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ABSTRACT 

AN INVESTIGATION OF AUTISM SUPPORT GROUPS ON FACEBOOK 

by  

Yuehua Zhao 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Jin Zhang 

 

Autism-affected users, such as autism patients, caregivers, parents, family members, and 

researchers, currently seek informational support and social support from communities on social 

media.  To reveal the information needs of autism- affected users, this study centers on the 

research of users’ interactions and information sharing within autism communities on social 

media. It aims to understand how autism-affected users utilize support groups on Facebook.  

A systematic method was proposed to aid in the data analysis including social network 

analysis, topic modeling, sentiment analysis, and inferential analysis. Social network analysis 

method was adopted to reveal the interaction patterns appearing in the groups, and topic 

modeling method was employed to uncover the discussion themes that users were concerned 

with in their daily lives. Sentiment analysis method helped analyze the emotional characteristics 

of the content that users expressed in the groups. Inferential analysis method was applied to 

compare the similarities and differences among different autism support groups found on 

Facebook.  

This study collected user-generated content from five sampled support groups (an 

awareness group, a treatment group, a parents group, a research group, and a local support 
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group) on Facebook. Findings show that the discussion topics varied in different groups. 

Influential users in each Facebook support group were identified through the analysis of the 

interaction network. The results indicated that the influential users not only attracted more 

attention from other group members but also led the discussion topics in the group. In addition, it 

was examined that autism support groups on Facebook offered a supportive emotional 

atmosphere for group members. 

The findings of this study revealed the characteristics of user interactions and information 

exchanges in autism support groups on social media. Theoretically, the findings demonstrated 

the significance of social media for autism users. The unique implication of this study is to 

identify support groups on Facebook as a source of informational, social, and emotional support 

for autism-related users. The methodology applied in this study presented a systematic approach 

to evaluating the information exchange in health-related support groups on social media. Further, 

it investigated the potential role of technology in the social lives of autism-related users. The 

outcomes of this study can contribute to improving online intervention programs by highlighting 

effective communication approaches. 
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Chapter 1. Introduction 

 

1.1 Background 

 

Health information seeking represents intentional, active efforts to obtain specific health 

information above and beyond the normal patterns of information exposure and use of 

interpersonal sources which distinguishes it from information scanning (Griffin, Dunwoody, & 

Neuwirth, 1999). Tu (2011) showed that the following three ways: Internet, publications (books, 

magazines, newspapers), and someone else (friends, relatives) have become the main 

information sources where consumers usually seek health information. Other than seeking from 

publications and someone else, searching online has increased from 2001 to 2010. It was realized 

that health information seeking plays an increasingly important role in users’ online activities. 

The trend towards the use of the Internet for health information purposes is rising. In 

2010, according to findings from Health System Change (HSC)’s nationally representative 2010 

Health Tracking Household Survey, 50% of all American adults reported seeking information 

about a personal health concern during the previous 12 months (Tu, 2011). The proportion of 

American consumers seeking health information online was 15.9% in 2001, rose greatly to 

31.1% in 2007, and finally reached 32.6% in 2010. Based on a September 2012 survey in the 

USA, 72% of Internet users said they looked online for health information within the past year 

(Pew Research Center, 2015). According to the report of European Citizens’ Digital Health 

Literacy published in 2014, over 75% of Europeans considered the Internet as a good resource 

for looking up health information and 60% reported using the Internet to search health 

information (European Commision, 2014). As reported by a survey conducted in 2015, 68.4% of 

patients in Scotland had previously acquired online health information (Moreland, French, & 

Cumming, 2015). Deering and Harris (1996) identified three typical purposes of consumer health 
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information: individual healthcare, medical treatment, and public health concerns. Among the 16 

major health topics, ranging from specific diseases to diet to health insurance, it turned out that 

specific diseases or medical problems dominated Americans’ online queries (Pew Research 

Center, 2015). 

Autism is a developmental disorder that appears in the first 3 years of life. It is 

characterized by substantial deficits in communication and social functioning, as well as 

restrictive, repetitive and stereotyped behavior (Volker & Lopata, 2008). People with autism 

experience diverse social and emotional difficulties such as struggles with social skill and 

communication impairment (Mazurek, 2013). Previous studies revealed the especial challenges 

faced by autism patients are associated with social communication, social integration, and social 

imagination (Roffeei, Abdullah, & Basar, 2015). In addition, difficulties in recognizing facial 

expressions of emotion affect autism individuals in face-to-face interaction (Rump, Giovannelli, 

Minshew, & Strauss, 2009). 

Today, in the Web 2.0 era, social media are pervasive, rapidly evolving, and increasingly 

influencing people’s daily life and their health behavior. Social media provides an efficient 

platform for general users, patients and their relatives to access information from other users, ask 

help and advice from other users, make contributions to others, receive assistance from the 

forum, and share their experiences in the community. With the access to information on the 

social media platforms, people find useful information more effectively and personally than 

traditional information retrieval through search engines.  

When it comes to adults with autism, the majority of them used social networking sites to 

seek social connections (Mazurek, 2013). Mazurek (2013) suggested that social media use 
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appears to be beneficial for individuals with autism in communicating and engaging with others 

in a comfortable way. 

Support groups on Facebook provide an efficient platform for autism patients and their 

caregivers where they can ask for help and advice from other users, make contributions to others, 

receive assistance from the group members, and share their experiences in the community. This 

can also be a place where group members interact with each other and exchange information. 

However, there have been few studies that looked into what kind of information is being shared 

and how users interact with each other. 

This research centers on the study of autism-affected user’s behavior within communities 

on social media. The research objects are the autism support groups on Facebook. Those groups 

consist of autism patients, their relatives, caregivers, researchers and physicians. Some groups 

are dedicated to general autism-related users, and others are more focused on particular 

populations (e.g. women autistics, mothers of autistic children). Social network analysis, topic 

modeling, sentiment analysis, and inferential analysis are proposed to conduct a systematic 

analysis on autism support groups on Facebook. 

1.2 Significance 

The overarching goal of this consumer health information study is to help both health 

consumers and healthcare providers. Health information obtained from the Internet may play a 

role in patients’ health care outcomes. Understanding how people create, share, and consume 

information can help researchers understand patients’ and caregivers’ needs in online health 

communities and assist the way peer patients seek out health information online. The 

implications of this study come from two aspects: theoretical and practical. 



4 

 

The theoretical implications lie in the uncovering of emerging patterns and information 

exchange among autism support groups on Facebook. The methodology proposed in this study 

can be employed to explore online social support communities focusing on other health 

concerns. In practice, this study examines topics derived from messages posted to autism support 

groups on Facebook. The revealed topics identify the issues that individuals with autism are 

concerned about on a daily basis and how they address such concerns in the form of group 

communication. Identifying influential users in a support group can assist the group 

administrators to recognize group members’ contributions and reinforce positive behaviors 

within the group. 

1.3 Research problem, questions and hypotheses 

Social media, especially social networking sites, have become significant online venues 

for the exchange of health-related information and advice. Prior studies have focused primarily 

on investigating the prevalence of online health information seeking behavior. However, few 

studies looked into what kind of information is being shared and how users interact with each 

other within the health-related online communities. 

1.3.1 Research problem 

With the fast permeation of social media into the health domain, this study centers on the 

study of users’ behavior within autism communities on social media. The primary research 

problem of this study is to investigate the users’ behavior appearing within the autism support 

groups on Facebook. The research objects are the autism support groups on Facebook. The 

autism support groups on Facebook refer to any existing Facebook groups dedicated to autism-

related topics. The autism support groups consist of autism patients, their relatives, caregivers, 

researchers and physicians. The users’ behavior consists of two primary facets of characteristics: 
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behavior-based characteristics and content-based characteristics. Specifically, behavior-based 

characteristics represent the communication pattern among group members, while content-based 

characteristics describe the content pattern derived from the communication. 

Based on the primary problem, this study aims to address the following four research 

questions and the associated sub-questions. Toward the research questions, the corresponding 

null hypotheses were proposed in the study. 

1.3.2 Research question 1 (RQ1) 

RQ1: How do users interact with each other in autism support groups on Facebook based on 

social network analysis? 

To address the overall research problem in this study, the first research question aims to 

unveil how users communicate with each other within autism support groups on Facebook. By 

answering this question, what types of interactions autism-affected users are engaging in with 

each other can be unveiled. 

Facebook allows users to communicate with each other through various interactions. 

Within Facebook groups, the online interactions refer to various types of activities among group 

members, such as making comments, clicking “thumbs up”, etc. The major activities on 

Facebook include “posting”, “commenting”, “reacting (liking)”, “tagging”, and “sharing”. 

Within autism support groups on Facebook, users are able to perform all of those activities.  

However, when it comes to groups, sharing activities can be divided into two types: 

sharing-in and sharing-out. Sharing-in refers to share the outside information into a group, while 

sharing-out means sharing the information posted in the group to one’s own timeline or to a 

specific target as a message. Group members are able to create new wall posts to the group and 

share information (e.g. images, videos, webpages) from outside online resources to the group. In 
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contrast to posting in the group and sharing into the group, the online interactions among group 

members including “commenting”, “reacting (liking)”, “tagging”, and “sharing-out” involve two 

users. Types and frequencies of the activities provide the quantitative evidence necessary to 

examine the interaction among group members. 

Activity Category of activity Description 

Post Individual activity Create a new post 

Share-in Individual activity Share information from outside resources into a group 

Comment Interaction Make a comment to other’s post 

React (like) Interaction Click the “thumbs up” to other’s post 

Tag Interaction Tag other user embedded in a post 

Share-out Interaction Share group discussions to outside 

Table 1. Descriptions of group activities 

Members in a group and the interactions among the group members construct a social 

network that depicts the characteristics of the group. In the social network, actors represent the 

group members, while interactions among group members are displayed as connections among 

actors. The features of the constructed social networks of autism support groups on Facebook 

identify the characteristics of the group interactions among group members.  

Social networks can be characterized based on two levels of measurements: network-

level (macro-level) and actor-level (micro-level). Figure 1 presents a series of measurements 

used in social network analysis, and the hierarchical relations among the measurements. 

Network-level measurements capture the features of the whole network, while actor-level 

measurements quantify the positional characteristics of an actor in a social network. In this case, 

network-level measurements represent the traits of the autism support groups on Facebook, 

whereas actor-level measurements indicate the features of individual group members. 

A variety of network-level measurements is adopted to describe the patterns of the 

interactions appearing in each autism support group on Facebook. Network-level measurements 

depict the pattern of the way actors are connected. Figure 1 summarizes a host of network-level 



7 

 

measurements that characterize the social networks created by the group members and their 

interactions in the autism support groups on Facebook. Different measurements depict the 

features of a social network from diverse perspectives. Network size refers to the number of 

actors in a social network, which indicates the number of group members in a group. Cohesion is 

concerned with the connectedness of the network. Network density can be seen as the simplest 

measure of cohesion, which calculates the proportion of all possible connections that are actually 

present (Borgatti, Everett, & Johnson, 2013). The network density of a social network indicates 

the speed at which information or resources diffuse among the actors. The interactions between a 

pair of group members are not required to be mutual. For example, the person who receives the 

comment might not reply to the one who sends the comment. With a directed social network, 

reciprocity indicates the ratio of the number of pairs of actors with a reciprocated connection 

relative to the number of pairs with any connection (Hanneman & Riddle, 2005). Centralization 

refers to the extent a network is dominated by a single node (Borgatti et al., 2013). Centralization 

quantifies the extent to which a network is centralized as a whole. Actor-level measurements are 

defined in the following paragraphs. Detailed calculation methods of each network measurement 

are presented in Chapter 3. 
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Figure 1. Social network measurements 

1.3.2.1. RQ1.1 & RQ1.2 

The defined autism support groups on Facebook were created to discuss a wide range of 

topics regarding autism. Each group may have one or more focused topics (e.g. education, 

fundraising) or targeted population (e.g. parents of autistic children, autistic youth). In this study, 

on one hand, the author classifies the autism support groups into different categories and 

associated sub-categories according to the focused topic of a certain group. The approaches 

adopted in this study to define such categories and sub-category are discussed in the Chapter 3.  

On the other hand, group members can be categorized into two types based on their 

gender. Facebook users are able to set the gender in the account profile. Table 2 presents the 

classification of the autism support groups on Facebook and the gender categories of group 

members. 

  Category of autism support groups on Facebook 

  Category 1  Category i Category n 

Group members Male    
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 Female    

Table 2. Classification of autism support groups and group members on Facebook 

In addition to the pattern of interactions that occur in the groups, this study also examines 

the disparity and the similarity between the male group members and female group members and 

among groups focused on different topics. Therefore, the following two sub-questions were 

explored. Figure 2 presents the structure of RQ1 and the corresponding RQ1.1 and RQ1.2. 

RQ1.1: Are there any differences between male group members and female group 

members in terms of interactions in autism support groups on Facebook? 

RQ1.2: Are there any differences among the defined categories in terms of online 

interactions in autism support groups on Facebook? 

 

Figure 2. Structure of RQ1 

As discussed above, centralization characterizes a whole social network, while centrality 

captures the feature of an individual actor in the network. Over the past years, a number of 

centrality measures have been proposed by sociologists to detect the structural characteristics of 

entities in a network. Each centrality measure demonstrates special characteristics of the 

relationship among the nodes in a network. The centrality indicators are designed to identify the 
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importance of each node from different perspectives. Degree centrality refers to the number of 

connections an actor has to other actors in the network. The degree centrality can be seen as an 

index of its potential communication activity. Freeman’s (1978) betweenness centrality is based 

upon the frequency with which a point falls between pairs of other points on the shortest paths 

connecting them. Betweenness is useful as an index of the potential of a point for control of 

communication. Closeness centrality can be calculated by the inverse of summing the geodesic 

distances from that point to all other points in the graph (Freeman, 1978). Closeness is a measure 

of the degree to which an individual is near all other individuals in a network. 

1.3.2.2. Hypothesis group 1 

To compare the gender differences in structural features of group members in the autism 

support groups on Facebook, inferential analysis is applied to contrast the centrality measures 

(i.e. degree centrality, betweenness centrality, closeness centrality) of each actor in the network. 

Therefore, the following three hypotheses were tested to answer the RQ1.1: 

H01(a): There are no significant differences between male group members and female 

group members in terms of the interactions in autism support groups on Facebook based 

on the degree centrality. 

H01(b): There are no significant differences between male group members and female 

group members in terms of the interactions in autism support groups on Facebook based 

on the betweenness centrality. 

H01(c): There are no significant differences between male group members and female 

group members in terms of the interactions in autism support groups on Facebook based 

on the closeness centrality. 
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Considering the category attribute of each group, the following three hypotheses were to 

compare between the male group members and female group members that both belong to the 

same group: 

H02(a): There are no significant differences between male group members and female 

group members in each of the defined categories in terms of the interactions in autism 

support groups on Facebook based on the degree centrality. 

H02(b): There are no significant differences between male group members and female 

group members in each of the defined categories in terms of the interactions in autism 

support groups on Facebook based on the betweenness centrality. 

H02(c): There are no significant differences between male group members and female 

group members in each of the defined categories in terms of the interactions in autism 

support groups on Facebook based on the closeness centrality. 

H01(a), H01(b), H01(c), H02(a), H02(b), and H02(c) compose the hypothesis group 1. The 

independent variable of the hypothesis group 1 is gender. The dependent variable of the 

hypothesis group 1 is the interactions in autism support groups on Facebook. The dependent 

variables can be measured by the degree centrality of each actor, the betweenness centrality of 

each actor, the closeness centrality of each actor, respectively. 

1.3.2.3. Hypothesis group 2 

The following three hypotheses were tested to answer the RQ1.2: 

H03(a): There are no significant differences among the defined categories in terms of the 

interactions in autism support groups on Facebook based on the degree centrality. 

H03(b): There are no significant differences among the defined categories in terms of the 

interactions in autism support groups on Facebook based on the betweenness centrality. 
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H03(c): There are no significant differences among the defined categories in terms of the 

interactions in autism support groups on Facebook based on the closeness centrality. 

Hypothesis group 2 consists of H03(a), H03(b), and H03(c). The independent variable of the 

hypothesis group 2 is the defined category of the group. The dependent variable of the 

hypothesis group 2 is the interactions in autism support groups on Facebook. The dependent 

variables can be measured by the degree centrality of each actor, the betweenness centrality of 

each actor, the closeness centrality of each actor, respectively. 

1.3.3 Research question 2 (RQ2) 

RQ2: Who are the influential users based on interactions in autism support groups on 

Facebook? 

The second research question aims to identify who are the influential users based on 

interactions, also called major players, in the autism support groups on Facebook. The influential 

users usually have more impact on others in the group. Within a group, some group members 

occupy a more central positions compared to others, and thus possess more advantages in 

controlling the information flow among group members. The influential users based on 

interactions can be discovered through the analysis of different activities that users conduct in the 

group, i.e. “posting”, “sharing-in”, “commenting”, “reacting (liking)”, “sharing-out”, and 

“tagging”. The activities that users perform quantify users’ contribution to the group. In addition, 

the data from the interactions provide the quantitative evidence necessary to examine the 

information exchange in the group. 

In this study, the influential users based on interactions in autism support groups on 

Facebook can be discovered through social network analysis. The fundamental components of 

social network analysis are actors (nodes/vertices) and relations (ties/edges). One of the main 
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purposes of social network analysis is to identify the core actors in a network. Actor-level 

centrality measures assist in the identification of influential users. The key players in the social 

network can be determined based on each centrality measurement: betweenness, closeness, and 

degree. Group members who possess higher centralities in the group are considered “important” 

with regard to the relative positon of an actor within a network. 

1.3.3.1. RQ2.1 & RQ2.2 

In addition to finding out the influential users based on interactions, the characteristics of 

the influential users and the way that these influential users interact with others in the group are 

further examined. Therefore, the following sub-questions were explored: 

RQ2.1: What are the characteristics of the influential users in autism support groups on 

Facebook? 

RQ2.2: How do the influential users interact with others in autism support groups on 

Facebook? 

To answer RQ2.1 and RQ2.2, the characteristics of the influential users and their 

interaction patterns in autism support groups are also investigated through the social network 

analysis. The characteristics of the influential users come from the following aspects: the 

frequency and content of the posts that the user creates and shares in the group. Taking group 

members as the actors and interactions as the connections in the network, the interaction patterns 

of the influential users can be measured by the frequency of each type of interaction. 

1.3.4 Research question 3 (RQ3) 

RQ3: What are the discussion topics that emerged from the discussions in autism support 

groups on Facebook? 
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The online activities conducted by group members in autism support groups on Facebook 

produce rich textual content in addition to the interaction connections between users. In this 

study, the textual content mainly consists of two parts: the original posts submitted by group 

members, and the comments made by other members. 

The content created by users in the process of the group interactions reveals the concerns, 

interests, and other potential information behind the information sharing actions among group 

members. The content-based analysis uncovers the topics that emerge from group discussions. It 

provides knowledge regarding the information need of autism-affected users.  

1.3.5 Research question 4 (RQ4) 

RQ4: What are the sentiment characteristics of discussions in autism support groups on 

Facebook? 

People dealing with autism face huge economic costs and emotional stress (Saha & 

Agarwal, 2016). Emotional support has been considered as a significant element for the social 

support that the communities on social media provide to the community members. Saha and 

Agarwal (2016) identified that members of the autism community convey active and upbeat 

attitude in the community to counter stress and anxiety experienced by other members. 

Measuring the sentiment characteristics assesses how frequent positive and negative attitudes 

appear in the autism support groups on Facebook. It describes the interactions among group 

members from the emotional perspective. It also examines the effectiveness of autism support 

groups on Facebook performing as an avenue of emotional support. 

In this study, the sentiment is quantitatively analyzed from the content of autism support 

groups on Facebook to understand how group members engage with social and emotional 
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support. Sentiment analysis is applied to the posts and comments disseminated by group 

members within the group to measure the emotion.  

1.3.5.1. RQ4.1 & RQ4.2 

In addition, the following two sub-questions were explored to compare the sentiment 

characteristics between male group members and female group members, and among the defined 

categories. 

RQ4.1: Are there any differences between male group members and female group 

members in terms of sentiment characteristics in autism support groups on Facebook in 

each of the defined categories? 

RQ4.2: Are there any differences among the defined categories in terms of sentiment 

characteristics in autism support groups on Facebook? 

1.3.5.2. Hypothesis group 3 

The following two hypotheses were tested to answer the RQ4.1: 

H04: There are no significant differences between male group members and female group 

members in terms of the sentiment in autism support groups on Facebook. 

H05: There are no significant differences between male group members and female group 

members in each of the defined categories in terms of the sentiment in autism support groups on 

Facebook. 

H04 and H05 compose the hypothesis group 3. The independent variable of the hypothesis 

group 3 is gender. The dependent variable of the hypothesis group 3 is the sentiment appearing 

in autism support groups on Facebook. The dependent variable can be measured by the sentiment 

scores of the content posted by the group members. 

1.3.5.3. Hypothesis group 4 
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The following two hypotheses were tested to answer the RQ4.2: 

H06: There are no significant differences among the defined categories in terms of the 

sentiment in autism support groups on Facebook. 

H07: There are no significant differences among the defined categories in terms of the 

sentiment of group members with the same gender in autism support groups on Facebook. 

H06 and H07 compose the hypothesis group 4. The independent variable of the hypothesis 

group 4 is the defined category of the group. The dependent variable of the hypothesis group 4 is 

the sentiment appearing in autism support groups on Facebook. The dependent variable can be 

measured by the sentiment scores of the content posted by the group members. 

1.4 Definitions of terms  

Before the exploration of consumer health information seeking in social media, key terms 

must be identified and defined. This section summarizes the key terms and the definitions 

employed in this study. 

1.4.1 Autism 

Autism, or autism spectrum disorder (ASD), refers to a group of developmental disorders 

(NIMH, n.d.). According to U.S. National Library of Medicine, autism, also called pervasive 

developmental disorder (PDD), is “a lifelong developmental disability that affects how a person 

communicates with and relates to others” (MedlinePlus, n.d.). Autism occurs during the first 

three years of a person's life. It influences an individual’s brain functions and the way in which 

these functions make sense of the world (Roffeei et al., 2015). Autism affects the way that an 

individual acts and interacts with others, communicates, and learns (MedlinePlus, n.d.). 

Individuals with autism syndrome share certain difficulties that may affect them in different 
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ways such as experiencing learning disabilities that require special types of support (Roffeei et 

al., 2015).  

1.4.2 Autism-affected users 

Autism occurs early in an individual’s life and lasts throughout his/her whole lifetime. 

Individuals with autism often encounter challenges with a wide range of social interactions and 

activities. It involves a variety of people who appear in his/her life. These so called autism-

affected users include parents, family members, classmates, schoolteachers, and caregivers.  

1.4.3 Social media 

With the development of mobile and web-based technologies, social media create highly 

interactive platforms where individuals and communities share, co-create, discuss, and modify 

user-generated content (Kietzmann, Hermkens, McCarthy, & Silvestre, 2011). In 2010, Kaplan 

and Haenlein (2010) defined social media as “a group of Internet-based applications that build on 

the ideological and technological foundations of Web 2.0, and that allow the creation and 

exchange of user-generated content” (p. 61). 

There currently exist numerous and diverse social media sites that vary in terms of their 

functionality for society and individual users. Relying on a set of theories in the field of media 

research (social presence, media richness) and social processes (self-presentation, self-

disclosure), social media sites can be classified into the following six types: blogs, social 

networking sites, virtual social worlds, collaborative projects, content communities, virtual game 

worlds (as shown in Table 3). (Kaplan & Haenlein, 2010) 

 Social presence/ Media richness 

 Low Medium High 

High Blogs  

(e.g. Blogger) 

Social networking sites 

(e.g., Facebook) 

Virtual social worlds (e.g., 

Second Life) 

Low Collaborative projects (e.g., 

Wikipedia) 

Content communities (e.g., 

YouTube) 

Virtual game worlds (e.g., 

World of Warcraft) 
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Table 3. Classification of social media sites (Kaplan & Haenlein, 2010, Table 1) 

The 21st century no doubt is witnessing an explosion of social media. Pew Research 

Center reported that almost all of the major social media platforms have witnessed a significant 

increase in the proportion of U.S. adults who used them over the past four years (Duggan, 2015). 

Based on the Pew Research Center’s survey conducted March 17, 2015 through April 12, 2015, 

which sampled 1,907 adults, 72% of adults use Facebook (Duggan, 2015). According to this 

survey, the proportions of adults who use the five main social media sites (Facebook, Pinterest, 

Instagram, LinkedIn, and Twitter) have continued rising between 2012 and 2015. While 

Facebook remains the most popular social media site among Internet users in the past four years, 

other sites, such as Pinterest and Instagram, have experienced significant growth between 2012 

and 2015 (Duggan, 2015). In addition to having a very large user base, Facebook continues to 

have the most engaged users (70%) who log on daily, including 43% of them who check in 

several times a day (Duggan, 2015). Considering the high popularity and accessibility of 

Facebook and Twitter, this study mainly took these two social media platforms as examples. 

1.4.4 Facebook 

Facebook, launched in 2004, has become the most popular social networking site 

worldwide (as of August 2017), as ranked by the number of active user accounts (Statista, 2017). 

After signing up on Facebook, a user is able to fill in his/her profile and start to interact with 

others on Facebook. Like other social networking sites, Facebook offers an important mechanism 

for “being friends”. Users can become friends by sending friend requests to others and accepting 

friend requests from others. Users with friend relationships may see each other's posts in the 

News Feed. On Facebook, the friendship is a binary state of connection between two registered 

users. In addition to general user account, Facebook also provides other types of account, such as 

Groups, Pages, Community Pages, etc. Facebook Pages enable businesses, organizations and 
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public figures to connect with their customers or fans on Facebook (“Pages,” n.d.). Users who 

like a Page can keep track with the updates about the Page including posts, photos or videos in 

their News Feed. Community pages appear to be a type of Facebook pages. Different from other 

Facebook pages creating for business, company, organization, etc., Facebook community pages 

are built around topics, causes or experiences (Socialbakers, 2012). 

1.4.5 Facebook group 

Created in 2004, Facebook reached 1.79 billion monthly active users as of the third 

quarter of 2016 (“Facebook users worldwide 2016,” 2016). As the most popular social network 

worldwide, Facebook allows users to perform general social media activities such as posting 

status updates, other content and messaging each other (“Facebook users worldwide 2016,” 

2016), etc. In addition, Facebook users may join user groups based on alumni relationships or 

shared interests.  

Facebook has a group mechanism to provide Facebook users a space where they can 

communicate about shared interests with certain people (“Groups”, n.d.). Facebook groups 

provide a space to communicate about shared interests with other users. Groups can be created 

by any registered users for a variety of purposes such as classmate reunions, sports teams, study 

groups, etc. Figure 3 shows an example of the homepage of a Facebook group. 

Any registered users can create groups for a variety of reasons such as family reunion, 

after-work sports team, book club, etc.  The privacy settings of a group may be customized 

depending on who you want to be able to join and see the group (“Groups,” n.d.). The group's 

privacy settings can be customized as public groups, closed groups, and secret groups 

(“Friending”, n.d.).  
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Regarding the privacy settings, there are three types of Facebook groups: public groups, 

closed groups, and secret groups (“Groups,” n.d.). Table 4 summarizes the access limits for 

groups with different privacy settings. Secret groups are the most private type since no one can 

see the group’s name except the current and former group members. It means secret groups do 

not appear in a Facebook search if the searcher is not a current or former member. Therefore, this 

study is unable to include the investigation of those secret groups. As for public and closed 

groups, anyone can join or be added or invited to a public group, whereas for a closed group 

people have to ask to join or be added or invited by a current member. 

In a certain Facebook group, there are a range of interactions a group member may have 

with the group and other group members. The most common activity is to post a message, a 

photo or a video. All group members are notified about the new posts in a group unless they 

adjust their group notification settings (“Join and Interact with Groups,” 2016). Any Facebook 

users has access to the content that appears in public groups, while only group members are able 

to see things that are posted in closed or secret groups. 
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Figure 3. An example of a Facebook group homepage 

 

 Group privacy setting 

 Public group Closed group Secret group 

Join the group 

Anyone can join or 

be added or invited 

by a member 

Anyone can ask to 

join or be added or 

invited by a member 

Anyone, but they have 

to be added or invited 

by a member 

See the group 

description 
Anyone Anyone 

Current and former 

members 

See the group posts Anyone Only current members Only current members 

Find the group in 

search 
Anyone Anyone 

Current and former 

members 

See stories about the 

group (e.g. News Feed 

and search) 

Anyone Only current members Only current members 

Table 4. Privacy settings for Facebook groups 

1.4.6 Interactions in Facebook group 

Facebook users post status, photos, videos, and interact with friends and family members 

in their online social network. Users are able to conduct various activities with other users, such 



22 

 

as making comments to posts, giving “like” to posts, sharing-out posts, and tagging other users in 

their own posts. In addition, messaging on Facebook allow users to instantly reach their friends 

by sending texts, photos, links, etc. To keep the confidentiality of group members, sharing-out 

can only be conducted in the public groups. In this study, the interactions among group members 

refer to the interactive activities that can be done in the group, including “commenting”, 

“reacting (liking)”, “tagging”, and “sharing-out”. 

1.4.7 Social network analysis 

In social science, the theory of networks has been adopted to explain social phenomena in 

a wide variety of disciplines ranging from psychology to economics (Borgatti, Mehra, Brass, & 

Labianca, 2009). Borgatti et al. (2009) regarded social network theory as a gold mine that 

“provides an answer to a question that has preoccupied social philosophy since the time of Plato, 

namely, the problem of social order: how autonomous individuals can combine to create 

enduring, functioning societies” (p. 892).  

The history of social network analysis can be traced back to the 1930s. By the 1980s, 

social network analysis had become an established field within the social sciences (Borgatti et al., 

2009). About ten years later, social network analysis was applied to a wide range of fields such 

as physics and biology (Borgatti et al., 2009). To date, social network analysis has been widely 

employed by a great number of disciplines and has become a multidisciplinary method. 

Social network analysis has been defined as a strategy for investigating social structures 

through the use of network and graph theories (Otte & Rousseau, 2002). The axiom on which 

social network analysis rests is that structure matters (Borgatti et al., 2009). Social network 

analysis provides a framework that measures structural relations between members of a network. 

While social network analysis has many applications, the ultimate purpose underlying all 
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applications of this method is to reveal useful insights occurring in the behind-the-scenes 

development and interactions in a network. 

The fundamental components of social network analysis are actors (nodes/vertices) and 

relations (ties/edges). An actor may represent an individual person or may represent a group of 

people or organization (Knoke & Yang, 2008). In addition, Hansen, Shneiderman, and Smith 

(2010) indicated that actors need not be limited to people, but can also represent items such as 

web pages, key word tags, or videos. A pair of any two actors in the network is often referred to 

as a dyad, and so a relation can be defined as “a specific kind of contact, connection, or tie 

between a pair of actors, or dyad” (Knoke & Yang, 2008, p. 7). Borgatti et al. (2009) divided 

dyadic relations into four basic types: “similarities, social relations, interactions, and flows” (p. 

894) (as shown in Table 5). Social network research focuses primarily on the way that these 

different kinds of ties affect each other (Borgatti et al., 2009). 

Similarities Social Relations Interactio

ns 

Flows 

Locati

on 

e.g., 

same 

spatial 

& 

tempor

al 

space 

Membersh

ip 

e.g., same 

clubs, 

same 

events etc. 

Attribu

te 

e.g., 

same 

gender, 

same 

attitude 

etc. 

Kinshi

p 

e.g., 

mothe

r of, 

siblin

g of 

Other 

Role 

e.g., 

friend 

of, boss 

of, 

student 

of, 

competit

or 

Affecti

ve 

e.g., 

likes, 

hates, 

etc. 

Cogniti

ve 

e.g., 

knows, 

knows 

about, 

sees as 

happy 

etc. 

 

 

e.g., sex 

with, 

talked to, 

advice to, 

helped, 

harmed, 

etc. 

 

 

e.g., 

informatio

n, beliefs, 

personnel, 

resources, 

etc. 

Table 5. A typology of ties studied in social network analysis (Borgatti et al., 2009, Figure 3) 

1.4.8 Centrality 

One of the main purposes of social network analysis is to identify the core actors in a 

network. Over the past years, a number of centrality measures have been proposed by 

sociologists to detect the structural characteristics of entities in a network. The centrality 

indicators are designed to identify the “core” authors from different perspectives. The degree 
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centrality can be seen as an index of its potential communication activity. Freeman’s (1978) 

betweenness centrality is based upon the frequency with which a point falls between pairs of 

other points on the shortest paths connecting them. Betweenness centrality can be used to assess 

the potential of an actor for control of communication in the knowledge flow network. 

1.4.9 Content analysis 

Content analysis has been widely studied for about 60 years (Krippendorff, 2012). It was 

probably first defined in Webster and Gove’s Webster’s Third New International Dictionary of 

the English Language in its 1961 edition as “analysis of the manifest and latent content of a body 

of communicated material (as a book or film) through classification, tabulation, and evaluation 

of its key symbols and themes in order to ascertain its meaning and probable effect” (as cited in 

Krippendorff, 2012, p. 1). Then, Neuendorf (2002) provided a briefer and well-known definition 

of content analysis as “the systematic, objective, quantitative analysis of message characteristics”. 

Under both definitions, the main purpose of content analysis can be seen as revealing the 

underlying information behind the material. Although, certain arguments still exist in the 

scholarly literature as to the specific scope of content analysis (Neuendorf, 2002), this study 

tends to treat both qualitative and quantitative methods dealing with the content as content 

analysis. 

The informative nature of social media makes it a great platform to conduct content 

analysis. Using the information obtained from social media, researchers can gain valuable 

insights into the beliefs, values, attitudes, and perceptions of social media users by using the 

user-generated content (Lai & To, 2015). 

Content analysis can be carried out by analyzing textual material including text from 

media products to interview data (Flick, 2009). Traditionally, content analysis involved human 
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interviews followed by a transcription process to transfer the audio material into the textual 

material. Today, gathering, analyzing, and grouping information available in social media relies 

more on crawlers and specific software. 

1.4.10 Topic modeling 

Topic modeling provides a powerful tool to identify latent content patterns from content. 

It views documents as mixtures of probabilistic topics and helps discover a set of topics that 

appear in a collection of documents (Griffiths & Steyvers, 2004). It has been widely applied in a 

range of social media research to reveal the topics. 

1.4.11 Sentiment analysis 

Sentiment analysis, also known as opinion discovery, centers on identifying the 

viewpoint underlying the documents. One particular and common type of sentiment analysis is to 

detect the sentiment polarity, which is the overall orientation of a certain text is positive or 

negative (Lau, Wang, Man, Yuen, & King, 2014). Since early 2000, sentiment analysis has been 

applied to the analysis of online movie reviews, the discovery of public sentiment, the prediction 

of election, etc. The rapid growth of the field of sentiment analysis coincides with the surge of 

content on social media (Liu, 2012). 

1.4.12 Consumer health information 

Before the exploration of consumer health information, key terms in this study must be 

identified and defined. Based on the U.S. National Library of Medicine sources, health 

information refers to general health, drugs and supplements, specific populations, genetics, 

environmental health and toxicology, clinical trials, and biomedical literature (NLM, 2014). 

Generally speaking, all the information related to the above topics may be treated as health 

information. 
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The American Medical Informatics Association, Consumer Health Informatics Working 

Group, the International Medical Informatics Association, and Nursing Informatics Interest 

Group have all proposed the definition of “health information consumer” to be people who “seek 

information about health promotion, disease prevention, treatment of specific conditions, and 

management of various health conditions and chronic illnesses” (Lewis, Eysenbach, Kukafka, 

Stavri, & Jimison, 2006, p. 1). Consumption of health information appears not only by persons 

with specific health conditions and their friends and family, but also by people with public health 

concerns (Lewis et al., 2006). Therefore, consumers of health information consist of a much 

broader population than patients. 

Patrick and Koss proposed the definition of consumer health information as:  

any information that enables individuals to understand their health and make health-

related decision for themselves and their families. This includes information supporting 

individual and community-based health promotion and enhancement, self-care, shared 

(professional-patient) decision-making, patient education, patient information and 

rehabilitation, health education, using the healthcare systems and selecting insurance or 

healthcare provider. (Suess, 2001) 

Deering and Harris (1996) also advocated this definition and further identified three typical 

purposes of consumer health information: individual healthcare, medical treatment, and public 

health concerns. 

1.4.13 Health information on social media 

Definitions of social media abound over the last decade (Eckler, Worsowicz, & Rayburn, 

2010). Kaplan and Haenlein (2010) defined social media as “a group of Internet-based 

applications that build on the ideological and technological foundations of Web 2.0, and that 
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allow the creation and exchange of user-generated content” (p. 61). Today, in the Web 2.0 era, 

social media is pervasive, rapidly evolving, and increasingly influencing people’s daily life and 

their health behavior. 

With the emergence of Web 2.0, the concept of Medicine 2.0 was put forward to adapt to 

the improved Internet environment.  Eysenbach (2008) identified five major aspects of Medicine 

2.0 as: 1) social networking, 2) participation, 3) apomediation, 4) openness, and 5) collaboration. 

Within these themes, social media is a central venue to the ideas of Web 2.0 and Medicine 2.0 

and is a potentially powerful tool to engage users to enable the seeking of “relevant” information 

(Eysenbach, 2008). A wide variety of social platforms aim to expand the way consumers share 

information about personal health, physicians, and treatments (Bradley, 2013). Pho suggested 

that “social media is where the future is, and most importantly, that’s where our patients are 

going to be” (as cited in Prasad, 2013, p. 492). E-patients retrieve information on social network 

rather than completely receive it, and their contribution is more hands on rather than simply 

accepting a paternalistic viewpoint (Prasad, 2013). 

1.5 Summary 

Figure 4 summarizes the structure of the research problem, research questions, and 

associated hypotheses proposed in this study. The primary research problem of this study is to 

investigate the users’ behavior appearing within the autism support groups on Facebook. The 

four research questions were proposed to answer the research problem in this study. Basically, 

RQ 1 and RQ 2 center on the behavior-based characteristics, and RQ 3 and RQ 4 deal with 

content-based characteristics. And there were four hypothesis groups associate with the four sub-

questions. 
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Figure 4. Structure of research problem, research questions, and associated hypotheses 
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Chapter 2. Literature review 

2.1 Introduction 

As people increasingly rely on self-help, consumer health informatics has been a rapidly 

developing area. There appears to be an increased demand from users to access health 

information and participate in medical decision making. Consumer health information resources 

provide health information to lay users to empower patients, caregivers, families, and consumers; 

improve decisions; and ultimately foster better public health outcomes (Keselman, Browne, & 

Kaufman, 2008). Due to the availability of health information on the Internet, consumers tend to 

engage in online health-seeking from professional medical websites and contribute to online 

health communities. 

2.2 Health information seeking online 

Health information seeking represents intentional, active efforts to obtain specific health 

information above and beyond the normal patterns of information exposure and use of 

interpersonal sources which distinguishes it from information scanning (Griffin et al., 1999). 

Health information seeking can be further defined as: 

Any non-routine media use of interpersonal conversation about a specific health topic and 

thus includes behaviors such as viewing a special program about a health-related 

treatment, using a search engine to find information about a particular health topic on the 

Internet, and/or posing specific health-related questions to a friend, family member, or 

medical practitioner outside the normal flow of conversation. (Niederdeppe et al., 2007) 

2.2.1 Seeking health information online 

In 2010, 50% of all American adults reported seeking information about a personal health 

concern during the previous 12 months (Tu, 2011). The Pew Internet & American Life Project 
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(http://www.pewinternet.org) has tracked online activities since early in 2000, including a focus 

on consumer use of online health information (Goldberg et al., 2011). It was realized that health 

information seeking plays an increasingly important role in users’ online activities.  

The 2010 Health Tracking Household Survey asked participants whether they had sought 

or obtained information about a personal health concern from a variety of sources other than 

their doctor, including books, magazines or newspapers; television or radio; friends or relatives; 

and the Internet during the past 12 months. The survey results described the information sources 

where consumers sought health information in 2001, 2007, and 2010 (Tu, 2011). The proportion 

of consumers seeking health information online was 15.9% in 2001, rose greatly to 31.1% in 

2007, and finally reached 32.6% in 2010. Tu (2011) showed that three ways (Internet; 

publications such as books, magazines, newspapers; and someone else such as friends and 

relatives) have become the main information sources where consumers usually seek health 

information. 

Internet access drives information access. In a national survey conducted in 2002, the 

Pew Internet Project found that 62% of Internet users, or 73 million people in the United States, 

have gone online in search of health information (Fox, 2008). Online Health Search 2006 

estimated that 80% of American Internet users, or some 113 million adults, have searched for 

information (Fox, 2006). The number of American adults who searched for information on at 

least one health topic a day has increased from 6 million in 2001 to 8 million in 2006. These 

surveys indicate that the trend towards the use of the Internet for health purposes is rising. 

2.2.2 Health topics searched online 

Based on a September 2012 survey, 72% of Internet users said they looked online for 

health information within the past year (Pew Research Center, 2015). Their searches included 
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serious conditions, general health information, and minor health problems (Fox & Duggan, 

2013).  

The Pew Internet & American Life Project Survey asked participants if they had used the 

Internet to search for at least one of 16 major health topics online, ranging from specific disease 

to diet to health insurance (Fox, 2006). According to Fox (2006), from 2002 to 2006, the 

following five topics continued to be the most commonly searched topics: specific diseases or 

conditions (63% in 2002, 66% in 2004, and 64% in 2006); certain medical treatment or 

procedure (47% in 2002, 51% in 2004, and 51% in 2006); diet, nutrition, vitamins, or nutritional 

supplements (44% in 2002, 51% in 2004, and 49% in 2006); exercise or fitness (36% in 2002, 

42% in 2004, and 44% in 2006); and prescription or over-the-counter drugs (34% in 2002, 40% 

in 2004, and 37% in 2006) (Pew Research Center, 2015). The updated survey conducted in 2012 

showed that specific diseases or medical problem continue to dominate people’s online queries 

(Fox & Duggan, 2013). 

2.2.3 Search strategies 

When it comes to the last session in which they sought health or medical information, 

77% of online health seekers show they began at a search engine such as Google, Bing, or Yahoo. 

Another 13% started with a site that specializes in health information, like WebMD. However, 

only 2% stated that they started their search at a more general site like Wikipedia, and only 1% 

pointed out that they began with a social network site like Facebook (Fox & Duggan, 2013). 

In terms of the search strategy, (Eysenbach & Köhler, 2002) reported that all of their 21 

participants used search engines as a starting point instead of medical portals or the sites of 

medical societies or libraries. With search engines, participants were very successful in finding 

answers to health questions by refining various search terms and exploring the first few results 
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by rough examination of the content of the page. Younger health seekers are more likely to start 

at a search engine, whereas older health seekers tend to start at a specific website that they know 

provides health information (Fox, 2006). 

2.3 Consumer health information seeking in social media 

Consumption of health information occurs by not only persons with specific health 

conditions and their friends and family but also by people with public health concerns (Slack, 

2005). Therefore, consumers of health information consist of a much broader population than 

patients. Pew Research Center (2013) reported in 2012 that among online health information 

seekers, 16% tried to find others who might share the same health concerns; 30% of Internet 

users have consulted online reviews or rankings of health care services or treatments; and 26% of 

Internet users have read or watched someone else’s experience about health or medical issues. It 

is notable that online peers have been an important information source for consumers’ health 

concerns. 

2.3.1 Prevalence of health information seeking in social media 

People with access to the Internet are more likely to be greater health information seekers 

than those without access. To date, for the most part, health information seeking studies have 

primarily focused on static websites such as Medline and on search engines (Keselman et al., 

2008). There has not been much focus on patients’ information seeking patterns and behaviors in 

online health communities. In an online community, consumers could be searching for 

personalized information that would either supplement or reinforce the information that they 

have already received from other sources. This type of information seeking has not been properly 

explored in the informatics literature. More studies in this area would enhance the understanding 

of how information seeking effectiveness can be improved in online communities. 
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Given the rapid growth of health information on social media, more and more consumers 

engage in consulting health issues on different social media platforms. Based on a national phone 

survey conducted in September 2012, 8% of Internet users have posted a health-related question 

online or shared their own personal health experience online (Fox & Duggan, 2013). Among 

those participants, 40% have shared their personal health experiences; 19% have asked specific 

health questions; 38% have done both. 

Thackeray, Crookston, and West (2013) demonstrated that people did employ social 

media for seeking health information. Of 1745 adult respondents, 41.15% of them consulted 

online rankings or reviews, 31.58% of them used social networking sites for health, 9.91% of 

them posted reviews, and 15.19% of them posted a comment, question, or information. In 

addition, this study discovered that people with a chronic disease were nearly twice as likely to 

refer to online rankings. 

Prybutok and Ryan (2015) investigated where 18- to 30-year-old college students seek 

health information on the Internet. Participants specified social media sites 33 times (32.7% of 

the total time). The authors concluded that social media show great promise as effective sources 

of medical information for this age group. When it comes to more specific information about 

food-related risks, social media (including micro blogs, forums, blogs, social networking sites 

and YouTube) were also listed by participants as a complementary information seeking channel 

(Kuttschreuter et al., 2014). Among the youth participants from Canada, Rasmussen-Pennington, 

Richardson, Garinger, and Contursi (2013) found that the most popular websites for seeking 

mental health information were YouTube, FMyLife (more popularly known as FML), and 

Facebook. In respect to drug information, 51.0% (2478 of 4861) of Japanese consumers reported 

that they have obtained drug information from social media sites (Kishimoto & Fukushima, 
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2011). The participants considered Yahoo!Chiebukuro (Japanese Yahoo!Answers) as the most 

widely used online source for drug information (Kishimoto & Fukushima, 2011). In addition to 

gaining information from online peers, Van de Belt et al. (2013) revealed that 25.4% of Dutch 

people would like to consult their physician in social media and 21.2% of Dutch people were 

willing to communicate with their physician using a webcam. 

In recent years, the number of online health communities has increased rapidly as more 

patients seek to access alternate sources of health information as well as to connect with other 

patients with the same or similar disease. The large number of such communities is a testament 

to their popularity among health consumers (Jadad, Enkin, Glouberman, Groff, & Stern, 2006). 

According to Nambisan’s (2011) research, this has prompted many healthcare organizations 

(HCOs) including Kaiser Permanente, Johns Hopkins, etc., to provide access to online 

communities for their patients as part of their overall patient support services.  

2.3.2 Discussion topics emerging from health information in social media 

Social media applications on the Internet are empowering, engaging, and educating for 

health care consumers and providers (Sarasohn-Kahn, 2008). Consumers use social media for a 

variety of purposes, ranging from emotional support to health conditions management. The most 

popular questions consumers asked to a medicines information service on Facebook were related 

to adverse effects, treatment options for conditions, and drug interactions (Benetoli, Chen, 

Spagnardi, Beer, & Aslani, 2015). 

Park and Park (2014) examined cancer-related information from an online community. 

The results revealed that the majority (71.4%) of the postings were associated with medical 

topics. These medical related topics consisted of the following nine sub-topics: treatment 

(24.1 %), diagnosis (19.6 %), symptom (12.9 %), prognosis (4.5 %), prevention (3%), risk 
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factors (2.9%), alternative medicine (2.0%), medication (1.5%), and diet (0.9%). Thus treatment 

(24.1 %) was the most frequently discussed medical topic, whereas the most frequently discussed 

non-medical topic was recommendations for hospitals or doctors (11.5 %). In addition, this study 

also revealed that breast cancer (34.2 %) was the most searched type of cancer, followed by 

cervical cancer (12.8 %) and liver cancer (5.3 %). 

When it comes to specific information related to cervical cancer, Westbrook and Zhang 

(2015) uncovered 8 topics from the discussions in an online question and answer forum: causes, 

prevention, symptoms, diagnosis, prognosis, treatment, remission, and end of life. Among these 

topics, prevention issues, potential causes of cervical cancer, and specific prevention strategies 

became the major concerns (57% of all the posts). 

As a common chronic disease, people suffering from diabetes have sought diabetes-

related information from online sources for decades (Zhang, Zhao, & Dimitroff, 2014). Through 

the coding analysis of the transaction log from a social question and answers forum, Zhang and 

Zhao (2013) identified 12 major topics about diabetes: cause and pathophysiology (6.6%), sign 

and symptom (8.59%), diagnosis and test (11.48%), organ and body part (5.97%), complication 

and related disease (8.23%), medication (6.69%), treatment (6.42%), education and information 

resource (7.96%), affect (6.96%), social and culture (7.50%), lifestyle (6.15%), and nutrient 

(17.45%). In the follow-up study, Zhang et al. (2014) conducted an across category analyses and 

discovered the associations between certain symptoms and specific body parts, and between 

certain diagnosis and appropriate medications. 

Obesity has been one of the major health concerns facing a large volume of people 

worldwide. Liang and Scammon (2011) observed an obesity support group and revealed the 

following 11 discussion themes from the threads appearing in the group: surgeries (e.g. gastric 
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bypass surgeries), drugs (e.g. Alli), self-support (e.g. exercise, penpal and healthy eating), 

commercial weight loss programs (e.g. Slim-Fast and WeightWatchers), weight loss (e.g. the 

motivation for weight loss), health and medical problems (e.g. diseases caused by overweight or 

obesity), social anxiety (e.g. depression caused by poor self-esteem), parenting (e.g. childhood 

obesity), doctors (e.g. relationships between doctors and obese patients), products (e.g. 

comfortable clothes and airlines seat), and public policy (e.g. Medicaid). Among those themes, 

social anxiety and self-support dominated consumers’ discussions.  

Because of the substantial disability and burden of depression, people with depression 

seek information, advice, and opinions from other individuals experiencing the same problem 

from online support groups (Barney, Griffiths, & Banfield, 2011). Thematic analysis revealed 6 

broad themes from users’ discussions: coping with depression (40.2%), medication (11.1%), 

professional treatment and services (9.3%), understanding depression (7.5%), disclosure and 

stigma (17.3%), and comorbid mental health problems (14.6%). Clearly, coping with depression 

was the most concerning problem for the participants. 

2.3.3 Seeking health information from online peers 

Different from the traditional ways of information search, social media offers health 

information seekers access not only to the information on the platforms, but also to other users 

(Zhao & Zhang, 2017). The basic idea behind so-called peer-to-peer healthcare is consulting 

about health issues with other peers. Social media connects patients with others who have the 

same concerns. This started the connected health era. Fox (2013a) even recognized that the most 

exciting innovation in health care today is “people talking with each other” (para. 2). 

Pew Research Center (2013) reported that among online health information seekers, 16% 

tried to find others who might share the same health concerns in 2012; 30% of Internet users 
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have consulted online reviews or rankings of health care services or treatments; and 26% of 

Internet users have read or watched someone else’s experience about health or medical issues. It 

is notable that online peers have been an important information source for consumers’ health 

concerns since 2012. 

People living with chronic diseases and their caregivers are especially likely to seek out 

peer advice online (Fox, 2013b). Seeking information from peers online is a new way of 

pursuing health by banding together and sharing knowledge. Practical tips from fellow patients 

and caregivers can have far-reaching implications for clinical outcome (Fox, 2013b). 

One of the particular characteristics of consulting with online peers rather than general 

websites is that other patients can explain what it really feels like and what to expect next in a 

way that only someone with personal experience can articulate (Preece, 1999). Moreover, instead 

of entering keywords into a search engine and then receiving a vast number of links, social 

media encourages consumers to actually “ask” a question on the platforms and then wait for the 

real “answers” from peers. 

2.3.4 Seeking health information from online communities 

Online health communities (OHC) provide patients with the open platforms to obtain 

information and seek social support. Many of these health communities serve as an essential 

social function by enabling people with medical problems to propose and discuss their concerns 

with others. Studies have also confirmed the sentimental values of the interactions on the online 

health forum when the research targeted Q&A forums. Taking the American Cancer Society 

Cancer Survivors Network (CSN) as a case of an online forum for a specific disease, Qiu et al. 

(2011) studied the sentiment benefits and dynamics in a large-scale health-related electronic 

community to find that an estimated 75%-85% of CSN forum participants change their sentiment 
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in a positive direction through online interactions with other community members. Apart from 

the emotional support, CSN also had the highest influence in medical, lifestyle, and treatment 

issues (Portier et al., 2013). Furthermore, Nambisan (2011) defined four dimensions to assess 

patients’ online community experience (OCE): pragmatic, empathic, sociability, and usability.  

All of these four dimensions impacted positively on patient’s attitudes. 

Because of their potential importance, online health communities which focused on 

various diseases were studied by scientists. Gooden and Winefield (2007) applied a thematic 

analysis of gender differences and similarities of breast and prostate cancer to online discussion 

boards. According to the study from Winkelman and Choo (2003), the virtual patient 

community, integrated within the functioning health-care organization, embodied the following 

four elements: adequate information (knowledge), self-regulatory skills development, building a 

sense of self-efficacy and construction of a social support system. Bers, Gonzalez-Heydrich, and 

Demaso (2003) showed one well-documented example of a healthcare organization-sponsored 

virtual patient community, Zora (an animated virtual community for pediatric hemodialysis 

patients) has been found in limited clinical trials to help children and families cope with the 

disease. 

Studies on autism related to online information seeking and sharing have been widely 

explored. For autism patients and their relatives, Mansell and Morris 2004) found that joining 

online communities is apparently the most frequently applied method to obtain autism-related 

information. Clifford and Minnes (2013) studied the evaluation of parents of autistic children in 

an online support group and they concluded that parents who participated in the group reported 

being satisfied with the support they received and found the group helpful. 
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In addition to the specific health communities, more general social networking sites 

(SNSs) such as Facebook and Twitter also serve as the venue to seek medical information and 

track and share symptoms. SNSs allow individuals to post profile information, construct a list of 

friends, and communicate with others using both synchronous and asynchronous messaging tools 

(Rau, Gao, & Ding, 2008). Given the fast permeation of SNSs into the health domain and the 

strong diffusion power these tools have, a deeper understanding of SNSs as a venue for fulfilling 

people’s health-related needs and impacting public health becomes necessary. With diabetes 

patients, Greene, Choudhry, Kilabuk and Shrank (2010) demonstrated that not only the patients, 

but also their family members and their friends used Facebook to share personal clinical 

information, to request disease-specific guidance and feedback, and to receive emotional support. 

However, Greene et al. (2010) pointed out that using social networking sites for health and 

wellness information is not a popular behavior among college students.  The participants were 

skeptical about the quality of information on Facebook and concerned about the lack of medical 

knowledge of their friends or peers. Such controversial concerns call for more clear assessment 

criteria to measure the quality of health information on SNSs. 

In summary, Internet access motivated consumers to seek health-related information 

online over the last 25 years. Although adults with health questions continue to consult with 

health professionals and offline resources, users have recognized that seeking health information 

online provides a significant supplement (Fox, 2011b). Moreover, with the emergence of a 

variety of general and specific social media applications, consumers gain further benefits from 

peer-to-peer health care and online health communities. 

2.3.5 Accessing consumer health information in social media: pros and cons 
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Social media applications on the Internet are empowering, engaging, and educating 

health care consumers and providers (Sarasohn-Kahn, 2008). Consumers use social media for a 

variety of purposes, ranging from emotional support to health conditions management. Although 

social media has the potential to combine all the best features of existing health information 

sources, accessing health information in social media could be a paradox for consumers. 

2.3.5.1. Benefits of accessing consumer health information in social media 

(1) Social support and empathy 

Social media can facilitate the empathy associated with lay person sources and the 

feedback from online peers (Gray, Klein, Noyce, Sesselberg, & Cantrill, 2005). An interesting 

issue rising from the research of online information seeking is the reason why consumers tend to 

seek help from websites or online virtual communities. In general, in the offline health context, 

social support has been associated with many health benefits including reducing stress, 

minimizing the possibility of depression, and strengthening the immune system (Dean & Lin, 

1977). These benefits from social support, although not empirically proven, are considered to be 

some of the most critical benefits of online health communities (Nambisan, 2011). Based on the 

study of the online cancer environment and data from an online survey of cancer patients, 

Beaudoin and Tao (2007) found that seeking information and support from online resources 

leads to increases in social support, community, and coping; and decreases in loneliness, 

depression, and anxiety. Price, Mercer, and MacPherson (2006) proved that patients’ perceived 

empathy was shown to have a direct impact on health outcomes. Therefore, social support should 

be considered as an important factor when providing care and help to consumers. 

In the social question and answer forum setting, results from Worrall and Oh (2013)’s 

study also revealed that social and emotional support are important criteria. Users illustrated 
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greater consideration of the social, emotional and community-based support they value from the 

site (Worrall & Oh, 2013). When it comes to the social networking sites setting, Liang and 

Scammon (2011) detected similar situations. Their findings demonstrated that interactions on 

health-related social networking sites facilitate tailored health communication by providing 

informational and emotional support to the seekers. 

Across different social media platforms, social and emotional supports were emphasized 

as some of the most critical benefits of obtaining health information from social media settings. 

Two studies (Liang & Scammon, 2011; Rasmussen-Pennington et al., 2013) identified that 

consumers who have embarrassing, socially stigmatizing, or disfiguring illnesses such as obesity 

and mental health issues, were more eager to seek help from social media. Empathy is facilitated 

in social media utilization in that the user can access help from the virtual communities while 

controlling their level of disclosure of their identity and condition (Gray et al., 2005). While 

social media platforms may be neutral in terms of empathy, they facilitate the contact between 

individuals, especially for online self-care and social support (Gray et al., 2005). 

Moreover, the perception of social support from health-related social networking sites 

was significantly associated with three outcomes: (a) getting a positive attitude toward being 

healthy, (b) obeying recommendations posted by others, and (c) pursuing extra information from 

one’s doctor (Hether, Murphy, & Valente, 2014). Providing support to others on the social media 

sites showed associations with seeking additional information from other sources and following 

the recommendations received from the sites (Hether et al., 2014). Price et al. (2006) proved that 

patients’ perceived empathy was shown to have a direct impact on health outcomes. Therefore, 

social and emotional support should be considered as an important factor when providing care 

and help to consumers. 
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Empathy is facilitated with social media utilization in that the user can access help from 

the virtual communities while controlling their level of disclosure of their identity and condition 

as they want (Gray et al., 2005). It was notable that the use of online communities to seek health 

information simulates a more natural inter-person interaction rather than interacting with 

websites or search engines. Whilst the social media itself as a platform may be neutral in terms 

of empathy, it facilitates the contact between individuals, especially for online self-care and 

social support (Gray et al., 2005). Patients with depression, who usually feel socially isolated, 

reported that they perceived considerable support from their online interactions in online 

depression support groups (Houston, Cooper, & Ford, 2002).  

(2) Interactivity and personalization 

Previous research showed that the interactive capabilities of a certain medium reflect a 

particularly attractive feature that motivates online health information seeking (Thompson, 

2014). More specifically, virtual support groups may be used to satisfy needs for social 

interaction/support, while other interactive tools can assist in health decision making and 

understanding of medical results. 

The emergence of social media changed the way consumers communicate with the 

Internet. Instead of relying on the feedbacks from search engines, social media encourages users 

to post questions on the application and then receive feedbacks from peers. When posting 

questions in social media, consumers state their detailed circumstances and background 

information, and thus the feedbacks they receive could fit their specific and personalized 

conditions. Through the personalized interactions, consumers could perceive the saliency of the 

information (Gray et al., 2005). 
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Until recently the primary communication model of public health information rested on 

the authority, such as a health institution, the ministry of health or a journalist, to publish the 

information to the public (McNab, 2009). Social media has changed the monologue to an 

interactive dialogue (McNab, 2009). Social media allows organizations to talk to their customers, 

for customers to talk to each other, and for customers to talk to the organization (Thackeray, 

Neiger, Smith, & Wagenen, 2012). Anyone with information and access to social media can be a 

content creator in addition to being a consumer. 

(3) Consumer-centered information 

With the abundant user-generated content in social media, health information sharing 

becomes more democratic and patient controlled, encouraging users to exchange health-related 

information that they need and therefore making the information more patient- and consumer-

centered (Chou, Hunt, Beckjord, Moser, & Hesse, 2009). People exchange experiences about 

their own health issues to help each other understand what might lay ahead (Fox & Duggan, 

2013). For consumers who are newly diagnosed with a certain disease, there are so many former 

and current patients behind the resources in social media, and much of the “homework” has 

already been done for a consumer (Landro, 1999). 

In addition to the information regarding certain diseases, consumers are able to consult 

online reviews of particular drugs or medical treatments, doctors or other providers, and 

hospitals or medical facilities. Those reviews and comments were created by real previous 

consumers and based on their real experiences. Referring to other users’ actual thoughts and 

views instead of the advertisements might assist patients in making more-informed decisions. 

(4) Staying current 
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Increased access to mobile devices together with the uses of social media enables 

consumers to access health information more quickly and directly than at any time in history 

(McNab, 2009). Particularly, when facing the emergence of public health issues, such as the 

explosion of H1N1, accessing the latest news and prevention suggestions become more urgent to 

consumers. Social media enhances the speed of information dissemination and communication 

during public health emergencies or outbreaks (Thackeray et al., 2012). 

(5) Visual materials 

As of September 2010, 25% of Internet users have watched an online video about health 

or medical issues (Fox, 2011a). We can expect this ratio to continue to rise with wide access to 

both Internet and mobile devices. Social networks might also overcome the borders and 

geographic boundaries with the long-distance video technologies (Hawn, 2009). For example, 

American Well.com, a social network for doctors and patients, provides remote video 

conferencing between doctors and patients.  

2.3.5.2. Drawbacks of accessing consumer health information in social media 

Of course, along with the benefits mentioned above, there are risks and potential 

downsides in accessing consumer health information in social media. Although health 

information on social media is accessible and free; information sources, information quality and 

authority frequently become the most concerned issue when people consider using the 

information. In comparison with the Internet (6.0 of 10) and family/friends (5.9 of 10), 

information retrieved via social media were listed as the least reliable source (3.8 of 10) (Van de 

Belt et al., 2013). This was confirmed by the results from Rutsaert, Pieniak, Regan, McConnon, 

and Verbeke (2013)’ study which pointed out that trustworthiness was the main barrier 

preventing consumers from using social media as an information channel. Specifically, Facebook 



45 

 

and Twitter received the lowest trust as information channels (2.92 of 7 and 3.12 of 7, 

respectively), whereas Wikipedia had a good reputation (5.27 of 7) (Rutsaert et al., 2013). In 

contrast, Cole, Watkins, and Kleine (2016) suggested that the health information found in three 

online discussion forums was of reasonably good quality and only a very small proportion was 

considered to be factually incorrect (4/79). This study claimed that the discussion forums do 

seem to be able to produce health information of acceptable quality. 

(1) Information privacy 

Although social media is offering novel opportunity for interaction among their users, at 

the same time, they seem to attract users’ attention to the privacy concerns social media raise 

(Acquisti & Gross, 2006). When people communicate with others on social media, they usually 

need to expose some of their private information, such as age, gender, health condition, and 

sometimes even their diagnoses, to receive more specific and personal health suggestions.  

Hawn (2009) believed that physicians’ concern over privacy is one reason the use of 

social media in health care hasn’t taken off even more quickly. Consumers might hesitate to 

participate in the online self-help groups due to the heavy concerns about the disclosure of their 

identities and conditions. Moreland, et al. (2015) reported that a large proportion of users were 

concerned that a website might sell or give away information about what they did online 

(139/207, 67.1%). However, in relation to concern for security and privacy, only a small 

proportion of patients (36/535, 6.7%) actually checked the website privacy policy to see how 

their data may be used. 

(2) Information quality and authority 

With regard to health information, the principle dilemma of the social media is that, while 

its user-generation nature is desirable for accessing abundant real experiences, it raises questions 
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about the quality and authority of information available. This may inhibit its usefulness. Quality 

and authority issues arise with the proliferation of consumer-oriented health information 

available on social media platforms. Different from professional journals and academic 

databases, any consumer is able to post medical information, without any control, on a variety of 

user-friendly social media platforms that are accessed by millions of users.  

A number of rating systems and filtering tools have been developed to help users identify 

the reliable websites. However, when it comes to social media, the platform provider, to a large 

extent, are not supposed to control the free-speaking right of users. Therefore, compared to 

health-related websites, it becomes even harder to ensure the quality and authority of the user-

generated health information in social media. In fact, a large number of social media applications 

currently cannot find credible and enforceable protection of consumers from potential harm 

(Risk & Dzenowagis, 2001). 

Regarding people with serious mental illness, online peer-to-peer connections are 

influencing the way people cope with their symptoms and seek mental health care; yet, there are 

risks inherent in fostering advice from peers in the online health communities who possess 

unknown credentials (Naslund, Aschbrenner, Marsch, & Bartels, 2016). Not only do individual 

users participate in social media, but also the medical product/drug manufacturers and retailers 

actively participate in social media. This creates another vital limitation impacting the reliability 

and validity of health information in social media. Some product manufacturers have an interest 

in creating fake comments about their products in social media. In contrast to the advertisements 

on other media such as newspaper or TV, these hidden advertisements appearing on social media 

platforms are difficult for consumers to identify. Relying on the information accessed from social 

media to deal with the health condition may cause crucial consequences. In order to overcome 
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such limitation, consumers need to be aware of the existence of the spam account and spamming 

comments and distinguish the fake information from the real information sharing.  

In summary, compared to other means, accessing health information from social media 

certainly has its pros and cons. The benefits come primarily from the following aspects: social 

support, empathy, interactivity, personalization, consumer-centered information, staying current 

and visual materials. However, the nature of user-generated content in social media introduces 

ethical issues regarding privacy, as well issues of the quality and validity of the information. 

2.4 Gender differences in online health information seeking 

2.4.1 Gender differences in the Internet usage 

Gender has been identified as a strong predictor of perceptions and behaviors that have 

implications for online information searching (Hupfer & Detlor, 2006). There were copious 

studies looking into the gender disparity in the Internet usage. Horvat, Oreski, and Markic (2011) 

conducted an extensive literature review of attitudes toward the Internet and gender issues 

regarding the Internet usage. Several studies argued that the male population have dominated the 

Internet usage (Horvat et al., 2011). Ford and Miller (1996) studied the use of the Internet based 

on a sample of 75 undergraduate and postgraduate university students. Significant differences 

were found for gender. Male students seem to enjoy browsing around the Internet. Female 

students, by comparison, stated that they feel themselves unable to find what they want 

effectively. Weiser (2000) showed that males use the Internet mainly for entertainment and 

leisure, while women tend to use it mainly for interpersonal communication and educational 

assistance. When it comes to online behaviors, three times as many male students tended to 

participate in the group discussions than female students did (Nachmias, Mioduser, & Shemla, 

2000). 
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Although a number of studies attested male domination in terms of the usage of, and the 

attitude towards, the Internet (Horvat et al., 2011); few studies claimed that gender gap in the use 

of the Internet has been narrowing down in recent years (Luan et al., 2008). Luan et al. (2008) 

revealed no gender disparity in the Internet usage among 152 student teachers. The female 

student teachers spend as much time online as their male counterparts. Results from the college 

student population also indicated that the gender gap in the Internet usage has nearly closed 

(Odell, Korgen, Schumacher, & Delucchi, 2000). 

Copious studies identified males were more likely to be internet users than females, but 

when examining online health information users, females became the dominant users (Lorence & 

Park, 2007). Moreover, Ek (2015) investigated the gender differences in health information 

behaviors in the Finnish population aged 18-65. It was noted that men usually lack the 

motivation to involve in the health-related information (Ek, 2015). 

2.4.2 Gender differences in health information processing and seeking 

Gender differences have been noticed in a range of environments. The prevalence of 

gender-related disparities regarding how health information is processed and used has been well 

documented (Lorence & Park, 2007). Katz, Ruzek, Miller, and Legos (2004) investigated the 

gender differences in patients’ information needs and concerns and came to the conclusion that 

no statistically significant differences were found between male and female patients. However, 

when it comes to health-related information consultation, Thornburg (1981) found females were 

more likely to consult their mothers whereas males would consult their peers. Further, 

Obermeyer et al. (2004) indicated that female family members have been the main information 

source of medicine use for both males and females. 
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More males in the United States suffer severe chronic conditions and die nearly 7 years 

younger than females (Courtenay, 2000). It has been observed that men tend to be more hesitate 

to search for sources of health-related information due to gender role strains and social 

constructions of masculinity (Courtenay, 2000; Ek, 2015). Exiting studies, both prior to the 

Internet and since the Internet appeared, that have specifically testified gender as a variable in 

health information seeking behaviour also clearly demonstrates that women are more active 

seekers of health-related information than men (Ek, 2015). In addition, results from Kim, Choo, 

and Ranney (2014) found that female patients more preferred to use computers, the Internet, and 

social networks for technology-based innervations. Females are also found to be more willing to 

give positive assessments of searching for online health information in comparison to males 

(Rice, 2006). Moreover, being female has been identified as one of the strongest and most 

consistent influences on using the Internet to seek for health information (Rice, 2006). 

Obermeyer et al. (2004) investigated the differences in women’s and men’s behaviors of 

medication use. Gender differences were found in the frequencies of medicine taken. In addition, 

women were generally more likely to report symptoms/conditions than men were. Men usually 

give brief statements, while women provide richer descriptions with details (Obermeyer et al., 

2004). This analysis also observed gendered patterns of health information processing that 

women were more concerned about the health communication than men were (Obermeyer et al., 

2004). 

2.5 Autism-affected users on social media 

2.5.1 Social challenges of autism patients 

“Autism spans a spectrum of behaviors and abilities, from nonverbal children needing 

intensive therapy for basic life skills to highly intelligent adults who live independently but have 
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trouble with social communication” (Attwood, 2006). Individuals with autism have difficulties in 

making eye contact with others, understanding nonverbal social cues (e.g. facial expressions), 

perceiving non-literal language, thinking flexibly, and following others’ viewpoints (Seltzer et 

al., 2003). Previous studies unveiled the social challenges of adults with autism including intense 

isolation, problems initiating interactions, communication difficulties, and a desire for facilitated 

social interactions and socially appropriate behavior, and alternative modes of communication 

(Burke, Kraut, & Williams, 2010). 

With respect to autistic children, they generally require constant special care and 

attention from their parents, family, classmates, schoolteachers, and caregivers. Such difficulties 

present daily challenges for parents and/or caregivers of children with autism (Roffeei et al., 

2015). Therefore, not only the autism patients themselves suffer from social challenges, people 

surrounding them face daily difficulties as well. 

2.5.2 Social media use of autism-affected users 

Individuals with autism have been found to have a propensity towards the use of 

computer (Kientz, Goodwin, Hayes, & Abowd, 2013), which enables the emerging technologies 

facilitates their communications. Beyond browsing on the Internet, Burke et al. (2010) pointed 

the value of online communities for people with autism as providing them a forum to interact 

with others having similar interests, and ask for advice and self-advocacy with others with 

similar life stories or diagnoses. 

Through the examining of 108 adults with autism, Mazurek (2013) showed that autistic 

adults who use social media are more likely to have a close friend than those who do not use 

such media (66.3% compared to 33.3%). In addition, individuals with autism who used social 

networking sites for enhancing social functioning were more likely to have a best friend and 
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experience closer with such a friend (Mazurek, 2013). These findings are consistent with 

previous studies showing that social networking use is associated with increased relationship 

closeness with existing friends, particularly among socially anxious individuals (Baker & 

Oswald, 2010). 

Regarding the use of social media usage among youth with autism, only 13.2% of them 

spent time on social media (email, internet chatting) (Mazurek, Shattuck, Wagner, & Cooper, 

2012). Compared with youth with other disability (speech/language impairments, learning 

disabilities, intellectual disabilities), Mazurek et al., (2012) found that rates of social media use 

were lower for autistic youth. Meanwhile, female youth with autism were discovered to have 

significantly higher odds of using a computer for social media involvement (Mazurek et al., 

2012). 

Stendal and Balandin (2015) explored the experience of virtual worlds, as a type of social 

media, by people with autism through a case study. The results suggested that people with autism 

enjoy engaging in a virtual worlds and feel even more comfortable communicating in the virtual 

world context than the physical world (Stendal & Balandin, 2015). Virtual worlds offer a venue 

for people with autism to be a part of a virtual society, lowers communication barriers 

experienced in the physical world, and gives the participant a unique opportunity to create and 

maintain friendships (Stendal & Balandin, 2015). 

Burke et al. (2010) examined the successes and challenges adults with the high-

functioning autism experience when using online communities for social support. Through an 

analysis of the semi-structured interviews with 16 adults on the high-functioning end of the 

autism spectrum, interest-based online communities were deemed as helpful in overcoming 

barriers to initiating contact with other people. Many interviewees used fan pages and profile 
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data to connect with people and base their interaction on shared interests (Burke et al., 2010). In 

some cases, the relationships formed online moved to the physical world successfully. Some 

participants also appreciated the birthday reminder functions and the “like” button on social 

networking sites. However, participants who used online communities organized around autism 

expressed their dissatisfactions with the relationships they formed online. One of the subjects 

mentioned that his experience in autism-specific communities online was full of drama, because 

the community was supportive as first but became cliquish later. 

Roffeei et al. (2015) analyzed two autism support groups on Facebook using a deductive 

content analysis approach. It was found that the highest percentage of messages were about 

informational support (30.7%) and emotional support (27.8%) (Roffeei et al., 2015). A majority 

of the discussions are related to challenges and difficulties in caring and raising autistic children, 

as well as children’s social life and self-care routines (Roffeei et al., 2015). 

2.6 Social network analysis applied in social media research 

The recent growth of interest in using social network analysis techniques has been 

sparked partially by the proliferation of social media sites, such as Facebook and Twitter, which 

offer existing networks of friends and followers (Scott, 2012). Social network analysis is 

paramount to understanding the social behavior of social network members. In the view of social 

network analysis, social media applications can be seen as social networks wherein users are 

nodes with the relationships between users represented as edges of the network. 

Data gathered from different social media sites has been investigated using social 

network analysis. Using tweets extracted from Twitter during a series of floods occurring in 

2010 and 2011, Cheong and Cheong (2011) applied social network analysis to identify active 

players in online communities and their effectiveness in disseminating critical information. 
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Gilbert, Karahalios, and Sandvig (2008) investigated the behavioral differences between rural 

and urban social media users based on data collected from MySpace. Through the analysis of 

those social networks of friends, the authors found that rural users’ online friends live much 

closer than urban users’ friends (Gilbert, Karahalios, & Sandvig, 2008). 

2.6.1 Information sharing in social media 

Information sharing has been one of the most significant functions of social media. For 

microblogs (e.g., Twitter), Java, Song, Finin, and Tseng (2007) reported that the main types of 

user intentions are: daily chatter, conversations, sharing information and reporting news. On 

social media, information sharing occurs with the process of information flow. Therefore, 

borrowing from Proferes's (2015) definition of information flow on Twitter, information sharing 

in social media can be defined as: the means by which information, as a resource, is transmitted 

from a sender towards a receiver. 

Previous studies gained some insight on information flow issues on different social media 

platforms. However, few studies explored the information sharing process in social media. As 

the information sharing process appears with the communication among online users and the 

information flows on the platforms, previous research on communication and information flow 

inspires the exploration of information sharing in social media. The Shannon-Weaver model of 

communication proposed a linear communication model that incorporates information flows as 

they operate across the constituent parts of sender, message, transmission, noise, channel, 

reception, and receiver (Proferes, 2015). Despite some criticism about this model (Chandler, 

2011), Shannon and Weaver’s model serves as an excellent starting point to describe the 

information sharing process on social media. Inspired by Shannon and Weaver’s model 

(Shannon, 1948), Proferes (2015) generated a simpler model to show the information flow 
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process on Twitter, which includes: sender, information, channel, and potential receiver(s). 

Considering more features of various social media, the information sharing process can be 

diagrammed as the model in Figure 5. 

Figure 5. Diagram of information sharing process in social media (adapted from Proferes, 

2015, Figure 3) 

In this diagram, social media serves as the channel through which information can be 

shared and transferred. It is important to note that the transmission of information in social media 

is in a mutual way. It means that senders can transfer information to potential receivers, and then 

receivers may share information with the sender through comments or “likes”. 

As shown in Figure 5, information represents the content being shared between sender 

and potential receivers. Due to the fact that users generate different types of content in diverse 

social media sites, information in this diagram can be in a variety of forms in addition to text. On 

social networking sites and microblogs, such as Facebook, a person posts a status to his/her 

timeline, and his/her friends on Facebook will receive such information and potentially make 

comments. In online discussion groups and question and answer forum, such like 

Yahoo!Answer, users create a question or discussion topic, and then all members in the forum or 

group will see the information and possibly reply to it. In addition to the text information flowing 

Outside 

information 

source Sender Information 

Social media Potential 

receiver(s) 
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in the above social media sites, on content communities (e.g., YouTube), videos become the 

main type of information being shared along with text information being exchanged in the form 

of comments. 

Outside information source is an optional component in the information sharing process. 

It occurs when the information sender shares an URL directing to the link outside the current 

site, or shares information that includes a citation to other resources (e.g., books, journals, and 

newspapers). In this case, the sender shares the outside information together with his/her original 

information with the potential receivers. 

2.6.1.1. Actor/nodes of a social media in information sharing 

As diagramed in Figure 5, the four critical elements of describing any information 

sharing on social media sites, therefore, are: 1) the means/channel by which information is being 

shared (e.g., Facebook, Twitter, and YouTube); 2) the shared information (e.g., posts, statuses, 

URLs, tweets, and videos); 3) the sender; and 4) the potential receivers. The two fundamental 

actors in the information sharing process are information sender and information receiver. 

Theoretically, a user’s every action in social media is making him/her either an information 

sender or an information receiver. 

The impressive growth of social media makes it more akin to a broadcast medium, which 

is especially true for some of the most popular sites such as Facebook and Twitter. Social 

media’s striking popularity has attracted traditional and popular news sources such as the British 

Broadcasting Corporation (BBC) and the Cable News Network (CNN). In addition, high-profile 

users also join the network, including celebrities in various fields (e.g., Oprah Winfrey, Michael 

Jordan, Taylor Swift) and politicians (e.g., Barack Obama), and other influential people (Cha, 

Benevenuto, Haddadi, & Gummadi, 2012). 
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Due to the potential marketing values, the actors involved in social media can range from 

individuals to organizations (e.g., archives, libraries, and museums), companies, brands, and 

even TV programs. For example, Vanwynsberghe, Boudry, Vanderlinde, and Verdegem (2014) 

analyzed the distribution of information on social media and how librarians deal with social 

media as an organization. Since public libraries have always connected people with information, 

social media urge modern librarians to use and distribute information in all media, including 

digital and social media. 

In addition, according to the characteristics of user behavior, actors in social media play 

different roles other than the senders or the receivers in the information process. Studying the 

relative roles of numerous actor/nodes of a social media helps us better understand how 

information is shared on social media sites. By analyzing the structure of the network connection 

and the distribution of links on Twitter, Cha et al. (2012) classified three types of users in 

information sharing: 1) mass media sources such as BBC; 2) grassroots users, including most of 

ordinary users; and 3) evangelists, consisting of opinion leaders, politicians, celebrities, and local 

businesses. 

As for the numerous actors involved in social media, the attribute data that describe each 

of them can provide more insights to understand the phenomenon. In addition to the username, 

attribute data describe demographic characteristics of a person, such as age, gender, race, home 

town, place he/she lived, education experiences, and work experiences. Especially for some of 

the social networking sites such as Facebook, people sometimes use them to check-in, which 

means the places (cities, parks, restaurants, etc.) he/she has been can also be collected from the 

sites. Furthermore, a number of people tend to use their real selfies as the profile pictures, and 

then users’ real looks may be also available and can be harvested for investigation. 
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In addition to the demographic information, data depicting users’ statuses on the platform 

assist researchers in understanding the users’ popularity and engagement in the system. This type 

of data may include the number of followers and followings on Twitter, the number of friends on 

Facebook, the number of people he/she connected to and who connect to him/her on My Space, 

etc. Basic statistics such as how many posts/tweets/photos the user has published on the sites are 

also available to be collected. 

From the behavior angle, a Canadian company has created a segmentation model to 

identify six social media persona types: no shows, newcomers, onlookers, cliquers, mix-n-

minglers and sparks (Bosomworth, 2012). More detailed descriptions of these roles are: 

 No Shows (41% of the US population): these are people least involved with social 

media, if at all; they also infrequently engage in online commerce 

 Newcomers (15%): passive users of a single social media network such as Facebook, 

primarily to enhance relationships that they have offline 

 Onlookers (16%): active users only in the sense that they watch others via social 

channels on a regular basis but share almost no personal information 

 Cliquers (6%): active users of one network who tend to be influential among their 

small group of friends and family 

 Mix-n-Minglers (19%): those who regularly share and interact with a diverse group of 

connections via social media 

 Sparks (3%): most active and deeply engaged users of social media who serve as 

enthusiastic online ambassadors for their favorite brands. (Bosomworth, 2012) 

2.6.1.2. Functions of actor/nodes 
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During the first decade of the web’s prominence from the early 1990s onwards, the 

majority of web users were consumers of content that were created by a relatively small amount 

of publishers (Agichtein, Castillo, Donato, Gionis, & Mishne, 2008). Beginning in the early 

2000s with user-generated content becoming increasingly popular on the web, more and more 

users started to participate in the information sharing process as content producers, rather than 

just as information consumers. 

Social media stimulates a critical shift in how user-generated information is being 

created, transferred and consumed (Leskovec, 2011). How that information is shared between 

numerous actors is central to understanding the social network in social media. Considering the 

information sharing process shown in Figure 5, actors of social media engage in basically four 

types of functions: information creation, information propagation, influence dissemination, and 

information reception and consumption. 

2.6.1.3. Information creation 

Information creation is the starting point of the information sharing process. When social 

media users post a new message or video, ask a question, or start a new discussion topic, they 

perform as an information creator. Java et al., (2007) studied users’ intentions when using 

Twitter. Using the link structure, the authors identified that a certain proportion of nodes act as 

information sources in the social network formed via social media. The information creator is the 

person who creates information for other users in the same platform to see. This type of user 

publish blog posts or web pages, upload videos/images/audio and share content online. On 

Twitter, a previous study found that most posts users created were about daily routine or what 

they were currently doing (Java et al., 2007). This fact reflects one of the most common reasons 

why general public users engage in social media: recording their daily life and sharing it with 
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others. It accounts for most common users of general social networking sites such as Twitter and 

Facebook. According to Cha, Haddadi, Benevenuto and Gummadi (2010), grassroots users 

usually play the content creation function in information sharing. 

Besides creating a new message on social media sites, people who respond to content 

posted by others are also creating information. This type of information creation could include 

posting ratings and reviews of products or services in online discussion groups, making 

comments on blogs and forums, answering questions in online question and answer forums, and 

contributing to articles in Wikipedia. Users who would like to interact with others by responding 

to other users are usually more engaged in social media. 

Unlike grassroots, when an information source which has a large number of followers 

generates a new message in social media, the information he/she creates potentially possesses 

great opportunity to be shared by others. In this case, the information sender might become a hub 

in the information sharing network, since a lot of other users receive the information. Based on 

Cha et al. (2010)’s classification, this type of users could be mass media sources or evangelists. 

They may post updates at regular intervals or infrequently. Despite infrequent updates, their 

creations are responded to by a large number of followers due to the valuable nature of their 

updates. By gathering and analyzing 1.7 billion tweets, Cha et al. (2012) identified that mass 

media sources play a vital role in reaching the majority of the audience in any major topics, 

whereas evangelists introduce both major and minor topics to audiences who are further away 

from the core of the network and would otherwise be unreachable. 

Some of the information in social media could be generated by automated tools or fake 

accounts. These are defined as spam messages. The spammers produce ads or false information 

that might threaten other users on the platform. From a security point of view, how to detect 
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spammers in social media has attracted the attention of security researchers. Stringhini, Kruegel, 

and Vigna (2010) identified characteristics that allowed users to detect spammers, and built a 

tool to detect spammers in a social network. Using the tool they developed, 15,857 spammers 

were correctly detected on Twitter (Stringhini et al., 2010). 

2.6.1.4. Information propagation 

Information propagation takes place when users forward the content they received to the 

social network forming in social media. In the information sharing process, transferring 

information is a critical function that actors can perform. According to the information sources, 

there are two types of information dissemination: transferring outside information to the current 

platform and forwarding information created by users on the same platform. 

Originally, different social media platforms were independent of each other. However, 

transferring content between different social media sites connects them together. The most 

common form of this type of propagation is by sharing an URL that directs to sources on another 

site. Taking Twitter as an example, this can be characterized by tweets referring to particular 

URL (photos, video, web pages, etc.) (Asur & Huberman, 2010). Java et al. (2007) found that 

about 13% of all the posts Twitter contains have some URLs in them. Due to the distinct content 

each social media site possesses, sharing outside URLs is frequently used to make information 

circulation among social media feasible. Thorson et al. (2013) defined such phenomena as media 

ecology and explored how and what types of video content are shared and circulated across both 

YouTube and Twitter. The authors reported that during a protest movement, sharing a YouTube 

video on Twitter using protest-related keywords or hashtags increased chances of the video 

reaching more interested audiences. 
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Another type of information propagation is sharing information within the same social 

media sites. Users are able to share other’s messages on their own social media page which 

makes it possible to be seen by their followers or friends. To realize such function, Twitter 

created a specific and famous mechanism named “retweet”. A retweet is known as a post 

originally made by one user that is forwarded later by another user (Asur & Huberman, 2010). 

Retweets are useful for sharing posts and links of interest to users that users have read but not 

produced (Asur & Huberman, 2010). 

By gathering and analyzing 1.7 billion tweets, Cha et al. (2012) demonstrated that 

different types of users play different functions in the information sharing process. From the 

perspective of social network analysis, in a broadcast medium like Twitter, users with large in-

degrees (i.e., having many followers) can effectively spread information to a large number of 

nodes (Cha et al., 2012). Within an audience there are different types of social media users and 

there are ways for businesses to better engage these users. 

2.6.1.5. Influence dissemination 

In the information sharing process, not only information, but also ideas, opinions, news, 

product reviews, and influence are transmitted in social media. The dissemination of influence is 

one of the most significant functions of actors in the information sharing process in social media. 

What are the important factors in determining actors’ influence? One aspect of this can be 

measured by the level of attention certain actors receive in the form of followers who subscribe 

to their accounts to automatically receive the content they generate (Romero, Galuba, Asur, & 

Huberman, 2011). Another aspect is determined by the actual propagation of their content 

through the network (Romero et al., 2011), such as the total retweet rates.  
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Many factors can impact the influence of a social media user, such as the quality and 

frequency of the content he/she generates. In order for individuals to become influential, they 

must not only obtain attention and thus be popular, but also must engage more with the 

information creation actions on social media (Romero et al., 2011). Cha et al. (2012) identified 

those influential actors as evangelists and also called them opinion leaders, hubs, or connectors. 

The influential and most active people in a social network can be extremely useful in 

propagating their own point of view, as well as setting which topics dominate the public agenda 

(Romero et al., 2011). 

The study of actors of influence propagation in social media has been particularly active 

for a number of years in fields such as sociology, communication, marketing and political 

science. Companies in different fields analyze actors in social media data to perform analytics 

and sentiment analysis or find influencers (Leskovec, 2011). Motivated by applications to 

marketing, Kempe, Kleinberg, and Tardos (2003) developed an efficient algorithm to target a set 

of most “influential” actors of a social network that could trigger a large cascade of further 

adoptions. As tourism becomes an information-intense industry, Xiang and Gretzel (2010) 

reported that many of these social media websites assist consumers in posting and sharing their 

travel-related comments, opinions, and personal experiences that then serve as information for 

others. 

2.6.1.6. Information reception and consumption 

Information reception refers to receiving information from social media. Users who 

receive the information are receivers as shown in Figure 5. Generally, any time users check their 

feeds or surf on social media sites, they are performing the function of information reception in 

the information sharing process. A large study of information propagation within Twitter reveals 
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that the majority of users acts as passive information consumers and does not forward the content 

to the network (Romero et al., 2011). Zeckman (2012) named those users as lurkers, while Cha et 

al. (2012) identified them as grassroots. Especially for Twitter, Cha et al. (2012) reported that 

grassroots users are relatively passive in helping spread the news, although they account for 98% 

of the network. In addition, Java et al. (2007) proposed that some users use social media to seek 

information. They rarely post information but they follow other users regularly. 

Whether called lurkers or grassroots users, this social media personality type represents a 

large proportion of social media users who tend to simply listen and absorb information, but not 

necessarily participate in information creation and spreading. In addition, Suzuki and Calzo 

(2004) studied online teen bulletin boards, and found that many visitors spent considerable time 

“lurking,” or reading others’ posts without posting any reply. However, due to the huge amount 

of those users, a connection with a lurker can be very valuable if approached correctly. Users 

who follow a lot of others easily obtain and gather information, thus potentially they might be 

influenced more by information in social media. 

In summary, considering the information sharing process, users perform the following 

four types of functions in social media: information creation, information propagation, influence 

dissemination, and information reception and consumption. Note that not only different users 

play various functions, but also an individual may serve different roles at different times. A true 

understanding of how information is shared and what users’ functions are in the information 

spreading process is critical to conducting social media research. 

2.6.2 Relationships/edges of the social media in information exchange 

Social media are often considered innovative and different from traditional media such as 

television, film, and radio because they allow direct interaction with others (Pempek, 
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Yermolayeva, & Calvert, 2009). Such interactions build up the relations between users. 

Relationships are one of the most important elements of social media, as Gilbert and Karahalios 

(2009) stated “relationships make social media social” (p. 211). 

Many types of connections create a large social system that researchers can analyze with 

the math, tools, and insights of social network analysis (Hansen et al., 2010). Posting information 

in the form of blog posts, comments, and tweets establishes a connection between the producers 

and the consumers of information. Social media sites such as Twitter allow users to interact with 

each other and thus form a social network. Vygotsky's (1978) sociocultural theory of learning 

held that people learn through social interaction and the sharing of ideas and experiences. For 

online environment, social media promotes a variety of interactions for users and thus diverse 

relationships emerged through these interactions. For example, Facebook users can frequently 

interacted with each other through “likes”, comments, photos, tags, polling, events, inbox 

messages, and online chatting (Ma & Chan, 2014). 

2.6.2.1. Explicit and implicit relationships 

Actors in social media are connected to one another explicitly and implicitly. Users 

intentionally and knowingly build explicit connections whereas implicit connections are inferred 

from their movements in social media (Hansen et al., 2010). Explicit connections refer to the 

relations that users intentionally create. The various types of connections supported by social 

media applications are defined by the primary functions of the sites. Friending, by which both 

people need to recognize each other as a friend before they are connected, might be the most 

common type of explicit social media connections on social media (Hansen et al., 2010). For 

example, on Facebook, a given user’s friend list is available on his/her home page, and thus it 

can be accessed and collected to construct the user’s ego network. Viswanath, Mislove, Cha, and 
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Gummadi (2009) reported that the average number of friends in Facebook was over 120 in 2009, 

while the average number of friends surged to 338 among adult Facebook users in 2014 (Smith, 

2014). In addition to the friend relations between users, other social media sites also allow user 

to follow (e.g. Twitter), connect to (e.g. MySpace), subscribe to (e.g. YouTube) other users, all 

of which represent directed ties between users. 

Implicit relationships are generated when users interact with each other in any way the 

social media allows, such as replying to a post, retweeting a tweet, sending a message, giving a 

“like”, and so on. Although the interactions on each site might be diverse, once a user interacts 

with others, a certain type of relation occurs between them. Most common interactive 

connections include making comments to other’s posts on Facebook, retweeting other’s tweets or 

mentioning others on Twitter, answering other’s questions on Yahoo!Answer, and liking other’s 

photos on Pinterest, etc. The implicit relations actually represent users’ interaction behavior and 

movements within the social media communities. Other more subtle connections might be 

yielded by joining the same Facebook group, following the same persons, or being tagged in a 

common photo. No matter whether the relationships are implicit or explicit, they can be utilized 

to construct a social network with the involved users being the actors and the connections being 

the edges.  

2.6.2.2. Patterns of relationships 

These days, most social media sites can be seen as information sharing systems, where 

users follow other users in order to receive and exchange information along the social links. In a 

social network, information relationships determine what kinds of information are being 

exchanged, between whom, and to what extent (Haythornthwaite, 1996).  
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From the perspective of social network analysis, patterns of the relationships between 

actors describe how information moves around the network and indicate how actors are 

positioned to facilitate or control the information flow (Haythornthwaite, 1996). In addition, the 

structure of the social network building (by the ties between users) reveals the likelihood that 

individuals are able to access a particular piece of information. 

2.6.2.3. Strength of relationships 

The strength of the tie is another critical feature of relationships between social media 

users. In the offline world, social science researchers have investigated the theme of tie strength 

for decades (Gilbert & Karahalios, 2009). In social media, the relationships between actors are 

treated as either friend or not friend. However, Gilbert and Karahalios (2009) argued that 

relationships in fact fall everywhere along the spectrum between these two types. The authors, 

thereby, proposed a model to distinguish between strong and weak ties in social media.  

While previous studies have shed light on the strength of relationships in social media, an 

important aspect of the social network has been disregarded: the fact that relationships between 

actors can grow stronger or weaker as time goes by. Viswanath et al. (2009) studied the 

evolution of interactions between users in the Facebook social network to capture this 

phenomenon. The authors found that links in the interaction network tend to appear and 

disappear rapidly over time, and that the strength of ties exhibits a general decreasing trend of 

activity as the social network link ages (Viswanath et al., 2009). 

2.6.2.4. Roles of relationships/edges 

Apparently, various relationships play different roles (Gilbert & Karahalios, 2009). 

Relationships among actors are the venue through which the information disseminates. 

(1) Friend relationships 
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Among different types of social media platforms, social networking sites such as 

Facebook and LinkedIn offer an important mechanism for “being friends/connected”. Users may 

send an invitation to the person they are interested in. Then, if the person who receives the friend 

request accepts it, the two involved users become friends. Once becoming friends, any updates a 

user posts appear in his/her friend’s news feed thereby remaining a friend enables people to track 

others’ information creations easily. 

Friendship is defined as “a relationship involving voluntary or unconstrained interaction 

in which the participants respond to one another personalistically” (Lea, 1989). Similar to the 

real world and generally speaking, friendship is expected to be a binary state of relationship. 

Friend relationships in social media are akin to the real world peer-to-peer relations in that they 

are the primary information exchange venues. Java et al. (2007) identified that most social media 

relationships can fall into the friend relationship category. There could be many sub-categories of 

friend relationships in social media, such as classmates, friends, family and co-workers. 

Sometimes users may also add a stranger as a friend. 

Building and maintaining friend relationships are significant components for social 

networking sites. Although, social media platforms do not provide options to specify differing 

degrees of friend relationships, it is not surprising that users would behave differently when they 

exchange information with individual Facebook friends. Therefore, in regard to relationship 

strength and quality, following a previous study conducted by Baym, Zhang, and Lin (2004), 

Bryant and Marmo (2012) classified Facebook friend relationships as occurring in close, casual, 

and acquaintance forms.  

Among college students, Pempek et al. (2009) discovered that Facebook was used most 

often for interaction with friends with whom the students had a pre-established relationship 
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offline. A recent survey of college students in the U.S. showed that students use the social 

networking sites to interact with their offline acquaintances in order to maintain friendships 

rather than to find new friends (Ellison, Steinfield, & Lampe, 2007). 

From the social network perspective, a network built on friend relationships can be 

defined as a friend network. Due to the default setting of the social media platforms, a user is 

meant to receive all of his/her friends’ updates. However, the friend relationships do not promise 

communications and other interactions. In fact, within the virtual friend network, Golder, 

Wilkinson, and Huberman (2007) discovered that nearly all communication was found to occur 

between “friends,” but only a small proportion of “friends” exchanged messages. 

(2) Follow relationships 

While most social networking sites allow only a binary state of friend relationship, 

unsurprisingly it has been observed that not all links are created equal. Some blogs and 

microblogging platforms such as Twitter have a function called follow, which allows a user to 

subscribe to another user’s information creation without any permission requests. A following 

relationship is assumed to be built based on a common interest or a shared attribute (Yamashita, 

Sato, Oyama, & Kurihara, 2013). However, within Twitter you can feel free to follow someone 

named B regardless of his/her permission and B will not receive what you say in his/her timeline 

until he/she chooses to follow you back. In other words, the relationship between users in 

Twitter-like microblog websites is directed and therefore, information is transmitted in a directed 

line. 

The follow relationship seems to be primarily related to information consumption 

(Myers, Sharma, Gupta, & Lin, 2014). Different from friend relationships, the purposes of 

following other users in social media may not be because of any meaningful social relationship 
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but to receive news, especially in the case that the followed users are news publishers (e.g., CNN 

Breaking News) or celebrities (e.g., Ellen DeGeneres). However, Myers et al. (2014) argued that 

sometimes follow relationships can be built on social ties, e.g., following one’s colleagues, 

family members, and friends. In such cases, the information exchange between them might be 

more than only the follower receiving information from the followed person. 

From the view of social network structure, the follow relationships construct a social 

network between Twitter users. Myers et al. (2014) analyzed the topological features of the 

Twitter follow graph, and they pointed out that users with high in-degrees are more visible and 

are therefore more likely to receive new edges, further increasing their inbound degrees. In 

regards to information exchange, high-profile and popular accounts hold more potential to send 

information to a broader audience. In addition, researchers suggested that the follow 

relationships could be utilized to cluster Twitter users (Yamashita et al., 2013). 

(3) Interaction relationships 

Social media can be seen as an interactive information network where a certain part of 

information dissemination appears along interaction edges. Different social media platforms 

certainly offer a variety of movement and interaction mechanism to their users. When asked 

about the behaviors they engage in on the site, Facebook users’ preferences point toward “liking” 

content that others have posted and commenting on photos as the activities they engage in most 

often (Smith, 2014). Although the interactions on each site might be diverse, once users interact 

with others, a certain type of relations occurs between them. Four regular and popular roles of 

the interaction relationships are summarized as liking, commenting, sharing, and messaging. 

a) Liking and favoriting 

Smith (2014) reported that 44% of Facebook users “like” content posted by their friends 

at least once a day, with 29% doing so several times per day. A “like” (on Facebook) or 
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“favorite” (on Twitter) serves as a digital version of an acknowledging nod or a thumbs up 

(which is the depiction of the “like” button). It has been realized that from Facebook “likes” it is 

possible to decipher an individual’s level of openness, conscientiousness, extraversion, 

agreeableness and neuroticism (Entis & Advisor, 2015). Thus, it suggests that the like 

relationships might be used to group users with common interests. 

b) Commenting 

People make comments to other’s information creation to express themselves. Twitter 

offers this function named “reply”, whereas Facebook uses “comment”. On Facebook, 31% of 

users comment on other people’s photos on a daily basis, with 15% doing so several times per 

day (Smith, 2014). Clearly, comment is a more informative format than “like”. It provides more 

text about people’s feelings than clicking a “like”.  

Interestingly, Hansen et al. (2010) proposed that replies are better indicators of social ties 

than follower/friend relationships. The authors who made this suggestion were inspired by 

Huberman, Romero, and Wu (2009), who observed that even though people have a large number 

of friends in social media, the proportion of those friends who they actually exchange messages 

with is rather small in comparison. 

c)  Sharing 

Retweeting, which appears to be the key mechanism for information exchange, is an 

interesting interaction in Twitter. Retweeting can be understood as a form of information 

diffusion since the original tweet is propagated to a new set of audiences, namely the followers 

who retweet the tweet as the retweeter (Suh, Hong, Pirolli, & Chi, 2010). In addition, people 

often add more content such as their comments with the original tweets. 

On Facebook, sharing mechanism achieves the retweeting function on Twitter. 

Retweeting relationships between the follower and the followed person sometimes present not 
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only the information flow, but also the retweeter’s judgments and feelings to the original author. 

Most times this relationship tends to reflect the positive evaluations of the tweets and the authors. 

Suh et al. (2010) stated that retweeting might be created to entertain a specific audience, to 

comment on someone’s tweet, to publicly agree with someone, or to save tweets for future 

personal access. A social media scientist also suggested that retweets are used to spread 

interesting web pages, videos, and other web content to other users (Zarrella, 2009). 

As we can see above, retweeting has been one of the most important venues of 

information exchange. Suh et al. (2010) identified that a study on retweeting relationships would 

help to understand why certain tweets spread more widely than others did. The authors 

investigated a number of tweet features, and found out URLs and hashtags have a strong 

relationship with retweetability (Suh et al., 2010). 

d) Messaging 

Apart from the public communication forms (e.g., comments), both Facebook and 

Twitter provide a way of private and real-time information exchange: sending messages. 

Facebook’s messaging capability is similar to that of regular web-based email except that 

messages may only be sent to one recipient at a time (distribution lists are not allowed). 

Messages may be sent to any user, even if the user is not in one’s network and even if the sender 

does not know the recipient’s regular email address. 

Twitter allows users to “tweet to ‘someone’”, which generates a message starting with a 

“@” sign and connecting with the username of “someone”. Similarly, for Facebook, users can 

directly write on someone’s timeline. In both cases, the message appears on the sender’s 

timeline. The receiver gets the information as a notification but it does not show on the receiver’s 

timeline. For Facebook, a very common content of this type of public message is birthday wishes 

to friends. 
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e) Mentioning and tagging 

On Twitter, a “mention” is a Tweet that contains another user’s @username anywhere in 

the body of the Tweet (Twitter, n.d.). The “mention” mechanism on Facebook is the fraternal 

twin to Twitter’s @mention feature (Mathews, 2011). In addition, Facebook users can not only 

mention other people, pages, and groups in the text of their posts, but they also can tag others in 

photos, videos and notes. 

Both mentioning and tagging can be seen as a public conversation between the user who 

posts material and the users who are mentioned or tagged. These types of interactions can be 

viewed as a conversation between users in a public forum. Moreover, people who “friend” the 

poster of materials are also able to see this material and the interactions between users involved 

in the public sharing of said material. A “mention” in social media connects the creator of 

information with other involved users, as well as provides the context of this interaction. Ashton 

(2015) analyzed the Twitter mentions network in its entirety, and differentiated the broadcasters 

from the receivers in the network using measures of in-degree and out-degree. 

 In summary, both friend and follow relationships are built on users’ connections, while 

interaction relationships are constructed based on users’ activities with others. Moreover, the 

roles of the relationships resulting from these interactions differentiate types of interpersonal 

activities, which include liking and favoriting, commenting, sharing, messaging, and mentioning 

and tagging. 

2.6.3 Network measurements 

A number of network measurements assist researchers in gaining insights to the 

structures of the social network, especially when combining them with some statistical tests. 

Lewis, Kaufman, Gonzalez, Wimmer, and Christakis (2008) used ordinary least squares 

regression to see how gender, race/ethnicity, SES, and online activity are associated with the two 
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variables of users’ Facebook friend network: betweenness centrality and network density. 

Interestingly, the results showed that females tend to have significantly less dense Facebook 

friend networks than do males. Since the network density was identified as an indicator of the 

extent to which individuals identify with their friends (Brown, 1990), the authors suggested that 

females are more socially active on social networking sites and “have a greater diversity of 

‘network resources’ at their disposal” (Lewis et al., 2008). In addition, they also concluded that 

less active students and students who joined Facebook more recently generally have denser 

networks and smaller betweenness.  

Nodal degree is another crucial measure for social network analysis. It commonly 

indicates an actor’s involvement in network activities (Knoke & Yang, 2008). In a directed 

network such as the follow relationship network on Twitter, a node possesses two types of 

degree measures: in-degree (indicating how many followers a user has) and out-degree 

(indicating how many accounts a user follows). Cha et al. (2012) articulated that the out-degree 

to in-degree ratio decreases as a user has more followers, which suggested that the less popular a 

user is, the more actively he/she follows others. 

2.7 Content-based analysis applied in social media research 

2.7.1 Data collection and data analysis 

Ideally, all types of information flowing in social media, ranging from textual material to 

photos, radios and videos, may serve as the sources of content analysis. Considering the ease of 

data processing, textual contents such as posts, tweets, replies and comments, are more often 

collected and analyzed by researchers. In regards to data collection, a variety of social media 

platforms provide the application programming interface (API) to facilitate the developer to tap 

into the collective knowledge of millions of users. For example, Facebook Graph API and 
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Twitter API assist with collecting a given user’s updates and gathering posts containing certain 

keywords. 

In the past, content analysis was mostly conducted manually, with investigators 

interpreting text by classification, categorization, and subjective interpretation. These days, a 

number of lexical software and natural language processing (NLP) tools have been invented to 

aid the data analysis process especially for the user-generated content in social media.  

A variety of software and toolkits are available to collect content from different social 

media sites, as well as carry out various analyses. Netlytic (http://netlytic.org/) is a cloud-based 

text analyzer and social networks visualizer. Netlytic can gather data conversations on social 

media sites such as Twitter, YouTube, blog comments, online forums and chats. In addition, it 

can also automatically summarize large volumes of text, to discover and visualize social 

networks (Netlytic, 2014). Through text processing and network analysis, it can help researchers 

and others to identify key and influential constituents, and discover how information and other 

resources flow in a network (Netlytic, 2014). DiscoverText (http://discovertext.com/) is a cloud-

based platform which helps users archive, filter, search, and classify text (Stoll, 2015). Many 

valuable features are combined with this platform including: capture, filter, de-duplicate, cluster, 

search, human code, and machine-classify large numbers of small, unstructured units of text 

(Stoll, 2015). IBM SPSS Text Analytics for Surveys software can be applied to transform 

unstructured text into quantitative data and gain insight using sentiment analysis (IBM, 2014). 

This software adopts NLP technologies specifically designed for mining the user-generated text. 

2.7.2 Topic modeling 

Topic modeling seeks to automatically reveal the latent topics from a set of documents 

through machine learning. Hofmann (1999) first proposed a generative data model – called the 
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Probabilistic Latent Semantic Indexing (PLSI) – that represents each document as a probability 

distribution over a set of topics. While Hofmann’s work provided some advantages for document 

indexing, it may lead to serious problems of overfitting (Blei, Ng, & Jordan, 2003). To overcome 

the limitations of PLSI, Blei, Ng, and Jordan presented a three-level hierarchical Bayesian model, 

which is known as Latent Dirichlet Allocation (LDA). In the LDA model, each document is 

modeled as a finite mixture over an underlying set of topics, where each topic is modeled as a 

mixture over an underlying set of terms. Follow-up efforts to extend content-level LDA 

modeling have been made using different approaches, such as the Author-Conference-Topic 

(ACT) model (Tang et al., 2008), correlated topic model (CTM) (Blei & Lafferty, 2006), 

interactive topic modeling (Hu, Boyd-Graber, Satinoff, & Smith, 2014), and supervised Latent 

Dirichlet Allocation (sLDA) (Mcauliffe & Blei, 2008). Most topic modeling studies explored the 

relationships between documents and topics.  

2.7.3 Applications 

The products of user-generated content on social media dramatically increases every day 

- even every minute. Such incredibly abundant information contains a great wealth of content 

and opportunities for exploration through content analysis. Researchers have thrown insights into 

the application of content analysis of information flowing on different social media sites for 

various purposes. 

2.7.3.1. Trending detection 

Due to the interactive nature of social media, the user-generated knowledge offers an 

efficient source to gain insights into the trending topics about which people talk. Therefore, 

Twitter is able to provide a real-time platform that can predate the best newspapers in informing 

the web community about the emerging topics (Cataldi, Di Caro, & Schifanella, 2010). Trends 
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are typically driven by emerging events, breaking news and general topics that attract the 

attention of a large fraction of social media users (Mathioudakis & Koudas, 2010). Trend 

detection is thus of high value to news reporters and analysts, as they might point to fast-

evolving news stories. 

In fact, Twitter itself lists 10 up-to-date trending topics on the homepage of every user. 

The official Twitter Trends are determined by an algorithm and are personalized for each user 

based on who you follow and your location. This algorithm identifies “topics that are popular 

now, rather than topics that have been popular for a while or on a daily basis, to help you 

discover the hottest emerging topics of discussion on Twitter that matter most to you” (Twitter, 

n.d.). Although Twitter has not released the Trends algorithm, researchers suggest that potential 

trends are discovered by polling all tweets for repeated hashtags. Their trend status is determined 

by a combination of times tweeted and volume of tweets containing the hashtag (Wilson, 2012). 

Such speculations suggest that the Twitter Trends are yielded from a series of content analysis. 

In addition to Twitter Trends, researchers make efforts to discover the trends from 

Twitter automatically. Cataldi et al. (2010) proposed a novel topic detection technique that 

permits retrieval in real-time the most emergent topics expressed by the community. The method 

extract the emerging topics by analyzing in real-time the emerging terms expressed by the tweets. 

For identifying the emerging keywords, the authors assigned a “content energy” to a given term 

based on its effective contribution. This means the given term’s usage is extensive and emergent 

in the considered time interval but not in the previous ones.  

However, same as some of traditional trends detection studies, Cataldi et al. (2010) did 

not consider the structural features of information flowing in social media. To address this gap, 

Budak, Agrawal, and Abbadi (2011) established so called coordinated and uncoordinated trends, 
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which take friend relationship network into account to identify topics that are highly discussed 

among the identified clustered users and distributed users. 

In respect to information flowing on different social media platforms, content analysis 

was utilized to compare the differences of the trending topics. Yu, Asur, and Huberman (2011) 

observed that there were vast differences between the content that was shared on Sina Weibo (a 

Chinese microblogging social network) and that of Twitter. As a result, people tended to share 

jokes, images and videos on Sina Weibo, whereas on Twitter the trending topics were mainly 

related to events in the news (Yu et al., 2011). 

2.7.3.2. Topic discovery 

Frequently content analysis is employed to code text in terms of certain subjects and 

themes, and eventually seek a categorization for the phenomena of interest (Bryman, 2012). 

When it comes to the social media era, analyzing the information flowing on various platforms is 

likely to be involved when the researcher seeks to discourse the topics and themes in the user-

generated texts. 

As people increasingly rely on the self-help resources, the online communities of social 

media sites provide an efficient platform for people to help each other. For example, autism 

patients and their caregivers can visit social media sites where they can ask for help and advice 

from other users, make contributions to others, receive assistance from the group members, and 

share their experiences in communities such as support groups on Facebook, e.g. “Autism 

Group” (www.facebook.com/groups/48701140761/). 

Based on the log data from a social Q&A forum, Zhang and Zhao (2013) used content 

analysis to investigate the consumers’ discussion topics related to diabetes. Through the data 

coding analysis, the authors found 12 categories of questions and answers that user discussed 
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within the forum: Cause & Pathophysiology, Sign & Symptom, Diagnosis & Test, Organ & 

Body Part, Complication & Related Disease, Medication, Treatment, Education & Info 

Resource, Affect, Social & Culture, Lifestyle, and Nutrient. 

Using online support groups as the data sources, Klemm, Hurst, Dearholt, and Trone 

(1999) articulated that four categories (information giving/seeking; encouragement/support; 

personal opinion; and personal experience) accounted for approximately 80% of responses 

across the online cancer support groups. By investigating a larger data set, Seale, Ziebland, and 

Charteris-Black (2006) produced categories more inductively. The authors archived 12,757 

postings from the two most popular UK based breast and prostate cancer support groups, and 

then generated 15 categories of keywords that emerged from the group discussions: Greetings, 

Support, Feelings, Health care staff, Health care institutions and procedures, Treatment, 

Disease/disease progression, Body parts, Clothing and appearance, Tests and diagnosis, Internet 

and web forum, People, Knowledge and communication, Research, Lifestyle, and Superlatives 

(Seale et al., 2006). 

Different from the above studies conducting the traditional manual coding processes, 

topic modeling technique is gaining increasing attention to help with the topic discovery from 

social media (Hong & Davison, 2010). Given the characteristics of tweets, Zhao et al. (2011) 

proposed a Twitter-LDA (Latent Dirichlet Allocation) model that treats each tweet as a single 

document. By applying this new model to data from Twitter, 11 categories of tweets emerged: 

Family & Life, Arts, Style, World, Tech-Sci, Business, Twitter, Sports, Health, Education, and 

Travel. They discovered that Family & Life dominated the information flowing on Twitter. 

Reddick, Chatfield, & Ojo (2017) also employed topic modeling methods to explore the topics of 

government related posts on Facebook. 
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Above all, in addition to social network analysis, content analysis remains another useful 

method for social media research - in particular by using text data extracted from social media 

platforms. Researchers have applied content analysis to discover trending topics and discussion 

topics based on the information flowing in social media. 

2.8 Sentiment analysis and opinion mining 

Sentiment analysis deals with the task of identifying positive and negative opinions, 

emotions, and evaluations from text (Wilson, Wiebe, & Hoffmann, 2005). Sentiments and 

potentially expressed opinions are significant components of user-generated information flowing 

in social media sites. Therefore, with the increase use of social media, sentiment analysis 

[denoted the same field as opinion mining (Pang & Lee, 2008)], has been widely applied to 

identify whether a text flowing in social media is subjective or objective, and whether the 

opinion it stated is positive or negative (Thelwall, Buckley, & Paltoglou, 2011). Sentiments 

extracted from information flowing in social media can be utilized to improve the forecasting 

power of social media. In addition, further studies might help to understand how sentiments are 

created, how positive and negative opinions propagate and how they influence people (Asur & 

Huberman, 2010). 

One of the core ideas of sentiment analysis is to set a classification approach in order to 

label the polarity (positive, negative or neutral) of a given text. Asur and Huberman (2010) 

constructed a sentiment analysis classifier using the LingPipe linguistic analysis package. 

However, given the importance of the corpus to the analysis performance, Pak and Paroubek 

(2010) collected a corpus of 300,000 tweets from Twitter and built a Twitter-based sentiment 

classifier that is able to determine positive, negative and neutral sentiments for a tweet. 
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2.8.1 Mechanism of sentiment analysis 

In general, sentiment analysis has been carried out at three levels: document level, 

sentence level, and entity and aspect level (Liu, 2012). Table 6 summarizes the descriptions and 

the characteristics of the three levels of sentiment analysis. 

Analysis level Complex level Description 

Document level Simplest task Sentiment classification of whole document 

Sentence level More complex Identifying Subjective/Objective sentences 

Entity and Aspect level Advanced Detect the target, source, or complex 

attitude types 

Table 6. Descriptions of the three levels of sentiment analysis 

Sentiment analysis techniques can be broadly classified into two types: lexicon-based 

approaches and machine learning approaches (as shown in Figure 6). Lexicon-based solutions 

rely on sentiment dictionaries, while machine learning solutions automatically or semi-

automatically learn to detect the affective content of text (Kim, Jeong, Kim, Kang, & Song, 

2016; Paltoglou & Thelwall, 2017). The lexicon-based approach detects the sentiment based on a 

sentiment lexicon, which includes a collection of known and precompiled sentiment terms. It is 

divided into dictionary-based approach and corpus-based approach. that use statistical or 

semantic methods to find sentiment polarity. Dictionary-based approach adopts general 

dictionary, whereas corpus-based approach uses the domain-specific corpus. 

 



81 

 

Figure 6. Classification of sentiment analysis 

2.8.2 Applications 

The rich and diverse data provided by social media applications has been facilitating the 

progress of the research field of sentiment analysis (Kumar & Sebastian, 2012). The sentiments 

reflected by social media content can be applied in predicting real-world outcomes. Gruhl, Guha, 

Kumar, Novak, and Tomkins (2005) showed that the content of blog postings could successfully 

predict books’ sales rank prior to spikes. Later on, Liu, Huang, An, and Yu (2007) proposed a 

Probabilistic Latent Semantic Analysis (PLSA) model to measure the hidden sentiment from 

blog posts, and confirmed the predictive power of blogs in predicting the future product sales. 

Social media is increasingly being commercially exploited for purposes such as 

automatically extracting and even predicting customer opinions about products or brands 

(Thelwall et al., 2011). Twitter and Facebook are a focal point of a number of sentiment analysis 

studies, and the most common application is to monitor the real-time reputation of a specific 

brand on Twitter and/or Facebook (Feldman, 2013). As for predicting the box-office values for 

movies, Asur and Huberman (2010) analyzed the sentiments present in tweets and demonstrated 

the efficacy at improving predictions after a movie has released. Interestingly, Bollen, Mao, and 

Zeng (2011) employed two real-time sentiment-tracking tools, namely OpinionFinder that 

measures positive vs. negative mood and Google-Profile of Mood States (GPOMS), to measure 

public mood from daily Twitter feeds. Eventually, the authors suggested that public sentiment, as 

expressed in large-scale collections of Twitter posts, could indeed be used to predict the stock 

market. 

2.9 Summary 

Recent years have witnessed a surge in research studying how information is shared, 

exchanged, and flows on social media platforms. Applying social network analysis to social 
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media research permits the discovery of the intricacies of online user behavior. Social networks 

that are constructed by social media users and the relationships between them represent how 

information is spread around the environment. 

Since the early 2000s, user-generated content has become increasingly popular on the 

web. Users participate in the information sharing process and perform multiple functions. Social 

media presents a unique opportunity to answer longstanding and important social science 

questions about the interaction among different types of individuals who have different roles in 

the diffusion of information (Cha et al., 2012). In the process of information sharing, social 

media users perform the following different functions: information creation, information 

propagation, influence dissemination, and information reception and consumption. Studying the 

relative roles different users play in information propagation enables us to understand how 

various users engage in social media. 

Relationships that emerge from social media can be very revealing. Different players in 

social media are interconnected through bidirectional social links as well as unidirectional 

subscriber links that they use to exchange information. There are a number of significant roles 

that the relationships perform in social media regarding information exchange; all of which can 

be grouped into three categories: friend, follow, and interaction relationships. Interaction 

relationships built by the interpersonal activities between users can be further divided into the 

following types: liking, favoriting, commenting, sharing, messaging, mentioning, and tagging. 

Content-based analysis sheds light on understanding information flow in social media. 

Traditional content analysis methods have been widely applied to social media research, while 

the application of topic modeling in analyzing social media content has proliferated over the past 
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years. The applications of topic modeling in social media research focus primarily on detecting 

the trends and discovering the discussion topics. 

Above all, social media users and the relationships among them form online social 

networks. Relying on social network analysis, researchers are able to gain insights on how 

information is being shared and exchanged in social media. Topic modeling, however, does not 

answer the question “how”, but instead “what” themes are underlying the information flow. 

Therefore, the integration of social network analysis and topic modeling together may provide 

more in depth understanding into how and what information is being disseminated and spread in 

social media. 

2.10 Limitations and gaps in literatures 

Some of the extant research on autism patients’ attitudes and behaviors reported their 

hesitations of the use of social media. More recently, some studies illuminated the active 

engagements in the online social communities in this population. Through the qualitative 

research methods, such as questionnaires and interviews, few studies reported how autism 

patients perceived and felt about their online experiences. However, information regarding how 

people affected by autism interact with each other on social media is sparse.  

Various factors contribute to how user participate in the online health communities, such 

as, income, class, gender, race, the educational level and geographical location. However, 

surprisingly little research attention has been directed to understanding gender differences in 

health information seeking on social media (Ford, Miller, & Moss, 2001), especially in the 

autism-related populations. This study aims to investigate if gender might be attributed to the 

disparity in the interaction patterns among group members in the autism support groups on 

Facebook. 
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Given the paucity of research regarding autism-affected users’ online interactions on 

social media, this study aims to investigate how autism-affected users interact with each other in 

the autism support groups on Facebook. Furthermore, gender differences of autism-affected 

users in the way how group members interact with each other and the sentiment they expressed 

were investigated.  



85 

 

 

Chapter 3. Research Methodology 

3.1 Introduction 

This study centers on the research of autism-affected users’ behavior within communities 

on social media. The research objects are the autism support groups on Facebook. Those groups 

consist of autism patients, their relatives, caregivers, researchers, and physicians. 

In this study, the research population was all public Facebook groups that relate to 

autism. Since the population tends to be very large, a selecting strategy was proposed to select 

the selected groups from the population. All selected autism support groups on Facebook 

compose the sample that was intended to be representative of the population.  

Then, the research data were gathered from each selected group. For each group, all of 

the wall posts and the related components were extracted from Facebook. Each post included the 

following components: the user who created the post, the content of the post, the tag(s) within 

the post, the specific time when it was posted, the total likes it received, the Facebook user(s) 

who liked the post, the total number of comments it received, and the content of each comment. 

Social network analysis, topic modeling, sentiment analysis, and inferential analysis were 

employed to analyze the data collected from support groups regarding autism on Facebook. In 

order to construct the social network among the group members, all of the involved Facebook 

users’ information was extracted from the raw data sets and served as the nodes in the network. 

The relationships between the nodes were built based on the following interactions: commenting, 

reacting (liking), tagging, and sharing-out. Each social network data was imported to UCINET 

software to conduct the social network analysis and to find the interaction patterns and the 

influential users within the autism-related support group on Facebook. 
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Topic modeling was then conducted to analyze the information shared and flowed within 

the groups. This included the content of the posts and the comments. Both the original posts and 

the comments may have included texts, photos, and videos. Through topic modeling analysis, 

discussion themes were discovered from the raw data. 

Inferential statistics covers the techniques which allow researchers to explore in-depth 

relationships between variables and interpret the complicated resultant data pattern (Zhang, 

Zhao, & Wang, 2016). In this study, inferential analysis was applied to a set of social network 

measures generated from the social network analysis. The measures included degree centrality, 

betweenness centrality, closeness centrality, etc. Applying inferential analysis enabled this study 

to discover the communication pattern differences between groups; for example, using modified 

ANOVA analysis to identify whether there were any significant differences of the network 

features among the groups from different categories. 

Figure 7 describes the data collection and data analysis process applied in this study. The 

detailed data collection methods and the data analysis methods applied to different types of data 

are discussed in the following sections. 
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Figure 7. Data collection and data analysis process 

3.2 Sampling and data collection 

The data collection in this study consisted of two parts. The first step was to select 

sampled autism support groups on Facebook. After deciding certain groups, the second step was 

to gather the proper data from sampled Facebook groups, including group interactions and group 

discussions.  

3.2.1 Sampling strategy 

The purpose of this study was to investigate the autism support groups on Facebook, thus 

the screening strategy focused on finding the appropriate Facebook groups. Based on the 

definition from PubMed Health (Board, 2012), autism is also called autistic spectrum disorder 

(ASD) and pervasive developmental disorder (PDD). In order to reach broad data sources, the 

following autism-related terms were used to search the groups on Facebook: “autism”, “autistic”, 

“asperger”, “aspie”, “pervasive developmental disorder”, “ASP”, and “PDD”. However, the 
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abbreviation “ASP” and “PDD” returned too many unrelated groups in the pilot study since they 

could represent many words other than autistic spectrum disorder and pervasive developmental 

disorder. Therefore, five search terms were finally adopted to find targeted Facebook groups. 

As a preliminary exploration, on May 18-20, 2015, Facebook search engine was utilized 

to search for each of the following search terms: “autism”, “autistic”, “asperger”, “aspie”, and 

“pervasive developmental disorder”. The search was restricted to Facebook groups. Individual 

users and public pages were excluded. To be included in the study, the groups had to meet the 

following criteria: (1) the group was related to autism; (2) the group possessed more than 50 

group members; and (3) the group operated in English. The first criterion ensured that the 

sampled groups could be related to the research problem and research questions. The second 

criterion ensured the conduction of further social network analysis and inferential analysis, while 

the third criterion ensured the process of content analysis of information shared in the group. For 

each group identified in the search results, the researcher manually checked the purpose and the 

operation language of the group through the group title and group description, and recorded the 

number of group members via group profile. Table 7 summarizes the first-step screening results 

in the pilot study. In total, 341 Facebook groups met the requirements. 

Search term Number of search results Number of appropriate groups 

autism 380 147 

autistic 2201 89 

asperger 2221 93 

aspie 200 15 

pervasive developmental disorder 10 3 

Table 7. First-step screening results through the pilot study 

Yet, 341 groups still exceeded the research load for this study. From the group title and 

description, the basic aims of a group were determined. Through a thorough analysis of the 

group purposes, all appropriate groups were categorized into the following categories: (1) Care 

support group; (2) Autism with other related diseases; (3) Treatment and therapy; (4) Society and 
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Education; (5) Autism patient group; (6) Scope; (7) Specific autism type; (8) Commercial and 

research; (9) Patient and society; and (10) Special discussion. In addition, groups in each 

category were further divided into several sub-categories. Table 8 summarizes the categories and 

the sub-categories of the autism-related Facebook groups.  

Category Sub-category 

Care support group 

Mother 

General family members and caregivers 

Partner (wife/spouse) 

Parents 

Autism with other related diseases 

Sensory Processing Disorder  

Ehlers Danlos Syndrome/ Hypermobility Syndrome 

Neurological/behavioral challenge 

Down Syndrome  

Type 1 Diabetes 

Dyslexia 

Treatment and therapy 

Essential Oils 

Chlorine dioxide 

MAPS 

Treatment 

Society and education 

Awareness 

Fundraising and charity 

Art 

Education 

Non-profit organization 

Autism patient group 

Women 

Teenager 

Christian 

Adults 

Youth  

Islam 

LGBT 

Scope 

Local support 

National support 

Global support 

Specific autism type 
Severe autism 

High-functioning autism 

Commercial and research 

Consumer group 

Consultancy services 

Research 

Patient and society 

Friend seeking 

Relationship 

Job 
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Protest 

Special discussion 
Buying and selling 

Gift 

Table 8. Categories and sub-categories of the autism-related Facebook groups 

In the process of group categorization, each group from the first-step screening results 

was classified into one or multiple first-level category/categories based on its group purpose. 

Groups within each first-level category were then assigned to only one sub-category. It means a 

given group may associate with multiple categories but only one sub-category under a certain 

category based on its primary purpose. This requirement ensured the exclusiveness among the 

sub-categories under a given category. For example, if an autism support group was dedicated to 

topics about how parents educate autistic children, this group would be classified into both the 

Care support group category and the Society and education category, while it would be 

classified into the Parents sub-category in the Care support group category and the Education 

sub-category in the Society and education category.   

To achieve sufficient information, the researcher tended to choose the largest groups that 

were available. Finally, a total of five public Facebook groups became the final sample groups. 

3.2.2 Group data collection procedure  

In this study, the research data were from Facebook. Relying on the above discussion of 

the screening strategies, data collection process was carried out. Five public Facebook autism 

support groups, each selected from a distinct category (i.e. Awareness, Treatment, Parents, 

Research, and Local support), became the data sources. According to Facebook, anyone can 

access the posts in public groups. After joining the groups, a flyer was posted in the groups 

notifying the process of this study. The comparably largest and most active groups in which 

group members showed no uncomfortable feelings to the study were selected as the sample 

groups. In addition, the author intentionally chose groups focusing on diverse topics. 
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After identifying the sampled groups, data collection for this study centered on the 

extraction of the interactions and content that appeared in each group. However, the targeted 

groups might have been created at different time. Some groups might have been built for several 

years, while some might be created several months before the data collection. If all of the group 

interactions were considered after the creation of each group, it would be unfair for the newer 

groups because the time range of their data collection was shorter. Therefore, in order to ensure 

the fair comparativeness among the groups, a 6-month period was set as the time range of data 

collection. The researcher conducted a pilot investigation on the potential groups that could be 

sampled. As a result, data from the potential groups during a 6-month time span was sufficient 

for the following analysis. The time span was flexible to be expanded if there were not sufficient 

data for data analysis procedures when the final data collection was conducted. 

Data collection included two parts. Data from the sampled public groups was gathered 

using NodeXL. NodeXL, produced by Microsoft Research, is an extendible toolkit for network 

overview, discovery and exploration (Smith et al., 2009).  NodeXL offers the powerful and easy-

to-use interactive network visualization and analysis functions for representing generic graph 

data, performing advanced network analysis and visual exploration of networks (Microsoft 

Research, 2015). The tool supports data collection from Facebook and Twitter, and imports the 

graph data (nodes and edge lists) into an Excel spreadsheet. NodeXL enables the capture of some 

pertinent aspects of Facebook, i.e. posts, likes, shares, comments. However, due to the limits of 

Facebook API, NodeXL can only collect data from the public groups.  

Data from each of the sampled groups was collected and then saved in the Excel 

spreadsheet for further analysis. As shown in Figure 8, on the home page of each group, all of 

the wall posts created by group members were accessed. Each post included the following 
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information: the Facebook user who created the post, the content of the post, the tag(s) within the 

post, the specific time when it was posted, the total likes it received, the Facebook user(s) who 

liked the post, the total share-outs it received, the Facebook user(s) who shared the post, the total 

number of comments it received, and the content of each comment. For each comment replied to 

in the original post, it possesses the following components: the Facebook user who made the 

comment, the content of the comment, the specific time when it was made, the total likes it 

received, and the Facebook user(s) who liked the comment. As for the content of the posts and 

the comments, they may have contained text(s), URL(s), photo(s), and even video(s).  

 

Figure 8. The homepage of an example Facebook group 

Sometimes, group members posted a link or a picture in the group using the Facebook 

share-in function (as shown in Figure 9). In this case, this post would be treated as information 
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shared-in instead of as a typical post, in order to represent the share-in behavior in the group. 

Information shared-in has all of the possible components of a post, such as the creator, the 

content, the total likes it received, etc. The gender distributions of sampled groups were 

presented in section 4.1.1. 

 

Figure 9. An example of a share-in group post 

3.3 Social network analysis 

3.3.1 Types of data 

Ideally, all types of information existing in social media (ranging from textual material to 

photos, audios, and videos) serve as the data source for further analysis. Because of the nature of 

social media, each application can be seen as a social network composed of actors, connections, 

and information flowing in the network. Based on the data formation and utilization, data 
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harvested from Facebook can be classified into the following types: actors, connections, and 

content. 

3.3.1.1 Actors 

Actors are the main component of social media. Basically, actors can be construed as the 

users acting in social media. As some of the most famous social media sites (e.g. Facebook, 

Twitter) being strikingly popular, the platforms attract not only the ordinary users but also 

popular news sources and high-profile users to join the network, including traditional media 

(e.g., BBC, CNN), celebrities in various fields (e.g., Oprah Winfrey, Michael Jordan, Taylor 

Swift), politicians (e.g., Barack Obama), and other influential figures (Cha et al., 2012). Often 

the actors represent individual people but some of them could be organizations such as 

workgroups, teams, institutions, and companies, as well as virtual objects such as brands, TV 

shows, software, and cartoon roles.  

In this study, each Facebook user in a given autism group serves as an actor in the social 

network analysis. Figure 10 presents an example of how each node represents a group member. 

In Figure 10, User 1, User 2, and User 3 participate in the same Facebook autism group. In order 

to protect the user privacy, the Facebook usernames are replaced by serial numbers. 

 

Figure 10. Nodes in autism support groups on Facebook 

3.3.1.2 Connections 

User 1 User 2 

User 3 
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When considering a social media application as a social network, connections among 

users build up the network. All of the social media applications provide certain types of 

connection capabilities to the users. The basic types of connections occurring in the social media 

sites can be classified into two types: explicit connections or implicit connections (Hansen et al., 

2010). Users intentionally and knowingly build explicit connections, whereas implicit 

connections are inferred from the users’ movements in social media (Hansen et al., 2010).  

With respect to analysis of social media, connection data become especially critical since 

it can help to apply the social network analysis to social media environment. Both the 

reciprocated relations (e.g. friending) and the unilateral relations (e.g. following) serve as the 

links that connect users in networks. Therefore, gathering connections between a certain number 

of individual users and then building the network among them helps to explain online social 

behavior and target the influential users. 

In this study, the primary explicit connections between users in a Facebook autism group 

are participating in the same group. The implicit connections linking two actors result from 

activities including commenting, reacting (liking), tagging, and sharing-out. The research 

questions in this study center on discovering the interaction patterns among users in autism 

support groups on Facebook. Thus, this study focuses on the investigation of the implicit 

connections among actors.  

Figure 11 presents an example of connections between users in a Facebook autism group. 

In Figure 11, User 1 has liked one post created by User 2 so there is a reacting (liking) 

connection between them. User 3 has made comments to posts generated by User 2 several times 

so there are commenting connections between these two users. As can be seen from Figure 11, 
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the connections are directed from users who initiate the connections to users who receive the 

connections. In addition, the thickness of a link indicates the strength of the connection. 

 

Figure 11. Connections in autism support groups on Facebook 

3.3.1.3 Network 

Actors and connections together construct networks. The activity network on the social 

networking sites refers to the network formed by users who actually interact through the methods 

provided by the social networking sites (Viswanath et al., 2009). Constructing the activity 

network enables the discovery of the influential users in the groups, and identification of the 

interaction patterns among group members. 

In Facebook groups, group members post new messages, photos, or links to the groups, 

and then others can make comments to the posts and express “like” to a piece of content. In 

addition to simply posting a message, group members can also tag other users in their posts. 

Therefore, there are four types of interactions by group members involved in the groups: 

commenting, reacting (liking), tagging, and sharing-out. Those interactions build connections 

between actors, and thus construct interaction networks in terms of the types of the activity. 

To indicate the strength of connections between users, frequencies of different types of 

connections between any two users are combined to determine the total frequency of interactions 

between those two users (as shown in Figure 12). 

User 1 User 2 

User 3 

Liking Commenting 
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Figure 12. Activity network of autism support groups on Facebook 

3.3.2 Creation of the related matrices 

After all data in the selected groups are collected, multiple matrices are generated. These 

matrices define relationships among the involved actors in terms of making comments, marking 

a like to a post, tagging others in a post, and sharing one’s post out of the group. The generation 

of matrices is vital and crucial for social network analysis. 

Creation of original node-node matrices 

(1) Comment Node-Node Matrix (CNNM): Description of comment 

 

Here r is the number of all nodes/actors who were involved in the commenting 

interactions. cij is a cell in the matrix, which refers to the number of comments that actor i made 

to the posts from actor j. 

(2) Like Node-Node Matrix (LNNM): Description of like 

 

User 1 User 2 

User 3 
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Here w is the number of all nodes/actors who were involved in the reacting (liking) 

interactions. lij is a cell in the matrix, which refers to the number of likes that actor i made to the 

posts from actor j. 

(3) Tag Node-Node Matrix (TNNM): Description of tag 

 

Here n is the number of all nodes/actors who were involved in the tagging interactions. tij 

is a cell in the matrix and it refers to the number of posts that actor i created, in which actor j was 

tagged. 

(4) Share-out Node-Node Matrix (TNNM): Description of tag  

 

Here p is the number of all nodes/actors who were involved in the sharing-out 

interactions. sij is a cell in the matrix, which refers to the number of posts that actor i shared-out 

posted by actor j. 

These four matrices are not symmetric because when actor i made a comment on the post 

of actor j, or tagged j in a post, or liked a post of actor j, or shared a post of actor j, it does not 

mean that actor j made a comment on the post of an actor i, or tagged i in a post, or liked a post 

of actor i, or shared a post of actor i. It is an important characteristic of the four matrices. In 

addition, if there was an interaction connection between actor i and actor j, the frequency that 

actor i acted on actor j may not be equal to the frequency that actor j acted on actor i. 

Normalization of the original node-node matrices 
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Each of the original matrices has to be normalized before these matrices can be 

combined. In the normalization, the size of a normalized original matrix should be equal to the 

size of the final node-node mega matrix (FNNMM); the order of the actors in the normalized 

original matrix should be the same as the order of the actors in the FNNMM. The normalized 

matrices are symmetric. The sizes of all normalized matrices are equal to the number of actors 

who were involved in any of the four types of connections: commenting, reacting (liking), 

tagging, and sharing-out. 

(5) Normalized Comment Node-Node Matrix (NCNNM) is defined as: 

 

Here q is the number of actors who were involved in any of the four types of connections. 

If an actor in NCNNM does not appear in the CNNM, it means that it is a newly added actor. 

Then the cells in its corresponding row and column are set to 0 in the NCNNM. This is an 

important procedure for the normalization process. All other cells in the normalized matrix are 

the same value as the original matrix. The NCNNM and FNNMM should share the same matrix 

structure for the purpose of the normalization. 

(6) Normalized React (like) Node-Node Matrix (NLNNM) is defined as: 

 

As described above, if an actor in NLNNM does not appear in the LNNM, it means that it 

is a newly added actor. Then the cells in its corresponding row and column are set to 0 in the 

NLNNM. All other cells in the normalized matrix are the same value as the original matrix. 
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(7) Normalized Tag Node-Node Matrix (NTNNM) is defined as: 

 

As described above, if an actor in NTNNM does not appear in the TNNM, it means that it 

is a newly added actor. Then the cells in its corresponding row and column are set to 0 in the 

NTNNM. All other cells in the normalized matrix are the same value as the original matrix. 

(8) Normalized Share-out Node-Node Matrix (NSNNM) is defined as: 

 

As described above, if an actor in NSNNM does not appear in the SNNM, it means that it 

is a newly added actor. Then the cells in its corresponding row and column are set to 0 in the 

NSNNM. All other cells in the normalized matrix are the same value as the original matrix. 

Above all, the NCNNM, the NLNNM, the NTNNM, the NSNNM and the FNNMM 

share the same matrix structure for the purpose of the normalization. 

Creation of the final node-node mega matrix 

Finally, the FNNMM is created based on the above four normalized matrices after the 

normalization process. The FNNMM should possess the characteristics of all the four normalized 

matrices. 

(9) Final node-node mega matrix (FNNMM) is defined as: 
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3.3.3 Network measurements 

As discussed in the Introduction chapter, a number of network measurements assist 

researchers in gaining insights to the structures of the social network. Both network-level and 

actor-level measurements reveal the interaction patterns from different perspectives. Network-

level measurements aim to identify the connection patterns among all nodes in a network, while 

actor-level measurements focus on revealing the characteristics of an individual node. Table 9 

summarizes the network measurements employed in this study, and the research questions and 

hypotheses that each measurement aims to answer and test. 

Level of 

measurement 

Measurement Research question Hypothesis 

Network-level 

 

Network size RQ1.1, RQ1.2  

Network density RQ1.1, RQ1.2  

Reciprocity RQ1.1, RQ1.2  

Degree centralization RQ1.1, RQ1.2  

Betweenness centralization RQ1.1, RQ1.2  

Closeness centralization RQ1.1, RQ1.2  

Actor-level 

 

In-degree RQ2.2  

Out-degree RQ2.2  

Degree centrality RQ1.1, RQ1.2, RQ2 H01a, H02a, H03a, H04a 

Betweenness centrality RQ1.1, RQ1.2, RQ2 H01b, H02b, H03b, H04b 

Closeness centrality RQ1.1, RQ1.2, RQ2 H01c, H02c, H03c, H04c 

Table 9. Network measurements and serving research questions 

3.5.3.1. Network-level measurements 

As shown in Table 9, the investigation of the network-level measurements serves to 

answer the RQ1.1 and the RQ1.2. Seven network-level measurements were adopted to describe 

the patterns of the interactions appearing in each autism support group on Facebook, including 
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network size, network density, reciprocity, and centralization (degree centralization, betweenness 

centralization, and closeness centralization). Network size refers to the number of actors in a 

network. Network density measures the number of connections in the network, expressed as a 

proportion of the number possible. The network density of a social network implies the speed at 

which information or resources diffuse among the actors. In the context of an interaction network, 

reciprocity indicates the extent to which connections in a directed network are mutually linked. 

Centralization refers to the extent a network is dominated by a single node (Borgatti et al., 

2013). Freeman’s general formula for centralization is measured as summing the difference 

between each node’s centrality and the centrality of the most central node, and then dividing the 

sum by the maximum possible value where the star-shape network would get (Borgatti et al., 

2013). Each type of centralization measurements (degree centralization, betweenness 

centralization, and closeness centralization) can be calculated by using the corresponding 

centrality measurements (degree centrality, betweenness centrality, and closeness centrality). 

3.5.3.2. Actor-level measurements 

Actor-level centrality measurements are used to further compare the differences among 

different autism support groups on Facebook. In-degree and out-degree measure the frequencies 

of connections a given actor received and launched. In-degree of an actor is the number of 

connections leading to that actor, while the out-degree of an actor is the number of connections 

leading away from that actor.  

Three actor-level centrality measurements (i.e. degree centrality, betweenness centrality, 

closeness centrality) were adopted to measure the positional importance of group members in the 

group. Degree centrality refers to the number of connections incident upon a node. The degree 

centrality implies the potential communication ability of a certain actor. Actors with higher 
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degree centrality have higher probability of receiving and transmitting the information flows, and 

thus can be considered to have influence over other actors in the network (Abraham, Hassanien, 

& Snášel, 2010).  

Geodesic distance between two actors refers to the number of edges in the shortest path 

connecting them. The betweenness centrality of a node j is defined as the share of times that a 

node i needs the node j in order to reach a node k via the shortest path (Borgatti, 2005). 

Betweenness centrality evaluates the degree with which an actor controls the flow of information 

in the network. Actors with higher betweenness centrality act as the “brokers” (Abraham et al., 

2010). In the context of autism support groups on Facebook, group members with higher 

betweenness centrality bear more possibility to control the communication among group 

members. 

Closeness centrality basically measures how close a node is located with respect to every 

other node in the network (Abraham et al., 2010). Closeness centrality can be calculated as the 

inverse of the sum of the geodesic distances between each actor and every other actor in the 

network (as shown in Equation 8). Actors with higher closeness are able to reach (or be reached 

by) more other nodes in the network through geodesic or shortest paths. An actor that is close to 

many others can instantly communicate and interact with others without going through many 

intermediaries (Makagon, McCowan, & Mench, 2012).  

3.5.3.3. Measurement definitions 

Given a network N with n nodes, that is, the size of the network N is n. Here ni, nj, and nk 

are three nodes in the network. The total connections of ni is d(ni), which means the degree of ni 

is d(ni). Similarly, the in-degree centrality and out-degree centrality is equal to the in-degree and 

out-degree of the node, respectively. The number of the maximum connections for ni in the 
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network is n-1 when ni is directly connected to all other nodes. CD(ni) refers to the degree 

centrality for the ni, CB(ni) refers to the betweenness centrality for the ni, and CC(ni) refers to the 

closeness centrality for the ni. CD(N) refers to the degree centralization for the network N, CB(N) 

refers to the betweenness centralization for the network N, and CC(N) refers to the closeness 

centralization for the network N. Based on the above assumptions, the following equations 

describe the definitions of the network-level measurements and actor-level measurements 

applied in this study. 

The network size of a network N is defined as: 

 
The network density for a direct network N is defined as: 

 
Here l is the total number of connections in network N, and l↔ is the total number of 

reciprocated connection. The reciprocity is defined as: 

 
The degree centrality for ni is defined as: 

 
Here gijk is the number of paths from node i to node k that pass through node j, while gik 

is the number of all the paths from node i to node k in the network. The betweenness centrality 

for nj is defined as: 

 
Here g(ni, nj) is the geodesic distance from node i to node j. The closeness centrality for ni 

is defined as: 
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Here CD (n*) is the maximum degree centrality in N and CD (ni) is the degree centrality of 

a node in N; CB (n*) is the maximum betweenness centrality of any node in N and CB (ni) is the 

betweenness centrality of a node in N; and CC (n*) is the maximum closeness centrality of any 

node in N and CC (ni) is the closeness centrality of a node in N. The degree centralization, 

betweenness centralization, and closeness centralization are defined as: 

   

 

 

 
            

3.3.4 Centrality normalization 

 Notice that in order to test the proposed hypotheses; the centrality measurements between 

two networks were compared. For instance, the comparison between the centrality measurements 

derived from one autism support group and the centrality measurements derived from another 

autism support group. The size of a network, which is the number of nodes in the network, may 

affect the centrality values according to their definitions. The larger a network size is, the bigger 

the centrality of a node may be. To avoid the possible negative impact of network sizes on the 

comparisons, the network sizes were normalized to achieve plausible test results in the study. 

After the normalization, the comparisons across different networks were sound. 
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As a result, the normalized degree centrality (including in-degree and out-degree) for ni is 

defined as: 

 
Here the number of pairs of nodes in the network is (n-1)(n-2)/2. The normalized 

betweenness centrality for ni is defined as: 

 
Here n-1 stands for the minimum possible distance from node ni to the n-1 other nodes in 

the network. The normalized closeness centrality for ni is defined as: 

 
3.3.5 Influential users based on interactions 

Commenting and reacting (liking) are two of the most popular activities on Facebook. 

Both interactions create implicit relationships between members in a Facebook group. Hansen et 

al. (2010) even proposed that comments are better indicators of social ties than follower/friend 

relationships. Considering the nature of the interaction of commenting and reacting (liking), both 

comment network and react (like) network were treated as directed networks. In a directed graph, 

the out-degree measures the number of edges leaving a given vertex, and the in-degree measures 

the number of edges incident upon a given vertex (Butts, 2006). In the comment network, the in-

degree means the number of comments a certain member received, whereas the out-degree 

indicates the number of comments a certain member created to others. It also applies to the like 

network. Cha et al. (2012) suggested that users with large in-degrees can effectively spread 

information to a large number of nodes.  



107 

 

The top scorers in terms of out-degree (number of comments and likes sent out) were 

users actively creating the connections with others in the network. Users with higher out-degrees 

showed more interest in interacting and communicating with others. 

Apart from the raw degree of the actors, centrality is one of the most important structural 

attributes of social networks (Freeman, 1978). Betweenness centrality is based upon the 

frequency with which a point falls between pairs of other points on the shortest paths connecting 

them (Freeman, 1978). According to the research of Cheong and Cheong (2011), these users can 

be viewed as opinion leaders in the support group since being on the shortest paths between other 

members they are able to control the flow of information in the network. 

Figures generated from NetDraw depict the interaction networks among group members 

in terms of the commenting activity, the reacting (liking) activity, the tagging activity, and the 

sharing-out activity. The nodes represent individual group member and are shown as circles 

while the directed links represent commenting or reacting (liking) movements from one to 

another. The size of the nodes indicates the betweenness centrality of the user in the network. 

The frequencies of the interactions define the strength of the connections and are illustrated by 

the thickness of the ties between users. Individuals who possessed larger betweenness centrality 

are positioned as the hubs in the networks. 

3.4 Topic modeling 

3.4.1 Text preparation process 

Standard text mining systems usually operate on prepared documents. User-generated 

textual data appearing in social media, Internet webpages, etc. may not be controlled. Therefore, 

those data need to be cleansed and processed before further analysis.  
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Text preparation process refers to a series of steps to prepare the raw text before more in-

depth natural language processing, e.g. topic model training. Text preparation commonly 

consists of the selection, cleansing and preprocessing of text (Liddy, 2000). Figure 13 describes 

the text preparation procedures applied in this study.  

In this study, the text preparation process was operated by Python scripts using NLTK 

toolkits. Tokenization utilizes a simple regular expression model to extract the tokens from the 

sentences (Kao & Poteet, 2007). After removing all punctuation and lowercasing all tokens, text 

containing stop words (e.g. “the”, “is”) can be filtered based on a list of stop words adopted by 

the NLTK toolkit. The stemming procedure employs the classic Porter algorithm (Porter, 1980). 

Finally, all text needed to be cleansed and checked manually to insure the accuracy of the 

subsequent analyses. 

 

 

 

 

Figure 13. Text preparation process 

 

3.4.2 Latent Dirichlet Allocation (LDA) 

Griffiths and Steyvers (2004) proposed Latent Dirichlet Allocation (LDA) as a particular 

generative model for topic discovery. LDA assumes a latent structure consisting of a set of 

topics, and the words that appear in a paper reflect the particular set of topics (Griffiths & 

Steyvers, 2004). The basic idea behind LDA considers documents as random mixtures over 

latent topics where each topic is represented by a distribution over words (Blei, Ng, & Jordan, 

2003). Figure 14 represents the probabilistic graphical model of a LDA model (Blei et al., 2003).  
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Figure 14. Graphical model representation of LDA 

Following the methods introduced by Griffiths and Steyvers (2004), in this study the 

LDA model was implemented in Python with gensim package (Řehůřek & Sojka, 2010) using 

the Gibbs Sampling inference method. The hyperparameters α and β control the amount of 

smoothing in the model estimation process. A greater value indicates more smoothing and a 

smaller value indicates less smoothing. The hyperparameters α was set to 50/K (K is the number 

of topics) while β equals 0.01. The number of iterations was set as 500. The settings of α and β 

were based on the suggestion of Steyvers and Griffiths (2007) where they found it worked well 

with many different text collections.  

3.4.3 LDA model evaluation 

The pre-specified numbers of topics influence the performance of the topic model 

training. The topics discovered by LDA capture the correlations between words in documents, 

but LDA cannot generate the correlations among the captured topics (Cao, Xia, Li, Zhang, & 

Tang, 2009). Too few topics do not allow authors to be distinguished, whereas too many may 

cause relationships to be weaker (Lu & Wolfram, 2012). Ideally, topics identified from the 

documents are supposed to be distinctive from each other. One way to evaluate the LDA model 
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is through the interactive visualization supporting rapid experimentation for interpretive 

hypotheses (Murdock & Allen, 2015).  

LDAvis handles the model checking problem to aid topic interpretation by displaying the 

ranking of terms within topics and the relevance among topics (Sievert & Shirley, 2014). It 

presents topic-word and topic-topic relationships alongside composition information. In this 

study, the pyLDAvis package (Sievert & Shirley, 2014) was implemented in Python to visualize 

the models generated from the group discussions, as well as assist the modeling checking process. 

Different values of K, or numbers of topics, are tested. The author assessed the outcomes and 

decided the most reasonable outcome based on the data. 

3.5 Sentiment analysis 

Sentiment analysis, also known as opinion discovery, centers on identifying the 

viewpoint underlying the documents. One particular and common type of sentiment analysis is to 

detect whether the sentiment polarity, which is the overall orientation of a certain text, is positive 

or negative (Lau et al., 2014). 

3.5.1 Lexalytics 

Lexalytics has been around since 2003 and offers sentiment analysis via its Salience 

engine which is marketed as an on-premise solution. Lexalytics’ key message is State-of-the-art 

technologies to turn unstructured text into useful data. Lexalytics’ sentiment analysis tools can be 

configured to determine sentiment on a range of levels. In addition to identifying whether a given 

document of text is positive, negative, or neutral, Lexalytics is able to assign a specific score to 

show how strong that sentiment is (“Text Analytics,” 2016). 

One significant feature of Lexalytics is the adaption to social media content. Professional 

writing tends to be well written with solid grammar and punctuation, which helps significantly in 
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the processing of the text to measure sentiment (Catlin, 2011). Streams on social media such as 

Facebook and Twitter, however, often contain some creative grammar and considerable grammar 

mistakes. Considering the features of social media texts, Catlin (2011) claimed that the results of 

Lexalytics in measuring sentiment have been exceptional. 

The first step of scoring the sentiment of a document is to break the document into its 

basic parts of speech (Lak & Turetken, 2014). Lexalytics applies well-defined techniques to tag 

the various parts of speech and reaches extremely high accuracy (Lak & Turetken, 2014). 

Moreover, Lexalytics includes a very large dictionary of sentiment bearing phrases along with 

their relative sentiment scores (Lak & Turetken, 2014). In order to determine the sentiment of the 

overall document, Lexalytics developed its own scoring algorithms: using a proprietary way to 

add up the weighted phrases. The software identifies the sentiment phrases (e.g. negation, good) 

first, and then uses the syntax matrix to determine the syntactic effect of the ordering of the 

words (“Text Analytics,” 2016).  

3.5.2 Sentiment analysis processes 

In this study, Lexalytics carried out the sentiment analysis on the content from each 

group. Figure 15 summarizes the procedures of sentiment analysis. All of the initial posts and the 

replies were combined together as the input data set for the sentiment analysis. Each source text 

contained one or more sentences that the users created. Lexalytics identifies the emotive phrases 

within each source text and then combines them to discern the overall sentiment of the text. The 

automatic sentiment scoring method scores each text according to the same algorithm, and thus 

can avoid human biases (Lak & Turetken, 2014). Lexalytics provided sentiment scores in the 

range of -2 to +2, along with the sentiment categories (positive, neutral, or negative) in which the 

text appeared. 
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Figure 15. Sentiment analysis process 

3.6 Inferential analysis 

Inferential statistics have been used to investigate the user behaviors on social media 

(Jansen, Sobel, & Cook, 2011). In this study, inferential analysis served to examine the 

differences and similarities between autism support groups on Facebook under different 

categories. The use of statistical analysis of the characteristics of autism support groups on 

Facebook was essential to understand the social media use of autism-affected users.  

In this section, the inferential analysis that was applied to test each hypothesis is 

discussed in detail. For each of the hypotheses, the independent and dependent variables and 

other important factors are stated, and a discussion of how the data was organized is included.  

Inferential analysis on a social network is based on relations among actors of the 

network, not on relations between variables. The relations among the actors on the network were 

defined in the final node to node mega matrix (FNNMM). The matrix describes interactions 

among the nodes/actors. The centrality (including degree, betweenness, and closeness) were 

calculated based on the matrix. In other words, the relations among the actors depended on each 

other.  
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Standard inferential tests assume that the variables are drawn from a population with a 

particular distribution, such as normal distribution (Borgatti et al., 2013). It implies that 

traditional inferential statistical method like t-test and ANOVA test cannot apply directly to the 

network actor data because the traditional inferential statistical methods generally assume 

independent observations. The unique exponential random graph models (ERGMs) for 

inferential statistical analysis (Borgatti et al., 2013) present a unique way to address the issue. 

The models successfully solve the problem that observations must be statistically independent 

and the observations must follow a normal distribution. 

The significance level (α) for all tests was equal to 0.05. If the resultant p-value of a null 

hypothesis test was smaller than 0.05, the null hypothesis was rejected. Otherwise, the null 

hypothesis failed to be rejected. If a modified ANOVA test was rejected, then a follow-up 

investigation was conducted to detect the reason of the rejection. 

3.6.1 Hypothesis group 1 

RQ1.1: Are there any differences between male group members and female group members in 

terms of interactions in autism support groups on Facebook? 

 

H01(a): There are no significant differences between male group members and female 

group members in terms of the interactions in autism support groups on Facebook based 

on the degree centrality. 

 

H01(b): There are no significant differences between male group members and female 

group members in terms of the interactions in autism support groups on Facebook based 

on the betweenness centrality. 

 

H01(c): There are no significant differences between male group members and female 

group members in terms of the interactions in autism support groups on Facebook based 

on the closeness centrality. 

 

H02(a): There are no significant differences between male group members and female 

group members in each of the defined categories in terms of the interactions in autism 

support groups on Facebook based on the degree centrality. 
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H02(b): There are no significant differences between male group members and female 

group members in each of the defined categories in terms of the interactions in autism 

support groups on Facebook based on the betweenness centrality. 

 

H02(c): There are no significant differences between male group members and female 

group members in each of the defined categories in terms of the interactions in autism 

support groups on Facebook based on the closeness centrality. 

 

Since there are five defined categories investigated in this study, each of H02(a), H02(b), and 

H02(c) was then divided into 5 associated sub-hypotheses based on the categories (i.e. Awareness, 

Treatment, Parents, Research, and Local support). Table 10 lists the 15 sub-hypotheses 

associated with H02(a), H02(b), and H02(c).  

H01(a), H01(b), H01(c), H02(a), H02(b), H02(c) and the associated sub-hypotheses compose the 

hypothesis group 1. The independent variable of hypothesis group 1 is gender. The valid values 

or levels of this independent variable are male and female. The dependent variable of the 

hypothesis group 1 is the interactions in autism support groups on Facebook. The dependent 

variable can be measured by the degree centrality of each actor, the betweenness centrality of 

each actor, and the closeness centrality of each actor. An independent t-test was applied to test 

each hypothesis in hypothesis group 1. 
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Category Awareness Treatment Parents Research Local support 

H02(a) H02(a1): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in 

Awareness 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

degree 

centrality. 

H02(a2): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Treatment 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

degree 

centrality. 

H02(a3): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Parents 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

degree 

centrality. 

H02(a4): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Research 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

degree 

centrality. 

H02(a5): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Local support 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

degree 

centrality. 

H02(b) H02(b1): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in 

Awareness 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

betweenness 

centrality. 

H02(b2): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Treatment 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

betweenness 

centrality. 

H02(b3): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Parents 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

betweenness 

centrality. 

H02(b4): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Research 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

betweenness 

centrality. 

H02(b5): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Local support 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

betweenness 

centrality. 

H02(c) H02(c1): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in 

Awareness 

H02(c2): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Treatment 

H02(c3): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Parents 

H02(c4): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Research 

H02(c5): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in  

Local support 
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Table 10. Sub-hypotheses associated with H02(a), H02(b), and H02(c) 

3.6.2 Hypothesis group 2 

RQ1.2: Are there any significant differences among the defined categories in terms of online 

interactions in autism support groups on Facebook? 

 

H03(a): There are no significant differences among the defined categories in terms of the 

interactions in autism support groups on Facebook based on the degree centrality. 

 

H03(b): There are no significant differences among the defined categories in terms of the 

interactions in autism support groups on Facebook based on the betweenness centrality. 

 

H03(c): There are no significant differences among the defined categories in terms of the 

interactions in autism support groups on Facebook based on the closeness centrality. 

 

Hypothesis group 2 consists of H03(a), H03(b), and H03(c). The independent variable of the 

hypothesis group 2 is the defined category of the group. The valid values or levels of this 

independent variable are the category of Awareness, Treatment, Parents, Research, and Local 

support. The dependent variable of the hypothesis group 2 is the interactions in autism support 

groups on Facebook. The dependent variable can be measured by the degree centrality of each 

actor, the betweenness centrality of each actor, and the closeness centrality of each actor. Since 

the number of the independent variable levels (5) is larger than 2 and subjects in different groups 

receive different treatments (“Awareness”, “Treatment”, “Parents”, “Research”, and “Local 

support”), a modified ANOVA analysis was conducted to test each hypothesis in hypothesis 

group 2. 

3.6.3 Hypothesis group 3 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

closeness 

centrality. 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

closeness 

centrality. 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

closeness 

centrality. 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

closeness 

centrality. 

category in 

terms of the 

interactions in 

autism support 

groups on 

Facebook 

based on the 

closeness 

centrality. 
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RQ4.1: Are there any differences between male group members and female group 

members in each of the defined sub-categories in terms of sentiment characteristics in 

autism support groups on Facebook? 

 

H04: There are no significant differences between male group members and female group 

members in terms of the sentiment in autism support groups on Facebook. 

 

H05: There are no significant differences between male group members and female group 

members in each of the defined categories in terms of the sentiment in autism support 

groups on Facebook. 

 

Similar to the case with H02(a), H02(b), and H02(c), H05 was then divided into 5 associated 

sub-hypotheses in which each sub-hypothesis was based on the sub-categories (i.e. Awareness, 

Treatment, Parents, Research, and Local support). Table 11 lists the five sub-hypotheses 

associated with H05. 

Category Awareness Treatment Parents Research Local 

support 

H05 H05(a): There 

are no 

significant 

differences 

between male 

group members 

and female 

group members 

in Awareness 

category in 

terms of the 

sentiment in 

autism support 

groups on 

Facebook. 

H05(b): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in 

Treatment 

category in 

terms of the 

sentiment in 

autism support 

groups on 

Facebook. 

H05(c): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in 

Parents 

category in 

terms of the 

sentiment in 

autism support 

groups on 

Facebook. 

H05(d): There 

are no 

significant 

differences 

between male 

group 

members and 

female group 

members in 

Research 

category in 

terms of the 

sentiment in 

autism support 

groups on 

Facebook. 

H05(e): There 

are no 

significant 

differences 

between 

public groups 

and closed in 

Local support 

category in 

terms of the 

sentiment in 

autism 

support 

groups on 

Facebook. 

Table 11. Sub-hypotheses associated with H05 

H04, H05, and five sub-hypotheses associated with H05 compose the hypothesis group 3. 

The independent variable of the hypothesis group 3 is the gender of the group members. The 

valid values or levels of this independent variable are male and female. The dependent variable 

of the hypothesis group 3 is the sentiment appearing in autism support groups on Facebook. The 
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dependent variable can be measured by the sentiment scores of the content posted by the group 

members. The Mann-Whitney U test was applied to test each hypothesis in hypothesis group 3. 

3.6.4 Hypothesis group 4 

RQ4.2: Are there any significant differences among the defined categories in terms of 

sentiment characteristics in autism support groups on Facebook? 

 

H06: There are no significant differences among the defined categories in terms of the 

sentiment in autism support groups on Facebook. 

 

H07: There are no significant differences among the defined categories in terms of the 

sentiment of group members with the same gender in autism support groups on Facebook. 

 

H07 was then divided into two associated sub-hypotheses based on the gender of group 

members (i.e. male and female). Table 12 lists the two sub-hypotheses associated with H07. 

Gender Male Female 

H07 H07(a): There are no significant differences 

among the defined categories in terms of 

the sentiment of male group members in 

autism support groups on Facebook. 

H07(b): There are no significant differences 

among the defined categories in terms of 

the sentiment of female group members in 

autism support groups on Facebook. 

Table 12. Sub-hypotheses associated with H07 

H06, H07, and the associated sub-hypotheses with H07 compose the hypothesis group 4. 

The independent variable of the hypothesis group 4 is the defined category of the group. The 

valid values or levels of this independent variable are the category of Awareness, Treatment, 

Parents, Research, and Local support. The dependent variable of the hypothesis group 4 is the 

sentiment appearing in autism support groups on Facebook. The dependent variable can be 

measured by the sentiment scores of the content posted by the group members. The Kruskal-

Wallis H test was used to test each hypothesis in hypothesis group 4. 

 Table 13 summarizes the research question, associated hypothesis, independent variable 

(IV), its valid values, dependent variable (DV), its measurement, and the method used to test. 

Research 

questions 

Hypothesi

s  

IV Valid values  DV Measure

ment 

Test 

RQ1.1 Hypothesis Gender Male, Female Interactions Centrality Modified 
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group 1 t-test 

RQ1.2 Hypothesis 

group 2 

Category Awareness, 

Treatment, 

Parents, 

Research, Local 

support 

Interactions Centrality Modified 

ANOVA 

RQ4.1 Hypothesis 

group 3 

Gender Male, Female Sentiment Sentiment 

scores 

Mann-

Whitney 

U test 

RQ4.2 Hypothesis 

group 4 

Category Awareness, 

Treatment, 

Parents, 

Research, Local 

support 

Sentiment Sentiment 

scores 

Kruskal-

Wallis H 

test 

Table 13. Descriptions of inferential analyses applied in this study 

3.7 Validity and reliability 

Research methodology plays an extremely important role in a study. Both validity and 

reliability are the most prominent criteria for the evaluation of a research study. Winter (2000) 

stated that “Reliability and validity are tools of an essentially positivist epistemology.” (p. 7) The 

fundamental issue of validity is to evaluate how well the research study actually answers the 

research question (Gravetter & Forzano, 2011). Primarily, reliability is concerned with the 

question of whether the outcomes of a study are repeatable under the same research conditions 

(Bryman, 2012). 

Validity and reliability issues are associated with the whole research process ranging 

from sampling strategy, data collection, to data analysis. Through a pilot study, the occurrence of 

some problems under real circumstances helped the researcher to consider possible approaches to 

meet the validity and reliability requirements in the future. 

3.7.1 Internal Validity 

Roe and Just (2009) defined internal validity as the ability of a researcher to argue that 

observed correlations are causal. In other words, internal validity attempts to ensure that the 
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findings or results of the research are caused by the variables under investigation not by other 

unaccounted for influences (Winter, 2000). 

The researcher in this study investigated autism-related groups on Facebook to answer 

the research problem and research questions. In order to ensure the internal validity of the study, 

multiple search sessions using the related search terms were conducted through the Facebook 

search engine. Since the entire population contains far too many groups to measure and study 

(Gravetter & Forzano, 2011), the researcher selected a sample to provide information about the 

population.  

Through the preliminary exploration of all qualified groups, the qualified groups were 

classified into 10 categories, and each category was further divided to several sub-categories. 

Hence, the entire set of the Facebook groups related to autism can be considered the target 

population. 

In the design and collection of social network data, Borgatti et al. (2013) identified the 

following errors that may threaten the validity of the research: omission errors, commission 

errors, edge/node attribution errors, and data collection and retrospective errors. In this study, the 

researcher collected the social network data based on the behavior recorded on the group wall 

pages, and thus the involved actors and relationships can be clearly identified. When considering 

edge/node attribution errors, all of the interactions appearing within the data collection time 

period result in the relationships between actors. The researcher would assume the interactions 

observed from the wall posts included all the interactions between group members. Under such 

an assumption, this study was able to avoid omission errors, commission errors, and edge/node 

attribution errors. The social network data in this study was captured directly from Facebook 
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instead of individuals. Therefore, this study did not meet the threats from data collection and 

retrospective errors. 

Inferential analysis was applied to compare the social network features among groups 

under each category. In regards to the internal validity, the researcher sampled groups focusing 

on different topics, and thus ensured the findings or results of the statistical tests were caused by 

the group theme. In addition, this study adopts the normalized centrality measurements to avoid 

the possible impact of network sizes on the comparisons. 

3.7.2 External validity 

External validity refers to “the extent to which the results obtained in a research study 

hold true outside that specific study” (Gravetter & Forzano, 2011 p. 166). It concerns the 

generalization ability of the outcomes resulted from a study. 

In order to make sure of the external validity, the researcher must select a representative 

sample so that the results of the study can be generalized to a population. In this study, the 

researcher selected large and active groups. The adoption of comparatively large groups ensured 

there were enough group members and rich interactions in the groups for further analyses. In 

addition, the large body of information and behavior appearing in the groups potentially 

increased the possibility that what the researcher observed in the sample can be generalized to 

the population. 

Although this study investigated the autism support groups on Facebook, the findings of 

this study are applicable to online autism communities on other social media platforms, such as 

the autism discussion forum on WrongPlanet.net (“Autism Community Forum,” n.d.). In 

addition, the interaction patterns of users in the Facebook groups can be generalized to other 

health-related groups on Facebook. The research methods adopted in this study can be applied to 
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explore the health-related topics on other social media platforms. For example, the way that 

social network analysis and sentiment analysis were employed in this study can be used to 

examine the depression topics on question and answering forums. 

3.7.3 Reliability 

Reliability concerns the repeatability of the research. In this study, the research objects 

were the autism support groups on Facebook. Facebook groups tend to be much more dynamic, 

which means sometimes a group may disappear overnight. Therefore, the research attempted to 

sample large-size groups that usually are more sustainable. In addition, all of the wall posts of 

those sampled groups were saved as Adobe PDF files, in case of the disappearance of some 

groups. 

During the sampling process in this study, all autism support groups on Facebook that 

met the selection criteria were classified into ten categories based on the purposes of the groups. 

Expert coders classified the autism support groups into the defined categories based on the group 

titles and group descriptions. To ensure the reliability of the study, the classification process 

needed to be done by coders with professional backgrounds. Measurement of the extent to which 

coders assign the groups to the same category is called inter-coder reliability (McHugh, 2012). 

The kappa statistic is widely used to test inter-coder reliability. To test the inter-coder reliability 

of assigning categories to groups, two coders independently coded 20 selected groups randomly 

selected from all groups that met the criteria. The inter-coder reliability was 0.67 according to 

Cohen's (1960) kappa reliability formula. According to Cohen’s interpretation, the two coders 

achieved a substantial agreement in the category assignments (McHugh, 2012). 

Above all, this section discussed the research validity and reliability issues from the 

methodological perspective. Then, the background and research design of the proposed study and 
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results from the pilot study were briefly presented. The researcher also described the steps and 

procedures that were carried out in the sampling, data collection, and data analysis. Based on the 

validity and reliability concerns, some specific considerations and detailed approaches were 

designed to ensure the soundness of the research outcomes. The methods developed during this 

study provided a foundational point from which social network analysis, inferential analysis and 

content analysis can be applied to study the support groups in social media. 

3.8 Ethical considerations 

Ethical issues play a critical role in research involving human subjects, especially in 

social science. Ethical considerations are established to better protect the rights of the research 

participants. Research ethics concern the procedures that aim to protect those who participate in 

the research (Schnell & Heinritz, 2006).  

In this study, data was collected from Facebook groups that consisted of real Facebook 

users. Ethical issues were considered in the methodological procedures. Group members who 

participate in the sampled groups were the human subjects involved in this study. In order to 

protect the anonymity and confidentiality of the human subjects, all data collected from the 

groups were de-identified and safely stored. Quotes stated by subjects were not directly linked to 

specific group members. Specific names and locations was blacked out or replaced by 

pseudonyms in the quotes cited in the study results. 

To inform the participants of the data collection processing in the sampled groups, the 

author posted the notification one week before the data collection started. The notifications were 

posted every two weeks in the groups in order to make sure that the members were informed. 

Since all new posts appeared on each group member’s news feed, all group members were 

informed. The contact information of the author was also added in the notifications. If anyone 
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did not want his/her posts to be used in the study, he/she could have contacted the author to 

exclude his/her posts from this study. 

The mission of the Institutional Review Board (IRB) is to protect the human subjects 

involved in the research. IRB aims to minimize the risks and maximize the potential benefits for 

human subjects who participate in research. This study has submitted the study plan and all 

supporting documents to the IRB at the University of Wisconsin-Milwaukee (UWM). The 

protocol has been granted Exempt Status after review by the IRB at the UWM through March 

21, 2019. 

3.9 Summary 

Table 14 summarizes the research questions, sub-questions, data collection methods, and 

data analysis methods of this study. The four research questions respectively explored the 

interaction patterns among group members, identified the influential users in each group, 

investigated the discussion topics of each group, and examined the sentiment characteristics of 

group discussions. In order to answer the first two research questions, the group interactions and 

activities were used for social network analysis and inferential analysis. To approach the third 

research question, group discussions were used for topic modeling. Those group discussions 

were analyzed by sentiment analysis and inferential analysis to approach the fourth research 

question. 

Research questions Sub-questions Hypothesis  Data 

collection 

Data 

analysis 

RQ1: How do users 

interact with each other 

in autism support 

groups on Facebook 

based on social network 

analysis? 

RQ1.1: Are there any 

differences between male 

group members and female 

group members in terms of 

interactions in autism support 

groups on Facebook? 

Hypothesis 

group 1 

Group 

interactions 

and activities 

Social 

network 

analysis, 

inferential 

analysis 

RQ1.2: Are there any 

differences among the defined 

categories in terms of online 

Hypothesis 

group 2 

Group 

interactions 

and activities 

Social 

network 

analysis, 
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interactions in autism support 

groups on Facebook? 

inferential 

analysis 

RQ2: Who are the 

influential users based 

on interactions in 

autism support groups 

on Facebook? 

RQ2.1: What are the 

characteristics of the 

influential users based on 

interactions in autism support 

groups on Facebook? 

 Group 

interactions 

and activities 

Social 

network 

analysis 

RQ2.2: How do the influential 

users based on interactions 

interact with others in autism 

support groups on Facebook? 

 Group 

interactions 

and activities 

Social 

network 

analysis 

RQ3: What are the 

discussion topics that 

emerged from the 

discussions in autism 

support groups on 

Facebook? 

  Group 

discussions 

Topic 

modeling 

RQ4: What are the 

sentiment 

characteristics of 

discussions in autism 

support groups on 

Facebook? 

RQ4.1: Are there any 

differences between male 

group members and female 

group members in each of the 

defined categories in terms of 

sentiment characteristics in 

autism support groups on 

Facebook? 

Hypothesis 

group 3 

Group 

discussions 

Sentiment 

analysis, 

inferential 

analysis 

RQ4.2: Are there any 

differences among the defined 

categories in terms of 

sentiment characteristics in 

autism support groups on 

Facebook? 

Hypothesis 

group 4 

Group 

discussions 

Sentiment 

analysis, 

inferential 

analysis 

Table 14. Research questions and associated methods 
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Chapter 4. Results 

This chapter presents the results of social network analysis, topic modeling, sentiment 

analysis, and statistical analysis on this research exploration of interactions found in autism 

support groups located on Facebook. 

4.1 Description of the collected data 

As discussed in the data collection section, through the preliminary explorations, the 

investigated autism related support groups on Facebook were classified into 10 categories based 

on the group names and group descriptions. To qualify for the study, public groups with 

comparative active group discussions were chosen as the sample groups. 

As a result, five Facebook autism support groups, each selected from a distinct category, 

were collected on December 12-15, 2017. The data collection window was set as April 1, 2017, 

to September 30, 2017, which covered six months of 2017. All of the group wall posts and group 

interactions were downloaded by NodeXL. Table 15 presents the basic descriptions of the 

sampled groups and the collected data. The names of the groups were not revealed for the 

privacy concerns. 

Group Category Members Involved members Group interactions 

Group 1 Awareness 5902 299 811 

Group 2 Treatment 1577 297 2210 

Group 3 Parents 1513 523 4515 

Group 4 Research 2603 156 200 

Group 5 Local support 2847 438 4716 

Table 15. Descriptions of collected autism support groups 

Group 1 is the largest group among the five selected groups, where only 5.1% of the 

group members participated in the six-month data collection period. Group 3, created for parents, 

family, and friends of autism patients, had 34.6% of group members engaged in the group 

discussions. Among the five groups, group 3 had the mos0t group members involved in the 
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group discussions, while group 5 which provided the support for people living in a state, 

appeared to have the most active interactions among group members.  

4.1.1 Descriptive statistics of involved group members 

Various types of Facebook users can join the groups on Facebook, not only the individual 

users, but also other Facebook groups, Facebook Pages, and Facebook Page Communities. 

Among the investigated groups, the following types of roles were identified: male user, female 

users, Facebook pages, and Facebook groups. In a total of 14 cases, users left the gender 

identities or account types empty. Those users were classified as others in this study. Figure 16 

describes the distributions of group members’ roles in each group. Each bar represents a type of 

user’s role, while the line indicates the total number of the involved group members. As can be 

seen in Figure 16, most of the involved group members (1665 out of 1713, 93.9%) were 

individual users. Among those individuals, female users (1319) greatly outnumbered the male 

users (346). To compare the behaviors between male group members and female group 

members, the rest of the paper focused on the individual users in the groups with user identified 

gender characteristics. 
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Figure 16. Distributions of group members' roles 

4.2 Findings for research questions 1 (RQ1) 

RQ1: How do users interact with each other in autism support groups on Facebook based on 

social network analysis? 

The first research question aims to unveil how users communicate with each other within 

autism support groups on Facebook. 

4.2.1 Descriptive statistics of the group interactions 

Four types of group interactions were identified based on the group discussions. Table 16 

provides descriptive statistics of the group interactions observed in each group. Group 5 and 

group 3 were the two most active groups in terms of the group interactions. Group 4 was the 

least active group with merely 200 interactions during the six-month period. 

Group interactions Group 1 Group 2 Group 3 Group 4 Group 5 Total 

Comments 258 848 681 4 754 2545 

Reactions 511 1212 3721 194 3893 9531 

Tag 34 111 108 0 58 311 

Share out 8 39 5 2 11 65 

Total 811 2210 4515 200 4716 12452 

Table 16. Basic descriptive statistics of the group interactions 

Figure 17 depicts the distributions of the four types of group interactions in each group. 

Reactions were the most popular interactions across all groups. It is clear that group members 

favored giving comments and making reactions more than tagging someone or sharing others’ 

posts out of the group.  
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Figure 17. Distributions of group interactions 

4.2.2 Network-level measurements 

Network-level and actor-level measurements reveal the interaction patterns from different 

perspectives. Network-level measurements aim to identify the connection patterns among all 

nodes in a network, while actor-level measurements focus on revealing the characteristics of an 

individual node. Table 17 summarizes the network-level measurements of each group. The 

network size measured the number of group members involved in the group interactions. Clearly, 

Group 3 had the largest network, followed by Group 5. Group 1 and Group 2 had the similar 

sizes. Fewer group members engaged in the interactions in Group 4. 

Network density indicates the speed at which information or resources diffuse among the 

actors. As shown in Table 17, Group 2 had the highest network density, which suggested that 

group members in Group 2 were more likely to connect with others.  

Reciprocity identifies the percentage of links that are reciprocated. In Group 2, 34.2% of 

connections went both ways. The reciprocity of the interaction networks for Group 3 and Group 
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5 were less than 30% (29.2% and 26.9%, respectively). Only 4.1% of the connections were 

reciprocal in Group 4. 

Centralization measures how much the network is linked to a central core. The degree 

centralization higher than 0.5 suggests the network is more likely a command and control style 

instead of a distributed communication (Yoon, 2011). As can be seen from Table 17, Group 2, 

Group 3, and Group 5 displayed the control communication style in the groups. Group 1 and 

Group 4 were less controlled by a central core and showed a non-command distributed 

communication style. 

A centralized network has many of its links dispersed around one or a few central nodes 

(Chuang, 2013). Based on all three centralization measurements, the interaction networks of 

Group 5 and Group 2 appeared to be the most centralized networks among all the five groups.  

 
Group 1 Group 2 Group 3 Group 4 Group 5 

Network size 285 270 519 154 437 

Network density 0.006 0.017 0.011 0.014 0.009 

Reciprocity (Arc) 0.187 0.342 0.269 0.041 0.292 

Degree centralization 0.376 0.72 0.56 0.345 0.859 

Betweenness centralization 83.016 118.743 132.316 46.559 200.626 

Closeness centralization 0.0006 0.0012 0.0006 0.0007 0.001 

Table 17. Network-level measurements of each group 

Network centralization is an “umbrella concept that examines the variation in individuals' 

centralities within a network” (Monge & Contractor, 2003, p. 3). To further compare the 

centrality differences of individuals in the same groups and across different groups, statistical 

analyses were conducted in the following sections. 

4.2.3 RQ 1.1 & Hypothesis group 1 

RQ 1.1 is stated as “Are there any differences between male group members and female 

group members in terms of interactions in autism support groups on Facebook?” It examined if  

gender differences appeared during the group discussions.  



131 

 

Standard tests are not appropriate for node-level data because the aggregated measures 

(e.g. centrality) for each node are not independent of one another. Ucinet provides the 

permutation tests (also called randomization tests) to modify the standard methods, such as t-test, 

ANOVA, to the node-level network data (Borgatti, Everett, & Johnson, 2013). 

The interactions (commenting, reacting (liking), tagging, and sharing) between group 

members were summarized in a Mega Matrix. The Mega Matrix of each group was constructed 

and entered into Ucinet. Ucinet was used to conduct the social network analysis and the 

statistical tests on the social network of each autism support group on Facebook.  

RQ 1.1 was answered by hypothesis group 1, which consisted of a series of hypotheses 

and sub-hypotheses. Each hypothesis under hypothesis group 1 was created on the comparison of 

the centrality measure of male group members and female group members as a whole or in each 

support group. Centrality measures the positional characteristics of each node in a network.  

A series of modified t-tests were conducted to test the hypotheses under hypothesis group 

1. Table 18 summarizes the means and standard deviations (SD) of the degree centrality, the 

betweenness centrality, and the closeness centrality of all male group members (n=346) and all 

female group members (n=1319). In table 18, the p-values smaller than the significance level 

(0.05) are in bold and with the asterisks. The statistical results indicate that significant gender 

differences of group interactions were found in terms of the degree centrality (t(1665)=3.458, 

p=0.0011<0.05), the betweenness centrality (t(1665)=697.820, p=0.0006<0.05), and the 

closeness centrality ( t(1665)=-0.030, p=0.0001<0.05). As a result, H01(a), H01(b), and H01(c) were 

all rejected. Based on these statistical results the author concluded that there were significant 

differences between male group members and female group members in terms of the interactions 

in autism support groups on Facebook based on the all three types of centrality measures. Based 
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on degree centrality and betweenness centrality, male group members gained higher centrality on 

average, while female group members held higher centrality values than males did when 

measured by closeness centrality. For all three centrality measurements, male group members 

obtained higher standard deviations then female group members did. This suggests that more 

male group members tended to achieve the important positions, while their positions differed 

more apparently. 

 
Degree centrality Betweenness centrality Closeness centrality 

 
Male Female Male Female Male Female 

Mean 7.217 3.759 869.913 172.093 0.341 0.371 

SD 29.235 8.903 6436.784 1181.996 0.135 0.107 

t-statistic 3.458 697.820 -0.030 

p-value 0.0011* 0.0006* 0.0001* 

Table 18. Descriptive statistics and statistical results from H01(a), H01(b), and H01(c) 

Table 19 summarizes the means and standard deviations of the degree centrality, the 

betweenness centrality, and the closeness centrality of male group members and female group 

members in each group. Interestingly, it can be seen from Table 19, except for group 3, male 

group members possessed higher means and standard deviations than female group members 

across all three centrality measures in all the other four groups. For group 3, female group 

members achieved higher means of betweenness centrality and closeness centrality, and higher 

standard deviation of betweenness centrality than male group members did. This suggests that, 

different from other groups, more female group members in Group 3 tended to achieve the 

important positions than male group members did, while their positions differed more apparently 

in terms of betweenness centrality. 

  
Degree centrality Betweenness centrality Closeness centrality 

  
Male Female Male Female Male Female 

Group 1 
Mean 6.15 2.253 986.003 185.201 0.282 0.277 

SD 15.904 2.883 3513.867 624.231 0.059 0.047 

Group 2 Mean 8.685 4.305 641.922 93.14 0.421 0.409 
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SD 25.414 6.73 4080.172 295.612 0.071 0.059 

Group 3 
Mean 7.468 5.464 917.63 7132.609 0.386 0.394 

SD 30.871 13.665 310.814 1983.052 0.063 0.051 

Group 4 
Mean 3.017 1.611 276.523 79.001 0.109 0.104 

SD 7.065 1.267 964.999 212.874 0.051 0.05 

Group 5 
Mean 10.233 2.989 1539.953 72.337 0.461 0.45 

SD 48.14 5.577 1172.716 353.112 0.07 0.051 

Table 19. Descriptive statistics from Hypothesis group 1 

Table 20 shows the p-value of the modified t-tests of the gender differences in each 

group. In Table 20, the p-values smaller than the significance level (0.05) are in bold and with 

the asterisks. Based on these statistics, H02(a1), H02(a2), H02(a4), H02(a5), H02(b1), H02(b2), H02(b4), H02(b5) 

were rejected at the 0.05 significant level.  H02(c)1-5 failed to be rejected, which meant that there 

were no significant differences in the closeness centrality of males and females across all five 

groups. In terms of the degree centrality and betweenness centrality, significant gender 

differences were found in four groups (all except group 3). For group 3, no gender difference 

appeared based on all three centrality measures. 

Centrality 

measurement 

Group 1 Group 2 Group 3 Group 4 Group 5 

Degree 

centrality 

t(283)=3.155, 

p=0.0003* 

t(268)=2.05, 

p=0.0163* 

t(517)=0.925, 

p=0.3379 
t(152)=1.679, 

p=0.0118* 

t(434)=2.71, 

p=0.0158* 

Betweenness 

centrality 

t(283)=3.1, 

p=0.0017* 

t(268)=1.841, 

p=0.0147* 

t(517)=1.493, 

p=0.1301 
t(152)=1.831, 

p=0.015* 

t(434)=2.508, 

p=0.0496* 

Closeness 

centrality 

t(283)=0.121, 

p=0.4729 

t(268)=0.211, 

p=0.1748 

t(517)=-

0.177, 

p=0.1997 

t(152)=0.256, 

p=0.5121 

t(434)=0.174, 

p=0.1288 

Table 20. Statistical results from hypothesis group 1 

4.2.4 RQ 1.2 & Hypothesis group 2 

RQ1.2 is addressed as follows “Are there any differences among the defined categories in 

terms of online interactions in autism support groups on Facebook?” It concerns the comparison 

of online interactions in autism support groups that focused on different topics.  
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Hypothesis group 2 was broken down into three sub-hypotheses H03(a), H03(b), and H03(c). 

In contrast to the hypothesis group 1, the independent variable for each hypothesis under 

hypothesis group 2 was the defined category of the group. Modified ANOVA tests were 

conducted to test the differences between the groups based on degree centrality, betweenness 

centrality, and closeness centrality. Table 21 presents the statistical results from H02a, H02b, and 

H02c. The author concluded that there were significant differences among the defined categories 

in terms of the interactions in autism support groups on Facebook based on the degree centrality 

(F(4, 1665)=2.5797, p=0.0332<0.05), betweenness centrality (F(4, 1665)=2.4325, p=0.04<0.05), 

and closeness centrality (F(4, 1665)=3286.7258, p=0.0002<0.05). 

Centrality measurement df F-Statistic p-value 

Degree centrality 4 2.5797 0.0332* 

Betweenness centrality 4 2.4325 0.04* 

Closeness centrality 4 3286.7258 0.0002* 

Table 21. Statistical results from hypothesis group 2 

According to the ANOVA test results, H03(a), H03(b), and H03(c) were rejected. To find out 

the pairs that caused the rejections, the post hoc tests were conducted by a series of t-tests using 

Ucinet. The p-values of the comparison results between each pair of groups based on the degree 

centrality, betweenness centrality, and closeness centrality are illustrated in Table 22, 23, and 24, 

respectively. 

Degree 

centrality 

Group 1 Group 2 Group 3 Group 4 Group 5 

Group 1  t(593)=-1.5, 

p=0.0025* 

t(819)=-0.412, 

p=0.6886 

t(452)=-1.371, 

p=0.1755 

t(733)=0.347, 

p=0.8153 

Group 2 t(593)=-1.5, 

p=0.0025* 

 t(818)=1.972, 

p=0.0166* 

t(451)=0.9, 

p=0.423 
t(732)=2.28, 

p=0.0014* 

Group 3 t(819)=-0.412, 

p=0.6886 
t(818)=1.97

2, 

p=0.0166* 

 t(677)=-0.929, 

p=0.3978 

t(958)=0.772, 

p=0.4669 

Group 4 t(452)=-1.371, 

p=0.1755 

t(452)=0.9, 

p=0.423 

t(677)=-0.929, 

p=0.3978 

 t(591)=1.3, 

p=0.19 

Group 5 t(733)=0.347, t(732)=2.28, t(958)=-0.772, t(591)=1.3,  



135 

 

p=0.8153 p=0.0014* p=0.4669 p=0.19 

Table 22. Statistical results for the t-tests based on the degree centrality 

H03(a) was rejected. The statistical results indicate that the significant differences of group 

interactions in terms of the degree centrality were found between group 1 and group 2 (t (593) = 

1.5, p=0.0025), group 2 and group 3 (t (818) = 1.972, p = 0.0166), and group 2 and group 5 (t 

(732) = 2.28, p = 0.0014). 

Betweenness 

centrality 

Group 1 Group 2 Group 3 Group 4 Group 5 

Group 1  t(593)=0.84, 

p=0.5037 
t(819)=2.178, 

p=0.0313* 

t(452)=-1.125, 

p=0.2598 

t(733)=1.57, 

p=0.1184 

Group 2 t(593)=0.84, 

p=0.5037 

 t(818)=0.78, 

p=0.5252 

t(451)=-1.627, 

p=0.1058 

t(732)=0.584, 

p=0.5320 

Group 3 t(819)=2.178, 

p=0.0313* 

t(818)=0.78, 

p=0.5252 

 t(677)=-3.225, 

p=0.0024* 

t(958)=0, 

p=0.9486 

Group 4 t(452)=-

1.125, 

p=0.2598 

t(451)=-

1.627, 

p=0.1058 

t(677)=-3.225, 

p=0.0024* 

 t(591)=2.28, 

p=0.0293* 

Group 5 t(733)=1.57, 

p=0.1184 

t(732)=0.584, 

p=0.5320 

t(958)=0, 

p=0.9486 
t(591)=2.28, 

p=0.0293* 

 

Table 23. Statistical results for the t-tests based on the betweenness centrality 

Three comparison pairs caused the rejection of H03(b). The significant differences of 

group interactions in terms of the betweenness centrality were revealed between the following 

three pairs: group 1 and group 3 (t (819) = 2.178, p = 0.0313), group 3 and group 4 (t (677) = -

3.225, p = 0.0024), and group 4 and group 5 (t (591) = 2.28, p = 0.0293). 

Closeness 

centrality 

Group 1 Group 2 Group 3 Group 4 Group 5 

Group 1  t(593)=-4.543, 

p=0.0001* 

t(819)=-7.342, 

p=0.0001* 

t(452)=5.673, 

p=0.0001* 

t(733)=-7.727, 

p=0.0001* 

Group 2 t(593)=-4.543, 

p=0.0001* 

 t(818)=-3.056, 

p=0.0001* 

t(451)=7.845, 

p=0.0001* 

t(732)=-3.593, 

p=0.0001* 

Group 3 t(819)=-7.342, 

p=0.0001* 

t(818)=-3.056, 

p=0.0001* 

 t(677)=-8.9, 

p=0.0001* 

t(958)=-0.773, 

p=0.0001* 

Group 4 t(452)=5.673, 

p=0.0001* 

t(451)=7.845, 

p=0.0001* 

t(677)=-8.9, 

p=0.0001* 

 t(591)=-9.071, 

p=0.0001* 

Group 5 t(733)=-7.727, 

p=0.0001* 

t(732)=-3.593, 

p=0.0001* 

t(958)=-0.773, 

p=0.0001* 

t(591)=-9.071, 

p=0.0001* 
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Table 24. Statistical results for the t-tests based on the closeness centrality 

H02(c) compared the group interactions based on the closeness centrality. As a result, it 

appears that there were significant differences of group interactions among groups in terms of the 

closeness centrality. Further analysis showed that the rejection of H03(c) was caused by significant 

differences found between all the following 10 pairs of groups: group 1 and group 2 (t (593) = -

4.543, p = 0.0001), group 1 and group 3 (t (819) = -7.727, p = 0.0001), group 1 and group 4 (t 

(452) = 5.673, p = 0.0001), group 1 and group 5 (t (733) = -114.005, p = 0.0001), group 2 and 

group 3 (t (818) = -3.056, p = 0.0001), group 2 and group 4 (t (451) = 7.845, p = 0.0001), group 

2 and group 5 (t (732) = -3.593, p = 0.0001), group 3 and group 4 (t (677) = -8.9, p = 0.0001), 

group 3 and group 5 (t (958) = 0.773, p = 0.0001), and group 4 and group 5 (t (591) = -9.071, p = 

0.0001). 

4.2.5 Summary 

The first research question was concerned with how users communicated with each other 

within autism support groups on Facebook.  RQ1.1 examined the gender differences in the group 

interactions, while RQ1.2 investigated the differences in the group interactions across groups that 

belong to various categories. Table 25 summarizes the associated hypotheses, independent 

variables (IV), measurements of dependent variables (DV), statistical tests, and generated test 

results with respect of RQ 1. 

Through a series of inferential analyses, it was examined and determined that significant 

gender difference was found in the group interactions in terms of all three centrality measures 

(degree centrality, betweenness centrality, and closeness centrality). Male group members gained 

significantly more central positions in the group than the female group members did based on 

degree centrality and betweenness centrality, whereas females possessed significantly higher 

closeness centrality in the group. Based on the means and standard deviations of the centrality 
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measures, it suggests that more male group members tended to achieve important positions than 

female group members did, while male group members’ centralities were spread out over a large 

range of values. 

More specifically, within each group, gender differences were found in four investigated 

groups (Group 1, Group 2, Group 4, and Group 5) in terms of degree centrality and betweenness 

centrality. The exception was Group 3 which is a parents group, where female group members 

and male group members were not significantly different in the group interactions. The gender 

differences of closeness centrality were not revealed within each group. This implies that the 

abilities that could instantly communicate and interact with others without going through many 

intermediaries did not significantly differ between male group members and female group 

members.  

In addition, there were significant differences among the defined categories in terms of 

the interactions of group members with the same gender in autism support groups on Facebook 

based on all three centrality measures. 

Research 

questions 
Hypothesis IV 

Measurement 

of DV 
Test Result 

RQ1.1 

H01(a) Gender Degree centrality Modified t-test Reject 

H01(b) Gender 
Betweenness 

centrality 
Modified t-test Reject 

H01(c) Gender 
Closeness 

centrality 
Modified t-test Reject 

H02(a) Gender Degree centrality Modified t-test 

Group 1: Reject 

Group 2: Reject 

Group 3: Not reject 

Group 4: Reject 

Group 5: Reject 

H02(b) Gender 
Betweenness 

centrality 
Modified t-test 

Group 1: Reject 

Group 2: Reject 

Group 3: Not reject 

Group 4: Reject 

Group 5: Reject 

H02(c) Gender Closeness Modified t-test Group 1: Not reject 
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centrality Group 2: Not reject 

Group 3: Not reject 

Group 4: Not reject 

Group 5: Not reject 

RQ1.2 

H03(a) Category Degree centrality 
Modified 

ANOVA 
Reject 

H03(b) Category 
Betweenness 

centrality 

Modified 

ANOVA 
Reject 

H03(c) Category 
Closeness 

centrality 

Modified 

ANOVA 
Reject 

Table 25. Summary of the findings for RQ 1 

4.3 Findings for research questions 2 (RQ2) 

RQ2: Who are the influential users based on interactions in autism support groups on 

Facebook? 

As revealed in the above section, the five investigated autism support groups on 

Facebook displayed relatively high centralization scores. Group 2, Group 3, and Group 5 

especially presented the control communication style. The centralized networks of the five 

groups meant that a few group members in the groups had comparatively higher centrality scores 

than the others did. Group members with a high centrality score are the “stars” of the network, 

and can be seen as the most important or influential users due to the social benefits derive from 

their advantageous positions of information flow (Chang, 2009). The second research question 

aims to find out the influential users based on interactions within the autism support groups on 

Facebook. 

4.3.1 Influential users based on interactions 

RQ 2.1 is stated as “What are the characteristics of the influential users based on 

interactions in autism support groups on Facebook?” The five investigated autism support 

groups were analyzed individually. Influential users in each group were identified as group 

members who ranked top 20 in terms of all three centrality measures: degree centrality, 

betweenness centrality, and closeness centrality. 
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4.3.1.1. Influential users in Group 1 (Awareness group) 

Table 26 summarizes the top 20 group members in Group 1 with highest degree 

centrality, betweenness centrality, and closeness centrality. In Table 26, 11 members (in bold) 

occupied the important positions in the group in terms of all three centrality measures. Figure 18 

provides a full display of the interaction network of Group 1 based on degree centrality. In 

Figure 18, the larger the node, the higher the degree centrality value. The 11 influential users 

determined by all three measures are shown in bold in Figure 18. Apparently, user a41 and user 

a23 dominated the group communications in Group 1. Both user a41 and user a23 are male users. 

User a41 is a professional speaker with autism. He kept sharing a number of videos about autism 

patients into the group and received many reactions. User a23 is the father of a boy with autism. 

He asked questions about how to deal with specific situations which happened to his son, and 

obtained massive comments from other group members. Those comments provided not only 

information to code with the issue, but also supportive encouragement. 

No User Degree User Betweenness User Closeness 

1 a41 114 a41 24829.29 a41 0.444 

2 a23 51 a23 11243.77 a24 0.383 

3 a120 20 a120 6066.621 a90 0.374 

4 a55 19 a55 4293.329 a93 0.37 

5 a147 18 a147 4185 a258 0.368 

6 a133 18 a133 3989.75 a23 0.367 

7 a62 17 a62 3484.8 a85 0.367 

8 a4 17 a4 2886.248 a87 0.367 

9 a107 15 a107 2537.39 a120 0.366 

10 a93 14 a93 2510.548 a147 0.362 

11 a90 13 a90 1880.591 a286 0.36 

12 a19 12 a19 1709.752 a65 0.357 

13 a193 12 a193 1623.542 a154 0.351 

14 a85 12 a85 1354.013 a276 0.351 

15 a65 11 a65 1329.89 a270 0.35 

16 a24 10 a24 1264.077 a281 0.349 

17 a31 9 a31 1138 a284 0.349 
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18 a258 8 a258 989.731 a62 0.345 

19 a46 8 a46 984.211 a156 0.343 

20 a51 8 a51 912.299 a188 0.334 

Table 26. Top 20 group members in Group 1 

 

Figure 18. Visual display of the interaction network of Group 1 

4.3.1.2. Influential users in Group 2 (Treatment group) 

Table 27 lists the top 20 group members in Group 2 in terms of the degree centrality, 

betweenness centrality, and closeness centrality in the interaction network. Figure 19 provides a 

full display of the interaction network of Group 2 based on degree centrality. As shown in Table 

27, nine users (in bold) served as dominators in the group based on all three centrality measures. 

User B6 is one of the three administrators for the group. He appeared to share into the group 

loads of links directed to a variety of online information resources (e.g. news, academic articles, 

and blogs) regarding the impact of Electromagnetic Field (EMF) pollution on autism. His posts 

obtained loads of reactions and comments, and he was willing to reply to others’ comments. 
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No User Degree User Betweenness User Closeness 

1 B6 217 B6 35132.2 B6 0.771 

2 B31 45 B34 2388.541 B50 0.509 

3 B50 44 B29 1854.116 B31 0.501 

4 B177 30 B31 1844.405 B177 0.488 

5 B34 30 B50 1744.398 B34 0.486 

6 B91 30 B177 1351.945 B120 0.485 

7 B120 28 B73 1205.21 B91 0.485 

8 B131 28 B102 1172.987 B131 0.484 

9 B29 25 B120 1171.63 B29 0.481 

10 B18 24 B131 1064.066 B52 0.476 

11 B102 21 B118 979.986 B125 0.474 

12 B35 20 B125 918.804 B18 0.474 

13 B52 19 B116 751.441 B35 0.471 

14 B84 19 B89 705.784 B140 0.468 

15 B125 17 B114 656.324 B251 0.468 

16 B228 17 B12 645.643 B260 0.467 

17 B276 16 B86 606.816 B102 0.466 

18 B114 15 B180 589 B276 0.466 

19 B116 15 B190 449.735 B209 0.465 

20 B118 15 B195 444.786 B275 0.465 

Table 27. Top 20 group members in Group 2 
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Figure 19. Visual display of the interaction network of Group 2 

4.3.1.3. Influential users in Group 3 (Parents group) 

For Group 3, Table 28 lists the top 20 users in the interaction network in terms of the 

degree centrality, betweenness centrality, and closeness centrality. Figure 20 displays the 

interaction network of users in Group 2. The sizes of the nodes were determined based on degree 

centrality. As shown in Figure 20, 12 users (in bold) possessed more important positions in the 

group interaction network in terms of all three centrality measures. Among them, user E4 and 

user E52, who are two of the six group administrators, gained the most attentions. As group 

administrators, both user E4 and user E52 posted greeting messages to the group to welcome 

new group members. In addition to the welcome messages, user E4, a father with an autistic boy, 

also posted various cartoon and comic pictures describing encouraging ideas about autism. Those 

posts tended to attract more reactions from other group members. 

No User Degree User Betweenness User Closeness 

1 E4 297 E4 69222.52 E4 0.694 

2 E52 179 E52 30618.52 E52 0.593 

3 E39 120 E1 15429.94 E39 0.557 

4 E1 101 E41 11910.23 E1 0.515 

5 E41 85 E39 11761.39 E41 0.505 

6 E54 67 E54 10292.99 E92 0.487 

7 E37 53 E37 9330.109 E72 0.486 

8 E72 51 E72 7407.121 E70 0.485 

9 E70 49 E70 4841.837 E253 0.484 

10 E106 42 E29 2872.614 E54 0.484 

11 E253 40 E253 2680.231 E106 0.48 

12 E51 34 E124 2068.001 E14 0.478 

13 E207 32 E106 1827.591 E345 0.478 

14 E14 31 E104 1747.008 E51 0.478 

15 E92 31 E51 1658.832 E207 0.475 

16 E29 25 E286 1653.553 E137 0.472 

17 E137 25 E183 1561.214 E215 0.469 

18 E215 25 E14 1548.384 E373 0.467 

19 E231 22 E298 1484.252 E246 0.465 
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20 E148 22 E143 1133.76 E480 0.465 

Table 28. Top 20 group members in Group 3 

 

Figure 20. Visual display of the interaction network of Group 3 

4.3.1.4. Influential users in Group 4 (Research group) 

The top 20 group members with the highest value of degree centrality, betweenness 

centrality, and closeness centrality in the interaction network of Group 4 is summarized in Table 

29. Figure 21 shows the interaction network in Group 4. Eight users (in bold) who reached the 

high centralities based on all three measures are shown in bold in Table 29 and presented as red 

nodes in Figure 21. User C2 served as the “star” node in the group interaction network as shown 

in Figure 21. He is the administrator and the creator of the group, and also an occupational 

therapist. His posts primarily focused on the related research, workshops, conferences, training 

programs, etc. 
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No User Degree User Betweenness User Closeness 

1 C2 55 C2 7276.8 C2 0.301 

2 C11 9 C17 1436 C11 0.26 

3 C6 9 C11 1142.367 C80 0.254 

4 C29 8 C51 1104 C10 0.251 

5 C21 7 C6 1045.033 C39 0.251 

6 C80 7 C39 899.7 C122 0.25 

7 C51 5 C29 759 C17 0.25 

8 C108 5 C21 759 C63 0.25 

9 C122 5 C132 751.5 C29 0.249 

10 C39 4 C127 746 C132 0.248 

11 C127 4 C125 638 C86 0.248 

12 C12 4 C139 563.5 C127 0.246 

13 C63 4 C12 510.367 C62 0.246 

14 C4 4 C108 510 C88 0.245 

15 C8 4 C80 482.683 C53 0.244 

16 C129 4 C63 436.133 C75 0.244 

17 C88 4 C4 363 C45 0.243 

18 C9 4 C10 346.55 C87 0.243 

19 C86 4 C8 291.083 C96 0.242 

20 C17 3 C129 261 C1 0.241 

Table 29. Top 20 group members in Group 4 
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Figure 21. Visual display of the interaction network of Group 4 

4.3.1.5. Influential users in Group 5 (Local support group) 

Table 30 summarizes the top 20 group members in Group 5 with the highest values of 

degree centrality, betweenness centrality, and closeness centrality. Figure 22 presents the 

interaction network of Group 5. There were 13 members (in bold in Table 30 and colored with 

red in Figure 22) who are located at the core positions in the group based on all three centrality 

measures. User D14 is one of the six group administrators. He is the founder of the group and 

became the most central player in the group. He shared many posts from other Facebook groups, 

Pages, Communities, to the group. Some examples include a photo depicting “Proud parent of a 

shining star with autism” and a link entitled “Anxiety may alter processing of emotions in people 

with autism.” Being the father of a girl with autism, he posted messages and photos about the 

daily life of his daughter, such as her first day of school. The posts regarding his daughter gained 

a number of comments and reactions from other group members. 

No User Degree User Betweenness User Closeness 

1 D14 377 D14 87346.08 D14 0.874 

2 D15 52 D15 3675.677 D15 0.521 

3 D269 43 D33 3155.19 D269 0.509 

4 D65 43 D269 2752.35 D133 0.508 

5 D108 37 D108 2341.329 D65 0.508 

6 D17 33 D26 1690.805 D17 0.505 

7 D133 29 D279 1466.606 D93 0.501 

8 D93 29 D123 1256.636 D108 0.498 

9 D33 26 D65 1055.862 D33 0.495 

10 D123 23 D3 981.932 D123 0.494 

11 D301 20 D301 956.331 D268 0.49 

12 D279 18 D387 814.421 D301 0.49 

13 D3 18 D231 579.206 D58 0.49 

14 D26 17 D328 551.305 D26 0.486 

15 D268 16 D91 500.745 D97 0.484 

16 D91 15 D85 477.768 D279 0.483 

17 D97 15 D17 464.353 D3 0.483 
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18 D85 14 D30 461.403 D350 0.483 

19 D324 14 D324 457.262 D91 0.483 

20 D321 14 D59 446.186 D30 0.482 

Table 30. Top 20 group members in Group 5 

 

Figure 22. Visual display of the interaction network of Group 5 

4.3.2 Gender distribution of influential users 

The backgrounds of the influential users were investigated by visiting their Facebook 

profile pages. As a result, all of the 53 key actors were individual Facebook users. Figure 23 

shows the gender distribution of the influential users identified in each group. Among the five 

support groups, 32 out of the 53 influential users were female users while 21 were male users. 

Group 3 and Group 5 were dominated more by female opinion leaders, while the majority of the 

opinion leaders were male users in Group 4. 



147 

 

 

Figure 23. Gender distribution of influential users 

4.3.3 Interactions of influential users 

RQ2.2 is stated as “How do the influential users interact with others in autism support 

groups on Facebook?” RQ2.2 centers on the investigation of the interaction features of the 

influential users identified in the five support groups. Figure 24 shows the in-degree and out-

degree of the influential users. Among the 53 influential users identified by the three centrality 

measures, 31 of them reached higher in-degree values than out-degree values. This means they 

received the interactions more from other group members than they initiated interactions with 

others. User D14 from Group 5 was the most popular user, who was reached by 327 group 

members (74.7% of all involved group members). User E4 from Group 3 was the most motivated 

user, who actively gave responses to 162 group members (30.9% of all involved group members). 
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Figure 24. In-degree and out-degree of influential users 

Table 31 summarizes the detailed frequencies of each type of interactions the influential 

users performed in each group. Basically, influential users actively participated in group 

interactions. On average, the identified opinion leaders posted 7.2 original messages in the 

groups. Clearly, they were willing to share with group members and to originate discussions. For 

commenting activity, 37 out of the 53 (69.8%) influential users received more comments from 

others rather than commenting more on others’ posts. Similarly, 30 out of 53 (56.7%) opinion 

leaders attracted more reactions rather than making more reactions to others. Even for the 

influential users, sharing and tagging activities were rarely performed in the support groups. 

There were six influential users who shared messages in the group out. Among these users, user 

E1 in Group 3 shared 75 messages out of the group. Tagging was a little more common than 

sharing. There were 15 users who tagged others in their own posts. User B6 in Group 2 was 

tagged 31 times by other group members. 



149 

 

Group 
Influenti

al users 

Po

sts 

Com

ments 

Received 

comments 

Reac

tions 

Received 

reactions 

Sh

are 

Being 

shared 

T

ag 

Being 

tagged 

Group 1 

 

a41 30 0 15 0 198 0 4 0 0 

a23 2 36 99 0 25 0 0 2 4 

a120 0 4 0 36 3 0 0 0 0 

a147 0 0 0 37 0 0 0 0 0 

a62 0 1 0 24 0 0 0 0 0 

a93 12 6 6 9 19 0 0 1 0 

a90 2 8 2 32 29 0 0 0 0 

a85 2 2 3 13 8 0 0 0 0 

a65 1 8 8 4 3 0 0 0 0 

a24 1 11 3 3 5 0 0 0 0 

a258 0 10 3 3 5 0 0 0 0 

Group 2 

 

B6 40 129 217 52 565 0 29 9 31 

B31 6 27 30 16 65 15 1 0 6 

B50 1 37 14 96 5 0 0 14 4 

B177 8 13 12 19 25 0 0 1 0 

B34 3 3 4 5 45 0 2 0 0 

B120 2 25 20 45 20 0 1 0 0 

B131 7 12 9 14 30 0 0 0 0 

B29 1 10 10 6 20 0 1 4 6 

B125 1 0 0 13 7 0 0 0 0 

Group 3 

 

E4 31 95 220 608 1275 1 1 6 6 

E52 54 46 101 251 377 1 1 0 5 

E39 2 3 0 748 2 0 0 0 0 

E1 5 125 23 106 97 75 1 0 0 

E41 8 6 22 8 163 0 0 0 0 

E54 20 0 5 1 153 0 0 0 0 

E72 4 0 3 4 67 0 0 0 0 

E70 7 3 6 47 50 0 0 0 0 

E106 6 10 8 11 48 0 0 0 0 

E253 10 5 5 63 89 0 0 0 0 

E51 2 3 2 43 24 0 0 0 0 

E14 0 5 10 30 12 0 0 2 0 

Group 4 

 

C2 27 0 0 18 62 0 1 0 0 

C11 0 0 0 10 0 0 0 0 0 

C29 0 0 0 0 14 0 0 0 0 

C80 1 0 1 0 6 0 0 0 0 

C39 1 0 0 6 0 0 0 0 0 

C127 2 0 0 0 5 0 0 0 0 

C63 0 0 0 11 0 0 0 0 0 
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C17 0 0 0 3 0 0 0 0 0 

Group 5 

 

D14 49 140 279 560 2963 1 9 8 10 

D15 6 2 6 125 36 0 0 0 0 

D269 7 105 122 19 83 0 0 22 9 

D65 0 0 0 73 12 0 0 0 0 

D108 3 4 5 30 63 2 0 0 2 

D17 0 1 0 209 1 0 0 0 0 

D33 1 5 6 46 20 0 0 1 0 

D123 2 19 24 22 22 0 0 0 2 

D301 2 46 35 15 24 0 0 1 1 

D279 1 21 11 22 16 0 0 1 3 

D3 1 12 18 31 13 0 0 1 0 

D26 1 0 10 4 15 0 0 0 0 

D91 9 14 16 10 23 0 0 1 1 

Table 31. Frequencies of interactions performed by influential users 

Figure 25 represents the frequencies of original posts, outgoing interactions, and 

incoming interactions of the influential users in each group. Outgoing interactions represented 

users’ contributions to the groups, while incoming interactions represented the attentions users 

attracted. Across the five groups, there were one or two users in each group who gained 

tremendous attention from others, such as user a41 and user a23 in Group 1, user B6 and B31 in 

Group 2, user E4 and user E52 in Group 3, user C2 in Group 4, and user D4 in Group 5. 
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Figure 25. Frequency of outgoing and incoming interactions of influential users in each 

group 

A Kolmogorov-Smirnov test was conducted to examine the normality of the datasets 

before the parametric tests. In this case, the significance values for the Kolmogorov-Smirnov 

tests conducted was 0.000, suggesting the violation of the normality assumption in all the five 

groups. Therefore, in this study, a non-parametric correlation analysis was conducted to test the 

relationships among the frequncies of the orginal posts, the outgoing interactions, and the 

incoming interactions. The relationships among orginal post, the outgoing interaction, and the 
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incoming interactions (as measured by the frequency of each activity) were investigated using 

Spearman correlation coefficient. Cohen (1988) suggested the interpretation of the value of the 

correlation coefficient as the following guidelines: small (rho=0.10 to 0.29), medium (rho=0.30 

to 0.49), and large (rho=0.50 to 1.0). Table 32 shows the Spearman’s rho values between each 

pair of activities. In Table 32, the correlation values with two asterisks (**) are significant at the 

0.01 level (2-tailed). The test results demonstrated that significant large correlations were found 

betweem original post and incoming interaction. The frequencies of posts a user posted were 

strongly correlated with the interaction he/she received (rho=0.838). It suggests that users who 

posted more messages may acquire more attentions from others. 

Pearson Correlation Original post Outgoing interaction Incoming interaction 

Original post 1 0.253 0.838** 

Outgoing interaction 0.253 1 0.357** 

Incoming interaction 0.838** 0.357** 1 

Table 32. Correlations among frequencies of original post, outgoing interaction, and 

incoming interaction 

4.3.4 Summary 

To answer RQ 2, social network analysis was employed to identify the influential users 

based on interactions (or opinion leaders) in each Facebook support group, and to unveil the 

interaction characteristics of those users. Among the five investigated groups, 53 influential users 

who occupied top 20 important positions in each group were found based on three centrality 

measures: degree centrality, betweenness centrality, and closeness centrality. The background 

characteristics of the key actors were investigated by reviewing their posts and visiting their 

Facebook profile pages. All of the 53 key actors were individual Facebook users, 32 out of 

whom were female users while 21 were male users. The parents group (Group 3) and the local 

support group (Group 5) were dominated by female opinion leaders, while the majority of the 

opinion leaders were male users in the research group (Group 4).  
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The in-degree and out-degree, measures the number of incoming ties and outgoing ties, 

respectively, for an actor in a network. An actor who receives many ties is often said to be 

prominent, or to have high prestige (Hanneman & Riddle, 2005). With respect to the interactions 

with other group members, 31 out of 53 influential users reached higher in-degree values than 

out-degree values, which means they tended to receive relatively more attentions than they sent. 

That is, many other group members sought to react to the influential users, and this indicated 

their importance in the groups. 

The identified influential users, on average, posted 7.2 original messages in the groups. 

Significant correlations were found among the frequencies of the orginal post, the outgoing 

interaction, and the incoming interactions. It suggested that users who posted more messages 

may acquire more attentions and interact more with others. 

As can be seen in Figure 18-22, the group interactions among group members were 

dominated by a few most influential users who were identified as dominators (shown as the 

largest one or two nodes in the network). For Group 2, Group 4, and Group 5, only one star actor 

in each group appeared to be the dominator of the whole group, while two star actors were found 

in Group 1 and Group 3. As shown in Figure 25, the dominators in each group tended to have 

much higher incoming interactions, which meant they attracted tremendous attention from others. 

4.4 Findings for research questions 3 (RQ3) 

Discovering what people talked about in the autism support groups on Facebook is one of 

the major research questions of this study. RQ3 seeks to generate the discussion topics in each 

investigated autism support group on Facebook. The LDA model was implemented to discover 

the topics drawn from group posts and comments.  
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Modeling evaluation is of importance to the topic modeling methods. To identify the 

optimal number of topics as the K parameter, which is the number of topics in the model training 

process, interactive visualization methods (pyLDAvis package imported in Python) were 

employed to evaluate produced models. Using the methods applied in Ellmann, Oeser, Fucci, & 

Maalej (2017), the number of LDA topics was tuned until it reached a set of non-overlapping 

clusters that had sufficient distance between each other. The parameter of K was given for a 

series of descending numbers to train the model until the circles representing the topics became 

separated without any significant overlapping. For example, given the K parameter as five, three 

of the five resulted topics represented as the circles in the inter-topic distance map overlapped 

with each other (see the left part in Figure 26). When the value of K was lowered from five to 

four, the resulted four topics appeared to be split (see the right part in Figure 27), which means 

the generated topics were distinctive to each other. The author stopped searching for the optimal 

number of topics when the circles did not overlap anymore. The size of the circles represents the 

popularity of the topic within the overall set of topics (Ellmann et al., 2017). 

All five investigated groups were explored through the model training and evaluation 

process. The input datasets for each group consisted of posts and comments generated by group 

members. Each record (i.e. post or comment) was processed by text preparation procedures 

including tokenization, punctuation removal, lowercase correction, stop-word removal, 

stemming, and manual cleansing. 

After producing the appropriate LDA models, the revealed topics in each group were 

labeled manually according to the top terms in the topic-term distributions. Labelling topics 

makes it possible to interpret the corpus to see which concepts are prevalent (Saeidi, Hage, 

Khadka, & Jansen, 2015). The interpretation of a topic can be achieved by examining a ranked 
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list of the most probable terms in that topic (Sievert & Shirley, 2014). Therefore, the 

interpretation of the topics is subjective in nature. 

 

Figure 26. Topic visualization results given different values of k parameter 

4.4.1 Discussion topics of Group 1 (Awareness group) 

The modeling evaluation process indicated that four topics emerged from the posts and 

comments in Group 1. The inter-topic distance map of the four topics (represented by the four 

circles) is visualized in Figure 27. By using pyLDAvis package, each individual topic can be 

explored by clicking on its corresponding circle.  

After the text preparation process, there were 314 records and 1424 unique terms which 

remained in Group 1. Table 33 lists the top 20 terms and the associated probabilities of the terms 

to each topic. Results indicated that the trained LDA model was meaningful, where topics were 

interpretable based on their terms. The four topics emerged from the discussions in Group 1 were 

parenting, behavioral traits, diagnosis, and video sharing. The parenting topic was related to 

discussions on parents of autistic children sharing their children’s daily life. People shared their 

Overlapped topics 
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children’s accomplishments and sometimes expressed the frustrated issues which happened with 

their children. One example post was “My son [name] who has autism has always seen Woody 

and Buzz Lightyear as his best friends. When he saw them yesterday at Disney, it was a beautiful 

sight to see.” Along with talking about the parenting challenges, group members also shared their 

own behavior traits as patients or their kids’ behaviors. There was a post saying, “Can anyone 

tell me if this lining up of toys is a trait of Autism Spectrum Disorder?” This question raised a 

number of replies from other group members. Some comments expressed similar observations: 

“Our son who has autism LOVES to line up his toys.” Some stated other opinions: “Not in of 

itself.  It depends on the age of the child and how the child uses these toys and other toys in other 

play activities.” Since autism often appears in early ages of children, parents sometimes 

struggled with the diagnosis process: “We keep pushing but the paediatrician just won't commit 

to a diagnosis and it's been 2 1/2 to 3 years now.” Sometimes they received specific 

informational suggestions from other group members: “Please take your child to a 

developmental pediatrician with expertise in autism. There is an assessment tool called the 

ADOS that is very accurate in diagnosing ASD. If your regular Dr won't refer you, seek a 

referral through the school or a different Dr. It's important to have an accurate diagnosis so 

your son can receive the appropriate interventions ASAP.” Video sharing topics were 

contributed mainly by one of the group member, user a41, who was identified as the most 

influential user in Group 1. User a41 is a professional speaker with autism. He regularly 

uploaded videos regarding stories about real autism patients and their parents, basic knowledge 

about autism, how to communicate with people who have autism, school bulling problems for 

children with autism, etc. 
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Figure 27. Visualization of the topics in Group 1 

Topic 1 

Parenting 

Topic 2 

Behavioral traits 

Topic 3 

Diagnosis 

Topic 4 

Video sharing 

autism 0.02 autism 0.046 well 0.009 autism 0.014 

son 0.013 son 0.015 happy 0.009 get 0.013 

need 0.009 like 0.008 like 0.008 autist 0.01 

thank 0.008 autist 0.007 son 0.008 vlog 0.009 

children 0.007 vlog 0.007 look 0.008 go 0.008 

get 0.007 thing 0.006 need 0.007 like 0.007 

time 0.007 people 0.006 feel 0.007 son 0.007 

use 0.006 help 0.006 get 0.007 well 0.006 

thing 0.006 look 0.006 year 0.006 new 0.006 

keep 0.006 year 0.006 autism 0.006 great 0.006 

take 0.006 see 0.006 people 0.006 kid 0.006 

well 0.005 know 0.005 birthday 0.006 help 0.006 

child 0.005 toy 0.005 person 0.006 got 0.006 

ashley 0.005 love 0.004 sometime 0.006 thing 0.005 

see 0.005 disorder 0.004 know 0.005 time 0.005 

way 0.005 line 0.004 autist 0.005 work 0.005 

someone 0.005 life 0.004 parent 0.005 hope 0.005 

good 0.005 today 0.004 skill 0.005 want 0.005 

1. Parenting 

2. Behavioral traits 
3. Diagnosis 

4. Video 

sharing 
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great 0.005 say 0.004 pediatrician 0.005 come 0.005 

autist 0.005 differ 0.004 read 0.005 every 0.005 

Table 33. Top 20 terms and the associated probabilities of the terms to each topic in Group 

1 

4.4.2 Discussion topics of Group 2 (Treatment group) 

Text preparation procedures generated 259 records and 1566 terms in Group 2. Figure 28 

gives the global overview of the relationship between the topics based on the established topic-

document relationship. Similar to Figure 27, in Figure 28, the right panel reveals the most 

dominant topics in Group 2 while the left panel gives the global overview of the relationship 

between the topics based on the established topic-document relationship. Three distinct topics 

emerged from the discussions in Group 2, including EMF (Electromagnetic Field) pollution, 

home decoration, and wireless safety (as shown in Table 34). The main discussion topic was 

about the EMF pollution, since the group founder described this group as following: “Exploring 

the emerging link between autism and EMF/wireless, and helping ASD families to heal their 

children by providing information and resources for reducing their exposure.” On several 

occasions, group members shared their advocacy of reducing the EMF pollution, such as the 

following post: “URGENT!!! PLEASE Call Gov. Jerry Brown NOW @ (916) 445-2841 and ask 

him to VETO Senate Bill 649 — which would allow telecom corporations to install cell towers 

wherever they want — even in front of OUR homes and schools.” Another discussion theme was 

regarding home decorations that may reduce or enlarge the EMF pollution. For example, one of 

the group members raised a question about the bedroom painting: “Ok, so just making sure I'm 

reading all of the old threads correctly... EMF paint is a bad idea for a child's bedroom.” In 

addition, a number of posts and comments were related to smart meters, including how to install 

smart meter shields and specific products that can replace the smart meters. Wireless (wifi) 

networks are one type of sources of EMF according to the National Institute of Environmental 
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Health Sciences (“Electric & Magnetic Fields,” n.d.). People discussed concerns about a variety 

of wireless products in the group, such as “Does anyone still have a child using a Fitbit, Apple 

watch or location tracker? Those are all big wireless emitters and can really increase stimming 

in the kids.” 

 

Figure 28. Visualization of the topics in Group 2 

Topic 1 

EMF pollution 

Topic 2 

Home decoration 

Topic 3 

Wireless safety 

thank 0.011 meter 0.01 thank 0.014 

emf 0.009 smart 0.009 emf 0.012 

like 0.005 like 0.007 help 0.009 

use 0.005 emf 0.006 school 0.007 

school 0.005 live 0.006 meter 0.006 

comment 0.005 get 0.005 new 0.005 

make 0.005 cell 0.005 wireless 0.005 

next 0.004 area 0.005 radiate 0.005 

time 0.004 autism 0.005 use 0.005 

home 0.004 group 0.005 want 0.005 

work 0.004 make 0.004 folk 0.004 

1. EMF pollution 

3. Home decoration 

2. Wireless safety 



160 

 

feel 0.004 people 0.004 know 0.004 

meter 0.004 thank 0.004 share 0.004 

field 0.004 home 0.004 wire 0.004 

share 0.004 video 0.004 phone 0.004 

liability 0.003 tower 0.004 wifi 0.004 

health 0.003 solute 0.004 electric 0.004 

educate 0.003 great 0.004 group 0.004 

state 0.003 hope 0.004 thing 0.004 

write 0.003 find 0.004 like 0.004 

Table 34. Top 20 terms and the associated probabilities of the terms to each topic in Group 

2 

4.4.3 Discussion topics of Group 3 (Parents group) 

The resulted dataset for Group 3 consisted of 924 records and 2334 words. The five 

discussion topics drawn from Group 3 are shown in Figure 29, while the top terms associated 

with each topic are listed in Table 35. As a group created for parents, family support and 

parenting were not unexpected to be two of the major discussion themes. Group members shared 

the stories and experiences about their family members (e.g. brother, son, daughter) in the group, 

such as “I was brought to this group because I wanted to connect with people whose lives have 

been affected by autism.  The person in the photo is my baby brother….” People also brought up 

specific questions in being parents of autistic children, such as “R there any summer camp for my 

11 year old son with autism that in Memphis TN please I need help”. Another topic, experiences, 

included posts and comments regarding some videos shared by group members. These videos 

explained the way people on the autism spectrum saw the world and the social difficulties they 

experienced in real life. Another aspect of experiences shared in the group was related to school 

issues, such as “Morning -  the Bad News is we are on the countdown for the children going back 

to school and all the new dramas that will bring when the routine changes again and new 

teachers!” With respect to the fourth topic, education, people asked questions about how to 

educate autistic children, such as “I'm in need of a provider for my 17 year old girl. She has 
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learning problems and autism. I live in [name of city]. I need someone who can deal with autism. 

Please help.” The comments they received provided informational support with methods that 

might work for their kids, such as “As a person who has a hyperactive body type, I can 

emphatically state that heavy work, stretching, and music are all helpful in regulating me.  I 

have also seen and used many of these activities to support kids on the spectrum with success.” 

In addition to all the discussions regarding specific information needs, both group administrators 

and other group members posted welcome messages (the fifth topic), which showed the 

welcoming environment of the group to new members. 

 

Figure 29. Visualization of the topics in Group 3 

Topic 1 

Experiences 

Topic 2 

Family support 

Topic 3 

Welcome 

messages 

Topic 4 

Education 

Topic 5 

Parenting 

autism 0.026 thank 0.014 welcome 0.023 welcome 0.025 know 0.009 

thank 0.02 day 0.011 group 0.011 thank 0.014 like 0.008 

welcome 0.015 like 0.008 help 0.011 need 0.012 welcome 0.008 

1. Experiences 

2. Family support 

3. Welcome messages 

4. Education 

5. Parenting 
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people 0.012 know 0.007 good 0.01 son 0.011 parent 0.008 

son 0.011 year 0.006 thank 0.008 help 0.01 right 0.007 

get 0.01 make 0.006 get 0.008 autism 0.008 old 0.007 

help 0.01 people 0.006 want 0.008 child 0.008 year 0.007 

like 0.008 help 0.005 parent 0.008 look 0.007 son 0.007 

group 0.007 son 0.005 autism 0.008 group 0.006 group 0.007 

love 0.007 call 0.005 time 0.008 like 0.006 study 0.007 

school 0.006 good 0.005 go 0.008 see 0.006 good 0.007 

want 0.005 think 0.005 big 0.007 work 0.005 go 0.007 

video 0.005 time 0.005 like 0.006 share 0.005 get 0.007 

feel 0.005 brother 0.005 thing 0.006 want 0.005 want 0.006 

know 0.005 well 0.005 join 0.005 old 0.005 autism 0.006 

share 0.005 got 0.005 everyone 0.005 learn 0.005 comic 0.006 

kid 0.005 parent 0.004 share 0.005 day 0.005 thing 0.005 

need 0.005 family 0.004 day 0.005 right 0.004 child 0.005 

give 0.004 guy 0.004 know 0.005 kid 0.004 need 0.005 

say 0.004 hope 0.004 love 0.004 autist 0.004 u 0.004 

Table 35. Top 20 terms and the associated probabilities of the terms to each topic in Group 

3 

4.4.4 Discussion topics of Group 4 (Research group) 

There were 88 remaining records and 444 remaining terms in Group 4. As described on 

the group main page, Group 4 was described as “plays a leading role — locally, nationally and 

internationally — in developing an improved understanding of the biological and psychosocial 

basis of autism.” Figure 30 shows that three distinct topics emerged from Group 4, while Table 

36 lists the top 20 terms associated with each topic. The three major topics which appeared in 

Group 4 were related to the therapies, the trainings and workshops, and the events and visits. 

Group members talked about various types of therapy for autism patients, such as “Play therapy 

builds on the natural way that children learn about themselves and their relationships in the 

world around them. Through play therapy, children learn to communicate with others, express 

feelings, modify behaviour, develop problem-solving skills, and learn a variety of ways of 

relating to others.” Information regarding trainings and workshops was also shared in the group, 

such as “We are excited to announce that our new Online Certification Programme on Play 
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Therapy for Children with Special Needs will launch this August!” The trainings and workshops 

discussed in the group were not only for professional therapists but also for parents of autism 

kids. The most influential user in Group 4, user C2, contributed to the topic of events and visits. 

User C2 is the group administrator and serves as an occupational therapist. He often uploaded 

updated his professional visits at different places and events he and his colleagues arranged. One 

of the posts was “Today my first day #occupationaltherapy professional visit at #Mumbai went 

well heavy rains but parents managed to come for #OccupationalTherapy assessment and 

guidance.....” 

 

Figure 30. Visualization of the topics in Group 4 

Topic 1 

Therapies 

Topic 2 

Trainings and workshops 

Topic 3 

Events and visits 

therapy 0.022 share 0.017 autism 0.021 

learn 0.014 autism 0.013 children 0.018 

autism 0.014 parent 0.01 therapy 0.013 

children 0.012 program 0.01 karthikeyan 0.013 

1. Therapies 

3. Events and visits 

2. Trainings and workshops 
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center 0.011 special 0.008 visit 0.011 

toy 0.011 respect 0.008 minister 0.011 

occupation 0.011 workshop 0.008 day 0.011 

seat 0.011 early 0.008 tamilnadu 0.011 

visit 0.011 id 0.008 special 0.011 

therapist 0.009 like 0.008 parent 0.011 

special 0.009 dear 0.007 therapist 0.011 

today 0.009 learn 0.006 occupationaltherapi 0.01 

play 0.009 aware 0.006 occupation 0.008 

online 0.009 friend 0.006 iotg 0.008 

support 0.009 educate 0.006 participate 0.008 

good 0.006 day 0.006 sai 0.008 

time 0.006 child 0.006 dr 0.008 

experience 0.006 sensory 0.006 respect 0.008 

make 0.006 research 0.006 expense 0.006 

early 0.006 children 0.006 social 0.006 

Table 36. Top 20 terms and the associated probabilities of the terms to each topic in Group 

4 

4.4.5 Discussion topics of Group 5 (Local support group) 

The input dataset for the LDA model for Group 5 consisted of 756 records and 2001 

words. The posts and comments in Group 5 focused on four topics as shown in Figure 31. These 

were greetings, support, conferences, and help requests. The theme of each topic was labeled 

based on the top words listed in Table 37. The word “Mia” appeared to be among the top words 

for both the first and the third topic. “MM” is the name of the group founder’s daughter who has 

autism. A pseudonym was used to protect the privacy of subject. The group founder, user D14, 

was the most central person in the group interaction network. He posted photos and daily updates 

about his daughter. Those posts usually received compliments like “She is so beautiful love u mia 

grace!!!” As shown in Figure 31, the first two topics were comparatively close to each other. 

People posted greetings on special days such as on Mother’s Day and someone’ birthday. Such 

messages included “Love this poem! Happy Mother’s Day to all you wonderful moms! You work 

very hard, I hope your day is as wonderful as you are!” and “Happy Birthday! You guys are a 
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beautiful couple, and have a beautiful family!” Other support information were expressed as “Pm 

me! I'm happy to help!!!” The third discussion topic was related to an adult autism conference. 

One of the group members kept posting information regarding the conference, such as the call 

for presentation flyers, the conference agendas, and the photos of conference presentations. 

Another discussion topic was questions and answers regarding specific help inquiries, such as “I 

am new to this group. I have an amazing 3 year old son who has recently been given an ASD 

diagnosis… So I ask, what has been other mom's or family's experience with obtaining SSI 

Disability benefits?” Such specific help request tended to receive informational replies from 

others, such as “I filed with copy of diagnosis and 4 weeks later start getting payments on child” 

 

Figure 31. Visualization of the topics in Group 5 

Topic 1 

Greetings 

Topic 2 

Support 

Topic 3 

Conferences 

Topic 4 

Help requests 

love 0.016 get 0.014 autism 0.015 autism 0.021 

autism 0.013 thank 0.013 get 0.015 help 0.011 

go 0.009 like 0.013 try 0.008 son 0.008 

1. Greetings 

2. Support 

3. Conferences 

4. Help requests 
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work 0.008 autism 0.011 take 0.008 autist 0.007 

like 0.008 go 0.009 true 0.008 make 0.006 

get 0.008 know 0.008 love 0.007 child 0.006 

mia 0.008 son 0.007 conference 0.006 share 0.006 

help 0.007 help 0.007 MM 0.006 love 0.006 

great 0.007 month 0.006 adult 0.006 year 0.006 

child 0.006 sure 0.006 thank 0.005 try 0.006 

day 0.006 need 0.006 day 0.005 give 0.005 

know 0.006 time 0.006 think 0.005 get 0.005 

good 0.006 everyone 0.006 that 0.005 old 0.005 

take 0.006 beauty 0.006 kid 0.005 new 0.005 

need 0.005 look 0.005 keep 0.004 family 0.005 

thank 0.005 great 0.005 always 0.004 free 0.005 

want 0.005 happy 0.005 he 0.004 people 0.005 

time 0.005 make 0.005 need 0.004 hope 0.004 

children 0.005 year 0.005 go 0.004 asd 0.004 

start 0.004 work 0.005 know 0.004 he 0.004 

Table 37. Top 20 terms and the associated probabilities of the terms to each topic in Group 

5 

4.4.6 Summary 

Inspired by Griffiths and Steyvers (2004), the LDA model was implemented to discover 

the topics drawn from group posts and comments. An interactive visualization method 

(pyLDAvis) was employed to evaluate produced models and visualize the inter-topic distance 

maps. As a result, distinct discussion topics were summarized and labeled in each group. The 

discussion topics in Group 1 included parenting, behavioral traits, diagnosis, and video sharing. 

The three topics which emerged from Group 2 were EMF pollution, home decoration, and 

wireless safety. Group members talked about the following five topics in Group 3: experiences, 

family support, welcome messages, education, and parenting. In Group 4, the three major topics 

which appeared were related to therapies, trainings and workshops, and events and visits. Posts 

and comments in Group 5 mainly focused on greetings, support, conferences, and help requests. 

Each group had certain distinctive discussion topics that related to the purposes of the groups. 

Parenting was a common theme in Group 1 and Group 3. 
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As presented above, user a41 in Group 1 contributed most in the discussion topic of video 

sharing. User C2 in Group 4 shared most of the posts related to the topic of events and visits. 

Part of the posts and comments of the greetings topic and the support topic were generated by 

user D14 in Group 5. Based on the group interactions, the above three users served as the 

influential users in their respective group. This suggests that influential users took significant 

roles in controlling or leading the discussions in their groups. 

In addition, several time-sensitive topics appeared during the group discussions. Group 

members greeted about Mother’s Day during May. For example, group members in Group 5 

posted “Hope all you mothers have a blessed mother's day.” 

4.5 Findings for research questions 4 (RQ4) 

RQ4: What are the sentiment characteristics of discussions in autism support groups on 

Facebook? 

The last research question aims to unveil the sentiment characteristics of the group 

discussions which appeared within autism support groups on Facebook. RQ 4.1 and RQ 4.2, 

respectively, examined the gender differences and group differences expressed by group 

members. 

4.5.1 RQ 4.1 & Hypothesis group 3 

RQ 4.1 was answered by hypothesis group 3, which consisted of a series of hypotheses 

and sub-hypotheses. To test the gender differences of the sentiment characteristics, a series of 

inferential analyses were applied. The parametric tests (e.g. t-tests, analysis of variance) require 

assumptions that  the shape of the population distribution is  normally distributed, while non-

parametric tests do not include assumptions about the underlying population distribution (Pallant 

2013).  
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H04 stated that there are no significant differences between male group members and 

female group members in terms of the sentiment in autism support groups on Facebook. A 

Kolmogorov-Smirnov test was conducted to examine the normality of the datasets before 

proceeding with the parametric tests. A non-significant result (significance value of more than 

.05) indicates normality (Pallant, 2010). In this case, the significance values for the Kolmogorov-

Smirnov tests conducted in each group were 0.000 (Group 1), 0.000 (Group 2), 0.000 (Group 3), 

0.001 (Group 4), and 0.000 (Group 5), suggesting violation of the assumption of normality in all 

five groups. Therefore, in this study, a series of non-parametric tests (e.g. Mann-Whitney U test, 

Kruskal-Wallis H test) were performed to examine the null hypotheses.  

The significance level (α) for all tests was equal to 0.05. If the resultant p-value of a null 

hypothesis test was smaller than 0.05, the null hypothesis was rejected. Otherwise, the null 

hypothesis failed to be rejected. In the Kruskal-Wallis H test, the results included both χ2-value 

and p-value. The χ2-value is presented as χ2(df, n) where the df stands for the degrees of freedom 

and the n stands for the sample size. Effect size indicates the influence of the independent 

variable (Pallant, 2013). In this study, the effect size statistic was reported as the r- value, and the 

median was reported as the Md value. 

The Mann-Whitney U test is used to test for differences between two independent groups 

on a continuous measure (Pallant, 2010). A series of Mann-Whitney U tests was conducted to 

test the hypotheses under hypothesis group 3. For H04, Mann-Whitney U-value was found to be 

statistically significant (U= 664450.5, Z= -2.056, p=0.04<0.05). The resultant effect size r was 

0.04, indicating a very small effect size using Cohen (1988) criteria of 0.1=small effect, 

0.3=medium effect, 0.5=large effect (Pallant 2013). It suggests that male group members and 
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female group members expressed significantly different sentiment in the autism support groups 

on Facebook, but the effect size would be considered very small. 

Figure 32 displays the boxplots of the sentiment scores for the male group members and 

female group members. It compared the medians and spread of the data by the gender groups. In 

Figure 32, each box plot represents a gender (i.e. male and female). The crosses correspond to 

the means. The lower and upper limits of the box are the first and third quartiles, respectively. 

Points above or below the whiskers’ upper and lower bounds may be considered as outliers. The 

median score of the sentiment presented by females (Md=0.201) was higher than by males 

(MD=0.148). The spread of the sentiment scores for males and females were similar. As can be 

seen from Figure 32, more outliers appeared for females. It suggested that the females tended to 

convey emotions that were more intensive. Examples of very positive messages posted by 

women included “I would really love to connect locally!” and “That is so very true... We 

shouldn't give up”. The intensively negative posts included “This is ridiculous!!” 

 

Figure 32. Boxplots of the sentiment scores for males and females 
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Table 38 shows the statistical results of the Mann-Whitney U tests of the gender 

differences in each group. As a result, all five sub-hypotheses (i.e. H05(a), H05(b), H05(c), H05(d), 

H05(e)) failed to be rejected. It suggests that there were no significant gender differences in 

sentiment characteristics were found in all five groups. 

 

 Group 1 Group 2 Group 3 Group 4 Group 5 

Mann-Whitney U 11076.5 57420 74657 573 64268.5 

Z -1.002 -1.729 -0.418 -0.85 -0.081 

p-value 0.317 0.084 0.676 0.395 0.936 

r 0.057 0.066 0.013 0.098 0.003 

Table 38. Statistical results for H05 

Figure 33 displays the means and standard deviations of the sentiment scores of the male 

group members and female group members in each group. The means of sentiment scores of 

males and females in all groups were slightly above zero, which means the average sentiment 

appeared to be positive in each group. Female group members and male group members reached 

similar sentiment scores in Group 1, Group 3, and Group 5. Female group members expressed 

lower sentiment scores in Group 2 than male group members did, while female group members 

were more positive in Group 4 than male group members were. The standard deviations showed 

that the male group members in Group 1 and Group 5 addressed emotions that varied more than 

in the other groups. The variations of the emotions expressed by the female group members were 

quite close in all groups. Group 2 focused on the discussions of the treatment. In this group, 

female group members sometimes expressed extremely negative emotions such as “Very 

scary!!” and “Holy shit!”. In Group 4, which was created for research focus, 24 out of 26 

messages posted by female group members were positive or neutral. Most of the females 

expressed enthusiasm to share the workshop information and videos with other group members, 
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such as “This workshop focuses on some of the most widely used IQ Assessments used in field of 

Child & Clinical Psychology” and “Hello friends I'd like to share this amazing story with you.” 

 

Figure 33. Distributions of means and standard deviations of sentiment scores of males and 

females in each group 

4.5.2 RQ 4.2 & Hypothesis group 4 

RQ4.2 addresses the following: “Are there any significant differences among the defined 

categories in terms of sentiment characteristics in autism support groups on Facebook?” It 

concerns the comparison of sentiment characteristics in autism support groups that focused on 

different topics.  

Hypothesis group 4 consisted of three hypotheses H06, H07(a), and H07(b). In contrast to 

hypothesis group 3, the independent variable for each hypothesis under hypothesis group 4 was 

the defined category of the group. A series of non-parametric Kruskal-Wallis H tests were 

conducted to examine the three hypotheses. 

The results of the Kruskal-Wallis H test revealed that there were statistically significant 

differences among the five groups in terms of the expressed sentiment (χ2 (4, n=2798)= 47.302, 

p=0.000<0.05). In other words, hypothesis H06 was rejected. This suggests that the sentiment 
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which appeared in each group differed significantly. Table 39 summarizes the number of records 

and the medians of the sentiment scores in each group. 

 Group 1 Group 2 Group 3 Group 4 Group 5 

N 310 695 942 76 775 

Median 0.008 0.000 0.13 0.368 0.000 

Table 39. Descriptive statistics of the group sentiment comparisons 

To find out which of the groups were significantly different from one another, 

statistically speaking, a Dunn-Bonferroni test between pairs of groups (e.g. between Group 1 and 

Group 2) was carried out as a post-hoc test. Table 40 shows the statistical results for the Dunn-

Bonferroni test. In Table 40, the p-values smaller than the significance level (0.05) are in bold 

and have the asterisks. The results indicate that a very strong evidence of sentiment differences 

occurred between the following pairs of groups: Group 2 vs. Group 3, Group 2 vs. Group 4, 

Group 2 vs. Group 5, and Group 1 vs. Group 4. There was no evidence of a significant difference 

between the other pairs. 

 Group 1 Group 2 Group 3 Group 4 Group 5 

Group 1  0.178 0.461 0.045* 1.000 

Group 2 0.178  0.000* 0.000* 0.000* 

Group 3 0.461 0.000*  0.508 1.000 

Group 4 0.045* 0.000* 0.508  0.268 

Group 5 1.000 0.000* 1.000 0.268  

Table 40. Statistical results for the Dunn-Bonferroni test for H06 

Figure 34 displays the boxplot of the sentiment scores in each group. It compares the 

medians and spread of the data by group. The central horizontal bar within a box is the median. 

Posts and comments in Group 4 appear to have higher median sentiment scores. The sentiment 

scores in Group 2 were less spread out than the other groups. This suggested that 50% of the 

messages which appear in the treatment group fall into a smaller sentiment range (0 to 0.366). 
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Figure 34. Boxplot of the sentiment scores in each group 

H07 was proposed to examine if there are significant differences among the defined 

categories in terms of the sentiment of group members with the same gender in autism support 

groups on Facebook. H07 was then divided into two associated sub-hypotheses based on the 

gender of group members (i.e. male and female). The results of the two Kruskal-Wallis H tests 

revealed that there were statistically significant differences across the five groups in terms of the 

sentiment expressed by males (χ2 (4, n=986)= 36.504, p=0.000<0.05) and by females (χ2 (4, 

n=1821)= 15.006, p=0.005<0.05). In other words, hypothesis H07(a) and H07(b) were rejected. It 

suggests that both male group members and female group members expressed significantly 

different sentiment in different groups. Table 41 summarizes the number of records and the 

medians of the sentiment scores generated by male and females in each group. 

  Group 1 Group 2 Group 3 Group 4 Group 5 

Male 
N 137 350 207 50 242 

Median 0.200 0.000 0.164 0.385 0.000 

Female 
N 173 345 735 26 533 

Median 0.000 0.000 0.105 0.251 0.000 

Table 41. Descriptive statistics of the group sentiment comparisons for males and females 
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Two Dunn-Bonferroni tests (one for males and one for females) between pairs of groups 

were then carried out. Table 42 shows the statistical results for the two post-hoc tests. In Table 

42, the p-values smaller than the significance level (0.05) are in bold and have the asterisks. 

There was strong evidence of differences between the following pairs of male groups: Group 1 

vs. Group 2, Group 2 vs. Group 3, Group 2 vs. Group 4, and Group 2 vs. Group 5. In terms of the 

content generated by female group members, the emotions varied significantly in Group 2 and 

Group 3. 

  Group 1 Group 2 Group 3 Group 4 Group 5 

Male 

Group 1  0.032* 1.000 0.266 1.000 

Group 2 0.032*  0.000* 0.000* 0.001* 

Group 3 1.000 0.000*  0.834 1.000 

Group 4 0.266 0.000* 0.834  0.344 

Group 5 1.000 0.001* 1.000 0.344  

Female 

Group 1  1.000 0.398 1.000 0.954 

Group 2 1.000  0.008* 0.940 0.057 

Group 3 0.398 0.008*  1.000 1.000 

Group 4 1.000 0.940 1.000  1.000 

Group 5 0.954 0.057 1.000 1.000  

Table 42. Statistical results for the Dunn-Bonferroni tests for H07(a) and H07(b) 

Figure 35 displays the boxplots of the sentiment score distributions for male group 

members and female group members across the five groups. For males, the median of the 

sentiment scores in Group 2 was lower than those in Group 1, Group 3, and Group 4. In addition, 

the spread of the sentiment scores in Group 2 was smaller than all the other four groups. In the 

treatment group, the male group members were more likely to convey intensive emotions than 

they did in the other groups. Sample messages included “Hey guys, thanks for letting me join, 

wrote this article and thought youd all appreciate it !!” and “Blocking by using 2 reflectors - 

stupid!” For the female group members, the median scores of the sentiment were similar in 



175 

 

Group 1, Group 2, and Group 5, while the spread of the sentiment scores was slightly smaller for 

Group 2 than for the other four groups. 

 

Figure 35. Boxplots of the sentiment score distributions for males and females 

4.5.3 Summary 

The fourth research question concerned the sentiment expressed within autism support 

groups on Facebook. RQ4.1 examined the gender differences in the presented sentiment, while 

RQ4.2 investigated the differences in the presented sentiment across groups that belong to 

various categories. Table 43 summarizes the associated hypotheses, independent variables (IV), 

measurements of dependent variables (DV), statistical tests, and generated test results with 

respect of RQ 4. 

Research 

questions 
Hypothesis IV 

Measurement of 

DV 
Test Result 

RQ4.1 

H04 Gender Sentiment scores Mann-Whitney U test Reject 

H05(a) Gender Sentiment scores Mann-Whitney U test Not reject 

H05(b) Gender Sentiment scores Mann-Whitney U test Not reject 

H05(c) Gender Sentiment scores Mann-Whitney U test Not reject 

H05(d) Gender Sentiment scores Mann-Whitney U test Not reject 

H05(e) Gender Sentiment scores Mann-Whitney U test Not reject 

RQ4.2 

H06 Category Sentiment scores Kruskal-Wallis H test Reject 

H07(a) Category Sentiment scores Kruskal-Wallis H test Reject 

H07(b) Category Sentiment scores Kruskal-Wallis H test Reject 

Table 43. Summary of the findings for RQ 4 
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Through a series of inferential analyses, it was revealed that female group members 

tended to express more positive emotions in the group discussions. In addition, it was found that 

the female group members were more likely to convey intensive emotions in their posts. 

However, no significant gender differences in the expressed sentiment were found in all five 

groups. Interestingly, female group members expressed more negative emotions in the treatment 

group than male group members did, while male group members were more positive in the 

research group than female group members were. 

Within the groups focused on various topics, the group members appeared to express 

significantly different sentiment. Emotions that were more negative occurred in the treatment 

group. Males especially seemed to address significantly more negative opinions in the treatment 

group. 

4.6 Results summary 

Research questions 1 and 4 were addressed by a series of statistical analyses. Table 44 

summarizes the statistical findings for RQ 1 and RQ4. 

Research questions Sub-questions Hypothesis Results 

RQ1: How do users 

interact with each 

other in autism 

support groups on 

Facebook based on 

social network 

analysis? 

RQ1.1: Are there any differences 

between male group members and 

female group members in terms of 

interactions in autism support groups 

on Facebook? 

H01(a) 

H01(b) 

H01(c) 

H02(a) 

 

 

 

 

H02(b) 

 

 

 

 

H02(c) 

Reject 

Reject 

Reject 

Group 1: Reject 

Group 2: Reject 

Group 3: Not reject 

Group 4: Reject 

Group 5: Reject 

Group 1: Reject 

Group 2: Reject 

Group 3: Not reject 

Group 4: Reject 

Group 5: Reject 

Group 1: Not reject 

Group 2: Not reject 

Group 3: Not reject 

Group 4: Not reject 

Group 5: Not reject 

RQ1.2: Are there any differences H03(a) Reject 
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among the defined categories in terms 

of online interactions in autism 

support groups on Facebook? 

H03(b) 

H03(c) 

Reject 

Reject 

RQ4: What are the 

sentiment 

characteristics of 

discussions in autism 

support groups on 

Facebook? 

RQ4.1: Are there any differences 

between male group members and 

female group members in each of the 

defined categories in terms of 

sentiment characteristics in autism 

support groups on Facebook? 

H04 

H05(a) 

H05(b) 

H05(c) 

H05(d) 

H05(e) 

Reject 

Not reject 

Not reject 

Not reject 

Not reject 

Not reject 

RQ4.2: Are there any differences 

among the defined categories in terms 

of sentiment characteristics in autism 

support groups on Facebook? 

H06 

H07(a) 

H07(b) 

Reject 

Reject 

Reject 

Table 44. Statistical findings for RQ 1 and RQ4 

RQ2 and RQ3 discovered the influential users based on interactions and the discussion 

topics within the autism support groups on Facebook. To answer RQ2, social network analysis 

was employed to identify the influential users based on interactions in each Facebook autism 

support group, and to unveil the interaction characteristics of those users. As a result, 53 

influential users were identified. They occupied the top 20 important positions in each group 

based on three centrality measures: degree centrality, betweenness centrality, and closeness 

centrality. It was noticed that group members tended to react more to the influential users. RQ3 

was answered by applying Latent Dirichlet Allocation (LDA) to the posts and comments 

appearing in the groups. As a result, the distinct discussion topics were revealed within each 

sampled group. 
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Chapter 5. Discussion and Implications 

The following paragraphs include a discussion of unique, irregular, and unexpected 

findings, and a comparison of this study’s findings with previous studies. In addition, the 

theoretical and practical implications of the findings from this study are discussed. 

5.1 Discussion 

5.1.1 Interactions in online health communities 

In comparison to face-to-face groups, the “Reaction” or “Like” buttons are exclusive to 

the Facebook groups. As shown in Figure 17, giving reactions to posts, which includes the like 

function, were the most popular interaction behaviors in comparison to commenting, sharing out, 

and tagging in this study. The prevalence of giving reactions (or likes) was also found in a 

Facebook stutter support group where the number of likes was three times the number of replies. 

Such quantitative finding can be confirmed by the qualitative findings from a prior study (Raj, 

2015). Various participants involved in a Facebook stutter support group explained that they 

believed the “Like” button’s role within the Facebook group was a form of support (Raj, 2015). 

Among the five investigated groups, there were 53 influential users occupying the top 20 

important positions in each group in terms of three centrality measures: degree centrality, 

betweenness centrality, and closeness centrality. A correlation analysis was conducted to 

examine if there were significant correlations among the following nine detailed interaction 

behaviors: post, comment, received comment (re_comment), reaction, received reaction 

(re_reaction), share, being shared (re_share), tag, and being tagged (re_tag). The relationships 

among different activities were investigated using Spearman correlation coefficient. As 

mentioned before, Cohen (1988) suggested the interpretation of the value of the correlation 

coefficient as the following guidelines: small (rho=0.10 to 0.29), medium (rho=0.30 to 0.49), 
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and large (rho=0.50 to 1.0). Table 45 shows the Spearman’s rho-values between each pair of 

activities. In Table 45, the correlation values with two asterisks (**) are significant at the 0.01 

level (2-tailed). The test results demonstrate that significant medium to large correlations were 

found between the post activity and all four types of received activities: received comment 

(rho=.589), received reaction (rho=.869), being shared (rho=.488), and being tagged (rho=.351). 

The frequencies of posts that a user posted were significantly correlated with the interactions 

he/she received. Moreover, significant large correlations were also revealed between the 

following three pairs of behaviors: comment and received comment (rho=.832), share and being 

shared (rho=.520), and tag and being tagged (rho=.647). That is, the more a group member 

engaged in the group, the more support he/she obtained from the group. This finding is 

consistent with previous studies of other health-related online support groups. In online support 

groups for distressed adolescents, the number of reply messages posted and the number of 

messages received by participants were significantly correlated (Barak Azy & Dolev-Cohen 

Michal, 2007). 

Pearson 

Correlation 
Post 

Com

ment 

Re_co

mment 

Reacti

on 

Re_re

action 
Share Re_share Tag 

Re_ta

g 

Post 1 .410** .589** .167 .869** .372** .488** .199 .351** 

Comment .410** 1 .832** .388** .455** .418** .347** .613** .685** 

Re_comment .589** .832** 1 .202 .673** .410** .444** .603** .678** 

Reaction .167 .388** .202 1 .199 .371** .203 .199 .235 

Re_reaction .869** .455** .673** .199 1 .469** .543** .222* .419** 

Share .372** .418** .410** .371** .469** 1 .520** .057 .474** 

Re_share .488** .347* .444** .203 .543** .520** 1 .166 .407** 

Tag .199 .613** .603** .199 .222 .057 .166 1 .647** 

Re_tag .351** .685** .678** .235 .419** .474** .407** .647** 1 

Table 45. Correlation results of detailed interaction behaviors 

In addition to the correlations between the interaction behaviors, the findings of previous 

studies showed that active involvement in a support group was conversely related to a 

participants’ later level of distress, which means the more involved a participant, the lower her or 
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his distress level becomes over time (Barak Azy & Dolev-Cohen Michal, 2007). Along with 

previous research, it suggests that group members should be encouraged to post more messages 

in the online communities, since it might result in gaining more replies and feeling better. 

5.1.2 Interaction networks of online health communities 

Network density relates directly to the availability of social support (Marsden, 1987). 

Table 46 summarizes the network measures from previous studies (Chang, 2009) and the present 

study. Compared to the network measures reported in six previous studies, the five investigated 

autism support groups on Facebook in this study were comparative large but sparsely 

interconnected. It has been suggested in the traditional social support literature that the density of 

the network  is dependent on the types of social support provided (Chang, 2009). Wellman 

(1992) argued that greater service for chronical diseases tended to be more widely offered in 

high-density networks, whereas more companionship was offered in low-density networks. 

Chang (2009) claimed later that emotional aid was forthcoming in low-density networks. Thus, 

in this study the network measures show that more companionship and emotional support were 

provided in the investigated autism support groups on Facebook than other service. 

Studies Support group 
Sampling 

period 
Size 

Number of 

messages 
Density 

Bjornsdottir, 

1999 
Heart disease 4 weeks 30 69 .08 

Braithwaite et al., 

1999 
Disabilities 1 month 42 1,472 .85 

Coulson, 2005 
Irritable bowel 

syndrome 
8 months 132 572 .03 

Eichhorn, 2008 Eating disorder Longitudinal N/A 490 N/A 

Galegher et al., 

1998 

Arthritis 3 weeks 119 200 .01 

Attention deficit 3 weeks 274 5,520 .07 

Depression 3 weeks 733 39,864 .07 

Chang, 2009 Psychosis 30 months 344 689 0.005 

Present study 

Autism group 1 

(Awareness group) 
6 months 325 314 0.006 

Autism group 2 6 months 301 259 0.017 
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(Treatment group) 

Autism group 3 

 (Parents group) 
6 months 525 924 0.011 

Autism group 4 

(Research group) 
6 months 184 88 0.014 

Autism group 5  

(Local support group) 
6 months 438 756 0.009 

Table 46. Summary of network measures from previous studies and present study 

5.1.3 Influential users in support groups on Facebook 

As shown in Figures 18 to 22, the five investigated autism support groups were highly 

centralized. This network pattern was also found with the communication patterns within a 

psychosis social support group (Chang, 2009). It was reported that about 1% of group members 

within the online psychosis support group contributed almost 20% of the overall communication 

(Chang, 2009).  

Previous studies have explored the functions and emergence of the influential users in a 

network. Bambina (2007) revealed that a star user played the key function in linking together a 

highly-distributed network in an online cancer discussion forum. In this study, 53 out of 1773 

group members (3%) were identified as influential users across the five autism groups. These 

identified influential users dominated the group communications and attracted more attentions 

from other group members. Across Group 2, Group 3, Group 4, and Group 5, the most central 

users in each group appeared to be the group administrators. It demonstrated that group 

administrators tended to have intensive impact on other group members.  

Raj (2015) reported that one of the co-leaders of the stuttering support group regularly 

kept posting new stuttering-related questions to the Facebook group. It turned out that many of 

these questions generated replies and “Like” button clicks. In this study, it was also found that 

influential users attracted many attentions from other group members. It might suggest that 
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questions posted by the influential users might trigger more discussions and help other group 

members engage in the group. 

5.1.4 Gender difference in Facebook group behaviors 

Gender differences were unveiled from previous studies in other support groups on 

Facebook. A high male prevalence was found in groups for concussion (Ahmed, Sullivan, 

Schneiders, & McCrory, 2010), while a high female prevalence was found in self-harm groups 

(Niwa & Mandrusiak, 2012), pre-term infants groups (Thoren, Metze, Bührer, & Garten, 2013), 

and thoracic outlet syndrome group (Walker, 2014). In this study, the prevalence of female group 

members was found among the five investigated autism support groups. It confirmed findings 

from previous research (Yang, 2015) that females were better prepared to seek, acquire, and 

offer support than their male counterparts. 

With respect to people with autism, Baio (2012) reported that the prevalence of autism 

among males was significantly (p<0.01) higher than among females. In this study, it was noticed 

that although more female group members engaged in the group interactions in the autism 

support groups, male group members had significantly more central positions in the groups than 

the female group member did in terms of degree centrality and betweenness centrality. Given the 

fact that autism affects more males (Baio, 2012), male users can potentially benefit from online 

communication by increasing social connectedness and well-being (Valkenburg & Peter, 2009; 

Ko, 2014).  

Significant gender differences were found in four out of the five investigated groups in 

terms of degree centrality and betweenness centrality in this study. This finding was consistent 

with conclusions from Ko (2014), which showed that males and females with autism socialized 

differently on social media. 
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5.1.5 Social and informational exchange in support groups on Facebook 

Through interviews with 14 participants who used support groups on Facebook for 

weight loss and diabetes management, Newman, Lauterbach, Munson, Resnick, and Morris 

(2011) unveiled that participants used Facebook support groups in pursuit of emotional support, 

motivation, accountability, and advice. Sugimoto (2014) identified informational and emotional 

supports as the common type of support exchanged in depression online support groups. 

Sugimoto (2014) then summarized findings from previous studies that informational and 

emotional supports occupied a significant proportion of the total interaction among users 

(Alexander, 2002; Alexander et al., 2003; Fekete, 2002; Lamerichs & Molder, 2003; Macias et 

al., 2005; Muncer et al., 2000a; Muncer et al., 2000b; Salem et al., 1997; Witt, 2000).  

Similar with other support groups on Facebook, social support was also found in the 

investigated autism support groups. Group members often received comments from others with 

similar situations and experiences (e.g. “I can relate entirely and feel this way every day i drop 

my brave boy at pre-school. Xx”). Although people may not receive actual information regarding 

their information needs, the social support they acquired may help with emotional relief. 

In addition to general social support, disease-specific information was also exchanged in 

the support groups on Facebook. For individuals in Facebook support groups for presumed 

ocular histoplasmosis syndrome (POHS), issues regarding diagnosis, treatment, adjustment, and 

emotional distress were discussed. In the five investigated autism support groups of this study, 

the following autism-related topics were shared in the Facebook groups: “parenting”, “behavior 

traits”, “diagnosis”, “home decorations”, “education”, and “therapies”. 

As a beneficial result of membership, collective coping strategies were identified as well 

as timely medical advice based on personal experience, research resources, linkage to services, 
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compassionate support, camaraderie, and social interaction (Thompson, 2015). In this study, it 

was noticed that group members brought up questions regarding the coping strategies and 

received multiple suggestions from others with the similar experiences. For example, a mother 

asked in one of the investigated autism groups: “what has been other mom's or family's 

experience with obtaining SSI Disability benefits?” The post obtained 11 comments including 

information from others with similar experiences, e.g. “I filed with copy of diagnosis and 4 weeks 

later start getting payments on child” and “For SEVERAL years (ages 3-9) we got SSI for our 

son. It helped tremendously. And was not hard at all to get. It was a couple months when we got 

it. It was a life saver!” Another group member replied to the post and expressed the willingness 

to provide personal help: “Pm me! I'm happy to help!!!” As demonstrated by a previous study, 

such health communities provide access to experience-based information about particular 

situations, which many users find more relevant or accessible than information obtained from 

professionals (Newman et al., 2011).  

Previous studies argued that, unlike face-to-face support groups, instrumental or tangible 

support was either absent or very rare in online depression support groups (Alexander et al., 

2003; Muncer et al., 2000; Sugimoto, 2014). However, it was noticed that group members 

offered tangible responses when people asked specific questions in the autism support groups in 

this study. For example, one group member brought up a question: “I am thinking of purchasing 

this emf meter for our home. …Are any of you familiar with this product or have a 

recommendation for a different meter?” Several instrumental and tangible comments replied by 

others included “For about the same price, you can get this one: 

http://www.electricsense.com/10786/cornet-ed88t-emf-meter/” and “I second the 

recommendation. Tue Cornet is way better for a similar price.” In this case, the product 
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recommendations can be considered as informational and useful support for people who did not 

have such experiences. 

Disseminating information with others about upcoming events was identified as one of 

the most popular things to do on Facebook (Cheung, Chiu, & Lee, 2011). In both Group 4 

(research group) and Group 5 (local support group), there was information about a variety of 

events and conferences shared in the groups. These types of information were also noticed in 

other Facebook support groups. Raj (2015) unveiled that leaders of support groups used their 

Facebook groups to post numerous messages that promoted upcoming meetings. It suggested 

that one of the benefits of being involved in support groups on Facebook is to gain access to 

beneficial information like available events and conferences. It helps group members feel 

connected and supported, since they could stay current and up-to-date with the groups they 

choose to be a part of (Raj, 2015).  

5.1.6 Emotional exchange in Facebook support groups 

Previous studies identified that venting is one of the purposes for people who use 

Facebook groups to fulfill a need to share information without an expectation of responses (Niwa 

& Mandrusiak, 2012b). As shown in Figure 36, for all of the five investigated autism support 

groups on Facebook, negative messages appeared in the groups less than positive and neutral 

messages. A prominent theme of the messages that conveyed negative emotions can be classified 

into the venting category (e.g. “Yes its a very scaring feeling my son is 3 an he takes off on 

me...My heart sinks”). It suggested that Facebook groups could serve as not only a place to seek 

informational and emotional help but also a venue people could feel free to speak of the bad 

feelings. 
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Figure 36. Gender differences of sentiment distributions in each group 

There are contrasting and possibly conflicting views on the pros and cons to participating 

in online support communities (Niwa & Mandrusiak, 2012b). In 4 self-injury groups on 

Facebook, Niwa and Mandrusiak (2012b) revealed that 3.6% of the total posts were praising or 

thanking in the group. In contrast to the self-injury groups, as shown in Table 34, 35, and 37, 

“thank” appeared to be one of the most frequently occurring keywords in three of the five autism 

support groups. It implied that autism support groups offered a more supportive emotional 

atmosphere for group members than those of the self-injury groups. 

 As can be seen from Figures 34 and 36, the overall sentiment, appearing in all five 

investigated groups, was positive and the positive and neutral messages outnumbered the 

negative messages. Moreover, from Tables 33 to 37, many positive words (e.g. “well”, “like”, 

“thank”, “happy”, “love”, “good”, and “great”) appeared to be the most relevant terms to the 

discussion topics revealed in the groups. These findings were consistent to a reported healthy and 

continuous communication loop uncovered in a stutter support group on Facebook (Raj, 2015). 

Raj (2015) identified that the sense of family which came from the Facebook group helped to 

diminish feelings of loneliness or isolation for people who had communication barriers. 
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5.1.7 Manual annotation of sentiment categories 

Accuracy of the sentiment classification is one of the most significant issues for 

sentiment analysis research (Baccianella, Esuli, & Sebastiani, 2010). In order to evaluate the 

performance of the adopted sentiment detection technique, which was the lexicon-based 

sentiment analysis conducted by Lexalytics, the author annotated the sentiment categories (i.e. 

positive, neutral, negative) of a randomly sampled sub-dataset. It was investigated whether the 

human judged sentiment polarities for the sampled records matched to the automatically obtained 

sentiment categories using Lexalytics. The sub-dataset contained 10 records randomly extracted 

from each of the selected groups. Thus, the performance was assessed based on 50 records 

annotated by both human and automatic sentiment detection technique. Cohen’s kappa was run 

to determine if there was agreement between human and automatic sentiment annotations. The 

resultant inter-coder reliability (Cohen's kappa) was 0.505. Cohen's kappa results can be 

interpreted as follows: values ≤ 0 as indicating no agreement and 0.01-0.20 as none to slight, 

0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost perfect 

agreement (McHugh, 2012). In this case, the human judgements and the automatic annotations 

achieved a moderate agreement in the sentimental category assignments. 

5.1.8 Normalization impact 

As shown in Table 25, the five sub-hypotheses associated with H02(c) failed to be rejected. 

It meant that no significant gender differences were found in the group interactions in terms of 

closeness centrality. To further explore whether these results were caused by the normalization 

method of the closeness centrality measure, the author conducted an experiment that used the 

square roots of the numbers of nodes instead of using the numbers of nodes directly to normalize 

the closeness centrality measures. As a result, the five sub-hypotheses associated with H02(c) 
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remained as fail to be rejected, which meant that the insignificant results were not caused by the 

normalization method. It suggested that the abilities to instantly communicate and interact with 

others without going through many intermediaries were not significantly different between male 

group members and female group members. 

5.2 Implications 

5.2.1 Theoretical implications 

The theoretical implications lie in the uncovering of emerging patterns and information 

exchange among autism support groups on Facebook. Previous studies on the information need 

of autism-affected consumers applied qualitative research methods such as interviews and focus 

groups to gather their opinions of online support groups. This study collected user-generated 

content from real support groups on social media. Computer-mediated methods, including topic 

modeling and sentiment analysis, were applied to the content gathered from autism support 

groups on Facebook. The analysis of the interactions and communications appearing in the 

groups revealed users’ information needs and communication patterns. 

Theoretically, the results of this study align with previous studies that demonstrated the 

significance of social media for autism users. The unique implication of this study is to identify 

autism support groups on Facebook as a source of informational, social, and emotional support 

for autism-related users. This observation suggested new opportunities of using Facebook help 

users who suffer from autism. 

The findings regarding discussion topics appearing in the autism support groups on 

Facebook revealed the information needs of autism-related users. In addition, it examined that 

the informational support, such as specific strategies to deal with autistic kids, was provided in 

those support groups on Facebook. 
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A key finding of this study offers important implications for health communication in the 

social media era. The overall positive climate reflected by the discussions in autism support 

groups on Facebook suggest that support groups on social media promised to be a way to provide 

social and emotional support for autism-related users. 

5.2.2 Methodological implications 

Social network analysis has been widely applied in social media research. Social network 

analysis offers a unique way to draw insights from communications among community 

members. This study employed social network analysis to identify the communication patterns in 

Facebook groups, and discovered the influential users among group members. The way that 

social network analysis was applied in this study can be adopted to investigate social 

communities on other social media platforms. 

Multiple methods were used to address how autism-affected users sought health 

information through social media. This study synthesized four distinct methods (social network 

analysis, topic modeling, sentiment analysis, and inferential analysis) to seek the patterns of 

health behaviors of autism-affected users. Visualization methods were also utilized to present the 

results from social network analysis and topics modeling. The methodology applied in this study 

developed a mixed method to evaluate the information exchange in health-related support groups 

on social media. The methodology proposed in this study can be employed to explore online 

social support communities focusing on other health concerns. 

5.2.3 Practical implications  

This study was designed to explore how autism-affected users engaged in autism support 

groups on Facebook. The results of autism-related Facebook groups identified in this study and 

the active interactions observed in the investigated groups supported the findings from previous 
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clinical study that people with autism has an affinity towards computer and technology (Ko, 

2014). These findings suggest that online communities might be used as an effective platform for 

social skills intervention to help autism patients handle and recognize their difficulties with 

socialization. 

The overall positive group environment observed in this study advocates for the potential 

role of information technology in the social lives of autism-related users. The findings help 

people understand how health consumers are supporting each other and reveal new capabilities 

of online intervention programs that can be designed to offer social supports in a timely and 

effective manner. Moreover, the outcomes unveiled in this study can provide useful input to aid 

the development of online intervention programs for autism users. 

This study examined topics derived from messages posted to the autism support groups 

on Facebook. The revealed topics (e.g. parenting, education, behavior traits) identify the issues 

that individuals with autism were concerned about on a daily basis and how they addressed such 

concerns in the form of group communication. These topics can also be used as the road map for 

the design of autism websites and the creation of subject directories for social media information 

organization. In addition, the revealed topics help professionals understand autism from users’ 

perspectives. The keywords can be used to assist the thesaurus and subject headings. In addition, 

the symptom-related content (e.g. lining toys, reading comic books) which emerged from the 

group discussions aids the screening for parents who wonder whether their children show autism 

symptoms. The relationships between keywords and topics identified through topic modeling 

may also be used to build recommendation mechanisms for the Facebook group platform and 

social Q&A websites. For example, when a user posts a message in a Facebook group or on a 



191 

 

social Q&A website, the systems can automatically suggest related topics in which the user 

might be interested.  

Identifying influential users in a support group can assist the group administrators in 

recognizing group members’ contributions and reinforce positive behaviors within the group. 

The analysis of the characteristics of influential users also helps train health providers who offer 

health services and consultations to autism-affected users. For example, caregivers are 

recommended to more frequently start conversations with autism patients and their relatives. The 

more support caregivers provide through communications, the more responses they may receive 

from care-recipients.  

Strong correlations found among the interaction behaviors (e.g. posting, making 

reactions, commenting) suggest that appropriate instructions, such as posting welcoming 

messages and regularly raising discussion questions in groups, should be delivered to group 

administrators in order to encourage their active involvement in the group. Likewise, group 

administrators should be instructed and trained accordingly to play a major role in encouraging 

group members’ active involvement. 

5.3 Summary 

The results from this study were compared to findings from previous studies. Similar 

with the prior studies on other health-related support groups on Facebook, preferences to giving 

reactions (e.g. likes) over replies and strong correlations between contributions to the group and 

gaining from the group were also found in this study. Sparse interaction networks revealed from 

this study demonstrate that autism support groups on Facebook offer companionship and 

emotional support to autism-affected users. In addition, social, informational, and emotional 

support found in this study were consistent with interactions which appeared in other online 
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health communities. Especially, in contrast to other support groups for psychological conditions, 

the investigated autism support groups on Facebook appear to provide a supportive and grateful 

atmosphere for group members. 

The theoretical and practical implications of this study were discussed. The methods 

applied in this study were found to be not only a sound methodology but also a foundation for 

research on other health-related communities on social media. The practical implications of the 

findings revealed from this study can assist clinical practitioners, support group administrators, 

and online autism intervention designers. 
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Chapter 6. Conclusions 

This final chapter summarizes the research questions and associated major findings in 

this study. The limitations of this study are also discussed. Finally, a few research directions are 

proposed for future works. 

6.1 Summary of research questions and major findings  

The primary research problem of this study was to investigate how users interact within 

autism support groups on Facebook. The interactions appearing in groups consist of two primary 

facets of characteristics: behavior-based characteristics and content-based characteristics. 

Specifically, the behavior-based characteristics represent the interaction patterns among group 

members including preferences to different interaction behaviors (e.g. liking, commenting, etc.,); 

characteristics of interaction networks, gender differences appearing in the interaction networks, 

and influential users among the group members. Content-based characteristics were composed 

by the topics of group discussions and the sentiment characteristics drawn from the group 

discussions. 

After screening hundreds of autism-related groups on Facebook, five public Facebook 

autism support groups (an awareness group, a treatment group, a parents group, a research 

group, and a local support group) were selected in this study. Data collection for this study 

centered on the extraction of the interactions and content that appeared in each group. The time 

window for the data collection was set as 6 months. Social network analysis, topic modeling, 

sentiment analysis, and inferential analysis method were employed to analyze the collected data. 

RQ1: How do users interact with each other in autism support groups on Facebook based on 

social network analysis? 
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The first research question explored how users communicate with each other within the 

autism support groups on Facebook. The significance of RQ1 was the investigation of group 

interactions from the network perspective. RQ1.1 examined the gender differences in the group 

interactions, while RQ1.2 investigated the differences in the group interactions across the groups 

that belong to various categories. As a result, it was examined that group members favored 

giving comments and making reactions more than tagging someone or sharing others’ posts out 

of the groups. Although more female group members engaged in the group interactions, male 

group members held significantly more central positions in the groups than the female group 

members did based on degree centrality and betweenness centrality. Significant gender 

differences were found in the four investigated groups (the awareness group, the treatment 

group, the research group, and the local support group) in terms of degree centrality and 

betweenness centrality. The exception was in the parents group. 

RQ2: Who are the influential users based on interactions in autism support groups on 

Facebook? 

The second research question discovered the influential users based on interactions 

within the autism support groups on Facebook. The significance of RQ2 was quantifying the 

detection of major players in each investigated autism support group. To answer RQ2, social 

network analysis was employed to identify the influential users based on interactions in each 

Facebook support group, and to unveil the interaction characteristics of those users. There were 

53 influential users who occupied the top 20 important positions in each group. They were found 

based on three centrality measures: degree centrality, betweenness centrality, and closeness 

centrality. It was noticed that group members tended to react more to the influential users. A 

strong correlation was found between the frequencies of the orginal post and the incoming 
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interactions. It suggests that users who contribute more to the group may receive more support 

from others in the group. 

RQ3: What are the discussion topics that emerged from the discussions in autism support 

groups on Facebook? 

 RQ3 sought to understand the discussion topics appearing in each autism support group 

on Facebook. This question was answered by applying one of topic modeling methods, Latent 

Dirichlet Allocation (LDA), to the posts and comments appearing in the groups. As a result, 

distinct discussion topics were revealed as follows: the awareness group (parenting, behavioral 

traits, diagnosis, and video sharing), the treatment group (EMF pollution, home decoration, and 

wireless safety), the parents group (experiences, family support, welcome messages, education, 

and parenting), the research group (therapies, trainings and workshops, and events and visits), 

and the local support group (greetings, support, conferences, and help requests). This modeling 

method suggested that each group had certain distinctive discussion topics that related to the 

purposes of the groups. 

RQ4: What are the sentiment characteristics of discussions in autism support groups on 

Facebook? 

The last research question aimed to unveil the sentiment characteristics of the group 

discussions which appeared within autism support groups on Facebook. The significance of RQ4 

is the quantitative evaluations of the sentiment aspect of group communications. RQ4.1 

examined the gender differences in the presented sentiments, while RQ4.2 investigated the 

differences in the presented sentiments across the groups that belong to various categories. 

Through a series of inferential analyses, it was revealed that the female group members tended to 

express more positive emotions in the group discussions than the male groups members did. No 
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significant gender differences in the expressed sentiment were founded in all five groups. Group 

members appeared to express significantly different sentiments within the groups focused on 

various topics. More negative emotions were conveyed by group members in the treatment 

group, especially by the male group members. 

6.2 Limitations 

Like most of scientific studies, there are certain limitations in this study. The limitations 

include, but are not limited to: the use of only Facebook groups, the absent access to closed 

groups and secret groups, limited timeframe, lack of qualitative interviews with group members, 

and a relatively small sample.  

The first and most obvious of all the limitations to this study concerns the sampling and 

data collection. Facebook groups were the only social communities on social media addressed in 

this research. There are dozens of social communities and discussion forums regarding autism. In 

addition, due to ethical considerations, only public Facebook groups were investigated in this 

study. Furthermore, the sampled Facebook groups might not be representative of all autism-

related support groups on Facebook. Also, this data collection period was set as 6 months. The 

limited time window might be unable to provide a whole picture of the group interactions. 

Another limitation is related to the research methods adopted in this study. This study 

identified and examined only the quantitative aspect of the autism support groups on Facebook. 

Understanding the motivations behind the group interactions and group posts could shed more 

insights on the meanings and purposes of the autism-related social communities on social media. 

However, this study did not interview group members that participated in the support groups on 

Facebook. The inclusion of interviews or questioners was not considered in this study, but should 

be conducted in the future.  



197 

 

6.3 Future directions 

As mentioned above, this study focused on the observation and interpretation of 

interactions within the autism support groups on Facebook and involved no direct interaction 

with individual group members. While this was beneficial in terms of observing natural 

situations of the group interactions, without consulting the group members the interpretation of 

the interaction activities and the content were limited. A future study that involves interviewing 

group members on their motivations and experiences within the groups may bring depth to the 

findings that this study did not capture. 

Additionally, larger scale quantitative studies should be conducted to validate results by 

examining other online autism communities on social media. A larger study would enhance the 

reliability of the findings generated from this study. Results from larger studies may further 

examine how social media could function as a training context for promoting social skills for 

autism patients. 
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Appendix 

Autism support group on Facebook 

Group name Number of members 

Autism Parents Support & Discussion Group 53,493 

Autism Spectrum Disorder, through my eyes Discussion Group 36,165 

Síndrome de Asperger - Autismo infantil 26,441 

Autism (A Mothers Support Group) 21,058 

Aspergers 19,833 

Adults with Asperger's Syndrome 14,697 

Asociación Asperger Argentina - AsAAr 14,432 

Autisme Malaysia 13,520 

AUTISMO/ASPERGER /SÃO PAULO 11,353 

Asperger's Syndrome 10,096 

ADHD,Asperger's and Autism - Support Network for Families 9,721 

Asperger Syndrome Awareness 8,491 

Autism Group 8,185 

CD Autism 7,524 

Families with autism kids 7,081 

Asperger's syndrome 6,721 

Autism, ADHD and Essential Oils 6,223 

Asperger's Syndrome: Raising Awareness! 5,310 

Asperger... comunidad en la red. 4,802 

Parents Of Autistic Children 4,127 

Behavior Analysts for Autism 4,115 

Asperger Experts Private Group 4,097 

Autism/Asperger's Syndrome awareness wor 4,037 

Autism Society of North Carolina 4,022 

High Functioning Adults with Asperger Syndrome 3,943 

Grupo Integrador "MUNDO AZUL" Tea-Asperger Mar del 

Plata 3,938 

Autistic UK 3,881 

Mothers raising a child with Aspergers!! 3,871 

Understanding Aspergers 3,808 

Aspie Adults - Closed Group 3,796 

Autism/Asperger/ADHD Sharing - Indonesia 3,353 

Autism Parents Chat 3,347 

Always Aspergers 3,234 

Aspergers/Autism Young Adults 16-30 3,233 

Autism Mommies 3,026 
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Positively Autistic 3,000 

Autism Mamaí 2,959 

Parents of children with PDD NOS  (Pervasive Developmental 

Disorder) 2,887 

Autism And Aspergers Is Nothing To Be Ashamed Of. 2,861 

Autism Friendly UK 2,733 

Dyslexia, ADHD, Aspergers Syndrome, Autism Spectrum 

Disorder Support UK 2,732 

Special Needs Educators of Malaysia (Autism, Aspergers, 

Dyslexia, etc) 2,537 

You Might be an Aspie if... 2,164 

Support Group for Parents of Severely Autistic Children with 

LD 2,154 

High Functioning Autistic Children Group 2,014 

MAPS for Autism - Parent Group 1,892 

Somos Asperger y Asperger Temuco 1,882 

Autism Society Inland Empire 1,798 

Autism Banning Together 1,782 

Autism Superfriends 1,766 

Autism Parents Australia 1,665 

Autistic Society of Trinidad and Tobago 1,606 

Adults with Aspergers Syndrome 2 1,605 

FAMILIA ASPERGER 1,585 

Aspergers Society of Ontario 1,581 

Autism in Scotland 1,557 

High Functioning Autism 1,506 

A.B.A , PECS , Méthodes pour Autistes en Belgique 1,496 

Healing and Beating Autism with Natural and Alternative 

Methods 1,379 

Ask me, I'm autistic 1,352 

Centre les Colombes des enfants autistes de Monastir 1,323 

Asperger's Friendship Network 1,278 

Asperger Portugal 1,243 

Parents of children with Aspergers UK 1,200 

Support Group for moms with kids with ADHD, ADD, Autism 

and behavior issues 1,190 

Autism Spectrum Disorder Famillies in South Australia 1,159 

Aspergers, Adhd,ADD, Asd,SPD,and selective mute uk 1,104 

Autism Pervasive Developmental Disorder PDD NOS 1,103 

Autistic Kidz Rock 1,084 

NJ Autism Moms 1,034 

USDOJ Protest for All Abused Groups 

(Autism,GWI,CFIDS,Lyme,Parents,Psych..) 1,024 
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Algerian National Autistic Forum 1,021 

FEAT - Families for Early Autism Treatment 1,011 

Autism Pensacola, Inc 973 

Autism in New Zealand 969 

FACES Autism Support Group 969 

Autism Mamaí buy/sell/swap 959 

The Autism Sanctuary~ a place for parents 959 

PACT Parents of Autistic Children Together 955 

Adults with Aspergers 936 

Writers on the Autistic Spectrum 910 

Down syndrome and autism 909 

New Jersey Autism Warriors 896 

Asperger Salta 889 

Autism Parents Ireland Disneyland info and support group 888 

Newcastle & Hunter Autism Support Group 879 

Autism - Adelaide Mums Group 876 

Autism Bakes 844 

WAA (Washington Autism Alliance & Advocacy) Family 

Supports Network 840 

Autism Triage Scotland 835 

Aspies: Naughty or Nice (18+) 832 

Aspergers dating. 817 

Aspies Adulthood 805 

Parents of Autistic PreTeens, Teens, and Adults 803 

Homeschooling Parents of Children with Asperger's Syndrome 794 

Autism and Aspergers buddies :) 783 

Vera School For Autistic Learners 777 

Columbus Autism Parents 769 

Boise Autism Moms (BAM!) 757 

Autism Sprinter 734 

Connecting Autism Parents, Edmonton 732 

Autism Awareness: Severe Non Verbal Autism 727 

AUTISM & ASPERGER grupp i Sverige 701 

Kansas City Autism Spot 699 

Toowoomba Autism Noticeboard 691 

HYDERABAD ASSOCIATION OF PARENTS OF AUTISTIC 

CHILDREN ( HAPAC) 682 

Autism New Jersey Friends 680 

Asperger Moms 664 

Autism and SEN Awareness 651 

Portland Autism Moms (PAM) 650 

Aspergers Support: NT Women Who Love an Adult Aspie 639 
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Boycott Chlorine dioxide / mms as an Autism Therapy 602 

ASD/AUTISM - SUPPORT GROUP FOR AUSSIE MUMS 600 

aspies after dark 598 

Sunshine Coast ASD Support Group (Autism Spectrum 

Disorder) 595 

ASD (Autism) & SPD Moms: Metro Vancouver 590 

M.A.C.S (Merseyside Autistic Children's Society) 582 

A support group for Parents (Swindon Autism, ADHD) 577 

Autism Rocks (Fife) 571 

Autism Parents Hub 556 

Down Syndrome-Autism Connection Support 556 

Love autism in the north west 553 

National Autistic Society Pembrokeshire Branch 550 

Autism Families NL (FEAT-NL) 545 

Partners of adults with / or suspected of having Aspergers 

Syndrome 545 

Baltimore AUTISM Parents 522 

Parents of Children with Classic/Severe Autism 515 

Aspergers Safe Room: A Safe Haven for Women on the 

Spectrum 512 

Autism Families Unite for acceptance and understanding 509 

Autism Suffolk (NAS) 500 

AUTISM MOMS GROUP MEMPHIS TN 496 

British Women with Aspergers - UK Connect Group 484 

Aspergers adventures-minecraft and meltdowns 483 

Radio Aspergers 479 

Autism & Asperger Connections 467 

Hug Cards for Autism 441 

A.D.A.M for Aspergers Malaysia 439 

ADHD/Aspergers - Computer Lovers 430 

Afternoon Asperger 427 

AZ "Autism Moms" 427 

Christian Parents of Autistic Kids 423 

Female Aspergers/Autism Support Ireland 415 

Bristol Autism Support 413 

Calgary Moms Autism Support Network 393 

Parents of Autistic/Aspergers Teens 387 

Parents of Autistic/Aspergers Teens 385 

Moreton Bay Region ASD Support Group (Autism Spectrum 

Disorders) 381 

Aspies Being Aspies (Just For Fun) 375 

Autism Support Crawley 373 
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Autism Winnipeg PACE 366 

Autistic Artwork 354 

AutismUp Parents Group 345 

Bendigo Autism (support group) 327 

Autism Family 326 

Mums & Dads Of Autistic/ Adhd Family Members 326 

The National Autistic Society Blaenau Gwent Branch 325 

AUTISM SOCIETY Omaha - Autism MomME Time Group 323 

CASPAR - Canberra Autism Spectrum Parents and Relatives 316 

Autism and Type 1 Diabetes 315 

Real Aspergers Wives-Raw and Uncut 313 

Autism Moms Ontario 311 

Arkansas Autism Network 307 

Positive Aspies 307 

Aspie Universe 302 

Aspergers Children At Secondary School in the UK 289 

Grand Rapids Area Autism Moms and Dads 286 

Autism/ ASD Chat And Support in the U.K 284 

Parents of autistic children need support too 284 

LGBT Aspergers 282 

The Autistic TeenME Diaries 282 

Sisterhood Of The Asperger Girl 277 

I am affected by Autism 276 

Wagga Autism Support Group 272 

Parents of Autistic Children (P.A.C) South Wales 270 

Saskatchewan Parents of Children with an Autism Spectrum 

Disorder 270 

Appaws For Autism UK 264 

Sensory Processing Disorder /Autistic spectrum Support Group 

UK 263 

AUTISM MOMS WHO ROCK SUPPORT GROUP 261 

The Autistic Family 256 

Christians with Asperger's 255 

National Autistic Society Bridgend and District Branch 255 

Autism And ADHD wAUrriors 254 

Project Autism- Parent 2 Parent 254 

Aspergated Wives - Support for females living with a partner 

with Aspergers 248 

Melbourne AUTISM (support group) 248 

Stem Cell Therapy for Autism 248 

Autism Parents of Howard County, Maryland 247 

Better Together An Autism Social Learning Club 247 
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Fareham Autistic Spectrum Support 246 

Autism Page Owners 243 

London Autism Group 241 

Autism & ADHD Parents North Down 239 

Asperger's/HFA Support Group of Franklin County, PA 238 

Rational Asperger's group 238 

Airedale and Wharfedale Autism Resource (AWARE) 233 

Autism support aberdeen 228 

Autistic But Cherished (ABC) 228 

Autism Locked & Loaded 219 

Casey Asperger Syndrome Support 219 

summers journey with aspergers and other conditions 217 

Autism Manitoba- for parents and caregivers 216 

There Are Differences Between Autism & Asperger's Syndrome 216 

Rugby Autism Network Chat 214 

Parents of Autistic Kidz 209 

Canadian Autism Family Support 208 

Autism ADHD Aspergers Parent Support brisbane 205 

Mis-diagnosed Asperger Children 203 

RAGS Romford Autistic Group Support 202 

Aspergers partner/spouse support group 200 

TEAM ASPIE 199 

Philly Autism 198 

Autism Uncensored 193 

Loved ones of autistic children boycotting 50 cent 190 

Autism - Parent Support Group Ottawa(Canada) 189 

Cheshire Autism Practical Support (ChAPS) 187 

the offical Meghan Whitney Autistic Dixon support group 183 

Christina's Autistic Dream Team 181 
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