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ABSTRACT

RELIABILITY EVALUATIONAND IMPROVEMENT BASED ONOPERATIONAL
FAILURE RATE OF POWER ELECTRONICS IN ISLANDED MICROGRID

by

Wen Zhong

The University of Wisconsin-Milwaukee, 2018

Under the Supervision of Dr. Lingfeng Wang

With power electronics being widely applied in microgrids, they become a key part in

micro-grid and the reliability assessment considering power electronic devices have

become a hot research topic, and much work has been done to evaluate the reliability of

power electronics in microgrids. However, the impact of operational failure of power

electronics on the overall microgrid reliability has not been studied yet.

This thesis has three objectives. The first objective of this thesis is to construct a

systematic operational failure rate model of power electronic systems. The power

generated from renewable generation units, such as PV arrays or wind turbines, is

uncertain and difficult to predict. With the operational impact based on operational

conditions taken into consideration, the evaluation of reliability is more accurate and it

will make a great contribution to the design process and avoid costly expenses caused by

undesired failures in microgrids. The second objective is to apply this model to do

reliability assessment of the overall islanded microgrid with high penetration of

renewable energy generation systems. In addition, this paper combines several reliability

assessment methods. The third objective is to improve the reliability of the microgrid

system by replacing the conventional battery storage system to the hybrid energy storage
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system. Based on this proposed model, the operational failure models for the power

electronic systems in an modified benchmark 0.4 kV test system were built and tested,

and then the sensitivity analysis, exploring the influence of various factors, was studied.
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Chapter 1 Introduction

1.1 Background

Nowadays, energy and environmental issues are a primary concern for human

existence and development. Not only does conventional energy have limited sources on

our planet, but also causes severe environmental pollution. Under the pressure of these

problems that we’re facing, finding a new type of sustainable energy to replace

conventional power is of great importance [1].

The application of renewable energy is a practical solution to these global issues. Based

on the 2017 Renewable Global status report shown in Figure 1.2, the Total global

capacity of solar PV(Photovoltaic) generation systems from 2006 to 2016 increases and

reaches the 303 GW in 2016 [2]. The average annual growth rate of the solar power

capacity from 2006 to 2016 is about 33%.

Figure 1-1 PV global capacity during 2006-2016



2

The total global capacity of the WTG (wind turbine generation) systems from 2006 to

2016 shows an upward trend and reaches the 487 GW in 2016[2]. As shown in figure, the

average growth rate of the wind power capacity between 2006 and 2016 is about 13%.

The rapid development of solar and wind energy generation drives the rapid growth of

power electronics technology. For renewable energy generation systems, power electronic

converters are essential for embedding wind turbines or PV arrays with the power system

by converting the natural power to a more stable power that is more compatible with the

grid.

Figure 1-2 power global capacity Wind during 2006-2016

Islanded microgrids with heavy penetration of renewable energy are widely applied in

different fields. Especially in countries where they have low transmission capabilities,

due to access to electricity being complicated and expensive. However, these places have

sufficient renewable energy sources (solar energy, wind energy, and etc), which make it

possible to supply the local loads. Compared to building large power plants or transfering
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electricity from the grid through long-distance power lines, not only do islanded

micro-grids reduce global house gases emission, they also solve energy shortage

problems as well as avoiding long-distance transmission of electricity and solving the

power shortage in some rural and remote places. In addition, when a grid has a failure,

micro-grid also has to work in islanded mode, thus the reliability issues of islanded

microgrid is of great importance.

1.2 The research of reliability assessment for islanded micro-grid

The reliability engineering firstly emerged to address the reliability issues in military

applications [3,4,5]. There are two methods that are widely adopted. The first one is the

empirical reliability model, and it is based on previous operating data and several

handbooks [6,7]. They mainly use constant values to evaluate the reliability indices. This

method has been widely applied to power systems to analyze average reliability

indices[8]. However, the empirical approach is independent of operational condition and

does not take the physical cause of electronics' failure into consideration.

The second model is the physics-based reliability model, which was first proposed in

1962 [9]. It focuses on identifying the root-cause mechanism of component failures and is

based on the specific operational conditions. Since the increased application of integrated

circuits (ICs) after the 1990s, it was evident that the constant failure rate of the empirical

reliability model is inadequate [10], compared with the former method, a physical-based

reliability model is more reasonable and practical [11,12,13]. The physical-based

reliability model has played a more critical role in reliability engineering. In previous
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studies of the physical-based reliability model, two types of failures were widely studied

like failures caused by thermal over-temperature and thermal cycling [14].

In recent years, high reliability is often regarded as one of the main technical advantages

of microgrids [15-21]. Most of the previous works explore reliability by considering

microgrids penetrated with the conventional or renewable power system. However, their

approaches don’t consider variable failure and repair rates, or even including any power

electronic interfaces [15–19]. Reference [15] proposed an approach evaluating reliability

from an operational perspective based on matching generations and loads, which consider

components to be completely reliable. Reference [16] focuses on the isolated system,

only considering constant power output of generation units, and it cannot be applied to

any violently fluctuating renewable generator. Reference [19] is based on variable loads

to schedule the optimal structure of the system and find the impact on interruption

caused by transmission system failure. To evaluate the reliability more accurately,

reference [20] considers the protection issues to evaluate reliability indices of islanded

microgrids by using a short-term outage model. Based on this, reference [21] considers

the impact of incorrect responses of the protection system and employs the short-term

outage model to evaluate the fuzzy reliability indices.

There are few works exploring the effect of the power electronics and the influences of

different meteorological factors at the same time on reliability evaluation of islanded

microgrids, not to mention presenting systematical reliability models and methods for

microgrids. References [22] [23] introduce the basic indices, reliability assessment



5

methods and reliability improvement methods. For component level reliability

assessment, the failure rate model proposed by [24] is commonly used in the reliability

evaluation of power electronic devices. Based on these, reference [25] provides a real

time model of converters based on the multi-level converters in WTG system. However,

this method cannot adequately show the hourly failure rate of components.

Previous work did not take the variable failure rates of power electronics which are

dependent on different factors into consideration. Since volatile renewable generation has

been highly embedded in microgrids, the failure of power interfaces, which is affected by

different operational states of the components in the microgrid, have the negative impact

on the overall microgrid. Thus, operational reliability has become a hot issue for

microgrids. To deal with this problem, this paper proposes a systematical operational

reliability model for power electronic devices in the microgrid. The failure rates of power

electronic devices in this model are calculated according to operational states, and then

microgrid reliability is evaluated considering the failure rates of power electronics. This

method will be verified by a case study. Then, the simulation results will be analyzed.

1.3 Reliability metrics

1.3.1 Basic Reliability metrics

To predict the reliability of the system, the reliability metrics which could show the

system's performance, should be determined as first. The primary metrics are adopted for

the power electronic systems and explained as below.
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A. Reliability

The reliability is defined as the ability of an item to perform a required function under

stated conditions for period [26,27].

B. Failure Rate

A bathtub curve illustrates that the lifetime of an item which is composed of three

periods[26] as shown in Fig.1.5. λ(t) has a close relationship with reliability R(t) and can

be expressed:

(1.1)

Figure 1-3 A typical failure rate curve as a function of time.

Based on the empirical reliability model, the failure rates of items (components,

subsystems) are independent on operational conditions. Although this assumption has

limitations [22], the reliability can be expressed by:

(1.2)

C. Outage Time

  tetR 

     


t
d

etR 0

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Outage Time (U) is defined as the duration time expected to be failure state of an element

when it has failure, and can be described as:

iii rU  
(1.3)

Where "i" means that it is the ith element of the system, and "r" refers to the repair time

of this element, the repair time of components can be determined by its maintenance and

is dependent on the level of the protection scheme of the microgrid.

1.2.1 Power supply reliability index for customers

(i) System average interruption frequency index (SAIFI)

]/[intint customererruptions
N
N

rvedcustomerse
erruptionscustomerSAIFI

i

ii






(1.4)

(ii) System average interruption duration index (SAIDI)

]/[int customerhours
N
NU

servedcustomer
durationerruptiontotalSAIDI

i

ii




(1.5)

(iii) Energy not supplied index (ENS)

].[sup hkWULsystempliedbytheynottotalenergENS ii
(1.6)

1.4 Reliability Evaluation Method

Based on the definition of reliability basic metrics mentioned above, the effective method
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should be proposed to evaluate the reliability of islanded microgrid. This section focuses

on the summary of the existed method and comparison, then proposes the reliability

evaluation method applied in chapter 4. The reliability evaluation method for electric

power systems can be mainly classified into a simulation and analytical method.

1.4.1 Simulation Method

The simulation method commonly refers to the Monte Carlo simulation(MCS), which

analyzes the reliability indices by simulating different processes of the system. It can be

divided into two methods, which are the time sequential MC method and the

non-sequential MC method.

On the other hand, sequential MCS can take the sequential operating conditions of the

system into consideration and could also address events and states that are dependent on

time sequence [28], while the non-sequential Monte Carlo simulation does not.

1.4.2 Analytical Method

The analytical method, which focuses on evaluating the reliability index using the direct

numerical method is mainly composed of the FTA, the Markov model, and some other

methods.

A. Network Reduction method[29]

The basic idea of the the network reduction method is to describe the structure of the

conversion system as serial-parallel networks based on the reliability point of view, so the
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converter model can also be expressed as a series-parallel combination model in each

subsystem. By grouping the components in a series or parallel connection, this method

reduces the number of components effectively. As shown in figure 1-6, assuming two

components in each system are independent. The equivalent failure rate and repair rate of

the two components system is expressed in (1.8). Then we get the repair rate for a parallel

system, which consists of n components in function (1.9). A series system that consists of

n components failure rate can be calculated in function (1.10)[29].

Figure 1-4 The equivalent network for series and parallel components

21  eq
122121

21

rr
rr

r eq
eq 





  

221121

2121

rrrr
rr

eq 





 21 rrreq  (1.7)

 


n

i is 1
 (1.8)

 


n

i is rr
1

(1.9)
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B. Minimum Cut Set

The minimum cut set is a group of components, if anyone of these components has a

failure, the entire system will have a failure. Based on the figure 1-5, the minimum cut set

of the system is (1,3), (2,4), (1,5,4, (3,5,2) and can be simplified to the figure 1-6.

Figure 1-5 Model of network

Figure 1-6 Network after minimum set simplification

C. Markov model

The Markov process is an analytical technique giving all possible states of the system,

mainly applied in repairable systems. This method assumes the time spent at each state

belongs to an exponentially distributed function. A number of possible events are defined

as the transitions between different states, and these transitions can be expressed in a

transition matrix [30]. By adding the states of components to illustrate the transitions
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among different combinations of the components’ operational condition, this model might

be extended to a comprehensive state transition model for the overall system and obtains

the system level reliability indices. However, this state-based model is complicated (e.g.

maximum 2n states with n components) , and will increase the difficulty of calculation. In

addition, it is mainly based on a constant failure rate and a constant repair rate and can’t

reflect the influence of different operational factors.

D. Fault Tree Analysis method

The FTAmethod combines the system failure with component failure and is expressed in

a graphic logical reasoning aspect. At first, the FTA method identifies all the causing

events for the system’s undesired failure, then constructs the failure paths which connect

the causing events and related failure. Secondly, when obtaining the failure rates of the

causing events and combining it with the network conduction method, which gives it

access to calculating the overall failure rate of the top failure event [31,32]. Fault trees

are mainly composed of static logical gates, such as “AND” and “OR” gates, and causing

events. The FTA method has several advantages, such as taking all factors into account,

identifying causes of failure effectively, and identifying the critical components in the

system based on the component’s physical location in the system [33].

In addition, when obtaining failure rates of components, this model can evaluate the

overall system reliability by logical calculation directly, which reduces the complexity of

the reliability assessment. However, the previous works using the FTA method are

mainly based on a constant failure rate which does not take the dependencies among the

components into consideration.
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To overcome this limitation, this paper proposes the operational failure rate model to

obtain the real time failure rate considering the operational factors (the dependencies

among the components, thermal factor, electrical factor, processing factor). This method

combines the FTA method with the Network reduction method based on the concept of

the minimum cut set, providing the island microgrid with the systematical model to

evaluate the reliability performance.

1.4.3 Proposed reliability model

After obtaining failure rates of power electronics from the analysis above, operational

reliability indices considering the time-varying failure rates of power electronics in

islanded micro-grid can be evaluated. The characteristic effect of renewable energy

contributes to the volatile variation of temperature for power electronic systems on the

supply of islanded micro-grids can be evaluated through the short term outage model

adopted in this paper. Since the operational failure rate model for each subsystem takes

the meteorological and environmental factors into consideration, the failure rates of them

are dependent on time. Utilizing the short-term outage model [20,21], the operational

reliability indices like outage time and repair rate of each load can be obtained. Based on

indices and power indices from customer’s perspective analyzed above, the influence of

different micro-sources on different loads in islanded microgrids can be reflected

effectively through the time-varying power reliability indices like SAIFI, SAIDI and ENS

introduced in section 1.3, for the overall islanded micro-grid showed as below.
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where NUUU ,...,, 21 are the outage time for each load point, the r matrix represents the

repair rate,  :,ih is equal to 1 when its related repair rate has variation, otherwise, it is

equal to 0. M ,...,, 21 are the operational failure rate of each micro-source sysytem,

considering the influence of operational failure rate of power electronics system applied

in each micro-source generation system and the failure rate of each source.λLP and rLP

are the failure rate and repair time of each load point, respectively.

1.5 Reliability improvement methods of Power Electronic Systems

A systematical operational reliability model of power electronic systems in subsystems of

islanded microgrids will be presented in Section 2.1. As mentioned in chapter 1, the

reliability is one criterion in the designing stage. In order to improve the items’ reliability,

several methods are presented.
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Based on the failure rate model of components, it can be observed that the failure rate is a

product of several factors such as the aging quality factor, manufacturing factor, thermal

factor and the over stress ability factor. Among these factors, the manufacturing factor is

the property of components and could be improved in designing stage by replacing the

low level quality devices to high level quality devices. In addition, the manufacturing

factor accounts for a large part of the whole factors effecting the failure rate of

components. Thus the first direct method is to improve the component quality level by

improving the quality of components.

Followed by is the electrical and thermal factors(processing factor), especially for

semiconductors like IGBT, MOSFET. These two factors have significant influence on the

performance of components. Therefore, the second method refining thermal management

is an effective method to power electronics [34].

The third method is to add redundancy on the system based on the hardware and software

perspective. For the redundancy in the system-level, it improves the reliability of power

electronic systems greatly. However, this method will at least double the cost and will

also bring new challenges to the reliability issue of the system. Then comes the

redundancy in the subsystem-level to overcome this disadvantage, improving the

reliability of the system greatly with a lower cost and increasing the system’s flexibility

[35]. Thus, in this paper, the third method will be utilized and the simulation will verify

the proposed method in the followed part.
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1.6 Research Objective and Thesis Layout

The Objective of this thesis is to present a systematical operational reliability model to

evaluate the reliability of the islanded micro-grid considering the impact of power

electronics systems in the real-time operational and environmental factors. In addition,

to enhance the reliability of system in a subsystem-level, the hybrid energy storage

system replaces the conventional battery energy storage system. Based on this goal, a lot

of work has been done and has verified the proposed application of the hybrid energy

storage system.

The first chapter is about the research for the reliability assessment of islanded

microgrids, the application of hybrid energy storage system, and reliability methods

commonly used recently. The first part of the second chapter has an overall introduction

of the topology and main components of subsystems in the islanded microgrid, then a

framework for a reliability analysis of the power electronics system is proposed and the

associated details of the framework are illustrated, and it also has a brief introduction

about the reliability improvement. The third chapter covers the operational failure

modelling process for converters, considering the operating environments’ meteorological

factors in each subsystem, and is therefore tested.

Chapter 4 covers a case study, which is based on the modified benchmark 0.4 kV test

system and will use the short-term outage model to evaluate the reliability of the system.

Then an analysis based on different factors(operational failure rates of electronic power
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system, types of ESS, types of Micro-sources )is studied to investigate their impact on the

reliability of the electronic power system and the overall system’s reliability performance.

And the sensitivities analysis considering the effect of yearly characteristics, parameters

of wind turbine , parameter of PV array and ESS capacity will be done in chapter 5.

Finally, Chapter 6 presents conclusions and future works.

Chapter 2 The operational reliability model for power

electronic systems

2.1 The subsystem main components and topology of island microgrid

To evaluate the reliability of microgrid, the topology and components are introduced in

this section. A micro-grid is composed of generation system, energy storage system,

control system and loads. Generation systems in this thesis are composed of renewable

and non-renewable generation system, the former one mainly refers to WTG system and

PV system which has been mostly utilized in nowadays. Since micro-turbine generation

(MTG) has many advantages: high efficiency, lower cost, and higher possibility to meet

customers [36], it is chosen as non-renewable energy generation in the studied system.

With development of power electronic technology, the fully controlled switches are

increasingly applied in conversion system and show good performance. As shown in the

Figure 1-3, this converter is composed of 6 diodes and 6 IGBTs, then the generation side

connected rectifier is connected to inverter through a DC-link capacitor.
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Figure 2-1 Illustration of the two-level converter

A. PV system

Nowadays, the application of PV systems is greatly increasing and have a promising

future, since it is environmentally friendly and easy to obtain. Though, PV systems

interfaced to microgrids usually employ two stages conversion system [37]– [39]. This

paper is based on a single stage inverter topology. Most commonly used topology is the

2L-VSI (two level voltage source inverter) [38].A single stage inverter topology can

convert the intermittent solar power into AC power for microgrids effectively and also

have several advantages such as higher efficiency, economic and smaller size [39].
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Figure 2-2 A typical grid converter topology of PV modules

C ESS system

For islanded micro-grid, the power generated by DGs (distributed generation system) and

ESS(energy storage system) has to meet the demand of loads. Because of the unstable

characteristic of renewable energy and the loads demands, a reliable ESS system can

improve stability and power quality of system. Therefore, the reliability of components in

ESS is considered as a criterion when choosing the topology for system [40,41]. The

primary topology of ESS is a single stage inverter that is similar to the topology of the

PV system. Power electronic systems interface the storage units to the microgrid should

have ability to allow smoothly transition between the different modes, and transfer power

bidirectionally and work continuously [42].



19

Figure 2-3 The topology of ESS

B. WTG system or MTG system

For WTG system or MTG system, this paper is based on a back-to-back topology

(2L-BTB) as shown in Fig. 2-4[43-49]. The desirable characteristics of the 2L-BTB is

compact structure and low cost, and the technology available in this field is mature. The

commonly adopted uncontrollable rectifier composed of diodes will generate harmonic

currents, causing additional losses and increase temperature rise of generator. To

overcome this problem, a directional PWM rectifier is analyzed in this paper which is

composed of 6 IGBTs and parallel connected diode [46].
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Figure 2-4 A typical grid converter topology of MTG or WTG system

2.2 Reliability Evaluation of Power Electronic Systems

In this part, a systematical failure rate model of power electronic is demonstrated. The

model is composed of several procedures which assess the reliability performance of

power electronic systems based on specific operational condition. The proposed model is

demonstrated in Fig. 2.1[50]. This model works for power electronic systems in islanded

microgrid. The operational condition (meteorological factors, physical configuration

parameters, ect) that determines the operational conditions of the power electronic

systems is the input to the general model, and the various reliability metrics including

failure rate, reliability, availability can be obtained from the model.
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Figure 2-5 A systematical failure model of reliability assessment

2.2.1 Operational conditions

For power electronics, the operational condition represents variable loads, the real time

meteorological statistics and the output of power generation systems, and these factors

will determine different stresses of the power electronics. Among those factors, the

electrical and thermal factors of components have close relationship with the output

requirement of the converters and the real time meteorological statistics.
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2.2.2 Power model

To obtain the output of DGs and ESS within a specific interval, variable power models

based on real time meteorological statistics are illustrated in this

part.

Figure 2-6 A systematical power flow of microgrid

A. Calculating Output Power for WTG

After obtaining the meteorological statistics for wind turbines, take it as input to the

power model, then the output of WTG systems are presents as below. As the expression

shows, the output power of wind turbine has closely relationship with wind speed [49].

As shown in the representation, WTGP is output of the WTG system, civ is the cut in

wind speed, cov is cut out wind speed .
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B Calculating Output Power for PV system

After obtaining the meteorological statistics for solar panels, take it as input to the power

model. Then the output power of PV systems are presents as below. As the expression

shows, the output power of PV models has closely relationship with meteorological

factors [49]. As shown in the representation, PVP is output of the PV modules, aT is the

ambient temperature, Is is the solar illumination, srP is the rated output of PV modules,

rT is the reference temperature and rI is the reference solar illumination.

  
r

rasrPV I
ITTPP  0045.01 (2.2)

C Calculating Output Power for MTG system

Since MTG systems is controllable energy generation system, in the case study in the 4

chapter, with the peer-to-peer control energy management strategy, MTG system and

renewable generation systems both supply the power to loads, when there is mismatch

between the power supplied by distribution systems and loads requirement, then ESS will

fill the gap. The variable output power of micro-turbine can be expressed as below. When

it can fully fill the gap between the load required and power of other generation

subsystems, the output can be expressed as:

WTGPVg

lossESSWTGPVMTG

PPP
PPPPP




(2.3)

Otherwise, the output of micro-turbines can be expressed as:
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MTratedMTG PP  (2.4)

D Calculating Power flow of ESS

The overall power flow of the islanded microgrid system [51] is shown in Figure 2-6.

Considering the switching losses in electronic power systems in microgrid, the

relationship between the power flow in the micro-grid system can be expressed as below:

MTGgESSlossload PPPPP  (2.5)

Where gP is the sum of the output of the WTG and PV systems, Pload is the requirement

of loads, ESSP is power flow in or out of ESS.

2.2.3 Loss Model

Figure 2-7 Survey of different fragile components responsible for converter failure [48]

As shown in the pie chart above, the least reliable components in electronic power

systems are semiconductors and capacitors, especially in islanded micro-grid, their

performance will have influence the quality of power supplied to customers directly.

When obtaining the current, voltage and power of the devices provided by the power
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model, then a loss model is used to calculate the power loss of the components. The

power loss of the VSC is the sum of power loss of diodes and IGBTs. The loss of each

component (IGBT or diode) could be calculated based on the output power, voltage,

current, frequency of switch of the wind turbine, PV modules or energy storage system,

micro-turbine generator [52]. The power loss of each component in VSC can be

expressed as follows respectively [52], [53]:

diode
dioderefdioderef

DC
diodediode E

IV
IVfMIRMIVP

,,

2 cos
3

/
8
1)cos

8
/

2
1( 






 








(2.6)

offon
IGBTrefIGBTref

DC
IGBTIGBT EE

IV
VfMIRMVP 






 

,,

2 cos
38

1)cos
82

1(








(2.7)

As shown in the loss model of each component, DCV represents DC link voltage;� is the

modulation index; and � is the angle between the current and voltage, � is the peak phase

current. For each diode, diodeR is the conduction resistance and ������ is the rated

switching loss; the ������ is the voltage drops across the diode; dioderefV , and dioderefI ,

are the reference commutation current and voltage respectively. For each IGBT, IGBTR is

the conduction resistance and IGBTR are the conduction resistance; IGBTV is the voltage

drops across IGBT; dioderefV , and dioderefI , are the reference commutation voltage and

current of diode respectively; onE and offE are the power losses of IGBT during the

switching operation. I can be expressed by[49]:
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Where Pt is the power output of the generation systems or energy storage systems and Ul

is the line-to-line voltage for each subsystem on the AC side. The total power loss of the

converters can be expressed as below:
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2

1 ,
1

1 ,
N

j jdiode
N

i iIGBTloss PPP (2.9)

N1 and N2 represents the number of IGBTs and diodes in the converter.

2.2.4 Thermal Model

The power losses of devices could be utilized as input for the thermal model to obtain

thermal factors of devices. This model is to predict thermal factors like junction

temperature and temperature variation and detect thermal cycling of devices. Two factors

like junction temperature and temperature variation are critical factors to semiconductor

devices [52]. The temperature rise in the converter (inverter and rectifiers) can be

calculated as below [49]:

losshaambientule PRTT mod
(2.10)

where ambient temperature is represented by ��݉���݅� and thermal resistance from

ambient temperature to heatsink is represented by ���.
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2.2.5 Component Reliability Model

Using the component reliability model, several reliability metrics, like failure rate,

reliability, mean time to repair and availability can be calculated. Take the different

factors obtained from the models analyzed in above sections. Based on these basic

metrics, other reliability indicators can also be obtained. In the failure rate model of this

paper, the hourly failure rate is regarded as unit. The failure rate model of each

component in electronic power systems could be expressed as below, different basic

factors can be referenced in [54].

    RHMTCTH RHMTCTHinducedprocessPM  (2.11)

In which ���, ��犀, ��, ��� are the basic failure rate influenced by temperature, thermal

cycling, mechanical and humidity respectively. In addition, the Π�� is manufacturing

factor and Π�����晦晦 can represent the aging quality of the component during its lifetime,

and Π�݅����� is the factor reflecting its overstress ability.ΠTH and ΠTC are the thermal

factor and thermal cycling factors, respectively, and they can be expressed as
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in which ∆T = 10℃, ∆Tcycling is the temperature variation in a phase and Tmax is the

maximum temperature in a phase.

2.2.6 System Reliability Model

After the analysis above, the reliability metrics of components are obtained. Based on

component-level reliability metrics of devices and using the system-level reliability

method which considers the interaction among components and subsystems to give a

systematical model for microgrid.

2.3 Conclusion

In the first section of this chapter, the topology which is selected as one stage conversion

system for DC sources (PV modules and Battery banks) and the topology which is

selected as AC/AC conversion system composed of bidirectional PWM rectifier for AC

sources (wind generators and micro-turbine generators) and one VSC (Voltage Source

Converter) inverter are illustrated.

In section 2.2, an outline of systematical operational failure rate model, which is

composed of operational conditions, power output model, converter model, loss model

and thermal model, is presented. In this systematical model, operational condition is to

determine different stresses of power electronics. The loss model is to calculate the

power loss of power converters based on the operational conditions of power electronics.

Based on the operational factors, the operational reliability models of components can be

built. Finally, combined with proposed system level reliability assessment method, the
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reliability models of each subsystem and overall system can be constructed. Since the

reliability evaluation results is a criterion in design stage and provides a guidance on

reliability improvement. Then the three commonly-used methods to improve reliability of

power electronic systems are introduced in section 2.3. Last part is the conclusion of this

chapter.

Chapter 3 An operational reliability model and improvement

of islanded micro-grid

3.1 Introduction

This chapter is organized in the following way. Based on systematical failure model of

power electronics systems proposed in section 2.2. In this chapter, the reliability of the

power electronics systems in islanded microgrid are evaluated. The reliability models of

PV system, WTG system, MTG system and ESS system are introduced in section 3.2. In

section 3.3, some tests have been done to verify the model. The introduction of HESS

(hybrid energy storage system) and to enhance the reliability performance of microgrid

by replacing the conventional BESS (battery storage system) with HESS, then

theoretically analysis will be introduced in section 3.4. The conclusion is given in section

3.5.
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3.2 Operational failure model of subsystems in island microgrid

3.2.1 Operational failure model of renewable generation system

For the model illustrated in figure 3-1, first the hourly WTG/PV output is calculated

based on the meteorological statistics. Then the electrical stresses for power electronics in

subsystem can be obtained, combining them with the physical configuration and

parameters. Then the total power loss of the power electronics is calculated based on loss

model and the temperature rise over the converter can also be obtained based on thermal

model. Based on operational factors, combined with system level reliability assessment

method, the converter operational failure rate can be obtained. In one words, if we input

the hourly meteorological statistics into this model we can calculate the real-time failure

rate of power electronic system.

Figure 3- 1 Operational converter outage model for WTG/PV system

3.2.2 Operational failure model of MTG system or ESS system

For the model illustrated in figure 3-2, when there is mismatch between the power

supplied by renewable generation systems, energy storage system and loads requirement,

the hourly power flow of MTG and ESS is calculated. Then the total power loss of the

power electronics is calculated and the real-time temperature over the converter is also
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calculated based on thermal model [52]. Finally, the converter operational failure rate can

be calculated.

Figure 3- 2 Operational converter outage model of ESS or MTG

3.3 Model Test

After constructing the time-varying operational failure model of subsystems in island

microgrid, in order to verify the models. Some tests have been done in this section.

3.3.1 Model Test of Wind turbine generation system

The rated output of this wind turbine is 1000 kw, when increasing the wind speed linearly,

the output of wind turbines can be observed in figure 3-3. In the first period, before the

V (wind speed) reaches the ciV (cut-in speed), the output of wind turbines is 0. In the

second period, when V ranges from the ciV to rV (rated speed) ,the output shows an

upward trend. In the third period, when V exceeds rV , the output power of wind

turbines remains at rated power.
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Figure 3- 3 Relationship between wind speed and output

Taking hourly temperature and wind speed for one day in 2010 summer in Milwaukee as

inputs and meteorological statistics are shown as below:

Figure 3-4 Meteorological factors during the day

As we can see in the Figure 3-4, the wind speed reaches its peak point around 13:00 and

the ambient temperature reaches its peak point around 15:00. It is obvious that the wind

speed is fluctuates more frequently than the ambient temperature.
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Figure 3-5 Real-time wind power output

As shown in the Figure 3-5, power output of wind turbines reaches the peak value and

remains at rated power from 8:00 to 18:00, since the wind speed start to increase from

8:00 at 12m/s and maintain its increasing trend until 13:00, then begin to drop but is still

above 12m/s. Based on the real-time meteorological statistics, the operating failure rate

can be calculated as below:

Figure 3-6 Operational converter failure rate of WTG

As is shown in Figure 3-6, the failure rate reached the highest point around 15:00 and

reached a minimum point at 23:00. In the meantime, the ambient temperature is almost in

lowest level and the wind speed reached its minimum point at 9. It is obvious that the

operational failure rate curve varies similarly as the ambient curve. Take the interval from

13:00 to 15:00 as an example, the ambient temperature is increasing, while the wind

speed is decreasing. The results show that the operational failure rate of WTG from 13:00

to 15:00 is increasing and reaches highest point at 15:00.
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3.3.2 Model Test of Solar power system

Taking the real-time meteorological statistics as inputs, the power of PV arrays can be

calculated. The hourly temperature and solar illumination for one day in summer 2010 in

Milwaukee is used to verify this model and are shown as below:

Figure 3- 7 Hourly ambient temperature and solar illumination in Milwaukee

As shown in the figure above, the ambient temperature reached its peak at 13:00 and the

solar illumination reached its peak at 15:00. It is obvious that the solar illumination

fluctuates more violently than the ambient temperature. Based on the real time

meteorological statistics, the hourly output of PV arrays can be obtained. As shown in the

Figure 3-8, the solar power output reaches its peak at 13:00, because the solar

illumination reaches their peak value in the meantime.
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Figure 3- 8 Real-time solar illumination power output

Then the operational failure rate of PV arrays can be calculated as below:

Figure 3-9 Operational converter failure rate in PV generation

As shown above, the failure rate reached a minimum from 0:00 to 4:00 and 23:00 to

24:00, reaching the highest point around 13:00. Also, the solar illumination reached its

peak at 13:00. Observing the curves above, it shows that the operational failure rate curve

is similar to the solar illumination curve.

3.4 The reliability improvement in sub-system level

For islanded microgrid with high penetration of renewable energy storage systems,

because of the intermittent and uncertain characteristics of generation system, the system

has unstable supply if without the energy storage systems [55], and it also brings big

challenges to reliability issues when islanded microgrid have to supply necessary loads
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like governmental or residential loads, the energy storage system is critical and have

close relationship with reliability performance of system. Combining the reliability

improvement methods introduced in section 2.4 with the development of ESSs, the

characteristics and configuration of HESS to improve reliability performance in

subsystem level will be introduced in this part.

3.4.1 Development of Energy Storage Technology

In island microgrid , when there is a mismatch between power supplied by generation

systems and loads requirement, the ESS is to balance the power supply [56]. The ESS

acts as a transfer station to store the remaining energy and supply the system when

needed. Table 3-1 summarizes the different storage units and their key features

respectively. In other words, the power flowing in the ESS components varies greatly

based on the operational generation system and loads demand. In addition, the power

flow of storage units can be divided into high-frequency parts, such as great increase or

increment in loads demand or low-efficiency caused by natural behaviors [57]. The

former one generally requires storage units have ability to response fast, while for

low-frequency power flowing, the storage elements should have high-energy density.

Energy storage system
Energy
density

Power
density

Cycle
life

Response
time Cost

Chemical battery high low short medium low

NaS battery medium low short slow medium

flywheel low high long fast high

Super-capacitor low high long fast medium
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Superconducting
magnetic energy storage medium high long fast high

Table 3-1 Characteristics of different ESS elements [55]

Batteries is widely applied in hybrid or electric vehicles, and even in utility power

systems [57]. However, this application has a problem, it is difficult to recover from fast

power fluctuations, and this process will reduce the batteries’ lifetime. On the one hand,

according to Table 3-1, they all do not have the characteristics of optimal response to

high-frequency and low-frequency power exchange at the same time [58]. Compared

with batteries, energy is stored in a super-capacitor by static charging or discharging

instead of an electro-chemical process in a battery, thus, the super-capacitor has a higher

power density and responses faster than the battery, but it lasts shorter than the battery.

3.4.2 Improvement of island microgrid from subsystem-level

From the analysis above, combining different energy storage devices to form a HESS

(hybrid energy storage system) can have better performance [59,60]. This method

combines the advantages of different storage technologies and improve the reliability of

power system [59]. Battery-supercapacitor storage system stands out in numerous hybrid

energy storage system because of their availability, similarity in operating principles,

relatively low cost, and mutual restraint. In islanded microgrid, when the power

generated by generation systems exceeds the demand of loads, the remaining power will

be stored in the storage units. Otherwise, converters will transfer the energy from the

storage units to the loads when required.
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In HESS, The topology provides more control flexibility compared to the topology which

connects the storage units directly to the voltage bus [6]. A bidirectional DC-DC

converter is embedded to construct two stage electronic system, and it has two main

advantages: (1) to accomplish the power flow between the batteries and the inverter’s DC

bus (2) to control the dc link voltage[55]. The topology for HESS is shown in figure 3-10.

From the existed work, although the HESS is widely applied in several applications, the

reliability assessment considering the operational failure rate of power electronic devices

hasn’t been studied. Thus, this paper will analyze the reliability improvement based on

islanded microgrid with HESS. This section focuses on analyzing reliability improvement

of HESS in subsystem level.

Figure 3-10 A typical grid converter topology of HESS

Based on the model of HESS shown in Figure 3-10, from the perspective of

component-level, the addition of super-capacitor greatly decreases the electrical stresses

of battery. Because the battery has low power density, if it is applied in the condition
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which always being charged or discharging suddenly, the failure rate of battery will

increase greatly, thus, decreasing the reliability performance of ESS. Some advantages of

the HESS are listed: prolong the lifetime of batteries; fast energy storage; energy storage

for intermittent sources; a smaller environmental impact. From the perspective of

system-level, the parallel configuration provides a backup leg for ESS, thus improving

the reliability in subsystem level.

3.5 Conclusion

This chapter establishes operational failure model for power generation systems and

energy storage systems respectively in section 3.2. It analyzes the operational conditions

of power electronics, including the influence of meteorological factors and different

stress factors. Then the systematical failure model for each subsystem is established.

In the systematical failure model, the power model obtains the power flow of generation

systems and the energy storage system to obtain the electrical stresses of power

electronics. Based on the operational conditions of power electronics, the power loss of

each component and the temperature variation can be obtained. From the perspective of

reliability, the components within the power electronic converter can be regarded as a

series connection. To verify these models, the tests have been done in section 3.3, as

shown in the results, the failure rates of power electronic systems in WTGs have close

relationship with the real-time temperature; the failure rates of power electronic systems

in PVs has closely relationship with the real-time solar illumination.
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Based on the reliability improvement methods introduced in section 2.3. To improve the

reliability performance of microgrid, the development of energy storage system and

reliability improvement of islanded microgrid from subsystem-level are introduced in

section 3.4.

Chapter 4 Case Study

4.1 Introduction

In this chapter a low voltage benchmark system is studied and analyzed. The remainder

of this chapter is organized in the following way. In section 4.2, topology of this system is

simplified to several fault trees by using network reduction method and fault tree analysis,

then combining the logical relationship among events to calculate the failure rate of each

subsystem. Finally, take the operational failure rate and repair rate as inputs to the

short-term outage model to get the reliability indexes of overall system. Then the

components in the system and their reliability parameters referenced in [8] will be

introduced in section 4.3. The algorithm steps of reliability assessment of system are

illustrated in section 4.4. Last part 4.5 is the conclusion.

4.2 Modified benchmark 0.4 kV test system

The modified benchmark 0.4 kV test system referenced from [20] is carried out as a case

study. The proposed system is consisted of 11 nodes. The load profile of each load point

and parameters of the transmission lines are provided in [20]. This distribution system is

composed of 12 feeder lines connected between loads and distribution generation. In
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addition, there are tie switches in L4 and L11, when microgrid work properly, the L4 and

L11 are open circuit. Distribution generations is composed of PV, WTG, ESS and MTG

system. When there are all uncontrollable micro-sources like PVs and WTGs supplying

in this islanded microgrid. The microgrid system is composed of three PVs, one WTG

system and one ESS system as shown in figure 4-1. The rated output and location of

renewable energy generation system and energy storage system can be referenced in

[20,21] which is listed in table 4-1.

Figure 4- 1 Modified benchmark 0.4 kV test system

Node.No Types of  S Grate/kW

3 Photo-voltaic 7750

5 Photo-voltaic 6600

6 Wind Turbine generator 1000

8 Energy storage 1000

10 Photo-voltaic 3000
Table 4-1 Location and capacities of microsources
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Firstly, based on meteorological statistics (hourly wind speed, ambient temperature and

solar illumination) of a given day in summer 2010 in Milwaukee and reliability

evaluation methods introduced in chapter 1, the reliability metrics from component level

and systematical level can be evaluated. At the system level, the FTA method combined

with network conduction method are applied to the reliability evaluation of power

electronic systems of subsystems. Then the obtained reliability metrics are applied to

short-term outage model to evaluate the reliability of islanded microgrid from customers

perspective. The overall system can be simplified to the Figure 4-2 as below.

Figure 4- 2 Fault tree for improved benchmark 0.4 kV test system

As shown in above figure 4-2, the causes of loads outage can be the failure of DGs or

transmission subsystem. For the failure of DGs, the causing event can be any failure of

four subsystems, which consists of converters, generators and storage units. For the

converters, the failure caused by control system is also considered.
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APV system and conventional BESS

As shown as below, the failure of PV system regarded as top event can be caused by four

sub-events (the failure of PV modules, DC-link capacitor, control system, inverter or

breaker).

Figure 4- 3 Fault tree for PV system

For subsystems in microgrid, the systematical failure rate can be expressed by:

kermod/ breacontrolulesPVcapacitorinverterESSPV   (4.1)

BWTG andWTG system

As shown as below, the failure of WTG system regarded as top event can be caused by

five sub-events (Wind turbine generator, DC-link capacitor, rectifier, inverter, breaker or

control system).
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Figure 4- 4 Fault tree for wind turbine generation system

For subsystems in microgrid, the systematical failure rate can be expressed by:

generatorcapacitorrectifierinverterbreaMTGWTG   ker/ (4.2)

C ESS system

As shown in Figure 4-5, the failure of BESS regarded as top event can be caused by five

sub-events (battery modules, bi-directional DC/DC converter, breaker and control failure).

Then the operational failure rate of ESS can be expressed as below:
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Figure 4-5 Fault tree for battery energy storage system

ker/ breacapacitorbatteriesDCDCBiinverterBESS    (4.3)

To improve the reliability performance of microgrid in a subsystem-level, replacing the

one stage battery storage system with parallel hybrid energy storage system, the failure of

HESS can be caused by three sub-events and the fault tree is constructed in Figure 4-6,

then the operational failure rate of HESS can be expressed as below:
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Figure 4- 6 Fault tree for hybrid energy storage system

kerbreacapacitorHESSinverterHESS   (4.4)

No. Types No. Types

m1-m6,m13-m18,m25-m30

m53-m58,m41-m46 IGBTs

m67,m71

m39 Inductances

m7-m12,m19-m24,m31-m36

m59-m64,m47-m52 Diodes
m68,m72
m40 capacitors

m37,m38,m65,m66,m69,m70 MOSFETs
Table 4-2 components in fault trees



47

4.3 Component parameters

This thesis focuses on studying the influence of operational failure rates of power

electronics due to the volatile and intermittent renewable generation on microgrid

reliability, and the failure rates of wind turbine, PV arrays and battery are chosen

according to statistical databases [20][21].

A. Feeder line

As shown in figure 4-1, there are 12 feeder cables in this islanded micro-grid, the

parameters are referenced in [20] and listed in table 4-3.

No.  kmR /  kmX /  kmnFC /  kmL

L1 0.579 0.367 9.93 0.282

L2 0.164 0.113 413 0.442

L3 0.262 0.121 405 0.061

L4 0.354 0.129 285 0.056

L5 0.336 0.126 343 0.154

L6 0.256 0.130 235 0.024

L7 0.294 0.123 350 0.167

L8 0.339 0.130 273 0.032

L9 0.339 0.133 302 0.077

L10 0.367 0.133 285 0.033

L11 0.423 0.134 310 0.049

L12 0.172 0.115 411 0.130
Table 4-3 Parameters of Feeder lines

B. Load model
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In addition, the loads are divided into two types: residential and commercial loads. The

related hourly variable load demand and number of customer at each point are referenced

in [20] and listed in Table 4-4.

Node.
No Residential commercial

Load value/kVA
Number of
customers Load value/kVA

Number of
customers

1 7.5+j*1.55 50 2.5+j*0.50 2

2 ____ ____ ____ ____

3 2.76+j*0.69 50 2.24+j*1.39 2

4 4.32+j*1.08 50 —— ——

5 7.25+j*1.82 50 —— ——

6 5.5+j*1.38 50 —— ——

7 ____ ____ 0.77+j*0.48 2

8 5.88+j*1.47 50 —— ——

9 —— —— 5.74+j*3.56 2

10 4.77+j*1.20 50 0.68+j*0.42 2

11 3.31+j*0.83 50 —— ——

Table 4-4 Parameters of loads

B. Parameters of power electronics in subsystems

The main parameters for electronic power systems in this tested islanded microgrid are

shown as below:
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parameters values parameters values

��th� 1.54V ������ 0.39J

��th� 0.84×10�tΩ � 690V

� 3000Hz �1 6

��݅ 0.50J �� 6

���� 0.57J ��� 0.454°C/W

��犀 1100V Π�� 0.16

������th� 1700V Π�����晦晦 0.4

������th� 2400A Π�݅����� 7.12

�� 563.4V ��� 0.359

��� 690V ��犀 0.523

������ 0.81V �� 0.9

������ 1.5Ω ��� 0.028
Table 4-5 Parameters of power electronics in subsystems

For the converters in subsystems in islanded microgrid, the real-time failure rate can be

calculated based on the model proposed in chapter 3. To calculate the reliability indices,

the repair rate and failure rate for modules and breaker are provided in Table 4-4 which

are referenced in [20].

Types Failure rate λ Repair rate r

Wind turbines 2.5 3

PV arrays 5 3

Batteries 2 5

breakers 8 2
Table 4-6 Reliability parameters of Component

In fault trees, assuming the components in one subsystem are in series connection, in

another word, when one component in subsystem fail, the subsystem can’t realize its
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function. Considering the effect of the real-time hourly meteorological factors, when

calculating the operational failure rate. The hourly meteorological factors of one day in

the Summer of 2010 in Milwaukee were used and given in figure 4- 4 and the figure 4- 5.

Figure 4- 7 Hourly ambient temperature and wind speed

Figure 4- 8 Hourly solar illumination
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4.4 Simulation

4.4.1 Solution Process

The solution process is shown in Fig.4. 7 and related steps are illustrated as follow.

Step 1) Initialization and analyze power flow in microgrid.

Step 2) Based on the power flow and loss model, calculating the power loss of power

electronic devices, then using the thermal model to get the operational rate of

components.

Step 3) Identifying failure events which contribute to outage of loads and construct fault

trees, then calculating the reliability indices in system level.

Step 4) Calculating average outage times and failure rate of load points, as explained in

short term outage model.

Step 5) Calculating the reliability indices of load points mentioned in Chapter 1.

Step 6) Checking whether all intervals have been analyzed.

Step 7) While “No”, repeating the process; if “Yes”, evaluating the short-term reliability

indices of microgrid system based on functions mentioned in Chapter 1.
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Figure 4-9 Proposed operational reliability evaluation procedure

4.4.2 Simulation results and analysis

As shown in figure 4-8 and 4-9, it can be found that the peak of the wind speed is around

13:00 and the peak of the ambient temperature is around 15:00. Based on the proposed

systematical failure rate model in chapter 3, the operational failure rate model for each

component can be obtained. Combined with proposed reliability assessment method in

chapter 1, the operational failure rate for the converters of subsystems in islanded

microgrid system is calculated. The operational failure rate of the subsystems are

obtained as below:
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Figure 4-10 Failure rates of power electronics for PV systems

From the Figure 4-11, it can be found that the failure rates of three PV systems have close

relationship with the solar illumination. Take the interval from 9:00 to 13:00 as an

example, the solar illumination increases greatly from 9:00 to 13:00 but decreases from

13:00 to 15:00, while during this period ambient temperature it increase linearly, the

failure rate reaches peak point around 13:00 and decreases after that point. The

operational failure rate of WTG has close relationship with ambient temperature, even the

wind speed begins to decrease, the failure rate still increases because of the rise of

temperature from 13:00 to 15:00.

A. Considering the operational failure rate of electronic power system

To verify the proposed model, two cases are studied. For case 1, the operational failure

rates of power electronics are taken into consideration, while the islanded microgrid in
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case 2 dose not. Both of them use the short-term model to calculate the reliability indices

shown as below.

Conditions
Short-term
outage model

Operational
condition

Microsources
included

Case 1 Yes Yes Yes

Case2 Yes No Yes
Table 4-7 Two cases under different conditions

Comparing case 1 and 2, case 1 ignores the impact of power electronics failures on the

system reliability index, and only considers the influence of operating conditions on the

impact of micro-sources’ fluctuating supply on the system reliability index. As shown in

Figure 4-12, the red line represents the reliability index of case 2, and the blue line is

result of case 1. The reliability indices of case 1 are all greater than case 2. When

considering the operational impact of power electronics, the reliability performance of

microgrid shows negative. In addition, the curves of three indices are similar to each

other. It can be seen that in case 2, with the empirical failure rates adopted, it can’t reflect

the effect of the operational condition on the failure rate of the devices. Since the

microgrids’ operational conditions are changeable. The failure rate of power electronic

devices, and the parameters such as component failure rate, will directly affect the

calculated reliability index of the load points and the reliability of the system.
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Figure 4-11 Reliability indices of two cases

B. Verify the proposed reliability improvement method

After building the energy storage system operational failure model, to do research on

impact of different types energy storage system on the islanded microgrid and verify the

effective of HESS, case 3,4 and 5 are studied. First, BESS (battery energy storage system)

without Bi-DC/DC converter model is built in case 1. Then adding Bi-DC/DC converter

model and building the operational failure model of BESS in case 3. To improve the

reliability performance of the ESS in subsystem level, applying the HESS to islanded

microgrid and build the operational failure model of HESS in case 4. The hourly indices

of these cases are calculated and illustrated as below.

Conditions
Short-term
outage model

Operating
condition

Microsources
included ESS types

Case 1 Yes Yes Yes BESS

Case3 Yes Yes Yes
BESS with
Bi-DC/DC
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Case 4 Yes Yes Yes HESS
Table 4-8 Three cases under different conditions

Indices SAIFI SAIDI ENS

Case 1 272.3503 999.6307 122.9010

Case3 313.8186 1029.7 122.9794

Case 4 299.9514 974.2912 115.2170
Table 4-9 Three reliability indices under different conditions

From the results shown in the table 4-9, compare the case 3 and case 4, the reliability

indices decrease obviously, which means microgrid with HESS shows better performance

than microgrid with BESS. When HESS is applied in islanded microgrid. In other words,

this approach adds redundant path to energy storage system, when the batteries or

super-capacitors have failure, the energy storage system can still achieve its partly

performance to supply to customers. Thus, the comparison of two cases verify the

reliability improvement method mentioned in Chapter 3.

Compare case 1 and case 3, the addition of bidirectional DC/DC converter increase the

operational failure rate of ESS, because in these two cases, the failure rates of batteries

are assumed as same value. In reality, the bidirectional DC/DC converter will decrease

the electrical stresses and amount of battery, thus the failure rate of batteries can be

smaller. Thus, finding a balance between the adding redundancy to system and increase

of failure rate caused by power electronics is of great significance. From these results, it

can be seen that the large-scale application of power electronic devices also brings new
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hidden danger for the reliability of microgrid systems, and improving the reliability of

high-power converter circuits is an urgently needed part of the microgrid technology.

C. Considering the different types of micro-sources

This section explains the different types of micro-sources’ impact on the reliability

performance on the island microgrid. Considering the PV systems and WTG system as

uncontrollable generation system and MTG system as the controllable generation system.

Table 4-10 Three cases under different conditions

Table 4-11 Three reliability indices under different conditions

For the 1st condition, when the islanded microgrid is fully supplied by renewable energy

generation systems (WTG system, PV system), the reliability indices for the whole

system were calculated.

Conditions
Short-term
outage model

Operating
condition

Microsources
types

Case 1 Yes Yes 3PVs+1WTG

Case5 Yes Yes all PVs

Case 6 Yes Yes all WTGs

Indices SAIFI(total) SAIDI(total) ENS(total)

Case1 272.3503 999.6307 122.9010

Case 5 226.3619 814.8822 122.6831

Case6 298.9334 1170.8 123.7309



58

As shown in Table 4-11, the reliability index of case 5 when the system is fully supplied

by PV systems, compared with case 1, SAIDI, SAIFI decrease while the ENS increase.

Compared with case 1, the PV system shows better performance because of the

operational failure rate of PV system (one stage) is smaller than WTG system (two

stages). However, When the system is fully powered by all WTG systems in case 6, the

reliability performance of the system decreases greatly since the SAIDI, SAIFI and ENS

all increase. Because of the largely applied power electronics, the impact of power

electronics failures on the reliability index is negative.

For the 2nd condition, to compare the reliability performance of microgrid with

controllable generation system, replacing WTG system or PV system by MTG systems

micro-turbine generation system in case 7 and case 9. Then the comparison is done and

reliability of different cases are listed in below.

Conditions
Short-term
outage model

Operating
condition

Microsources
types

Case 7 Yes Yes 1GT+3PV

Case8 Yes Yes 1GT+2PVs+1WTG

Case 9 Yes Yes 1GT+3WTGs

Table 4-12 Three reliability indices under different conditions
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Table 4-13 Three reliability indices under different conditions

Case 7 replaces the WTG system with MTG system of case 1. From the results shown in

Table 4-13, the microgrid in case 7 shows better performance, the three indices all

decrease greatly, especially the ENS. Because of the MTG system has the same topology

as WTG system, the effect of operational failure rate is similar. In addition, the power

output can be controlled based on the requirement of loads and rated power of MTG is

greater than WTG system. Based on case 7, replacing one PV system with WTG system,

the resulting indices SAIDI and SAIFI of case 8 increase because of the impact of

electrical devices is greater. Because the WTG show better performance in power supply,

ENS decreases.

Based on case 6, replacing the WTG system with MTG system to get case 9, as analyzed

in transformation from case 1 to case 7, the microgrid has better performance, the

reliability indices all decrease. From the analysis above, the types of micro-sources

should have great influence of reliability indices of system.

4.5 Conclusions

Indices SAIFI(total) SAIDI(total) ENS(total)

Case7 194.7459 868.1 118.1624

Case8 201.5688 923.7063 120.4036

Case9 256.1621 1061.4 122.3541
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In this chapter, the first, second and third section have briefly introduction for a modified

0.4kV islanded microgrid system, focusing on the configuration, parameters of different

components, loads requirements. Then, the simplified fault tree for overall system and

each subsystem are built and analyzed.

To verify the reliability improvement method proposed in Chapter 3, applying the HESS

in islanded microgrid system and doing the comparison, the results show that combined

with the operational failure rate model of the converter, reliability indices can reflect the

reliability of the islanded microgrid system more accurate. In addition, with the HESS

replacing the conventional BESS, the islanded microgrid has better reliability

performance. Then, to study the effect of different types of micro-sources, the reliability

indices for different the tested cases were calculated based on the solution process and

compared in section 4.4.

Chapter 5 Sensitivity Analysis

Based on the case study above, to evaluate the influence of the different factors, a set of

sensitivity analysis will be done considering the following aspect:

1). The effect of wind turbine parameter setting;

2). The effect of PV parameter setting;

3). The effect of ESS capacity.

4). Yearly operational failure rate characteristics;
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For these further sensitivity tests, based on case study in this paper to do the system-level

reliability metrics evaluation and analysis.

5.1 The effect of wind turbine parameter setting

The parameters of the wind turbines can affect the output power of wind turbines

generation and then effect the reliability metrics of the components, thus having influence

on failure rate of electrical power systems. In this section the effect of three parameters

on wind turbines performance are studied. First, based on the hourly time-varying wind

speed and temperature in one day in spring. Taking one wind turbine generation as an

example and change its one parameter while keeping other two parameters as the same.

The case study in different conditions are illustrated as below.

A. Cut-in speed

To study the impact of ciV (cut-in speed)on reliability performance further, setting the

ciV as different values from 2.5m/s to 4.5m/s in one case. The setting parameters are all

less than the rV (rated wind speed), the average hourly wind generations are shown in

figure 5-1.
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.

Figure 5- 1 Average hourly wind generation

As we can see above, it is obvious that when increasing the ciV , generation of wind

generators decreases, and the failure rate of the converter was also calculated:

Figure 5- 2 Hourly converter failure rate

As shown in Figure 5-2, the ciV has effect on the operational failure rate of the converter.

From the 0 to 11:00, the effect is more obvious, because during this period, the wind

speed is less than rated speed, so the growth of output of WTG is related to wind speed.

From the 11:00 to 14:00, the effect is slight. With the cut-in speed increasing, the power
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generation ability is weakened, which means the power supplied decreases, the electrical

stresses decrease, thus the failure rate is lower. The reliability indices of the overall

system are calculated as below:

Indices SAIFI(total) SAIDI(total) ENS(total)

2.5 274.1065 1003.1608 122.8857

3 273.6183 1002.7884 122.8928

3.5 272.3503 999.6307 122.9010

4 272.2335 999.2166 122.9205

4.5 272.1020 999.1627 122.9515
Table 5-1 Daily reliability indices for different cut-in wind speed

From the reliability metrics shown in table, when the cut-in speed is increasing, as shown

in Figure 5-1, the generation of WTG decreases, so the ENS increases lightly. In addition,

the reduction of failure rate results in reduction of SAIDI and SAIFI slightly.

B. Cut-out wind speed

To study the impact of coV (cut-out speed) on reliability performance further, setting the

coV as different values from 14m/s to 25m/s in one case. The setting parameters are all

greater than rV , the average hourly wind generations are shown in Figure 5-3, it is

obvious that when increasing the coV , generation of wind generators decreases.
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Figure 5- 3Average hourly wind generation

Figure 5- 4 Hourly converter failure rate

As shown in Figure 5-4, coV has slight effect on the operational failure rate of the

converter. With the coV increasing, the power generation ability is improved at first

parameter changing, then stay as the same. which means the power supplied increases,

the electrical stresses increase, thus the failure rate is a little greater. The reliability

indices of the overall system are calculated as below:
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Indices SAIFI(total) SAIDI(total) ENS(total)

14 221.3102 821.4992 121.0392

16 242.3338 893.0067 120.1647

18 266.9020 976.1993 120.5487

20 272.3503 999.6307 122.9010

25 272.3503 999.6307 122.9010
Table 5-2 Daily reliability indices for different cut-out wind speed

From the reliability metrics shown in Table 5-2, when the cut-out speed is increasing, as

shown in Figure 5-3, the generation of WTG increases, the ENS decreases lightly. In

addition, the growth of failure rate results in growth of SAIDI and SAIFI slightly.

C. Rated wind speed

To study the impact of rV (rated wind speed) on reliability performance further, setting

the rV as different values from 11.5m/s to 14.5m/s in one case. The setting parameters

are all in the range between the ciV and coV , the operational failure rates of WTG system

in different conditions are shown in Figure 5-5.
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Figure 5- 5 Converter failure rate

As shown in Figure 5-5, rV has great effect on the operational failure rate of the

converter, especially from 0 to 11:00. With rV increasing, the power generation

decreases, which means the power supplied decreases, the electrical stresses decrease,

thus the failure rate is lower. The reliability indices of the overall system are calculated as

below:

Table 5-3 Daily reliability indices for different rated wind speed

Indices SAIFI(total) SAIDI(total) ENS(total)

11.5 280.6954 1024.7 122.8603

12.5 272.3503 999.6307 122.9010

13.5 266.1047 984.2029 122.9527

14.5 263.1047 978.1207 123.1008
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From the reliability metrics shown in table 5-3, when rV is increasing, the generation of

WTG increases and the ENS decreases lightly. In addition, the growth of failure rate

results in growth of SAIDI and SAIFI slightly.

5.2 The effect of PV parameter setting

For PV arrays, the parameters like rated temperature and rated solar illumination will also

affect output of the PV generation and then affect the operational condition of converters,

thus having influence on failure rate of power system. In this section the effect of three

parameters on PV arrays are studied. In this section the effect of each factor is studied.

A. Rated temperature

To study the impact of rated temperature on reliability performance further, setting the

rated temperature of four arrays as different values 16,20,25,30 centigrade respectively.

The average hourly solar generations are shown in Figure 5-6, when the rated

temperature rises, the generation of PV arrays increases.

Figure 5-6 Average hourly PV generation
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Figure 5-7 Failure rate of PV system at different Erated

As shown in Figure 5-7, the rated temperature has great effect on

the operational failure rate of the converter. When increasing this parameter, the output of

PV arrays increases, especially from 12:00 to 14:00, the effect is more obvious, because

during this period, the solar illumination is stronger, so the output of PV arrays increases

greatly. While from the 0 to 9:00. the effect is slight. With the solar illumination gets

stronger, the power generation ability increases. The electrical stresses increase, thus the

failure rate is higher.

B Rated solar illumination

To study the impact of rated solar illumination on reliability performance further, setting

the rated solar illumination of four arrays as different values respectively. The average

hourly solar generations are shown in figure 5-8, when increasing rated solar illumination,

the generation of PV arrays decreases.
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Figure 5-8 Average hourly PV generation

The rated solar illumination will affect the PV generation, then the PV generation will

affect the failure rate of electrical devices. Based on the hourly solar illumination for one

day, the hourly failure rate of PV system was calculated as below:

Figure 5-9 Converter failure rate

As shown in Figure 5-9, when increasing rated solar illumination, the output of PV arrays

decreases greatly, especially from 9:00 to 15:00, the gap between the curves is bigger,

because during this period, the solar illumination is stronger and reaches peak point at

13:00, so the output of PV arrays increases greatly. While from the 0:00 to 9:00. the
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effect is slight. When the solar illumination becomes stronger, the reduction of power

generation is bigger. The electrical stresses decrease greatly, thus the gap between failure

rates of 30ratedS is bigger.

C. Rated generation

To study the impact of rated generation on reliability performance further, setting the

parameters of four arrays as different values respectively. The average hourly solar

generations are shown in figure 5-10, it is obvious that when increasing the rated

generation, the generation of PV arrays increases.

Figure 5-10 Average hourly Generation of PV system at different Grated



71

Figure 5-11 Failure rate of PV system at different Grated based on electronics

As shown in Figure 5-11, when increasing rated generation, the output of PV arrays

increases greatly, especially from 12:00 to 14:00, the gap between the curves is bigger,

because during this period, the solar illumination is stronger and reaches highest point at

13:00, so the output of PV arrays increases greatly. When output of PV arrays increases

greatly, the electrical stresses of devices are heavily, so the failure rate increase when

rated generation get larger.

5.3 The effect of ESS capacity

For islanded micro-grid highly penetrated with renewable energy generation system, the

ESS plays an important role in weakening the uncertain characteristics of renewable

power. To confirm the effect of ESS capacity on system reliability, the capacity of the

battery in energy storage system was adjusted from 500 kW and 1250 kW. As we can see,

with the growth of the battery capacity, the reliability indices also increase.

Figure 5-12 Failure rate of ESS system at different capacity
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When increasing the capacity of ESS, the power flow through power electronics in ESS

gets bigger, thus increasing the electrical stresses of devices, as shown in different curves

in Figure 5-12, the failure rate of larger capacity is larger in general. In addition, the

reliability indices of microgrid also calculated as below.

Figure 5-13 Hourly reliability indices for different capacity

As the results shown as above, when increasing the capacity of energy storage system,

the electrical stresses of power electronics in conversion system increase, thus the failure

rate of this subsystem increases. Thus the value of SAIDI and SAIFI increase in general,

the ENS decrease in general, as shown in above figure, the reliability indices of larger



73

capacity are both higher than smaller capacity from 17:00 to 18;00. Because during that

time, the loads of microgrid is heavy, thus the power flow of ESS is larger, the probability

of loads outage or energy not supplied is larger.

5.4 Yearly operational failure rate characteristics

For islanded micro-grid studied at this paper, to do this analysis, the meteorological

statistics in whole year 2010 in Milwaukee are used.

Figure 5- 14 Ambient temperature in Milwaukee, 2010

Figure 5- 15 Wind speed in Milwaukee, 2010

Figure 5- 16 Solar illumination in Milwaukee, 2010
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As we can see above, the wind speed and temperature have seasonal characteristics. The

wind speed is higher in Spring and Winter and lower in Summer and Autumn, while the

ambient temperature is just the opposite. Solar illumination is stronger around Summer.

In addition, the wind speed fluctuates more violently in the summer and autumn. Next,

then the wind turbines generation and the operational failure rate for the converter

calculated.

Figure 5- 17 Hourly wind generation

Figure 5- 18 Hourly converter failure rate in WTG system

As we can see above, the wind generation reflects the wind speed fluctuation in the

summer and autumn directly and the trend of the hourly generation curve is consistent

with the wind speed. The relatively lower failure rate for the WTG system is from 0th

hour to 2000th hour and from 7000th hour to 8760th hour. Because the conditional factors

like lower wind speed and lower temperature cause less power generation, then the

thermal factor and thermal factor of power electronics are smaller, thus failure rate during
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that time is smaller. The operational failure rate shows closer relationship with ambient

temperature, and it also reflects the fluctuation of the wind seasonally.

Then hourly solar illumination and ambient temperature data in whole year 2010 in

Milwaukee is used and the generation and the operational failure rate of the converter in

PV system are calculated as below.

Figure 5- 19 Hourly solar generation

Figure 5- 20 Hourly converter failure rate in PV system

As shown in above figures, from 2000th to 4800th hour, the solar generation reflects the

solar illumination hourly in general. For the operational failure rate of PV systems, it

shows an upward trend and reaches highest point around 4800th hour. Because of the

strong solar illumination and high temperature around that time. Then it becomes to

decrease after highest point but still show high level from 4800th hour to 6200th hour. The

trend of the hourly converter failure rate curve is consistent with the solar illumination

and it also reflects the fluctuation of the ambient temperature in summer and autumn.
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5.5 Conclusions and future Works

In this chapter, a set of sensitivity tests have been done considering the effect of wind

turbine parameter setting, PV modules parameter setting, battery capacity, and the yearly

meteorologic characteristics. Reliability indices for different conditions are calculated

based on the hourly meteorological statistics of whole year 2010 in Milwaukee. When

changing different parameters of wind turbine generators and PV arrays, the power output

for generation systems change partly. Then it will change the electrical stresses and

thermal factor of devices, thus the operational failure rate has related changes.

The results show that the yearly characteristic is significant, and it is largely affected by

the ambient temperature and solar illumination. The wind speed also has its influences.

The worst system reliability performance is in the period with the highest temperature ,

strongest solar illumination and most fluctuating wind speed in the year. From the

analysis above, to improve the system reliability, adjusting the wind turbine parameters,

PV arrays parameters, and the capacity of the battery appropriately will improve the

reliability performance of microgrids.

Based on above work, future work can focus on the below perspectives: considering the

impact of operational failure rate of storage units; combining climate forecast technology

to evaluate the operational failure rate; study the outage probability prediction for

different loads points; establishment of operational failure rate model in other

applications.
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Chapter 6 Conclusion and future work

In this thesis, the operational reliability for the islanded microgrid system is studied. The

reliability indexes for a modified 0.4 kV islanded benchmark systems are evaluated.

First, based on the operational model, the time-varying failure rate of components can be

calculated. Combing the FTA method and Network reduction method to simplify system

to several subsystems. For each subsystem, the operational failure model is built. With

meteorological factors varying, the failure rate of power electronic systems will have the

corresponding change. For the failure rate of the converter in WTG system, the effect of

ambient temperature is very significant; For the failure rate of the converter in PV system,

the effect of solar illumination is very significant; For the failure rate of the converter in

ESS and MTG system, the effect of power flow is very significant. And the outage is

more likely to happen during the daytime because of the fast wind speed, strong solar

illumination or larger power flow for system. Based on the operational failure rate of

components, the time-varying failure rate of overall system can be obtained. By using the

short-term outage model, the reliability indexes for system can be evaluated. Then the

effect of power electronics on reliability have been proved in simulation, when

considering the operational failure rate, the performance of system becomes worse.

Then, to improve the reliability of system, replacing the conventional BESS to HESS. It

not only prolongs the lifetime of batteries by reducing the electrical stresses of batteries,
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but also adds the redundancy to subsystem to improve the reliability. Finally, utilizing the

operational failure rate model to evaluate the reliability and verify the improvement of

reliability. The results show that, the reliability for the system with HESS have better

performance than system with BESS. In addition, the effect of different types of

microsources has also been studied.

Lastly, the sensitivity analyses study the influence of parameters setting of PV arrays and

wind turbine generation system, yearly characteristics and energy storage capacity. The

results show that, the seasonal characteristic is significant, and it is largely affected by the

temperature factor. The wind speed also has its influences. To improve the system

reliability, we can adjust the wind turbine and PV arrays parameters or the capacity of the

storage units.

Future work can be focused on the following aspects:

 Considering more weather condition (natural disasters) in components’ failure model,

and studying the impact of extreme weather on components’ operational failure and

on system reliability;

 Building operational failure rate model for other application like HEV, PHEV

system.

 Integrating meteorological factors forecast technology; using the predication ambient

temperature, wind speed and solar illumination to study the failure rate prediction of

the system;

 Calculating the availability of each subsystem and analyzing the contribution of each
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component to the system reliability;

 Considering the investment and the maintenance to choose the optimal scheme.

 Calculating the system reliability for grid connected microgrid systems with different

topologies; and considering the connection to the area distribution network.
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