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ABSTRACT 
 

NEW DIRECT ACTING ANTI-VIRALS INHIBITING HEPATITIS C VIRUS HELICASE AND 
INSIGHTS INTO HOW ATP FUELS HELICASE ACTION 

 
By 

 
Mark Yerukhimovich 

 
The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor David N. Frick 
 

According to the World Health Organization, Hepatitis C Virus (HCV) has infected 130-

150 million people worldwide. Approximately 700,000 of those die each year from chronic HCV 

related causes such as cirrhosis or cancer. Currently, there are numerous HCV drugs on the 

market; they target the protease, polymerase and NS5A proteins encoded by of HCV. These 

drugs are expensive and HCV can become resistant, thus there is constant need for new DAAs. 

The first part of this thesis examines the search for additional drugs that function by inhibiting 

the NS3 helicase, which have been challenging to develop. 

Part of the reason for a lack of helicase inhibitors can be due to the difficulty of 

understanding its mechanism. The helicase is a motor protein that couples ATP hydrolysis to 

DNA or RNA unwinding. The second part of this thesis examine the role of a cysteine residue in 

the helicase ATP binding site. When the cysteine was replaced with other amino acids, the 

protein possessed unusual features not seen in the wildtype helicase. Helicase proteins lacking 

the cysteine, were able to hydrolyze ATP in the absence of nucleic acid 15times faster than 

wildtype. This finding may provide future information into the coupling mechanism of chemical 

energy to physical motions of the enzyme. 
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Chapter 1: Literature Review 

Section 1.1: Background 

Hepatitis C Virus (HCV) [1] chronically infects an estimated 70 million people worldwide. 

Of those, roughly four hundred thousand die each year from cirrhosis or liver cancer. According 

to the CDC, one quarter of people with HIV also are co-infected with HCV. This complicates for 

treatment of either disease and can increase risk for life-threatening complications. However, 

with modern advances in disease research, numerous direct acting antivirals (DAAs) have been 

created to effectively cure over 95% of all those living with HCV [2]. Current barriers to 

treatment are cost and the lack of symptoms for many, while infected.   

HCV is an enveloped virus which is transmitted via blood-to-blood contact. It primarily 

infects the liver and can be asymptomatic for many years until it leads to liver disease. There is 

no vaccine currently on the market, however, with extensive research of the viral proteins, in 

2011, the first class of DAAs was released and offered a cure to many. Prior treatment, with 

pegylated interferon and/or ribavirin, offered an increased chance for a person’s body to fight 

off the infection, but had side effects and was an expensive treatment. The current treatments 

have few side effects, and with insurance, can be an affordable cure. A culmination of research 

in virology, biochemistry, and medicinal chemistry has provided relief for many. 

HCV belongs to the Flaviviridae family of single-stranded, positive-sense RNA (+) ssRNA 

viruses. Upon infection, the virus enters the cell and releases its genetic content. The (+) ssRNA 

is like mRNA in eukaryotes; it does not need any modifications and is ready to be translated by 

host ribosomes. The viral RNA is translated into a single polyprotein that is cleaved into mature 
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proteins: structural (core, E1, and E2) and nonstructural (p7, NS2, NS3-4A, NS4B, NS5A, and 

NS5B). The core, E1, and E2 are integral to the formation of core and envelope glycoproteins for 

viral particle synthesis. NS2 and p7 support new viral particle formation, but are not 

incorporated into the mature virus. NS3:NS4A, NS4B, NS5A and NS5B form the replicase 

responsible for replicating the RNA viral genome. [3] 

There are numerous HCV drugs on the market as well as many others in clinical trials. 

The drugs can be administered as a single drug, or a combination of drugs targeting one, or 

many HCV protein targets as well as genotypes. There are three main classes of HCV DAAs: 

NS3/4A serine protease inhibitors, NS5A protein inhibitors, and NS5B RNA polymerase 

inhibitors. I will discuss the current advances in each class. 

Section 1.2: NS3 Protease Drugs -previr 

NS3 is a multifunctional protein complexed with its cofactor, NS4A. NS3 is composed of 

a serine protease in its N terminus, vital to polyprotein processing and viral replication, and a 

NTPase/RNA helicase in its C-terminus. The NS4A cofactor is located at the C terminus of NS3. 

[4]. NS4A is a short 54 a.a. peptide that is required for correct NS3 folding and NS3/4A 

membrane tethering. Both the NS3 helicase and protease have been studied extensively, and 

numerous crystal structures have been solved.  

NS3 protease is a serine protease with a chymotrypsin-like fold, composed of 2 beta 

barrels flanked by two alpha helices. The active site of the protease can accept between 6 and 

10 amino acids; efficiency of the enzyme is best with ten. The NS4A cofactor helps position the 

substrate into the active site and contributes to substrate specificity. General substrate 

notation are the ten amino acid positions; P6 through P4’. The P1 – P1’ peptide bond is the one 
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cleaved; the scissile bond. The active site catalytic triad is composed of: His 57, Asp 81, and Ser 

139. Lemke and associates demonstrate non-catalytic residues that are important to substrate 

binding and in important for inhibitor design [5]. R155 and D168 form a salt bridge when 

substrate is bound. The salt bridge induces the aliphatic chains of the residues to be exposed 

forming a hydrophobic pocket in the active site.  The general mechanism of the protease is well 

known. 

First, the substrate binds and is positioned correctly in the active site. The histidine 

deprotonates the serine hydroxyl group thus activating to attack the carbonyl carbon of the 

substrate. This create a tetrahedral intermediate. The amide bond is broken and electrons are 

transferred to the histidine. This breaks the scissile bond and regenerates the histidine, while 

the serine is still bound to the carbonyl carbon of the substrate. The N terminus of the 

substrate exits, and a water enters that is activated by the histidine. The activated water attacks 

the carbonyl carbon of the substrate forming another tetrahedral intermediate. A subsequent 

electron transfer, kicks off the serine and regenerates both the His and Ser residues. The 

carboxy-terminus of the substrate can now leave the active site. The aspartic acid residue acts 

as a hydrogen bond acceptor from the delta amine of histidine. This subsequently pulls the 

electrons from the epsilon nitrogen making it a better electrophile for attack on the serine 

hydroxyl group. N-terminal peptides will serve as an important starting point for the 

development of NS3 protease inhibitors [6]. 

Landro J. A. and associates showed that NS3 protease catalytic rate is substrate 

sequence specific and amplified by about 5 times in the presence of cofactor NS4A [7]. NS3 

protease is responsible for cleaving the translated initial polyprotein at: NS3/NS4A, NS4A/NS4B, 
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NS4B/NS5A, and NS5A/NS5B junctions for the activation of those proteins for viral replication 

and particle formation. Research has cataloged the amino acid residue sequences as well as in 

vitro catalytic rates; the cleavage of NS5A/NS5B is more efficient than other sites. The amino 

acids essential for activity are an acidic residue in P6, a cysteine in P1, serine or alanine in P1’ 

and a hydrophobic residue in P4’. Steinkühler et al. showed that as substrate concentration 

(DEMEEC-ASHLPYK-NH2 of the NS4A/NS4B site) was increased in steady state analysis, the 

apparent Km increased as well, while no change observed for kcat 
[8]. Thus, the first example of 

competitive product inhibition was discovered. The researchers aimed to confirm this was a 

true observation and developed the N and C terminus polypeptides (DEMEEC-OH, ASHLPYIEQG) 

and found that the N terminus substrate (DEMEEC-OH) competitively inhibited NS3 protease 

with a Ki of 600 nM. They tested the substrates for the other junctions as well. Both the 

NS4A/NS4B and NS5A/NS5B had Km values sub 10 µM and the N terminus peptides had Ki 

values in the micromolar range. To note, there was no inhibition up to 500 µM substrate, with 

the NS3/NS4A substrate. This show NS3 protease cleaves the NS3/NS4A junction and there is 

no product inhibition. This evidence shows a possible target for drug development, as inhibition 

at this junction could impede further polyprotein cleavage and thus halting viral proliferation. 

The DEMEEC-OH peptide was further studied and optimized by Ingallinella et al. This 

group optimized each possible position of P6-P1 to create the hexamer Ac-Aspartate-

Glutamate-3,3-diphenylalanine-Glutamate-β-cyclohexaylalanine-Cysteine-OH (Ac-Asp-Glu-Dif-

Glu-Cha-Cys-OH) [9]. This peptide substrate had a Ki of 50 nM and was a fundamental 

contribution to the discovery of the first class of NS3 protease inhibitors; reversible covalent 
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ketoamide binders boceprevir and telaprevir. Another class of inhibitors discovered were 

reversible non-covalent ketoamide macrocycles.  

The macrocycles are the current class of protease inhibitors on the market. The first 

generation had three breakthrough drugs: Ciluprevir, BMS-605339, and MK-4519. Ciluprevir 

was a P1-P3 macrocycle. It never reached the market due to safety issues in clinical trials. The in 

vitro studies provided evidence of a potent inhibitor and important moieties that would lead to 

improvements of further drugs. Llinas-Brunet and associates showed that a P1 

vinylcyclopropylcaboxylic acid moiety that yields good solubility, good potency, and selectivity. 

Ciluprevir also added to selectivity by making extra hydrogen bonds in the active site and 

adding structural rigidity of the extended peptide [10].  

Another key discovery was BMS605339 [11]. This was an acyclic molecule and instead of 

a vinylcyclopropylcaboxylic acid at P1. Scola and team performed a structure activity 

relationship, SAR, on a parent hexapeptide and determined a cycloproplacylsulfonamide in the 

P1 position was best corresponding to a 50-fold decrease in IC50 (to 1 nM) than the carboxylic 

acid. The sulfonamide moiety provides additional interactions with Gly137 and Ser139 in the 

active site as well as maintains and ionic interaction with His57. While BMS605339 did not pass 

clinical trials due to cytotoxicity, it provided the elucidation of the sulfonamide moiety.  

Last, Liverton and associates showed that molecular docking of the inhibitors above, 

revealed inhibitor P2 positions in an empty part of the protease crystal structure [12]. The 

researchers determined that the empty electron density around the P2 position was missing 

the NS3 helicase interaction. This is a valid consideration knowing that in vivo the NS3 is a 

multifunctional protein. MK-4519 was determined through a structure activity relationship, 
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SAR, study by modeling and performing inhibitor studies in vitro with genotype 1b full length 

NS3/4A. The vinylsulfonamide, from BMS-605339 was retained, the similar isoquinoline moiety 

of ciluprevir and BMS-605339 in the P2’ position was simplified and MK-4519 was developed. 

MK-4519 has a Ki sub nanomolar and an IC50 of about 5 nM. This compound is 50,000-fold more 

selective to NS3 than tryspin or chymotrypsin; similar active site, proteases. While these three 

compounds laid the ground work for future protease drugs, they had a few weaknesses: they 

were susceptible to NS3 resistance mutations, they were expensive therapies, and they were 

only effective on genotype 1b.  

The current generation of macrocycles can cure HCV patients with most of the 

genotypes without the need for interferon when combined, with a NS5A inhibitor, NS5B 

inhibitor, or both. I will focus on two current protease inhibitors paritaprevir [13] and grazoprevir 

[14]. Paritaprevir was developed by Abbott in 2010 and is a component of VIEKERA PAK. It is a 

P1-P3 macrocycle with a acylsulfonamide, a P4 methyl pyrazine, and a phenanthridine moiety 

at P2. The P4 and P2 moieties interact with D168 and R155 respectively. These are common 

genotype 1 residues that can be mutated and confer resistance to inhibitors. Paritaprevir is 

designed off the discoveries of previous protease inhibitors such as faldaprevir by Boeringer 

Ingelheim [15]. D168 and R155 are common locations of mutations, and O’meara and team 

discovered that reducing the interactions at those sites make the inhibitor less sensitive to 

resistance. The P4 and P2 moieties are designed then to interact via hydrophobic interactions 

rather than more specific interactions like hydrogen bonds or salt bridges. Paritaprevir has in 

vitro IC50 in the low nanomolar range and is affective against genotypes 1a, 1b, 2a, 3a, 4a, and 

6a, however, with reduced sensitivity to genotype 3a due to a D168Q mutation. Paritaprevir, as 
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mentioned above, is a component of Viekera PAK. The other components are ombitasvir, 

ritonavir and dasabuvir. The combined therapy is a new approach to target all stages of viral 

replication; ombitasvir targets the NS5A multifunctional protein, dasabuvir targets the NS5B 

RNA polymerase, and ritonavir (anti-HIV) targets cytochrome P450 to reduce the metabolism of 

paritaprevir in the plasma. Viekera PAK can cure genotype 1a and 1b in 12 weeks and costs 

between $80,000-$170,000, depending on duration of treatment required. 

Grazoprevir was developed in 2012 by the Harper team at Merck [14]. It is a component 

of Zepatier and while approved as a genotype 1 and genotype 4 cure, it is a potent inhibitor for 

genotypes 1-6. Grazoprevir is a P2-P4 macrocycle containing an N terminal acylsulfonamide, a 

P2 aromatic quinoxaline which decreases aqueous solubility causing the drug to have elevated 

levels in the liver, and a P4 cyclopropyl group which allows space for A156 mutants. Grazoprevir 

is an important drug molecule as it is a tight binder, low or sub-nanomolar concentrations, to 

common genotype 1 mutants R155K, A156T, A156V, and D168V. Grazoprevir is combined with 

elbasvir, a NS5A inhibitor. Zepatier can cure HCV genotype 1 and 4 in 12-16 weeks and is a 

remarkably cheaper option starting at around $50,000 for 12 weeks.  

Section 1.3: NS5B Polymerase Drugs -buvir 

The NS3 protease inhibitors were the first HCV drugs on the market; NS5B polymerase 

inhibitors followed shortly after. NS5B is a RNA polymerase necessary for viral RNA replication 

but is error prone due to lacking proofreading mechanism. It is composed of 591 amino acid 

and is homologous to other RNA dependent polymerases. It has 6 motifs, A-F, with the key 

motif “GDD” located in the N-terminus and is membrane tethered by 21 amino acids in the C-

terminus. The general shape of the polymerase is that of a right hand containing a finger, palm 
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and thumb domain. NS5B has an encircled active site with numerous interactions between the 

finger and thumb domains and uses two catalytic magnesium ions. The thumb domain contains 

a β-hairpin loop, which influences the positioning of newly synthesized RNA, and can also 

modulate the different modes of replication; either de novo without primer and create its own 

dinucleotide to serve as a single stranded primer (closed polymerase) [16], or primer dependent, 

transcribing from the 3’ end of a double stranded RNA molecule (open polymerase) [17]. The two 

different modes of replication are remarkably different. The de novo process has two slow steps 

followed by the rapid processivity of the polymerase. The two steps require the synthesis of 

dinucleotide primer, followed by, the use of the newly synthesized primer. The next nucleotide 

needs to be present in high concentration for elongation to occur. The presence of high 

concentration of GTP stimulates the switch of synthesis to elongation [18]. 

There are two types of polymerase inhibitors available currently on the market on in 

trials: nucleotide analogs, and non-nucleotide inhibitors. Nucleotide inhibitors are designed to 

target the polymerase active site by being incorporated into the growing RNA strand but 

hindering further elongation due to steric hindrance at the 2’ position on the ribose sugar. They 

can be competitive inhibitors with regards to substrate nucleotides. Non-nucleotide inhibitors 

are considered non-competitive as they do not compete with the substrate nucleotides, but 

rather, they bind the polymerase and effectively block conformational changes required for 

elongation steps [19]. The two drugs I will discuss are sofosbuvir, a nucleotide analog pro-drug, 

and dasabuvir, a palm domain-specific inhibitor.  

Sofosbuvir was developed by Pharmasset, acquired by Gilead, by the Sofia team [20]. 

Under the nucleoside class, there are three sub classes, β-D-2’-deoxy-2’-α-F-2’-β-C-
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methylribose, β-D-2’-β-methylribose, and 4’-azidoribose classes. Sofosbuvir is a β-D-2’-deoxy-

2’-α-F-2’-β-C-methylribose prodrug that has a phosphoramidate moiety at the 5’ position on 

the sugar. It was developed so that the phosphoramidate moiety would be cleaved and quickly 

phosphorylated (30 minutes to 2 hours post-dose detection) to the active 2'-deoxy-2'-α-fluoro-

β-C-methyluridine-5'-triphosphate in the liver. It is done so by hydrolyzing the carboxy ester by 

human Cathepsin A. Next an elimination of the phenol forms an alaninyl phosphate metabolite 

which is removed by histidine triad nucleotide-binding protein 1 to give the 2'-deoxy-2'-α-

fluoro-β-C-methyluridine-5'-monophosphate. Last, the monophosphate is phosphorylated 

twice, first by UMP-CMP kinase, and then by nucleoside diphosphate kinase to give the active 

triphosphate product [21]. The Sofia group showed that the more active diastereomer PSI-7977 

could generate 29 µM triphosphate when incubated in hepatocytes with no cytotoxicity. Once 

the active triphosphate is incorporated into the replicating RNA, the next nucleotide cannot be 

added due to steric hindrance at the 2’ position. The active phosphate has sub to low 

micromolar IC50 value in vitro inhibition for genotypes 1b, 2a, 3a, and 4a. The active 

triphosphate is also not a substrate for other eukaryotic polymerases nor mitochondrial RNA 

polymerase. In vivo studies by Lam and associates showed that the common mutation S282T 

showed reduced susceptibility to the active triphosphate in genotypes 1b. 2a. 3a. and 4a [22], 

however, still being able to cure HCV infection within 12 weeks. Sofosbuvir was approved by 

the FDA in 2013 and is still currently on the market as part of a cross-genotypic cure, Epclusa. 

Sovaldi, composed of only sofosbuvir, costs about $84,000 for a 12-week treatment and is 

approved for genotypes 1-4. Epclusa is priced a little lower at about $75,000 for a 12-week 

treatment. 
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The other type of polymerase inhibitor is a non-nucleotide inhibitor. Non-nucleotide 

inhibitors can target the various structural domains of the polymerase: thumb, finger, or palm, 

however, the lack of sequence conservation in these domains, the non-nucleotide inhibitors are 

usually single genotype specific. Non-nucleotide inhibitors target allosteric sites on the thumb: 

T1 and T2, the palm: P1 and P2, and the β-hairpin: P-β. Benzothiadiazine derivatives were 

shown to be potent inhibitors of that targeted the P1 site, however were susceptible to 

resistant variants. Dasabuvir was discovered by Liu and associates at Abbott [23]. It is an aryl 

dihydrouracil derivative that acts by binding the polymerase palm domain with low nanomolar 

IC50 for genotype 1a and 1b in vitro and also low nanomolar IC50 in vivo. Kati and team showed 

dasabuvir’s specificity to HCV polymerase, not affecting various eukaryotic polymerases, as well 

as catalogued resistant variants [24]. Dasabuvir is a component of Viekira PAK. It contains the 

protease inhibitor paritaprevir, and the NS5A inhibitor ombitasvir. There is also ritonavir which 

is necessary to suppress the activity of human cytochrome p450 isoform 3A4 (CYP3A4) which 

will metabolize various inhibitors [25]. VIEKERA PAK can cure genotype 1a and 1b in 12 weeks 

and costs about $80,000 for a 12-week treatment. 

Section 1.4: NS5A Phosphoprotein Drugs -tasvir 

The last type of HCV DAAs available is the class of NS5A inhibitors. NS5A is a 

multifunctional, endoplasmic reticulum membrane associated, phosphoprotein. It is 

responsible for viral replication and viral assembly as shown by Shirota [26]. Arima and 

associates showed that NS5A can modulate hepatocyte growth by interacting with cyclin-

dependent kinases; necessary for eukaryotic cell cycle proliferation and progression [27]. Ghosh 

and associates showed that in mice, NS5A caused uncontrolled growth of fibroblasts and tumor 
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formation [28]. Last, Lan and associates showed the NS5A directly binds tumor suppressor p53. 

By sequestering p53, apoptosis of HCV infected cells is decreased and therefore allows HCV 

proliferation; contributing to liver cancer in chronic infections [29].  

NS5A is composed of 447 amino acids with 4 distinct regions: The N-terminal 

amphipathic helix, the serine rich phosphorylation cluster, the interferon sensing region 

responsible for inactivating protein kinase R (host protein responsible for mounting a response 

against viruses), and the proline rich cluster in the C-terminus [30]. The proline rich cluster is 

conserved throughout all HCV genotypes and thus is a good drug target. The N-terminal helix is 

required for functional NS5A and key mutations abolished HCV replication in vivo [31]. It is also 

characterized as a zinc binding protein that can interact with viral RNA for replication. It is non-

enzymatic and has a diverse but not well-defined role in the HCV lifecycle. I will focus on two 

drugs, daclatasvir and velpatasvir, that have similar modes of inhibition and similar drug design. 

Daclatasvir is a first generation NS5A inhibitor. It was developed by Bristol-Myers Squibb 

in 2013. It was designed on SAR based off a symmetric NS5A inhibitor from Bristol-Myers 

Squibb in 2009 [32]. This work provided the scaffold of a symmetric compound, that had 

resistance to mutations in Domain I of NS5A; Y93H, L31V, and Q54L. The 2009 work also 

showed that these NS5A compounds also inhibited hyperphosphorylation. Daclatasvir has IC50 

values in the low picomolar range in vivo for genotypes 1a and 1b, sub-nanomolar IC50 for 

genotypes 2-5, and is specific to HCV. Daclatasvir was also shown to interact only with domain 1 

of NS5A and not with NS3 or NS5B. Ascher and associates show that daclatasvir competes with 

RNA binding and by in silico docking showed the possible interactions at the dimer interface of 

domain 1 [33]. Daclatasvir has a biphenyl core with symmetrical branched elements. Guedj and 
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team demonstrated daclatasvir is a potent inhibitor as it can block both RNA synthesis and virus 

assembly [34]. Daclatasvir is marketed as Daklinza and was approved in 2015 to be used with 

sofosbuvir to treat genotype 3 patients without interferon or ribavirin. The cost is about 

$150,000 for a 12-week combined therapy.  

Velpatasvir, a component of Epclusa, can treat HCV genotypes 1 through 6. It was 

developed by Gilead in 2013 and was approved as a combination therapy with sofosbuvir in 

2016. It has in vitro HCV inhibition at picomolar concentrations [35]. It binds in domain 1 and is a 

defective substrate that competes with RNA. It is not symmetrical and thus the structure of it 

makes it less sensitive to domain 1 common mutations than is daclatasvir. Both drugs contain 

an imidazole proline component, however, velpatasvir also contains a benzopyrano imidazole 

core which itself is not symmetric. Lawitz and associates showed that velpatasvir has better in 

vitro activity against genotype 2 and 3 than daclatasvir [36]. Velpatasvir is also effective against 

genotypes 1a, 1b, 2, 3, and 4 in patients mimicking the in vitro results of Cheng. Currently 

Epclusa cost $75,000, and is a once a day pill for 12 weeks that cures HCV infection.  

Section 1.5: Summary 

The drugs covered above have shown the combined work of biochemistry, virology, and 

medicinal chemistry. Combination therapies can target more genotypes and are also able to be 

less sensitive to common resistant mutations. Here are a few current therapies that were 

approved this year: Vosevi from Gilead (sofosbuvir/velpatasvir/voxilaprevir), MAVYRET from 

Abbvie (glecaprevir/pibrentasvir). Both are pangenotypic and cheaper than EPCLUSA. HCV drug 

development is continuing and new drugs are in clinical trials from Merck and Janssen [37]. HCV 

therapies need to be developed as resistant mutations are discovered. The one protein not 
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mentioned in current therapies is the HCV NS3 helicase. NS3 helicase is a viable drug target as it 

a necessary component to the HCV lifecycle and there are no current drugs that target NS3 

helicase on the market.  

Section 1.6: NS3 helicase Drugs 

Various in silico studies have identified possible inhibitor scaffolds by utilizing molecular 

docking programs like DOCK or ROCS. Once general properties of protein sites are identified, 

drug molecules can be optimized. Another drug identification technique is to screen readily 

available drug compound libraries in vitro or in vivo to identify a hit and further perform SAR to 

optimize the inhibition of the compound. Chen et al. showed how the use of DOCK as a virtual 

screening method of known compounds [40]. This study lead to the crystal structure of NS3h 

with a blue HT dye bound in between domains 1 and 2. An earlier study by an Italian group, 

identified a nucleotide mimicking inhibitor that was designed off a known HIV reverse 

transcriptase selective molecule [41]. The two studies above helped guide further studies that 

developed possible drug leads by using in silico screening of molecule design [42-45]. High 

throughput screening of various compound libraries can also be used to identify possible drug 

leads for SAR [46, 47]. Even with these recent discoveries, there are no helicase inhibitors on the 

market yet. This is can be due to low potency, drug resistance, and cell cytotoxicity. Finding 

helicase inhibitors is critical due to variability of the virus genome, cost of current treatments, 

and limited access to impoverished areas where blood borne diseases are more prevalent.  
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Chapter 2: Methods 

Section 2.1: Site Directed Mutagenesis and Protein Expression 

pET24a-Hel-2a(JFH) plasmid DNA was extracted and purified using ThermoFisher 

GeneJet plasmid prep kit from previous work [49]. Plasmid DNA was confirmed on a 1% agarose 

DNA gel. To create the C292G mutation, mutagenic primers were designed (IDT, Coralville, IA) 

harboring the desired nucleotide mutation, thymine to guanine as highlighted below.  

C292G (+) 5’-CATCATCATATGCGATGAAGGCCACG-3’ 

C292G (-) 5’-GTAGCATCCACAGCGTGGCCTTCATC-3’ 

Plasmid DNA was amplified with primers as described by site directed mutagenesis kit 

QuikChange II XL from Agilent Technologies. After the PCR, products were used to transform 

into E. coli XL10 cells. Transformed E. coli were plated on LB Kanamycin and selected after 

incubation. Successfully transformed colonies’ plasmid DNA were extracted and purified using 

GeneJet kit (ThermoFisher) following the manufacturer’s instructions. Selected plasmids were 

sequenced (Genewiz, South Plainfield, NJ) before expression and protein purification. Plasmids 

harboring the desired point mutation were used to transform BL21(DE3) cells as described by 

Hanson et al. [50]. The new plasmid was named pET24a-Hel-2a(JFH)C292G for storage. 

Expression and purification yielded about 5 mg of helicase from 2 liters of culture. This is lower 

than described by Lam et al., [49] possibly due to transformation inefficiency with the cells used 

at the time and shortened time of culture incubation. Wildtype genotype 2a (JFH1 stain) NS3 

helicase was expressed and purified as described above and yielded about 10 mg of helicase 

from 2 liters of culture, in line with what was reported before. 
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Section 2.2: Colorimetric ATP Hydrolysis Assays 

Initial characterization of the two enzymes was done using a colorimetric ATPase assay, 

with rates determined from measurements are taken at defined time points. The endpoint 

assay utilized malachite green, which is sensitive up to 300 µM inorganic phosphate. 30 µL 

reactions were set up in 96 well clear UV plates as reported by Ndjomou et al. [51]: 25 mM 

MOPS, pH 6.5, 1.25 mM MgCl2, 5 µg/ml BSA, 0.01% (v/v) Tween20, 150 µM Poly-U RNA, 0–100 

nM NS3h, and 1 mM ATP. All components except ATP were mixed. Reactions were initiated 

with ATP and terminated upon addition of the malachite green solution after 15 minutes at 

25oC. ATPase assays were also performed in the absence of RNA following the conditions 

above, initiated with 100 µM ATP, and utilized the coloring agent BioMol Green (Enzo Life 

Sciences).  

Section 2.3: Continuous coupled ATP Hydrolysis Assay 

To confirm the activity seen in the endpoint ATPase assay above, a continuous ATP 

hydrolysis assay was used in which phosphate production was coupled the action of purine 

nucleoside phosphorylase [52]. Conditions were: 20 mM pH 7.6 Tris, 1mM MgCl2, 150 µM Poly-U 

RNA, 200 µM ATP, 100µM 2-amino-6-mercapto-7-methylpurine (Invitrogen), 2.5U/mL Purine 

nucleoside phosphorylase (Sigma Aldrich), and varying concentrations of NS3h to initiate the 

assay. Absorbance change was converted to nM phosphate released/second following the 

protocol described by Webb [52].  

Section 2.4: DNA Binding Assay 

The DNA binding assay is a fluorescence experiment designed to monitor the anisotropic 

effect of NS3h binding to Cyanine 5 tagged oligonucleotide as described [53]. Conditions were: 
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25mM Mops pH 6.5, 1.25mM MgCl2, 5nM Cy5’-dT15, and varying concentrations of NS3h. 

Fluorescence anisotropy measurements were obtained on a TECAN M1000 PRO at 25oC.  

Section 2.5: Helicase Unwinding Assay 

A Molecular Beacon-based Helicase Assay (MBHA) was used to monitor the ability of 

HCV helicase to unwind a DNA substrate. The method was followed as described previously [54]. 

Assays were performed in a cuvette or a microplate utilizing a Varian Cary Eclipse, or Varioskan 

Plate reader to collect data. Assay final conditions after addition of 10 mM ATP were as follows: 

25 mM MOPS, pH 6.5, 1.25 mM MgCl2, 0.01% Tween20, 5 µg/mL BSA, 10 nM MBHA substrate, 

1 mM ATP, and varying concentrations of NS3h. ATP was used to initiate the assay.  

Section 2.6: Intrinsic Protein Fluorescence 

 Intrinsic protein fluorescence can be monitored by observing fluorescence emission at 

340 nanometers, while exciting a protein solution at 280 nanometers. First, enzyme 

concentration was confirmed by absorbance. 100 nM enzyme was used for the assay. Next, the 

extinction coefficient was calculated for the compound by taking absorbance reading at A280 

and A340. This was done to further correct for inner filter effects Fcorr=Fobs*10^((Aex+Aem)/2). 

Next, the drug compound was titrated into a reaction mixture (25 mM MOPS, pH 6.5, 1.25 mM 

MgCl2, 0.01% Tween20) that does not contain enzyme. This was done to account for either a 

fluorescent compound or an absorbent compound at the respective wavelengths. This 

generates a baseline fluorescence/absorbance profile for the compound. Last, the drug 

compound was titrated into the same reaction mixture, containing 100 nM helicase and 

fluorescence is observed over a range of inhibitor concentration. Data was corrected for 

volume dilution effect, inner filter effect, and compound fluorescence. Resulting data was then 
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corrected data which is plotted against total inhibitor concentration. Data was fit to a one-site 

binding equation Y = Bmax*X/(Kd + X) or the quadratic equation (see Fig. 2, legend) to calculate 

the dissociation constant, Kd.  
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Chapter 3: Screening for DAAs targeting HCV helicase 

Five distinct classes of newly synthesized drug compounds were screened using methods 

from sections 2.2, 2.4, and 2.5. The following chapter contains data excerpts from the following 

works: 

• Marcella Bassetto, Pieter Leyssen, Johan Neyts, Mark M. Yerukhimovich, David N. Frick, 

and Andrea Brancale. "Shape-based Virtual Screening, Synthesis and Evaluation of Novel 

Pyrrolone Derivatives as Antiviral Agents against HCV." Bioorganic & Medicinal 

Chemistry Letters 27.4 (2017): 936-40. 

• Marcella Bassetto, Pieter Leyssen, Johan Neyts, Mark M. Yerukhimovich, David N. Frick, 

Matthew Courtney-Smith, and Andrea Brancale. "In Silico Identification, Design and 

Synthesis of Novel Piperazine-based Antiviral Agents Targeting the Hepatitis C Virus 

Helicase." European Journal of Medicinal Chemistry 125 (2017): 1115-131. 

• Marcella Bassetto, Salvatore Ferla, Pieter Leyssen, Johan Neyts, Mark M Yerukhimovich, 

David N Frick, Rachel O'Donnell, and Andrea Brancale. "Novel Symmetrical 

Phenylenediamines as Potential Anti-Hepatitis C Virus Agents." Antiviral Chemistry & 

Chemotherapy (2016): Antiviral Chemistry & Chemotherapy, 04 November 2016. 

• Marcella Bassetto, Pieter Leyssen, Johan Neyts, Mark M. Yerukhimovich, David N. Frick, 

and Andrea Brancale. "Computer-aided Identification, Synthesis and Evaluation of 

Substituted Thienopyrimidines as Novel Inhibitors of HCV Replication." European Journal 

of Medicinal Chemistry 123 (2016): 31-47. 

• Neerja Kaushik-Basu, Nina K. Ratmanova, Dinesh Manvar, Dmitry S. Belov, Ozge Cevik, 

Amartya Basu, Mark M. Yerukhimovich, Evgeny R. Lukyanenko, Ivan A. Andreev, Grigory 

M. Belov, Giuseppe Manfroni, Violetta Cecchetti, David N. Frick, Alexander V. Kurkin, 

Andrea, Altieri, and Maria Letizia Barreca. "Bicyclic Octahydrocyclohepta[b]pyrrol-4(1H) 

one Derivatives as Novel Selective Anti-Hepatitis C Virus Agents." European Journal of 

Medicinal Chemistry 122 (2016): 319-25. 

 

Section 3.1: Novel Pyrrolone Inhibitors 

A ligand-based approach was applied to screen in silico a library of commercially 

available compounds, with the aim to find novel inhibitors of the HCV replication starting from 

the study of the viral NS3 helicase. Six structures were selected for evaluation in the HCV sub 

genomic replicon assay and one hit was found to inhibit the HCV replicon replication in the low 
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micromolar range. A small series of new pyrrolone compounds was designed and synthesized, 

and novel structures were identified with improved antiviral activity (Fig. 1, Table I).  

Section 3.2: Novel Piperazine Inhibitors 

A structure-based virtual screening of commercial compounds was carried out on the 

HCV NS3 helicase structure, with the aim to identify novel inhibitors of HCV replication. Among 

a selection of 13 commercial structures, one compound was found to inhibit the sub genomic 

HCV replicon in the low micromolar range. Different series of new piperazine-based analogues 

were designed and synthesized, and among them, several novel structures exhibited antiviral 

activity in the HCV replicon assay. Some of the new compounds were also found to inhibit HCV 

NS3 helicase function in vitro, and one directly bound NS3 with a dissociation constant of 570 ± 

270 nM (Figure 2, Table II). 

Section 3.3: Novel Thieno-pyrimidine Inhibitors 

 A structure-based virtual screening technique was applied to the study of the HCV NS3 

helicase, with the aim to find novel inhibitors of the HCV replication. A library of ~450,000 

commercially available compounds was analyzed in silico and 21 structures were selected for 

biological evaluation in the HCV replicon assay. One hit characterized by a substituted thieno-

pyrimidine scaffold was found to inhibit the viral replication with an EC50 value in the sub-

micromolar range and a good selectivity index. Different series of novel thieno-pyrimidine 

derivatives were designed and synthesized; several new structures showed antiviral activity in 

the low or sub-micromolar range (Fig. 3, Table III and IV). 
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Section 3.4: Novel symmetrical phenylenediamine Inhibitors 

Despite the great progress made in the last 10 years, alternative strategies might help 

improving definitive treatment options against hepatitis C virus infection. With the aim of 

identifying novel inhibitors of the hepatitis C virus-1b replication targeting the viral NS3 

helicase, the structures of previously reported symmetrical inhibitors of this enzyme were 

rationally modified, and according to docking-based studies, four novel scaffolds were selected 

for synthesis and evaluation in the hepatitis C virus-1b sub genomic replicon assay. Among the 

newly designed compounds, one new structural family was found to inhibit the hepatitis C 

virus-1b replication in the micromolar range. This scaffold was chosen for further exploration 

and different novel analogues were synthesized and evaluated. Different new inhibitors of the 

hepatitis C virus genotype 1b replication were identified. Some of the new compounds show 

mild inhibition of the NS3 helicase enzyme (Table V). 

Section 3.5: Novel Bicyclic octahydrocyclohepta[b]pyrrol-4(1H) one Inhibitors 

We report the discovery of the bicyclic octahydrocyclohepta[b]pyrrol-4(1H)-one scaffold 

as a new chemotype with anti-HCV activity on genotype 1b and 2a sub genomic replicons. The 

most potent compound 34 displayed EC50 values of 1.8 µM and 4.5 µM in genotype 1b and 2a, 

respectively. Compound 34 moderately inhibits helicase unwinding with an IC50 of 300 µM and 

binds helicase with a Kd of 1.1 µM (Fig. 4, Table VI).  
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Chapter 4: Role of Cys292 in Coupling RNA binding to Helicase-catalyzed 

ATP Hydrolysis 

Section 4.1: Background 

HCV NS3h is a super family 2 helicase composed of 3 domains, Rec A-like domains 1 and 

2, and domain 3. The helicase has two important catalytic functions that are linked together: 

ATP hydrolysis and DNA binding/unwinding. The space between domains 1 and 2 forms the ATP 

binding site (Fig. 5). The groove between domain 3 and the Rec A like domains, forms the 

DNA/RNA binding site. NS3h belongs to superfamily 2 helicases and encodes conserved regions. 

One of those regions is the ATPase site which contains Walker Type A and B motifs [38]. NS3h 

has a conserved 4 residue active site for ATP hydrolysis; DECH box protein. D, E and H, in the 

Walker B motif (Fig. 5A), function as a metal binding motif that coordinates with the divalent 

metal cofactor required to activate a water for nucleophilic attack of the γ-phosphate of ATP. 

Lysine 210, from the Walker type A motif, additionally coordinates the magnesium ion in the 

active site. Substitutions of other amino acids in the ATPase site in place of the D290, E291, or 

H293 in Walker B motif, or K210 in Walker A motif, render a defective helicase. Here, 

substitutions for the C292 in this motif are examined, and they are compared with similar 

substitutions made elsewhere in the proteins outside the ATP binding site (Fig. 5B). The DNA 

binding/unwinding site includes by conserved residues T269, T411, R467, W501, and V432 that 

are all critical to helicase function [39]. The cleft between domains 1 and 2 opens and closes 

upon ATP binding and hydrolysis causing the protein to move on DNA like an inchworm (Fig. 6).  

ATP and RNA (or DNA) can bind independently to HCV helicase, but only when both are 

bound together will the helicase rapidly hydrolyzed ATP to fuel its motions on RNA (kfast, Fig. 7). 
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The experiments in this chapter were designed to test how Cys292 coordinate helicase action 

by measure Kd, Km, Km*, KRNA, kfast and kslow for HCV helicase isolated from two different 

genotypes (1b and 2a) and compare the values with those obtained using helicases in which 

Cys292 is replaced with a Gly (C292G).    

Section 4.2: Results 

Site directed mutagenesis was used to generate a plasmid encoding genotype 2a HCV 

helicase harboring a C292G substitution, and its sequence confirmed by DNA sequencing (Fig, 

8).  

Unwinding assays reveal very different activity for the two enzymes (Fig. 9). At low 

concentrations of enzyme, C292G has a significantly lower unwinding rate than wild type. This 

difference in unwinding rates might be due to the mutant enzyme unwinding fewer base pairs 

per binding event. The C292G unwinding velocity reaches steady state at high (>500nM) 

helicase concentration supporting the idea the mutant is less processive than wild type; wild 

type reaches Vmax at about 100 nM. It can be seen from Fig. 9 that above 100 nM, wild type 

helicase, the velocity begins to decline, whereas with the C292G protein rates continues to 

increase in velocity. This may be due to aggregation of wildtype and steric hindrance as more 

helicase molecules crowd on the MBHA substrate. The short lag phase for the mutant, seen in 

Fig. 9, below 100 nM may suggest a few mechanisms. It is possible that the mutant is constantly 

in the open conformation and thus it takes longer to go through energetic motions to 

effectively hydrolyze ATP and unwind the substrate. This may not hold true, if the DNA binding 

isotherms are similar and thermodynamically the same between wild type and mutant. Another 

possibility is that the mutant binds the MBHA substrate and the open ATPase site is too mobile 
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and therefore cannot achieve optimal active site configuration. At low enzyme concentration, 

this might explain the slower rates. At higher concentrations, the fluorescence is a collective 

measurement of all the substrate being unwound thus no lag is observed.  

To probe why the C292G protein might be different from wildtype, we designed 

experiments to compare Kd, Km, Km*, KRNA, kfast and kslow (Fig. 7) for C292G and the wildtype 

protein.  

In the first set of assays, the dissociation constant describing DNA binding (Kd,) was 

found to be similar for both enzymes (Fig. 10). Others have shown that HCV helicase binds DNA 

tightly with a ΔG of about -50 kJ/mol [48]. We calculated ΔG of about -51 kJ/mol which concurs 

with the value previously reported. Both the wild type and C292G mutant bind DNA with similar 

affinity (Fig. 10).  The dissociation constant describing the interaction of RNA in the presence of 

ATP was probed by determining the amount of RNA needed to stimulated helicase catalyzed 

ATP hydrolysis by 50% KRNA. The KRNA was about 50% lower for the C292G protein than the 

wildtype, suggesting a slightly tighter interaction in the presence of ATP (Fig 11). 

Both C292G and wildtype have the same ATP hydrolysis rate in the presence of Poly U 

RNA (Figs. 12, 13). When bound to RNA, the two enzymes have similar turnover rates (Fig. 11), 

and the observed Km for ATP is similar for both proteins (Fig. 12).   

In contrast, the wildtype and C292G enzymes behave dramatically different in the 

absence of RNA (Figs. 14, 15). When the enzyme is not bound to RNA, the C292G substitution 

yields a helicase that can hydrolyze ATP 15 times faster than wildtype in the absence of Poly U 

RNA (Fig. 14), and the Km for ATP is almost 10 times higher in reactions catalyzed by C292G 

(Fig. 15), suggesting that ATP binds C292G weaker than wildtype.   



24 
 

Combined, these data also show that the wildtype is stimulated over 20-fold in the 

presence of nucleic acid, but the C292G protein is only stimulated 1.5-fold.  The hypothesis of a 

mobile ATPase site is supported by the higher Km value for the C292G, where enzyme 

concentration is 10 nM and the Km for ATP is about 10 times higher than the wildtype. Figure 12 

confirms that ATP hydrolysis affinity for ATP is similar in the presence of RNA for both enzymes. 

Section 4.3: Conclusions 

The data presented within gives insight as to the importance of the Cys292 residue. The 

absence of the cysteine residue may confer an open conformation of the ATPase site that 

allows for hydrolysis to occur in the absence of nucleic acid. With the more open ATPase site, it 

may take longer for proper contact to be made for rapid unwinding. ATP binding weakens the 

helicase-DNA affinity and thus results in a weakly bound state. In this weakly bound state, the 

helicase can translocate along nucleic acid. Rapid ATP hydrolysis and release of phosphate 

returns the helicase to a tightly bound conformation with respect to the DNA [55]. The repetition 

of this cycle causes helicase translocation from 3’ to 5’. The similar affinity for DNA shows that 

the C292G helicase is functional. The activity is further supported by the stimulated ATPase 

results, showing specific activities are similar for both enzymes. The unstimulated ATPase data 

show that the mutant can hydrolyze ATP without RNA substrate. That may mean there are 

more enzymatic motions throughout that break the link of ATP hydrolysis to helicase 

translocation. That result, coupled with the very different behaviors seen in the unwinding 

data, may show that the cysteine is necessary to link ATP hydrolysis and helicase unwinding.  

In unwinding assay (Fig. 9), at above 100 nM wild type helicase the velocity begins to 

decline whereas unwinding catalyzed by C292G continues to increase in velocity. This may be 
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due to aggregation of wildtype and steric hindrance as more helicase molecules crowd on the 

MBHA substrate. The sigmoidal shape of the curve with the C292G protein (Fig. 9), below 100 

nM, may suggest a few mechanisms. It is possible that the mutant is constantly in the open 

conformation and thus it takes longer to go through energetic motions to effectively hydrolyze 

ATP and unwind the substrate. This may not hold true, as the DNA binding curves are very 

similar and thermodynamically the same between wild type and mutant. Another possibility is 

that the mutant binds the MBHA substrate, and the open ATPase site is too mobile and 

therefore cannot achieve optimal active site configuration. At low enzyme concentration, this is 

seen as the lag phase. At higher concentrations, the fluorescence is a collective measurement 

of all the substrate being unwound.  

Since the C292G protein displays the peculiar DNA unwinding characteristic (Fig. 9), it 

would be interesting to crystalize and using nucleoside analogs, as demonstrated by Gu and 

Rice [56], to visualize the conformations of apoenzyme, DNA bound, DNA and ATP bound, and 

DNA and ADP and Pi bound, to understand what step of the enzymatic pathway causes the 

visible result. The substitution to a glycine would occupy less space in the active site, as well as 

reduce any electrostatic or steric interaction. From the data presented within, cysteine 292 

plays a critical role in linking ATP hydrolysis to DNA unwinding. 
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TABLES 

 

Table I: Pyrrolone compound screening results. 9 synthesized compounds were screened using 

an in vitro Helicase Unwinding assay, shown in the last column. Compound 7c had moderate 

inhibition of 438 µM however was cytotoxic above 97 µM. 
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Table II: Piperazine compound screening results. 58 synthesized compounds were screened 

using an in vitro Helicase Unwinding assay, shown in the last column. Compound 31 had the 

best inhibition of the compounds and was selected for further in vitro analysis. 
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Table III: Selected Thieno-pyrimidines for helicase inhibition analysis. 8 compounds were 

selected for further in vitro testing utilizing ATP hydrolysis assay in the presence and absence of 

Poly U RNA, and DNA binding inhibition.  
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Table IV: Thieno-pyrimidine Helicase unwinding assay results.  41 thieno-pyrimidine 

derivatives were screened for inhibition of helicase unwinding. Only four compounds yielded 

measurable inhibition. 
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Table V: Phenylenediamine derivatives and HCV genotype 1b inhibition. A series of 14 

compounds were screened for helicase unwinding inhibition. 4 compounds had moderate 

unwinding inhibition, as seen in the last column.  
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Table VI: Octahydrocyclohepta[b]pyrrol-4(1H) one derivatives and cell based inhibition. Table 

shows the cell based inhibition screening in HCV genotypes 1b and 2a. Helicase unwinding data 

not shown. Compound 34 has the most potent in vivo inhibition of HCV replicon. 
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FIGURES 

 

 

Figure 1: Structure of synthesized novel pyrrolone HCV NS3h inhibitor 7c. HCV unwinding 

assay was performed to characterize the inhibition of 7c on HCV helicase. Compound had 

moderate IC50 of 438 µM. 
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Figure 2: Piperazine compounds and relevant in vitro screening results. (a) Structures of novel 
synthesized symmetrical and non-symmetrical piperazine inhibitors. (b) DNA binding assay 
monitoring percent of displaced ssDNA as a function of inhibitor concentration. Data fit to IC50 
inhibition equation and numbers list represent 95% confidence intervals of the nonlinear 
regression. (c) Ability of each compound to inhibit NS3 helicase-catalysed ATP hydrolysis. 
Numbers in parenthesis are as in (b). (d) Rates of ATP hydrolysis (nM ATP cleaved/s/nM NS3h) 
observed in the presence of various concentrations of poly(U) RNA and 31. Data are globally fit 
to V=(Vmax*R/KRNA + R) + Vb assuming 31 does not affect Vmax. (e) Amount of RNA needed to 
stimulate ATP hydrolysis to 50% maximum (KRNA) observed at various concentrations of 31. (f) 
Intrinsic Protein Fluorescence observed with various concentrations of 31 in the absence of 
NS3h (circles) or in the presence of 100 nM NS3h (squares). Data are globally fit to F=Fe*(E – EL) 
+ Fs*(L – EL) + Fc*(EL) where EL= ((Kd + L + E) -  sqrt((Kd + L + E)2 - 4*(L*E))))/2 with the noted 
dissociation constant and an Fe of 308, Fs of 4.5. and Fc of 641. L is the total concentration of 
compound 31, E is the concentration of NS3h, Kd is the dissociation constant describing complex 
formation, Fe is coefficient describing free protein fluorescence, Fs is a coefficient describing 
free compound 31 fluorescence, and Fc is a coefficient describing the fluorescence of the 
protein-ligand complex. 
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Figure 3:  Structure of Thieno-pyrimidine compound 1a. Compound did not inhibit the helicase 

unwinding assay. 
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Figure 4: Intrinsic Protein Fluorescence for Determination of Kd. Intrinsic Protein Fluorescence 

observed with various concentrations of 34 in the presence of 100 nM NS3h genotype 1b. Data 

are fit to the one-site specific binding equation Y = Bmax*X/(Kd + X) to calculate the Kd  for 

specific binding for compound 34. Compound 34 had similar in vivo IC50 inhibition concentration 

in genotypes 1b and 2a. 
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Figure 5: Positions of Cysteines in of HCV helicase. Structures were modeled from PDB ID 3KQL 

showing ATPase site with ADP*AlF4 and the helicase bound with substrates. (a) Structure of 

ATPase active site and conserved residues of Walker Type A Motif K210, and Walker type B 

motif D290, E291, C292, and H293, shown bound with ADP AlF4 and a magnesium ion. (b) 

Structure of NS3h bound to ssDNA and ADP*AlF4 nucleotide analogue. Highlighted Cysteine 

residues in this study that were mutated are shown in spheres.   
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Figure 6: Structures of open and closed HCV helicase conformations. (a.) 3KQH (open ATPase 

site, green) superimposed on 3KQN (closed ATPase site, red) showing the motions of the overall 

enzyme and (b.) the motions within the ATPase site. Mainly Domain 2 rotates around 1 and 3 

upon binding of DNA and ATP. The cysteine is noted by a yellow star in (b) and does not move 

much relative to the other residues suggesting it may have a key role in an electrostatic 

interaction.  

  

a. b. 
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Figure 7: Random Sequential Mechanism of ATP and RNA binding to HCV helicase.  
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Figure 8: DNA Sequencing results showing the desired mutation encoding C292G. After PCR, 

plasmids were transformed into E. coli. Colonies that grew were selected and the plasmid DNA 

was extracted and sent for sequencing. Sequencing results were aligned to produce the figure 

above. The 03192014 plasmid was used to make the recombinant helicase. 
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Figure 9: Helicase unwinding assay with the wildtype and C292G helicases Molecular beacon 

helicase assay was used to characterize the unwinding of the mutant C292G versus the 

wildtype. Various concentrations of both enzymes were used. The raw data (right) was fit to a 

user defined equation [54]. The fit exported a DNA unwinding rate, a.u./sec, which is the initial 

velocity time the amplitude. The rates were then fit to Michaelis Menten equation to estimate 

Vmax. Two remarkably different enzymes can be seen. It takes about 5 times more of mutant 

helicase to reach a similar unwinding rate as 50nM wildtype. It is also visible that the mutant 

may undergo a slower mechanism at lower concentrations as there is a small lag phase up to 

100 nM enzyme concentration. 

 

 

0 200 400 600 800
0

50

100

150

200

Time (s)

F
lu

o
re

s
c

e
n

c
e

  (
R

F
U

)

ATP

wildtype

C292G

0 500 1000
0

10

20

30

40

NS3h (nM)

D
N

A
 U

n
w

in
d

in
g

 (
a

.u
/s

)

NS3h_2a
NS3h_2a_C292G

Vmax (s-1) Km (µM)

82 ± 32 1,500 ± 1,100

28 ± 4 66 ± 33



41 
 

 

 

 

Figure 10: DNA binding assays to characterize dissociation constant for ssDNA. Enzyme is 

titrated into a premix containing 10 nM ssDNA Cy5’-dT15. Fluorescence anisotropy is measured 

and data is fitted to a one site substrate binding equation Y = Bmax*X/(Kd + X). Genotype 2a 

wild type and C292G mutant have similar affinity for single stranded DNA confirming the 

mutation in the ATPase did not affect the nucleic acid binding site. 
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Figure 11: ATPase assay to approximate enzyme affinity for Poly-U RNA (KRNA).  A stimulated 

ATPase assay was used to characterize the affinity for RNA. A reaction mixture containing 10nM 

helicase was pipetted into a 96 well plate. A 16-point dilution of Poly U RNA was added to the 

wells and the assay was initiated with 10mM ATP. Reaction was run for 900 seconds at which 

point it was quenched by the coloring reagent. Data was converted to velocity (s-1) and plotted 

against RNA concentration. Then data was fit with the Michaelis Menten equation, where Km 

was used as an approximation for affinity for RNA. The C292G mutant is faster at hydrolyzing 

ATP and binds RNA slightly tighter than wildtype. 
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Figure 12: Stimulated ATPase to characterize specific activity in the presence of RNA. Enzyme 

was premixed with Poly-U RNA and the assay was initiated with 10 mM ATP. An endpoint 

malachite green assay was used quench the reaction after 900 seconds. Absorbance data were 

converted to nM/sec rates using a known phosphate standard. Rates were plotted and fit with 

a linear regression to generate the figure above. The single Cys292 mutant behaved similar to 

the wildtype showing the C292G enzyme is still active. 
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Figure 13: Stimulated ATPase assay to estimate affinity for Mg*ATP. Enzyme was premixed 

with Poly-U RNA and the assay was initiated with 10mM Mg*ATP. An endpoint malachite green 

assay was used to detect the hydrolysis of ATP over 900 seconds. Results were plotted and fit 

with a Michaelis Menten equation to estimate the affinity of NS3h to Mg*ATP. Data varied 

between the genotype 1b enzymes, however, the 2a wildtype and the 2a C292G mutant 

behaved similarly. This shows both enzymes hydrolyze ATP similarly in the presence of nucleic 

acid. High concentrations of magnesium are known to inhibit helicase function and may explain 

the declining rate at the highest concentration point. 

  

0 200 400 600
0

5

10

15

NS3h_2a

NS3h_2a_C292G

8.92.5

121.3

kfast (s-1)

4641

4316

Km (M)

MgATP
2-

(M)

A
T

P
 H

y
d

ro
ly

s
is

 (
s

-*
1
)



45 
 

 

 

 

 

Figure 14: Unstimulated ATPase to characterize the specific activity of both enzymes. 

Enzymatic assay without Poly-U RNA was initiated with 1 mM ATP. A Biomol Green reagent was 

used to terminate the assay after 900 seconds. Each point is a well on a 96 well plate. Raw 

absorbance was converted to a rate, nM/sec, using a known phosphate standard. Rates were 

then plotted and fit with a linear regression to yield a slope kslow. Notice the Cysteine 292 

containing mutant has about a 15 times faster ATP hydrolysis rate. 
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Figure 15: Unstimulated ATPase assay to estimate affinity for ATP. Enzymatic assay without 

Poly-U RNA was initiated with 1 mM Mg*ATP. A Biomol Green reagent was used to terminate 

the assay after 900 seconds. Results were plotted and fit with Michaelis Menten to estimate 

affinity for Mg*ATP. Notice the Cysteine 292 containing mutants all have higher rates of ATP 

hydrolysis than wildtype, as well as higher Km for Mg*ATP. 
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