subsets of the real line. The specific form of

E depends on the model of consideration, which will be elaborated. In the same way, U can

take various forms, but this thesis focuses on the case where U is a closed interval. We equip

E and U with their Borel σ-algebras B(E) and B(U), respectively. Let b, σ : E×U 7→ E be

continuous and hence measurable functions. Consider a Brownian motion W on a filtered

probability space (Ω,F , {Ft}t≥0,P) and a progressively measurable process u, called the

control, taking values in the control space U . The set of progressively measurable processes

taking values in U is referred to as A, the set of admissible controls. We consider dynamic

systems modeled by the SDE in integral form

Xt = x0 +

∫ t

0

b(Xs, us)ds+

∫ t

0

σ(Xs, us)dWs + ξt

X0 = x0.

(1.1)

Formally, we have E = {x ∈ R|x = Xt(ω) for some (t, ω)} ⊂ R. To better describe the

situation, we split it into two parts. Set Yt = x0 +
∫ t

0
b(Xs, us)ds +

∫ t
0
σ(Xs, us)dWs. Then,

Xt = Yt + ξt. Since the coefficients b and σ do not depend on the time t, Yt is a diffusion

process. It will be referred to as the continuous part of Xt, as it evolves continuously with

time. The process ξt is a right-continuous process of bounded variation, which can be used

as an integrator in a Lebesgue-Stieltjes integral. It is used to model behavior that happens

instantaneously and is therefore called the singular part of Xt. A classic SDE model is

obtained when ξ ≡ 0. In this case, the form of the coefficient functions determines E. For

example, a simple Brownian motion process is modeled by the SDE Xt =
∫ t

0
dWt = Wt,

and as the paths of W are unbounded, E = (−∞,∞). The introduction of an aptly chosen

process ξ could however force Xt = Wt + ξt to remain within a bounded interval E = [el, er].

For example, ξ could model a jump from el and er to the origin, ensuring that the process
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remains with [el, er]. Finally, specific SDEs have coefficient functions b and σ which guarantee

that X remains in a bounded interval, as the following example shows.

Example 1.2. A solution to the SDE

Xt = x0 +

∫ t

0

Xs(K −Xs)ds+

∫ t

0

Xs(K −Xs)dWs

for K, x0 ≥ 0 has the state space E = [0, K] which is closed and bounded, see Lungu and

Øksendal (1997).

It is easy to imagine that the described cases can be combined such that we encounter state

spaces of the form E = (−∞,∞), E = (−∞, er], E = [el,∞) and E = [el, er]. If one of the

boundaries is infinite, we speak of an unbounded state space model, if both boundaries are

finite, we speak of a bounded state space model.

From now on, assume that Yt and ξt are processes such that Xt ∈ E for all t ≥ 0. A pair of

processes (Xt, ξt), with ξ possibly being zero, is called a solution to the SDE if it fulfills (1.1).

If ξ is non-zero, (1.1) is called a singular SDE, due to the existence of singular behavior and

control problems for such SDEs are referred to as singular control problems.

Existence and uniqueness results for SDE models without a singular part are extensively

discussed in the literature, see Karatzas and Shreve (1991) or Pham (2009). They can be

generalized to the case of singular SDEs by considering piecewise solutions between two con-

secutive increments or decrements of the singular process. Considering reflected processes

in particular, Section 3.6 C of Karatzas and Shreve (1991) provides another framework to

show existence and uniqueness by addressing the so-called Skorohod problem. Nevertheless,

as the main focus of this work lies on a relaxed formulation of the dynamics we will not dwell

on existence and uniqueness results for (1.1). Still, it is worth mentioning that typically one

has to assume stronger conditions on b and σ than sheer continuity as we did here. For the

linear programming formulations that are considered later on, continuity is sufficient for a
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well-posed problem.

In order to fully describe the sets of problems we are considering, we need to specify possible

form of the singular process ξ. It will be used to model two types of singular behavior. The

first one is jump behavior. Upon entering a certain point x ∈ E, the process immediately

moves to a second distinct point s ∈ E. Jumps are modeled using an increasing sequence of

stopping times {τk}k∈N, which describes the times a jump is triggered, and a Borel measurable

function h : [0,∞)×E×U 7→ R. The value h(t, x, v) describes the size of the jump happening

at time t, given that the process approached the state x, with the control process approaching

the point v. This allows the jumps to be time-dependent and controlled. Throughout this

thesis, we will assume that u 7→ h(t, x, u) is continuous. The actual jump process is given by

ξt =

∫ t

0

h(s,Xs−, us−) dξ̂s, ξ̂s =
∞∑
k=1

Iτk≤s.

A detailed discussion of jump processes, including a derivation of Itô’s formula for processes

featuring jumps, is provided in Appendix A.1. In the scope of this thesis, we will consider

jumps that happen as soon as the process enters a given point x in the state space. This

means that in particular, the jump size h will not depend on time, and the sequence of jump

times is given by

τ0 = inf{t ≥ 0 |Xt = x}

τk = inf{t ≥ τk−1 |Xt = x}.

The second type of singular process is a reflection. This means that if the process hits

a specific point r ∈ E, it is reflected directly back into the opposite direction. Such a

reflection is modeled by a local time process which only increases at the times t when Xt = r.

Local time process are denoted by LXr (t). A discussion of local time processes, including a

derivation of Itô’s formula for processes featuring reflections is provided in Appendix A.2. A
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reflection at r to the right is modeled by ξt = LXr (t), a reflection to the left by ξt = −LXr (t).

The following is an example of a singular SDE.

Example 1.3. If ξ is given by two local time process LX{0} and LX{1}, which model reflection,

a solution to the SDE

Xt = x0 +

∫ t

0

b(Xs, us) ds+

∫ t

0

σ(Xs, us)dWs + LX{0}(t)− LX{1}(t)

with x0 ∈ [0, 1] has the state space E = [0, 1].

In this example, as well as the general case, the control process u formally depends on the

time t and the random element ω ∈ Ω. Note that this means that the control can depend

on the full history of the process X. If a control only depends on the current state of the

process, say by a measurable function v : E 7→ U such that ut = v(Xt), u is called a feedback

control.

As previously mentioned, the optimality of a given control u is measured using cost criteria.

Let (Xu, ξu) be a solution to the dynamics (1.1) when the control u is being used. The

following two cost criteria are of interest in this thesis.

Definition 1.4. Let c0, c1 be continuous functions from E × U into R≥0. The long-term

average cost criterion is given by

J : A 3 u 7→ J(u) := lim sup
t→∞

1

t
E
[∫ t

0

c0(Xu
s , us) ds+

∫ t

0

c1(Xu
s , us) dξ

u
s

]
.

Definition 1.5. Let c0, c1 be continuous functions from E × U into R≥0. For a discounting

rate α > 0, the infinite horizon discounted cost criterion is given by

J : A 3 u 7→ J(u) := E
[∫ ∞

0

e−αsc0(Xu
s , us) ds+

∫ ∞
0

e−αsc1(Xu
s , us) dξ

u
s

]
.
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Because we are considering the process X over the whole time line, we say these cost criteria

have an infinite time horizon. The function c0 is referred to as the cost function of the

continuous behavior, c1 is referred to as the cost function of the singular behavior. If we have

a non-singular model with ξ ≡ 0, it is obvious that the second summand in the expectations

can simply be dropped.

Having introduced the dynamics, and a choice of possible cost criteria, we can now define

singular stochastic control problems in SDE form.

Definition 1.6. A singular stochastic optimal control problem in SDE form is the task to

find a control u ∈ A for the process X given by (1.1) such that one of the cost criteria (1.4)

and (1.5) is minimal over all of A.

Remark 1.7. For a stochastic optimal control problem to be well-posed, we need to ensure

that for a given control u, there is -in some sense- only one solution Xu to the SDE, since

otherwise the cost criteria are not well-defined. The presented cost criteria do only depend

on the law of X, and hence are identical for two weakly unique solutions. Hence it suffices

to require weak existence and uniqueness of solutions.

II.1.2 Martingale Problems and Relaxed Formulations

We proceed to reformulate stochastic control problems in SDE form into linear programs.

This will be conducted in three steps. First, we will motivate the martingale problem for-

mulation of the SDE given by (1.1). In terms of weak solutions, martingale problems are

equivalent to (1.1), and thus pose an equivalent optimal control problem when combined

with one of the cost criteria, defined in Definitions 1.4 and 1.5. In a second step we con-

sider relaxed martingale problems. This in particular yields to the introduction of relaxed

controls, on the cost of losing the equivalence to weak solutions of the considered stochastic

differential equation. However, the relaxation allows for a mathematically more complete

consideration of control problems. Third, the optimal control problem defined by the relaxed
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martingale problem will be expressed as an infinite-dimensional linear program with the help

of so-called expected occupation measures.

To begin with, we consider the following situation. Let B(E) denote the set of Borel mea-

surable functions from E to R, Cc(E) the set of continuous functions from E to R with

compact support, and C2
c (E) the subset thereof of functions which are twice continuously

differentiable.

Definition 1.8. Let A : C2
c (E) 7→ B(E×U) be a linear operator, and let u be an admissible

control. A stochastic process X is called a solution to the controlled martingale problem for

(A, x0) if for all f ∈ C2
c (E)

f(Xt)− f(x0)−
∫ t

0

Af(Xs, us) ds (1.9)

is a martingale.

Definition 1.10. Let A : C2
c (E) 7→ B(E × U) and B : C2

c (E) 7→ B(E × U) be linear

operators, and let u be an admissible control. A pair of stochastic processes (X, ξ) is called

a solution to the singular controlled martingale problem for (A,B, x0) if for all f ∈ C2
c (E)

f(Xt)− f(x0)−
∫ t

0

Af(Xs, us) ds−
∫ t

0

Bf(Xs, us) dξs (1.11)

is a martingale.

Remark 1.12. The operator A is called the generator of the continuous behavior of X, B

is called the generator of the singular behavior of X. It is easy to see that with B ≡ 0, the

controlled martingale problem is a special case of the singular controlled martingale problem.

The specific form of the generators will determine the dynamic behavior of X. While the

formulations of Definitions 1.8 and 1.10 are fairly general, with A and B allowed to take

various forms, we will only consider such generators that stem from processes governed by

(singular) SDEs, as seen in Section II.1.1.
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Definition 1.13. The generator of the continuous behavior is given by

Af(x, u) = b(x, u)f ′(x) +
1

2
σ2(x, u)f ′′(x)

where b and σ are the coefficients from (1.1). Also, let α ≥ 0 and define

Aα(x, u) = A(x, u)− αf(x).

The operator A characterizes the dynamics specified in the SDE. The operator Aα will

later be used to express an equivalent reformulation of the martingale problem needed when

considering the infinite horizon discounted criterion. The generator of the singular behavior

can take different forms depending on the specified singular behavior of the process ξ. The

generators for jump processes and reflection processes are defined as follows.

Definition 1.14. Let ξ model the singular behavior of a jump from x to x+u with x+u ∈ E.

The generator of ξ is given by

Bf(x, u) = f(x+ u)− f(x),

where u can either be constant or be determined by a control. In the latter case, we have to

assert that u ∈ U .

Definition 1.15. Let ξ model the singular behavior of a reflection to the right at x with

x ∈ E. The generator of ξ is given by

Bf(x, u) = f ′(x).

If ξ models a reflection to the left at x, the generator is given by

Bf(x, u) = −f ′(x).
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Remark 1.16. Note that we can indeed encounter different cases of singular behavior, as

seen in Example 1.3. In this case, we have to introduce additional terms into (1.11). We

need to replace ∫ t

0

Bf(Xs, us)dξs ≡
∫ t

0

f ′(x)dξ(1)
s +

∫ t

0

−f ′(x)dξ(2)
s ,

where ξ(1) and ξ(2) are local time processes. For the sake of generality, we will use the notation∫ t
0
Bf(Xs, us)dξs and will keep in mind that the actual expression might be a combination of

the expressions seen in Definition 1.14 and Definition 1.15.

Some remarks on the regularity of these operators are in order. First, note that for any

f ∈ C2
c (E), Af , Aαf and Bf are well-defined and are indeed bounded. For the subsequent

analysis, we need to consider their domain C2
c (E) as a normed space in the following sense.

From here on ‖ · ‖∞ denotes the uniform norm of functions that is well-defined for any

bounded function.

Definition 1.17. For f ∈ C2
c (E), define the norm

‖f‖D = ‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞

The space D∞ is the normed space (C2
c (E), ‖ · ‖D).

For the following result, we consider Aα and treat A as a special case of the former, with

α = 0. Since Cc(E×U) ⊂ Cb(E×U), the space of continuous bounded functions on E×U ,

we can consider the operators Aα and B as mappings between normed spaces in the following

way.

Aα, B : D∞ 7→ (Cb(E × U), ‖ · ‖∞)

When E and U are compact, the following result holds.

Proposition 1.18. Let E and U be compact. Then Aα and B are continuous operators.
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Proof. First, for f ∈ D∞ we have that

‖bf ′ + 1

2
σf ′′‖∞ = sup

(x,u)∈E×U
|b(x, u)f ′(x) +

1

2
σ(x, u)f ′′(x)|

≤ sup
(x,u)∈E×U

(
|b(x, u)||f ′(x)|+ 1

2
|σ(x, u)||f ′′(x)|

)
≤ sup

(x,u)∈E×U
|b(x, u)| sup

(x,u)∈E×U
|f ′(x)|+ 1

2
sup

(x,u)∈E×U
|σ(x, u)| sup

(x,u)∈E×U
|f ′′(x)|

≤ ‖b‖∞‖f ′‖∞ +
1

2
‖σ‖∞‖f ′′‖∞

where by continuity of b and σ and the compactness of E and U , ‖b‖∞ and ‖σ‖∞ are finite.

Now consider g, h ∈ D∞. With f = g − h, we deduce from the above equation that

‖Aαg − Aαh‖∞ = ‖Aα(g − h)‖∞

≤ ‖b‖∞‖(g − h)′‖∞ +
1

2
‖σ‖∞‖(g − h)′′‖∞ + α‖(g − h)‖∞

≤ max

{
‖b‖∞,

1

2
‖σ‖∞‖, α

}(
‖(g − h)‖∞ + ‖(g − h)′‖∞ + ‖(g − h)′′‖∞

)

For ε > 0, if ‖g − h‖D ≤ ε

max{‖b‖∞, 12‖σ‖∞‖,α}
, we see that ‖Aαg − Aαh‖∞ ≤ ε. If B models a

jump from x to s, if ‖g − h‖D ≤ 1
2
ε, we have that

‖Bg −Bh‖∞ ≤ sup
(x,u)∈E×U

{|(g − h)(s)|+ |(g − h)(x)|} ≤ 2‖g − h‖∞ ≤ 2‖g − h‖D ≤ ε

or if B models reflection at a point x and ‖g − h‖D ≤ ε,

‖Bg −Bh‖∞ ≤ sup
(x,u)∈E×U

{|(g − h)′(x)|} ≤ ‖(g − h)′‖∞ ≤ ‖g − h‖D ≤ ε,

which proves the claim.

Remark 1.19. Denote Cu
b (E×U) the space of bounded, uniformly continuous functions on

E ×U . If E ×U is compact, Cb(E ×U) ⊂ Cu
b (E ×U). This means that the range of A and

B as described in Proposition 1.18 lies in Cu
b (E × U).
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The relation between solutions of the martingale problem (1.11) and solutions to the SDE

(1.1) is expressed in the following result.

Theorem 1.20. A pair of processes (X, ξ) is a solution to the martingale problem as defined

in Definition 1.10 with A as in Definition 1.13 and B according to Remark 1.16 if and only

if X is a weak solution to the SDE

Xt = x0 +

∫ t

0

b(Xs, us)ds+

∫ t

0

σ(Xs, us)dWs + ξt

X0 = x0.

(1.1)

Proof. We will provide the if-implication for the long-term average case. For the remainder

of the proof, we refer to the literature, in particular Ethier and Kurtz (1986) and Lamperti

(1977). We begin with a weak solution to the SDE (1.1). For any f ∈ C2
c (E), Itô’s formula

for singular processes (compare Appendix A) reveals that

f(Xt) = f(X0) +

∫ t

0

Af(Xs, us)ds+

∫ t

0

Bf(Xs, us)dξs +

∫ t

0

σ(Xs, us)f
′′(Xs)dWs (1.21)

where
∫ t

0
Bf(Xs, us)dξs is a generic term modeling various types of singular behavior (com-

pare Remark 1.16). Equation (1.21) is equivalent to

f(Xt)− f(X0)−
∫ t

0

Af(Xs, us)ds−
∫ t

0

Bf(Xs, us)dξs =

∫ t

0

σ(Xs, us)f
′′(Xs)dWs,

but since f is bounded with compact support and hence in L2, the right hand side is a

martingale.

As we are considering a solution (X, ξ), we can use the same cost criteria (Definitions 1.4

and 1.5) for solutions to the martingale problem. Two different weak solutions have the

same law, and hence will give the same values for the cost criteria. From this standpoint,

minimizing the cost criteria over the set of solutions to the martingale problem is equivalent

to minimizing the cost criteria over the set of weak solutions to the SDE.
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As previously mentioned, this set up might lead to situations in which an optimal control

process u does not exist. A more general formulation of the martingale problem is thus

better suited for the minimization of the cost criteria, although the equivalence to the SDE-

based definition of a stochastic control problem is lost. In the following, denote the space of

probability measures on U by P(U).

Definition 1.22. Let A be the generator of the continuous behavior. Let X be a stochastic

process taking values in E and Λ a stochastic process taking values in P(U). Then (X,Λ) is

called a solution to the relaxed controlled martingale problem for (A, x0) if there is a filtration

{Ft}t≥0 such that X and Λ are Ft-adapted, X and Λ are Ft-progressively measurable and

for all f ∈ C2
c (E)

f(Xt)− f(x0)−
∫ t

0

∫
U

Af(Xs, u)Λs(du) ds (1.23)

is a martingale.

Definition 1.24. Let A and B be the generators of the continuous and singular behavior,

respectively. Let X be a stochastic process taking values in E, Λ a stochastic process taking

values in P(U), and Γ a random measure on [0,∞)×E × U . The triplet (X,Λ,Γ) is called

a solution to the relaxed singular controlled martingale problem for (A,B, x0) if there is a

filtration {Ft}t≥0 such that X and Λ are Ft-adapted, X, Λ and Γt, the restriction of Γ to

[0, t]× E × U , are Ft-progressively measurable and for all f ∈ C2
c (E)

f(Xt)− f(x0)−
∫ t

0

∫
U

Af(Xs, u)Λs(du) ds−
∫

[0,t]×E×U
Bf(x, u) Γ(ds× dx× du) (1.25)

is a martingale.

The ‘relaxed’ form of the martingale problem is given by the fact that the continuous

control is now a stochastic process Λ which takes values in the space of probability mea-

sures on U , and the singular control is included in the random measure Γ. The expression∫
U
Af(Xs, u)Λs(du) can be understood in a way that we are averaging the drift b and diffusion
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σ that appear in A by integrating against Λs. The random measure Γ is a random variable

taking values in the space of Borel measures on [0,∞)×E×U , denoted byM([0,∞)×E×U).

It is assumed that for every t ≥ 0, Γ([0, t] × E × U) is finite. A line of additional technical

constraints have to be considered concerning this relaxed formulation. We refer the inter-

ested reader to Kurtz and Stockbridge (2017) for a complete analysis. Here, we proceed to

describe a stochastic control problem in terms of the relaxed martingale formulation.

To model feedback controls in the relaxed setting, we need the following concept. Note that

B(E × U) = B(E)×B(U) as both E and U are separable.

Definition 1.26. Let (E × U,B(E × U), µ) be a measure space, and let X : E × U 3

(x, u) 7→ x ∈ E be the projection map onto E. Let µE be the distribution of X. A map

η : B(U)× E 7→ [0, 1] is called a regular conditional probability (rcp) if

i) for each x ∈ E, η(·, x) : B(U) 7→ [0, 1] is a probability measure,

ii) for each V ∈ B(U), η(V, ·) : E 7→ [0, 1] is a measurable function, and

iii) for all V ∈ B(U) and all F ∈ B(E) we have

µ(F × V ) =

∫
F

η(V, x)µE(dx).

Remark 1.27. This definition is tailored towards our purposes. We refer to Ethier and

Kurtz (1986), Appendix 8, for the general definition and a short theoretic treatment. In

particular, results from this source reveal that if E × U is complete and separable, an rcp

does exist for the measure µ. A feedback control in the relaxed sense is given by an rcp η by

setting Λt(·) = η(·, Xt).

The introduction of relaxed controls requires an adaption of the cost criteria. From here on,

the set A of admissible controls is the set of all pairs (Λ,Γ) for which there exists a process

X such that (X,Λ,Γ) is a solution to the relaxed singular controlled martingale problem.
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Definition 1.28. Let c0, c1 be continuous functions from E × U into R≥0. The long-term

average cost criterion in the relaxed setting is given by J : A 3 (Λ,Γ) 7→ J(Λ,Γ) with

J(Λ,Γ) := lim sup
t→∞

1

t
E
[∫ t

0

∫
U

c0(Xs, us) Λs(du) ds+

∫
[0,∞)×E×U

c1(Xs, us) Γ(ds× dx× du)

]
.

Definition 1.29. Let c0, c1 be continuous functions from E×U into R≥0. For a discounting

rate α > 0, the infinite horizon discounted cost criterion in the relaxed setting is given by

J : A 3 (Λ,Γ) 7→ J(Λ,Γ) ∈ R with

J(Λ,Γ) = E
[∫ ∞

0

∫
U

e−αsc0(Xs, us) Λs(du) ds+

∫
[0,∞)×E×U

e−αsc1(Xs, us) Γ(ds× dx× du)

]
.

From here on, we will always consider stochastic control problems in the relaxed sense

according to the following definition.

Definition 1.30. A stochastic optimal control problem in the relaxed sense is given by the

dynamics in the relaxed martingale form of Definition 1.24 with one of the cost criteria given

by Definitions 1.28 and 1.29.

II.1.3 Linear Programming Formulations

Based on stochastic control problems in the relaxed sense we derive a linear programming

formulation that considers these problems as linear optimization problems over a space of

measures. The definitions of the cost criteria in the previous subsection feature a cost

structure that considers, to some extent, only the average behavior of the process. It should

hence suffice to have information about the average behavior of the process rather than

full information about each possible path. This reduction of information is achieved by

the introduction of so-called expected occupation measures. In the following, IF is used to

denote the indicator function of a set F .
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Definition 1.31. Let (X,Λ,Γ) be a solution to the relaxed martingale problem. The contin-

uous and singular expected occupation measures µ0 ∈ P(E×U) and µ1 ∈M(E×U) for the

long-term average cost criterion are defined by

µ0(F ) = lim sup
t→∞

1

t
E
[∫ t

0

∫
U

IF (Xs, u)Λs(du)ds

]
, F ∈ B(E × U)

and

µ1(F ) = lim sup
t→∞

1

t
E
[∫

[0,t]×E×U
IF (Xs, u)Γ(ds× dx× du)

]
, F ∈ B(E × U)

respectively.

Remark 1.32. The phrases ‘continuous’ and ‘singular’ refer to the fact that the behavior

µ0 models occurs continuously in time, and the behavior µ1 models occurs only on a set of

points with a Lebesgue measure of zero.

Definition 1.33. Let (X,Λ,Γ) be a solution to the singular relaxed martingale problem. The

continuous and singular expected occupation measures µ0 ∈ P(E × U) and µ1 ∈ M(E × U)

for the discounted infinite horizon cost criterion are defined by

µ0(F ) = αE
[∫ ∞

0

∫
U

e−αsIF (Xs, u)Λs(du)ds

]
, F ∈ B(E × U)

and

µ1(F ) = αE
[∫

[0,∞)×E×U
e−αsIF (Xs, u)Γ(ds× dx× du)

]
, F ∈ B(E × U)

respectively.

Remark 1.34. In the case of a (non-singular) relaxed martingale problem, the only expected

occupation measure of interest is µ0.
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Note that the definition of the respective expected occupation measures strongly resembles

the cost criteria defined by Definitions 1.29 and 1.29 . This allows for a reformulation of the

cost criteria as presented in the following proposition.

Proposition 1.35. The long-term average cost criterion in the relaxed setting is given by

∫
E×U

c0(x, u)µ0(dx× du) +

∫
E×U

c1(x, u)µ1(dx× du).

The infinite horizon discounted criterion is given by

∫
E×U

1

α
c0(x, u)µ0(dx× du) +

∫
E×U

1

α
c1(x, u)µ1(dx× du).

Proof. We present the proof for the case of the discounted infinite horizon criterion. The

case of the long-term average cost criterion, the proof is more cumbersome. The interested

reader is referred to Kurtz and Stockbridge (2017).

Approximate c0 and c1 by two sequence of elementary functions {ϕ(0)
n }n∈N and {ϕ(1)

n }n∈N

with ϕ
(i)
n =

∑n
k=1 α

(i)
k,nIF (i)

k,n
, i = 0, 1 for aptly chosen real numbers αk,n and Borel sets

Fk,n ∈ B(E × U). By the monotone convergence theorem (note that c0 > 0 and c1 > 0)

E
[∫ ∞

0

∫
U

e−αsc0(Xs, us) Λs(du) ds

]
= lim

n→∞

n∑
k=1

α
(0)
k,n

1

α
αE

[∫ ∞
0

∫
U

e−αsI
F

(0)
k,n

Λs(du) ds

]
= lim

n→∞

n∑
k=1

α
(0)
k,n

1

α
µ0(F

(0)
k,n)

= lim
n→∞

n∑
k=1

α
(0)
k,n

1

α

∫
E×U

I
F

(0)
k,n
µ0(dx× du)

=

∫
E×U

1

α
c0(x, u)µ0(dx× du)

holds. A similar approach can be taken for the expression

E
[∫

[0,∞)×E×U
e−αsc1(Xs, us) Γ(ds× dx× du)

]
.
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We now present a way of characterizing the expected occupation measures in such a way

that they indeed are expected occupation measures of a solution to the relaxed martingale

problem. We confine ourselves to motivating this reformulation in the case of the discounted

infinite horizon criterion, and again refer to the literature, see Kurtz and Stockbridge (2017),

for a detailed analysis. Also, we present only the singular case, as again the non-singular

case comes as a special case of the former. Consider a solution X to the singular relaxed

martingale problem. This means that

f(Xt)− f(x0)−
∫ t

0

∫
U

Af(Xs, u)Λs(du) ds−
∫

[0,t]×E×U
Bf(x, u) Γ(ds× dx× du)

is a martingale for all f ∈ C2
c (E). According to Ethier and Kurtz (1986), Lemma 4.3.2, this

is equivalent to

e−αtf(Xt)− f(x0)−
∫ t

0

∫
U

e−αs [Af(Xs, u)− αf(Xs)] Λs(du) ds

−
∫

[0,t]×E×U
e−αsBf(x, u) Γ(ds× dx× du)

being a martingale for all f ∈ C2
c (E). In particular, for fixed f ∈ C2

c (E) we have that the

above expression equals 0 for t = 0, hence it is true that for all t ≥ 0

E
[
e−αtf(Xt)− f(x0)−

∫ t

0

∫
U

e−αs [Aαf(Xs, u)] Λs(du) ds

−
∫

[0,t]×E×U
e−αsBf(x, u) Γ(ds× dx× du)

]
= 0,
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recalling that we defined Af(x, u) − αf(x) = Aαf(x, u). Using the boundedness of the

involved quantities we can send t→∞ to derive that

−f(x0) = E
[∫ ∞

0

∫
U

e−αsAαf(Xs, u)Λs(du) ds

+

∫
[0,∞]×E×U

e−αsBf(x, u) Γ(ds× dx× du)

]

which is equivalent to

−αf(x0) = αE
[∫ ∞

0

∫
U

e−αsAαf(Xs, u)Λs(du) ds

+

∫
[0,∞]×E×U

e−αsBf(x, u) Γ(ds× dx× du)

]
=

∫
E×U

Aα(x, u)µ0(dx× du) +

∫
E×U

Bf(x, u)µ1(dx× du).

The relation
∫
E×U Aα(x, u)µ0(dx× du) +

∫
E×U Bf(x, u)µ1(dx× du) = −αf(x0), which has

to hold for all f ∈ C2
c (E), will be referred to as the linear constraints since it poses a linear

relationship for the two measures µ0 and µ1. A similar argument can be used to derive the

linear constraints for the long-term average problem, which reads, given f ∈ C2
c (E),

∫
E×U

Af(x, u)µ0(dx× du) +

∫
E×U

Bf(x, u)µ1(dx× du) = 0.

Naturally, the question arises if a pair of measures (µ0, µ1) which fulfills either of these

constraints can somehow be related to a solution of the relaxed martingale problem. The

answer to this question is positive, if we consider these constraints jointly with the respective

cost criteria as in the following definitions.

Definition 1.36. The linear program for the long-term average cost criterion is the following

optimization problem. Minimize

∫
E×U

c0(x, u)µ0(dx× du) +

∫
E×U

c1(x, u)µ1(dx× du).
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such that µ0 ∈ P(E × U) and µ1 ∈M(E × U) and furthermore

∫
E×U

Af(x, u)µ0(dx× du) +

∫
E×U

Bf(x, u)µ1(dx× du) = 0, ∀ f ∈ C2
c (E),

holds.

Definition 1.37. The linear program for the infinite horizon discounted cost criterion is the

following optimization problem. Minimize

1

α

∫
E×U

1

α
c0(x, u)µ0(dx× du) +

1

α

∫
E×U

1

α
c1(x, u)µ1(dx× du).

such that µ0 ∈ P(E × U) and µ1 ∈M(E × U) and furthermore

∫
E×U

Aαf(x, u)µ0(dx× du) +

∫
E×U

Bf(x, u)µ1(dx× du) = −αf(x0), ∀ f ∈ C2
c (E),

holds.

Remark 1.38. Again, it is easy to see that with B ≡ 0 and c1 ≡ 0, we obtain a non-singular

problem. The formal definition of these linear programs is omitted to avoid unnecessary

repetitions.

Remark 1.39. The considerations that follow will deal with a generic linear program with

constraints

∫
E×U

Af(x, u)µ0(dx× du) +

∫
E×U

Bf(x, u)µ1(dx× du) = Rf (1.40)

where A can be any of the two presented operators A and Aα (this slight abuse of notation

will ease the exposition going forward) and R : D∞ 7→ R is a suitably chosen right hand side

functional, either Rf = 0 or Rf = −αf(x0). The cost will be expressed by

∫
E×U

c0(x, u)µ0(dx× du) +

∫
E×U

c1(x, u)µ1(dx× du).
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It is obvious that both the long-term average problem as well as the infinite horizon discounted

problem can be expressed in this form, as can singular and non-singular problems by the choice

of B.

Proposition 1.41. R : D∞ 7→ R is a continuous functional.

Proof. The case Rf = 0 is obvious. For the case Rf = −αf(x0), take ε > 0. Take

0 < δ ≤ ε
α

and consider two functions f and g such that ‖f − g‖D < δ. Then, in particular,

‖f − g‖∞ < δ ≤ ε
α

, which implies that ‖Rf −Rg‖ = α‖f(x0 − g(x0)‖ < ε.

Linear programs of this type are referred to as infinite-dimensional linear programs to dis-

tinguish them from ‘classic’ linear programs in matrix-vector form. They display some type

of infinite-dimensionality in two ways. First, the variables come in the form of measures.

Some analysis that is presented will reveal that for certain solutions to the linear programs, µ

has a density and thus can be identified with the infinite-dimensional function space L1(E).

Second, the constraints are represented by functions in C2
c (E), which is also an infinite-

dimensional function space.

We now present the two main theorems that relate linear programs of the above kind with

the stochastic control problems in the relaxed setting which come in the form of a relaxed

martingale problem. These results are the centerpiece of the so-called linear programming

approach to stochastic control and are extensively discussed in Kurtz and Stockbridge (2017).

In particular, these results assert the existence of an optimal control in feedback form, this

means that for a given optimal solution (µ∗0, µ
∗
1) to the linear program, we can consider the

regular conditional probabilities (η0, η1) with respect to the state space marginals

µ0,E(dx) = µ0(dx× U) and µ1,E(dx) = µ1(dx× U),

such that, in accordance with Definition 1.26, we have for V ∈ B(E) and F ∈ B(U)

µ0(V × F ) =

∫
F

η0(V, x)µ0,E(dx) and µ1(V × F ) =

∫
F

η1(V, x)µ1,E(dx).
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The optimal relaxed feedback controls will then be given by η0(·, Xt) and η1(·, x)Γ̃t, where

Γ̃ is the marginal of Γ with respect to [0,∞)×E. As before, we present the theory only for

the singular case, and regard the non-singular case as a special case thereof. The following

results are analogous to Theorem 2.1 and Theorem 3.3 in Kurtz and Stockbridge (2017).

Theorem 1.42. The problem of minimizing the long-term average cost criterion (1.28) over

the set of all solutions (X,Λ,Γ) to the relaxed martingale problem given by (Definition 1.24)

is equivalent to the linear program in Definition 1.36. Moreover, there exists an optimal

solution (µ∗0, µ
∗
1). Let η∗0 and η∗1 be the regular conditional probabilities of µ∗0 and µ∗1 with

respect to their state space marginals. Then an optimal relaxed control is given in feedback

form by Λ∗t = η∗0(·, X∗t ) and Γ∗(dt×dx×du) = η∗1(du, x)Γ̃∗(dt×dx) for a random measure Γ̃∗

on [0,∞)× E, where (X∗,Λ∗,Γ∗) solves the relaxed singular controlled martingale problem,

having occupation measures (µ∗0µ
∗
1).

Theorem 1.43. The problem of minimizing the discounted infinite horizon cost criterion

(1.29) over the set of all solutions (X,Λ,Γ) to the relaxed martingale problem given by

(Definition 1.24) is equivalent to the linear program in Definition 1.37. Moreover, there

exists an optimal solution (µ∗0, µ
∗
1). Let η∗0 and η∗1 be the regular conditional probabilities of

µ∗0 and µ∗1 with respect to their state space marginals. Then an optimal relaxed control is

given in feedback form by Λ∗t = η∗(·, X∗t ) and Γ∗(dt× dx× du) = η∗1(du, x)Γ̃∗(dt× dx) for a

random measure Γ̃∗ on [0,∞)× E, where (X∗,Λ∗,Γ∗) solves the relaxed singular controlled

martingale problem, having occupation measures (µ∗0µ
∗
1).

The second part of each of these two theorems sets the stage for a solution approach to

the linear programs. It is sufficient to consider feedback controls represented by regular

conditional probabilities, which are to some extent computationally tractable. It is the main

goal of this thesis to develop a numerical algorithm that borrows ideas from the finite element

method, mainly used to solve partial differential equations, in order to approximately solve

the presented linear programs and thereby find approximate solutions to stochastic control
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problems in the relaxed setting.

A careful examination of the statements of the two preceding theorems reveals that they

indeed guarantee the existence of an optimal solution. However, it remains unclear if this

solution yields a finite value for the cost criterion. Furthermore, uniqueness of the optimal

solution is not guaranteed. At last, the question remains open if for any fixed relaxed control

given by a regular conditional probability, there is a solution to the linear program that has

a regular conditional probability. To some extent, these question are addressed in the next

section, where we consider existence and uniqueness of solutions to the linear program in

the singular case, given a fixed control.

II.2 Existence and Uniqueness under a Fixed Control

This section provides an extension to the existing theory of the linear programming approach

to stochastic control. It investigates the solvability of the linear constraints given by (1.40)

in the presence of singular behavior, which means that B is non-zero. For a specific class of

controls, which comprises the controls the later-on proposed numerical method uses, exis-

tence and uniqueness of solutions to these constraints will be shown. The long-term average

problem and the infinite horizon discounted problem have to be treated separately due to the

different form of the generator A. In both cases, different boundary behavior of the process

demands a slightly different analysis, however, the main ideas remain identical. To avoid

unnecessary repetition in this section, the general method is outlined in the following para-

graph, and examples for each of the long-term average and the infinite horizon discounted

problem are presented. The lemmas treating any other combination of cost criterion and

boundary behavior can then be found in Appendix B.

Throughout this section, we assume that the boundary behavior is uncontrolled, in other

words, we have that B(x, u) ≡ B(x). Three possible forms of the integral term including B
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are displayed in Table II.1. Case 1 is the case of a reflection at both the left endpoint el and

the right endpoint er of the state space. Case 2 is that of a reflection at el of the state space,

with a jump from er into E, while case 3 represents the ‘opposite’ case of a reflection at er

and a jump into E at el.

Case
∫
E
Bf dµ̄1

1 f ′(el)µ̄1({el})− f ′(er)µ̄1({er})

2 f ′(el)µ̄1({el}) +
(
f(s)− f(er)

)
µ̄1({er})

3
(
f(s)− f(el)

)
µ̄1({el})− f ′(er)µ̄1({er})

Table II.1: Form of the singular integral term for different boundary behavior

For the considerations in this section, the following assumption has to be placed on the

relaxed control η0. Let η0 be a fixed relaxed control such that the functions b̄ and σ̄ defined

by

b̄ : E 3 x 7→ b̄(x) =

∫
U

b(x, u) η0(du, x), σ̄ : E 3 x 7→ σ̄(x) =

√∫
U

σ2(x, u) η0(du, x)

are bounded, and continuous in E except for finitely many points. At these finitely many

points, they are assumed to be either left or right continuous.

Remark 2.1. The above assumption is satisfied when η0 is constant on a fixed number of

intervals, and on these intervals, η0(·, x) is given by a discrete probability measure on finitely

many points in the control space U . This class of controls embraces so-called ‘bang-bang’

controls, where η0 puts full mass on only one point in the control space, and switches only

finitely many times, and the type of controls used in the approximation to be introduced in

Section III.1.1.

Remark 2.2. The above assumption is satisfied if there is a function g that is continuous

everywhere except on finitely many points such that 1 = η0({g(x)}, x) for all x. Indeed, since

in this case,
∫
U
b(x, u) η0(du, x) = b(x, g(x)).
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To some extent, b̄ and σ̄ can be viewed as an average over the coefficient functions b and σ

with respect to η0. Now consider a process X that is controlled by η0 and would thereby

have the continuous generator

Āαf(x) = b̄(x)f ′(x) +
σ̄(x)

2
f ′′(x)− αf(x) (2.3)

with α > 0 for the infinite horizon discounted criterion and α = 0 for the long term average

criterion. We simply denote Ā0 = Ā. Note that for any α, Āαf(x) =
∫
U
Af(x, u)η1(du). As

there is no control on the boundary behavior, we will keep the operator B in its given form.

The particular form of B will have a certain influence on the following analysis, which will

be indicated in the following examples.

We also keep the right-hand side functional of the linear constraints, R, which is defined by

Rf =


−αf(x0) α > 0

0 α = 0

. (2.4)

Definition 2.5. With Āα as in (2.3), B as in one of the cases in Table II.1 and R as in

(2.4), the linear constraints under fixed η0 are given by

∫
E

Āαf(x) µ̄0(dx) +

∫
E

Bf(x) µ̄1(dx) = Rf ∀f ∈ C2
c (E) (2.6)

µ̄0 ∈ P(E), µ̄1 ∈M(E).

Remark 2.7. The expected occupation measures µ̄0 and µ̄1 are now measures on (only) E

since the control is fixed. As we will see, they can be considered as state-space marginals of

solutions to the linear constraints given by (1.40).

In order to show existence and uniqueness, we extract information from the linear constraints

by considering solutions, in some sense, of the equation Āαf = I[a,b], where [a, b] is an interval

in B(E). As µ1 only puts mass on the boundary points of the state space E = [el, er],
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boundary conditions can be imposed on such solutions to make
∫
E
Bf(x) µ̄1(dx) vanish, at

least partially. Hence, to find µ̄1 we would set [a, b] = [el, er], use that µ̄0(E) = 1 and

impose, for the example in the case of reflections at both el and er, that f ′(el) = 0. This

would yield 1 − f ′(er)µ̄1({er}) = Rf , which allows us to find µ̄1({er}). In similar manner,

µ̄1({el}) could be computed. If µ̄1 is determined, we again use solutions to Āαf = I[a,b],

giving equations of the form µ̄0([a, b]) = Rf −
∫
E
Bf dµ̄1. Using classic results from measure

theory, the knowledge of µ̄ on intervals that generate B(E) is enough to provide uniqueness

and existence of µ̄0.

A caveat has been omitted in this outline. The equation Āαf = I[a,b] will not have ‘classical’

solutions since b̄ and σ̄ are not continuous, and neither is I[a,b]. This will be mitigated by a

mollifying argument when presenting the two examples that are in order. First, we consider

a long-term average problem with a reflection on the left endpoint and a jump on the right

endpoint of the state space. Second, we investigate an infinite horizon discounted criterion

with reflections at both ends of the state space.

II.2.1 Example: Long-Term Average Problem with Singular Be-

havior given by a Jump and a Reflection

We consider the long-term average criterion. The process of interest shall be reflected at

the left endpoint el of the state space E, and it shall jump back to a point s ∈ [el, er) upon

entering the right endpoint of the state space er. Hence, the integral term with the generator

of the singular behavior takes the form

∫
E

Bf dµ̄1 = f ′(el)µ̄1({el}) +
(
f(s)− f(er)

)
µ̄1({er})

For sake of simplicity, we denote Ā ≡ Āα. Recall that R = 0. As pointed out, we intend to

find a function f solving the differential equation Af(x) = g(x), where g is some indicator

function. However, an indicator function is discontinuous (except for the case g ≡ IE), as are
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the coefficient functions b̄ and σ̄. This situation does not allow for a classical solution of the

differential equation. In other words, the desired function f does not exist. This situation is

overcome as follows. In a first step, we will regard continuous functions g, b and σ and solve

the differential equation

g(x) = b(x)f ′(x) +
1

2
σ(x)f ′′(x), (2.8)

as illustrated in the next proposition. The solution will dictate the desired structure of three

functions h, h1 and h2 (which can formally be thought of as h1 = h′ and h2 = h′′) such

that b̄(x)h1(x) + 1
2
σ̄2(x)h2 = g(x). Then, a mollifying argument will be used to construct a

sequence {fk}k∈N ∈ C2
c (E) with Āfk → b̄(x)h1(x) + σ̄2(x)

2
h2 = g(x) in the ‘right’ sense, such

that arguments as outlined in the introduction to this section still work. This ‘right’ sense

means that we require the convergence to be pointwise with a uniform bound on any of the

expressions appearing in Āfk. This allows to use the bounded convergence theorem, as µ̄0

is a probability measure.

Proposition 2.9. Assume g, b and σ are continuous. Then, a general solution to (2.8) is

given by

fc(x) =

∫ x

c2

[∫ y

c1

2g(z)

σ2(z)
e
∫ z
y

2b(t)

σ2(t)
dt
dz +K1e

−
∫ y
c1

2b(t)

σ2(t)
dt
]
dy +K2, (2.10)

where el ≤ c1, c2 ≤ er and K1, K2 ∈ R.

Proof. Using integrating factors, we have since

f ′′c (x) +
2b(x)

σ2(x)
f ′(x) =

2g(x)

σ2(x)

that

f ′c(y) =

∫ y

c1

2g(z)

σ2(z)
e
∫ z
y

2b(t)

σ2(t)
dt
dz +K1e

−
∫ y
c1

2b(t)

σ2(t)
dt
.

The result follows from another integration from c2 to x with respect to y.
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Remark 2.11. Note that

f ′′c (x) =
2g(x)

σ2(x)
− 2b(x)

σ2(x)
·
(∫ x

c1

2g(z)

σ2(z)
e
∫ z
x

2b(t)

σ2(t)
dt
dz +K1e

−
∫ x
c1

2b(t)

σ2(t)
dt
)
.

Remark 2.11 shows that when we we replace g, b and σ by the respective discontinuous

versions g, b̄ and σ̄, f ′′c is continuous everywhere except at a finite set of points, but is at

least left or right continuous at any point. If we formally define f , f ′ and f ′′ by replacing

g, b and σ by g, b̄ and σ̄ in the expressions for fc, f
′
c and f ′′c , rather than actually taking

derivatives, simple algebra reveals that

b̄(x)f ′(x) +
σ̄2(x)

2
f ′′(x) = g

still holds, as we intended to show.

A short digression will connect these considerations to the theory of diffusion processes. The

following concepts can be used to express the generator in terms of derivatives taken with

respect to measures.

Definition 2.12. For c1 ∈ R, the scale density is defined by

s(x) = e
−
∫ x
c1

2b̄(z)

σ̄2(z)
dz
.

The scale measure S is the measure which has density s.

Definition 2.13. The speed density is defined by

m(x) =
1

σ̄2(x)s(x)
.

The speed measure M is the measure which has density m.

Remark 2.14. A little bit of algebra reveals that we can express the generator Ā by Āf(x) ≡
1
2

d
dM

(
df
dS

)
in an integral sense. If b̄ and σ̄ are continuous, both expressions are identical. If
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not, 1
2

d
dM

(
df
dS

)
is still well defined and poses an equation

1

2

d

dM

(
df(x)

dS

)
= g(x)

whose solutions satisfy Af(x) = g(x) almost everywhere.

Before we describe the mollifying approach to make the desired argument work, we inves-

tigate a choice for the free parameters c1, c2, K1, K2 such that the function constructed in

the proof of Proposition 2.9 fulfills a couple of desired properties at the boundary. Again let

g(x) = ID(x), where D is an interval in B(E). Denote

fD(x) =

∫ x

c2

[∫ y

c1

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ y
c1

2b̄(t)

σ̄2(t)
dt
]
dy +K2,

and again think of f ′′D as taking derivatives in the continuous case and replacing the respective

quantities by their discontinuous ones.

Lemma 2.15. Let D be an interval in B(E), and s ∈ E, el ≤ s < er. There is a choice of

c1, c2, K1, K2 such that f ′D(el) < 0, fD(s)− fD(er) = 0.

Proof. Consider the intervals I1 = [el, s] and I2 = [s, er]. We construct two versions of fD,

fI1 and fI2 on I1 and I2, respectively. For both of these functions, we set c1 = c2 = s and

choose the same constants K1 and K2, which will be determined later on. Then

fI1
′′(s) =

2ID(s)

σ̄2(s)
− 2b̄(s)

σ̄2(s)

(∫ s

s

2ID(z)

σ̄2(z)
e
−
∫ z
s

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ s
s

2b̄(t)

σ̄2(t)
dt

)
= fI2

′′(s)

fI1
′(s) = K1 = fI2

′(s)

fI1(s) = K2 = fI2(s)

holds and thus the concatenation of fI1 and fI2 , now called fD, is of such a form that if we

replaced b̄ and σ̄ by continuous approximations, which we will do in the mollifying argument

to be presented, the function and its two derivatives are continuous. Now we have to ensure
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that fI2(s)− fI2(er) = 0. This means that we need

fI2(er) =

∫ er

s

∫ y

s

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz dy +K1

∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy +K2 = K2,

which we can solve for K1. This gives

K1 = −
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ er

s

∫ y

s

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz dy

)
< 0.

The formula for f ′ reveals that

f ′D(el) = −
∫ s

el

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ el
s

2b̄(t)

σ̄2(t)
dt
< 0, (2.16)

since the integrand of the first term is positive. Note that the negative sign on the right

hand side was introduced by changing the lower and upper limits of integration.

Remark 2.17. Given D = (c, d] or D = [c, d] for el ≤ c < d ≤ er, note that the value of

f ′D(el) is decreasing in d. Indeed, since in (2.16), both the first term and K1 are decreasing

in d. Further, the integrand in (2.16) will always be dominated by 2
σ̄2(z)

e
∫ z
el

2b̄(t)

σ̄2(t)
dt

, which is

bounded on a compact set, so by the dominated convergence theorem, the function g : d 7→

f ′D(el) is continuous and, if we set c = el, g(el) = 0 holds. Finally, note that

f ′(el,d](el)− f ′(el,c](el)

=

∫ el

s

2I(c,d](z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz

−
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ er

s

∫ y

s

2I(c,d](z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz dy

)
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt
.

Lemma 2.18. Let D be an interval in B(E) and s ∈ E, el ≤ s < er. There is a choice of

c1, c2, K1, K2 such that f ′D(el) = 0, fD(s)− fD(er) < 0.
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Proof. Follow the construction of fI1 and fI2 as seen in Lemma 2.15, and concatenate the

two functions to form the function fD. To ensure that f ′D(el) = 0, we need

f ′D(el) =

∫ el

s

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ el
s

2b̄(t)

σ̄2(t)
dt

= 0

⇔ K1 = −
(
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt
)−1

·
(∫ el

s

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz

)
=

(
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt
)−1

·
(∫ s

el

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz

)

Note that by the construction of fD, fD(s) = K2 and

fD(er) =

∫ er

s

[∫ y

s

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ y
s

2b̄(t)

σ̄2(t)
dt
]
dy +K2 > K2,

since both first and second summands inside of the first integral are positive.

As previously stated, the functions fD considered in these two lemmas are not twice differen-

tiable, and thus it is not a solution to Af(x) = g(x) ≡ ID. This is remedied by the following

mollifying argument.

Proposition 2.19. For any D ∈ B(E), there is a sequence {fk}k∈N of twice differentiable

functions such that fk → fD, f ′k → f ′D uniformly, and f ′′k → f ′′D pointwise on the set where

f ′′D is continuous, with ‖f ′′k ‖∞ < M for some M > 0.

Proof. This can be shown by applying a standard argument from Øksendal (1998) (see

Appendix D thereof) onto the function fD as constructed above.

Corollary 2.20. For any D ∈ B(E), there is a sequence {fk}k∈N of twice differentiable

functions such that Afk → ID pointwise with ‖Afk‖∞ < M for some M > 0.

Remark 2.21. Note that in particular, Corollary 2.20 allows, by the bounded convergence

theorem, to interchange limits in the following expression:

∫
E

lim
k→∞

Afk dµ̄0 = lim
k→∞

∫
E

Afk dµ̄0.
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The following theorem summarizes the considerations taken up to this point.

Theorem 2.22. Let (µ̄0, µ̄1) be a solution of the linear constraints (2.6). For any interval

D ∈ B(E) we have that

µ̄0(D) = θ1µ̄1({el}) + θ2µ̄1({er})

for some θ1, θ2 ≥ 0 that only depends on D. In particular, θ1 and θ2 can be chosen in such

a way that either θ1 or θ2 is 0.

Proof. For D ∈ B(E), choose a sequence {fk}k∈N ∈ C2 converging to fD according to

Corollary 2.20. Then, as (µ̄0, µ̄1) solves the linear constraints (2.6) for Rf = 0,

µ̄0(D) =

∫
E

IDdµ̄0 =

∫
E

lim
k→∞

Afkdµ̄0 = lim
k→∞

∫
E

Afkdµ̄0 = − lim
k→∞

∫
E

Bfkdµ̄1

= −
∫
E

lim
k→∞

Bfkdµ̄1 = −
∫
E

Bfdµ̄1 = θ1µ̄1({el}) + θ2µ̄1({el})

where θ1 and θ2 depend on the values of limk→∞ fk = fD at el and er. They can be chosen

in such a way that either θ1 or θ2 vanishes, according to Lemmas 2.15 and 2.18. In the first

case, we would have

θ1 = −f ′D(el) =

∫ s

el

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ el
s

2b̄(t)

σ̄2(t)
dt
> 0

and θ2 = 0. In the second case, we would have θ1 = 0 and

θ2 = − (fD(s)− fD(er)) =

∫ er

s

[∫ y

s

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ y
s

2b̄(t)

σ̄2(t)
dt

]
dy > 0.

Theorem 2.23. Let (µ̄0, µ̄1) and (µ̂0, µ̂1) be two solutions to

∫
E

Āf dµ̄0 +

∫
E

Bf dµ̄1 = 0 ∀f ∈ C2
c (E)

µ̄0 ∈ P(E), µ̄1 ∈M(E).

(2.24)
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Then, (µ̄0, µ̄1) = (µ̂0, µ̂1).

Proof. Consider the two solutions (µ̄0, µ̄1) and (µ̂0, µ̂1). Setting D = E, by Theorem 2.22,

we have as µ̄0 is a probability measure,

1 = µ̄0(E) = θ1µ̄1({el})

and likewise

1 = µ̂0(E) = θ1µ̂1({el}),

for some θ1 ∈ R, from which we can follow that µ̄1({el}) = µ̂1({el}). Likewise, we show that

µ̄1({er}) = µ̂1({er}). So, µ̄1 = µ̂1. Now, with D = [c, d] ⊂ [el, er], again by Theorem 2.22,

µ̄0(D) = θ1µ̄1({el}) + θ2µ̄1({er}) = θ1µ̂1({el}) + θ2µ̂1({er})

= µ̂0(D)

for some θ1, θ2 ∈ R. This shows that µ̄0 and µ̂0 agree on a π-system that generates

B([el, er]) = B(E), and hence µ̄0 and µ̂0 are identical.

We proceed to show the existence of solutions to (2.6). The proof of the following theorem will

use the standard construction of a measure from an increasing, (right) continuous function

of bounded variation.

Theorem 2.25. There exists a solution (µ̄0, µ̄1) to (2.6). Further, µ̄0 is absolutely continuous

with respect to Lebesgue measure.

Proof. According to Lemma 2.15, choose f ≡ fE with g ≡ IE, f ′E(el) < 0 and fE(s) −

fE(er) = 0. Then, set µ̄1({el}) = 1
−f ′E(el)

> 0 and

µ̄1({er}) = µ̄1({el})
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt∫ er

s
e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy
.
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Again by Lemma 2.15, choose f ≡ f(el,d] with g ≡ I(el,d], f
′
d(el) < 0 and f(s) − f(er) = 0.

Set F (d) = −f ′d(el) · µ̄1({el}). Note that f ′[el,er](el) = f ′E(el), so F (er) = 1. By Remark 2.17,

F (d) is increasing in d (as f ′d(el) decreases in d), continuous and

F (d)− F (c) = −µ̄1({el})

[∫ el

s

2I(c,d](z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz

−
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ er

s

∫ y

s

2I(c,d](z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dy dz

)
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt

]

By standard arguments from measure theory, there is a measure µ̄0 on E = [el, er] (equipped

with B(E)), such that µ̄0((c, d]) = F (d)−F (c). Due to the fact that 1 = F (er) = µ̄0([el, er]),

µ̄0 is a probability measure. Further note that the continuity of F implies that µ̄0((c, d]) =

µ̄0([c, d]) = µ̄0([c, d)) = µ̄0((c, d)) for c < d.

We proceed to show that this measure µ̄0, and the measure µ̄1 as constructed in the first

part of this proof, solve (2.6). To this end, observe that for any f ∈ C2
c (E), Āf can

be approximated by step functions in a bounded way, indeed, as continuous and bounded

functions can be approximated by step functions by a standard argument from measure

theory. Using the fact that Āf is bounded and piecewise continuous, we can consider each

of its continuous ‘pieces’ separately to prove this claim. In particular,

Āf(x) = lim
n→∞

n∑
k=1

ak,nϕk,n(x),

where ϕk,n are indicator functions of given intervals (which might be open to the left or right

to match the discontinuities in b̄ and σ̄), and ak, n are aptly chosen real numbers. By the

dominated convergence theorem,

∫
E

Āfdµ̄0 = lim
n→∞

n∑
k=1

ak,n

∫
E

ϕk,ndµ̄0.
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Also, due to the fact that F is continuous and hence µ̄0((c, d]) = µ̄0([c, d]) = µ̄0([c, d)) =

µ̄0((c, d)), we have for some c < d that

∫
E

ϕk,ndµ̄0 = µ̄0((c, d])

= F (d)− F (c)

= −µ̄1({el})

[∫ el

s

2I(c,d](z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz

−
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ er

s

∫ y

s

2I(c,d](z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dy dz

)
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt

]

and again by dominated convergence

lim
n→∞

n∑
k=1

ak,n

∫
E

ϕk,ndµ̄0

= −µ̄1({el}) · lim
n→∞

n∑
k=1

ak,n

[∫ el

s

2ϕk,n(z)

σ̄2(z)
e
∫ z
s

2b̄(t)

σ̄2(t)
dt
dz

−
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ er

s

∫ y

s

2ϕk,n(z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dy dz

)
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt

]

= −µ̄1({el}) ·

[∫ el

s

2Āf(z)

σ̄2(z)
e
∫ z
s

2b̄(t)

σ̄2(t)
dt
dz

−
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ er

s

∫ y

s

2Āf(z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dy dz

)
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt

]

By the definition of Ā and using integration by parts,

∫ y

s

2Āf(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz =

∫ y

s

f ′′(z)e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz +

∫ y

s

f ′(z)
2b̄(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz

=

[
f ′(z)e

∫ z
y

2b̄(t)

σ̄2(t)
dt
]y
s

−
∫ y

s

f ′(z)
2b̄(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz

+

∫ y

s

f ′(z)
2b̄(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz

= f ′(y)− f ′(s)e
∫ s
y

2b̄(t)

σ̄2(t)
dt
,
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which directly implies that

∫ er

s

∫ y

s

2Āf(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz dy =

∫ er

s

f ′(y)− f ′(s)e
∫ s
y

2b̄(t)

σ̄2(t)
dt
dy

= f(er)− f(s)− f ′(s)
∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

and hence

−
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
)−1

·
∫ er

s

∫ y

s

2Āf(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dy dz

= [f(s)− f(er)] ·
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

+ f ′(s).

Putting these results together, we deduce that

lim
n→∞

n∑
k=1

ak,n

∫
E

ϕk,ndµ̄0 = −µ̄1({el})

f ′(el) + [f(s)− f(er)] ·
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt∫ er

s
e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy


and further

∫
E

Āf dµ̄0 = −µ̄1({el}) ·

f ′(el) + [f(s)− f(er)] ·
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt∫ er

s
e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy


= −µ̄1({el})f ′(el)− [f(s)− f(er)]µ̄1({er}) = −

∫
E

Bfdµ̄1

which shows that ∫
E

Āf dµ̄0 +

∫
E

Bf dµ̄1 = 0.
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Finally note that

F (d) = −µ̄1({el})

[∫ el

s

2I(el,d](z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz

−
(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ er

s

∫ y

s

2I(el,d](z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dy dz

)
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt

]

=

∫ d

el

µ̄1({el})

[
2I(el,s](z)

σ̄2(z)
e
∫ z
s

2b̄(t)

σ̄2(t)
dt

+

(∫ er

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(
I[s,er](z)

∫ y

s

2I(el,d](z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dy

)
e
−
∫ el
s

2b̄(t)

σ̄2(t)
dt
dz

]

and the integrand is integrable, hence µ̄0 is absolutely continuous with respect to Lebesgue

measure.

This result finalizes the proof of existence and uniqueness of solutions to the linear constraints

(2.6). We will make some useful deductions from this result, concerning the case when the

control is not fixed. This means that the continuous generator takes the form

Af(x, u) = b(x, u)f ′(x) +
1

2
σ(x, u)f ′′(x),

while the singular generator B stays the same due to the assumption that there is no control

of the singular behavior. The linear constraints read as follows. Recall that these are the

linear constraints appearing in the linear programming formulation for control problems as

introduced in Section II.1.∫
E×U

Af dµ0 +

∫
E

Bf dµ1 = 0 ∀f ∈ C2
c (E)

µ0 ∈ P(E × U), µ1 ∈M(E).

(2.26)

Before we show the existence of a solution to these constraints (uniqueness cannot be guar-

anteed any longer), recall that we initially assumed that η0 is such a relaxed control that b̄

and σ̄ are continuous everywhere except at finitely many points. This can, for example be
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achieved if η0 is of the form

η0(V, x) =

n1∑
j=0

n2∑
i=0

βj,iIEj(x)δui(V )

where E1, E2, . . . , En1 is a partition of E, u1, u2, . . . , un2 are points in the control space U

and the βi,j are aptly chosen coefficients. In the proposed numerical method, the relaxed

controls of consideration will actually be of this form, compare (III.1.11) and (III.1.13).

Theorem 2.27. There exists a solution to the linear constraints given by (2.26).

Proof. For a regular conditional probability η0 which makes b̄ and σ̄ continuous except for

finitely many points, consider the unique solution (µ̄0, µ̄1) to (2.6). Define two measures µ0

and µ1 on B(E × U) by

µ0(dx× du) = η0(du, x)µ̄0(dx)

µ1(dx× du) = µ̄1(dx).

Then for any f ∈ C2(E),

∫
E×U

Af dµ0 +

∫
E

Bf dµ1 =

∫
E

∫
U

Af(x, u) η0(du, x) µ̄0(dx) +

∫
E

Bf(x) µ̄1(dx)

=

∫
E

Āf(x) µ̄0(dx) +

∫
E

Bf(x) µ̄1(dx) = 0

holds, so (µ0, µ1) solves (2.26).

Remark 2.28. According to the theory of the linear programming approach, see Theorem 1.8

of Kurtz and Stockbridge (2017), the existence of a solution to (2.26) implies the existence of

a solution to the relaxed singular controlled martingale problem as defined in Definition 1.24.

Since we assumed that there is no control on the singular part, we indeed have that Bf only

depends on x and Γ is a measure on only ([0,∞)×E). Theorem 1.8 of Kurtz and Stockbridge

(2017) also states that Λ is of the form Λt = η0(·, Xt).
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The theory for the given example concerned itself with a process that is reflected at the

left endpoint el of the state space, and jumps away from the right endpoint er of the state

space. Two additional cases can be dealt with in a similar manner. First, one could consider

reflections at both el and er. Second, one could consider a reflection at er and a jump away

from el. The respective results for these cases that are analogous to Lemmas 2.15 and 2.18

and Remark 2.17, can be found in Appendix B. The remaining derivations can be conducted

similarly to the example presented in this section, and are omitted. For further reference,

we state the following comprehensive result.

Theorem 2.29. Let A be the generator of the continuous behavior of a process under con-

sideration of the long-term average criterion, and let B take any of the forms described in

Table II.1. Then, there exists a solution to the linear constraints given by (2.26). In the light

of Remark 2.28, there also exists a solution to the relaxed singular martingale problem given

in Definition 1.24.

II.2.2 Example: Discounted Infinite Horizon Problem with Sin-

gular Behavior Given by Two Reflections

We turn our attention to the infinite horizon discounted criterion, and consider a process

that is reflected at both boundary points el and er. The existence of solutions comes as an

easy consequence of the existence of solutions to the long-term average problem as shown

in the next theorem. To distinguish between the long term average case and the discounted

case, we use the notation

Āαf(x) = b̄(x)f ′(x) +
1

2
σ̄2(x)f ′′(x)− αf(x)
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for some α > 0. Recalling that in the discounted case, Rf = −αf(x0), we regard the linear

constraints given by

∫
E

Āαf dµ̄0 +

∫
E

Bf dµ̄1 = −αf(x0) ∀f ∈ C2
c (E)

µ̄0 ∈ P(E), µ̄1 ∈M(E).

(2.30)

The generator of the singular behavior B does not depend on α and is hence retained in this

formulation. Note that for the given example, the integral term with the singular generator

takes the form ∫
E

Bf(x)µ̄1(dx) = f ′(el)µ̄1({el})− f ′(er)µ̄1({er})

Theorem 2.31. There exists a solution to (2.30).

Proof. By Theorem 2.29, there is a stationary solution (X,Γ,Λ) to the relaxed singular

martingale problem defined by Definition 1.24 with Λt = η0(·, Xt). In other words,

f(Xt)− f(x0)−
∫ t

0

Āf(Xs) ds

−
∫

[0,t]×E×U
Bf(Xs)Γ(ds× dx× du)

(2.32)

is a martingale for all f ∈ C2
c (E). If we consider Ā(x, u) ≡ Ā(x), Āα(x, u) ≡ Āα(x) and

B(x, u) ≡ B(x), we can regard a new martingale problem by demanding that

f(Xt)− f(x0)−
∫ t

0

∫
U

Āf(Xs, u)Λs(du) ds

−
∫

[0,t]×E×U
Bf(Xs, u)Γ(ds× dx× du)

(2.33)

is a martingale for all f ∈ C2
c (E), which obviously has the solution (X,Λ,Γ), with Λt ≡

η0(·, Xt). Note that since Ā and B do not depend on u, any relaxed control η is a solution.

By the theory of the linear programming approach, compare Kurtz and Stockbridge (2017),
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the existence of a solution to the martingale problem implies a solution to

∫
E×U

Āαf dµ0 +

∫
E×U

Bf dµ1 = Rf ∀f ∈ C2
c (E)

µ0 ∈ P(E × U), µ1 ∈M(E × U),

(2.34)

but as Āα and B do not depend on u, the state-space marginals of µ0 and µ1 solve (2.30).

For uniqueness, we have to investigate solutions to the equation

Āαf(x) = b̄(x)f ′(x) +
1

2
σ̄2(x)f ′′(x)− αf(x) = g(x),

where again g will be an indicator function of a Borel set of E. We will employ a stochastic

solution approach to this equation and analyze the resulting solution in order to show that

it fulfills a similar set of properties as presented in the previous section. In order to do so,

we need to introduce several ideas from the theory of diffusion processes, as found in Rogers

and Williams (2000). In the following, Y is a solution to the stochastic differential equation

dYt = b̄(Yt)dt+ σ̄(Yt)dWt, Y0 = x0

It is important to point out that such a solution only represents the diffusion part of the

problems we are considering, in other words, it is lacking any singular behavior. To be able

to distinguish, we refer to the state space of Y as I. Note that if X is a solution to

dXt = b̄(Xt)dt+ σ̄(Xt)dWt + ξt, X0 = x0

with ξ modeling the singular behavior keeping X inside of its compact state space E, then

E ⊂ I. In the following, we distinguish behavior based on different starting points of the

diffusion. Hence, we refer to Px as the law given by the stochastic process Y with Y0 = x and

in the same way, denote Ex the expectation operator of the process Y starting at Y0 = x.
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Definition 2.35. For y ∈ I, the first hitting time of y by the process Y is defined by

τy = inf{t ≥ 0 : Yt = y}

Definition 2.36. The process Y is called regular if for all x0 in the interior of I and y ∈ I,

Px0(τy <∞) > 0.

A regular process is a process which, starting from a point in the interior of its state space I,

can reach any point in the interior of the state space in finite time with positive probability.

From here on, we will only consider regular processes. For a regular process, the following

is well defined. Let E = [el, er] and I = [il, ir].

Definition 2.37. For α > 0 and y ∈ I define the functions φα(x) and ψα(x) on I by

φα(x) =


1/Ey [exp(−ατx)] il < x < y

Ex [exp(−ατy)] y ≤ x < ir

and

ψα(x) =


Ex [exp(−ατy)] il < x < y

1/Ey [exp(−ατx)] y ≤ x < ir

.

Proposition 2.38. The functions φα and ψα are strictly convex, positive, and strictly de-

creasing and increasing, respectively.

Proof. Rogers and Williams (2000), section V.50. Furthermore, compare Remark 2.14.

More striking is the fact that φα and ψα solve the differential equation Āαf(x) = 0, in the

sense discussed in Remark 2.14, which means it solves it almost everywhere.
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Proposition 2.39. φα and ψα solve

1

2

d

dM

(
df(x)

dS

)
= 0. (2.40)

In particular, Āαf(x) = 0 holds almost everywhere.

Proof. Rogers and Williams (2000), section V.50.

We proceed to investigate more of the regularity of φα and ψα. In particular, the literature

only states that these functions are continuous. With the help of the differential equation

(2.40) we are able to derive more regularity of these functions, in particular if the drift and

diffusion functions are continuous.

Proposition 2.41. The functions φα and ψα have continuous derivatives.

Proof. Note that

Āαφα(x) = b̄(x)φ′α(x) +
σ̄2(x)

2
φ′′α(x)− αφα(x) = 0 almost everywhere

implies that

φ′′α(x) =
2α

σ̄2(x)
φα(x)− 2b̄(x)

σ̄2(x)
φ′α(x) almost everywhere (2.42)

and further for some c1 ∈ R,

φ′α(x) = φ′α(c1) +

∫ x

c1

2α

σ̄2(y)
φα(y)− 2b̄(y)

σ̄2(y)
φ′α(y) dy almost everywhere (2.43)

As φα is convex, the left derivative φ− and the right derivative φ+ exist, and both are

continuous. Take z ∈ R and a sequence {xn}n∈N such that xn ≤ z for all n, limn→∞ xn = z,

and (2.43) holds for all xn. Hence, limn→∞ φ
′
−(xn) = φ′−(z), but

φ′−(xn) = φ′α(c1) +

∫ xn

c1

2α

σ̄2(y)
φα(y)− 2b̄(y)

σ̄2(y)
φ′α(y) dy

52



and by dominated convergence,

φ′−(z) = φ′α(c1) +

∫ z

c1

2α

σ̄2(y)
φα(y)− 2b̄(y)

σ̄2(y)
φ′α(y) dy

holds. Likewise, we can show that

φ′+(z) = φ′α(c1) +

∫ z

c1

2α

σ̄2(y)
φα(y)− 2b̄(y)

σ̄2(y)
φ′α(y) dy.

Hence φ′− = φ′+ everywhere and φ′α is continuous. The argument for ψ′α is identical.

Remark 2.44. If b̄ and σ̄ are continuous (2.42) holds everywhere and indicates that φ′′α, and

likewise ψ′′α, are continuous. If b̄ and σ̄ are not continuous, the discontinuities of φ′′α and ψ′′α

are precisely the points where b̄ and σ̄ are discontinuous.

In the case where drift b̄ and diffusion σ̄ are only piecewise continuous, with finitely many

discontinuities, we again employ a mollifying approach. This is presented for φα, with

the argument for ψα being identical. We will frequently consider the following type of

convergence.

Definition 2.45. Let (S, ν) be a finite measure space. A sequence of functions {fk}k∈N

on (S, ν) is said to converge to a function f boundedly and pointwise (or pointwise almost

everywhere), if supk∈N{‖fk‖∞} < ∞ and limk→∞ fk(x) = f(x) for every x ∈ S (or almost

every x ∈ S).

Remark 2.46. Let (S, ν) be a finite measure space, and assume that {fk}k∈N converges to

f boundedly and pointwise almost everywhere. Then,

lim
k→∞

∫
S

fk dν =

∫
S

f dν

by the bounded convergence theorem.
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Proposition 2.47. As k →∞, we have that

Āαφk(x)→ 0

boundedly and pointwise almost everywhere.

Proof. Construct a sequence φk by mollifying φα using Proposition 2.19. As φk → φα,

φ′k → φ′α uniformly, and in particular bounded and pointwise, and φ′′k → φ′′α pointwise and

bounded almost everywhere, we have that

lim
k→∞

Āαφk = lim
k→∞

(
b̄(x)φ′k(x) +

σ̄2(x)

2
φ′′k(x)− αφk(x)

)
= b̄(x)φ′α(x) +

σ̄2(x)

2
φ′′α(x)− αφα(x)

= 0

Using φk and ψk, we construct a sequence of functions {fk}k∈N such that limk→∞Afk → g

boundedly and pointwise for some function g. Typically, g will be an indicator function and

needs to be mollified as well.

Proposition 2.48. Let s be the scale density, compare Definition 2.12, of a diffusion with

drift b̄ and diffusion σ̄. Then, the Wronskian

wα =
φ′α(x)ψα(x)− φα(x)ψ′α(x)

s(x)

is constant and negative.
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Proof. Note that for any x where b̄ and σ̄ are continuous, which is any x such that Āα(x)φα(x) =

Āα(x)ψα(x) = 0, we have that

w′α(x) =
s(x) [φ′′α(x)ψα(x) + φ′α(x)ψ′α(x)− φα(x)ψ′′α(x)− φ′α(x)ψ′α(x)]

s2(x)

−s
′(x) [φ′α(x)ψα(x)− φα(x)ψ′α(x)]

s2(x)

=
[φ′′α(x)ψα(x)− φα(x)ψ′′α(x)] + 2b̄(x)

σ̄2(x)
[φ′α(x)ψα(x)− φα(x)ψ′α(x)]

s(x)

=
ψα(x)

[
φ′′α(x) + 2b̄(x)

σ̄2(x)
φ′α(x)

]
− φα(x)

[
ψ′′α(x) + 2b̄(x)

σ̄2(x)
ψ′α(x)

]
s(x)

=
ψα(x)

[
2α
σ̄2(x)

φα(x)
]
− φα(x)

[
2α
σ̄2(x)

φα(x)
]

s(x)
= 0,

where we used that
s′k(x)

sk(x)
= −2b̄k(x)

σ̄2(x)
. So, wα is piecewise constant. But as it is is contin-

uous, it is constant. To see that its value is negative, observe that s is positive, and by

Proposition 2.38 we can easily deduce that the numerator of wα is negative.

Theorem 2.49. Let c1, c2 ∈ R. For a piecewise continuous function g, define a sequence of

functions {fk}k∈N by

fk(x) =
2

wα

[
φk(x)

∫ x

c1

ψk(y)gk(y)mk(y) dy + ψk(x)

∫ c2

x

φk(y)gk(y)mk(y) dy

]
(2.50)

where mk is the mollified speed density, stemming from Definition 2.13 and gk is a mollifica-

tion of g, both using Proposition 2.19. Then, Āαfk → g as k →∞, boundedly and pointwise

almost everywhere. Moreover, limk→∞ f
′
k(x) > 0 for all x ∈ I.
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Proof. We begin by examining the derivatives of fk for a fixed k ∈ N.

f ′k(x) =
2

wα

[
φ′k(x)

∫ x

c1

ψk(y)gk(y)mk(y) dy + φk(x)ψk(x)gk(x)mk(x)

+ ψ′k(x)

∫ c2

x

φk(y)gk(y)mk(y) dy − φk(x)ψk(x)gk(x)mk(x)

]
=

2

wα

[
φ′k(x)

∫ x

c1

ψk(y)gk(y)mk(y) dy + ψ′k(x)

∫ c2

x

φk(y)gk(y)mk(y) dy

]

f ′′k (x) =
2

wα

[
φ′′k(x)

∫ x

c1

ψk(y)gk(y)mk(y) dy + φ′k(x)ψk(x)gk(x)mk(x)

+ψ′′k(x)

∫ c2

x

φk(y)gk(y)mk(y) dy − ψ′k(x)φk(x)gk(x)mk(x)

]

Using these formulas, we have that

Āαfk(x) = b̄(x)f ′k(x) +
σ̄2(x)

2
f ′′k (x)− αfk(x)

=
2

wα

[∫ x

c1

ψk(y)gk(y)mk(y) dy

(
b̄(x)φ′k(x) +

σ̄2(x)

2
φ′′k(x)− αφk(x)

)
+

∫ c2

x

φk(y)gk(y)mk(y) dy

(
b̄(x)ψ′k(x) +

σ̄2(x)

2
ψ′′k(x)− αψk(x)

)]
+

2

wα

[
σ̄2(x)

2
φ′k(x)ψk(x)gk(x)mk(x)− σ̄2(x)

2
φk(x)ψ′k(x)gk(x)mk(x)

]
=

2

wα

[∫ x

c1

ψk(y)gk(y)mk(y) dy · Āαφk(x) +

∫ c2

x

φk(y)gk(y)mk(y) dy · Āαψk(x)

]
+
σ̄2(x)mk(x)

wα
gk(x) [φ′k(x)ψk(x)− φk(x)ψ′k(x)]

By Proposition 2.47, the term in the brackets converges to 0, bounded and pointwise almost

everywhere as k → ∞. Regarding the second term, note that σ̄2(x)mk(x) → 1
s(x)

in a

bounded way as k →∞ and hence

σ̄2(x)mk(x)

wα
→ 1

wαs(x)
=

1

[φ′(x)ψ(x)− φ(x)ψ′(x)]
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boundedly and pointwise almost everywhere. Also, φ′k(x)ψk(x)−φk(x)ψ′k(x)→ φ′(x)ψ(x)−

φ(x)ψ′(x) as k →∞. Making these ends meet, we see that, in a bounded way,

σ̄2(x)mk(x)

wα
gk(x) [φ′k(x)ψk(x)− φk(x)ψ′k(x)]→ g(x)

as k →∞. This shows the first part of the assertion. The second part is easily derived from

the formula for f ′k and the facts that φk → φ > 0, ψk → ψ > 0, φ′k → φ′ > 0, ψ′k → ψ′ < 0,

gk → g ≥ 0 and gk → g > 0 as k → ∞, all boundedly and pointwise almost everywhere if

necessary.

This result shows that we can set up a sequence of functions which lies in the domain of the

generator, but its values under the map Āα converge to any desired function g. Of course,

we choose g to be an indicator function in the following to once again apply a result from

measure theory to show the uniqueness and existence.

A short digression will allow us to prove that for a solution (µ̄0, µ̄1) to (2.30), µ̄0 is absolutely

continuous with respect to Lebesgue measure. We refer the reader to Folland (1999), Section

3.5, for a discussion of absolutely continuous functions, and the nomenclature used in the next

proposition. Consider the sequence of functions constructed in the proof of Theorem 2.49,

with g = ID for an interval D ∈ B(E). It is easy to see that if fD is the pointwise limit of

this sequence of functions {fk,D}k∈N, it has the form

fD(x) =
2

wα

[
φα(x)

∫ x

el

ψα(y)ID(y)m(y) dy + ψα(x)

∫ el

x

φα(y)ID(y)m(y) dy

]
. (2.51)

Note that we set c1 = c2 = el. Further,

f ′D(x) =
2

wα

[
φ′α(x)

∫ x

el

ψα(y)ID(y)m(y) dy + ψ′α(x)

∫ el

x

φα(y)ID(y)m(y) dy

]
(2.52)

and indeed, f ′D = limk→∞ f
′
k,D holds pointwise.
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Proposition 2.53. Let x0, s ∈ E. The functions defined using (2.51) and (2.52), given by

F1 : R 3 d 7→ f(−∞,d](x0)

F2 : R 3 d 7→ f ′(−∞,d](el)

F3 : R 3 d 7→ f ′(−∞,d](er)

are absolutely continuous.

Proof. Consider an interval (ak, bk] ⊂ R. Then,

|f(ak,bk](x0)| =

∣∣∣∣ 2

wα

[
φα(x)

∫ x0

el

ψα(y)I(ak,bk](y)m(y) dy + ψα(x)

∫ el

x0

φα(y)I(ak,bk](y)m(y) dy

]∣∣∣∣
≤

∣∣∣∣ 2

wα

∣∣∣∣ (‖φα‖∞ + ‖ψα‖∞)

[∫ x0

el

I(ak,bk](y)m(y) dy

]
.

The expression (‖φα‖∞‖+ ψα‖∞) is indeed finite, since both functions are continuous, or

piecewise continuous, and hence can be bounded on the compact set [el, x0]. Let M(x) =∫ x
el
m(y) dy. Note that M is increasing. Then,

∫ x0

el

I(ak,bk](y)m(y) dy ≤
∫ er

el

I(ak,bk](y)m(y) dy = M(bk)−M(ak),

but M is absolutely continuous with respect to Lebesgue measure, so for ε > 0, there exists

a δ > 0 such that there is a finite sequence of disjoint intervals {(ak, bk]}nk=1 for which the

implication

n∑
k=1

(bk − ak) < δ ⇒
n∑
k=1

(M(bk)−M(ak)) <
ε∣∣∣ 2

wα

∣∣∣ (‖φα‖∞ + ‖ψα‖∞)
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holds. But then,

n∑
k=1

|F1(bk)− F1(ak)| ≤
∣∣∣∣ 2

wα

∣∣∣∣ (‖φα‖∞ + ‖ψα‖∞) ·
n∑
k=1

[∫ x0

el

I(ak,bk](y) dy

]
≤

∣∣∣∣ 2

wα

∣∣∣∣ (‖φα‖∞ + ‖ψα‖∞) ·
n∑
k=1

(M(bk)−M(ak)) < ε,

which shows that F1 is absolutely continuous. The arguments for F2 and F3 are similar,

recalling that φ′α and ψ′α are continuous and bounded.

Theorem 2.54. The continuous expected occupation measure µ̄0 of a solution (µ̄0, µ̄1) to

(2.30) is absolutely continuous with respect to Lebesgue measure.

Proof. Choose a sequence of functions {fk}k∈N such that Āfk → I(∞,d] boundedly and point-

wise as k →∞. If (µ̄0, µ̄1) solves (2.30), we have that

µ̄0((−∞, d]) =

∫
E

I(−∞,d]dµ̄0 = lim
k→∞

∫
E

Afkdµ̄0

= lim
k→∞

(
−αfk(x0)−

∫
E

Bfkdµ̄1

)
= −αf(−∞,d](x0)− F2(d)µ̄1({el}) + F3(d)µ̄1({er})

Using this notation, we actually have

µ̄0((−∞, d]) = −αF1(d) + F2(d)µ̄1({el}) = F3(d)µ̄1({er})

and the right hand side is an absolutely continuous function. By standard results from

measure theory, µ̄0 is absolutely continuous with respect to Lebesgue measure.

We show two results that will give us the uniqueness theorem.

Lemma 2.55. Let D be an interval in B(E). Then, there is a sequence of functions

{fD,k}k∈N, such that Āαfk → ID as k →∞ boundedly and pointwise with limk→∞ f
′
D,k(el) = 0

and limk→∞ f
′
D,k(er) > 0.
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Proof. In (2.50), set c1 = c2 = el. Then, f ′D,k(el) = 0 for all k ∈ N and

lim
k→∞

f ′D,k(er) = lim
k→∞

2

wα

[
φ′k(er)

∫ er

el

ψk(y)gk(y)mk(y) dy + ψ′k(er)

∫ el

er

φk(y)gk(y)mk(y) dy

]
=

2

wα

[
φ′α(er)

∫ er

el

ψα(y)g(y)m(y) dy − ψ′α(er)

∫ er

el

φα(y)g(y)m(y) dy

]
> 0,

since wα is negative. As seen in Theorem 2.49, we have that Āαfk → ID as k →∞.

Lemma 2.56. Let D be an interval in B(E). Then, there is a sequence of functions

{fD,k}k∈N, such that Āαfk → ID as k →∞ boundedly and pointwise with limk→∞ f
′
D,k(er) = 0

and limk→∞ f
′
D,k(el) < 0.

Proof. In (2.50), set c1 = c2 = er. Then, f ′D,k(er) = 0 for all k ∈ N and

lim
k→∞

f ′D,k(el) = lim
k→∞

2

wα

[
φ′k(el)

∫ el

er

ψk(y)gk(y)mk(y) dy + ψ′k(el)

∫ er

el

φk(y)gk(y)mk(y) dy

]
=

2

wα

[
−φ′α(el)

∫ er

el

ψα(y)g(y)m(y) dy + ψ′α(el)

∫ er

el

φα(y)g(y)m(y) dy

]
< 0.

As seen in Theorem 2.49, we have that Āαfk → ID as k →∞.

Theorem 2.57. Let (µ̄0, µ̄1) and (µ̂0, µ̂1) be two solutions to (2.30). Then, (µ̄0, µ̄1) and

(µ̂0, µ̂1) are identical.

Proof. Consider two solutions (µ̄0, µ̄1) and (µ̂0, µ̂1). Setting D = E, by Lemma 2.55, choose

a sequence {fk,E}k∈N such that

1 = µ̄0(E) =

∫
E

IEdµ̄0 =

∫
E

lim
k→∞

Āαfk,Edµ̄0 = lim
k→∞

∫
E

Āαfk,Edµ̄0

= lim
k→∞

(
−αfk,E(x0)−

∫
E

Bfk,Edµ̄1

)
= lim

k→∞
(−αfk,E(x0)−Bfk,E(er)µ̄1({er}))
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and with the same reasoning,

1 = lim
k→∞

(−αfk,E(x0)−Bfk,E(er)µ̂1({er}))

which right away shows that µ̄1({er}) = µ̂1({er}). Then, again settingD = E, by Lemma 2.56,

choose a sequence {fk,d}k∈N such that

1 = lim
k→∞

(−αfk,E(x0)−Bfk,E(el)µ̄1({el})−Bfk,E(er)µ̄1({er}))

and

1 = lim
k→∞

(
−αfk,E(x0)− B̂fk,E(el)µ̂1({el})−Bfk,E(er)µ̂1({er})

)
which then implies that µ̄1({el}) = µ̂1({el}). By Theorem 2.49, setting D = [c, d] for

el ≤ c < d ≤ er, find a sequence of functions {fk,[c,d]}k∈N such that Āαfk → I[c,d] pointwise

and bounded. Then

µ̄0([c, d]) =

∫
E

I[c,d]dµ̄0 =

∫
E

lim
k→∞

Afk,[c,d]dµ̄0 = lim
k→∞

∫
E

Afk,[c,d]dµ̄0

= lim
k→∞

(
−αfk,[c,d](x0)−

∫
E

Bfk,[c,d]dµ̄1

)
= lim

k→∞

(
−αfk,[c,d](x0)−

∫
E

Bfk,[c,d]dµ̂1

)
= lim

k→∞

∫
E

Afk,[c,d]dµ̄0 = . . . =

= µ̂0([c, d])

holds, which shows that µ̄0 and µ̂0 agree on a π-system that generates B(E), and hence they

are identical.
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II.3 Weak Convergence of Measures

The convergence proofs for the method proposed in this thesis will, in some parts, be based

on the notion of weak convergence of measures. In the literature, weak convergence is

frequently considered for probability measures, the classical reference is given by Billingsley

(1999). We regard this concept in the slightly more general setting of finite Borel measures.

An extensive discussion of this concept can be found in Bogachev (2007). In the following,

let (S, d) be a metric space, and let A be the σ-algebra of Borel sets on S such that we

can once consider the set of bounded, uniformly continuous functions from S to R, denoted

Cu
b (S), and the measurable space (S,A ).

Definition 3.1. Consider a sequence of finite measures {µn}n∈N on (S,A ) and another

finite measure µ on (S,A ). We say that µn converges weakly to µ, in symbol µn ⇒ µ, if for

all f ∈ Cu
b (S) ∫

S

f(x)µn(dx)→
∫
S

f(x)µ(dx) as n→∞

holds.

Remark 3.2. If we regard integration against µn as an operator on Cu
b (S), weak convergence

of measures can be viewed as pointwise convergence.

Several statements that are equivalent to Definition 3.1 can be shown. This is referred to by

Portmanteau’s Theorem in the literature. The following equivalent condition to the weak

convergence of measures will be used later on.

Proposition 3.3. Consider a sequence of finite measures {µn}n∈N on (S,A ) and another

finite measure µ on (S,A ). µn converges to µ weakly if and only if for all bounded functions

f̂ that are continuous µ-almost everywhere,

∫
S

f̂(x)µn(dx)→
∫
S

f̂(x)µ(dx) as n→∞
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holds.

Proof. The ‘if’ implication is trivial. The ‘only if’ implication is a simple generalization

of the proof for Corollary 8.4.2. from Bogachev (2007), where the statement is shown for

probability measures.

The notion of sequential compactness can be generalized (from topological spaces) to the

framework of weak convergence of measures. An important concept in this regard is the idea

of tightness, which ensures that a sequence of measures does not push mass ‘out to infinity’.

Since we are dealing with Borel measures that can have arbitrarily large (but finite) mass,

we also need an idea of uniform boundedness of a sequence.

Definition 3.4. A sequence of finite measures {µn}n∈N on (S,A ) is called tight if for all

ε > 0, there is a compact set Kε in S such that

µn(KC
ε ) < ε

holds for all n ∈ N.

Definition 3.5. A sequence of finite measures {µn}n∈N on (S,A ) is called uniformly bounded

if for some l ≥ 0, µn(S) ≤ l holds for all n ∈ N.

The following result is known as Prokhorov’s theorem in the literature. It gives a necessary

and sufficient condition for the existence of convergent subsequences.

Theorem 3.6. Let {µn}n∈N be a sequence of finite measures on (S,A ). Then, the following

are equivalent.

i) {µn}n∈N contains a weakly convergent subsequence,

ii) {µn}n∈N is tight and uniformly bounded.

Proof. See Bogachev (2007), Theorem 8.6.2.
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Remark 3.7. Trivially, a tight sequence of probability measures contains a weakly convergent

subsequence.

II.4 Cubic Spline Interpolation and B-Splines

In this section we review the literature on cubic spline interpolation and B-Spline basis

functions in particular. These basis functions serve as a discrete basis in C2(E), forming

the finite-dimensional space of constraint functions which is needed in order to attain a

computationally tractable version of the infinite-dimensional linear program. The following

results present a summary of the theory presented in de Boor (2001) and Atkinson (1989).

The idea of cubic spline interpolation is the following. Let E = [el, er] ∈ R be a closed

interval. Consider a finite set of pointwise distinct points {ej}nj=0 in E, usually called a grid

or a mesh, and a set of values {fj}nj=0 stemming from a function f : E 7→ R, such that

f(ej) = fj for j = 0, 1, . . . n. Such a situation is encountered when no closed form of f

is available, or we can only observe the values of f on a finite set of points. We want to

reconstruct, or approximate, f by finding a function g that fulfills g(ej) = fj for j = 0, 1, . . . n

and can be written in a closed form. This closed form of g can than be used to estimate f

at points which are not contained in {ej}nj=0, or to derive an approximation of the integral

of f .

What we have described to this point is generally called an interpolation problem, and we can

convince ourselves that a linear interpolation on the intervals [ej, ej+1] solves this problem.

However, this only provides a continuous, and not differentiable function. Also, the quality

of the approximation between the grid points might be poor, as it is not guaranteed that f is

linear between two grid points. A variety of techniques to attain higher-order approximation

has been developed, and we refer the interested reader to de Boor (2001) for a extensive

discussion of the techniques. In this thesis, we focus on Cubic spline interpolation. Assume

in the following that ej < ej+1 for j = 0, 1, . . . , n− 1.
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Cubic spline interpolation seeks to interpolate {fj}nj=0 on {ej}nj=0 by a function that is

twice continuously differentiable, and a piecewise polynomial of degree three on the intervals

[ej, ej+1] for j = 0, 1, . . . n. Usually, one poses boundary conditions on s(e0) and s(en) to

ensure that this problem is well posed. We will not dwell on the specifics of this problem

and refer to the literature, see de Boor (2001) or Atkinson (1989) once more. However,

these cubic splines can be expressed as a finite linear combination of a certain set of basis

functions, and these basis functions will be of fundamental importance to the convergence

analysis of the proposed method in Section III.2.

To construct such basis functions, enhance the grid with the introduction of additional points

defined by

e−3 < e−2 < e−1 < e0 and en < en+1 < en+2 < en+3.

Further, let [h]+ : E 3 x 7→ [h]+(x) := max(h(x), 0) be the positive part of a function h.

Definition 4.1. The set of B-spline basis functions for a grid {ej}n+3
j=−3 is defined by

Bj(x) = (ej+4 − ej)
j+4∑
i=j

[(ei − x)3]
+

Ψ′j(ei)
, j = −3,−2, . . . n− 1

where

Ψj(x) =

j+4∏
i=j

(x− ei).

The properties of B-spline basis functions are well understood. The most pertinent facts for

our purposes are the following.

Proposition 4.2. Let {ej}nj=0 be a set of grid points and let {Bj}n−1
j=−3 be the B-spline basis

functions on the grid {ej}n+3
j=−3.

i) The support of Bj is given by (ej, ej+4).

ii) The set of linear combinations of {Bj}n−1
j=−3 is the set of all cubic splines on the grid

{ej}nj=0.
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Proof. See de Boor (2001).

Remark 4.3. The second property states that if we are given grid points {ej}nj=0 with func-

tion values {fj}nj=0, the cubic spline s through these data points is a linear combination of

B-spline basis functions on the enhanced grid {ej}n+3
j=−3.

The importance of B-spline basis functions for this thesis is revealed in the next theorem.

First, we have to define the mesh gauge and the mesh ratio of a given grid {ej}n+3
j=−3.

Definition 4.4. Let π = {ej}n+3
j=−3 be a set of given grid points. For j = −3, . . . , n + 3, set

∆ej = ej+1 − ej. The mesh gauge γπ of π is given by

γπ = max
j=−3,...,n+3

∆ej.

Definition 4.5. Let π = {ej}n+3
j=−3 be a set of given grid points. For j = −3, . . . , n + 3, set

∆ej = ej+1 − ej. The mesh ratio ρπ of π is given by

ρπ =
max

j=−3,...,n+3
∆ej

min
j=−3,...,n+3

∆ej
.

Remark 4.6. If the grid points {ej}n+3
j=−3 are chosen equidistant, the mesh ratio is equal to

1.

Theorem 4.7. Let f ∈ C2(E) and let {πk}k∈N be a sequence of meshes such that γπ → 0

and ρπk → 1 as k →∞. Let sk be the cubic spline interpolating fk on πk. Then, the function

and its derivatives s(r) converges to f (r) uniformly, for r = 0, 1, 2.

Proof. See Hall and Meyer (1976), Theorem 1.

Corollary 4.8. Consider C2
c (E) of twice differentiable functions with compact support and

define a norm on this function space by ‖f‖D = ‖f‖∞+‖f ′‖∞+‖f ′′‖∞, where ‖ ·‖∞ denotes

the uniform norm. Let {πk}k∈N be a sequence of meshes such that ρπk → 1 as k →∞, and let

B(k) be the set of B-spline basis functions on πk. Then, ∪k∈NB(k) is dense in (C2
c (E), ‖ · ‖D).
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Approximation Techniques

This chapter proposes approximation techniques that are used to solve the stochastic control

problems introduced in Chapter II. We distinguish between models with a bounded state

space, and models with an unbounded state space. In respect to the convergence analysis

of Chapter IV, models with a bounded state space are easier, and are presented first. The

approach for models with an unbounded state space relies on an additional ‘layer’ of approx-

imations, as presented in the second part of this chapter. This additional layer brings forth

a reduced problem which effectively has a bounded state space, and minor adjustments to

the techniques used to approximate models with bounded state spaces can be employed to

obtain a computable version of this reduced problem.

III.1 Infinite Time Horizon Problems with Bounded

State Space

This section introduces the approximation scheme for stochastic control problems that fea-

ture an infinite time horizon and a bounded state space. The singular behavior can be

present or not, and if it is given by a jump, jump sizes are non-random. Thus, the singular

behavior is deterministic. As in Section I.2, we mainly regard the case where singular be-

havior is present, as it is more general, and occasionally point out how the considerations

have to be altered to tackle problems without singular behavior.

Several aspects of the approximation will be discussed. First, the discretization of the infinite-
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dimensional linear program is presented. Second, it is illustrated how the discretization can

be used to set up a finite-dimensional linear program given in vector-matrix form. This is

followed by a section describing how the approximation approach can be adapted to simply

evaluate given controls, rather than finding an optimal control. The section closes with a

couple of remarks on specific meshing and the choice of basis functions, which are omitted

in the initial description of the approximation scheme for the sake of clarity.

Let the state space E = [el, er] ⊂ R be a closed and bounded interval, and let the control

space U = [ul, ur] ⊂ R be a closed and bounded interval as well. Note that in this setting,

we do not have to distinguish between C2
c (E) and C2(E). The cost criterion is expressed

using two continuous functions c0, c1 : E 7→ R≥0, with c0 representing the cost induced by

the continuous behavior of the process, and c1 representing the costs induced by the singular

behavior. We denote the set of probability measures on E×U by P(E×U), and byM(E×U)

the set of finite Borel measures on E × U .

III.1.1 Discretization of the Linear Program

The general linear program we wish to solve (compare Definitions II.1.36 and II.1.37) is

Minimize

∫
E×U

c0dµ0 +

∫
E×U

c1dµ1

Subject to


∫
Afdµ0 +

∫
Bfµ1 = Rf ∀f ∈ D∞

µ0 ∈ P(E × U)

µ1 ∈M(E × U)

.

For a non-singular problem, simply assume B ≡ 0 and µ1 ≡ 0 in the following discussion. In

the singular case, the expected occupation measure µ1 puts mass on only a finite number of

points in the state space. To be precise, it is concentrated on either {el}, {er}, or on both

of them, being the only points where singular behavior occurs. For the ease of notation, we
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will use

M∞ =

{
(µ0, µ1) ∈ P(E × U)×M(E × U) :

∫
Afdµ0 +

∫
Bfµ1 = Rf ∀f ∈ D∞

}
,

recalling that D∞ = (C2(E), ‖ · ‖D) and

J : P(E × U)×M(E × U) 3 (µ0, µ1) 7→ J(µ0, µ1) =

∫
E×U

c0 dµ0 +

∫
E×U

c1 dµ1 ∈ R≥0.

This allows for the following definition.

Definition 1.1. The infinite-dimensional linear program is to find

min {J(µ0, µ1)|(µ0, µ1) ∈M∞} .

Note that this problem features infinitely many constraints, as the function space D∞ is

infinite-dimensional, and an infinite set of degrees of freedom, since the spaces P(E × U)

and M(E × U) are not finitely representable. The approximation that follows proposes to

break this infinite dimensional problem into a finite dimensional problem in two steps. First,

we limit the number of constraints to a finite number by taking a countable basis of D∞,

and truncating it after finitely many basis elements. Second, we introduce measures µ̂0 and

µ̂1 that are finite linear combinations of simple measures, yielding a finite dimensional linear

program. For theoretic purposes, however, we restrict the set of measures (µ0, µ1) in M∞ to

such measures that µ1(E × U) ≤ l for some l > 0. Set

Ml(E × U) = {µ1 ∈M(E × U) : µ1(E × U) ≤ l} .

Then we can define

M l
∞ =

{
(µ0, µ1) ∈ P(E × U)×Ml(E × U) :

∫
Afdµ0 +

∫
Bfdµ1 = Rf ∀f ∈ D∞

}
.
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Definition 1.2. The l-bounded infinite-dimensional linear program is to find

min
{
J(µ0, µ1)|(µ0, µ1) ∈M l

∞
}
.

Remark 1.3. In the case of a non-singular problem, the introduction of this bound on the

mass of µ1 is not necessary.

For the discretization of the constraints, we require the following result.

Proposition 1.4. D∞ is separable.

Proof. This follows directly from Corollary II.4.8, which states that a countable dense subset

is given by B-spline basis functions.

This allows us to discretize the constraints by truncating a countable dense subset of the

constraint function space as stated in the following definition.

Definition 1.5. Let {fk}k∈N be a countable dense subset in D∞. For n ∈ N, define the

n-dimensional test function space by

Dn = (span(∪nk=1{fk}), ‖ · ‖D) .

How a specific choice of B-spline basis functions can be attained by dividing the state space

into a mesh will be discussed in Section III.1.4. With the n-dimensional test function space,

we can introduce

M l
n =

{
(µ0, µ1) ∈ P(E × U)×Ml(E × U) :

∫
Afdµ0 +

∫
Bfdµ1 = Rf ∀f ∈ Dn

}

which by linearity of operators A and B, the functional R, as well as integration is the same

as setting

M l
n =

{
(µ0, µ1) ∈ P(E × U)×Ml(E × U) :

∫
Afkdµ0 +

∫
Bfkdµ1 = Rfk, k = 1, . . . , n

}
.
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Definition 1.6. The l-bounded (n,∞)-dimensional linear program is to find

min
{
J(µ0, µ1)|(µ0, µ1) ∈M l

n

}
.

The notation ‘(n,∞)’ refers to the fact that the constraints of the problem have been dis-

cretized, but the measures, which are the variables, have not yet been discretized. The con-

vergence analysis that is to come will reveal that, using the notion of ε-optimality, an almost

optimal solution of the l-bounded (n,∞)-dimensional problem is an almost optimal solution

to the original problem if n and l are large enough. However, we still have to construct a

computationally attainable subset of M l
n, in other words, a finite-dimensional approxima-

tion of M l
n. Theorems II.1.42 and II.1.43 state that an optimal relaxed control is given in

feedback form, and the notion of a regular conditional probability (Definition II.1.26) is used

to model feedback controls. In other words, we assert that µ0(dx× du) = η0(du, x)µ0,E(dx),

where µ0,E is the state space marginal of µ0 and η0 represents the feedback control for the

continuous behavior. In similar fashion, we can decompose the singular expected occupation

measure µ1 such that µ1(dx× du) = η1(du, x)µ1,E(dx) with µ1,E referring to the state space

marginal of µ1. The regular conditional probability η1 models the relaxed control of the

singular part, for example the jump sizes.

To make the approximation work, a couple of assumptions are introduced at this point.

First, we need to require that for every V ∈ B(U), we have that η0(V, ·) : E 7→ [0, 1] is

continuous almost everywhere. Second, we assume that µ0,E, the state-space component of

the measure µ0, is absolutely continuous with respect to Lebesgue measure. If we denote the

density by p, we have that µ0(dx× du) = η0(du, x)p(x)dx, and p ∈ L1(E). We construct the

approximation in this chapter based on these hypotheses. However, we can note that by the

derivations presented in Section II.2, these two hypotheses are fulfilled if there is no control
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on the singular behavior, and η0 is such a control that the functions b̄ and σ̄ defined by

b̄ : E 3 x 7→ b̄(x) =

∫
U

b(x, u) η0(du, x), σ̄ : E 3 x 7→ σ̄(x) =

√∫
U

σ2(x, u) η0(du, x)

are bounded and continuous in E except at finitely many points, and either left or right con-

tinuous at these finitely many points. Remarks II.2.1 and II.2.2 indicate possible classes of

controls that make this assumption hold. As a third hypothesis, the aforementioned density

p of µ0,E has to fulfill the constraint that λ ({x : p(x) = 0}) = 0. In other words, p is equal

to zero only on a set of Lebesgue measure 0.

Now we discuss how to approximate a measure (µ0, µ1) ∈ M l
n. To begin with, define the

sequence k
(1)
m = m for m ∈ N. We define a second sequence {k(2)

m }m∈N as follows. Since c0,

b and σ are assumed to be continuous over a compact set, for all m ∈ N, there is a δm > 0

such that for all u, v ∈ U with |u− v| ≤ δm, it is true that

max

{
|c0(x, u)− c0(x, v)|, |b(x, u)− b(x, v)|,

∣∣∣∣12σ2(x, u)− 1

2
σ2(x, v)

∣∣∣∣} ≤ 1

2m+1
,

uniformly in x. Set k
(2)
m to be the integer such that ur−ul

2k
(2)
m
≤ δm. This is done to have a

sufficiently accurate approximate integration of the cost function c0 and the function Af

against the relaxed control η0 in the convergence proof presented in Section IV.1.

Example 1.7. Assume that U = [−1, 1], let c0(x, u) = x2 +u2, b(x, u) = u and σ(x, u) ≡ σ.

We have that, as |u+ v| ≤ 2,

|c0(x, u)− c0(x, v)| = |u2 − v2| = |u+ v| · |u− v| ≤ 2|u− v|

and hence we need 2|u− v| ≤ 1
2m+1 , so δm = 1

2m+2 . Set k
(2)
m = m+ 3. Then,

ur − ul
2k

(2)
m

=
2

2m+3
=

1

2m+2
= δm.
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Also,

|b(x, u)− b(x, v)| = |u− v| ≤ 1

2m+2
≤ 1

2m+1

holds and |σ(x, u)− σ(x, v)| is trivially zero.

The sequences k
(1)
m and k

(2)
m determine the fineness of the following subsets of the control

space and state space as defined by

E(k
(1)
m ) = {ej = el + er−el

2k
(1)
m
· j, j = 0, . . . , 2k

(1)
m }

U (k
(2)
m ) = {uj = ul + ur−ul

2k
(2)
m
· j, j = 0, . . . , 2k

(2)
m }.

(1.8)

Note that the union of these set over all m ∈ N is dense in the state space and the control

space, respectively. A diagram of these two meshes can be found in Figure III.1

Remark 1.9. The proposed way of partitioning U ensures that for given m and u ∈ U , there

is a v ∈ U (k
(2)
m ) such that the expressions involving the cost function |c0(x, u) − c0(x, v)| or

the generator for the continuous behavior

|Af(x, u)− Af(x, v)| =
∣∣∣∣f ′(x)b(x, u) +

1

2
f ′′(x)σ2(x, u)− f ′(x)b(x, v)− 1

2
f ′′(x)σ2(x, v)

∣∣∣∣ ,
which holds both for the long-term average criterion and the discounted infinite horizon cri-

terion, can be uniformly bounded by K
(

1
2

)m+1
, with K = 1 if we consider c0 and K =

max{‖f1‖D , . . . , ‖fk‖D} if we consider A and fixed k ∈ N.

Finally, set k
(3)
m = m. This third sequence will be used to control the discretization of the

density of µ0,E. From now on, m is called the discretization level, and we will regard the

three sequences as components of a vector km ≡ (k
(1)
m , k

(2)
m , k

(3)
m ). Since different choices for

k
(1)
m or k

(3)
m could be made, for example to implement adaptive meshing, we retain the slightly

involved notation from here on rather than just substituting k
(1)
m and k

(3)
m by m.

The approximation scheme is now constructed as follows. Choose a countable basis of L1(E),

say {pn}n∈N. Specific choices for this basis are discussed in Section III.1.4. We truncate this
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basis to p1, . . . , p
2k

(3)
m

in order to have a finite-dimensional space of functions. The density p

is approximated by

p̂km(x) =
2k

(3)
m −1∑
i=0

γipi(x) (1.10)

where γi, i = 0, . . . , 2k
(3)
m −1 are weights to be chosen under the constraint that

∫
E
p̂km(x)dx =

1 and that γi ≥ 0 for i = 0, 2, . . . , 2k
(3)
m . Set Ej = [xj, xj+1) for j = 0, 1, . . . 2k

(1) − 2, and

E
2k

(1)−1
= [x

2k
(1)−1

, x
2k

(1) ] and

η̂0,k (V, x) =
2k

(1)
m −1∑
j=0

2k
(2)
m∑

i=0

βj,iIEj(x)δui(V ). (1.11)

where δui denotes the Dirac measure on ui, and βj,i ∈ R≥0, j = 0, . . . , 2k
(1)
m −1, i = 0, . . . , 2k

(2)
m

are weights yet to be chosen under the constraint that
∑2k

(2)
m

i=0 βj,i = 1 for j = 0, . . . , k
(1)
m − 1.

We approximate η0 in the form of (1.11), which means that the relaxed control is approxi-

mated by point masses in the U -‘direction’ and piecewise constant in the E-‘direction’. We

set µ̂0,km(dx× du) = η̂0,km(du, x)p̂km(x)dx.

To approximate the singular expected occupation measure µ1, we use the fact that we know

a-priori where the process is going to show singular behavior. Thus, if we introduce the regu-

lar conditional probability η1 and write µ1(dx× du) = η1(du, x)µ1,E(dx), and for F ∈ B(E),

we have

µ1,E(F ) =
N∑
i=1

αiδsi(F ) (1.12)

where s1, . . . , sN are the fixed points in E at which the singular behavior of the process

happens (usually these are just {el} and {er}) and α1, . . . , αN are weights taking values in

the non-negative real numbers, with
∑N

i=1 αi ≤ l. For the convergence proof, it will be crucial

that the points s1, . . . , sN lie in the set E(k
(1)
m ). If this is not the case using the dyadic points

as stated above, we can simply add s1, . . . , sN into the set, without changing the analysis

that is to follow. So, we assume in the following that s1, . . . , sN ⊂ E(k
(1)
m ) for all m. We
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approximate the relaxed control η1 for j = 1, . . . , N by

η̂1,km(V, sj) =
2k

(2)
m∑

i=0

ζj,iδui(V ), (1.13)

with
∑2k

(2)
m

i=0 ζj,i = 1 for all j = 1, . . . , N . So, we have µ̂1,km(dx× du) = η̂1,km(du, x)µ1,E(dx).

Summing up, we consider measures of the form

(µ̂0,km , µ̂1,km) (dx× du) = (η̂0,km(du, x)p̂km(x)dx, η̂1,km(du, x)µ1,E(dx))

and we introduce the notation

M l
n,km =

 (µ0,km , µ1,km) ∈M l
n such that

(µ0,km , µ1,km) (dx× du) = (η̂0,km(du, x)p̂km(x)dx, η̂1,km(du, x)µ1,E(dx))

 .

This finalizes the discretization of the measures and leaves us with the following linear

program, identifying M l
n,km
≡M l

n,m.

Definition 1.14. The l-bounded (n,m)-dimensional linear program is to find

min
{
J(µ0, µ1)|(µ0, µ1) ∈M l

n,m

}
.

Given that the number of variables, which is the number of degrees of freedom, controlled

by m, is larger than the number of constraints, this gives a finite linear program, for which

extensive solution theory exists. For a discussion, see Vanderbei (2014). In particular, it is

known that a finite linear program has a solution, and sophisticated numerical algorithms

to find such a solution exist. So, we can assume that we are able to find an optimal solution

to the l-bounded (n,m)-dimensional linear program. The convergence analysis will reveal

that an optimal solution for the l-bounded (n,m)-dimensional linear program is an ε-optimal

solution to the l-bounded (n,∞)-dimensional linear program, which, as already mentioned,
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is, in a specific sense, close to the optimal solution to the original problem.

For the sake of completeness, we state the final formulation of the discretized linear program

for a non-singular problem. In this case, we have b ≡ 0. The set of admissible measures is

Mn,m = {µ0,km ∈Mn : µ0,km(dx× du) = η̂0,km(du, x)p̂km(x)dx} ,

where

Mn = {µ0 ∈ P(E × U) :

∫
Afkdµ0 = Rfk, k = 1, . . . , n}.

Definition 1.15. The (n,m)-dimensional linear program in the non-singular case is to find

min {J(µ0)|µ0 ∈Mn,m} .

Deviations from previous work

We want to briefly outline how the proposed approximation relates to work that has been

established in Kaczmarek et al. (2007), Rus (2009) and Lutz (2007). The respective papers

have approached the discretization of measures and constraints in such a way that both base

functions for the constraint space C2
c (E) and for the approximate density p̂ are of the same

type. In Kaczmarek et al. (2007) and Lutz (2007), this was done using continuous piecewise

linear functions. In Rus (2009), this was done using Hermite polynomials. Both of these

approaches have deficiencies in terms of the theoretical analysis.

First, discretizing the density p with continuous piecewise linear functions assumes that the

density is indeed continuous. Given a specific control problem, this cannot be assured with-

out a detailed analytic treatment of the problem. We decided to use L1(E) basis functions

that pose the least possible set of assumptions, which is mere integrability of the density.

Nevertheless, it is worth noting that analytic solutions, see Appendix C, suggest that the

density is, at least piecewise, highly regular, and the use of higher-order elements such as

linear elements or even quadratic elements could be justified.
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Second, the choice of B-splines basis functions for the constraint function space is extremely

crucial in establishing the convergence of the method, as elaborated in Remark IV.1.9. In

particular, it is necessary to use the dominated convergence theorem when integrating se-

quences of functions given by Afn and Bfn, a theorem which can only be assumed if the

underlying sequence of functions {fn}n∈N is uniformly bounded in the ‖ · ‖D -norm. This

boundedness condition is neither given with continuous piecewise linear basis functions, nor

Hermite polynomial basis functions.

On a more general level, the proposed approximation succeeds in preserving the linear pro-

gram structure of the infinite-dimensional problem, as is further elaborated in Section III.1.2.

Analogous to Kaczmarek et al. (2007) and Lutz (2007), a finite-dimensional linear program

is derived which can be solved with algorithms that rely heavily on this structure, and guar-

antee swift computation. The structure utilized in Rus (2009) uses a linear least square

projection setup that only allows for the evaluation of a given control, and hence has to

rely on fairly generic optimization algorithms to solve an unstructured global optimization

problem.

III.1.2 Computational Set-up of Discretized Linear Program

A finite dimensional linear program features a set of constraints, given by equalities and

inequalities that are linear in the unknowns, and a linear cost function. As we will see,

the l-bounded, (n,m)-dimensional linear program coming from the proposed approximation

is not linear in the coefficients αi, βj,i, γi and ζj,i which were introduced in Section III.1.1

(with i and j ranging respectively), but is linear in certain products of these coefficients.

The first part of this section works out the precise structure of the linear program for these

coefficients, the second part shows how the desired results, in particular the relaxed control,

can be attained from the solution of the linear program.

As before, we regard a discretization level k ≡
(
k(1), k(2), k(3)

)
with three components (the

dependence on m as presented in the previous section is omitted for sake of readability),
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with the first one controlling the number of points in the state space E = [el, er], the

second one controlling the number of points in the control space U = [ul, ur] (both used to

discretize the relaxed controls) and the third one controlling the number of basis functions

p0, . . . , p2k
(3)−1

for the density of the approximate state space marginal of the continuous

expected occupation measure µ0. We regard the constraint functions f1, . . . , fn, representing

a finite basis for a subspace Dn of D∞. Each of these basis functions represents an equality

constraint in the linear program. An additional constraint is introduced due to the fact that

the approximation of µ0 has to be a probability measure.

In this section, each equality constraint is regarded as a row in a coefficient matrix which

has n + 1 rows. To specify the number of columns in this coefficient matrix we need to

look closely into the specific expressions. Recall the discrete formulas of p, η0, µ1,E and η1 as

defined by (1.10) to (1.13) respectively. We refer to the discretized quantities by p̂k, η̂0,k, µ1,E

and η̂1,k in the following. Note that µ1,E is already discrete and thus is not approximated.

A priori, the number of unknowns is equal to

M :=
(

2k
(1) − 1

)
· 2k(2)︸ ︷︷ ︸

coefficients for relaxed control η0

·
(

2k
(3)
)

︸ ︷︷ ︸
coefficients for density p

+N ·
(

2k
(2)
)
,︸ ︷︷ ︸

coefficients for relaxed control η1

where N refers to the number of points with singular behavior, such as jumps and reflections.

Typically, N = 2 since singular behavior only occurs at {el} and {er}. Still, we assume a

more general setting and denote these points by s1, s2, . . . , sN . They are assumed to lie within

E(k(1)). For the sake of simplicity, we assume that the first N points of the set E(k(1)) are

precisely s1, s2, . . . , sN . According to these considerations, we consider a coefficient matrix

C ∈ Rn+1,M , and a right hand side vector d ∈ Rn+1. Further constraints ensuring that µ̂0,k

and µ̂1,k are non-negative, and µ̂1,k(E × U) ≤ l will be introduced in the form of upper and

lower bounds on the coefficients.

We proceed to construct the coefficient matrix C. For fixed 1 ≤ m ≤ n, the constraints
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dictate that

∫
E

∫
U

Afm(x, u)η̂0,k(du, x)p̂k(x)dx+

∫
E

∫
U

Bfm(x, u)η̂1,k(du, x)µ1,E(dx) = Rfm

which, given the discrete representation of the involved quantities (see again (1.10) to (1.13)),

is equivalent to

Rfm =

∫
E

2k
(1)−1∑
j=0

2k
(2)∑

i=0

βj,iAfm(x, ui)IEj(x)δui(V )

 2k
(3)−1∑
l=0

γlpl(x)dx

+
N∑
j=1

2k
(2)∑

i=0

ζj,iBfm(sj, ui)

αj

=
2k

(1)−1∑
j=0

∫
Ej

2k
(2)∑

i=0

βj,iAfm(x, ui)

 2k
(3)−1∑
l=0

γlpl(x)dx+
N∑
j=1

2k
(2)∑

i=0

ζj,iBfm(sj, ui)

αj.

To obtain a linear equation, consider the following reformulation of the right hand side of

the previous equation.

2k
(1)−1∑
j=0

2k
(2)∑

i=0

2k
(3)−1∑
l=0

βj,iγl

∫
Ej

Afm(x, ui)pl(x)dx+
N∑
j=0

2k
(2)∑

i=0

ζj,iαjBfm(sj, ui). (1.16)

From this reformulation we can see that the equation is linear in βj,iγl and ζj,iαj, but some

re-indexing is required to set it up as a straight forward inner product for implementation.

Identify the parameters in (1.16) using the following, purely notational, renumbering. The

symbol % refers to modulo division, for example, 9 % 5 = 4.

πi =
(⌊
bi/2k(3)c/2k(2)

⌋
%
(

2k
(1) − 1

)
,
⌊
i/2k

(3)
⌋

%2k
(2)

, i% 2k
(3)
)
,

if 0 ≤ i ≤
(

2k
(1) − 1

)
2k

(2)

k(3) − 1

πi =
(⌊(

i− (2k
(1) − 1)2k

(2) · 2k(3)
)
/2k

(2)
⌋

%N,
(
i− (2k

(1) − 1)2k
(2) · 2k(3)

)
% 2k

(2)
)
,

if
(

2k
(1) − 1

)
2k

(2) · 2k(3) ≤ i ≤
(

2k
(1) − 1

)
· 2k(2) · 2k(3)

+N · 2k(2) − 1.

79



Note that for 0 ≤ i ≤
(

2k
(1) − 1

)
2k

(2)
k(3) − 1, πi is a triple, and for

(
2k

(1) − 1
)

2k
(2) ·

2k
(3) ≤ i ≤

(
2k

(1) − 1
)
· 2k(2) · 2k(3)

+ N · 2k(2) − 1, πi is a pair. This is necessary to reduce

the triple and double sums of (1.16) to a single sum. Set φcj,i,l = βj,iγl and φsj,i = ζj,iαj,

M1 =
(

2k
(1) − 1

)
· 2k(2) · 2k(3)

and M2 = N · 2k(2)
. Note that M = M1 +M2. Define φi = φcπ(i)

if 0 ≤ i ≤M1 − 1 and φ̃i = φsπ(i) if M1 + 1 ≤ i ≤M1 +M2 − 1. Then, we can rewrite (1.16)

and use it to set up an equation as follows.

M1∑
i=0

φi

∫
Eπi,1

Afm(x, uπi,2)pπi,3(x)dx+

M1+M2∑
i=M1+1

φiBfm(sπi,1 , uπi,2) = Rfm (1.17)

Here πi,j denotes the jth component of the tuple πi. (1.17) clearly is linear in the variables

{φi, 0 ≤ i ≤M − 1}. For 1 ≤ m ≤ n, we define the coefficients of the matrix C ∈ Rn+1,M by

Cm,i =

∫
Eπi,1

Afm(x, uπi,2)pπi,3(x)dx, 0 ≤ i ≤M1 − 1

Cm,i = Bfm(sπi,1 , uπi,2), M1 ≤ i ≤M1 +M2 − 1.

The integrals in this expression can be computed either analytically or using a quadrature

rule. If the functions f1, . . . fn and the functions p0, . . . , p2k
(3)−1

are given by piecewise poly-

nomials (compare Section III.1.4), quadrature rules of high enough order yield exact results.

Note that we use a numbering starting at 0 only for the ease of notation. Finally, we need to

incorporate an equation ensuring that µ̂0,k has a full mass of 1. Note that for a given solution

φ, we will have the following continuous and singular expected occupation measures, given
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V ∈ B(U) and F ∈ B(E).

µ̂0,k(V × F ) =
2k

(1)−1∑
j=0

2k
(2)∑

i=0

2k
(3)−1∑
l=0

φcj,i,l

∫
Ej∩F

pl(x) dx · δui(V )

=

M1−1∑
i=0

φi

∫
Eπi,1∩F

pπi,3(x) dx · δuπi,2 (V ) (1.18)

µ̂1,k(V × F ) =
N∑
j=0

2k
(2)∑

i=0

φsj,i · δsj(F ) · δui(V )

=

M1+M2∑
i=M1

φi · δsπi,1 (F ) · δuπi,2 (V ) (1.19)

Since µ̂0,k ought to have a full mass of 1, we have to assert that

µ̂0,k(U × E) =
2k

(1)−1∑
j=0

2k
(2)∑

i=0

2k
(3)−1∑
l=0

φcj,i,l

∫
Ej

pl(x)dx

=

M1−1∑
i=0

φi

∫
Eπi,1

pπi,3(x)dx = 1,

which again is a linear constraint and we set

Cn+1,i =

∫
Eπi,1

pπi,3(x), 0 ≤ i ≤M1 − 1

Cn+1,i = 0, M1 ≤ i ≤M1 +M2 − 1

The right hand side d ∈ Rn+1 is simply computed by dm = Rfm for 1 ≤ m ≤ n, and

dn+1 = 1.

Depending on the choice of basis functions f1, f2, . . . , fn and p0, p1, . . . , p2k
(3)−1

, in particular

for the choice described in Section III.1.4, a lot of the coefficients in C are zero, as fm and

pπi,3 do not necessarily have joint support. As a matter of fact, this might cause complete

rows of the matrix to be zero, which then can be dropped from the coefficient matrix, re-

sulting in a drastic reduction of unknowns. It also allows for the use of sparse matrices in
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the implementation, lowering the computational efforts needed to solve the resulting linear

problem.

Next, we need to assert that µ̂0,k and µ̂1,k are non-negative. For µ̂1,k this is straight forward

by asserting that φi are non-negative for all M1 + 1 ≤ i ≤ M1 + M2. For µ̂0,k some short

observations have to be made regarding the choice of basis functions. Not every choice of

basis functions ensures that if the coefficients are non-negative, the linear combination of

the basis functions with those coefficients is non-negative. However, this holds, for example,

for piecewise constant basis functions or Lagrange p1-elements, which linearly interpolate

between two given (non-negative) points. Thus, we have to restrict ourselves to basis func-

tions that ensure non-negativity of the resulting density pk, and again demand that φi ≥ 0

are non-negative for all 0 ≤ i ≤M1 − 1. The bound on the full mass of µ̂1,k can be ensured

as follows, compare (1.19),

µ̂1,k(E × U) =
N∑
j=0

2k
(2)∑

i=0

φsj,i · δsj(E) · δui(U) =

M1+M2−1∑
i=M1

φi ≤ l.

The objective function can be expressed by

J(φ) =
2k

(1)−1∑
j=0

2k
(2)∑

i=0

2k
(3)−1∑
l=0

φcj,i,l

∫
Ej

c0(x, ui)pl(x)dx+
N∑
j=0

2k
(2)∑

i=0

φsj,ic1(sj, ui)

=

M1−1∑
i=0

φi

∫
Eπi,1

c0(x, ui)pπi,3(x)dx+

M1+M2∑
i=M1

φic1(sπi,1 , uπi,2)

which is also linear in φ. Define a vector h ∈ RM1+M2 with

hi =

∫
Eπi,1

c0(x, ui)pπi,3(x)dx, 0 ≤ i ≤M1 − 1

hi = c1(sπi,1 , uπi,2), M1 ≤ i ≤M1 +M2 − 1.
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The finite dimensional program we have to solve is thus given by

minimize hTφ

such that

M1+M2−1∑
i=M1

φi ≤ l, Cφ = d, φ ≥ 0.

Now we illustrate how to process the results obtained by solving this linear program. Assume

we have solved for φ = {φi}i=0,1,...M1+M2−1. We cannot directly derive the parameters βj,i,

γl and αj from φ. Because the relaxed controls, represented by the regular conditional

probabilities η̂0,km and η̂1,km are of our central interest, we have to exploit the properties of

regular conditional probabilities to obtain the controls. We are interested in the probability

measures η0(·, X = z) and η1(·, X = z) which represent feedback controls, given that the

process X is in the state z. Assume that z ∈ Ej for some j, and recall that we set Ej =

[xj, xj+1) for j = 0, 1, . . . 2k
(1) − 2 as well as E

2k
(1)−1

= [x
2k

(1)−1
, x

2k
(1) ]. Due to the kind of

approximation we chose for the regular conditional probability, it is clear that η0(·, z1) =

η0(·, z2) if z1, z2 ∈ Ej, and likewise, η1(·, z1) = η1(·, z2) holds, due to the way we constructed

η̂0,k and η̂1,k. But by basic properties of the regular conditional probabilities, we have for a

measure µ̂0,k with µ̂0,k(dx× du) = η̂k(du, x)µ̂0,k,E(dx) and V ∈ B(U),

µ̂0,k (Ej × V ) =

∫
Ej

η̂0,k(V, z)µ̂0,k,E(dz)

= η̂0,k(V, xj)

∫
Ej

µ̂0,k,E(dz)

= η̂0,k(V, xj)µ̂0,k,E(Ej)

which directly implies that

η̂0,k(V, xj) =
µ̂0,k (Ej × V )

µ̂0,k,E (Ej)
(1.20)

thereby giving us a formula to compute the relaxed control η̂0,k. Note that we only need find

η̂0,k ({ul}, z) = βj,l, z ∈ El for j = 0, 1, . . . , 2k
(2)

and l = 0, 1, . . . , 2k
(1) − 1, as we assumed

that η̂0,k is a discrete measure on u0, u1, . . . , u2k
(1) . The value for µ̂0,k ({ul} × Ej) can be
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obtained using (1.18). It is given by

µ̂0,k ({ul} × Ej) =

M1−1∑
i=0

φi

∫
Eπi,1∩Ej

pπi,3(x) dx · δuπi,2 ({ul}).

Similarly, we can deduce that

η̂1,k (V, {sj}) =
µ̂1,k (V × {sj})
µ1,E ({sj})

, (1.21)

if µ̂1,k is a measure with µ̂1,k(dx× du) = η̂k(du, x)µ1,E(dx). The value for µ̂1,k({ul}× sj) can

be obtained using (1.19). It is given by

µ̂1,k({ul} × {sj}) =

M1+M2∑
i=M1

φi · δsπi,1 ({sj}) · δuπi,2 ({ul}).

In order to find the density of the state space marginal of µ̂0,k, one has to analyze the

expression

µ̂0,k(U × F ) =
2k

(1)−1∑
j=0

2k
(2)∑

i=0

2k
(3)−1∑
l=0

φcj,i,l

∫
Ej∩F

pl(x)dx · δui(U)

=

∫
F

2k
(1)∑

j=0

2k
(2)∑

i=0

2k
(3)−1∑
l=0

φcj,i,lIEj(x)pl(x)︸ ︷︷ ︸
density

dx

=

∫
F

M∑
i=0

φiI[xπi,1 ,xπi,1+1)pπi,3(x)︸ ︷︷ ︸
density

dx,

obviously using that δui(U) ≡ 1. In particular, one can use this expression to find

µ̂0,k,E (Ej) =

∫
Ej

M∑
i=0

φiI[xπi,1 ,xπi,1+1)pπi,3(x)dx
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which is needed in (1.20).

To obtain the weights of the singular part of the expected occupation measure on the points

of singular behavior, one simply uses

µ1,E({sl}) = µ̂1,k (U × {sl}) =
N∑
j=0

2k
(2)∑

i=0

φj,i · δsj({sl}) · δui(U)

=
2k

(2)∑
i=0

φsl,i =
2k

(2)∑
i=0

φM1+(l−1)+i·N .

In particular, this formula is needed in (1.21).

Remark 1.22. This setup can be reduced to attain the linear program when no singular

behavior is present. In particular, M2 = 0 and all quantities related to µ̂1,k and c1 vanish

from the constraint matrix and the cost vector. However, note that this comes at the cost of

losing degrees of freedom.

III.1.3 Evaluation of Cost Criterion

While the proposed approximation is used to derive a solvable optimization problem, the

same approximation techniques can be used to approximate the cost criterion for a fixed

control. The set-up described in this section can be used to analyze the accuracy of the

evaluation of the cost criterion, for a control stemming from the proposed approximation,

which is presented later in Section IV.1.3.

Consider two fixed relaxed controls η0 and η1 of the form (1.11) and (1.13). In this section,

we do not consider η0 and η1 as approximations, and will not use theˆnotation when referring

to them. Set

Āf(x) =

∫
U

Af(x, u)η0(du, x), B̄f(x) =

∫
U

B(x, u)η1(du, x). (1.23)
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We have seen in Section II.2 that under certain conditions on η0 and η1, there is a unique

pair of expected occupation measures that solves the linear constraints given by

∫
E

Āf dµ̄0 +

∫
E

B̄f dµ̄1 = Rf ∀f ∈ D∞

µ̄0 ∈ P(E), µ̄1 ∈M(E).

(1.24)

In particular, we worked out that µ̄0 is absolutely continuous with respect to Lebesgue mea-

sure. The approximate forms of η0 and η1 (compare (1.11) and (1.13)) fulfill the conditions

outlined in Section II.2. The approach of finding an approximate solution to (1.24) mirrors

the approximation introduced to solve the actual control problem in Section III.1.1. To this

end, we introduce set of feasible measures by identifying η ≡ (η0, η1) and setting

M η
∞ =

{
(µ̄0, µ̄1) ∈ P(E)×M(E) :

∫
E

Āf(x)µ̄0(dx) +

∫
E

B̄f(x)µ̄1(dx) = Rf ∀f ∈ D∞

}
,

of which we know that it only contains one element, and for 1 ≤ n <∞ the sets

M η
n =

{
(µ̄0, µ̄1) ∈ P(E)×M(E) :

∫
E

Āf(x)µ̄0(dx) +

∫
E

B̄f(x)µ̄1(dx) = Rf ∀f ∈ Dn

}
.

As before, Dn is a finite-dimensional subspace of D∞ spanned by basis functions f1, f2, . . . , fn.

For theoretic purposes again, we introduce a bound on the full mass of µ̄1. Choose l > 0

and define for 1 ≤ n ≤ ∞

M η,l
n = {(µ̄0, µ̄1) ∈M η0,η1

n : µ̄1(E) ≤ l}

where we choose l large enough such that µ1(E×U) =
∫
E
η1(U, x)µ1,E(dx) ≤ l for the actual

expected occupation measure µ1,E that is associated with the relaxed control η1. Later, we

introduce an approximation for measures in M η,l
n that is computationally tractable. First,

we illustrate how the discretization of the constraints leads to an approximate value for the

cost criterion that is different from the actual cost criterion. To this end, note that a solution
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(µ̄η0, µ̄
η
1) to (1.24) implies a solution

(µη0(dx× du), µη1(dx× du)) ≡ (η0(du, x)µη0(dx), η1(du, x)µη1(dx)) to the linear constraints

∫
E×U

Af dµ0 +

∫
E×U

Bf dµ1 = Rf ∀f ∈ D∞

µ0 ∈ P(E × U), µ1 ∈M(E × U),

(1.25)

which implies an equivalent solution to the relaxed martingale problem. In other words,

there is indeed a process X that is controlled by η0 and η1. It gives a value of the cost

criterion by the following formula. Let A be set of all admissible controls.

J̄ : A 3 η 7→ J̄(η) =

∫
E×U

c0(x, u)µη0(dx× du) +

∫
E×U

c1(x, u)µη1(dx× du).

Note that J̄(η) = J(µη0, µ
η
1). To compare this with the discretized case, fix n ∈ N, take a

pair of discrete measures on E, denoted (µ̄η0,n, µ̄
η
1,n) ∈M η,l

n and define two new measures on

E × U by

µη0,n(dx× du) = η0(du, x)µ̄η0,n(dx), µη1,n(dx× du) = η1(du, x)µ̄η1,n(dx)

and set

Jn : A 3 η 7→ Jn(η) =

∫
E×U

c0(x, u)µη0,n(dx× du) +

∫
E×U

c1(x, u)µη1,n(dx× du).

We must assume that for any 1 ≤ n < ∞, Jn(η) 6= J̄(η), as (µη0,n, µ
η
1,n) do not actually

represent expected occupation measures of solutions to the relaxed martingale problem.

The relation between these quantities for increasing n is investigated in Section IV.1.3.

The computationally tractable version of M η
n is attained in the same fashion as demonstrated

in Section III.1.1. We represent a discretized measure µ̂0,k,E(dx) ≡ p̂k(x)dx as in (1.10) and

µ1,E as in (1.12). In a similar manner as seen in Section III.1.2, we set up a coefficient

matrix with n+1 constraints and M3 = 2k
(3)

+N unknowns, with coefficients {γi}i=0,...,2k
(3)−1
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stemming from the density of the continuous expected occupation measure, and {αi}i=1,...,N

stemming from the singular expected occupation measure. Form the vector of unknowns

by defining φ ≡ (γ0, γ2, . . . , γ2k
(3)−1

, α1, α2, . . . , αN)T . The entries of the coefficient matrix

C ∈ Rn,M3 are

Ck,i =

∫
E

∫
U

Afk(x, u)η0(du, x)pi(x)dx, 0 ≤ i ≤ 2k
(3) − 1, 1 ≤ k ≤ n,

Ck,i =

∫
U

Bfk(x, u)η1(du, s
i−2k

(3) ), 2k
(3) ≤ i ≤M3 − 1, 1 ≤ k ≤ n,

Cn+1,i =

∫
E

∫
U

η0(du, x)pi(x)dx, 0 ≤ i ≤ 2k
(3) − 1,

Cn+1,i = 0, 2k
(3) ≤ i ≤M3 − 1,

while the right hand side d ∈ Rn+1 is given by di = Rfi, i = 1, . . . , n and dn+1 = 1. Again we

adopt a numbering scheme starting at 0 for convenience. As seen in the previous subsection,

we also have to require that

M3∑
i=2k

(3)

φi ≤ l (1.26)

φi ≥ 0, i = 0, 1, . . . ,M3 − 1. (1.27)

Assume M3 � n + 1 such that the under-determined equation system Cφ = d has at least

one solution that fulfills (1.27) and (1.26). Any solution serves as an approximate solution

to M η
∞. To solve for φ, linear least squares solvers can be used. They can be set up to

minimize ‖φ‖2
2 under the constraint that Cφ = d, and the constraints given by (1.27) and

(1.26).

This set-up will serve as a tool to evaluate the cost criterion for any pair of controls η0, η1.

Note that C in this section has significantly fewer columns than C in Section III.1.2, since

the control is fixed. Hence a simple evaluation of the cost associated with a fixed control

can be conducted more quickly, or alternatively, with higher accuracy in the same amount

of time.
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Remark 1.28. As before, this setup can be reduced to accommodate problems with no sin-

gular behavior in an obvious way.

III.1.4 Basis Functions and Meshing

The preceding considerations were formulated without specifics on the choice of basis func-

tions for the density of the state-space marginal of the continuous expected occupation

measure µ0,E or the basis functions used to represent a discrete version of the constraint

space D∞. These basis functions are determined by a finite-element type approach, where

each basis function is associated with a subinterval of the state space E. Hence, the choice

of basis functions depends on the mesh, in other words, a finite number of points, that is

put into the state space E and determines the subintervals.

So far, we have considered a discretization level k ≡
(
k(1), k(2), k(3)

)
which was used to dis-

cretize the expected occupation measures, see Section III.1.1. The parameter k(3) was used

to discretize the density p of the state space marginal of µ0, compare (1.10). However, a

specific choice of basis functions was not given. We also used a parameter n to introduce a

finite dimensional constraint space Dn, where Definition 1.5 did not elaborate on the choice

of basis functions beyond the fact that they are given by B-splines basis functions. This

section will present the choices for these two types of basis functions.

To start with, we slightly alter the notion of a discretization level to have four components

given by k ≡
(
k(1), k(2), k(3), k(4)

)
. The fourth component k(4) controls the discretization of

the constraint space D∞.

Consider the state space E = [el, er]. Analogous to the discretization of the state space for

the controls, compare Section III.1.1, we consider the mesh

E
(k(3))
1 =

{
ej = el +

er − el
2k(3)

· j, j = 0, . . . , 2k
(3)

}
(1.29)

consisting of 2k
(3)

+ 1 points.
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Definition 1.30. The set of functions

F
(p)

k(3) =
{
I[ei,ei+1), i = 0, 1, . . . , 2k

(3)
}

is called the set of piecewise constant basis functions for the discretization level k.

Note that F
(p)

k(3) fulfills F
(p)

k(3) ⊂ F
(p)

k(3)+1
and ∪k(3)∈NF

(p)

k(3) is dense subset of L1(E). This choice

of basis functions poses minimal assumptions on the density of µ0,E, which is an integrable

function. The finite elements in the state space are given by the intervals [ej, ej+1], j =

0, . . . , 2k
(3)

. When considering linear combinations of functions in F
(p)

k(3) , non-negativity of

these linear combinations can be achieved by asserting that all coefficients of the linear

combination are non-negative.

Remark 1.31. The use of higher order basis functions, such as piecewise linear functions

or even quadratic functions (see Solin (2006)) is only reasonable if more regularity of the

state space density p can be assumed. Furthermore, ensuring non-negativity might become

an issue when basis functions attain negative values, which, for example is the case for

quadratic Lagrange elements. Still, if these caveats can be overcome, the use of higher order

basis functions could lead to more accurate and efficient numerical schemes.

Concerning the mesh for the constraint functions f1, f2, . . . , fn, whose linear span Dn forms

a subspace of D∞, we introduce another mesh

E
(k(4))
2 =

{
ej = el +

er − el
2k(4)

· j, j = −3 . . . , 2k
(4)

+ 3

}

which we will use to define B-spline basis functions as introduced in Section II.4. Note that

the index j indeed runs from −3 to 2n + 3, since this is required in the definition of B-spline

basis functions, again compare Section II.4. Set n = 2k
(4)

+ 2, which is the actual number of
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B-spline basis functions obtained from this mesh, and define

Dn = span{Bj, j = −3,−2, . . . 2n − 1}.

A schematic diagram of the different meshes obtained by setting k(1) = 2, k(2) = 2, k(3) = 3

and k(4) = 3 is shown in Figure III.1. It displays the mesh E
(k(4))
2 on the constraint space in

gray, the mesh E
(k(3))
1 used for the discretization of the state space density in blue and the

mesh used to discretize the relaxed control as defined in (1.8), in red.

el er

constraint
space

el er

state space
density

el er

ul

ur

relaxed
controls

Figure III.1: Mesh example for k(1) = 2, k(2) = 2, k(3) = 3 and k(4) = 3

Remark 1.32. In the scope of this work, all meshes are equidistant meshes given by the

dyadic partitions of the state and control space. This is done to simplify programming efforts.

However, it could be beneficial to choose the meshes adaptively in an iterative method which

will provide higher accuracy without a steep increase in computation time. An investigation

of such an approach is beyond the scope of this thesis.

Remark 1.33. As it will be revealed in the convergence proof, it may be necessary to intro-

duce additional mesh points to (1.29) which will then give us a higher number of degrees of

freedom. This is simply done by cutting selected intervals in half. In other words, we are
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considering the set of points

E
(k(3),+)
1 =

{
ej = el +

er − el
2k(3)

· j, j = 0, . . . , 2k
(3)

}
∪
{
er + el

2
− er − el

2k(3) + 1

}
(1.34)

and the set of indicator functions on the intervals given by this partition. If more mesh

points are needed, we proceed by defining

E
(k(3),++)
1 = E

(k(3),+)
1 ∪

{
er + el

2
+

er − el
2k(3) + 1

}
(1.35)

and so forth. This choice of additional points is arbitrary, and more sophisticated approaches

could be employed.

III.2 Infinite Time Horizon Problems with Unbounded

State Space

This section introduces the approximation approach needed to solve problems with an un-

bounded state space, an infinite time horizon and no singular behavior. We restrict ourselves

to the case in which E = (−∞,∞) = R. The cases E = [el,∞) or E = (−∞, er] can be

treated in a similar fashion, and are not dealt with explicitly in order to avoid repetition.

However, we point out which modification would have to be made in order to accommodate

for these cases. In terms of the linear programming approach, we seek to solve problems

described as follows. We use the notation D∞(R) = (C2
c (R), ‖ · ‖D) to point out that we are

considering constraint functions over all real numbers now. In contrast to the considerations

in Section III.1, we must assert that the functions in D∞(R) have compact support, since

this does not anymore follow from the fact that they are continuous functions on a compact
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space. The infinite-dimensional linear program is given by

Minimize

∫
R×U

c0 dµ

Subject to


∫
R×U

Afdµ = Rf ∀f ∈ D∞(R)

µ ∈ P(R× U)

.

(2.1)

Once again, A is the generator of the continuous behavior of the process, and c0 is a contin-

uous cost function. R is the right hand functional. The idea of the presented approximation

is to derive a linear programming formulation whose constraint functions have their support

in a bounded interval [−K,K], and the considered expected occupation measure µ has full

mass on [−K,K]. The convergence analysis will reveal that for K large enough, this linear

programming formulation admits solutions that are ε-optimal for the original formulation.

Several assumptions are made to make the convergence of the approximation work. First,

we must assume that there exists a solution µ to (2.1) with finite cost. Second, we need to

impose two assumptions on the cost function c0.

Definition 2.2. A function c0 : R × U 7→ R≥0 is called increasing in |x|, if for any L > 0,

there is a K > 0 such that

c0(x, u) > L ∀x /∈ [−K,K]

uniformly in u ∈ U .

Definition 2.3. A function c0 : R × U 7→ R≥0 allows for compactification if there is a

K0 > 0 such that there is a function u− : [−K0, K0] 7→ U , which is continuous except on

finitely many points, fulfilling the property that

inf
{
c0(x, u)|x ∈ [−K,K]C , u ∈ U

}
≥ sup

{
c0(x, u−(x))|x ∈ [−K,K]

}
.

If we assume that c0 is increasing in |x|, we are able to show certain tightness properties

of solutions to (2.1). In particular, µ can be shown to be tight. Albeit a rather opaque
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definition, the assumptions on a function that allows for compactification are easy to check.

For example, given that U is a bounded interval, the functions c0(x, u) = x2 + u2, c0(x, u) =

|x| + |u| or c0(x, u) = u, allow for compactification. Restricting the considerations on such

functions, we are able to show that it is sufficient to consider measures which have support on

a compact interval when looking for ε-optimal solutions in the following, see Lemma IV.2.11.

Similar to the notation from the previous section, denote the set of feasible measures by

M∞,R =

{
µ ∈ P(R× U) :

∫
Afdµ = Rf ∀f ∈ D∞(R)

}
. (2.4)

Further, we denote D([−K,K]) = (C2
c ((−K,K)), ‖ · ‖D). A subtle distinction has to be

remarked on here. By C2
c ((−K,K)) we understand the space of twice differentiable functions

whose support is contained in a compact subset of (−K,K). In other words, the support of

a function f ∈ C2
c ((−K,K)) and the support of its first and second derivatives is a proper

subset of [−K,K]. In the following, we will call [−K,K] the computed state space.

Define two more sets of feasible measures, with reduced constraints, as follows. First, set

˙M∞,[−K,K] =

{
µ ∈ P(R× U) :

∫
Afdµ = Rf ∀f ∈ D([−K,K])

}
(2.5)

and then, set

M∞,[−K,K] =

{
µ ∈ P([−K,K]× U) :

∫
Afdµ = Rf ∀f ∈ D([−K,K])

}
. (2.6)

The difference between these two set is that a measure µ̇ ∈ ˙M∞,[−K,K] can have mass on all

of R× U , whereas a measure µ ∈M∞,[−K,K] is concentrated on the set [−K,K]× U .

With the help of these sets of feasible measures, we can define three different linear programs

as follows.
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Definition 2.7. The infinite-dimensional linear program for a model with unbounded state

space is to find

min {J(µ)|µ ∈M∞,R} .

The reduced version of the linear program is defined next.

Definition 2.8. Let K > 0 be a real number. The K-reduced infinite-dimensional linear

program is to find

min
{
J(µ)|µ ∈ ˙M∞,[−K,K]

}
.

Finally, the reduced version with a measure concentrated on [−K,K] reads as follows.

Definition 2.9. Let K > 0 be a real number. The K-reduced-concentrated infinite-dimensional

linear program is to find

min
{
J(µ)|µ ∈M∞,[−K,K]

}
.

Under the described assumptions on µ, the convergence analysis reveals that there is a K

large enough such that an ε-optimal solution to the K-reduced problem is almost optimal

in regard to the original problem. Then, we show that for any measure µ̇ ∈ ˙M∞,[−K,K],

there exists a measure µ ∈ M∞,[−K,K] such that J(µ) ≤ J(µ̇). This shows that it suffices

to solve the K-reduced-concentrated infinite-dimensional linear program. However, an ε-

optimal solution to the K-reduced-concentrated linear program can be obtained using the

same approximation techniques as used for the problems with a bounded state space, and

can be analyzed in identical manner. In particular, a dense subset of D([−K,K]) is given

by B-spline basis functions whose support is fully contained in [−K,K]. In the light of

Section III.1.4, we can define a mesh for the basis functions as follows for some n ∈ N.

E
(n)
2 =

{
ej = −K +

2K

2n
· j, j = 0 . . . , 2n

}

The union over all B-spline basis functions on the meshes given by all n ∈ N is dense in

D([−K,K]). Note that we do not introduce additional mesh points to the left of −K and
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the right of K, respectively, in order to assure that the support of these basis functions and

their derivatives indeed lies properly within [−K,K].

Remark 2.10. If E = [el,∞), we consider the mesh

E
(n)
2 =

{
ej = el +

K − el
2n

· j, j = −3 . . . , 2n
}
.

If E = (−∞, er], we consider the mesh

E
(n)
2 =

{
ej = −K +

er −K
2n

· j, j = 0 . . . , 2n + 3

}
.

For fixed n, we can set Dn to be the finite linear space of B-spline basis functions over the

mesh E
(n)
2 . This allows for the introduction of

Mn,[−K,K] =

{
µ ∈ P([−K,K]× U) :

∫
Afkdµ = Rf ∀fk ∈ Dn([−K,K])

}

and the following definition.

Definition 2.11. Let K > 0 be a real number. The K-reduced-concentrated, (n,∞)-

dimensional linear program is to find

min
{
J(µ)|µ ∈Mn,[−K,K]

}
.

Analogous to the considerations for bounded state spaces, we split µ by considering µ(dx×

du) = η(du, x)p(x)dx for a regular conditional probability η, and a L1-function p. Then, η

and p are approximated by η̂km and p̂km as presented in Section III.1.1, according to (1.10)

and (1.11). Using the notation

Mn,m,[−K,K] =
{
µkm ∈Mn,[−K,K] : µ0,km(dx× du) = η̂km(du, x)p̂km(x)dx)

}
.
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we can define the following, computationally attainable linear program.

Definition 2.12. Let K > 0 be a real number. The K-reduced-concentrated, (n,m)-dimensional

linear program is to find

min
{
J(µ)|µ ∈Mn,m,[−K,K]

}
.

It is crucial to notice that the K-reduced-concentrated (n,∞)-dimensional linear program

has the same structure as the l-bounded, (n,∞)-dimensional linear program and that the

K-reduced-concentrated (n,m)-dimensional linear program has the same structure as the

l-bounded, (n,m)-dimensional linear program, both of which were derived in the approxi-

mation of bounded state space models in Section III.1.1. In particular, the constraints are

given by a finite number n of basis functions in Dn([−K,K]), whose union over all n is

dense in D([−K,K]). In case of the (n,m)-dimensional program, the degrees of freedom are

represented by the parameter choices in the approximation of η and p. Hence, the compu-

tational set up of the linear program and the meshing approaches remain analogous to the

case of a bounded state space, compare Section III.1.2 and Section III.1.4. The evaluation

of the cost criteria for a fixed control can be conducted in a similar fashion as presented in

Section III.1.3. Most importantly, the convergence analysis for finding ε-optimal solutions

for the K-reduced-concentrated, infinite-dimensional linear program can be carried out in a

manner similar to the case of the infinite-dimensional linear program with a bounded state

space. It thus remains to investigate how the K-reduced-concentrated, infinite-dimensional

linear program relates to the original problem. This is discussed in Section IV.2.

Finally, note that the described technique can also be used in the presence of singular be-

havior, when the state space is either of the form E = [el,∞) or E = (−∞, er] and the

processes is either reflected or jumps back into the interior of E upon entering {el} or {er},

respectively. In order to do so, one has to introduce the generator of the singular behavior

B and the singular expected occupation measure µ1 into the formulation (2.1), and conduct
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the approximation scheme as illustrated in Section III.1.1. Again, for the sake of brevity, an

explicit discussion of this is omitted.
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Convergence Analysis

This chapter presents the convergence analysis of the approximation techniques laid out in

Section II.4. First, the convergence analysis for the approximation of models with a bounded

state space and the presence of singular behavior at the boundary of the state space is

conducted. Most of these considerations can also be applied to analyze the discretization

of the K-reduced, infinite-dimensional linear program for unbounded state spaces. Hence,

the second part of this chapter will mainly focus on showing that an ε-optimal solution of

the K-reduced, infinite-dimensional linear program is, ‘almost’ an optimal solution to the

original unbounded problem.

IV.1 Infinite Time Horizon Problems with Bounded

State Space

The error analysis for problems with infinite horizon and bounded state space will be con-

ducted in three steps, following the line of thought in which the approximation was presented

in Section III.1.1. We treat the general case which involves singular behavior on the bound-

aries, but the analysis still holds when setting the generator of the singular behavior B, the

singular expected occupation measure µ0 and its approximation µ̂0 equal to zero. If we do

so, the K-reduced infinite-dimensional linear program for unbounded state spaces can be

analyzed in the very way presented in the following.
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Recall that we seek to solve the infinite dimensional linear program given by

min {J(µ0, µ1)|(µ0, µ1) ∈M∞} . (1.1)

As described in Section III.1, the proposed approximation techniques includes the following

steps. To start out, we introduced an upper bound on the full mass of µ1. Then, the first

discretization step dealt with finding a finite number of constraints, leading to the (n,∞)-

dimensional problem. The second discretization step introduced an approximation of the

measures we are considering, defining the (n,m)-dimensional problem.

Theorems II.1.42 and II.1.43 ensured the existence of a minimizer in (1.1). Throughout this

section, we refer to this minimizer by J∗ = min {J(µ0, µ1)|(µ0, µ1) ∈M∞}. However, this

minimizer might not be attainable using the proposed discretization and we retreat to the

slightly relaxed optimization problem of finding a ε-optimal solution to this problem in the

sense of finding a pair of measures (µε0, µ
ε
1) ∈M∞ such that

J(µε0, µ
ε
1)− J∗ ≤ ε.

Note that M l
n,m ⊂ M l

n is the only space that is computationally attainable. But since

M l
n ⊃M l

∞, and M l
∞ ⊂M∞, it is not clear how M l

n,m relates to M∞. The following results

are shown to ensure that measures in M l
n,m are close to the optimal solution in M∞, and

that we can find ε-optimal solutions to the infinite dimensional linear program by finding

the optimal solutions to the l-bounded (n,m)-dimensional linear program. We show that

1. An ε-optimal solution to the l-bounded infinite-dimensional problem is a 2ε-optimal

solution for the infinite-dimensional problem for l large enough (Theorem 1.5),

2. An ε-optimal solution to the (n,∞)-dimensional problem is 2ε+ δ-optimal solution to

the infinite dimensional problem, for some δ > 0 and n large enough (Section IV.1.1),

100



3. An optimal solution to the (n,m)-dimensional problem will be an ε-optimal solution

to the (n,∞)-dimensional problem for m large enough (Section IV.1.2),

4. Considering a fixed m and two fixed relaxed controls η0 and η1, influencing the continu-

ous and singular behavior, respectively, as well as n large enough, the approximate cost

criterion value computed using n constraint functions is within ε of the actual value of

the cost criterion value when the obtained control is implemented, (Section IV.1.3).

Note that the first three items on this list show that we can approximate the optimal cost

criterion value with the proposed approximation. In order to check if the control suggested

by the approximation scheme indeed controls a stochastic process in an almost optimal way,

we need to evaluate the cost criterion with a large value of n for fixed controls and compare

it to the value obtained when solving the linear program.

The first item on this list is easily shown and does not require its own subsection. But to

begin, we need a precise definition of ε-optimality in different contexts.

Definition 1.2. An ε-optimal solution to the infinite-dimensional linear program is a pair

of measures (µε0, µ
ε
1) ∈M∞ such that

J(µε0, µ
ε
1)− J∗ ≤ ε.

Remark 1.3. Observe that (µε0, µ
ε
1) being ε-optimal is equivalent to

J(µε0, µ
ε
1)− J(µ0, µ1) ≤ ε for all (µ0, µ1) ∈M∞.

Remark 1.4. In the same way as seen in Definition 1.2, we can define ε-optimality for

the l-bounded infinite dimensional linear program, the l-bounded (n,∞)-dimensional linear

program and the l-bounded (n,m)-dimensional linear program, by replacing M∞ by M l, M l
n

or M l
n,m, respectively.
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Theorem 1.5. There is an l0 > 0 such that for all l ≥ l0, an ε-optimal solution to the

l-bounded infinite-dimensional problem is a 2ε-optimal solution for the infinite-dimensional

problem.

Proof. By the theory of the linear programming approach (compare Kurtz and Stockbridge

(2017)), we know that any solution to the infinite-dimensional linear program satisfies µ1(E×

U) < ∞. So, in particular, an ε-optimal solution (µε0, µ
ε
1) to the infinite-dimensional linear

program has a singular expected occupation measure µε1 with full mass µε1(E × U) ≤ l0 for

some l0 > 0. So, if l ≥ l0, M l
∞ contains an ε-optimal solution to the infinite-dimensional

problem. Obviously, such a solution, denoted (µε0, µ
ε
1), is also an ε-optimal solution for the

l-bounded infinite dimensional problem. Now consider an arbitrary (and possibly different)

ε-optimal solution to the l-bounded infinite dimensional problem, denoted (µl,ε0 , µ
l,ε
1 ), and

assume it would not be a 2ε-optimal solution to the infinite dimensional problem. This

means there would be a pair of measures (µ0, µ1) ∈M∞ such that

J(µl,ε0 , µ
l,ε
1 )− J(µ0, µ1) > 2ε⇔ J(µl,ε0 , µ

l,ε
1 ) > J(µ0, µ1) + 2ε

Note, we have that |J(µl,ε0 , µ
l,ε
1 )− J(µε0, µ

ε
1)| ≤ ε, since both pairs of measures are ε-optimal.

Hence we can deduce

J(µ0, µ1) + 2ε < J(µl,ε0 , µ
l,ε
1 ) ≤ |J(µl,ε0 , µ

l,ε
1 )− J(µε0, µ

ε
1)|+ |J(µε0, µ

ε
1)|

< ε+ J(µε0, µ
ε
1)

⇔ J(µ0, µ1) + ε < J(µε0, µ
ε
1)

which would contradict (µε0, µ
ε
1) being ε-optimal.

Remark 1.6. In the absence of singular behavior, that is if B is identical to zero, this part

of the convergence proof is not needed.
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Remark 1.7. This analysis addresses an important detail omitted in the proof of Theorem

3.1.2 of Rus (2009), and explains the introduction of the bound l in the full mass of the

singular expected occupation measure µ1. To be precise, we have to rely on results stating

that a tight sequence of measures always contains a weakly convergent subsequence. Classical

results regarding this situation can be found in Billingsley (1999), but they assume that the

considered sequence of measures only contains probability measures, which have full mass of

1. As any singular expected occupation measure µ1 is not a probability measure, a sequence

approximating µ1 does not necessarily consist of probability measures. The more general

theory of Bogachev (2007) has to be applied, as reviewed in Section II.3. However, respective

results assume the existence of a bound on the full mass of µ1.

IV.1.1 Optimality of the l-bounded (n,∞)-dimensional problem

Recall that the l-bounded infinite dimensional linear program poses

Minimize

∫
E×U

c0dµ0 +

∫
E×U

c1dµ1

Subject to



∫
Afdµ0 +

∫
Bfdµ1 = Rf ∀f ∈ C2

c (E)

µ0 ∈ P(E × U)

µ1 ∈Ml(E × U)

We will use the notation

M l
∞ =

{
(µ0, µ1) ∈ P(E × U)×Ml(E × U) :

∫
Afdµ0 +

∫
Bfdµ1 = Rf ∀f ∈ D∞

}

and

J : P(E × U)×Ml(E × U) 3 (µ0, µ1) 7→ J(µ0, µ1) =

∫
E×U

c0dµ0 +

∫
E×U

c1dµ1 ∈ R≥0
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to refer to the feasible set of the l-bounded infinite dimensional linear program and the cost

criterion. As seen in Section II.1, Propositions II.1.18 and II.1.41 the operators and the right

hand side functional

A : D∞ 7→ (Cu
b (E × U), ‖ · ‖∞)

B : D∞ 7→ (Cu
b (E × U), ‖ · ‖∞)

R : D∞ 7→ R

are linear and continuous. Thus A|Dn , B|Dn are also continuous linear operators for each n,

and R|Dn is a continuous linear functional for each n. Note that as E and U are compact,

we have that Cb(E × U) = Cu
b (E × U). We also use, for a countable basis {fk}k∈N of D∞,

the notation

M l
n =

{
(µ0, µ1) ∈ P(E × U)×Ml(E × U) :

∫
Afkdµ0 +

∫
Bfkdµ1 = Rfk, k = 1, . . . , n

}
.

Note that M l
∞ ⊂M l

n for any n ∈ N.

The symbol ”⇒” will be used to denote weak convergence of measures in the sequel. We

start the convergence analysis by considering arbitrary sequences of measures in M l
n, and

later move to sequences of ε-optimal measures.

Proposition 1.8. Let {(µ0,n, µ1,n)}n∈N be a sequence of measures such that (µ0,n, µ1,n) ∈M l
n

for all n ∈ N and assume that µ0,n ⇒ µ0 and µ1,n ⇒ µ1 for some (µ0, µ1) ∈ P(E × U) ×

Ml(E × U). Then, (µ0, µ1) ∈M l
∞.

Proof. For arbitrary m ∈ N, take gm ∈ Dm. For n > m, it is true that

∫
Agmdµ0,n +

∫
Bgmdµ1,n = Rgm

By assumption on A and B, the functions Agm and Bgm are bounded and uniformly con-

tinuous (compare Remark II.1.19), so by weak convergence of the involved measures, we
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have

Rgm = lim
n→∞

Rgm = lim
n→∞

(∫
Agmdµ0,n +

∫
Bgmdµ1,n

)
=

∫
Agmdµ0 +

∫
Bgmdµ1.

For g ∈ D∞ pick a sequence gm → g in D∞ with gm ∈ Dm for all m ∈ N. By the continuity

of the involved operators A and B and functional R, we have that

lim
m→∞

Agm = Ag, lim
m→∞

Bgm = Bg and lim
m→∞

Rgm = Rg

Further, {Agm}m∈N and {Bgm}m∈N are convergent sequences in Cu
b (E×U, ‖·‖∞) by Proposi-

tion II.1.18 and are hence uniformly bounded. This allows for the application of the bounded

convergence theorem in the following equation.

∫
Agdµ0 +

∫
Bgdµ1 = lim

m→∞

(∫
Agmdµ0 +

∫
Bgmdµ1

)
.

Finally, we have that

lim
m→∞

(∫
Agmdµ0 +

∫
Bgmdµ1

)
= lim

m→∞
Rgm = Rg

which implies that (µ0, µ1) ∈M∞. Note that IE×U is bounded and uniformly continuous on

E × U , so by weak convergence, we have

µ1(E × U) =

∫
E×U

IE×U dµ1 = lim
n→∞

∫
E×U

IE×U dµ1,n = lim
n→∞

µ1,n(E × U) ≤ l,

as µ1,n(E × U) ≤ l for all n ∈ N, which shows that (µ0, dµ1) ∈M l
∞.

Remark 1.9. The idea of this proof, and similar results in the sequel is taken from Rus

(2009), in particular Theorem 3.1.2. However, the application of the dominated convergence
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theorem in Rus’ proof cannot clearly be justified with the Hermite polynomial basis functions

which are used to approximate the constraints therein. In contrast, our choice of B-spline

basis functions guarantees the applicability of the dominated convergence argument.

Lemma 1.10. For each n ∈ N, assume that (µε0,n, µ
ε
1,n) ∈ M l

n and that (µε0,n, µ
ε
1,n) is an

ε-optimal solution for the l-bounded (n,∞)-dimensional problem. Assume that µε0,n ⇒ µ̂0

and µε1,n ⇒ µ̂1 for some µ̂0 ∈ P(E × U), µ̂1 ∈ Ml(E × U). Then, (µ̂0, µ̂1) is an ε-optimal

solution to the l-bounded infinite-dimensional problem.

Proof. By Proposition 1.8, we know that (µ̂0, µ̂1) ∈ M l
∞. Assume (µ̂0, µ̂1) would not be

ε-optimal. Then, there exists an (µ0, µ1) ∈M l
∞ such that

J(µ̂0, µ̂1) > J(µ0, µ1) + ε. (1.11)

⇔
∫
c0dµ̂0 +

∫
c1dµ̂1 >

∫
c0dµ0 +

∫
c1µ1 + ε.

As c0 and c1 are continuous functions over a compact set, and hence uniformly continuous and

bounded, by weak convergence, we know that
∫
c0dµ

ε
0,n →

∫
c0dµ̂0 and

∫
c1dµ

ε
1,n →

∫
c1dµ̂1

in R, as n→∞. So, there is an N large enough such that for all n ≥ N

∫
c0dµ

ε
0,n +

∫
c1dµ

ε
1,n >

∫
c0dµ0 +

∫
c1dµ1 + ε.

But because M l
∞ ⊂M l

n, this contradicts the fact that (µε0,n, µ
ε
1,n) is ε-optimal, and (1.11) is

false. This implies that

J(µ̂0, µ̂1) ≤ J(µ0, µ1) + ε

for all (µ0, µ1) ∈M l
∞.

The following result will show that a sequence of ε-optimal sequences of measures generates

a sequence of values for the cost criterion which lies inside of a certain interval, independent

of the sequence of measures converging or not.
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Lemma 1.12. For each n ∈ N, assume that (µε0,n, µ
ε
1,n) ∈M l

n and that for n ∈ N, (µε0,n, µ
ε
1,n)

is an ε-optimal solution for the l-bounded (n,∞)-dimensional problem. Then, for δ > 0, there

exists a z ∈ R and an N(δ) ∈ N such that

J(µε0,n, µ
ε
1,n) ∈

(
z − ε

2
− δ, z +

ε

2
+ δ
)

n ≥ N(δ)

Proof. Observe that as E×U is compact, both {µε0,n}n∈N and {µε1,n}n∈N are tight sequences of

measures, and both can be uniformly bounded. So, if {µε0,nj}j∈N is a convergent subsequence,

which is guaranteed to exist due to the tightness (see Remark II.3.7), {µε1,nj}j∈N is still a tight

sequence and furthermore its mass is uniformly bounded by l. Hence it has a convergent

sub-subsequence {µε1,njk}k∈N by Theorem II.3.6 and {µε0,njk}k∈N is still convergent. Thus,

we can consider two convergent subsequences of {(µε0,n, µε1,n)}n∈N, denoted {(µε0,nj , µ
ε
1,nj

)}j∈N

and {(µε0,n′j , µ
ε
1,n′j

)}j∈N. Assume that

µε0,nj ⇒ µ̂0, µε1,nj ⇒ µ̂1, µε0,n′j ⇒ µ̃0, µε1,n′j ⇒ µ̃1

and that µ̂0 6= µ̃0 or µ̂1 6= µ̃1. Assume that

∫
c0dµ̃0 +

∫
c1dµ̃1 >

∫
c0dµ̂0 +

∫
c1dµ̂1 + ε. (1.13)

Choose N ∈ N large enough such that ∀j ≥ N ,

∫
c0dµ

ε
0,n′j

+

∫
c1dµ

ε
1,n′j

>

∫
c0dµ̂0 +

∫
c1dµ̂1 + ε

which is possible because

∫
c0dµ

ε
0,n′j

+

∫
c1dµ

ε
1,n′j
→
∫
c0dµ̃0 +

∫
c1dµ̃1 as j →∞,
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which again is due to to the fact that c0 and c1 are uniformly continuous as they are con-

tinuous maps over a compact set. However, this clearly contradicts the assumption that

(µε0,n′j
, µε1,n′j

) is ε-optimal, as (µ̂0, µ̂1) ∈ M l
nj

for all j ∈ N. Hence, (1.13) is false, and in

particular, we have that

∫
c0dµ̃0 +

∫
c1dµ̃1 ≤

∫
c0dµ̂0 +

∫
c1dµ̂1 + ε

Similarly, we can show that

∫
c0dµ̂0 +

∫
c1dµ̂1 ≤

∫
c0dµ̃0 +

∫
c1dµ̃1 + ε

from which we can conclude that

∣∣∣∣∫ c0dµ̂0 +

∫
c1dµ̂1 −

(∫
c0dµ̃0 +

∫
c1dµ̃1

)∣∣∣∣ ≤ ε.

In other words, the cost criterion values of any two limits of convergent subsequences of

({µε0,n, µε1,n)}n∈N are only ε apart. Hence, there exists a z ∈ R such that

J(µ̂0, µ̂1) ∈
[
z − ε

2
, z +

ε

2

]

for any limit (µ̂0, µ̂1) of a convergent subsequence of {(µ0,n, µ1,n)}n∈N. For δ > 0 it is therefore

obviously true that

∫
c0dµ̂0 +

∫
c1dµ̂1 ∈

(
z − ε

2
− δ, z +

ε

2
+ δ
)
.

Now assume that there is a non-convergent subsequence {(µε0,nj , µ
ε
1,nj

)}j∈N such that for any

given N ∈ N, there is a j ≥ N with

∫
c0dµ

ε
0,nj

+

∫
c1dµ

ε
1,nj

/∈
(
z − ε

2
− δ, z +

ε

2
+ δ
)

(1.14)
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Thus, there exists a sub-subsequence {(µε0,njk , µ
ε
1,njk

)}k∈N with

∫
c0dµ

ε
0,njk

+

∫
c1dµ

ε
1,njk

/∈
(
z − ε

2
− δ, z +

ε

2
+ δ
)

∀k ∈ N.

This sequence is tight and uniformly bounded, and hence contains a convergent ‘sub-sub’-

subsequence {(µε0,njkl
, µε1,njkl

)}l∈N with µε0,njkl
⇒ µ̂0 and µε1,njkl

⇒ µ̂1, But then,

J(µ̂0, µ̂1) ∈
[
z − ε

2
, z +

ε

2

]

and hence there is an N large enough such that for l ≥ N

∫
c0dµ

ε
0,njkl

+

∫
c1dµ

ε
1,njkl

∈
(
z − ε

2
− δ, z +

ε

2
+ δ
)

which contradicts the construction of {(µε0,njk , µ
ε
1,njk

)}k∈N. So, the assumption of (1.14) is

false, and the claim is proven.

Remark 1.15. This treatment of diverging subsequences presents a novelty in the conver-

gence analysis in comparison to what was established in Rus (2009). In particular, the proof

of Theorem 3.1.2 therein omits the fact that a sequence of tight measures can have diverging

subsequences, and only the existence of a converging subsequence is guaranteed by results as

presented in II.3.

While Lemma 1.12 gives us some information about the location of the value of the cost

criterion of ε-optimal sequences, the next result relates the infimum of the cost criterion,

taken over all measures in M l
∞, to this interval.

Proposition 1.16. Let
[
z − ε

2
, z + ε

2

]
be the interval from Lemma 1.12, and set

J l,∗ = inf
(
J(µ0, µ1) : (µ0, µ1) ∈M l

∞
)
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Then,

z − 3ε

2
≤ J l,∗ ≤ z +

ε

2

Proof. Take a sequence {(µε0,n, µε1,n)}n∈N of ε-optimal solutions to M l
n, respectively, and con-

sider a convergent subsequence {(µε0,nj , µ
ε
1,nj

)}j∈N with limit (µ̂ε0, µ̂
ε
1). Then, by Lemma 1.10

(µ̂ε0, µ̂
ε
1) is ε-optimal and

J(µ̂ε0, µ̂
ε
1) ∈

[
z − ε

2
, z +

ε

2

]
holds by the proof of Lemma 1.12. Hence it is true that

J l,∗ ≤ J(µ̂0, µ̂1) ≤ z +
ε

2
.

On the other hand, as (µ̂0, µ̂1) is optimal,

J l,∗ + ε ≥ J(µ̂ε0, µ̂
ε
1) ≥ z − ε

2

⇔ J l,∗ ≥ z − 3ε

2
,

which proves the claim.

The following theorem summarizes the obtained results.

Theorem 1.17. For each n ∈ N, assume that (µε0,n, µ
ε
1,n) ∈ M l

n and that for n ∈ N,

(µε0,n, µ
ε
1,n) is an ε-optimal solution for the (n,∞)-dimensional problem. Then, for δ > 0,

there exists an N(δ) such that

|J(µε0,n, µ
ε
1,n)− J l,∗| ≤ 2ε+ δ.

for all n ≥ N(δ).

Proof. Select N large enough such that

J(µε0,n, µ
ε
1,n) ∈

(
z − ε

2
− δ, z +

ε

2
+ δ
)

n ≥ N
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which is possible due to Lemma 1.12. By Proposition 1.16, we have that

J(µ0,n, µ1,n)− J l,∗ ≤ z +
ε

2
+ δ −

(
z − 3ε

2

)
= 2ε+ δ

and

J l,∗ − J(µ0,n, µ1,n) ≤ z +
ε

2
−
(
z − ε

2
− δ
)

= ε+ δ,

from which the claim follows.

Remark 1.18. In conjunction with Theorem 1.5, an ε̄-optimal value of the infinite dimen-

sional linear program can be found as follows. Select l > 0 large enough such that an

ε̄
2
-optimal solution in M l

∞ is an ε̄-optimal solution in M∞. Take ε > 0 and δ > 0 such that

2ε+ δ ≤ ε̄
2
. Use Proposition 1.16 to pick n ∈ N large enough such that an ε̄-optimal solution

in M l
n is a 2ε+ δ-optimal solution in M l

∞. Then, find an ε-optimal solution in M l
n.

While this remark illustrates how the main result in this section serves in the overall conver-

gence analysis, the next two remarks illustrate how the given derivation can be applied to

models without singular behavior, and to the K-reduced (n,∞)-dimensional linear program

that is used to approximate models with a unbounded state space.

Remark 1.19. This part of the convergence proof can be generalized to the case of no singular

behavior by setting B ≡ 0, as well as c1 and µ1,n (or any other considered singular expected

occupation measure) to zero. The statement of Remark 1.18 remains identical.

Remark 1.20. Having made the observation in Remark 1.19, we can see that the analysis

carried out here applies to the optimality of the K-reduced, (n,∞)-dimensional linear program

for unbounded state spaces. Indeed, as the arguments presented rely only on the fact that the

set of constraint functions {fk}k∈N forms a basis of D∞, or D∞([−K,K]) in the case of an

unbounded state space, and on the fact that µ1, or µ in the case of an unbounded state space,

has full mass on a closed interval.

111



IV.1.2 Optimality of the l-bounded (n,m)-dimensional problem

The previous subsection ended by stating that an ε-optimal solution to the l-bounded (n,∞)-

dimensional problem is almost optimal, for n and l large enough. We now show that an

optimal solution to the l-bounded (n,m)-dimensional problem is an ε-optimal solution to

the l-bounded (n,∞)-dimensional problem, for m large enough. Throughout this section,

the number of constraints n will be fixed.

Key in proving this claim is the fact that we can approximate the cost functional of arbitrary

measures in M l
n by discrete measures in M l

n,m. To be precise, we seek to show that for any

(µ0, µ1) ∈M l
n and ε > 0, there is a pair of discretized measures (µ̂0,km , µ̂1,km) ∈M l

n,m such

that, recalling that we assume µ0,E(dx) = p(x)dx for some p ∈ L1(E),

∣∣∣∣∫
E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,km(du, x)p̂km(x)dx

∣∣∣∣ <
ε

2∣∣∣∣∫
U×E

c1(x, u)µ1(dx× du)−
∫
E

∫
U

c1(x, u)η̂1,km(du, x)µ1,E(dx)

∣∣∣∣ <
ε

2
,

where µ̂0,km(dx × du) = η̂0,km(du, x)p̂km(x)dx and µ̂1,km(dx × du) = η̂1,km(du, x)µ1,E(dx),

using the approximation defined in (III.1.10), (III.1.11) and (III.1.13). This implies that

|J(µ0, µ1)− J(µ̂0,km , µ̂1,km)| < ε.

To achieve this, some technical considerations are in order.

Lemma 1.21. Assume a < b and c < d are real numbers. Let p : [a, b] 7→ [0,∞) be a

probability density function. Let f : [a, b] 7→ [c, d] be a function that is continuous almost

everywhere with respect to the measure p(x) dx. Let

{xk = a+
b− a

2n
· k, k = 0, . . . , 2n}.
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Set

f̂n(x) =
2n−1∑
k=0

f(xk)I[xk,xk+1)(x) + f(x2n−1) · I{x2n}(x).

Then, for any ε > 0, there exists an N ∈ N such that for all n ≥ N ,

∫
|f(x)− f̂n(x)|p(x)dx < ε.

Proof. We will use the fact that F = {x ∈ [a, b] : f is discontinuous at x} is a p(x)dx-null

set, and thus

∫
[a,b]

|f(x)− f̂n(x)|p(x)dx =

∫
[a,b)∩FC

|f(x)− f̂n(x)|p(x)dx.

So, take ε > 0 and pick x ∈ [a, b) ∩ FC arbitrarily. Then, there is a δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε.

Choose n large enough such that 1
2n
< δ. Then, since x ∈ [xk, xk+1] for some k, we have

|f̂n(x)− f(x)| = |f(xk)− f(x)| < ε,

since |xk − x| < δ. But this means that f̂n → f pointwise, p-almost everywhere. As

|f(x)− f̂n(x)| < [d− c] for all x ∈ [a, b]∩FC , the bounded convergence theorem implies that

there is an N ∈ N such that ∀n ≥ N ,

∫
|f(x)− f̂n(x)|p(x)dx < ε,

which proves the claim.

In the current situation, the number n of test functions in Dn representing the constraints

is fixed. Hence, we can prove the following two results, that will be needed to analyze the
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approximation of the cost criterion on the one hand, and the extent to which the constraints

are fulfilled on the other hand.

Lemma 1.22. For ε > 0, there is a δ > 0 such that

max {|c0(x, u)− c0(x, v)|, |Af1(x, u)− Af1(x, v)|, . . . , |Afn(x, u)− Afn(x, v)|} < ε

holds whenever |u− v| < δ, uniformly in x.

Proof. As c0 is continuous on a compact set, there is a δ1 > 0 such that if |u− v| < δ1, then

|c0(x, u) − c0(x, v)| < ε. For k = 1, 2, . . . , n we have in the case of the long-term average

criterion that

Afk(x, u) = f ′k(x) · b(x, u) +
1

2
f ′′k (x)σ2(x, u).

In the case of the infinite-horizon discounted criterion with discounting rate α, we have

Afk(x, u) = f ′k(x) · b(x, u) +
1

2
f ′′k (x)σ2(x, u)− αf(x)

In both cases

|Afk(x, u)− Afk(x, v)| ≤ |f ′k(x)| · |b(x, u)− b(x, v)|+ 1

2
f ′′k (x)|σ2(x, u)− σ2(x, v)|

holds. For each of the finitely many k, f ′k and f ′′k are continuous on a compact set, and hence

the expressions f ′k(x) and 1
2
f ′′k (x) can be bounded uniformly in x and k, say by a constant

C > 0. Choose δ2 with 0 < δ2 < δ1 such that |b(x, u)− b(x, v)| < ε
2C

whenever |u− v| < δ2

and δ3 with 0 < δ3 < δ2 such that |σ2(x, u) − σ2(x, v)| < ε
2C

whenever |u − v| < δ3. This

again is possible since b and σ2 are continuous functions on a compact set. But then,

|Afk(x, u)−Afk(x, v)| ≤ C ·
(
|b(x, u)− b(x, v)|+ |σ2(x, u)− σ2(x, v)|

)
< C

( ε

2C
+

ε

2C

)
= ε.

Set δ3 = δ to complete the proof.
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Lemma 1.23. Let s1, . . . , sN be the points of singular behavior. For ε > 0, there is a δ > 0

such that

max {|c1(x, u)− c1(x, v)|, |Bf1(sj, u)−Bf1(sj, v)|, . . . , |Bfn(sj, u)−Bfn(sj, v)|} < ε

holds whenever |u− v| < δ, independent of j = 1, . . . N .

Proof. As c1 is continuous on a compact set, there is a δ1 > 0 such that if |u− v| < δ1, then

|c1(x, u) − c1(x, v)| < ε. If the singular behavior is given by reflections, we are done at this

point, setting δ = δ1, since we do not consider controlled reflections. If the singular behavior

is given by a jump from sj to sj + h(sj, u), the following analysis holds. For k = 1, 2, . . . , n

Bfk(sj, u) = fk(sj + h(sj, u))− fk(sj)

and thereby

|Bfk(x, u)−Bfk(x, v)| = |fk(sj + h(sj, u))− f(sj)− fk(sj + h(sj, v)) + f(sj)|

≤ |fk(sj + h(sj, u))− fk(sj + h(sj, v))|

holds. Each of the fk are continuous, so there is a θ > 0 such that |fk(x) − fk(y)| < ε
N

if |x − y| < θ uniformly in k. Pick δ2 > 0 small enough such that for all |u − v| < δ2,

|h(sj, u) − h(sj, v)| < θ uniformly in j. This is possible due to the continuity of h and the

fact that we only consider finitely many points sj. Set δ2 = δ to complete the proof.

The next lemmas examine the properties of the proposed approximation of a control η0 of

the form (III.1.11) and η1 of the form (III.1.13). We will consider specific approximations

according to the following definitions.
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Definition 1.24. For a discretization level km, the usual approximation of a control on the

continuous part η0 given by the general form

η̂0,km (V, x) =
2k

(1)
m −1∑
j=0

2k
(2)
m∑

i=0

βj,iIEj(x)δui(V )

is defined by setting Ui = [ui, ui+1), U
2k

(2)
m

= {u
2k

(2)
m
} and βj,i := η0(Ui, xj) =

∫
Ui
η0(du, xj)

for i = 0, 1, . . . , 2k
(2)
m − 1 and j = 0, 1, . . . , 2k

(1)
m .

Definition 1.25. For a discretization level km, the usual approximation of a control on the

singular part η1 given by the general form,

η̂1,km(V, sj) =
2k

(2)
m∑

i=0

ζj,iδui(V ), (1.26)

is defined by setting Ui = [ui, ui+1), U
2k

(2)
m

= {u
2k

(2)
m
} and ζj,i := η1(Ui, sj) =

∫
Ui
η1(du, sj) for

i = 0, 1, . . . , 2k
(2)
m − 1 and j = 1, . . . , N .

Lemma 1.27. Consider a relaxed control given by a regular conditional probability η0, and

a probability density function p. Let g(x, u) = c0(x, u) or g(x, u) = Afk(x, u) for any k =

1, 2, . . . , n. For ε > 0, there exists an m0 ∈ N such that for all m ≥ m0,

∣∣∣∣∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

g(x, u)η̂0,km(du, x)p(x)dx

∣∣∣∣ < ε,

where η̂0,km is given by the usual approximation of η0, as defined by Definition 1.24.

Proof. For the usual approximation of η0, observe that

|I| ≡
∣∣∣∣∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

g(x, u)η̂0,km(du, x)p(x)dx

∣∣∣∣
=

∣∣∣∣∣∣∣
∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

2k
(1)
m −1∑
j=0

2k
(2)
m∑

i=0

βj,iIEj(x)g(x, ui)

 p(x)dx

∣∣∣∣∣∣∣ .
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and by the definition of βj,i it follows that

|I| =

∣∣∣∣∣∣∣
∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

2k
(1)
m −1∑
j=0

2k
(2)
m∑

i=0

∫
Ui

η0(du, xj)IEj(x)g(x, ui)

 p(x)dx

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
E

∫
U

g(x, u)η0(du, x)p(x)dx−
∫
E

2k
(2)
m∑

i=0

g(x, ui)

∫
Ui

η0(du, x)

 p(x)dx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
E

2k
(2)
m∑

i=0

g(x, ui)

∫
Ui

η0(du, x)

 p(x)dx

−
∫
E

2k
(1)
m −1∑
j=0

2k
(2)
m∑

i=0

∫
Ui

η0(du, xj)IEj(x)g(x, ui)

 p(x)dx

∣∣∣∣∣∣∣
≡ |I1|+ |I2| .

Observe that

|I1| =

∣∣∣∣∣∣∣
∫
E

2k
(2)
m∑

i=0

∫
Ui

(g(x, u)− g(x, ui)) η0(du, x)

 p(x)dx

∣∣∣∣∣∣∣ .
By Lemma 1.22, there is a δ > 0 such that for all |u−v| < δ, we have that |g(x, u)−g(x, v)| <
ε
2
, independent of x. Choosem1 large enough such that for allm ≥ m1 it is true that 1

2k
(2)
m
< δ.

Then

|I1| <

∣∣∣∣∣∣∣
∫
E

2k
(2)
m∑

i=0

∫
Ui

ε

2
η0(du, x)

 p(x)dx

∣∣∣∣∣∣∣ =
ε

2
,

as for any x ∈ E, η0(·, x) is a probability measure, and so is p(x)dx. We now examine the

term |I2| which can be simplified to

|I2| =

∣∣∣∣∣∣∣
∫
E

2k
(2)
m∑

i=0

g(x, ui)

∫
Ui

η0(du, x)−
2k

(1)
m −1∑
j=0

IEj(x)

∫
Ui

η0(du, xj)

 p(x)dx

∣∣∣∣∣∣∣ . (1.28)
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To begin with, observe that, independent of xj and thus independent of our choice of E(k
(1)
m ),

we have

2k
(2)
m∑

i=0

|η0(Ui, x)− η0(Ui, xj)| ≤
2k

(2)
m∑

i=0

(|η0(Ui, x)|+ |η0(Ui, xj)|)

≤
2k

(2)
m∑

i=0

(η0(Ui, x) + η0(Ui, xj)) = 2, (1.29)

due to the fact regular conditional probabilities are indeed probability measures for fixed

x or xj, and thus are additive in their first argument. In the following analysis, we regard

I2 as a sequence with two indices, say I2(a, b) ≡ I2(k
(1)
a , k

(2)
b ) ≡ I2 (with a slight abuse of

notation), where a and b are two discretization levels.

Our first claim is that I2(a, b) is a Cauchy sequence in b when a is fixed. To see this, we

analyze two successive elements of the sequence. Regard

|I2(a, b+ 1)− I2(a, b)| =
∣∣∣I2(k(1)

a , k
(2)
b+1)− I2(k(1)

a , k
(2)
b )
∣∣∣

=

∣∣∣∣∣∣∣
∫
E

2
k
(2)
b+1∑
i=0

g(x, ũi)

η0(Ũi, x)−
2k

(1)
a −1∑
j=0

IEj(x)η0(Ũi, xj)


−

2
k
(2)
b∑

i=0

g(x, ui)

η0(Ui, x)−
2k

(1)
a −1∑
j=0

IEj(x)η0(Ui, xj)


 p(x)dx

∣∣∣∣∣∣∣
where Ũi and ũi are used to indicate the partition of U and the points of the discrete set in

U of the next discretization level b + 1. Due to the additivity of measures, the two sums,

if regarded as a Riemann-type approximation of an integral, only differ by a more accurate

choice of ‘rectangle-height’ in the Riemann sum. To formalize this, for i ∈ {0, . . . , 2k
(2)
b+1} let
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π(i) ∈ {0, . . . , 2k
(2)
b } be the index such that Ũi ⊂ Uπ(i). Then,

|I2(a, b+ 1)− I2(a, b)|

=

∣∣∣∣∣∣∣
∫
E

2
k
(2)
b+1∑
i=0

(
g(x, ũi)− g(x, uπ(i))

)
·

η0(Ũi, x)−
2k

(1)
a −1∑
j=0

IEj(x)η0(Ũi, xj)


 p(x)dx

∣∣∣∣∣∣∣
≤
∫
E

2
k
(2)
b+1∑
i=0

∣∣ g(x, ũi)− g(x, uπ(i))
∣∣ ·
∣∣∣∣∣∣∣η0(Ũi, x)−

2k
(1)
a −1∑
j=0

IEj(x)η0(Ũi, xj)

∣∣∣∣∣∣∣
 p(x)dx

≤ K

(
1

2

)b+1 ∫
E

2
k
(2)
b+1∑
i=0

∣∣∣∣∣∣∣η0(Ũi, x)−
2k

(1)
a −1∑
j=0

IEj(x)η0(Ũi, xj)

∣∣∣∣∣∣∣
 p(x)dx

≤ K

(
1

2

)b+1 2k
(1)
a −1∑
j=0

∫
Ej

2
k
(2)
b+1∑
i=0

∣∣∣η0(Ũi, x)− η0(Ũi, xj)
∣∣∣


︸ ︷︷ ︸
≤2, by (1.29)

p(x)dx

≤ K

(
1

2

)b

due to the fact that
∣∣ g(x, ũi)− g(x, uπ(i))

∣∣ is uniformly bounded by K
(

1
2

)b+1
, with K = 1

if g(x, u) = c0(x, u), and K = max{‖f1‖D , . . . , ‖fk‖D}, by our choice of U

(
k

(2)
b

)
, compare

Remark III.1.9.

Now, for some ϑ > 0, choose b large enough such that
∑∞

j=b

(
1
2

)j
< ϑ

K
. Then, for all b1, b2 ≥ b,

we have

|I2(a, b1)− I2(a, b2)| =

∣∣∣∣∣
b1∑

j=b2+1

I2(a, j)− I2(a, j − 1)

∣∣∣∣∣
≤

b1∑
j=b2+1

|I2(a, j)− I2(a, j − 1)|

≤ K

b1∑
j=b2+1

(
1

2

)j−1

< ϑ,
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which shows that I2 is Cauchy in b, which, is the same as saying it is Cauchy in k
(2)
b . However,

note that this bound on the increment of I2 in k
(2)
b is independent of a, so it does not depend

on the choice of E(k
(1)
a ). Given this result, choose m2 ≥ m1 such that for all m ≥ m2, we have

that k
(2)
m is large enough such that for all b1, b2 ≥ k

(2)
m , |I2(k

(1)
m , b1) − I2(k

(1)
m , b2)| < ε

4
. Now

observe that for each i ∈ {0, 1, . . . , 2k
(2)
m } the function x 7→ η0(Ui, x) can be approximated as

described in Lemma 1.21. To see this, note that

2k
(1)
m −1∑
j=0

IEj(x)η0(Ui, xj) =
2k

(1)
m −1∑
j=0

η0(Ui, xj)I[xj ,xj+1)(x) + η0(Ui, x
2k

(1)
m −1

)I{
x

2k
(1)
m

}(x)

has the form of the approximate function used in Lemma 1.21. Hence, for k
(2)
m fixed and for

each i ∈ {0, 1, . . . , 2k
(2)
m }, there is a k(1,i) large enough such that for all k(i) ≥ k(1,i), we have

∫
E

∣∣∣∣∣∣η0(Ui, x)−
2k

(i)−1∑
j=0

IEj(x)η0(Ui, xj)

∣∣∣∣∣∣ p(x)dx <
ε

4 max {‖c0‖∞, ‖Af1‖∞, . . . ‖Afn‖∞} (2k
(2)
m +1)

.

Set k̃ = max
{

max
i=1,...,2(k

(2)
m )

k(1,i), k
(1)
m2

}
. Then,

|I2(k̃, k(2)
m )| ≤

∫
E

‖g‖∞
2k

(2)
m∑

i=0

∣∣∣∣∣∣η0(Ui, x)−
2k̃−1∑
j=0

IEj(x)η0(Ui, xj)

∣∣∣∣∣∣ p(x)dx

≤ ‖g‖∞
2k

(2)
m∑

i=0

∫
E

∣∣∣∣∣∣η0(Ui, x)−
2k̃−1∑
j=0

IEj(x)η0(Ui, xj)

∣∣∣∣∣∣ p(x)dx

≤ ε

4
<
ε

2
.

Also, note that I2(k̃, k
(2)
m ) is decreasing in k̃, by the approximation properties analyzed in

the proof of Lemma 1.21. Also, for l ≥ k
(2)
m , we have

∣∣∣I2(k̃, l)
∣∣∣ ≤ ∣∣∣I2(k̃, l)− I2(k̃, k(2)

m )
∣∣∣+
∣∣∣I2(k̃, k(2)

m )
∣∣∣

<
ε

4
+
ε

4
=
ε

2
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which means that I2 ≡ I2(k̃, k
(2)
m ) does not exceed ε

2
when k̃ or k

(2)
m increase. Choose m3 ≥ m2

such that for all m ≥ m3, k
(1)
m3 ≥ k̃. Then, for all m ≥ m3, we have that I2 <

ε
2
.

Lemma 1.30. Consider a relaxed control on the singular part given by a regular conditional

probability η1. Let g(x, u) = c1(x, u) or g(x, u) = Bfk(x, u) for any k = 1, 2, . . . , n. For

ε > 0, there exists an m0 ∈ N such that for all m ≥ m0,

∣∣∣∣∫
E

∫
U

g(x, u)η1(du, x)µ1,E(dx)−
∫
E

∫
U

g(x, u)η̂1,km(du, x)µ1,E(dx)

∣∣∣∣ < ε, (1.31)

where η̂1,km is given by the usual approximation of η1, as defined in Definition 1.25.

Proof. We only have to show that

∣∣∣∣∫
U

g(sj, u)η1(du, sj)−
∫
U

g(sj, u)η̂1,km(du, sj)

∣∣∣∣ < ε

µ1,E(E)

uniformly in j = 1, . . . , N , since µ1,E only puts mass on the points s1, . . . , sN . By the

definition of the usual approximation of η1,

∣∣∣∣∫
U

g(sj, u)η1(du, sj)−
∫
U

g(sj, u)η̂1,km(du, sj)

∣∣∣∣
=

∣∣∣∣∣∣∣
2k

(2)
m∑

i=0

∫
Ui

g(sj, u)η1(du, sj)−
∫
Ui

g(sj, u)η̂1,km(du, sj)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2k

(2)
m∑

i=0

∫
Ui

g(sj, u)η1(du, sj)− g(sj, ui)ζj,i

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2k

(2)
m∑

i=0

∫
Ui

g(sj, u)η1(du, sj)− g(sj, ui)

∫
Ui

η1(du, sj)

∣∣∣∣∣∣∣
≤

2k
(2)
m∑

i=0

∫
Ui

|g(sj, u)− g(sj, ui)| η1(du, sj).
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According to Lemma 1.23, there is a δ > 0 such that |g(sj, u)− g(sj, v)| < ε
µ1,E(E)

whenever

|u − v| < δ. Choose m large enough such that for all m ≥ m0 it is true that 1

2k
(2)
m

< δ to

ensure that |u− ui| < δ. Then,

2k
(2)
m∑

i=0

∫
Ui

|g(sj, u)− g(sj, ui)| η1(du, sj) <
ε

µ1,E(E)
·

2k
(2)
m∑

i=0

∫
Ui

η1(du, sj) =
ε

µ1,E(E)

holds, which proves the claim.

Remark 1.32. If no singular behavior is present, the expression seen in (1.31) is trivially

zero.

The results given in Lemma 1.27 and Lemma 1.30 serve us in two ways. First, they ensure

that the given approximation can approximate the cost criterion well enough, second, they

are instrumental in showing that the constraints given by the (n,∞)-dimensional program are

‘almost’ fulfilled. This allows us to make small adjustments to the approximation, fulfilling

the constraints but still approximating the cost criterion well enough. In the following, we

will restrict our considerations to a basis {pj}j∈N in L1(E) that is given by the indicator

functions on the intervals [xj, xj+1), j = 0, . . . 2k
(3)
m − 2 and [x

2k
(3)
m −1

, x
2k

(3)
m

] given by the

discretization of E, for increasing m as described in Section III.1.4. We refer to the basis

functions given for fixed m by {p0, p1, . . . p
2k

(3)
m −1
}.

Definition 1.33. Let η0 be any relaxed control. For n,m ∈ N, define the constraint matrix

C(m) ∈ Rn+1,2k
(3)
m by

C
(m)
k,j =

∫
E

∫
U

Afk(x, u)η0(du, x)pj(x)dx if k = 1, 2, . . . , n, j = 0, 1, . . . , 2k
(3)
m − 1

C
(m)
n+1,j =

∫
E

pj(x)dx if j = 1, 2, . . . , 2k
(3)
m − 1.

Remark 1.34. Note that one can increase m so far that C(m) has full rank n+ 1.
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Definition 1.35. For m ∈ N and η̂0,km of the form (III.1.11), η̂1,km of the form (III.1.13)

and some p̃km in the span of {p0, p2, . . . , p
2k

(3)
m −1
}, the constraint error d(m) ∈ Rn+1 is defined

for k = 1, . . . , n by

d
(m)
k (p̃km) = Rfk−

∫
E

∫
U

Afk(x, u)η̂0,km(du, x)p̃km(x)dx−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx).

and for k = n+ 1 by d
(m)
n+1 = 1−

∫
E
p̃km(x)(dx).

Remark 1.36. For some p̃km, the constraint error specifies how ‘far’ p̃km is from fulfilling

the constraints given by the test functions f1, f2, . . . , fn, and how ‘far’ it is from being a

probability density integrating to 1. In particular, if d(m)(p̃km) = 0, p̃km fulfills the constraints

and is a probability density.

Remark 1.37. If γ ∈ Rk
(3)
m is a vector with the coefficients of p̃km in terms of the basis

p0, p1, . . . p
2k

(3)
m −1

, the constraint error for k = 1, . . . , n is given by the components

d
(m)
k (p̃km) = Rfk −

(
C(m)γ

)
k
−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx). (1.38)

and for n+ 1 by d
(m)
n+1(p̃km) = 1−

(
C(m)γ

)
n+1

= 1− ‖p̃km‖L1(E).

Remark 1.39. In the absence of singular behavior, the expression seen in (1.38) is equal to

d
(m)
k (p̃km) = Rfk −

(
C(m)γ

)
k
.

Now we investigate the size of the discretization error. First, we prove an L1(E)-approximation

result for the density p, that relies on the assumption that λ ({x : p(x) = 0}) = 0.

Lemma 1.40. Let p be a probability density function with λ ({x : p(x) = 0}) = 0. Then, for

any ε > 0 and D1 > 0, there exists an ε̂1 < ε and an m0 such that for all m ≥ m0, there is

a p̃km in the span of {p0, p, . . . , p
2k

(3)
m −1
} with ‖p− p̃km‖L1(E) <

ε̂1
D1

and p̃km ≥ ε̂1 on E.
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Proof. Find ε̂1 < ε such that λ ({x : f(x) ≤ ε̂1}) < 1
2D1

, which is possible due to continuity

from above of measures. Define

p̄(x) =


p(x) p(x) > ε̂1

ε̂1 p(x) ≤ ε̂1

.

Then, ‖p− p̄‖L1(E) ≤ ε̂1 · λ ({x : f(x) ≤ ε̂1}) ≤ ε̂1
2D1

. Now, choose m0 large enough such that

for all m ≥ m0, there is a p̃km ∈ span
(
p0, p1, . . . , p

2k
(3)
m −1

)
with ‖p̄− p̃km‖L1(E) ≤ ε̂1

2D1
. Then,

‖p− p̃km‖L1(E) ≤ ‖p− p̄‖L1(E) + ‖p̄− p̃km‖L1(E) ≤
ε̂1

2D1

+
ε̂1

2D1

=
ε̂1
D1

,

but also, p̃km ≥ ε̂1 holds.

Proposition 1.41. Consider a pair of measures (µ0, µ1) ∈ Mn,∞, and let µ0(dx × du) =

η0(du, x)p(x)dx as well as µ1(dx × du) = η1(du, x)µ1,E(dx). Let Ā = maxk=1,...,n ‖Afk‖∞.

For ε > 0 and D2 > 0, there exists an ε̂2 < ε and an m0 ∈ N such that for all m ≥ m0,

there is a function p̃km in the span of {p0, p1, . . . , p
2k

(3)
m −1
} with ‖d(m)(p̃km)‖∞ < ε̂2, where

d(m)(p̃km) is the constraint error using the usual approximations η̂0,km(du, x) and η̂1,km(du, x)

of the given controls η0 and η1, defined by Definition 1.24 and Definition 1.25, respectively.

In particular, ‖p− p̃km‖L1(E) <
ε̂2

3 max{Ā,1}
as well as p̃km ≥ D2 · ε̂2 holds.

Proof. Since (µ0, µ1) ∈Mn,∞, we have that for each k = 1, 2, . . . , n

Rfk =

∫
E

∫
U

Afk(x, u)η0(du, x)p(x)dx+

∫
E

∫
U

Bfk(x, u)µ1(dx× du)
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and thereby

d
(m)
k (p̃km)

= Rfk −
∫
E

∫
U

Afk(x, u)η̂0,km(du, x)p̃km(x)dx−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx)

=

∫
E

∫
U

Afk(x, u)η0(du, x)p(x)dx+

∫
E

∫
U

Bfk(x, u)η1(du, x)µ1,E(dx)

−
∫
E

∫
U

Afk(x, u)η̂0,km(du, x)p̃km(x)dx−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx)

=

∫
E

∫
U

Afk(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

Afk(x, u)η̂0,km(du, x)p̃km(x)dx

+

∫
E

∫
U

Bfk(x, u)η1(du, x)µ1,E(dx)−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx)

holds. The triangle inequality reveals that

|d(m)
k (p̃km)|

=

∣∣∣∣∫
E

∫
U

Afk(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

Afk(x, u)η̂0,km(du, x)p(x)dx

∣∣∣∣
+

∣∣∣∣∫
E

∫
U

Afk(x, u)η̂0,km(du, x)p(x)dx−
∫
E

∫
U

Afk(x, u)η̂0,km(du, x)p̃km(x)dx

∣∣∣∣
+

∣∣∣∣∫
E

∫
U

Bfk(x, u)η1(du, x)µ1,E(dx)−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx)

∣∣∣∣
≡
∣∣∣d(m)
k,1

∣∣∣+
∣∣∣d(m)
k,2

∣∣∣+
∣∣∣d(m)
k,3

∣∣∣
Apply Lemma 1.40 with ε and D1 = D2 · 3 ·max{Ā, 1}. Take ε̂1 and m1 from this statement.

Set ε̂2 = ε̂1/D2. Then, ε̂2 < ε and for all m ≥ m1, there is a p̃km ∈ span{p0, p1, . . . , p
2k

(3)
m −1
}

such that ‖p− p̃km‖L1(E) <
ε̂2

3·max{Ā,1}
as well as p̃km ≥ D2 · ε̂2 holds. Then,

∣∣∣d(m)
k,2

∣∣∣ ≡ ∣∣∣∣∫
E

∫
U

Afk(x, u)η̂0,km(du, x) (p(x)− p̃km(x)) dx

∣∣∣∣ ≤ Ā‖p− p̃km‖L1(E) <
ε̂2
3

By Lemma 1.27, we can choose m2 ≥ m1 such that for all m ≥ m2, |dk,1| is bounded by ε̂2
3

.

By Lemma 1.30, we can choose m3 ≥ m2 such that |dk,3| is bounded by ε̂2
3

for all m ≥ m3,

which shows that
∣∣∣d(m)
k (p̃km)

∣∣∣ < ε̂2 for k = 1, 2, . . . , n. For k = n+ 1, since p is a probability
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density

‖p̃km‖L1(E) ≤ ‖p̃km − p‖L1(E) + ‖p‖L1(E) <
ε̂2

3 max{Ā, 1}
+ 1 < ε̂2 + 1.

Now assume that ‖p̃km‖L1(E) < 1− ε̂2. Then,

‖p‖L1(E) ≤ ‖p− p̃km‖L1(E) + ‖p̃km‖L1(E) <
ε̂2

3 max{Ā, 1}
+ 1− ε̂2 < ε̂2 + 1− ε̂2 = 1,

a contradiction, and we have that

1− ε̂2 ≤ ‖p̃km‖L1(E) ≤ 1 + ε̂2

Hence, |d(m)
n+1(p̃km)| < ε̂2, which completes the proof, setting m0 = m3.

Lemma 1.42. For any ε > 0, there is an ε̂ < ε and an m0 ∈ N large enough such that for

all m ≥ m0, there is a p̃km ∈ span{p0, p1, . . . , p
2k

(3)
m −1
}, and the equation C(m)y = −d(m)(p̃km)

has a solution with ‖y‖∞ < ε̂. In particular, p̃km ≥ ε̂ and ‖p− p̃km‖L1(E) < ε̂ hold.

Proof. Select m1 ∈ N large enough such that for all m ≥ m1, C(m) has full rank and thus

n + 1 independent columns. Let C̄(m) ∈ Rn+1,n+1 be the matrix consisting of these n + 1

independent columns. Set δ = ε

max
{

1,
∥∥∥(C̄(m1))

−1
∥∥∥
∞

} and by Proposition 1.41, with ε = δ

and D2 = ‖
(
C̄(m1)

)−1 ‖∞, find m2 ≥ m1 such that for all m ≥ m2, there is a p̃km , with

‖d(m)(p̃km)‖∞ < ε̂2 < δ for some ε̂2 > 0, fulfilling p̃km > ‖
(
C̄(m1)

)−1 ‖∞ · ε̂2 as well as

‖p− p̃km‖L1(E) <
ε̂2

3·max{Ā,1}
< ε̂. Let ε̂ = ‖

(
C̄(m1)

)−1 ‖∞ · ε̂2. Consider the solution y ∈ R2
k
(2)
m1

for C(m1)y = d(m2)(p̃km) that is given by injecting ȳ =
(
C̄(m1)

)−1 (−d(m2)(p̃km)
)

into R2
k
(2)
m1 .

Then,

‖y‖∞ = ‖ȳ‖∞ = ‖
(
C̄(m1)

)−1
d(m2)(p̃km)‖∞ ≤ ‖

(
C̄(m1)

)−1 ‖∞‖d(m2)(p̃km)‖∞ < ε̂.

We now show that there is a solution ŷ to C(m2)y = d(m2)(p̃km) that fulfills ‖ŷ‖∞ < ε̂,

where C(m2) is a full constraint matrix rather that just a selections of columns from a
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constraint matrix. By the definition of the continuous constraint matrix, we have that

for k = 1, 2, . . . , n+ 1 and i = 0, 1, . . . , 2k
(3)
m − 1,

C
(m+1)
k,2i−1 + C

(m+1)
k,2i = C

(m)
k,i

holds. Indeed, since if 1 ≤ k ≤ n by the choice of basis functions {p0, p1, . . . , p
2k

(3)
m −1
}, the

coefficients are given by integration of the functions Afk over intervals that are cut in half,

and if k = n + 1, the coefficients are simply given by the interval lengths (xj+1 − xj) since

pj = 1 on [xj+1, xj). Hence, if y is a solution to C(m)x = −d, the vector ȳ with components

ȳ2i−1 = ȳ2i = yi

where i = 0, 1, . . . , 2k
(3)
m − 1, fulfills C(m+1)y = −d, and ‖y‖∞ = ‖ȳ‖∞ holds. Inductively,

this reveals that for any m ≥ m1, there is a solution ŷ to C(m)y = −d(m1)(p̃km) which

fulfills ‖ŷ‖∞ = ‖y‖∞ < ε̂. In particular, this means that there is a solution ŷ to C(m2)y =

−d(m2)(p̃km), with ‖ŷ‖∞ = ‖y‖∞ < ε̂. For any m ≥ m2, this analysis can be conducted

similarly, showing the result for m0 = m2.

Proposition 1.43. For (µ0, µ1) ∈ M l
n and every ε > 0, there is an m0 such that for all

m ≥ m0 there is a (µ̂0,km , µ̂1,km) ∈M l
n,km

, with

|J(µ0, µ1)− J(µ̂0,km , µ̂1,km)| < ε.

Proof. Pick ε > 0 arbitrarily. For (µ0, µ1) ∈M l
n, let µ0,E be the state space marginal of µ0

and let η0 be the regular conditional probability such that µ0(dx × du) = η0(du, x)p(x)dx.

Likewise, let µ1(dx × du) = η1(du, x)µ1,E(dx). Define η̂0,mk and η̂1,mk by the usual approx-

imations, see Definition 1.24 and Definition 1.25, respectively. First, by Lemma 1.30, we
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have that there is an m1 large enough such that for all m ≥ m1,

∣∣∣∣∫
E

∫
U

c1(x, u)η1(du, x)dµ1,E −
∫
E

∫
U

c1(x, u)η̂1,km(du, x)dµ̂1,E

∣∣∣∣ < ε

2

Now, we consider the approximation of the cost accrued by c0. We show that

∣∣∣∣∫
E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,km(du, x)p̂km(x)dx

∣∣∣∣ < ε

2
,

for the given choice of η̂0,km and a choice of p̂km to be identified. This will be done by a

successive application of the triangle inequality. First, observe that

∣∣∣∣∫
E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,km(du, x)p̂km(x)dx

∣∣∣∣
≤

∣∣∣∣∫
E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,km(du, x)p(x)dx

∣∣∣∣
+

∣∣∣∣∫
E

∫
U

c0(x, u)η̂0,km(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,km(du, x)p̂km(x)dx

∣∣∣∣
≡ |I1|+ |I2| .

Now set

ϑ = min

{
ε

8‖c0‖∞(er − el)
,
3εmax{Ā, 1}

8‖c0‖∞

}
.

By Lemma 1.42 we can choose an m3 ≥ m2 such that for all m ≥ m3, there is a function

p̄km =
∑2k

(3)
m −1

i=0 γ̄ipi in L1(E) that allows for a solution ȳ to C(m)y = −d(m)(p̄km) with

‖ȳ‖∞ < ϑ̂ < ϑ for some ϑ̂ < ϑ, but p̄km > ϑ̂. This m3 is also large enough to approximate p

by p̄km with an accuracy of ε
8‖c0‖∞ for all m ≥ m3. Define new coefficients γi = γ̄i − ȳi and
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set p̂km =
∑2k

(3)
m −1

i=0 γipi. Then for all k = 1, 2, . . . , n,

d
(m)
k (p̂km) = Rfk −

(
C(m)γ

)
k
−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx)

= Rfk −
(
C(m)(γ̄ − ȳ)

)
k
−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx)

= Rfk −
(
C(m)γ̄

)
k
−
∫
E

∫
U

Bfk(x, u)η̂1,km(du, x)µ1,E(dx) +
(
C(m)ȳ

)
k

= d
(m)
k (p̄km)− d(m)

k (p̄km) = 0

and

d
(m)
n+1(p̂km) = 1− (C(m)γ)n+1 − (C(m)γ̄)n+1 = d

(m)
n+1(p̄km)− d(m)

n+1(p̄km) = 0

which shows that p̂km fulfills the constraints. But also, p̂km ≥ 0. So

(η̂0,km(du, x)p̂km(x)dx, η̂0,km(du, x)µ1,E(dx)) ∈Mn,m. Furthermore,

‖p− p̂km‖L1(E) ≤ ‖p− p̄km‖L1(E) + ‖p̄km − p̂km‖L1(E)

≤ ε

8‖c0‖∞
+

ε

8‖c0‖∞
=

ε

4‖c0‖∞

This shows that

|I2| ≡
∣∣∣∣∫
E

∫
U

c0(x, u)η̂0,km(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,km(du, x)p̂km(x)dx

∣∣∣∣
≤
∫
E

‖c0‖∞
∫
U

η̂0,km(du, x)|p(x)− p̂km(x)|dx < ‖c0‖∞‖p− p̂km‖L1

<
ε

4
,
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since
∫
U
η̂0,km(du, x) = 1. Turning to |I1|, we have seen in Lemma 1.27 that there is an

m4 ≥ m3 such that for all m ≥ m4, |I1| < ε
4
. To summarize,

∣∣∣∣∫
E

∫
U

c0(x, u)η0(du, x)p(x)dx−
∫
E

∫
U

c0(x, u)η̂0,km(du, x)p̂km(x)dx

∣∣∣∣
≤ I1 + I2

≤ ε

4
+
ε

4
=
ε

2
.

But this gives us the assertion, and finishes the proof, setting m0 = m4.

So far, we have analyzed the properties of the proposed approximation only with regard to

an arbitrary pair of measures (µ0, µ1) ∈ M l
n,m. Now we return our attention to ε-optimal

measures.

Lemma 1.44. Let {µ0,n,km , µ1,n,km} be a sequence of measures with (µ0,n,km , µ1,n,km) ∈M l
n,m,

for all m ∈ N. Assume that µ0,n,km ⇒ µ̂0,n and µ1,n,km ⇒ µ̂1,n as m → ∞. Then,

(µ̂0,n, µ̂1,n) ∈M l
n.

Proof. Take fn ∈ Dn. Since Afn and Bfn are bounded and uniformly continuous, we have

∫
Afndµ̂0,n +

∫
Bfndµ̂1,n = lim

m→∞

(∫
Afndµ0,n,km +

∫
Bfndµ1,n,km

)
= lim

m→∞
Rfn = Rfn.

Note that IE×U ≡ 1 is bounded and uniformly continuous on E×U , so by weak convergence,

we have

µ̂1,n(E × U) =

∫
E×U

IE×U dµ̂1,n = lim
m→∞

∫
E×U

IE×U dµ̂1,n,km = lim
m→∞

µ̂1,n,km(E × U) ≤ l,

which shows that (µ̂0,n, µ̂1,n) ∈M l
n.

With these technicalities sorted out, we can prove that optimal solutions in M l
n,k are ε-

optimal solutions in M l
n.
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Proposition 1.45. Let {µ∗0,n,km , µ
∗
1,n,km

} be a sequence of optimal measures with

(µ∗0,n,km , µ
∗
1,n,km

) ∈ M l
n,m, for all m ∈ N. Assume that µ∗0,n,km ⇒ µ̂∗n and µ∗1,n,km ⇒ µ̂∗1,n as

m→∞. Then,

J(µ̂∗0,n, µ̂
∗
1,n) = inf

(µ0,n,µ1,n)∈M l
n

J(µ0,n, µ1,n)

Proof. Assume not. Obviously,

J(µ̂∗n, µ̂
∗
1,n) < inf

(µ0,n,µ1,n)∈M l
n

J(µ0,n, µ1,n)

cannot hold, since by Lemma 1.44, (µ̂∗n, µ̂
∗
1,n) ∈M l

n. So, we can assume that

J(µ̂∗n, µ̂
∗
1,n) > inf

(µ0,n,µ1,n)∈M l
n

J(µ0,n, µ1,n).

Then, there is a (µ0,n, µ1,n) ∈M l
n and an ε > 0 such that

J(µ̂∗n, µ̂
∗
1,n) ≥ J(µ0,n, µ1,n) + ε

By Proposition 1.43, for some m0 large enough there is a (µ̃0,n,km0
, µ̃1,n,km0

) ∈ M l
n,km0

such

that ∣∣J(µ0,n, µ1,n)− J(µ̃0,n,km0
, µ̃1,n,km0

)
∣∣ < ε

But then,

0 ≤ J(µ̃0,n,km0
, µ̃1,n,km0

) ≤
∣∣J(µ̃0,n,km0

, µ̃1,n,km0
)− J(µ0,n, µ1,n)

∣∣+ |J(µ0,n, µ1,n)|

< ε+ J(µ0,n, µ1,n)

< J(µ̂∗n, µ̂
∗
1,n).
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Observe that since M l
n,km

⊂ M l
n,km+1

we have that the sequence {J(µ∗0,n,km , µ
∗
1,n,km

)}m∈N

decreases to J(µ̂∗n, µ̂
∗
1,n). So,

J(µ̃0,n,km0
, µ̃1,n,km0

) < J(µ̂∗n, µ̂
∗
1,n) ≤ J(µ∗0,n,km , µ

∗
1,n,km)

which contradicts that (µ∗0,n,km , µ
∗
1,n,km

) is the optimal solution in M l
n,km

, if m ≥ m0.

We have only shown a convergence result of the values for the optimality criteria under the

assumption that the sequence of measures converges. The following result shows how the

sequence of values for the optimality criterion behaves independently from the convergence

of the underlying sequence of measures.

Proposition 1.46. Let {(µ∗0,n,km , µ
∗
1,n,km

)}m∈N be a sequence of optimal solutions with

(µ∗0,n,km , µ
∗
1,n,km

) ∈M l
n,km

for all m ∈ N. respectively. Then, the sequence of numbers

{J(µ∗0,n,km , µ
∗
1,n,km

)}m∈N converges to J∗n := inf(µ0,n,µ1,n)∈M l
n
J(µ0,n, µ1,n).

Proof. As mentioned before, {J(µ∗0,n,km , µ
∗
1,n,km

)}m∈N is a decreasing sequence. Also, it is

bounded from below, so it converges. As {µ∗0,n,km}m∈N and {µ∗1,n,km}m∈N are sequences of

measures over a compact space, they are tight, and {µ∗1,n,km}m∈N is uniformly bounded by l.

Consequently there is a converging subsequence {(µ∗n,kmj , µ
∗
1,n,kmj

)}j∈N with

µ∗0,n,kj ⇒ µ̂∗0,n and µ∗1,n,kj ⇒ µ̂∗1,n

for some (µ̂∗n, µ̂
∗
1,n) ∈Mn. Then, we have by Proposition 1.45, as c0 and c1 are bounded and

uniformly continuous,

J∗n = J(µ̂∗0,n, µ̂
∗
1,n) =

∫
c0dµ̂

∗
0,n +

∫
c1dµ̂

∗
1,n

= lim
j→∞

(∫
c0dµ̂

∗
0,n,kmj

+

∫
c1dµ̂

∗
1,n,kmj

)
= lim

j→∞
J(µ∗0,n,kmj , µ

∗
1,n,kmj

),

132



but {J(µ∗0,n,km , µ
∗
1,n,km

)}m∈N converges, and any subsequence has to converge to its very limit.

So,

lim
m→∞

J(µ∗0,n,km , µ
∗
1,n,km) = J∗n

This result shows that if we can find optimal solutions to M l
n,km

, for large enough m, we

are sufficiently close to the optimal value one can achieve in M l
n. In other words, for large

enough m, we have found an ε-optimal solution for the l-bounded, (n,∞)-dimensional linear

program. However, this is precisely what we needed to find according to the first part of the

convergence proof. The following theorem summarizes the results obtained in this section.

Theorem 1.47. For n ∈ N, ε > 0 there is an M ≡ M(ε, n) such that for all m ≥ M ,

(µ∗0,n,km , µ
∗
1,n,km

) ∈ M l
n is an optimal solution to the l-bounded (n,m)-dimensional linear

problem, then (µ∗0,n,km , µ
∗
1,n,km

) is an ε-optimal solution to the l-bounded (n,∞)-dimensional

linear program.

Proof. We have that J(µ∗0,n,km , µ
∗
1,n,km

) is a decreasing sequence and hence by Proposi-

tion 1.46, for a fixed ε > 0 and M large enough, for all m ≥M ,

ε ≥ J(µ∗0,n,km , µ
∗
1,n,km)− J∗n = J(µ∗0,n,km , µ

∗
1,n,km)− inf

(µ0,µ1)∈M l
n

J(µ0, µ1) ≥ 0

holds. In particular, we have that

|J(µ∗0,n,km , µ
∗
1,n,km)− inf

(µ0,µ1)∈M l
n

J(µ0, µ1)| ≤ ε.

Remark 1.48. In combination with Remark 1.18, an ε̄-optimal solution to the infinite di-

mensional linear program can be found as follows. Select l > 0 large enough such that an

ε̄
2
-optimal solution in M l

∞ is a ε̄-optimal solution in M∞. Take ε > 0 and δ > 0 such that
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2ε + δ ≤ ε̄
2
. Use Proposition 1.16 to pick n ∈ N large enough such that an ε̄-optimal solu-

tion in M l
n is a 2ε + δ-optimal solution in M l

∞. Then, find an ε-optimal solution in M l
n

by selecting m large enough such that an optimal solution in M l
n,m is ε-optimal in M l

n, by

Theorem 1.47.

Remark 1.49. Note that an optimal solution (µ∗0,n,km , µ
∗
1,n,km

) ∈M l
n,m does not necessarily

represent a solution to the infinite dimensional linear program, in other words,

(µ∗0,n,km , µ
∗
1,n,km

) /∈ M∞ has to be assumed. This situation is addressed in the following

subsection.

Remark 1.50. In Remarks 1.32 and 1.39 we indicated modification to the analysis needed

to be made to show the convergence for problems that do not feature singular behavior. Using

these modifications, the optimality of the K-reduced, (n,∞)-dimensional linear program can

be shown using the derivations presented. The conclusion of Remark 1.49 holds in this case,

as well.

IV.1.3 Accuracy of Evaluation

Up to this point, we have proven that for any ε > 0 there are n and m large enough, such

that for some pair of measures (µ̂0,n,km , µ̂1,n,km) ∈M l
n,m ⊂M l

n, |J(µ̂0,n,km , µ̂1,n,km)−J∗| ≤ ε,

where J∗ = inf(µ0,µ1)∈M∞ J(µ0, µ1). The measures (µ̂0,n,km , µ̂1,n,km) have a certain structure

due to the fact that they lie in M l
n,m. This structure, in particular, is given by the fact that

the regular conditional probabilities representing the relaxed controls are of the form

η̂0 (V, x) =
2k

(1)
m −1∑
j=0

2k
(2)
m∑

i=0

βj,iIEJ (x)δui(V ) (1.51)

η̂1(V, sj) =

2
(2)
km∑
i=1

ζj,iδui(V ), j = 1, . . . , N (1.52)
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where Ej = [xj, xj+1) for j = 0, 1, . . . 2k
(1)
m −2, and E

2k
(1)−1

= [x
2k

(1)
m −1

, x
2k

(1)
m

], with the choices

of βi,j and ζi,j determined by the usual approximation, see Definitions 1.24 and 1.25. The

parameters k
(1)
m and k

(2)
m stem from the discretization level km ≡ (k

(1)
m , k

(2)
m , k

(3)
m ), where k

(1)
m

and k
(2)
m control the discretization of the relaxed control in E- and U -‘directions’, respectively,

and k
(3)
m controls the discretization of µ0,E, which is the state-space marginal of µ0. While

η̂0 and η̂1 can indeed be implemented into the process which is considered in the stochastic

control problem, the analytic expected occupation measures stemming from this process are

not necessarily identical to (µ̂0,n,km , µ̂1,n,km) for any m. It is consequently of interest to see

how accurately we can approximate the cost criterion of a process that is controlled by η̂0

and η̂1. To this end, we analyze the approximation of the cost criterion value of a process

that is controlled by a fixed pair of controls (η̂0, η̂1) ≡ η. In terms of notation and particular

approximation schemes, we refer back to Section III.1.3.

In the following, we drop the -̂notation for (η0, η1) due to the fact that this analysis is

independent of (η0, η1) being an approximate control or not. However, the marginal µ̂0,E

which is of interest in this subsection will still be an approximation, and the -̂notation is

sustained for µ̂0,E. The dependency on m will not be of specific interest in this section as m

will be fixed, so we also drop the subscript in the subsequent formulas.

It is vital to point out that in absence of a control on the singular behavior, η0 fulfills the

conditions formulated in Section II.2, in particular Remark II.2.1. Hence we assume that

the set M η
∞ contains precisely one pair of measures, referred to as (µ̄0, µ̄1) in the following.

Further, µ̄0 is absolutely continuous with respect to Lebesgue measure.

To start, we have to investigate some regularity properties.

Proposition 1.53. Let η0 be of the form (1.51) and η1 be of the form (1.51). Let A be the

generator of the continuous behavior of X, and B be the generator of the singular behavior
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of X. Then, for f ∈ C2
c (E), c0, c1 ∈ C(E × U), the functions

Āf(x) : x 7→
∫
U

Af(x, u)η0(du, x) c̄0 : x 7→
∫
U

c0(x, u)η0(du, x)

B̄f(x) : x 7→
∫
U

Bf(x, u)η1(du, x) c̄1 : x 7→
∫
U

c1(x, u)η1(du, x)

are bounded and continuous almost everywhere with respect to any measure that is absolutely

continuous with respect to Lebesgue measure.

Proof. By the definition of η0, compare (1.51), x 7→ η0(·, x) ∈ P(U) is piecewise constant,

and for each fixed x, η0(·, x) is a discrete probability measure taking only finitely many values.

Let [xj, xj+1) be an interval of the partition of E such that η0 is constant. If x ∈ [xj, xj+1)

we have that

∫
U

b(x, u)η0(du, x) =
2k

(2)
m∑

i=1

b(x, ui) · βj,i

is continuous, as b is continuous by assumption, and it is also bounded since b is bounded

on [xj, xj+1) ⊂ [xj, xj+1] as a continuous function on a compact set. So,

x 7→
∫
U

b(x, u)η0(du, x)

can be split up over a finite number of intervals [xj, xj+1], j = 0, . . . , 2k
(1) − 1, and on each

of these intervals, it is bounded and continuous. That shows that this function is bounded,

and continuous everywhere but at finitely many points of the state space E. This means

that it is almost everywhere continuous with respect to Lebesgue measure, from which we

can conclude that it is almost everywhere continuous with respect to any measure that is

absolutely continuous with respect to Lebesgue measure. The same analysis can be carried
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out for the maps

x 7→
∫
U

σ2(x, u)η0(du, x), c̄0 : x 7→
∫
U

c0(x, u)η0(du, x) and c̄1 : x 7→
∫
U

c1(x, u)η1(du, x).

This already proves two parts of the claim. For the other two parts, we readily conclude

that the map

x 7→
∫
U

Af(x, u)η0(du, x)

is bounded and almost everywhere continuous. Indeed, since in the case of the long-term

average cost criterion, we have that

∫
U

Af(x, u)η0(du, x) =

∫
U

f ′(x)b(x, u) +
1

2
σ2(x, u)f ′′(x)η0(du, x)

= f ′(x)

∫
U

b(x, u)η0(du, x) +
1

2
f ′′(x)

∫
U

σ2(x, u)η0(du, x)

and f ′ and f ′′ are both bounded and continuous. Similarly, in case of the infinite horizon

discounted cost criterion, we have

∫
U

Af(x, u)η0(du, x) = f ′(x)

∫
U

b(x, u)η0(du, x) +
1

2
f ′′(x)

∫
U

σ2(x, u)η0(du, x)− αf(x)

and the conclusion is the same. The same analysis holds for the generator of the singular

behavior, where B(f, u) = f ′(x) or B(f, u) = f(a)− f(x).

Corollary 1.54. The operators Ā and B̄ defined by

Ā : D∞ 3 f 7→ Āf(x) :=

∫
U

Af(x, u)η0(du, x)

B̄ : D∞ 3 f 7→ B̄f(x) :=

∫
U

Bf(x, u)η1(du, x)

are continuous mappings into the space of bounded functions on E.
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Proof. By Proposition 1.53, we have that Āf and B̄f are indeed bounded functions for

f ∈ D∞. The analysis of Proposition II.1.18 can easily be applied to the given case, proving

the claim.

With these results we can proceed to analyze measure that lie in the setting

M η,l
n = {(µ̄0, µ̄1) ∈M η0,η1

n |µ̄1(E) ≤ l}

as introduced in Section III.1.3. In particular, we want to compare the cost criterion Jn(η)

to the exact cost criterion J̄(η).

Proposition 1.55. Choose l large enough such that µ̄1(E) ≤ l. For n ∈ N, let (µ̄0,n, µ̄1,n) ∈

M η,l
n , and assume that (µ̄0,n, µ̄1,n)⇒ (µ̃0, µ̃1) for some (µ̃0, µ̃1). Then, (µ̃0, µ̃1) = (µ̄0, µ̄1).

Proof. By the uniqueness result, it suffices to show that (µ̃0, µ̃1) ∈ M η
∞. For f ∈ D∞, let

{fk}k∈N be a sequence of functions with fk ∈ Dk such that fk → f in D∞. As we have seen

in Corollary 1.54, Ā and B̄ are continuous operators mapping into the bounded functions,

and we can use the dominated convergence theorem to deduce that

∫
E

Āf(x)µ̄0(dx) +

∫
E

B̄f(x)µ̄1(dx) = lim
k→∞

(∫
E

Āfk(x)µ̄0(dx) +

∫
E

B̄fk(x)µ̄1(dx)

)

By Proposition 1.53, Āf is continuous almost everywhere with respect to µ̄0, and B̄f is

continuous almost everywhere with respect to µ̄1. Hence, by weak convergence (compare

Proposition II.3.3) we have that

lim
k→∞

(∫
E

Āfk(x)µ̄0(dx) +

∫
E

B̄fk(x)µ̄1(dx)

)
= lim

k→∞
lim
n→∞

(∫
E

Āfk(x)µ̄0,n(dx) +

∫
E

B̄fk(x)µ̄1,n(dx)

)
= lim

k→∞
Rfk = Rf

as (µ̄0,n, µ̄1,n) ∈M η,l
n . This proves the claim.
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Corollary 1.56. Choose l large enough such that µ̄1(E) ≤ l. For n ∈ N, let (µ̄0,n, µ̄1,n) ∈

M η,l
n , and assume that (µ̄0,n, µ̄1,n) ⇒ (µ̃0, µ̃1) for some (µ̃0, µ̃1). Then, Jn(η) → J̄(η) as

n→∞.

Proof. By Proposition 1.55, we have that (µ̃0, µ̃1) = (µ̄0, µ̄1). Again using Proposition 1.53,

we can deduce the following statement, which proves the claim.

J̄(η) =

∫
E

c̄0 dµ̄0 +

∫
E

c̄1 dµ̄1

= lim
n→∞

(∫
E

c̄0 dµ̄n,0 +

∫
E

c̄1 dµ̄n,1

)
= lim

n→∞
Jn(η)

The next results considers the situation when the convergence of the sequence (µ̄0, µ̄1) is not

given.

Theorem 1.57. Choose l large enough such that µ̄1(E) ≤ l. For n ∈ N, let (µ̄0,n, µ̄1,n) ∈

M η,l
n . Then, Jn(η)→ J̄(η) as n→∞.

Proof. Assume the contrary. Then there is an ε > 0 such that for all N ∈ N there is an

n ≥ N such that |J̄(η) − Jn(η))| > ε. This allows for the construction of a subsequence

(µ̄0,nk , µ̄1,nk) with

|J̄(η)− Jnk(η)| > ε ∀k ∈ N. (1.58)

Since (µ̄0,nk , µ̄1,nk) is a uniformly bounded sequence of measures over a compact space, and

thus tight, by Theorem II.3.6, there is a weakly convergent sub-subsequence (µ̄nk′ , µ̄1,nk′
)

with (µ̄nk′ , µ̄1,nk′
) ⇒ (µ̄0, µ̄1). From Corollary 1.56 we know that Jnk′ (η) → J̄(η), which

is a contradiction to (1.58). From this contradiction we can conclude that Jn(η) → J̄ as

n→∞.

This result shows that a sequence of measures in M l,η
n give cost criterion values that converge

to the cost criterion value that is actually associated with η. Section III.1.3 show how such
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sequences can be attained by the approximate scheme introduced therein. Note that the

results presented in the current section can be used in two ways. First, they can be used to

set up an approximation scheme that simply evaluates the cost criterion for a given control.

Second, they can be used to check the approximate cost criterion that was obtained by

running a linear optimization with the approximation which was analyzed in Sections IV.1.1

and IV.1.2. This would be done in such a way that the obtained ε-optimal control would be

fixed, and its cost criterion would be evaluated with more basis functions, which means a

finer mesh for the discretization for the discretization of µ̄E is used. As no degrees of freedom

for the controls have to be reserved, this comes at a smaller computational cost, and can

provide a higher accuracy.

IV.2 Infinite Time Horizon Problems with Unbounded

State Space

This section presents a convergence argument for the approximation for models with an

unbounded state space as introduced in Section III.2. As pointed out in Section IV.1, par-

ticularly in Remark 1.50, the analysis carried out therein assures that for every ε > 0, there

is an m large enough such that an optimal solution to the K-reduced-concentrated, (n,m)-

dimensional linear program is an ε-optimal solution to the K-reduced-concentrated, (n,∞)-

dimensional linear program. Further, for every δ > 0 there is an n large enough such that an

ε-optimal solution to the K-reduced-concentrated, (n,∞)-dimensional linear program, is an

ε̂ = 2ε + δ-optimal solution to the K-reduced-concentrated, infinite dimensional linear pro-

gram. Hence it remains to show that an ε̂-optimal solution to the K-reduced-concentrated,

infinite dimensional linear program is an almost optimal solution to the original, infinite-

dimensional linear program with an unbounded state space. This case is addressed in this

section.

The following analysis shows similar features to the proofs seen in Section IV.1, but some
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subtleties have to be discussed due to the fact that we are considering an unbounded state

space. Mainly, we will analyze how the K-reduced linear program relates to the infinite-

dimensional linear program. From there, the desired result is readily concluded from an

argument that connects optimal solutions of the K-reduced linear program to the solutions

of the K-reduced-concentrated linear program.

Recall that we introduced the spaces D([−K,K]) = (C2
c ((−K,K)) , ‖ · ‖D) and D∞(R) =

(C2
c (R) , ‖ · ‖D). Clearly, ∪K∈ND([−K,K]) = D∞(R). Hence, ∩K∈N ˙M∞,[−K,K] = M∞,R

with the notation established in (III.2.4) and (III.2.5). Thus, we first analyze convergent

sequences of measures in ˙M∞,[−K,K].

Lemma 2.1. Let {µK}K∈N be a sequence of measures such that µK ∈ ˙M∞,[−K,K] for all

K ∈ N. Assume that µK ⇒ µ for some µ ∈ P(E × U). Then, µ ∈M∞,R.

Proof. Take f ∈ D∞(R). Then there is a K0 ∈ N such that supp(f) ⊂ [−K,K] for all

K ≥ K0. Also, Af is uniformly continuous and bounded since f , f ′ and f ′′ have compact

support. Hence, by weak convergence of measures,

∫
E×U

Af dµ = lim
K→∞

∫
E×U

Af dµK = lim
K→∞

Rf = Rf.

The investigation of ε-optimal, converging sequences {µεK}K ∈ N is in order. In particular,

a measure µεK is ε-optimal in ˙M∞,[−K,K], or an ε-optimal solution to the K-reduced infinite-

dimensional linear program if

∫
E×U

c0dµ
ε
K −

∫
E×U

c0dµK < ε

holds. Similar definitions hold for the K-reduced-concentrated infinite-dimensional and the

infinite-dimensional linear program. From now on, we have to rely on the assumption that

there exists a µ ∈M∞,R such that
∫
E×U c0 dµ <∞. This immediately ensures the existence
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of an ε-optimal solution in M∞,R with finite costs. As M∞,R ⊂ ˙M∞,[−K,K], we also have that∫
E×U c0 dµK < ∞ for some µK ∈ ˙M∞,[−K,K]. This guarantees the existence of an ε-optimal

solution in M∞,[−K,K] with finite costs.

We need to ensure that a sequence of ε-optimal measures in ˙M∞,[−K,K] is tight. This will

use the fact that c0 is increasing in |x|, as introduced in Definition III.2.2.

Lemma 2.2. For each K ∈ N, assume that µεK ∈ ˙M∞,[−K,K] and that µεK is an ε-optimal

solution to the K-reduced infinite-dimensional linear program. Then, {µεK}K∈N is tight.

Proof. Assume the opposite. Then, there exists a δ > 0 such that for all L ∈ N, there exists

a K ∈ N with µεK
(
[−L,L]C × U

)
≥ δ. Using that c0 is increasing in |x|, choose L large

enough such that c0(x, u) >
(∫

E×U c0 dµ+ ε
)
· 1
δ

for all x ∈ [−L,L]C , uniformly in u, where

µ is the measure in ˙M∞,[−K,K] with finite costs which is assumed to exist. By the hypotheses

that {µεK}K∈N is not tight, and µεK
(
[−L,L]C × U

)
≥ δ, for some K ∈ N,

∫
E×U

c0 dµ
ε
K >

∫
[−L,L]C×U

c0 dµ
ε
K > δ ·

(∫
E×U

c0 dµ+ ε

)
· 1

δ
=

∫
E×U

c0 dµ+ ε,

which is a contradiction since µεK is ε-optimal and µ ∈ ˙M (R).

Remark 2.3. The tightness can also be achieved by introducing the constraint that with

some inf-compact function d,
∫
E×U d(x, u)µ(dx×du) ≤M <∞ has to hold for any measure

in M∞,R, using the same argument as above. This will become relevant in the numerical

example presented in Section V.2.2.

We proceed to investigate the optimality of limits of ε-optimal sequences in ˙M∞,[−K,K].

Lemma 2.4. For each K ∈ N, assume that µεK ∈ ˙M∞,[−K,K] and that µεK is an ε-optimal

solution to the K-reduced infinite-dimensional linear program. Assume that µεK ⇒ µ̂ for

some µ̂ ∈ P(E × U). Then µ̂ is ε-optimal in M∞,R.
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Proof. By Lemma 2.1, µ̂ ∈M∞,R. Now assume that µ̂ would not be ε-optimal. Then, there

exists a µ ∈M∞,R such that

∞ >

∫
E×U

c0 dµ̂ >

∫
E×U

c0 dµ+ ε.

But as
∫
E×U c0 dµ̂ <∞, there is an L1 large enough such that for all L ≥ L1,

∫
E×U

c0 dµ̂ >

∫
[−L,L]×U

c0 dµ̂ >

∫
E×U

c0 dµ+ ε

holds. Find an L ≥ L1 such that c0(x, u) ≥ L1 on [−L,L]C , uniformly in u, which is possible

due to the fact that c0 is increasing in |x|. Define

c̄0(x) =


c0(−L, u) x < −L

c0(x, u) x ∈ [−L,L]

c0(L, u) x > L

.

Observe that c̄0 is continuous and bounded, but also

∫
E×U

c0 dµ̂ ≥
∫
E×U

c̄0 dµ̂ ≥
∫

[−L,L]×U
c0 dµ̂ >

∫
E×U

c0 dµ+ ε (2.5)

holds. Clearly, for any K ∈ N we have that

∫
E×U

c0 dµ
ε
K ≥

∫
E×U

c̄0 dµ
ε
K . (2.6)

On the other hand, by weak convergence, which means that

∫
E×U

c̄0 dµ
ε
K →

∫
E×U

c̄0 dµ̂, and

by (2.5) there is a K large enough such that

∫
E×U

c̄0 dµ
ε
K >

∫
E×U

c0 dµ+ ε.
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Together with (2.6) this contradicts the fact that µεK is ε-optimal, since µ ∈ ˙M∞,[−K,K] for

all K.

Remark 2.7. If c0 is bounded in x, and the tightness of the measures is attained by using

another function d, see Remark 2.3, the construction of the function c̄0 is not needed.

Lemma 2.4 is the counterpart of Lemma 1.10 in Section IV.1.1. It is used to prove the final

statements regarding the K-reduced linear program, given by Lemma 2.8, Proposition 2.9

and Theorem 2.10. The arguments for these three results are identical to those given in the

proofs of Lemma 1.12, Proposition 1.16 and Theorem 1.17. Hence, we only state the results.

Lemma 2.8. For each K ∈ N, assume that µεK ∈ ˙M∞,[−K,K] and that µεK is an ε-optimal

solution to the K-reduced infinite-dimensional linear program. Then, for δ > 0, there is a

z ∈ R and a N(δ) ∈ N such that

J(µεK) ∈
(
z − ε

2
− δ, z +

ε

2
+ δ
)
∀K ≥ N(δ).

Proposition 2.9. Let
[
z − ε

2
, z + ε

2

]
be the interval from Lemma 2.8, and set

J∗ = inf (J(µ) : (µ) ∈M∞,R) .

Then,

z − 3ε

2
≤ J∗ ≤ z +

ε

2
.

Theorem 2.10. For each n ∈ N, assume that µεn ∈ Mn,R and that for n ∈ N, µεn is an

ε-optimal solution for the K-reduced ∞-dimensional problem. Then, for δ > 0, there exists

an N(δ) such that

|J(µεn)− J∗| ≤ 2ε+ δ

for all n ≥ N(δ).
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Theorem 2.10 proves the ε-optimality of the K-reduced infinite-dimensional problem. How-

ever, this includes measures that can have positive mass on any subset in R, and are thus

not computationally attainable. The next results reveal that it suffices to look only for solu-

tions of the K-reduced-concentrated infinite-dimensional linear program, which only includes

measures that have full mass on [−K,K].

Lemma 2.11. Let K be larger than the constant K0 introduced in Definition III.2.3. Let

µK be a measure in ˙M∞,[−K,K] with µK([−K,K]) < 1. Then there exists a measure µ̃K ∈

M∞,[−K,K] with

∫
E×U

c0 dµ̃K ≤
∫
E×U

c0 µK.

Proof. Let τ = µK([−K,K]), and let u− be the function described in Definition III.2.3. By

Theorem II.2.29 in the case of the long-term average cost criterion, and by Theorem II.2.31

in the case of the discounted infinite horizon criterion, take a solution (µ̂0, µ̂1) to the singular

linear program with a bounded state space [−K,K], with x0 = K and reflections at both

end of the state space {−K} and {K}, under a control satisfying η0(u−(x), x) = 1. Then,

for f ∈ D([−K,K]) = (C2((−K,K)), ‖ · ‖D) ⊂ D∞ = (C2([−K,K]), ‖ · ‖D), for either

the long-term average cost criterion (upper row) or the infinite horizon discounted criterion

(lower row), ∫
E×U

Af dµ̂0 =

 −
∫
E×U Bf µ̂1

−αf(K)−
∫
E×U Bf µ̂1

= 0

holds, as the support of f and its derivatives is fully contained in (−K,K). Set µ̃AK = (1−τ)µ̂0

and for F × V ∈ B([−K,K]× U), define µ̃K(F × V ) = µ̃AK(F × V ) + µK(F × V ). Clearly,

µ̃K([−K,K]) = 1 and for f ∈ D([−K,K])

∫
E×U

Af dµ̃K =

∫
E×U

Af µ̃AK +

∫
E×U

Af dµ̂K = 0 +Rf = Rf,
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so µ̃K ∈M∞,[−K,K]. But also,

∫
E×U

c0 dµ̃K =

∫
E×U

c0 dµ̃
A
K +

∫
E×U

c0 dµK

=

∫
[−K,K]×U

c0 dµ̃
A
K +

∫
[−K,K]×U

c0 dµK

≤
∫

[−K,K]×U
sup

{
c0(x, u−(x))|x ∈ [−K,K]

}
dµ̃AK +

∫
[−K,K]×U

c0 dµK

≤ µ̃AK ([−K,K]× U) · inf
{
c0(x, u)|x ∈ [−K,K]C , u ∈ U

}
+

∫
[−K,K]×U

c0 dµK

≤ (1− τ) · inf
{
c0(x, u)|x ∈ [−K,K]C , u ∈ U

}
+

∫
[−K,K]×U

c0 dµK

≤ µK
(
[−K,K]C × U

)
· inf

{
c0(x, u)|x ∈ [−K,K]C , u ∈ U

}
+

∫
[−K,K]×U

c0 dµK

≤
∫

[−K,K]C×U
inf
{
c0(x, u)|x ∈ [−K,K]C , u ∈ U

}
dµK +

∫
[−K,K]×U

c0 dµK

≤
∫

[−K,K]C×U
c0(x, u) dµK +

∫
[−K,K]×U

c0 dµK =

∫
E×U

c0dµK ,

which proves the claim.

Proposition 2.12. An ε-optimal solution µεK ∈ M∞,[−K,K] to the K-reduced-concentrated

infinite dimensional linear program is an ε-optimal solution in ˙M∞,[−K,K], to the K-reduced

infinite dimensional linear program.

Proof. Assume the existence of µK ∈ ˙M∞,[−K,K] with J(µK) < J(µεK) + ε. By Lemma 2.11,

there is a measure µ̃K ∈ M∞,[−K,K] with J(µ̃K) ≤ J(µK). But this contradicts the ε-

optimality of µεK .

By this result, it suffices to solve the K-reduced-concentrated problem ε-optimally. However,

this can be attained using the same approximation technique used for the problems with a

bounded state space. The following theorem summarizes the situation.

Theorem 2.13. For every K > 0, let µεK be a ε-optimal solution to the K-reduced-concentrated

infinite dimensional problem. Then for K large enough, µεK is a 2ε + δ-optimal for the

infinite-dimensional linear program with unbounded state space.
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Numerical Examples

This chapter discusses several stochastic control problems in infinite time and presents

approximate solutions which were obtained with the numerical scheme introduced in Sec-

tion II.4. A variety of different classes of problems is considered. In particular, we consider

models with either bounded or unbounded state space, problems that do or do not feature

costs of control, and problems featuring singular control, given either by an adjustable re-

flection, or a jump of adjustable size.

When analytic solutions are attainable, we analyze the numerical convergence of the approxi-

mation scheme. In other cases we limit the considerations to parameter sweeps, investigating

how different parameter choices influence the performance of the numerical scheme, and the

approximate solution to the various problems.

V.1 Infinite Time Horizon Problems with Bounded

State Space

This section will present results using the presented approximation technique on stochastic

control problems that feature a bounded state space. Analytic solutions are available for

selected problems. This allows for a numerical analysis of the convergence. To this end, we

frequently consider varying levels of discretization. We adopt the notion of the discretiza-

tion level k ≡ (k(1), k(2), k(3), k(4)) in its enhanced version as introduced in Section III.1.4.

Frequently, we will consider
(
k(1), k(2), k(3)

)
and k(4) separately, since the earlier parameters
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represent the degrees of freedom, and the later parameter represents the number of con-

straints.

The models regarded in this section embrace the control of a Brownian motion process, with-

out (Section V.1.1) or with (Section V.1.2) costs of control, the ‘classic’ modified bounded

follower problem (Section V.1.3) and a modification thereof featuring a variable jump size

(Section V.1.4). Further, an example featuring Stochastic Logistic Growth and singular

control is presented (Section V.1.5).

V.1.1 The Simple Particle Problem without Cost of Control

Starting with a first simple example, consider a stochastic control problem with state space

E = [−1, 1] and control space U = [−1, 1], such that the process is governed by the SDE

Xt = x0 +

∫ t

0

u(Xs)ds+ σWt + ξt, (1.1)

where ξt is a process capturing the singular behavior of X, given by a reflection at both

boundaries of E. In other words, we have that ξt = LX{−1}−LX{1} where LX{a} is the local time

of X at a ∈ E. We adopt the long-term average cost criterion

J ≡ lim sup
t→∞

1

t
E
[∫ t

0

c0(Xs, us) ds+

∫ t

0

c1(Xs, us) dξs

]

with cost functions given by c0(x, u) = x2 and c1(x, u) ≡ c1 for some c1 ∈ R. Note that there

is no control of the singular behavior, so the optimal control problem posed by this set-up

only deals with finding the relaxed control of the continuous part. We can readily convince

ourselves that with the given cost structure, the optimal control is given by a bang-bang

control. To be precise, for every x ∈ E, the optimal control η∗0(·, x) has to be a degenerate

probability distribution putting full mass on the values {−1, 0, 1} as specified in Table V.1.

Hence it can be described by a deterministic function u : E 7→ U . Note that the value

for x = 0 can technically be chosen arbitrarily, since the continuous expected occupation
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u −1 ≤ x < 0 x = 0 0 < x ≤ 1

1 1 0 0

0 0 1 0

−1 0 0 1

Table V.1: Probabilities for optimal control, simple particle problem without costs of control

measure µ0 does not put mass on this point.

An analytic treatment of this problem can be found in Appendix C.1. In particular, it is

shown that for an arbitrary constant −1 ≤ c2 ≤ 1,

p(x) =
e
∫ x
c2

2
σ2 u(v)dv∫ 1

−1
e
∫ w
c2

2
σ2 u(v)dv

dw
. (1.2)

is the density function of the state space marginal of µ0 under the control that is specified

in Table V.1.

The results of an sample computation are shown in Figures V.1 and V.2. The first figure

shows a visualization of the relaxed control, the second figure shows the approximate state

space density, which is the density of the state space marginal µ̂0,E. Figure V.1 has to be

understood as follows. The x-axis, labeled ‘state space’ specifies the state the process is

in. The y-axis, labeled ‘control space’ specifies the control value from the given discrete set

approximating the control space, in this case, {−1, 0, 1}. The z-axis, labeled ‘probability’

gives the probability that the specified control is chosen when the process is in state x, in

other words, the z-axis gives η̂0({y}, x). The red dots indicate the mesh points of the state

space E. These are the points where the control can change its behavior, and the solid black

lines in between the red dots indicate that the control is constant along the x-axis until it

hits the next red dot. In Figure V.2, the actual state space density (1.2) was omitted from

the plot since it would be barely distinguishable from the approximate density.

The parameter configuration for the SDE in this computation is displayed on the left in

Table V.2. The choice of the starting point x0 is irrelevant for the long-term average criterion,
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but is given for the sake of completeness. The discretization level of this computation was(
k(1), k(2), k(3)

)
= (2, 1, 10) and k(4) = 10. Recall that n, the number of constraint functions,

equals n = 2k
(4)

+ 2, by the meshing approach presented in Section III.1.4. The right part of

Table V.2 shows the results of a computation with this particular configuration. It displays

the analytic values v, the approximate values v̂, the absolute error ea and the relative error

er of the objective function J and the reflection weights w1 and w2, respectively. The last

column gives the L1-error for the state space density.

10
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Figure V.1: Computed control, simple par-
ticle problem without costs of control
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Figure V.2: State space density, simple
particle problem without costs of control

parameter value

x0 0.1

σ
√

2/2

c1 0.01

J w1 w2 ‖p− p̂‖L1

v 9.7201 · 10−2 9.3287 · 10−3 3.882878 · 10−3 9.3287 · 10−3

v̂ 9.7202 · 10−2 9.2926 · 10−3 9.3651 · 10−3 −

ea 1.5036 · 10−6 3.612 · 10−5 3.6409 · 10−5 −

er 1.5468 · 10−6 3.872 · 10−5 3.9029 · 10−5 −

Table V.2: Parameter configuration (left), results and errors (right), simple particle problem
without costs of control

Since an analytic solution to the problem is known, we illustrate the numerical performance

of the proposed approximate scheme in two ways. First, we investigate the various er-

rors, as seen in the right part of Table V.2, for increasing discretization levels, starting at(
k(1), k(2), k(3)

)
= (3, 1, 3) and k(4) = 3 and going up to

(
k(1), k(2), k(3)

)
= (12, 1, 12) and
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k(4) = 12. Second, we fix k(1) = 2, k(3) = k(4) = 10 and analyze the performance of the

algorithm from k(2) = 1 to k(2) = 8.

In the first case, the fact that k(2) remains fixed means we assert that the optimal control has

to have bang-bang form. Increasing k(3) introduces a higher accuracy for the computation,

while increasing k(1) tests how well the solver finds the optimal control, which switches from

1 to −1 at x = 0, even when more choices of ‘switching points’ are available. The compu-

tations were conducted for two different meshing approaches. First, we use a mesh for the

density p̂ of the continuous expected occupation measure given by 2k
(3)

+1 mesh points. The

results are displayed in Tables V.3 and V.4. Then, we use a mesh that adds in one additional

mesh point, see Remark III.1.33. These results are displayed in Tables V.5 and V.6.

k(4)
(
k(1), k(2), k(3)

)
T J ea er eL1

v - - 0.09720 - - -

3 (3, 1, 3) 0.0135 0.12136 2.4156 · 10−2 2.4852 · 10−1 4.0328 · 10−1

4 (4, 1, 4) 0.0094 0.10333 6.1245 · 10−3 6.3009 · 10−2 2.2326 · 10−1

5 (5, 1, 5) 0.0101 0.09874 1.5374 · 10−3 1.5817 · 10−2 1.1775 · 10−1

6 (6, 1, 6) 0.0121 0.09759 3.8477 · 10−4 3.9585 · 10−3 6.0509 · 10−2

7 (7, 1, 7) 0.0184 0.09730 9.6218 · 10−5 9.8989 · 10−4 3.0678 · 10−2

8 (8, 1, 8) 0.0421 0.09722 2.4056 · 10−5 2.4749 · 10−4 1.5445 · 10−2

9 (9, 1, 9) 0.1197 0.09721 6.0141 · 10−6 6.1873 · 10−5 7.7512 · 10−3

10 (10, 1, 10) 0.4164 0.09720 1.5035 · 10−6 1.5468 · 10−5 3.8811 · 10−3

11 (11, 1, 11) 1.5987 0.09720 3.7588 · 10−7 3.8671 · 10−6 1.9436 · 10−3

12 (12, 1, 12) 7.7851 0.09720 9.3977 · 10−8 9.6684 · 10−7 9.7091 · 10−4

Table V.3: Results for optimality criterion and density, simple particle problem without
costs of control, varying discretization levels, no extra mesh point

In Tables V.3 and V.5, respectively, we show the approximate value of the cost criterion

J , its absolute and relative errors ea and er as well as the error of the density in L1-norm,

denoted eL1 . T is the execution time in seconds, which is an average time taken from 1000

repetitions of the same program run. In Tables V.4 and V.6, respectively, we display the
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k(4) w1 ea er w2 ea er

v 0.0093 - - 0.0093 - -

3 0.0170 7.6660 · 10−3 8.2176 · 10−1 0.0063 3.0675 · 10−3 3.2882 · 10−1

4 0.0123 3.0036 · 10−3 3.2198 · 10−1 0.0075 1.8304 · 10−3 1.9621 · 10−1

5 0.0106 1.3201 · 10−3 1.4151 · 10−1 0.0083 1.0252 · 10−3 1.0990 · 10−1

6 0.0088 5.4484 · 10−4 5.8404 · 10−2 0.0099 6.1868 · 10−4 6.6320 · 10−2

7 0.0090 2.8107 · 10−4 3.0130 · 10−2 0.0096 2.9954 · 10−4 3.2110 · 10−2

8 0.0095 1.4739 · 10−4 1.5800 · 10−2 0.0092 1.4277 · 10−4 1.5305 · 10−2

9 0.0093 7.1954 · 10−5 7.7132 · 10−3 0.0094 7.3109 · 10−5 7.8370 · 10−3

10 0.0094 3.6409 · 10−5 3.9029 · 10−3 0.0093 3.6120 · 10−5 3.8720 · 10−3

11 0.0093 1.8096 · 10−5 1.9398 · 10−3 0.0093 1.8168 · 10−5 1.9476 · 10−3

12 0.0093 9.0751 · 10−6 9.7282 · 10−4 0.0093 9.0570 · 10−6 9.7088 · 10−4

Table V.4: Results for weights of singular occupation measure, simple particle problem
without costs of control, varying discretization levels, no extra mesh point

weights w1 = µ̂1,n,m({el}) and w2 = µ̂1,n,m({er}) of the singular expected occupation measure

on the left and right boundary, respectively, with their absolute and relative errors ea and er.

In all tables, the first rows display the exact values v of the quantities under consideration.

Tables V.3 and V.4 show a strong performance of the numerical method, with relative errors

in the cost criterion being as low as 9.6684 · 10−7 for the highest discretization level, for

a rather short computation time. However, note that the computation time drastically

increases between k(4) = 11 and k(4) = 12, which could indicate that the method becomes

increasingly ill-conditioned. However, the L1-error of the density and the computed values

for w1 and w2 continue to show good convergence.

The introduction of an additional mesh point allows for a dramatic increase in accuracy,

as Tables V.5 and V.6 reveal. The absolute error for the cost criterion is brought down to

3.0321 · 10−12 for the discretization level with k(4) = 12, with the machine accuracy of the

utilized computer sitting at 2.2204 · 10−16. This comparatively stronger performance can

also be observed in the error measures for w1 and w2. However, the L1-error of the density
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k(4)
(
k(1), k(2), k(3)

)
T J ea er eL1

v - - 0.09720 - - -

3 (3, 1, 3) 0.0086 0.09762 4.2414 · 10−4 4.3635 · 10−3 2.5784 · 10−1

4 (4, 1, 4) 0.0087 0.09723 3.4260 · 10−5 3.5247 · 10−4 1.2168 · 10−1

5 (5, 1, 5) 0.0096 0.09720 2.3294 · 10−6 2.3964 · 10−5 6.1183 · 10−2

6 (6, 1, 6) 0.0115 0.09720 1.5012 · 10−7 1.5444 · 10−6 3.0887 · 10−2

7 (7, 1, 7) 0.0180 0.09720 9.5006 · 10−9 9.7742 · 10−8 1.5538 · 10−2

8 (8, 1, 8) 0.0412 0.09720 5.9711 · 10−10 6.1431 · 10−9 7.7950 · 10−3

9 (9, 1, 9) 0.1199 0.09720 3.7450 · 10−11 3.8529 · 10−10 3.9042 · 10−3

10 (10, 1, 10) 0.4134 0.09720 2.6571 · 10−12 2.7336 · 10−11 1.9538 · 10−3

11 (11, 1, 11) 1.5820 0.09720 9.1287 · 10−13 9.3916 · 10−12 9.7734 · 10−4

12 (12, 1, 12) 6.4320 0.09720 3.0321 · 10−12 3.1194 · 10−11 4.8878 · 10−4

Table V.5: Results for optimality criterion and density, simple particle problem without
costs of control, varying discretization levels, one additional mesh point

remains on the same level. The cause of this strong convergence is not known to the author,

and the given example of the simple particle problem remains the only example dealt with

in this thesis which benefits from the introduction of an additional mesh point in such a

drastic way. In both cases, with or without an additional mesh point, the constraint matrix

was checked and indeed had full rank, compare Remark IV.1.34. Thus, this example fulfills

the assumptions of the convergence theory of Section III.2, and we can only conjecture that

this phenomenon hints at the effectiveness of adaptive meshing approaches, which lie beyond

the scope of this thesis. The reason for this conjecture is that the additional mesh point was

introduced into the first interval right of the middle of the state space, where the density

decreases rapidly, and it is believed that the accuracy benefits the most when an additional

mesh point is introduced in this area.

With the second example, where we fix k(1) = 2, k(3) = k(4) = 10 and vary k(2) = 1 to

k(2) = 8, we can investigate how well the numerical scheme performs when the assumption

that the optimal control is of bang-bang type is dropped. In other words, we assume no
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k(4) w1 ea er w2 ea er

v 0.0093 - - 0.0093 - -

3 0.0098 4.6337 · 10−4 4.9671 · 10−2 0.0086 7.4802 · 10−4 8.0185 · 10−2

4 0.0095 1.7265 · 10−4 1.8508 · 10−2 0.0091 1.9565 · 10−4 2.0973 · 10−2

5 0.0094 4.7030 · 10−5 5.0415 · 10−3 0.0093 4.8593 · 10−5 5.2090 · 10−3

6 0.0093 1.2005 · 10−5 1.2869 · 10−3 0.0093 1.2106 · 10−5 1.2977 · 10−3

7 0.0093 3.0168 · 10−6 3.2339 · 10−4 0.0093 3.0232 · 10−6 3.2408 · 10−4

8 0.0093 7.5518 · 10−7 8.0952 · 10−5 0.0093 7.5558 · 10−7 8.0995 · 10−5

9 0.0093 1.8886 · 10−7 2.0245 · 10−5 0.0093 1.8888 · 10−7 2.0247 · 10−5

10 0.0093 4.7218 · 10−8 5.0616 · 10−6 0.0093 4.7219 · 10−8 5.0617 · 10−6

11 0.0093 1.1805 · 10−8 1.2655 · 10−6 0.0093 1.1805 · 10−8 1.2654 · 10−6

12 0.0093 2.9517 · 10−9 3.1642 · 10−7 0.0093 2.9506 · 10−9 3.1630 · 10−7

Table V.6: Results for weights of singular occupation measure, simple particle problem
without costs of control, varying discretization levels, one additional mesh point

a priori knowledge on the control and see if the scheme still picks the optimal bang-bang

control as a result. Table V.7 shows the execution time T in seconds, averaged over 1000

executions and the computed value for the cost criterion for varying k(2). For the displayed

computation runs, we did not introduce an additional mesh point to the mesh. Naturally,

the computing time increases as the number of unknowns increases with k(2), recalling that

we consider 2k
(2)

+ 1 possible control values. The computed cost function value remains

identical, as (thereby) does the absolute error ea. For any discretization level, the switching

point of the control was located at x = 0.5, hence the computed optimal controls were

indeed the analytic optimal controls, showing that the numerical scheme works well even

when operating on fewer a priori assumptions.

V.1.2 The Simple Particle Problem with Cost of Control

We investigate how introducing costs of control influences the solution of a stochastic control

problem. We consider the process and its configuration from Section V.1.1, but use the cost
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k(2) T J ea

1 1.6379 9.7202036596 · 10−2 1.503538 · 10−6

2 2.7625 9.7202036596 · 10−2 1.503538 · 10−6

3 4.8887 9.7202036596 · 10−2 1.503538 · 10−6

4 8.8061 9.7202036596 · 10−2 1.503538 · 10−6

5 14.8037 9.7202036596 · 10−2 1.503538 · 10−6

6 29.267 9.7202036596 · 10−2 1.503538 · 10−6

7 58.7547 9.7202036596 · 10−2 1.503538 · 10−6

8 115.2589 9.7202036596 · 10−2 1.503538 · 10−6

Table V.7: Results, simple particle problem without costs of control, increasing number of
control values

function c0(x, u) = x2 + u2. In other words, we will be ‘charged’ for using the control,

and the optimal control is not of bang-bang type any longer. The cost of the reflections

are still constant, with c1(x, u) ≡ c. Following Example III.1.7, we have to choose k(2) =

m + 3 in order to have a sufficiently good approximation of the cost criterion. The highest

discretization to produce results in reasonable time was
(
k(1), k(2), k(3)

)
= (7, 10, 7) and

k(4) = 7, which results in n = 2k
(4)

+ 2 constraint functions. In order to increase accuracy of

the evaluation, a two-step approach was utilized. First, the optimization problem was solved

using (k
(1)
1 , k

(2)
1 , k

(3)
1 ) = (7, 10, 7) and k

(4)
1 = 7 (referred to as discretization level k1 in the

following). Then, the resulting control was fixed and the cost criterion was evaluated with

the discretization level (k
(1)
2 , k

(2)
2 , k

(3)
2 ) = (7, 10, 10) and k

(4)
2 = 10 (referred to as discretization

level k2 in the following), according to the evaluation of cost criteria for fixed controls as

discussed in Sections III.1.3 and IV.1.3.

No analytic solution of this problem is known to the author, and we thus restrict ourselves

to investigating the behavior of the optimal control under varying costs for the reflection, c.

The following plots show the control at discretization level k1 and the state space density

at discretization level k2. For the sake of readability, we have chosen not to display the

full relaxed control but the average control. That is, for each point x ∈ E we display
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∫
U
u η0(du, x). Since the resulting controls all turned out to be deterministic controls, up to

some numerical noise, this reduction can be justified. Figure V.3 shows the average of the
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Figure V.3: Computed control, simple par-
ticle problem with costs of control, c =
0.01
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Figure V.4: State space density, simple
particle problem with costs of control, c =
0.01

optimal control for c = 0.01. This is a rather mild penalty for the reflection, compared to

the costs induced by the control, which exceed 0.01 as soon as u > 0.1. This explains the

particular shape of the approximate optimal control. If the process is close to the boundary

at −1 or 1, it is more efficient to let the process reflect back to the origin than to pay for

a high control value pushing the process back to the origin. The state space density of

this computation is shown in Figure V.4, showing a fairly ‘wide’ distribution of its mass

over the interval [−1, 1]. Using the discretization level k2, the value of the cost criterion

is approximated by J = 0.30259. Figures V.5 and V.6 show the optimal control and state

space density for c = 1. Note that with this higher penalty for reflection, the control is

used more heavily, as its costs are considerably less than the costs inflicted by the reflection.

This results in the state space density being more concentrated around the origin. For the

discretization level k2, the value of the cost criterion was J = 0.42746. To show an extreme

case, consider the results for c = 6 as displayed in Figures V.7 and V.8. In the outer parts

of the state space, the control is at the maximal allowed value, 1 or −1, respectively, since

the costs caused by a reflection would be significantly higher than the costs caused by using
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Figure V.5: Computed control, simple par-
ticle problem with costs of control, c = 1
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Figure V.6: State space density, simple
particle problem with costs of control, c =
1

the control. Close to the origin, it is prudent to make less use of the control. Again, the

state space density was concentrated even more around the origin. The approximate value

for the cost criterion at discretization level k2 is given by J = 0.66403.

V.1.3 The Modified Bounded Follower

The model considered in this section is a variation of the so-called bounded follower problem,

as analyzed in Benes et al. (1980). The classic bounded follower problem comes from the idea

of imitating a Brownian motion process with a finite variation process. This finite variation

process is represented by an integral over the control process, and is of such a type that it

can only make bounded increments, corresponding to the boundedness of the control space.

This type of problem would be fairly similar to that presented in Section V.1.1. However,

Helmes and Stockbridge (2008) introduced a modified version of this problem that features

singular behavior and a bounded state space. This problem has a state space of E = [0, 1].

The process is reflected at the left endpoint of the state space, {0}, and performs a jump

from {1} to {0}. The control space is given U = [−1, 1] and the process is governed by the
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Figure V.8: State space density, simple
particle problem with costs of control, c =
6

SDE

Xt = x0 +

∫ t

0

u(Xs)ds+ σWt + ξt.

Again we adopt the long-term average cost criterion

J ≡ lim sup
t→∞

1

t
E
[∫ t

0

c0(Xs, us) ds+

∫ t

0

c1(Xs, us) dξs

]
.

Hence the starting value x0 can be chosen arbitrarily to lie in E, with no influence on the

results. ξt captures the singular behavior of the process given by the reflection and the jump

part. In terms of imitating the Brownian motion process Wt, we must again find a control

that keeps Xt close to the origin. The continuous cost function is set to c0(x, u) = x2. A jump

cost is introduced by c1(x, u) = cI{1}(x) for some c ∈ R≥0, if x = er. The given dynamics

and cost structure suggest an optimal control as follows. In the vicinity of the origin, it is

best to push the process to the left by setting u = −1. To the right of some ‘switching point’

a however, it is reasonable to push to the right to make use of the jump behavior, which

takes the process back to the origin immediately, while accepting the penalty of c triggered

by a jump. As no costs are charged for using the control, the optimal control is a bang-bang
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control of the form

ua(x) =

 −1 x < a

+1 x ≥ a

where the ‘switching point’ a depends on the coefficients of the SDE. This allows us to

consider only two mesh points in U , given by −1 and 1, in the subsequent calculations.

For a derivation of the analytic solution, we refer the reader to Appendix C.2. In there,

it is also illustrated how a closed form of the optimality criterion, depending on a, can be

attained. Numerically optimizing the criterion with respect to a then gives a value for the

optimal ‘switching point’, as used in the following. The state space density under the optimal

control is given by

pa(x) =

∫ 1

x
exp

(∫ y
x
− 2
σ2ua(z) dz

)
dy∫ 1

0

∫ 1

x
exp

(∫ y
x
− 2
σ2ua(z) dz

)
dy dx

. (1.3)

We again proceed with analyzing the performance of the proposed numerical method for this

example. Table V.8 shows the configuration of the problem which was solved. For this par-

ticular configuration, the switching point a is located at a = 0.7512. For this configuration,

x0 σ c

0.1
√

2 0.01

Table V.8: Configuration, modified bounded follower problem

Figure V.9 shows the computed relaxed control for k(4) = 4 and
(
k(1), k(2), k(3)

)
= (4, 0, 4).

The x-axis, labeled ‘state space’ specifies the state where the process is in. The y-axis,

labeled ‘control space’ specifies the control value from the given discrete set approximating

the control space, in this case, {−1, 0, 1}. The z-axis, labeled ‘probability’ gives the prob-

ability that the specified control is chosen when the process is in state x, in other words,

the z-axis gives η̂0({y}, x). The red dots indicate the mesh points of the state space E.

These are the points where the control can change its behavior, and the solid black lines

in between indicate that the control is constant along the x-axis until it hits the next red

dot. The switching point, where the control would switch from −1 to +1 is clearly visible.
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Figure V.10 show the analytic solution of the state space density in red, and the approximate

solution in blue. The approximate state space density clearly shows the features inherited

from the piecewise constant basis functions. Its irregular pattern is due to the fact that

we introduced an additional mesh point for the piecewise constant basis functions in the

middle of the state space. Figure V.11 shows the computed relaxed control for k(4) = 10
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Figure V.9: Computed optimal control,
modified bounded follower, coarse grid
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Figure V.10: State space density, modified
bounded follower, coarse grid

10
1 0.75

0.5

pr
ob

ab
ili

ty

0.5

state spacecontrol space

0.50

1

0.25-0.5
0-1

Figure V.11: Computed control, modified
bounded follower, fine grid
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bounded follower, fine grid

and
(
k(1), k(2), k(3)

)
= (10, 0, 10). Due to the high number of mesh points in U , the solid

black lines between the red dots are not visible. Figure V.12 shows the state space density

for this discretization level. The exact solution could not be visually distinguished from the
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approximate solution and is thus omitted from the diagram. Note the change from a convex

function to a concave function around the switching point a = 0.7512, and the fact that

the density goes to zero approaching the right endpoint of the state space. The change in

convexity can be explained by the fact that the drift of the process is changing, and together

with the fact that the jump works like a ‘sink’ for the process, this explains why the density

has to go to zero when approaching 1.

To analyze the convergence, the optimization was run with different discretization levels.

k(4)
(
k(1), k(2), k(3)

)
T J ea er eL1

v - - 0.1540 - - -

3 (3, 0, 3) 0.0089 0.15400 9.7980 · 10−6 6.3629 · 10−5 9.0822 · 10−2

4 (4, 0, 4) 0.0091 0.15399 1.1993 · 10−6 7.7885 · 10−6 4.5628 · 10−2

5 (5, 0, 5) 0.0101 0.15399 5.4468 · 10−7 3.5372 · 10−6 2.2874 · 10−2

6 (6, 0, 6) 0.0124 0.15399 4.8085 · 10−7 3.1227 · 10−6 1.1452 · 10−2

7 (7, 0, 7) 0.0173 0.15399 4.7132 · 10−7 3.0608 · 10−6 5.7302 · 10−3

8 (8, 0, 8) 0.0338 0.15399 4.6935 · 10−7 3.0480 · 10−6 2.8661 · 10−3

9 (9, 0, 9) 0.0844 0.15399 3.3062 · 10−7 2.1471 · 10−6 1.4511 · 10−3

10 (10, 0, 10) 0.2754 0.15399 2.6546 · 10−7 1.7239 · 10−6 7.2582 · 10−4

11 (11, 0, 11) 0.9586 0.15399 3.5500 · 10−7 2.3054 · 10−6 4.5089 · 10−4

Table V.9: Results (1), modified bounded follower, varying discretization levels

Tables V.9 and V.10 show the results and performance measures for various discretization lev-

els k(4) and
(
k(1), k(2), k(3)

)
. Recall that n, the number of constraint functions, is n = 2k

(4)
+2.

We also introduced an additional mesh point in the middle of the state space in an attempt

to increase accuracy, compare Remark III.1.33. In contrast to the results from Section V.1.1,

the introduction of an additional mesh point does not improve the error measure by several

orders of magnitude. Therefore, a separate consideration of the results with and without an

additional mesh point is omitted. However, numerical artifacts in the solution, that would

appear when no additional mesh point was introduced, could be eliminated.
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Table V.9 shows the approximate value of the cost criterion J , its absolute and relative

errors ea and er as well as the error of the density in L1-norm, denoted eL1 . T is the exe-

cution time, which is an average time taken from 1000 executions of the same program run.

Table V.10 displays the weights ŵ1 = µ̂1,n,m({el}) and ŵ2 = µ̂1,n,m({er}) of the singular ex-

pected occupation measure on the left and right boundary, respectively, with their absolute

and relative errors ea and er. In both tables, the first rows display the exact values v of

the quantities under consideration. Note that the method produces already fairly accurate

k(4) w1 ea er w2 ea er

v 2.4659 - - 1.5555 - -

3 2.4667 7.8873 · 10−4 3.1986 · 10−4 1.5577 2.1566 · 10−3 1.3865 · 10−3

4 2.4661 1.9843 · 10−4 8.0471 · 10−5 1.5560 5.4136 · 10−4 3.4803 · 10−4

5 2.4659 4.9692 · 10−5 2.0152 · 10−5 1.5556 1.3548 · 10−4 8.7099 · 10−5

6 2.4659 1.2428 · 10−5 5.0401 · 10−6 1.5555 3.3880 · 10−5 2.1781 · 10−5

7 2.4659 3.1074 · 10−6 1.2601 · 10−6 1.5555 8.4705 · 10−6 5.4455 · 10−6

8 2.4659 7.7684 · 10−7 3.1503 · 10−7 1.5555 2.1178 · 10−6 1.3615 · 10−6

9 2.4650 8.5772 · 10−4 3.4783 · 10−4 1.5532 2.3313 · 10−3 1.4987 · 10−3

10 2.4655 4.2860 · 10−4 1.7381 · 10−4 1.5543 1.1666 · 10−3 7.4998 · 10−4

11 2.4631 2.8329 · 10−3 1.1488 · 10−3 1.5543 1.1649 · 10−3 7.4887 · 10−4

Table V.10: Results (2), modified bounded follower, varying discretization levels

approximations in almost negligible time for k(4) = 5 or k(4) = 6. The over-proportional

increase in computing time for higher discretization levels k(4) = 10 and k(4) = 11 is due

to longer execution time of the linear program solver (and not to the time needed setting

up the coefficient matrix), and might indicate that the problem is becoming ill-conditioned.

For k(4) = 12 and
(
k(1), k(2), k(3)

)
= (12, 0, 12), no reliable solution could be produced. In

this case, the linear programming solver could find no point satisfying the constraints, which

could be circumvented by increasing the degrees of freedom given by
(
k(1), k(2), k(3)

)
without

increasing the number of constraints determined by k(4). However, this did not show better
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performance than the presented cases. The absolute error for k(4) = 11 is on comparable

level to results obtained in Rus (2009). Both the error of the cost criterion value and the

L1-error of the state space density are steadily decreasing. Even though the computing

times obtained here cannot be compared directly to the ones presented in Rus (2009), it is

worth mentioning that the drastic speed up is in part related to the fact that the approxi-

mation used here preserves the linear structure of the problem, while Rus’ method loses this

structure, requiring more complicated optimization approaches. The inferior approximation

quality at k(4) = 11 compared to k(4) = 10 is believed to be due to the method becoming

ill-conditioned. Considering the weights of the singular expected occupation measure, this

seems to have a negative effect on the results starting from k(4) = 8.

To further analyze the model of the modified bounded follower, we change the cost of the

jump and compare cost criteria and switching points. All of the following calculations are

conducted with
(
k(1), k(2), k(3)

)
= (11, 0, 11) and k(4) = 11. Table V.11 shows the results of

these computations. It displays the cost of the jump c, the computed optimality criterion

J , the optimal switching point a and w1 and w2, the weights on the reflection and jump,

respectively. Naturally, the jump is used most extensively if it is free of costs, and hence the

smallest switching point a is at 0.7070, when c = 0. This means that early on, the control

pushes the process to the right to make use of the jump behavior. Increasing the jump costs

leads to a larger switching point, which leads to a lower weight on the jump as well as a

lower weight on the reflection, since the process spends more time in the interior of the state

space. Naturally, the cost criterion increases with higher jump costs. For c = 0.8, it is not

feasible to use the jump anymore, and the optimal control is constant at u = −1 throughout

the state space.

Next, we introduce a cost for the reflection. The cost structure is hence given by c1(x, u) =

c(r)I{0}(x) + c(j)I{1}(x). This will alter the optimal control in such a way that depending on
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c(j) J a w1 w2

0 0.13817539704 0.7070 2.4841563111 1.6103053631

0.005 0.14615078462 0.7295 2.4743796941 1.5808085514

0.01 0.15398628449 0.7510 2.4649420981 1.5543338789

0.015 0.16169543646 0.7720 2.4555254491 1.5301491200

0.02 0.16169543646 0.7920 2.4471522640 1.5086852357

0.03 0.18418365489 0.8311 2.4311425436 1.4714530533

0.04 0.19874734491 0.8677 2.4174958174 1.4424059030

0.05 0.21305444916 0.9028 2.4065144750 1.4202163206

0.06 0.22717203551 0.9370 2.3982607443 1.4044204069

0.07 0.24116431693 0.9697 2.3932170306 1.3951440719

0.075 0.24813341509 0.9863 2.3918918256 1.3928225298

0.08 0.25509535018 1 2.3915311561 1.3922114438

Table V.11: Results, modified bounded follower, varying jump costs

the reflection costs c(r), the control will try to keep X away from the origin, but in its vicinity.

For the subsequent computations, we use a discretization level of
(
k(1), k(2), k(3)

)
= (11, 0, 11)

and k(4) = 11, with an additional mesh point, and fix the cost of the jump to c(j) = 0.01.

Figure V.13 and Figure V.14 show the optimal control and the state space density for a

reflection cost of c(r) = 0.06. We can clearly see two points where the behavior of the control

changes. First, from 0 to a point referred to as a1 in the following (approximately at 0.2),

it pushes the process away from the origin to avoid the costs associated with a reflection.

After this point is crossed, the control pushes the process in the direction of the origin to

avoid costs induced by the continuous cost function c0(x, u) = x2. As soon as the process

crosses a second switching point, from here on referred to as a2 (approximately at 0.8), the

process is being pushed to the right endpoint of the state space, in order to benefit from the

immediate jump back to the origin.

The state space density, on the one hand, shows the features we observed in the case with

no reflection costs, with a change in convexity as soon as the second switching point a2 is
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Figure V.14: State space density, modified
bounded follower, with costs of reflection

crossed. Furthermore, we can identify the mode of the distribution close to the first switching

point a1, which underlines that the optimal controls try to keep the process far enough away

from the origin, to avoid costly reflections, but in an area where the costs accrued by the

continuous control c0(x, u) = x2 are also not too high.

Table V.12 shows the results for several computations where the reflection costs c(r) vary and

the jump costs remain fixed at c(j). It displays the cost of the reflection c(r), the computed

optimality criterion J , the optimal switching points a1 (from u = 1 to u = −1) and a2 (from

u = 1 to u = −1) as well as w1 and w2, the weights on the reflection and jump, respectively.

Evidently, the first switching point a1 is zero when no costs are charged for a reflection.

With higher costs for the reflection, the switching point a1 then increases up to 0.335, at

a reflection cost of c(r) = 0.16. For this cost, the second switching point a2 is at 1, which

is due to the fact that the reflection is now so expensive, that a jump to the origin and

the reflection that happens immediately afterwards are too costly compared to the lower

costs one faces when the process is close to the origin. Again, and not surprisingly, the cost

criterion increases with higher costs of the reflection.
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c(r) J a1 a2 w1 w2

0 0.15398626456 0 0.7510 2.4654719566 1.5543336778

0.02 0.19872591568 0.09766 0.7817 2.0723547958 1.5510431053

0.04 0.23824187369 0.1606 0.812 1.8968174008 1.5672960913

0.06 0.27505860018 0.2075 0.8433 1.7933796723 1.5843270386

0.08 0.31019724306 0.2441 0.8755 1.7252930125 1.5996596944

0.1 0.34419475360 0.2739 0.9087 1.6772735162 1.6144085540

0.12 0.37738203781 0.2983 0.9429 1.6429692772 1.6298117173

0.14 0.40999172579 0.3184 0.9775 1.6192383628 1.6478312950

0.16 0.44220948561 0.3354 1 1.6036249672 1.6709903450

Table V.12: Results, modified bounded follower, varying reflection costs

V.1.4 The Modified Bounded Follower with Variable Jump Size

In this section we investigate the performance of the proposed numerical scheme on a control

problem which features a variable jump size, in other words, not only the continuous, but

also the singular behavior of the process can be controlled. An adaption of the modified

bounded Follower as presented in Section V.1.3 serves as an example. The size of the jump

from the right endpoint of the state space is no longer fixed to be constant 1, but can range

between 0 and 1 depending on the control input. In accordance with the description of

controlled jump processes in Appendix A.1, we set

h : E × U 3 (x, u) 7→ h(x, u) = −1/2 · (u+ 1) · I{1}(x).

The factor of 1
2

is required to map the control space U = [−1, 1] onto the set of possible jump

sizes given by [0, 1]. The generator of the jump part of the singular behavior is now given

by Bf(x, u) = f(1− h(x, u))− f(x). The continuous costs are again given by c0(x, u) = x2.

We consider no costs for the reflection of the process at 0, but adopt a jump cost that is

proportional to the length of the jump. In particular, we set c1(x, u) = −c(j) · h(x, u) if
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x = 1 for some c ∈ R. This will force the optimal control to make a trade-off between

the benefits of bringing the process close to the origin and avoiding costs charged by the

continuous part of the cost function c1, but being charged for the length of the jump. For

the subsequent computations we use a discretization level of
(
k(1), k(2), k(3)

)
= (10, 0, 10)

and k(4) = 10, without an additional mesh point. For the jump size we use a different

discretization of U with 512 mesh points. Figure V.15 and Figure V.16 show the results
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Figure V.15: Computed control, modified
bounded follower with variable jump size
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Figure V.16: State space density, modified
bounded follower with variable jump size

of an example calculation with c(j) = 0.04. The continuous control, Figure V.15, shows

a behavior similar to that seen for a fixed jump size, with the switching point located at

a = 0.8535. The optimal jump size in this example was calculated to −0.7988281, in other

words, the process jumped to 0.2011719. The approximate state space density, Figure V.16,

shows two features. Again, the change in convexity around the switching point is (slightly)

observable at x = 0.8535. Another ‘corner’ of the graph is visible at x = 0.2011719, to which

the process jumps from x = 1.

For various values of the cost coefficient c(j), Table V.13 shows the value of the cost criterion

J , the switching point a, the optimal jump size h as well as w1 and w2, the weights on the

reflection and jump, respectively. As one could expect, the switching point a increases with

the jump costs, as it is less beneficial to use the jump. At the same time, the optimal jump

size h decreases to compensate for higher costs of the jumps. Interestingly, the weight of
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c J a h w1 w2

0 0.13817544839 0.7070 1 2.4836575948 1.6103060559

0.01 0.15348844793 0.75 0.9355 2.3691725147 1.5606528470

0.02 0.16753299261 0.7871 0.8848 2.2878151493 1.5297581715

0.03 0.18061852431 0.8223 0.8398 2.2217667982 1.5095122261

0.04 0.19294312467 0.8535 0.7988 2.1666821674 1.5001606321

0.05 0.20464590438 0.8828 0.7637 2.1224318980 1.49702472520

0.06 0.21583121777 0.9102 0.7285 2.0816826293 1.5023561336

0.07 0.22658069190 0.9355 0.6973 2.0477662898 1.5130052374

0.08 0.23696136554 0.96 0.6680 2.0179314613 1.5292589572

0.09 0.24702997878 0.9834 0.6406 1.9920476224 1.5509638088

0.1 0.25683597519 1 0.6133 1.9679798575 1.5801336706

Table V.13: Results, modified bounded follower with variable jump size

the jump w2 does not show monotone behavior. First, it decreases, which is due to the fact

the switching point a increases, thus the process is less likely to be pushed towards the right

endpoint of the state space. However, starting from c = 0.06, the weight increases again,

which is believed to be caused by the smaller jump size and the fact that from the point to

which the process jumps, it is more likely to hit the right boundary of the state space again.

V.1.5 Optimal Harvesting in a Stochastic Logistic Growth Exam-

ple

This section will present how the proposed numerical method can be used to solve an op-

timal harvesting problem featuring stochastic logistic growth. An exemplary model was

investigated in Lungu and Øksendal (1997). As in the deterministic case, a logistic growth

model features a carrying capacity K, which is regarded as the maximal value to which a

quantity X can grow. The growth rate is proportional to the product of X with the ‘free’

carrying capacity K −X. Hence, the quantity grows slowly when it is either small or close
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to the carrying capacity. Examples of such behavior can be found in simple market models,

assuming that there is a finite number of consumers able to buy a certain product, causing

sales numbers to stagnate at K, or in modeling growth of animals in somewhat confined

environments - a fish farm would be a specific example. In this case, K would be considered

as the maximal number to which the fish population can grow, since space in a fish pond is

limited.

In contrast to the deterministic logistic growth model, we introduce a diffusion part to the

evolution of X, which, in the first example, would model fluctuation in the consumer’s de-

mand, and in the second example, fluctuations in the procreation of the fish. This diffusion

part is also proportional to the product of X and the ‘free’ carrying capacity K −X. The

stochastic differential equation of interest, in integral form, is

Xt = x0 +

∫ t

0

rXs(K −Xs)ds+

∫ t

0

σXs(K −Xs)dWs (1.4)

The constant r ∈ R models the deterministic growth rate, while σ ∈ R is used to model the

scale of the diffusion part. Note that in this model, both deterministic growth and diffusion

tend to 0 as Xt tends to either 0 or K. This ensures that the state space is actually given

by E = [0, K]. Although the classic conditions for existence and uniqueness are not fulfilled,

Lungu and Øksendal (1997) proves the existence of a solution. Further, they worked out that

the optimal harvesting strategy under a infinite horizon discounted criterion is a reflection

at some point y ∈ (0, K). This can be viewed as ‘instantaneous’ harvesting, which takes out

an infinitesimally small amount of X as soon as X reaches y. However, a closed form for y

remains unclear, up to the point that for a discounting rate of α, the bounds

K

2
− α

2r
≤ y ≤ K

2
− α

2r
+

1

2r
|rK − α| (1.5)

hold. The contribution of the proposed method to this problem is as follows. As described

in Section III.1.3, we can utilize the linear programming approach to evaluate cost criteria
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of a given diffusion. We will be considering the reflected SDE in integral form

Xt = x0 +

∫ t

0

rXs(K −Xs)ds+

∫ t

0

σXs(K −Xs)dWs − LX{y}.

Here, LX{y} denotes the local time of X at y. Due to this reflection, the state space of the

k(4)
(
k(1), k(2), k(3)

)
T J(y) w

4 (5, 0, 5) 0.022190 0.068229257083 0.0068229257083

5 (6, 0, 6) 0.016260 0.068228226679 0.0068228226679

6 (7, 0, 7) 0.020150 0.068228156312 0.0068228156312

7 (8, 0, 8) 0.022660 0.068228151991 0.0068228151991

8 (9, 0, 9) 0.033550 0.068228151719 0.0068228151719

9 (10, 0, 10) 0.060210 0.068228152113 0.0068228152113

10 (11, 0, 11) 0.125080 0.068228118784 0.0068228118784

11 (12, 0, 12) 0.296870 0.068228155828 0.0068228155828

12 (13, 0, 13) 0.925790 0.068228483923 0.0068228483923

13 (14, 0, 14) 3.249380 0.068229971432 0.0068229971432

14 (15, 0, 15) 15.301780 0.068240964541 0.0068240964541

Table V.14: Convergence, stochastic logistic growth, fixed reflection point

given problem is [0, y]. This problem can be viewed as an uncontrolled problem, as there

is no influence by the control on the drift and diffusion rates, and the minimization has to

be conducted with respect to the point of reflection y. The ‘cost’ criterion (representing

negative yield) of interest is, for a discounting rate α > 0,

J(y) = −E
[∫ ∞

0

e−αs dLX{y}

]
.

Using the linear programming approach we can evaluate this cost criterion for a fixed y and

optimize y using a standard one-dimensional optimization solver. Intuitively, the goal of

the optimization must be to keep the process at the point where it has the highest growth
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rate. Left and right of this point it will take longer for the population to recover, resulting

in a diminished yield. This leads to the assumption that the cost criterion is unimodal over

(0, K), justifying the use of both golden section and parabolic optimization techniques as

described in Brent (2002).

This model will be analyzed in the following ways. First, we will numerically investigate

the convergence of our approach for a fixed value for y. An analytic error analysis cannot

be conducted since the analytic solution remains unknown. Still, the result of an actual

optimization of y can be checked against the analytic bounds given by (1.5). Secondly, we

will perform the optimization of y for a line of different parameter choices and analyze the

influence of the parameters r, σ and α on the optimal solution. Of special interest is how

the computed optimal reflection points compare to the ‘intuitive’ choice of y = 0.5, which

guarantees the largest deterministic growth rate.

To numerically analyze the convergence of the method, we fix the reflection at y = 0.5 and
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Figure V.17: Computed control, coarse
grid, stochastic logistic growth
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Figure V.18: State space density, fine grid,
stochastic logistic growth

the drift coefficient, the diffusion coefficient as well as the discounting rate at r = σ = α =

0.1. If we consider the yield obtained as some monetary value, a discount rate of α = 0.1 is

rather high, however, it helps to display some characteristic of the solution in a first example.

Since we are considering the discounted infinite horizon criterion, the choice of the starting

point actually plays a role, and is set to x0 = 0.2. We will retain the notation for the dis-
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cretization level from the previous sections, with
(
k(1), k(2), k(3)

)
determining the degrees of

freedom and k(4) determining the number of constraints, bearing in mind that for the given

example, which does not have any continuous control, only k(3) and k(4) play a role in the

analysis.

Table V.14 shows the computing time T averaged over 1000 executions, the computed cost

criterion J(y) as well as the reflection weight w for different levels of accuracy. The method

shows a fairly convergent behavior, with fluctuation mainly happening in the 7th decimal

digit, until it becomes increasingly ill-conditioned, starting at k(4) = 12. The computed

density for a discretization level of
(
k(1), k(2), k(3)

)
= (6, 0, 6) and k(4) = 5 is shown in Fig-

ure V.17. It obviously exhibits the ‘step function’ features given by the discretization of the

density using indicator functions. Two things worth pointing out are visible in this plot.

First, we have a concentration of mass around the starting point x0 = 0.2. This is due to the

fact that we are considering a relatively high discount factor of α = 0.1, and the behavior of

the process right after the start of the evolution is weighted heavier than later behavior. Sec-

ond, we can see the density concentrating around the reflection point, which is the behavior

that is expected from the given SDE model. After being harvested, the quantity X grows

repeatedly against y, with only little probability of making downwards moves. Figure V.17

shows the density for a discretization level of
(
k(1), k(2), k(3)

)
= (11, 0, 11) and k(4) = 10,

which is fine enough to make the features caused by the indicator basis functions disappear.

Next we investigate the influence of the model parameters b, σ and α on the optimal solution.

With the context of a fish farm modeled by (1.4), a couple of interesting conclusions can be

drawn. For the subsequent calculations we fix
(
k(1), k(2), k(3)

)
= (12, 0, 12) and k(4) = 11. As

a first example, we vary the drift coefficient r and investigate its influence on the optimal

reflection point. The diffusion coefficient remains at σ = 0.1 and the discount rate is set

to α = 0.01. Table V.15 shows the result for these computations. The optimal position of

the reflection increases with the drift coefficient. This is explained by the fact that we use a

discounted reward criterion, and it is therefore important to harvest ‘rather’ early, which re-
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b y J(y)

0.05 0.4235226 0.97906691

0.10 0.4625687 2.19317776

0.20 0.4812090 4.67383232

0.30 0.4875718 7.16719189

0.40 0.4905254 9.66378803

0.50 0.4946607 12.16154627

1.00 0.4962992 24.65763595

10.00 0.4996371 249.65202762

Table V.15: Approximate solutions for varying drift rate b

sults in a optimal position for the reflection where the drift bXt(K−Xt) is not maximal, but

is reached early enough to benefit from a smaller discount. As the drift coefficient increases,

it is possible to use larger reflection positions since the process grows to this point more

quickly. The value of the optimality criterion increases, which is easily explained by the fact

that the process recovers more quickly after harvesting. Note that the optimal position of

the reflection y is slightly lower than the ‘intuitive’ choice of y = 0.5, but within the bounds

established by (1.5).

Next, we vary the diffusion coefficient σ and investigate its influence on the optimal reflec-

σ y J(y)

0.02 0.4503935 2.1981714904

0.05 0.4533961 2.1973397002

0.10 0.4625687 2.1931777609

0.15 0.4779099 2.1820521946

0.20 0.5113975 2.2054183122

0.25 0.5259329 2.1601371377

0.30 0.5605976 2.0786552100

Table V.16: Approximate solutions
for varying diffusion rate σ

α y J(y)

0.01 0.46256872 2.1931777609

0.15 0.43711173 1.3809111582

0.02 0.41173494 0.9834288529

0.03 0.36188956 0.6008668284

0.04 0.31037410 0.4224228605

0.05 0.25920076 0.3244632037

0.06 0.20776940 0.2665692517

Table V.17: Approximate solutions
for varying discount rate α
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tion point. The drift coefficient remains at b = 0.1 and the discount rate remains at α = 0.01.

Table V.16 shows the results from these calculations. Interestingly, the optimal position of

the reflection increases with the diffusion coefficient, as the value of the reward criterion

decreases. This could be interpreted in such a way that the harvesting is done at a higher

point such that large increments coming from the diffusion term do not push the process too

far down into a region of the state space with tiny drift rates. In other words, a relatively

steady growth against the reflection point is ‘bought’ by accepting a higher discount with the

process needing more time to reach the reflection point. For diffusion coefficients of 0.4 or

higher, the numerical approximation represented a process being absorbed at X = 0. These

results are omitted, as they show a fundamentally different dynamic behavior compared to

the other cases. However, this supports our claim that with larger diffusion coefficients, the

process tends to spend more time in lower regions of the state space.

Note how the optimal positions for the reflection deviate, in both directions, from the ‘intu-

itive’ choice of y = 0.5. Still, they remain in the theoretic boundaries of (1.5).

Finally, we vary the discount rate α and investigate its influence on the optimal reflection

point. The drift coefficient remains at b = 0.1 and the diffusion coefficient remains at σ = 0.1.

Table V.17 shows the results of this computation run. Naturally, the value of the optimality

criterion decreases with the introduction of higher discount rates. This trend is countered

by lowering the point of optimal reflection successively. Note that this will cause a slower

recovery rate around the point of harvesting, but will make sure the process reaches this

point earlier in time when starting at x0 = 0.2. This case, especially for high discount rates,

shows the largest discrepancy of the intuitive choice of y = 0.5 and the actual optimal value

for y while maintaining the analytic bounds of (1.5).
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V.2 Infinite Time Horizon Problems with Unbounded

State Space

This section illustrates the performance of the proposed numerical method being applied

to models that feature an unbounded state space. As in Section V.1, we use the notion of

the discretization level k ≡
(
k(1), k(2), k(3), k(4)

)
in its enhanced version as introduced in Sec-

tion III.1.4. In addition, we refer to the ‘computed state space’ as the interval [−K,K] which

is used to approximate the unbounded state spaces appearing in the following examples.

The considered models include the optimal control of a Cox-Ingersol-Ross model in Sec-

tion V.2.1 and an optimal asset allocation model in Section V.2.2, where the underlying

asset price is either modeled by a geometric Brownian motion or an Ornstein-Uhlenbeck

process.

V.2.1 Optimal Control of a Cox-Ingersol-Ross Model

This section presents a control problem for the Cox-Ingersol-Ross model, which is frequently

used in financial modeling. Let ρ, µ, σ, x0 > 0. Consider the SDE in integral form

Xt = x0 +

∫ t

0

ρ (µ−Xs) ds+

∫ t

0

us ds+

∫ t

0

σ
√
Xs dWs.

This model was first introduced in Cox et al. (1985). The given SDE features two important

components. First, the drift
∫ t

0
ρ (µ−Xs) ds forces a ‘mean reversion’. This means that X

is forced towards the value µ, which is called the long-term mean. The coefficient ρ specifies

the strength of this mean reversion. Derivations from µ are introduced by the stochastic

component
∫ t

0
σ
√
Xs dWs. While the coefficient σ specifies the intensity of the diffusion, it is

also proportional to
√
Xs, which means that higher values of Xt result in higher diffusions,

while smaller values of Xt show smaller diffusions. In particular, this structure ensures that

Xt > 0 at any time t. Hence, we can consider the state space E = [0,∞). The control space
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in which u takes values is given by U = [ul, ur] for some ul < ur ∈ R.

We seek to optimize the discounted infinite horizon cost criterion

J ≡ E
[∫ ∞

0

e−αsc0(Xs, us) ds

]

with c0(x, u) = (x − µ)2. This means the process must be controlled in such a way that it

stays as close as possible to the long-term mean. In an application, X could model the price

of a commodity, for example oil, and it would be in the interest of the producer to keep the

price at a certain level. The influence on the price can be enacted by increasing or lowering

production. Herein, it is assumed that this can be done without introducing any costs.

We proceed by investigating the influence of the diffusion coefficient σ and the mean re-

version coefficient ρ on the optimal control. However, we begin with a discussion of some

numerical phenomena that have to be overcome in order to achieve reasonable results for

this control problem. Table V.18 specifies the parameter choices for the SDE in this section.

It was found to be necessary, at least for some parameter choices, to choose k(3) > k(4) to

x0 α ρ µ σ ul ur

10 0.1 0.02 10 varies −0.05 0.05

Table V.18: Configuration (1), Cox-Ingersol-Ross model

give the linear program solver enough degrees of freedom to find a feasible solution. For

the discretization level k = (10, 0, 12, 11), a computed state space [−K,K] of [0, 60] and

σ = 0.5, Figure V.19 and Figure V.20 show the results for the computed optimal control and

the density of the occupation measure, respectively. While the computed control looks very

regular, the density looks highly irregular and needs to be examined more closely. A more

detailed view on the situation is provided by Figure V.21, which shows a closer view of the

state space density on the interval [9.5, 10]. To impart further insight, the mesh points of the

constraint mesh are plotted with red dots. One can easily imagine the mesh of the expected

occupation measure by dividing the intervals indicated by the red dots in half (recall that
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Figure V.19: Computed control, Cox-
Ingersol-Ross model
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Figure V.20: State space density, Cox-
Ingersol-Ross model

k(3) = 12 and k(4) = 11, and so the mesh for the expected occupation measure has twice as

many points). These mesh points are omitted in the plot for the sake of visibility. Note that

the situation is such that two intervals of the expected occupation measure mesh always lie

within one interval of the constraint measure mesh. In other words, two degrees of freedom

interact with the exact same constraints, which might indicate that these two degrees of

freedom are, to some level, linearly dependent, and hence the solver can choose to assign

full mass to one degree of freedom and assign zero mass to the other, in such a way that it

favors the minimization of the cost criterion., without violating the linear constraints.

One can easily be convinced that such a expected occupation measure cannot be the expected

occupation measure of an actual solution to the SDE, since the continuity of the paths would

prohibit the process spending time inside the two separated intervals of the state space, but

not inside the interval lying between them. The displayed expected occupation measure is

only a solution to a discretized version of the problem given by the SDE, thus the observed

behavior does not necessarily indicate a faulty approximation. Further, the error analysis

presented in Section III.2 does not consider the L1 error of the approximate densities, so

again previous results are not contradicted.

In the light of the analysis provided in Kushner and Dupuis (2001) for discretization obtained

by using a finite difference approximation of the HJB equation, it is conjectured that the
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presented approximation could as well be related to a discrete-state Markov chain, which

would actually allow the observed behavior. A detailed investigation of this conjecture lies

beyond the scope of this thesis. However, it is still desirable to obtain an approximation to
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Figure V.21: Zoom of state space density,
Cox-Ingersol-Ross model
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Figure V.22: Re-evaluated state space
density, Cox-Ingersol-Ross model

the density that looks like the density of the expected occupation measure of a continuous

process. This can be achieved by fixing the control we obtained in the computation, dis-

played in Figure V.19, and re-evaluating the cost criterion using the methods described in

Section III.1.3. Figure V.22 shows the density of the expected occupation measure from this

re-evaluation with k(3) = 12 and k(4) = 11, which are the same discretization levels as in the

initial run of the linear program solver. This function is far more regular than its counterpart

in Figure V.20, which is explained as follows. Recall from Section III.1.3, that we seek to

minimize the Euclidean norm of the solution under the linear constraints obtained by fixing

the control for the re-evaluation, as opposed to the linear program solver minimizing the

cost criterion. As we pointed out above, it might be beneficial in terms of the cost criterion

to assign all mass to one subinterval. However, this is disadvantageous when minimizing the

Euclidean norm. This can easily be seen by comparing the Euclidean norms of the vectors

(1, 0)T and (0.5, 0.5)T which have the same mass of a - it is obvious that it is beneficial to

distribute the mass as evenly as possible over all subintervals to achieve a small Euclidean

norm. Hence, the state space density given by the re-evaluation is more regular.
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As the preceding discussion suggests, a two-step computation approach should be used to

obtain regular results for the state space density. First, we run the linear programming

solver with a given discretization level, then re-evaluate the resulting control with the same

discretization levels. This produces reasonable results that allow us to move the focus to-

wards the analysis of the model itself. In particular, we investigate the influence of the

diffusion coefficient σ and the mean reversion coefficient ρ onto the optimal control and the

cost criterion. We begin with the diffusion coefficient σ.

A close examination of the sample run with the configuration from Table V.18, see Fig-

ure V.19, reveals that the point where the optimal control switches its value from 0.05 to

−0.05 lies slightly lower than the mean of µ = 10. To make this clearer, Figures V.23

and V.24 show the average optimal control and the state space density for a diffusion coef-

ficient of σ = 0.5. We notice that the control switches from 0.05 to −0.05 below the mean.
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Figure V.23: Average optimal control,
Cox-Ingersol-Ross model
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Figure V.24: State space density, Cox-
Ingersol-Ross model

Second, we can see that this has a certain influence on the state space density in such a way

that we can see a kink around the point where the control switches. The behavior of the

control can be explained by the fact that while the mean reversion term of the SDE given

by ρ(x−µ) and the cost function c0(x, u) = (x−µ)2 are symmetric around the mean µ, the

diffusion of the process is given by σ
√
x, and hence increases with x. To avoid larger-scale

diffusions that could occur above the mean and would have a undesired impact on the cost
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criterion, the control seeks to keep the process slightly lower than the mean µ. To support

this explanation, Table V.19 shows computation results for a parameter sweep of the diffu-

sion coefficient σ. In particular, the point a, where the control switches from 0.05 to −0.05

σ a J k [−K,K]

0.1 9.946 3.9062266365 (10, 0, 10, 10) [0, 15]

0.2 9.844 20.990368976 (10, 0, 10, 10) [0, 20]

0.3 9.619 52.101463651 (10, 0, 10, 10) [0, 25]

0.4 9.336 97.823195297 (10, 0, 12, 11) [0, 40]

0.5 8.984 156.74606251 (10, 0, 12, 11) [0, 40]

0.6 8.496 230.40191011 (10, 0, 13, 12) [0, 50]

0.7 8.057 313.98748092 (10, 0, 13, 12) [0, 50]

Table V.19: Results, Cox-Ingersol-Ross model, varying diffusion coefficient

is shown, along with the approximate value for the cost criterion J . The discretization level

k and the computed state space [−K,K] had to be adjusted when changing the diffusion

coefficient σ, and are shown as well.

Two observations can be made. First, we clearly see that with an increasing diffusion co-

efficient, the behavior of the optimal control becomes increasingly ‘cautious’ in a way that

the switch occurs at lower state in order to avoid the large diffusions that come along with

higher states. Second, a significant influence of the diffusion coefficient on the cost criterion

is visible, which increases by two orders of magnitude in the given range of σ.

For a diffusion coefficient of σ = 0.8, the state space density shows an absorption of the

process at x = 0. While analytically possible, this special case is not considered here. We

x0 α ρ µ σ ul ur

10 0.1 varies 10 0.5 −0.05 0.05

Table V.20: Configuration (2), Cox-Ingersol-Ross model

proceed to investigate the influence of the mean reversion coefficient ρ on the optimal control
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and the optimal cost criterion. To do so, we use the configuration of the model specified

in Table V.20. Table V.21 shows the results of several computations, specifying the mean

reversion coefficient ρ, the switching point of the control a, the approximate value of the

cost criterion J as well as the discretization level k and the computed state space [−K,K].

Naturally, the computed costs are shrinking with an increasing mean reversion, since the

ρ a J k [−K,K]

0.01 8.906 179.80636207 (10, 0, 12, 11) [0, 40]

0.02 8.984 156.74606251 (10, 0, 12, 11) [0, 40]

0.03 9.062 138.60839167 (10, 0, 12, 11) [0, 40]

0.04 9.102 124.11426052 (10, 0, 12, 11) [0, 40]

0.05 9.180 112.33381737 (10, 0, 12, 11) [0, 40]

0.06 9.219 102.59701292 (10, 0, 12, 11) [0, 40]

0.07 9.258 94.424699129 (10, 0, 13, 11) [0, 40]

0.08 9.297 87.470247370 (10, 0, 13, 11) [0, 40]

0.09 9.336 81.480455805 (10, 0, 13, 11) [0, 40]

0.10 9.375 76.266998677 (10, 0, 14, 11) [0, 40]

Table V.21: Results, Cox-Ingersol-Ross model, varying mean reversion coefficient

mean reversion works in favor of the cost criterion. Notably, the switching point a increases

with the mean reversion. For the tested values of ρ, it remains under the mean µ = 10,

which is still assumed to be a precautionary behavior to avoid the large diffusion values

for higher values of X. However, a stronger mean reversion helps mitigate large diffusion,

as larger fluctuations are swiftly corrected, hence the precautionary action of switching the

control to push the process away from the long-term mean µ is triggered at higher values of

the process.
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V.2.2 Optimal Asset Allocation Problems with Budget Constraints

In this section we consider an asset allocation problem, in which an entity seeks to maxi-

mize its position in an asset whose price is governed by a stochastic process, but only has a

limited budget to spend. Such a problem, with an underlying geometric Brownian motion,

is extensively discussed in Lu et al. (2017), where a numerical approach based on the dy-

namic programming principle is utilized. The budget constraints are therein treated using

the method of Lagrange multipliers. Here we present how our technique, based on the linear

programming approach, can be used to tackle this control problem. In particular, we show

that the budget constraints are easily incorporated into the linear constraints on the ex-

pected occupation measures, which appears to be less cumbersome in terms of the numerical

optimization.

First, we consider the example given by Lu et al. (2017), where the share price of the asset

is modeled by a geometric Brownian motion process. However, the (on-average) exponential

growth of such a process requires rather unrealistic discounting factors to allow a numerical

treatment of this model, making it rather difficult to connect the results to applications.

Second, we consider an asset allocation problem with the share price being modeled by an

Ornstein-Uhlenbeck process. Such a process features mean reversion, which automatically

makes the process spend most time in a confined area about its mean, resulting in a smoother

numerical treatment.

We discuss the optimality criterion employed in this section as well as the budget constraint

without being specific about the underlying process. Assume that X is some stochastic pro-

cess with state space E, which is controlled by a process u taking values in U = [0, ur]. X

represents the price of the considered asset, and u represents the rate at which we purchase

shares of the asset. We are not allowed to sell stock, hence u is inherently non-negative.

To be precise, although it is considered as a control, u merely expresses the influence of

purchasing stock on the price. Our objective is not to influence the asset price in a certain
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way. Instead, our goal is to maximize the discounted share position

E
[∫ ∞

0

e−α1sus ds

]
(2.1)

for a discounting rate α1. This discounting rate can be understood in two different ways.

First, it can simply model inflation, for example if the asset is a currency. Second, it could

model the discounting of the personal utility of maximizing the share position, meaning that

we would prefer to have a large share position earlier rather than later.

The maximization of the share position has to be done in such a way that

E
[∫ ∞

0

e−α2sXsus ds

]
≤ θ (2.2)

is satisfied for some θ > 0. This is the previously mentioned budget constraint. We are

not allowed to spend more than θ to purchase shares. However, the unexpended funds earn

interest at rate α2 so the budget constraint (2.2) considers the present value of funds. To

make the linear programming approach applicable, we have to assume that α1 = α2 ≡ α

and take this to be the interest rate. Then, it is easy to see that we can express the budget

constraints with d(x, u) = xu by

E
[∫

E×U
d(x, u) dµ

]
≤ θ

with the discounted expected occupation measure µ. Indeed, the structure of (2.2) is identical

to that of the cost criterion (2.1). Using the approximation given by (III.1.10) and (III.1.11)

we obtain the linear inequality

2k
(3)
m∑

i=1

2k
(1)
m −1∑
j=0

2k
(2)
m∑

l=0

βj,lγi

∫
Ej

d(x, ul)pi(x) dx ≤ θ
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which is easily added into the linear program of Section III.1.2. In particular, standard solvers

include functionality for linear inequalities which allows for an straight forward incorporation

of the budget constraint in the discretized setting. This is different from the approach

proposed in Lu et al. (2017), where the treatment of the budget constraints requires a nested

optimization scheme for the actual control problem and the Lagrange multipliers.

In the given setup, neither the cost function c0(x, u) = u nor the budget constraint function

(x, u) 7→ x · u are increasing in x as described in Definition III.2.2 (note that if u = 0,

x · u = 0). Hence, the tightness argument as presented in Lemma IV.2.2 is not applicable.

According to Remark IV.2.3, it is sufficient to introduce a function d that is increasing in x

and demand that for some M > 0,

∫
E×U

d(x, u) µ̂(dx× du) ≤M. (2.3)

Set d(x, u) = |x|, and we assume that the optimal solution of the analytic problem µ∗ fulfills

∫
E×U
|x|µ∗(dx× du) <∞.

We can simply pick a large value for M , and restrict the linear program to measures that

fulfill (2.3). As this bound was never violated when using the numerical approximations, it

is not further discussed in the sequel.

Asset Price Modeled by Geometric Brownian Motion

Consider a state space E = [0,∞) and a control space U = [0, ur]. For this example, the

price of the asset under consideration is governed by the following SDE in integral form,

given µ, σ, b > 0,

Xt = x0 +

∫ t

0

µXs ds+

∫ t

0

σXs dWs︸ ︷︷ ︸
geometric Brownian motion part

+

∫ t

0

bXsus ds︸ ︷︷ ︸
control part

.
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Figure V.25: Computed control, asset allo-
cation problem under geometric Brownian
motion
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Figure V.26: State space density, asset al-
location problem under geometric Brown-
ian motion

Employing a control ut = 0 means that we are not acquiring shares of the asset, while a

control value ut > 0 means that we are buying shares of the asset. Hence, the process

X behaves as a geometric Brownian motion with a mean drift µ > 0 and diffusion σ > 0

when we are not purchasing shares. If we do so, the share price is further influenced by an

additional drift term
∫ t

0
bXsus ds. This additional drift models the impact on the share price

caused by the control purchasing shares, which is assumed to be proportional to the product

of the share price and the number of shares purchased with proportionality coefficient b > 0.

From a modeling point of view, X could be an illiquid asset, where the purchases made by

the control represent a significant number of the currently available shares, and thus have a

considerable impact on the price.

We use the optimality criterion (2.1) and the budget constraint (2.2) as presented in the

x0 α µ σ θ ur b

1 0.25 0.2 0.5 10 3 0.06

Table V.22: Configuration, asset allocation problem under geometric Brownian motion

introduction of this section. As we will see, the optimal control for this problem is of bang-

bang type, which means that up to a certain share price a, we purchase stocks at the highest
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possible rate ur, and do not purchase stock if the share price is higher. It has to be noted that

we have to assume rather high discounting factors α in order to make results computational

attainable. This is due to the fact that the process X behaves similarly to a geometric

Brownian motion, which -in expectation- grows unboundedly as time progresses. It is only

due to the discounting that we can expect the expected occupation measure to be tight (and

hence almost all mass can be contained in [0, K] for some K > 0). Discounting rates of less

than 0.2 were found to require vast computational resources, especially in terms of memory,

which would go beyond the capacities of a standard computer. Especially in the light of

considering α as inflation, or interest, the feasible values for α are fairly unrealistic. Thus

we restrict ourselves to a few numerical examples for the given problem, and provide a more

detailed parameter analysis for a model where the asset price is modeled by an Ornstein-

Uhlenbeck process later on.

Table V.22 shows a sample configuration for the asset allocation problem. Note that

b − σ2

2
> 0 holds, which ensures that the process X grows in expectation. The optimal

control under this configuration and the state space density for a computation using the

computed state space of [−K,K] = [0, 50] are shown in Figures V.25 and V.26. To compute

the approximate solution, a discretization level of k = (10, 0, 15, 13) was used, and a re-

evaluation step was conducted with the discretization level k = (10, 0, 16, 13), in order to

obtain a smooth state space density, similar to the discussion in Section V.2.1. The switching

point of the control was at a = 2.441, which means that the approximate purchasing strategy

dictates to buy shares when the price is at 2.441 or lower. We observed that the state space

density shows some oscillation around this point which could not be eliminated with different

choices for the discretization levels. Apart from this, note that the sharp mode of the state

space density at the starting point x0 = 1 is due to the fact that the discounting values the

early positions of the state space more highly than later positions. The approximate value of

the optimality criterion, which represents the expected discounted share position, was given

by J = 7.6375667435.
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x0 a J k [−K,K]

0.3 5.127 10.922451010 (10, 0, 15, 13) [0, 50]

0.4 3.711 10.361620044 (10, 0, 15, 13) [0, 50]

0.5 3.170 9.8157612398 (10, 0, 15, 13) [0, 50]

0.6 2.832 9.3028927880 (10, 0, 15, 13) [0, 50]

0.7 2.637 8.8292053506 (10, 0, 15, 13) [0, 50]

0.8 2.539 8.3951362123 (10, 0, 15, 13) [0, 50]

0.9 2.441 7.9988282420 (10, 0, 15, 13) [0, 50]

1 2.441 7.6375667435 (10, 0, 15, 13) [0, 50]

2 2.695 5.2990887981 (10, 0, 15, 13) [0, 60]

3 3.213 4.1338099271 (10, 0, 15, 13) [0, 70]

4 3.828 3.4453980821 (10, 0, 15, 13) [0, 80]

5 4.395 2.9897877604 (10, 0, 15, 13) [0, 90]

6 4.980 2.6620613757 (10, 0, 15, 13) [0, 100]

7 5.508 2.4139654007 (10, 0, 15, 13) [0, 120]

8 5.967 2.2174476342 (10, 0, 15, 13) [0, 130]

9 6.426 2.0572882397 (10, 0, 15, 13) [0, 140]

Table V.23: Results, asset allocation problem with geometric Brownian motion, varying
starting value x0

To analyze the model further, we investigate the influence of the starting value x0 on optimal

control and cost criterion value. We otherwise retain the parameter configuration given in

Table V.22 and compute the optimal control and the respective expected discounted share

position for starting values between 0.3 and 9. Table V.23 shows the results for these

numerical solutions. In particular, the starting value x0, the switching point of the control

a (giving the price at which we stop purchasing) and the approximate discounted share

position J are shown along with the discretization level k and the computed state space

[−K,K] . To interpret this result, it is important to keep in mind that the process X

grows (in expectation) exponentially from the starting value x0. Hence, considering that the
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available budget remains constant, it is not surprising that the optimality criterion J , which

represents the expected share position, shrinks when x0 increases. In the same way, it is

intuitively clear that in order to build up the stock position, one has to buy at higher prices

as the starting value increases. However, we also observe an increase in the switching point

when the starting value approaches 0. This is explained by recalling that we assume that

our available budget pays interest when not being spent, and the fact that for small starting

values, the initial growth of the share price is rather slow. The available budget grows more

quickly than the share price, and hence we are able to pay fairly high prices to maximize our

position. Albeit an interesting observation, this behavior is only notable due to the rather

high (and unrealistic) interest rate. It is worth observing that for the starting values of 4 or

higher, the optimal purchasing price is lower than the starting value, which means that we

would have to ‘hope’ that the stock price drops below its initial value in order to purchase

the stock.

Asset Price Modeled by Ornstein-Uhlenbeck Process

To present a model which allows for more realistic interest rates, consider the state space

E = (−∞,∞) and the control space U = [0, ur]. For this example, the price of the asset

under consideration is governed by the following SDE in integral form, given µ, ρ, σ, b > 0,

Xt = x0 +

∫ t

0

ρ(µ−Xs) ds+ σWt︸ ︷︷ ︸
Ornstein-Uhlenbeck part

+

∫ t

0

bXsus ds︸ ︷︷ ︸
control part

.

In the absence of purchasing, this process is a Ornstein-Uhlenbeck process, where the drift∫ t
0
ρ(µ−Xs) ds ‘pulls’ the process back to the mean µ as soon as deviations from µ caused

by the stochastic part σWt occur. Again the influence of the control represents the impact of

purchasing a considerable number of the available shares, assuming the asset to be illiquid.

Note that in contrast to the Cox-Ingersol-Ross model of Section V.2.1, negative values are

possible. X could describe quantities like energy prices, which can be negative given low
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demand and high supply, or interest rates (which can be negative in the case of government

bonds). The fact that X features mean reversion allows for smaller and more realistic interest

rates α, as most of the mass of the expected occupation measure will be concentrated in a

relatively small interval around µ.

An sample configuration for this problem is shown in Table V.24. The optimal control and

x0 α µ ρ σ θ ur b

100 0.02 100 0.1 5 8 1 0.1

Table V.24: Configuration, asset allocation problem under Ornstein-Uhlenbeck process

the state space density for a computation using the discretization level k = (10, 0, 10, 10)

with one additional mesh point, and a computed state space of [−K,K] = [60, 140] are

shown in Figures V.27 and V.28. The switching point a of the control is located at 72.660.
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Figure V.27: Computed control, asset allo-
cation problem under Ornstein-Uhlenbeck
process
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Figure V.28: State space density, as-
set allocation problem under Ornstein-
Uhlenbeck process

A small kink in the state space density is visible at this point. The approximate discounted

expected share position is J = 0.11268988042. This fairly low value is explained by the fact

that we have a rather small fund availability of θ = 8 compared to the mean of the process

µ = 100. Hence, purchases can only be made at fairly low share prices.

In the following, we provide a detailed investigation of the influence of the model parameters
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σ, α, ur and b on the optimal control and the optimality criterion given by the expected,

discounted share position.

We begin by varying the diffusion coefficient σ. There are two different situations to consider.

First, we consider a case with high fund availability θ, which allows us to buy shares at prices

higher than the mean µ. Then, we look at a case with low fund availability, which forces

us to purchase shares at a price lower than the mean µ. The complete parameter choices

are shown in Table V.25. The results of the computations with high funds, θ = 4000, are

x0 α µ ρ σ θ ur b

100 0.02 100 0.1 varies 1000 or 4000 1 0.001

Table V.25: Configuration (2), asset allocation problem under Ornstein-Uhlenbeck process

shown in Table V.26. The results for the low funded situation, θ = 1000, are shown in

Table V.27. Both tables show the diffusion coefficient σ, the switching point of the control

a, the approximate expected share position J alongside the discretization level k and the

computed state space [−K,K].

σ a J k [−K,K]

3 106.0 40.577502624 (10, 0, 13, 12) [ 70, 130]

5 110.2 41.103046129 (10, 0, 13, 12) [ 50, 150]

7 114.5 41.591174213 (10, 0, 13, 12) [ 30, 170]

9 119.3 42.042247714 (10, 0, 15, 12) [ 5, 195]

11 124.2 42.474524830 (10, 0, 16, 12) [ 0, 200]

13 129.5 42.920942203 (10, 0, 17, 12) [ −5, 205]

15 129.5 43.345890065 (10, 0, 17, 12) [−15, 215]

Table V.26: Results, asset allocation problem with Ornstein-Uhlenbeck process, varying
diffusion coefficient, high fund availability (θ = 4000)

Generally speaking, we can conclude that higher diffusion coefficients work in favor of the

optimality criterion. This is due to the fact that with more volatility, lower prices are
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σ a J k [−K,K]

3 95.31 10.899530407 (10, 0, 13, 12) [ 70, 130]

5 91.80 11.686953030 (10, 0, 13, 12) [ 50, 150]

7 90.02 12.303414645 (10, 0, 14, 13) [ 30, 170]

9 88.05 13.067920037 (10, 0, 15, 13) [ 10, 190]

11 86.33 13.878421197 (10, 0, 15, 13) [ 0, 200]

13 85.16 14.785432119 (10, 0, 15, 13) [ 0, 200]

15 84.53 15.717658230 (10, 0, 16, 12) [−10, 210]

Table V.27: Results, asset allocation problem with Ornstein-Uhlenbeck process, varying
diffusion coefficient, low fund availability (θ = 1000)

more likely, and there are more chances to buy shares inexpensively. However, the way

the optimal control adapts to different diffusion coefficients differs when larger or smaller

funds are available. With high fund availability, see Table V.26, higher volatility causes

the switching point a to increase. A possible explanation of this behavior could be that the

money which is ‘saved’ by purchasing at the lower prices which are occurring more frequently

due to the high diffusion, now is spent on purchases with higher share prices. Such behavior

is advantageous due to the discounting. The discounted, expected share position benefits

from earlier purchases more than it does from later purchases, and if we buy at higher prices,

we can purchase more stock earlier.

The opposite behavior can be observed in the case of low fund availability. As stated before,

the optimal control has to rely on the price dropping significantly below the mean µ to make

purchases. A higher diffusion coefficient results in a purchasing strategy with a rather low

switching point a, representing the maximal purchase price, since it is more likely that the

share price actually drops that low in a time period which is short enough such that the

discounting does not have a drastic impact on the optimality criterion. So, a decreases, and

the expected stock position increases with a higher diffusion coefficient. From a numerical

point of view, observe that we need to enlarge the computed state space [−K,K] when the
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diffusion coefficient increases. This is to be expected, since a higher uncertainty distributes

the mass of the expected occupation measure on a wider interval.

Next, we analyze the influence of the discounting factor α. We have already indicated that

the discounting has some influence on the optimal purchasing strategy, as it punishes us for

purchasing at price which is too low, with the process not dropping so far over long periods

of time. The configuration for this parameter sweep can be found in Table V.28. Differently

from the previous parameter sweep, we now use a budget of θ = 2000 and b = 0.002 to model

the impact on the share price when purchasing. The results for various discounting factors

x0 α µ ρ σ θ ur b

100 varies 100 0.1 5 2000 1 0.002

Table V.28: Configuration (3), asset allocation problem under Ornstein-Uhlenbeck process

are given in Table V.29. In particular, it shows the discounting factor α, the switching point

of the control a, the approximate expected share position J alongside the discretization level

k and the computed state space [−K,K]. Clearly, the expected discounted share position

α a J k [−K,K]

0.005 87.40 24.320020503 (10, 0, 14, 13) [50, 150]

0.01 92.48 23.142813987 (10, 0, 14, 13) [50, 150]

0.015 96.09 22.409298613 (10, 0, 14, 13) [50, 150]

0.02 98.93 21.865960757 (10, 0, 14, 13) [50, 150]

0.025 101.5 21.431711036 (10, 0, 14, 13) [50, 150]

0.03 103.9 21.081483466 (10, 0, 14, 13) [60, 140]

0.035 106.6 20.752395535 (10, 0, 14, 13) [60, 140]

0.04 109.7 20.480356949 (10, 0, 15, 13) [65, 135]

Table V.29: Results, asset allocation problem with Ornstein-Uhlenbeck process, varying
discounting factor

shrinks with an increasing discounting factor. On the other hand, the switching point a

increases with the discounting factor in order to counter the faster discounting. In order to
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purchase more shares early on, which contributes to the optimality criterion more signifi-

cantly than later purchases, we have to accept higher prices. This happens in such a way

that we start with a maximal purchasing price of 87.40, which is lower than the mean of

µ = 100, and end with a maximal purchasing price 109.7, which is higher than the mean.

The next parameter which is analyzed is the maximal purchasing rate ur. The configura-

tion of this parameter sweep is shown in Table V.30. The results for the computation with

x0 α µ ρ σ θ ur b

100 0.02 100 0.1 5 3000 varies 0.001

Table V.30: Configuration (4), asset allocation problem under Ornstein-Uhlenbeck process

varying maximal purchasing rate are displayed in Table V.31. In particular, it shows the

maximal purchasing rate ur, the switching point of the control a, the approximate expected

share position J alongside the discretization level k and the computed state space [−K,K].

The effect of an increase in the maximal purchasing rate is such that the maximal purchasing

ur a J k [−K,K]

1 103.8 31.797497033 (10, 0, 14, 13) [40, 160]

1.5 98.71 32.878597048 (10, 0, 14, 13) [40, 160]

2 96.02 33.569457233 (10, 0, 14, 13) [40, 160]

2.5 94.25 34.0750508457 (10, 0, 15, 13) [40, 150]

3 92.85 34.467140282 (10, 0, 15, 13) [40, 150]

3.5 91.76 34.894183962 (10, 0, 15, 13) [40, 140]

4 90.88 35.171673036 (10, 0, 15, 13) [40, 140]

Table V.31: Results, asset allocation problem with Ornstein-Uhlenbeck process, varying
maximal purchasing rate

price decreases, and the discounted maximal share position increases. Since we are able to

buy more shares per unit of time, we can benefit more from low prices, and are able to buy
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more shares before the price increases again. Hence, we can wait for lower share prices and

afford the additional discounting that comes into play when buying later.

Finally, we analyze the influence of the drift-per-buy coefficient b on the optimal control and

the optimality criterion. Before we do so, we discuss some phenomena that appear in the

numerical calculations for this model. Figure V.29 shows a computed optimal control and

Figure V.30 show the respective state space density for a configuration where b is rather

large compared to previous examples. The complete configuration is shown in Table V.32.

To compute these results, we used a discretization level of k = (10, 0, 15, 13) for both the
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Figure V.29: Computed control, asset allo-
cation problem under Ornstein-Uhlenbeck
process, abnormal control behavior
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Figure V.30: State space density, as-
set allocation problem under Ornstein-
Uhlenbeck process, abnormal control be-
havior

x0 α µ ρ σ θ ur b

100 0.02 100 0.1 9 3000 2 0.001

Table V.32: Configuration, asset allocation problem under Ornstein-Uhlenbeck process, ab-
normal control behavior

linear program solver and the re-evaluation step. The approximate value for the expected

stock position J reached 34.2007. We can observe the ‘usual’ behavior of the optimal control

for this model, which suggest to buy at the maximal possible purchasing rate as long as the
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share price is not higher than 98.05. However, the computed control also suggests that we

should again purchase shares when the price rises above 190.2. One can readily see that such

behavior cannot be optimal, as it is highly disadvantageous to purchase shares at very high

prices. Hence we have to assume that this behavior is due to an artifact of the numerical

method rather than the model itself. Two possible explanations are given in the following.

To begin with, note that the state space density in the region of the state space which shows

this anomaly is lower than 6.743 · 10−7. One the one hand, this ensures that the impact of

the abnormal control behavior on the optimality criterion is rather small, and might possibly

be neglected. On the other hand, this might indicate that the computation of the control is

numerically unstable. Recalling (III.1.20), the control for this example is computed by

η̂k(V, xj) =
µ (V,Ej)

µE (Ej)
,

where µE is the measure whose density is displayed in Figure V.30. A small denominator in

this expression causes instability in this calculation, and hence could be a possible explana-

tion for the unexpected behavior of the computed control.

The second explanation focuses on the way in which we approximate models with an un-

bounded state space using models with a bounded state space. We do this by discretizing

the measures in the set

M∞,[−K,K] =

{
µ ∈ P([−K,K]× U)|

∫
Afdµ = Rf ∀f ∈ D∞([−K,K])

}
,

compare (III.2.6). Crucially, for a function f ∈ D([−K,K]) we stipulated that the support of

f , f ′ and f ′′ is a proper subset of [−K,K]. In particular, we have that f ′(−K) = f ′(K) = 0.

Hence, the set M∞,[−K,K] is indistinguishable from the set

M̂∞,[−K,K] =

{
µ ∈ P([−K,K]× U)|

∫
Afdµ+

∫
Bfdµ1 = Rf ∀f ∈ D∞([−K,K])

}
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withBf(x) = f ′(x)·I{−K}(x)−f ′(x)·I{K}(x) and µ1 being a finite Borel measure concentrated

on {−K} ∪ {K}. In other words, the approximate problem with a finite state space could

actually feature reflections at −K and K, which we are not able to pick up with the expected

occupation measure µ due to the structure of D([−K,K]). As seen in Section V.1.2, such

reflections can be used in favor of bringing the process back towards the origin, by using the

reflection to push the process back into the opposite direction. Hence, a second explanation

to the unexpected control behavior is that the optimal control tries to use the rather high

drift induced by the purchasing, given by b·Xtut and the reflection to lower prices. Obviously,

such behavior is in consistent with the actual model featuring an unbounded state space. To

x0 α µ ρ σ θ ur b

10 0.015 10 0.1 0.75 5 0.5 varies

Table V.33: Configuration (5), asset allocation problem under Ornstein-Uhlenbeck process

remedy this situation, we tweak the model in such a way that we eliminate the drift-per buy

term for larger values of the state space values, and further introduce a penalty for using the

control at such high state space values. To be precise, for some ar ∈ [−K,K], we now seek

to maximize

E
[∫ ∞

0

e−α1s
(
us − I{Xs>ar}us

)
ds

]
.

In other words, we do not benefit from using the control if X is larger than ar, with ar aptly

chosen. The SDE is changed to

Xt = x0 +

∫ t

0

ρ(µ−Xs) ds+ σWt +

∫ t

0

I{Xs>ar}bXsus ds.

The parameter sweeps presented so far were configured in such a way that the described

phenomena would not appear. However, when varying b it is likely that we see this undesired

behavior, and the use of this penalty method is necessary.

This configuration which is used to analyze the influence of the drift-per-buy term b is
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specified in Table V.33, and the results of the computation are shown in Table V.34. We

introduced an additional mesh point in the middle of the mesh for the state space density

for all of the computations. Table V.34 shows the drift-per-buy rate b, the switching point of

the control a, the approximate expected share position J alongside the discretization level k,

the computed state space [−K,K] and the point ar at which we introduced the penalty for

using the control. As to be expected, the value of the optimality criterion decreases when the

b a J k [−K,K] ar

0.01 6.797 0.80422691171 (10, 0, 12, 12) [0, 20] 16

0.1 7.109 0.74245274521 (10, 0, 12, 12) [0, 20] 16

0.2 7.422 0.69712180542 (10, 0, 12, 12) [0, 20] 16

0.3 7.695 0.66559165530 (10, 0, 12, 12) [0, 20] 16

0.4 7.91 0.64189415350 (10, 0, 12, 12) [0, 20] 16

0.5 8.105 0.62300645684 (10, 0, 12, 12) [0, 20] 16

0.6 8.301 0.60734080954 (10, 0, 12, 12) [0, 20] 16

0.7 8.477 0.59392214278 (10, 0, 12, 12) [0, 20] 16

Table V.34: Results, asset allocation problem with Ornstein-Uhlenbeck process, varying
drift-per-buy rate

drift-per-buy rate b increases. As the impact of purchasing is more significant with higher

values of b, the maximal purchasing price increases with it. In other words, if the considered

asset is illiquid, or if we purchase considerable market shares of the asset, we have to accept

higher prices and expect a lower position of shares to be attainable.
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Conclusion

We conclude this thesis by first summarizing the achieved work. Then, we point out areas of

future research which we find to be instrumental in further broadening the applicability and

quality of finite element methods for linear programming formulations in stochastic control.

VI.1 Summary

This thesis contributed to the research on linear programming formulations for stochastic

control both in terms of analytical and numerical considerations. While the analytical con-

tributions in the form of the existence and uniqueness of linear constraints under certain

conditions on the controls came as a necessary by-product of the convergence proof for the

proposed discretization, the main focus of this thesis lay in establishing a numerical method

for solving the infinite-dimensional linear programs that are associated with stochastic con-

trol problems in infinite time, with either a bounded or an unbounded state space. To some

extent it could be shown that analogous to the analytic treatment of control problems using

the linear programming approach, numerical techniques based on it can serve as an alter-

native to classic dynamic programming approaches. To support this claim, the proposed

method was formulated in fairly general terms, analyzed in fine detail and applied to a wide

range of control problems.

When stating the initial problem we used a formulation of the linear program that allows for

bounded as well as unbounded state spaces, the existence or absence of singular behavior,

singular control, and two different cost criteria. Then, we proposed an approximation which
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retained the underlying structure of a linear program in order to allow for efficient solu-

tion. In addition, it was demonstrated how the linear programming techniques can be used

to evaluate the cost criteria for fixed controls, which opens the approach up to a broader

class of problems, as seen in the stochastic growth example. The convergence considerations

examined the defined approximation in detail and provided an analysis of the approxima-

tion errors in each respective step of the approximation. In particular, the discretization

of the constraint space was analyzed with techniques from the theory of weak convergence

of measure, and the approximation of the relaxed controls was dissected with a repeated

application of the triangle inequality and several techniques from analysis. Furthermore, the

convergence of the approximate evaluation of cost criteria for fixed controls was considered.

With the theoretical treatment concluded, the performance of the proposed method was

demonstrated by applying it to several problems in stochastic control. We began with solv-

ing some simple model problems of Brownian motion with bounded state spaces, for which

analytic solutions are attainable and the actual convergence could be analyzed. Then, we

introduced more involved features into the models, like costs of control and singular control.

Finally, models with unbounded state spaces were investigated, and the underlying dynamics

became more complicated by considering geometric Brownian Motion and mean-reverting

models. The numerical experiments not only underlined the applicability of the models, but

also contributed to the analysis of the models themselves.

VI.2 Outlook

The presented research can be carried on in several directions. A generalization of the

method to state spaces of higher dimension would drastically increase the applicability to

more challenging control problems. The consideration of other cost criteria, like finite time

cost criteria or optimal stopping cost criteria would also promote the solution of more ap-
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pealing problems. Finally, one could improve the numerics of the presented method by

introducing higher order elements for the discretization of the function spaces, as well as by

researching adaptive meshing approaches for the discretization procedure. On the theoretical

side, a derivation of error bounds for the proposed approximations would be very interesting.

The generalization of the proposed numerical method to higher dimensional state spaces will

dramatically enhance the applicability of the method. The theory of the linear programming

approach can as well be used in higher dimensions, but several challenges loom in regard to

the numerical approximation. First, a countable dense set for the space of multivariate func-

tions (C2
c (E), ‖·‖D) has to be identified, with ‖f‖D = ‖f‖∞+‖f ′‖∞+‖f ′′‖∞ now picking up

the uniform norm of the gradient and Jacobian of f . A convenient set of basis functions has

to be defined in such a way that the sparsity of the coefficient matrix would be guaranteed

in order to keep computation times low. Second, in the case of a bounded state space, the

discretization of the singular expected occupation measure µ1 would be more involved, as

the boundaries in higher dimensions actually have non-trivial geometry, for example a line in

a two-dimensional state space. Finally, the discretization approaches for both the densities

and the controls would have to be adjusted to match this more general setting.

The introduction of finite time cost criteria, or an optimal stopping cost criterion comes with

an increased complexity of the analytic problem. In both cases, the expected occupation

measures would be time-dependent, which is expressed by introducing another constraint

space for the time component, as showcased in Helmes and Stockbridge (2007). An approx-

imation approach would now have to discretize the time dependence in both the constraints

and the measures, increasing the complexity of the discretization scheme. Regarding the

constraints, it is conjectured that the discretization can be conducted in similar fashion as

presented here, as the additional constraint functions lie in C1. For this space of functions,

analogues of B-spline basis functions are available, see de Boor (2001). However, a time-

discretization of the expected occupation measures would have to be devised from scratch. In

particular, the time dependence of the control has to be addressed. When regarding optimal
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stopping problems, a discrete approximate version of the distribution of the stopping time

has to established as well. An initial, and numerically successful, take on this can be found

in Lutz (2007). The convergence theory of this approach remains an open research problem.

A fairly straightforward enhancement of the presented approach is given by the introduction

of higher order elements when discretizing the density of the expected occupation measure.

Although this would, in some cases, require more assumption on the density, it is likely that

such an approach would improve convergence rates. Key challenges would remain in guaran-

teeing the non-negativity of the density when using certain finite elements. This is guaranteed

for piecewise constant or piecewise linear elements, but not for standard quadratic elements.

Also, the convergence proof would have to be adjusted. Regarding the latter, recall that

the proof of Proposition IV.1.43 assumes that the approximate density is zero only on a set

with a Lebesgue measures of 0, which is not as easily concluded for non-constant elements.

The possible benefits of higher-order elements were shown in Kaczmarek et al. (2007) and

Rus (2009). Solving the modified bounded follower problem, they attained comparable or

even better errors compared to those attained in this thesis, while still using an insufficient

approximation of the constraints space with piecewise linear or Hermite polynomial basis

functions for C2
c (E). In that matter, note that little flexibility of discretizing the constraint

space D∞ is given, as it is crucial to ensure the interchangeability of limit and integral in

expressions as the following, given a sequence of functions fk → f in some way:

lim
k→∞

∫
E×U

Afk(x, u)µ(dx× du) =

∫
E×U

lim
k→∞

Afk(x, u)µ(dx× du) =

∫
E×U

Af(x, u)µ(dx× du)

Given the displayed densities in Section IV.2, adaptive meshing approaches seem like a

very natural way to reduce computational efforts by introducing fewer mesh points where

the density remains constant, and more mesh point wherever it changes rapidly. Similar

heuristics could be used on the meshes for the constraints or the relaxed control. However,

it is worth noting that with initial attempts in this direction conducted during the research
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for this thesis, it was hard to ensure that the discrete linear program would have feasible

solutions.

To elevate adaptive meshing over a heuristic state, an analytic treatment of local errors

would be instructive. This would also factor into establishing error bounds for the proposed

approximation, which remained completely unconsidered in this work. So far, only the

convergence ‘as n → ∞’ is proven, and it is unclear how the approximation behaves for

finite discretization levels. If error bounds could be established, recommendations for the

choice of discretization levels could be given, enhancing the applicability of the proposed

method in real-world situations.
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Appendix

A Theoretic Aspects of Singular Stochastic Processes

In this appendix, we derive Itô’s formula for stochastic processes with singular behavior. This
motivates the definition of the singular generator B in Section II.1. Consider a filtered prob-
ability space (Ω,F , {Ft}t∈[t0,∞),P) which fulfills the ‘usual conditions’, that is, the filtration
{Ft}t∈[t0,∞) is right-continuous and complete. Also consider a 1-dimensional {Ft}t∈[t0,∞)-
Brownian motion process W . The set E ⊂ R is called the state space. Until specified
differently, we will assume that E = R. We are further given three functions, b̄, called the
drift, σ̄, called the diffusion and h̄, called the jump size, such that b̄, σ̄, h̄ : [0,∞)×E×Ω 7→ E.
Assume that b̄(·, ·, ω), σ̄(·, ·, ω) and h̄(·, ·, ω) are Borel measurable for all ω ∈ Ω, and b̄(·, x, ·)
and σ̄(·, x, ·) and h̄(·, x, ·) are progressively measurable for all x ∈ E. For details on the
solvability of SDEs using the coefficients b̄ and σ̄, we refer to Karatzas and Shreve (1991) or
Pham (2009).

Remark 1.1. In the setting of Section II.1, consider a fixed (non-relaxed) control process
u. Define b̄(t, x, ω) = b(x, ut(ω)), and σ̄ as well as h̄ similarly to match the setting of this
section.

A.1 Jump Processes

The goal of this subsection is to derive Itô’s formula for a jump processes. Consider an almost
surely increasing sequence of stopping times {τk}k∈N and the right-continuous, increasing
process of bounded variation given by

ξt =
∞∑
k=1

I{τk≤t}.

This process can be used as an integrator of a Lebesgue-Stieltjes integral, giving the following
stochastic differential equation for an Itô jump process a well-defined meaning. For the sake
of exposition, the dependence on ω is dropped in the subsequent formulas.

dXt = b̄(t,Xt)dt+ σ̄(t,Xt)dWt + h̄(t,Xt−)dξt, t ≥ t0
Xt0 = x0.

(1.2)
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The integral formulation for (1.2) is

Xt = x0 +

∫ t

t0

b̄(s,Xs) ds+

∫ t

t0

σ̄(s,Xs) dWs +

∫ t

t0

h̄(s,Xs−) dξs.

Proposition 1.3. Let X be a solution to (1.2), and let f ∈ C2(E) be bounded, with bounded
first and second derivatives. Then,

f(Xt) = f(x0) +

∫ t

t0

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs) ds+

∫ t

t0

σ̄(s,Xs)f
′(Xs) dWs

+

∫ t

t0

f(Xs− + h̄(s,Xs−))− f(Xs−) dξs.

Proof. Let {τk}k∈N be a sequence of stopping times such that τk is the time of the k-th
jump of X. We will use these stopping times to separate the continuous part of X from
the non-continuous, so-called singular part. For t ≥ t0, assume that n ∈ N is the smallest
natural number such that τn ≥ t. Then

f(Xt)− f(x0) = f(Xt)− f(Xτn) +
n∑
k=2

(
f(Xτk−)− f(Xτk−1

)
)

+ f(Xτ1−)− f(x0)︸ ︷︷ ︸
I1, continuous part

+
n∑
k=1

f(Xτk)− f(Xτk−)︸ ︷︷ ︸
I2, singular part

.

Using the classical Itô formula, we can deduce that

I1 =

∫ t

τn

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs) ds+

∫ t

τn

σ̄(s,Xs)f
′(Xs) dWs

+
n∑
k=2

(∫ τk−

τk−1

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs) ds+

∫ τk−

τk−1

σ̄(s,Xs)f
′(Xs)dWs

)

+

∫ τ1−

t0

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs) ds+

∫ τ1−

t0

σ̄(s,Xs)f
′(Xs) dWs

Observe that for any k∫ τk

τk−
b̄(s,Xs)f

′(Xs) +
1

2
σ̄2(s,Xs)f

′′(Xs) ds+

∫ τk

τk−
b̄(s,Xs)f

′(Xs) dWs = 0

holds. Indeed, since both integrals are taking over one point in the time domain, which is
a Lebesgue null set (hence, the first integral is zero) and by the continuity of the paths of
W , this point has also no weight in the stochastic integral. Hence, we can remove the “−”
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indicating the left limit in the expression for I1, revealing that

I1 =

∫ t

τn

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs)ds+

∫ t

τn

σ̄(s,Xs)f
′(Xs)dWs

+
n∑
k=2

(∫ τk

τk−1

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs)ds+

∫ τk

τk−1

σ̄(s,Xs)f
′(Xs)dWs

)

+

∫ τ1

t0

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs)ds+

∫ τ1

t0

σ̄(s,Xs)f
′(Xs)dWs

=

∫ t

t0

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs)ds+

∫ t

t0

σ̄(s,Xs)f
′(Xs)dWs.

The term I2 describes the increment in f(X) when X jumps. This can be rewritten as
follows.

I2 =
n∑
k=1

f(Xτk)− f(Xτk−) =

∫ t

0

f(Xs)− f(Xs−)dξs =

∫ t

0

f
(
Xs− + h̄(s,Xs−)

)
− f(Xs−)dξs.

Adding I1 and I2 together, and adding f(x0), we obtain the desired result.

Remark 1.4. Proposition 1.3 reveals that the generator B of singular behavior given by a
jump ought to be defined by Bf(x) = f (x+ h(s, x))− f(x).

A.2 Reflection Processes

To model a reflection of a stochastic process X, we use the concept of a local time process.
An introduction to Brownian local time and the closely related Tanaka formula can be found
in Øksendal (1998), exercise 4.10. Here, we will regard the same concept for Itô-processes,
that is, solutions to the differential equation

dXt = b̄(t,Xt)dt+ σ̄(t,Xt)dWt

Xt0 = x0,

and derive a generalization of Itô’s lemma for processes featuring reflections.

Definition 1.5. Let X be an Itô process. Let λ denote the Lebesgue measure on [0,∞). The
local time of X at x is the process

LXx (t) = lim
ε→0

1

2ε
λ({s ∈ [0, t] : |Xs − x| ≤ ε}).

Remark 1.6. LXx can be shown to be an almost surely continuous, increasing process of
bounded variation. Hence it can be used as an integrator in a Lebesgue-Stieltjes integral.

A reflected process is modeled as follows. Assume that r1, r2, . . . , rn ∈ E are the points at
which the process is reflected to the right, and that l1, l2, . . . , ln ∈ E are the points at which
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the process is reflected to the left. Define

ξt =
n∑
k=0

LXrk(t)−
n∑
k=0

LXlk (t)

As a linear combination of process of bounded variation, ξ can still be used as an integrator,
giving the following stochastic differential equation for reflected process proper meaning.

dXt = b̄(t,Xt)dt+ σ̄(t,Xt)dWt + dξt, t ≥ t0
Xt0 = x0.

(1.7)

with integral meaning

Xt = x0 +

∫ t

t0

b̄(s,Xs)ds+

∫ t

t0

σ̄(s,Xs)dWs + ξt,

as ξ0 = 0.

Proposition 1.8. Let X be a solution to (1.7), and let f ∈ C2(E) be bounded, with bounded
first and second derivatives. Then,

f(Xt) = f(x0) +

∫ t

t0

(
b̄(s,Xs)f

′(Xs) +
1

2
σ̄2(s,Xs)f

′′(Xs)

)
ds+

∫ t

t0

σ̄(s,Xs)f
′(Xs)dWs

+

∫ t

t0

f ′(Xs)dξs.

Proof. Consider the increment f(Xt)− f(x0), and a partition t0 < t1 < t2 < . . . < tn = t of
[0, t]. Assume that tj+1 − tj → 0 as n→∞. By Taylor’s formula, we have that

f(Xt)− f(x0) =
n−1∑
j=0

f ′(Xtj)
(
Xtj+1

−Xtj

)
︸ ︷︷ ︸

I1

+
n−1∑
j=0

1

2
f ′′(ηj)

(
Xtj+1

−Xtj

)2

︸ ︷︷ ︸
I2

where ηj ∈ [Xtj+1
−Xtj ], for j = 1, 2, . . . n− 1, respectively. The term I1 can be split up as

follows.

I1 =
n−1∑
j=1

f ′(Xtj)

[∫ tj+1

tj

b̄(s,Xs)ds+

∫ tj+1

tj

σ̄(s,Xs)dWs

]
+

n−1∑
j=1

f ′(Xtj)
(
ξtj+1

− ξtj
)

As can be seen in the proof of the classical Itô formula, the first part of the sum converges
to ∫ t

0

b̄(s,Xs)f
′(Xs)ds+

∫ t

t0

b̄(s,Xs)f
′(Xs)dWs

as n → ∞. The second part of the sum converges to the Lebesgue-Stieltjes integral∫ t
0
f ′(Xs)dξs as n→∞.
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Let us hence move our attention to the term I2. Observe that

(
Xtj+1

−Xtj

)2
=

(∫ tj+1

tj

b̄(s,Xs)ds+

∫ tj+1

tj

σ̄(s,Xs)dWs

)2

+

[
ξtj+1

− ξtj

]2

+2

[∫ tj+1

tj

b̄(s,Xs)ds+

∫ tj+1

tj

σ̄(s,Xs)dWs

][
ξtj+1

− ξtj

]

Thereby, we have that

2 · I2 =
n−1∑
j=0

f ′′(ηj)

(∫ tj+1

tj

b̄(s,Xs)ds+

∫ tj+1

tj

σ̄(s,Xs)dWs

)2

︸ ︷︷ ︸
I2,1

+
n−1∑
j=0

f ′′(ηj)

[
ξtj+1

− ξtj

]2

︸ ︷︷ ︸
I2,2

+
n−1∑
j=0

2f ′′(ηj)

[∫ tj+1

tj

b̄(s,Xs)ds+

∫ tj+1

tj

σ̄(s,Xs)dWs

][
ξtj+1

− ξtj

]
︸ ︷︷ ︸

I2,3

.

As can be seen in the proof of the classical Itô formula, I2,1 converges to
∫ t
t0
σ̄2(s,Xs)f

′′(Xs)ds
as n→∞. Regarding I2,2, we note that

I2,2 ≤ sup
α∈E
|f ′′(α)|

(
sup

j=1,...,n−1
|ξtj+1

− ξtj |
)

(ξt − ξ0) , (1.9)

which converges to 0 as n → ∞ for each ω. Indeed, as ξ is a continuous function on the
compact set [0, t], and hence uniformly continuous and thereby supj=1,...,n−1 |ξtj+1

− ξtj | → 0
as n→∞. Finally, I2,3 can be bounded as follows.

I2,3 ≤ 2 sup
α∈E
|f ′′(α)|

(
sup

j=1,...,n−1
|ξtj+1

− ξtj |
)[∫ t

t0

b̄(s,Xs)ds+

∫ t

t0

σ̄(s,Xs)dWs

]
Hence for any ω ∈ Ω, I2,3 goes to 0 as n → ∞, as again ξ is continuous on a compact set
and hence uniformly continuous. Adding all terms up, we have that

f(Xt) = f(x0) +

∫ t

t0

b̄(s,Xs)f
′(Xs) +

1

2
σ̄2(s,Xs)f

′′(Xs)ds+

∫ t

t0

σ̄(s,Xs)f
′(Xs)ds

+

∫ t

t0

f ′(Xs)dξs.
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Remark 1.10. Note that∫ t

t0

f ′(Xs) dξs =
n∑
k=0

∫ t

t0

f ′(Xs)dL
X
rk

(t)−
n∑
k=0

∫ t

t0

f ′(Xs)dL
X
lk

(t)

=
n∑
k=0

∫ t

t0

f ′(Xs)dL
X
rk

(t) +
n∑
k=0

∫ t

t0

−f ′(Xs)dL
X
lk

(t).

In other words, if we distinguish between reflections to the right, modeled by ξ
(r)
t and reflec-

tions to the left, modeled by ξ
(l)
t such that ξt = ξ

(r)
t − ξ

(l)
t , we have that∫ t

t0

f ′(Xs) dξs =

∫ t

t0

f ′(Xs) dξ
(r)
s −

∫ t

t0

f ′(Xs) dξ
(r)
s .

Remark 1.11. Proposition 1.8 reveals that the generator B of singular behavior given by a
reflection ought to be defined by Bf(x) = ±f ′(x).
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B Additional Lemmas Regarding Existence And Unique-

ness under a Fixed Control

B.1 Long-term Average Cost Criterion

In Section II.2.1, the existence and uniqueness for the linear constraints stemming from the
linear programming formulation under a fixed control were shown in the case of a boundary
behavior that is given by a reflection at the left endpoint el of the state space and a jump
away from the right endpoint er of the state space. The analysis remains similar if different
boundary behavior is chosen. In this section, we provide the crucial lemmas for the case
where the boundary behavior is given by reflections at both el and er, and the case where
the boundary behavior is given by a reflection at er and a jump away from el. With these
results, the analysis from Section II.2.1 can be adapted to show existence and uniqueness.
Throughout this section, we will consider a function fD as referred to in Section II.2.1, which
is of the form

fD(x) =

∫ x

c2

[∫ y

c1

2fD(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ y
c1

2b̄(t)

σ̄2(t)
dt
]
dy +K2.

As presented before, for the sake of exposition, the second derivative of fD is to be considered
formally, and a mollifying argument is employed to make the derivations rigorous.

First, consider these case of two reflections at both end point of the state space. This means
that the integral representing the singular behavior of the process takes the form∫

E

Bf(x) µ̄1(dx) = f ′(el)µ̄1({el})− f ′(er)µ̄1({er}).

Lemma 2.1. Let D be an interval in B(E). There is a choice of c1, c2, K1, K2 such that
f ′D(er) = 0 and f ′D(el) < 0.

Proof. Set c1 = er and K1 = 0. Then

f ′D(er) =

∫ er

er

2ID(z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dz = 0

and

f ′D(el) =

∫ el

er

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz = −

∫ er

el

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz < 0, (2.2)

since the integrand is positive. Note that the negative sign on the right hand side was
introduced by changing lower and upper limits of the integration.

Lemma 2.3. Let D be an interval in B(E). There is a choice of c1, c2, K1, K2 such that
f ′D(el) = 0 and f ′D(er) > 0.

209



Proof. Set c1 = el and K1 = 0. Then

f ′D(el) =

∫ el

el

2ID(z)

σ̄2(z)
e
∫ z
el

2b̄(t)

σ̄2(t)
dt
dz = 0

and

f ′D(er) =

∫ er

el

2ID(z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dz > 0, (2.4)

as the integrand is positive.

Remark 2.5. Given D = (c, d] or [c, d] for el ≤ c < d ≤ er, note that the value of f ′D(er) is

increasing in d. Further, the integrand in (2.4) will always be dominated by 2
σ̄2(z)

e
∫ z
el

2b̄(t)

σ̄2(t)
dt

,

so by the dominated convergence theorem, the function d 7→ f ′D(er) is continuous. Finally,
note that

f ′(el,d](er)− f ′(el,c](er) =

∫ er

el

2I(c,d](z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dz.

Remark 2.6. To mimic the proof of Theorem II.2.25 for a reflection at {er} and a jump

from {el} to s, define µ̄1 by setting µ̄1({er}) = 1
f ′E(er)

> 0 and µ̄1({el}) = e
−
∫ er
el

2b̄(t)

σ̄2(t)
dt
µ̄1({er}).

The continuous, increasing function F needed to construct the measure µ̄0 is given by F (d) =
f ′(el,d](er)µ̄1({er}). In particular,

F (d) =

∫ d

el

µ̄1({er}) ·
2

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dz.

and the integrand gives the density of µ̄0.

Second, consider the case of a jump from el to s, and a reflection at er. This means that
the integral representing the singular behavior of the process takes the form∫

E

Bf(x) µ̄1(dx) = (f(s)− f(el)) µ̄1({el})− f ′(er)µ̄1({er}).

Lemma 2.7. Let D be an interval in B(E) and s ∈ E, el < s ≤ er. There is a choice of
c1, c2, K1, K2 such that f ′D(er) > 0, fD(s)− fD(el) = 0.

Proof. Follow the construction of fI1 and fI2 as seen in Lemma II.2.15, and concatenate the
two functions to form the function fD. To have fD(s)− fD(el) = 0, we need

K1 = −
(∫ el

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ el

s

∫ y

s

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz dy

)
=

(∫ s

el

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ s

el

∫ s

y

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz dy

)
> 0.

This yields

f ′D(er) =

∫ er

s

2ID(z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ er
s

2b̄(t)

σ̄2(t)
dt
> 0. (2.8)
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Remark 2.9. Given D = (c, d] or D = [c, d] for el ≤ c < d ≤ er, note that the value of
f ′D(er) is increasing in d. Indeed, since in (2.8), both the first term and K1 are increasing

in d. Further, the integrand in (2.8) will always be dominated by 2
σ̄2(z)

e
∫ z
er

2b̄(t)

σ̄2(t)
dt

, so by the

dominated convergence theorem, the function g : d 7→ f ′D(er) is continuous and, if we set
c = el, g(el) = 0 holds. Finally, note that

f ′(el,d](er)− f ′(el,c](er)

=

∫ er

s

2I(c,d](z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dz

−
(∫ el

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ el

s

∫ y

s

2I(c,d](z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz dy

)
e
−
∫ er
s

2b̄(t)

σ̄2(t)
dt
.

Remark 2.10. To mimic the proof of Theorem II.2.25 for a reflection at {er} and a jump
from {el} to s, define µ̄1 by setting µ̄1({er}) = 1

f ′E(er)
> 0 and

µ̄1({el}) = µ̄1({er})
e
−
∫ er
s

2b̄(t)

σ̄2(t) dt∫ el
s
e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy
.

The continuous, increasing function F needed to construct the measure µ̄0 is given by F (d) =
f ′(el,d](er)µ̄1({er}). In particular,

F (d) =

∫ d

el

µ̄1({er})

[
2I(s,d](z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt

+

(∫ el

s

e
−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy

)−1

·
(∫ y

s

2I(el,s](z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dy

)
e
−
∫ er
s

2b̄(t)

σ̄2(t)
dt

]
dz.

and the integrand gives the density of µ̄0.

Lemma 2.11. Let D be an interval in B(E) and s ∈ E, el < s ≤ er. There is a choice of
c1, c2, K1, K2 such that f ′D(er) = 0, fD(s)− fD(el) < 0.

Proof. Follow the construction of fI1 and fI2 as seen in Lemma II.2.15, and concatenate the
two functions to form the function fD. To ensure that f ′D(er) = 0, we need

K1 = −
(
e
−
∫ er
s

2b̄(t)

σ̄2(t)
dt
)−1

·
(∫ er

s

2ID(z)

σ̄2(z)
e
∫ z
er

2b̄(t)

σ̄2(t)
dt
dz

)
.
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Note that K1 < 0. As fD(s) = K2 and

fD(el) =

∫ el

s

∫ y

s

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy +K2

=

∫ s

el

∫ s

y

2ID(z)

σ̄2(z)
e
∫ z
y

2b̄(t)

σ̄2(t)
dt
dz +K1e

−
∫ y
s

2b̄(t)

σ̄2(t)
dt
dy +K2 > K2,

again due to the fact that we are integrating backwards twice, we have that fD(s)−fD(el) <
0.

B.2 Infinite Horizon Discounted Criterion

In Section II.2.2, we derived the existence of solutions to the linear constraints for the dis-
counted infinite horizon criterion, under a fixed control, as an easy implication of the exis-
tence from the long-term average case. Additional results were provided to show the unique-
ness for the discounted infinite horizon criterion under the assumption that the boundary
behavior is given by two reflections at both ends el and er of the state space. The following
results treat the remaining cases where the singular behavior is given by a reflection at the
left endpoint el, and a jump to s ∈ E from the right endpoint er, and the case that the
singular behavior is given by a reflection at the right endpoint er and a jump to s ∈ E from
el. The derivations of Section II.2.2 can be adapted to show uniqueness in these case, using
the results presented here. For the following result, refer to Definition II.2.37 for the specific
forms of φ and ψ.

Lemma 2.12. Let D be an interval in B(E) and el < s ≤ er. Then, there is a sequence of
functions {fD,k}k∈N, such that Āαfk → ID boundedly and pointwise with
limk→∞ (fD,k(s)− fD,k(el)) = 0 and limk→∞ f

′
D,k(er) > 0.

Proof. In the definition of φα and ψα (compare Definition II.2.37), choose y = s such that
0 < φα < 1 and ψα > 1 on [el, s) and φα(s) = ψα(s) = 1. Consider the sequence of functions
given by

fk,D(x) =
2

Bα

[
φk(x)

∫ x

el

ψk(y)gk(y)mk(y) dy − ψk(x)

∫ x

el

φk(y)gk(y)mk(y) dy

]
+K · ψk(x)

(2.13)
for k ∈ N, where gk and mk are mollifiers according to Proposition II.2.19, with

K =

2
Bα

[
φα(s)

∫ s
el
ψα(y)g(y)m(y) dy − ψα(s)

∫ s
el
φα(y)g(y)m(y) dy

]
ψα(el)− ψα(s)

. (2.14)
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As 0 < φα < 1 and ψα > 1 on [el, s),

2

Bα

[
φα(s)

∫ s

el

ψα(y)g(y)m(y) dy − ψα(s)

∫ s

el

φα(y)g(y)m(y) dy

]
<

2

Bα

[
φα(s)

∫ s

el

g(y)m(y) dy − ψα(s)

∫ s

el

g(y)m(y) dy

]
=

2

Bα

[φα(s)− ψα(s)]

∫ s

el

g(y)m(y) dy = 0

holds, as Bα < 0. As ψα is increasing, K > 0. Further, fk,D(el) = K · ψα(el) and

fk,D(s) =
2

Bα

[
φk(x)

∫ s

el

ψk(y)gk(y)mk(y) dy − ψk(x)

∫ s

el

φk(y)gk(y)mk(y) dy

]
+K · ψk(s)

holds and thereby, by the choice of K,

lim
k→∞

(fD,k(s)− fD,k(el))

= lim
k→∞

(
2

Bα

[
φk(s)

∫ s

el

ψk(y)gk(y)mk(y) dy− ψk(s)

∫ s

el

φk(y)gk(y)mk(y) dy

]

+K · (ψk(s)− ψk(el))

)
= 0.

On the other hand, we have that

lim
k→∞

f ′D,k(er) = K · ψ′α(er) +
2

Bα

[
φ′α(er)

∫ er

el

ψα(y)g(y)m(y) dy

−ψ′α(er)

∫ er

el

φα(y)g(y)m(y) dy

]
> 0

By Theorem II.2.49 and Proposition II.2.47, it therefore follows that Āαfk → ID(E).

Remark 2.15. If in (2.13), we choose K > 0 but different from the choice given in (2.14),
we have that limk→∞ (fD,k(s)− fD,k(el)) 6= 0 and limk→∞ f

′
D,k(er) > 0

Lemma 2.16. Let D be an interval in B(E) and el ≤ s < er. Then, there is a sequence of
functions {fD,k}k∈N, such that Āαfk → ID(E) boundedly and pointwise with
limk→∞ (fD,k(er)− fD,k(s)) = 0 and limk→∞ f

′
D,k(el) < 0.

Proof. In the definition of φα and ψα, choose y = s such that φα > 1 and 0 < ψα < 1 on
(s, er] and φα(s) = ψα(s) = 1. Consider the sequence of functions given by

fk,D(x) =
2

Bα

[
φk(x)

∫ x

er

ψk(y)gk(y)mk(y) dy + ψk(x)

∫ er

x

φk(y)gk(y)mk(y) dy

]
+K · φk(x)

(2.17)
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for k ∈ N, where gk and mk are mollifiers according to Proposition II.2.19, with

K =

2
Bα

[
φα(s)

∫ s
er
ψα(y)g(y)m(y) dy − ψα(s)

∫ s
er
φα(y)g(y)m(y) dy

]
ψα(er)− ψα(s)

. (2.18)

As ψα > 1 and 0 < φα < 1 on (s, er],

2

Bα

[
φα(s)

∫ s

er

ψα(y)g(y)m(y) dy − ψα(s)

∫ s

er

φα(y)g(y)m(y) dy

]
<

2

Bα

[
φα(s)

∫ s

er

g(y)m(y) dy − ψα(s)

∫ s

er

g(y)m(y) dy

]
=

2

Bα

[φα(s)− ψα(s)]

∫ s

er

g(y)m(y) dy = 0

holds, as Bα < 0. As ψα is increasing, K < 0. Further, fk,D(er) = K · ψα(er) and

fk,D(s) =
2

Bα

[
φk(x)

∫ s

er

ψk(y)gk(y)mk(y) dy + ψk(x)

∫ er

s

φk(y)gk(y)mk(y) dy

]
+K · ψk(s)

holds and thereby, by the choice of K,

lim
k→∞

(fD,k(s)− fD,k(el))

= lim
k→∞

(
2

Bk

[
φk(s)

∫ s

er

ψk(y)gk(y)mk(y) dy− ψk(s)

∫ s

er

φk(y)gk(y)mk(y) dy

]

+K · (ψk(s)− ψk(er))

)
= 0.

On the other hand, we have that

lim
k→∞

f ′D,k(er) = K · ψ′α(el) +
2

Bα

[
φ′α(el)

∫ el

er

ψα(y)g(y)m(y) dy

−ψ′α(el)

∫ el

er

φα(y)g(y)m(y) dy

]
< 0

By Theorem II.2.49 and Proposition II.2.47, we have that Āαfk → ID(E).

Remark 2.19. If in (2.17), we choose K < 0 but different from the choice given in (2.18),
we have that limk→∞ (fD,k(er)− fD,k(s)) 6= 0 and limk→∞ f

′
D,k(er) < 0.

214



C Analytic Solutions to Selected Control Problems

C.1 Simple Particle Problem without Cost of Control

In this subsection we show how to find the density p of the state space marginal of expected
occupation measures µ0 for the simple particle problem under the long-term average criterion,
as referred to in Section V.1.1. The state space is E = [−1, 1], the control space is U = [−1, 1]
and the SDE of interest, in integral form, is

Xt = x0 +

∫ t

0

u(Xs)ds+ σWt + ξt,

where the process ξt models reflection of the process at both boundaries. In other words, we
have that ξt = LX{−1}(t) − LX{1}(t) where LX{a} is the local time of X at a ∈ E. The starting
point x0 can be chosen arbitrarily in E. Under the long term average criterion, the position
of the starting point is irrelevant. Note that this process does not feature any control on the
singular part.
Our objective is to keep the process as close as possible to the origin. For cost criteria that do
not charge for the use of the control, like c0(x, u) = x2 and c1(x, u) = c

(
δ{1}(x) + δ{−1}(x)

)
for some c ∈ R, it is obvious to see that the optimal control is given by the following function.

u(x) =


+1 x < 0
0 x = 0
−1 x ≥ 0

(3.1)

We assume that µ0(dx×du) = η0(du, x)p(x)dx and µ1,E(dx) = w1δ{−1}+w2δ{1}, where η0(·, x)
is a degenerate probability distribution putting all mass on u(x). The linear programming
formulation for this problem is hence∫ 1

−1

(
u(x)f ′(x) +

σ2

2
f ′′(x)

)
p(x) dx+ w1f

′(−1)− w2f
′(1) = 0 ∀f ∈ C2

c (E). (3.2)

Note that since E is compact, we do not have to distinguish between C2(E) and C2
c (E). To

find p, we employ a mollifying argument on u as follows. Define

un(x) =


u(x) x < − 1

n

u(− 1
n
) +

u( 1
n

)−u(− 1
n

)
2
n

(x+ 1
n
)) − 1

n
≤ x < 1

n

u(x) x ≥ 1
n

,

which obviously converges to u(x) boundedly and pointwise. We try to solve (3.2) using un
rather than u. The density in this setting is referred to as pn. This means we seek to solve
the equation∫ 1

−1

(
un(x)f ′(x) +

σ2

2
f ′′(x)

)
pn(x) dx+ w1f

′(−1)− w2f
′(1) = 0 ∀f ∈ C2

c (E).
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For f ∈ C2(E), assuming that pn is twice differentiable, integration by parts, applied twice
on the terms featuring f ′′, yields

0 = [un(x)pn(x)f(x)]1−1 −
∫ 1

−1

[unpn]′(x)f(x) dx

+
σ2

2

{
[pn(x)f ′(x)]

1
−1 − [p′n(x)f(x)]

1
−1 +

∫ 1

−1

p′′n(x)f(x) dx

}
+ wn,1f

′(−1)− wn,2f ′(1)

= f(1)

[
un(1)pn(1)− σ2

2
p′n(1)

]
− f(−1)

[
un(−1)pn(−1)− σ2

2
p′n(−1)

]
+f ′(1)

[
σ2

2
pn(1)− wn,2

]
− f ′(−1)

[
σ2

2
pn(−1)− wn,1

]
+

∫ 1

−1

(
σ2

2
p′′n(x)− [unpn]′(x)

)
f(x) dx.

As this equation has to hold for all f ∈ C2(E), we have in particular that

σ2

2
p′′n(x)− [unpn]′(x) = 0, x ∈ (−1, 1) (3.3)[

un(1)pn(1)− σ2

2
p′n(1)

]
− f(−1)

[
un(−1)pn(−1)− σ2

2
p′n(−1)

]
= 0 (3.4)

f ′(1)

[
σ2

2
pn(1)− wn,2

]
− f ′(−1)

[
σ2

2
pn(−1)− wn,1

]
= 0 (3.5)

The differential equation (3.3) can be solved with (3.4) giving the necessary boundary con-
straints. The values for the weights w1 and w2 are then given by (3.5). We solve the
differential equation first. Integrating (3.3) yields

σ2

2
p′n(x)− un(x)pn(x) = k1 ⇔ p′n(x)− 2

σ2
un(x)pn(x) =

2

σ2
k1.

Condition (3.4) in particular claims that u(−1)pn(−1) − σ2

2
p′n(−1) = 0, from which we

can conclude that k1 = 0. Define the integrating factor M(x) = e
∫ x
c2
− 2
σ2 un(v) dv

we see, as
M ′(x) = − 2

σ2un(x)M(x), that

M(x)p′n(x)− 2

σ2
un(x)M(x)pn(x) = 0

⇔
(
pn(x)M(x)

)′
= 0

⇔ pn(x)M(x) = k2.

Dividing by M(x) and explicitly writing out M(x), we finally receive

pn(x) = k2e
∫ x
c2

2
σ2 un(v) dv

. (3.6)
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Recall that c2 is an arbitrary constant, so we set c2 = −1. By setting

k2 =

(∫ 1

−1

e
∫ r
−1

2
σ2 un(v) dv dr

)−1

we ensure that p is actually a probability density. So our solution is

pn(x) =
e
∫ x
−1

2
σ2 un(v) dv∫ 1

−1
e
∫ r
−1

2
σ2 un(v) dv dr

.

We use (3.5) to compute the reflection weights. We deduce that

σ2

2
pn(1) = wn,2 and

σ2

2
pn(−1) = wn,1.

Now we use the mollifying argument. Note that

lim
n→∞

pn(x) =
e
∫ x
−1

2
σ2 u(v) dv∫ 1

−1
e
∫ r
−1

2
σ2 u(v) dv dr

=: p(x)

boundedly and pointwise. Thereby,

lim
n→∞

wn,1 =
σ2

2
p(−1) =: w1 and lim

n→∞
wn,2 =

σ2

2
p(1) =: w2

do exist. An application of the bounded convergence theorem now reveals that∫ 1

−1

(
u(x)f ′(x) +

σ2

2
f ′′(x)

)
p(x) dx+ w1f

′(−1)− w2f
′(1)

= lim
n→∞

(∫ 1

−1

(
un(x)f ′(x) +

σ2

2
f ′′(x)

)
pn(x) dx+ wn,1f

′(−1)− wn,2f ′(1)

)
= 0

which show that p, w1 and w2 fulfill the constraints. To evaluate the cost criterion for this
particular control u, we simply have to evaluate

J(u) ≡
∫ 1

−1

x2p(x) dx+ c(w1 + w2).

C.2 Modified Bounded Follower

In this subsection we illustrate how to find the optimal solution of the modified bounded
follower problem under the long-term average criterion, as referred to in Section V.1.3. This
problem has the state space E = [0, 1], the process is reflected at the left endpoint of the
state space {0} and performs a jump from the right endpoint of the state space, {1}, to the
left end, {0}. The control space is given U = [−1, 1] and the process is governed by the SDE
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in integral form

Xt = x0 +

∫ t

0

u(Xs)ds+ σWt + ξt.

The starting point x0 can be chosen arbitrarily in E. Under the long term average criterion,
the position of the starting point is irrelevant. ξt captures the singular behavior of the
process. The cost functions are of the form c0(x, u) = x2 and c1(x, u) = cδ{1}(x) for some
c ∈ R. Again, this process does not feature control of the singular behavior. We can readily
convince ourselves that the optimal control for this problem is a (deterministic) bang-bang
control of the form

ua(x) =

{
−1 x < a
+1 x ≥ a

(3.7)

where the ‘switching point’ a depends on the coefficients of the SDE. Indeed, since due to
the jump behavior at {1}, it is beneficial to push the process to the right endpoint as soon
as it crosses a certain threshold a if the costs c of a jump are small compared to the costs of
being far away from the origin. Obviously, we can stipulate that a > 0.
In order to find the occupation measures µ0 and µ1 associated with this problem, assume
that µ0(dx×du) = η0(du, x)p(x)dx and µ1(dx) = w1δ{0}+w2δ{1}. The linear constraints are
given by

0 =

∫ 1

0

∫ 1

−1

[
u(x)f ′(x) +

σ2

2
f ′′(x)

]
η0(du, x)p(x) dx+ w1f

′(0) + w2 [f(0)− f(1)] (3.8)

=

∫ 1

0

[
u(x)f ′(x) +

σ2

2
f ′′(x)p(x)

]
dx+ w1f

′(0) + w2 [f(0)− f(1)] , (3.9)

where we used that the proposed control in (3.7) is deterministic. Define

un(x) =


u(x) x < a− 1

n

u(a− 1
n
) +

u(a+ 1
n

)−u(a− 1
n

)
2
n

(x− a+ 1
n
)) a− 1

n
≤ x < a+ 1

n

u(x) x ≥ a+ 1
n

,

which converges to ua pointwise and bounded. As seen in Appendix C.1 we solve (3.8) using
un rather than u. The density in this setting is referred to as pn. Assume that pn is twice
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differentiable. Repeatedly integrating by parts, we obtain

0 =

∫ 1

0

[
un(x)f ′(x) +

σ2

2
f ′′(x)

]
pn(x) dx+ wn,1f

′(0) + wn,2 [f(0)− f(1)]

=

∫ 1

0

un(x)f ′(x)pn(x)dx+
σ2

2

∫ 1

0

f ′′(x)pn(x) dx+ wn,1f
′(0) + wn,2 [f(0)− f(1)]

= [un(x)pn(x)f(x)]10 −
∫ 1

0

[unpn]′ (x)f(x) dx+
σ2

2

[
[pn(x)f ′(x)]

1
0 −

∫ 1

0

p′n(x)f ′(x) dx

]
+wn,1f

′(0) + wn,2 [f(0)− f(1)]

= [un(x)pn(x)f(x)]10 −
∫ 1

0

[unpn]′ (x)f(x) dx+
σ2

2
[pn(x)f ′(x)]

1
0

−σ
2

2

[
[p′n(x)f(x)]

1
0 −

∫ 1

0

p′′n(x)f(x) dx

]
+ wn,1f

′(0) + wn,2 [f(0)− f(1)]

=

∫ 1

0

f(x)

[
−(unpn)′(x) +

σ2

2
p′′n(x)

]
dx+ [un(x)pn(x)f(x)]10

+
σ2

2

(
[f ′(x)pn(x)]

1
0 − [f(x)p′n(x)]

1
0

)
+ wn,1f

′(0) + wn,2 [f(0)− f(1)] .

This equation has to hold for all f ∈ C2(E). In particular, this means that

−(unpn)′(x) +
σ2

2
p′′n(x) = 0, x ∈ (0, 1) (3.10)

[un(x)pn(x)f(x)]10 +
σ2

2

(
[f ′(x)pn(x)]

1
0 − [f(x)p′n(x)]

1
0

)
+wn,1f

′(0) + wn,2 [f(0)− f(1)] = 0 (3.11)

We proceed by solving the differential equation given by (3.10). Equation (3.11) is used to
determine constants that appear during the solution process. Observe that we can integrate
(3.10) once to deduce

−un(x)pn(x) +
σ2

2
p′n(x) = k1 ⇔ p′n(x)− 2

σ2
un(x)pn(x) =

2

σ2
k1.
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Using the integrating factor M(x) = e
∫ x
c2
− 2
σ2 un(v) dv

we see, since M ′(x) = − 2
σ2un(x)M(x),

that

M(x)p′n(x)− 2

σ2
un(x)M(x)pn(x) = M(x)

2

σ2
k1

⇔
(
pn(x)M(x)

)′
= M(x)

2

σ2
k1

⇔ pn(x)M(x) =

∫ x

c1

M(y)
2

σ2
k1 dy + k2.

Dividing by M(x) and explicitly writing out M(x), we finally receive

pn(x) =

∫ x
c1
e
∫ y
c2
− 2
σ2 un(v) dv 2

σ2k1 dy + k2

e
∫ x
c2
− 2
σ2 un(v) dv

At this point, we introduce the constraints given by (3.11). We can rewrite this equation in
the form

f(1)

[
un(1)pn(1)− σ2

2
p′n(1)− wn,2

]
− f(0)

[
un(0)pn(0)− σ2

2
p′n(0)− wn,2

]
+f ′(1)

[
σ2

2
pn(1)

]
− f ′(0)

[
σ2

2
pn(0)− wn,1

]
= 0

As this identity has to hold for all f ∈ C2(E), we can deduce the following boundary
conditions.

σ2pn(0) = 2wn,1, 2un(1)pn(1)− σ2p′n(1) = 2wn,2
σ2pn(1) = 0, 2un(0)pn(0)− σ2p′n(0) = 2wn,2

(3.12)

In particular, we have p(1) = 0, implying that

0 =

∫ 1

c1
e
∫ y
c2
− 2
σ2 un(v) dv 2

σ2k1 dy + k2

e
∫ 1
c2
− 2
σ2 un(v) dv

which we can attain by setting c1 = 1 and k2 = 0. Hence, we have

pn(x) =

∫ x
1
e
∫ y
c2
− 2
σ2 un(v) dv 2

σ2k1 dy

e
∫ x
c2
− 2
σ2 un(v) dv

= k1

∫ x

1

2

σ2
e
∫ y
c2

2
σ2 un(v) dv−

∫ x
c2
− 2
σ2 un(v) dv

dy

= k1

∫ x

1

2

σ2
e
∫ y
x −

2
σ2 un(v) dv dy.

Recall that pn has to be a probability density. Consequently, we set

k1 =
1∫ 1

0

∫ r
1

2
σ2 e

∫ y
r −

2
σ2 un(v) dv dy dr

.
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The final form of the density is given by

pn(x) =

∫ x
1
e
∫ y
x −

2
σ2 un(v) dv dy∫ 1

0

∫ w
1
e
∫ y
w −

2
σ2 un(v) dv dy dw

.

As a 6= 0, we deduce that

wn,1 =
1

2
σ2pn(0) = σ2

(
2e

2a
σ2 − e

−2+4a

σ2 − 1
)

2k1

,

and w2,n is determined in similar fashion using the formulas displayed in (3.12). Observe
that by the bounded convergence theorem, the limit

lim
n→∞

pn(x) =

∫ x
1
e
∫ y
x −

2
σ2 u(v) dv dy∫ 1

0

∫ w
1
e
∫ y
w −

2
σ2 u(v) dv dy dw

=: p(x), (3.13)

is well-defined. Also, set

w1 := lim
n→∞

wn,1 and wn,2 lim
n→∞

:= wn,2.

Given the form of the optimal control as in (3.7), an evaluation of the integrals in (3.13)
yields

p(x) =


1
k0
·
[
e

2
σ2 ·(a−x−1) ·

(
e

2
σ2 − e

2·a
σ2

)
− 1 + e

2
σ2 ·(a−x)

]
x < a

1
k0
·
(

1− e
2
σ2 ·(x−1)

)
x ≥ a

with

k0 =
1

2

(
2− 2a+

(
−1 + e

2
σ2 (a−1)

)
· σ2
)

+
1

2

(
−2a+ e

−2

σ2 ·
(

2e
2
σ2 − e

2
σ2 a
)
·
(
−1 + e

2
σ2 a
)
· σ2
)

Applying the mollifying argument, we discover that∫ 1

0

[
u(x)f ′(x) +

σ2

2
f ′′(x)p(x)

]
dx+ w1f

′(0) + w2 [f(0)− f(1)]

= lim
n→∞

(∫ 1

0

[
un(x)f ′(x) +

σ2

2
f ′′(x)pn(x)

]
dx+ w1,nf

′(0) + w2,n [f(0)− f(1)]

)
= 0,

and hence p, w1 and w2 solve the linear constraints posed by (3.8). The cost criterion is
given by

J(a) ≡
∫ 1

0

x2p(x) dx+ cw2
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which is equal to

J(a) =
−6σ2e

2a
σ2 (2a2 + σ4)

6
(
−2σ2e

2a
σ2 + σ2e

4a
σ2 − 2σ2e

2(a+1)

σ2 + e
2
σ2 (4a+ 3σ2 − 2)

)
+
e

2
σ2 (8a3 + 12a2σ2 + 12aσ4 − 12c+ 9σ6 − 6σ4 + 6σ2 − 4)

6
(
−2σ2e

2a
σ2 + σ2e

4a
σ2 − 2σ2e

2(a+1)

σ2 + e
2
σ2 (4a+ 3σ2 − 2)

)
+

3σ6e
4a
σ2 − 6σ6e

2(a+1)

σ2

6
(
−2σ2e

2a
σ2 + σ2e

4a
σ2 − 2σ2e

2(a+1)

σ2 + e
2
σ2 (4a+ 3s2 − 2)

) · cw2.

This expression can be obtained with a computer algebra system. The minimum of J , as well
as the minimizer a, for specific choices of σ and c, can be found using numerical minimization.
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D List of Abbreviation and Symbols

This appendix provides an overview of frequently used abbreviations and symbols for the
ease of reading.

R≥0 the non-negative real numbers.

E state space of a stochastic process, either E = [el, er], E = (−∞, er],
E = [el,∞) or E = (−∞,∞) for −∞ < el < er <∞.

U control space, U = [ul, ur] for −∞ < ul < ur <∞.

b drift term of a stochastic process, maps E × U into R.

σ diffusion term of a stochastic process, maps E × U into R≥0.

A the generator of the continuous behavior of a stochastic process.

B the generator of the singular behavior of a stochastic process.

‖ · ‖∞ the supremum norm defined by sup{|f(x)| : x ∈ domain(f)} when
used on a function, or the maximum norm when used on a vector or
matrix.

B(S) the set of Borel measurable functions from S to R.

C(S) the set of continuous functions from S to R.

Cc(S) the set of continuous functions from S to R with compact support.

Cb(S) the set of bounded continuous functions from S to R.

Cu
b (S) the set of bounded, uniformly continuous functions from S to R.

C2(S) the set of twice continuously differentiable functions from S to R.

C2
c (S) the set of twice continuously differentiable functions from S to R with

compact support.

‖ · ‖D the norm on C2
c (S) given by ‖f‖D = ‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞

D∞(S) the separable space of functions given by (C2
c (S), ‖ · ‖D)

L1(S) the set of Lebesgue integrable functions on S.

P(S) the space of probability measures on a measurable space S.

M(S) the space of finite Borel measures on a measurable space S.

Ml(S) the space of finite Borel measures on a space S with full mass less then
or equal to l.
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