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Abstract

The Strong Law of Large Numbers for U-Statistics
under semi-parametric Random Censorship

by

Jan Hoft

The University of Wisconsin–Milwaukee, 2018
Under the Supervision of Professor Gerhard Dikta and Professor Jay H. Beder

We introduce a semi-parametric U-statistics estimator for randomly right censored

data. We will study the strong law of large numbers for this estimator under proper

assumptions about the conditional expectation of the censoring indicator with re-

spect to the observed life times. Moreover we will conduct simulation studies, where

the semi-parametric estimator is compared to a U-statistic based on the Kaplan-

Meier product limit estimator in terms of bias, variance and mean squared error,

under different censoring models.
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Chapter 1

Introduction

Assume that X1, ..., Xn are independent and identically distributed (i. i. d.) random

variables (r. v.) on R, which are defined on a common probability space (Ω,A,P).

Denote their common probability distribution function (d. f.) by F . For some

1 ≤ k ≤ n let φ : Rk −→ R be a symmetric Borel-measurable function. Define the

target value

θ∗ := E[φ] =

∫
· · ·
∫
φ

k∏
j=1

dF. (1.1)

Examples of this kind of parameters include the expected value, variance and any

higher moments of X, depending on how φ is set. One approach to estimate those

integrals is given by the so called U-statistics. To obtain this estimator we need to

replace the true d. f. F by the empirical d. f. Fn which is defined by

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}.

Now plugging Fn into (1.1) yields

∫
...

∫
φ

k∏
j=1

dFn =
1

nk

n∑
i1=1

...
n∑

ik=1

φ(Xi1 , ..., Xik)

The expression on the right hand side in the equation above is known as V-statistic.

It includes repeated observations. An unbiased estimate of θ∗, based on distinct

observations only, can be introduced as

Uk,n(φ) =

(
n

k

)−1∑
[n,k]

φ(Xi1 , ..., Xik) , (1.2)
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where the sum iterates over all sets {i1, ..., ik} s. t. 1 ≤ i1 < i2 < ... < in ≤ n. We

call (1.2) U-statistics of order k. In Lee (1990) it was shown that the U-statistics

is the unbiased minimum variance estimator for (1.1). Observe that for k = 2,

equation (1.2) simplifies to

U2,n(φ) =
2

n(n− 1)

∑∑
1≤i<j≤n

φ(Xi, Xj)

and we have

E[U2,n(φ)] =

∫ ∫
φdFdF .

We will call φ the kernel of the U-statistics. Consider the following examples for

different kernels φ.

Example 1.1. Suppose X ∼ F s. t. the second moment of X is finite. Moreover let

φ(x1, x2) := 2−1 · (x1 − x2)2. Then we have

θ∗ =

∫ ∞
−∞

∫ ∞
−∞

1

2
(x1 − x2)2F (dx1)F (dx2)

= V ar(X) .

The corresponding U-statistics is therefore estimating the variance in this case.

Example 1.2. Suppose X ∼ F s. t. the expectation of X is finite. Then the r-th

probability weighted moment of X is defined by

βr :=

∫ ∞
−∞

x(F (x))rF (dx)

for r ≥ 1. Now consider that the following holds true

βr−1 =

∫
· · ·
∫

Rr

1

r
max(x1, . . . , xr)F (dx1) . . . F (dxr) ,
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compare Lee (1990), page 9. Thus we can estimate βr−1 by choosing the kernel

φ(x1, . . . , xr) =
1

r
max(x1, . . . , xr)

for the corresponding U-statistics. Now let r = 2. Then the U-statistics with kernel

φ(x1, x2) := 2−1 · max(x1, x2) is an estimator for β1, the first probability weighted

moment.

In lifetime analysis, one often deals with the problem of incomplete observations.

The incompleteness is often caused by censoring. In this thesis we are concerned

with right censored data. A framework to model this kind of data is provided by

the Random Censorship Model (RCM). Here we observe data of the form (Zi, δi)i≤n

where the Zi are the observed sample values, which might include censoring and

the δi indicate whether the corresponding Zi was censored or not. Here the se-

quence (Zi, δi)i≤n is assumed to be independent and identically distributed (i. i. d.).

Furthermore we can write for i = 1, ..., n

Zi = min(Xi, Yi) and δi = IXi≤Yi

where Xi denotes the true lifetime and Yi is the so called censoring time. The se-

quences (Xi)i≤n and (Yi)i≤n are assumed to be i. i. d.and to be independent of each

other. Throughout this work the probability distribution functions (d. f.) of X, Y

and Z will be denoted F , G and H respectively. We assume that those d. f.’s are

continuous and concentrated on R+ := R ∩ [0,∞].

One way to derive new estimators for θ∗, based on our observations (Zi, δi)i≤n

instead of (Xi)i≤n, is to substitute the true d. f. F by an appropriate estimate.

Following the calculations in Chapter 7 of Shorack and Wellner (2009), one may
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find those estimators by considering the cumulative hazard function of F

Λ(z) =

∫ z

0

1

1− F (t)
F (dt) =

∫ z

0

1

1− F (t)
H1(dt) ,

with H1(z) = P(δ = 1, Z ≤ z). An estimator for the cumulative hazard rate was

introduced by Nelson (1972) and Aalen (1978), i. e.

Λn(z) =

∫ z

0

1

1−Hn(t−)
H1
n(dt) =

n∑
i=1

δi1{Zi≤z}

n−Ri,n + 1
,

where

H1
n(z) =

1

n

n∑
i=1

1{Zi≤z}

is the empirical version ofH1 and Ri,n denotes the rank of Zi in a sample of n. Noting

the fact that 1−F (x) = exp(−Λ(x)) and using the approximation exp(−x) ≈ 1−x

yields the following estimator

1− F km
n (z) =

∏
i:Zi≤z

(
n−Ri,n

n−Ri,n + 1

)δi
≈ exp(−Λn(z)) .

The estimator above is the well known Kaplan-Meier product limit estimator (PLE).

It was introduced by Kaplan and Meier (1958). If one can not make any further

assumptions about the censorship, in addition to the RCM, then the Kaplan-Meier

PLE is the commonly used estimator of the true d. f. F . Note that F km
n can be

expressed in terms of ordered observations as

1− F km
n (z) =

n∏
i=1

(
1−

δ[i:n]

n− i+ 1

)
1{Zi:n≤z}

where Z1:n ≤ ... ≤ Zn:n and δ[i:n] denotes the concomitant of the i-th order statistics,

i. e. δ[i:n] = δj whenever Zi:n = Zj.

Let’s go back to our integral equation (1.1) and consider the case k = 1. In this

4



case we have

θ∗ =

∫
φdF . (1.3)

Replacing the true F in the integral equation above by F km
n yields

Skm1,n (φ) :=

∫ ∞
0

φdF km
n =

n∑
i=1

φ(Zi:n)W km
i,n

where W km
i,n denotes the weight placed on Zi:n by F km

n , that is,

W km
i,n = F km

n (Zi:n)− F km
n (Zi−1:n)

=
δ[i:n]

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]

.

It is easy to see that the Kaplan-Meier estimator only puts mass at uncensored

Z-values, since

W km
i,n =


0 if δ[i:n] = 0

1
n−i+1

i−1∏
k=1

[
1− δ[k:n]

n−k+1

]
> 0 if δ[i:n] = 1

.

The strong law of large numbers (SLLN) for Skm1,n (φ) has been established by Stute

and Wang (1993). Let’s now consider the case k = 2. Define the following estimator

for n ≥ 2

Skm2,n (φ) =
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W km
i,n W

km
j,n .

The above estimator will be called Kaplan-Meier U-Statistics of degree 2. The strong

law of large numbers for Ukm
2,n has been established by Bose and Sen (1999). The

asymptotic distribution of this estimator has been derived in Bose and Sen (2002).

Remark 1.3. In Bose and Sen (1999) the normalized version of Skm2,n (φ) was intro-
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duced as

Skm2,n (φ)

Skm2,n (1)
=

∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W km
i,n W

km
j,n∑∑

1≤i<j≤n
W km
i,n W

km
j,n

.

The normalizing factor (Skm2,n (1))−1 was motivated by the fact that the following

holds true for uncensored data

W km
i,n W

km
j,n∑∑

1≤u<v≤n
W km
u,nW

km
v,n

=

(
n

2

)−1

.

This normalization, under proper conditions, leads to a smaller asymptotic bias, as

shown in Remark 2 of Bose and Sen (1999).

In addition to the assumptions of the RCM, we make the further assumption

that

m(z) = P(δ = 1|Z = z) = E(δ|Z = z)

belongs to some parametric family, i. e.

m(z) = m(z, θ0)

where θ0 = (θ0,1, ..., θ0,p) ∈ Θ ⊂ Rp. This framework is called the semi-parametric

Random Censorship Model (SRCM). Dikta (1998) introduced the following PLE

1− F se,1
n (z) =

∏
i:Zi≤z

(
1− 1

n−Ri + 1

)m(Zi,θ̂n)

.

Uniform consistency and a functional CLT result were established for F se,1
n by Dikta

(1998). Here θ̂n denotes the Maximum Likelihood Estimate (MLE) of θ0. That is,

θ̂n is the maximizer of

Ln(θ) =
n∏
i=1

m(Zi, θ)
δi(1−m(Zi, θ))

1−δi .

6



Later in Dikta (2000) another semi-parametric estimator was introduced, i. e.

1− F se
n (z) =

∏
i:Zi≤z

(
1− m(Zi, θ̂n)

n−Ri + 1

)
.

In this thesis we will consider integrals of measurable functions w. r. t. F se
n . By

replacing again the true d. f. F by F se
n in equation (1.3), we obtain the following

semi-parametric estimator

Sse1,n(φ) =

∫ ∞
0

φdF se
n =

n∑
i=1

φ(Zi:n)W se
i,n

where

W se
i,n =

m(Zi:n, θ̂n)

n− i+ 1

i−1∏
j=1

(
1− m(Zj:n, θ̂n)

n− j + 1

)

is the mass assigned to Zi:n by F se
n . W se

i,n will be called i-th semi-parametric weight

throughout this document. The SLLN and the CLT for the semi-parametric estima-

tor Sse1,n have been established in Dikta (2000) and Dikta et al. (2005) respectively. In

Dikta (2014) it is shown that Sse1,n is asymptotically efficient. Moreover Dikta et al.

(2016) shows a way to derive strongly consistent, asymptotically normal and effi-

cient estimators from solving a Volterra type integral equation by different numeric

schemes. One of the estimators derived is

Sse,21,n (φ) =

∫ ∞
0

φdF se,2
n =

n∑
i=1

φ(Zi:n)W se,2
i,n

where

W se,2
i,n =

m(Zi:n, θ̂n)

n− i+ 1

i−1∏
j=1

(
1− m(Zj:n, θ̂n)

n− j +m(Zj:n)

)
.

This estimator is a proper distribution function, while Sse1,n and Skm1,n are sub-distribution

functions if the largest observation is censored.

7



During this thesis we will establish the strong law of large numbers, under proper

conditions, for the following estimator

Sse2,n(φ) :=
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W se
i,nW

se
j,n .

We will call Sse2,n semi-parametric U-Statistic or semi-parametric estimator through-

out this work.

The main result of this thesis is stated in the following theorem.

Theorem 1.4. Suppose that conditions (A1) through (A4), (M1) and (M2) hold

(see Chapter 2). Then the following statement holds with probability one

lim
n→∞

Sse2,n(φ) =
1

2

∫ τH

0

∫ τH

0

φ(s, t)F (ds)F (dt) .

In the remark below, we will compare the limit above to the target value E[φ].

Remark 1.5. Suppose the conditions in Theorem 1.4 holds. Recall the target value

from Chapter 1

E[φ] =

∫ ∞
0

∫ ∞
0

φ(s, t)F (ds)F (dt) .

Now let’s compare the limit in Theorem 1.4. Since φ is non-negative by condition

(A1), we have

1

2

∫ τH

0

∫ τH

0

φ(s, t)F (ds)F (dt) ≤ 1

2

∫ ∞
0

∫ ∞
0

φ(s, t)F (ds)F (dt) =
1

2
· E[φ] .

Therefore the following holds

2 · Sse2,n(φ)→
∫ τH

0

∫ τH

0

φ(s, t)F (ds)F (dt) ≤ E[φ] .

8



Remark 1.3 shows a normalized version of Skm2,n , which was discussed in Bose and

Sen (1999), Remark 2. Similarly we will extend the result of Theorem 1.4 to the

normalized version of the semi-parametric estimator, in the following remark.

Remark 1.6. Assume conditions (A1) through (A4), (M1) and (M2) are satisfied.

Consider that, according to Theorem 1.4, we have

Sse2,n(1) =
∑∑
1≤i<j≤n

Wi,nWj,n →
1

2

∫ τH

0

∫ τH

0

F (ds)F (dt) =
1

2
F 2(τH) .

almost surely. Therefore the following statement holds true

lim
n→∞

Sn(φ)

Sn(1)
= F−2(τH)

∫ τH

0

∫ τH

0

φ(s, t)F (ds)F (dt)

almost surely.

9



Chapter 2

Notation and assumptions

In this chapter we will state the main definitions and assumptions used throughout

this work. We will start by defining the estimator to be considered and introduce

all necessary notation for the remaining chapters.

2.1 Definitions and notation

Define for n ≥ 2

W se
i,n :=

m(Zi:n, θ̂n)

n− i+ 1

i−1∏
j=1

(
1− m(Zj:n, θ̂n)

n− j + 1

)

and

Sse2,n(φ) :=
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W se
i,nW

se
j,n .

Furthermore let

Wi,n(q) :=
q(Zi:n)

n− i+ 1

i−1∏
k=1

[
1− q(Zk:n)

n− k + 1

]
and

Sn(q) :=
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)Wi,n(q)Wj,n(q)

for some measurable function q s. t. q(t) ∈ [0, 1] for all t ∈ R+. Next define

Fn := σ{Z1:n, . . . , Zn:n, Zn+1, Zn+2, . . . } .

10



The following quantities will be needed in section 4.1. Define for n ≥ 2 and s < t

Bn(s, q) :=
n∏
k=1

[
1 +

1− q(Zk)
n−Rk,n

]
1{Zk<s}

Cn(s, q) :=
n+1∑
i=1

[
1− q(s)
n− i+ 2

]
1{Zi−1:n<s≤Zi:n}

Dn(s, t, q) :=
n∏
k=1

[
1 +

1− q(Zk)
n−Rk,n + 2

]21{Zk<s} n∏
k=1

[
1 +

1− q(Zk)
n−Rk,n + 1

]
1{s<Zk<t}

∆n(s, t, q) := E [Dn(s, t, q)]

∆̄n(s, t, q) := E [Cn(s, q)Dn(s, t, q)]

and

D(s, t, q) := exp

(
2

∫ s

0

1− q(x)

1−H(x)
H(dx) +

∫ t

s

1− q(x)

1−H(x)
H(dx)

)
.

We will write Bn(s) ≡ Bn(s, q), Cn(s) ≡ Cn(s, q), Dn(s, t) ≡ Dn(s, t, q), ∆n(s, t) ≡

∆n(s, t, q), ∆̄n(s, t) ≡ ∆̄n(s, t, q) and D(s, t) ≡ D(s, t, q). Next let

S̄n(q) :=
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W̄i:n(q)W̄j:n(q)

where

W̄i:n(q) :=
1

n− i+ 1

n∏
k=1

(
1− q(Zk:n)

n− k + 1

)
.

Moreover define for s < t

S(q) :=
1

2

∫ ∞
0

∫ ∞
0

φ(s, t)q(s)q(t) exp

(∫ s

0

1− q(x)

1−H(x)
H(dx)

)
× exp

(∫ t

0

1− q(x)

1−H(x)
H(dx)

)
H(ds)H(dt)

and

S̄(q) :=
1

2

∫ ∞
0

∫ ∞
0

φ(s, t) exp

(∫ s

0

1− q(x)

1−H(x)
H(dx)

)

11



× exp

(∫ t

0

1− q(x)

1−H(x)
H(dx)

)
H(ds)H(dt) .

We will write Sn ≡ Sn(q), Wi,n ≡ Wi,n(q), S ≡ S(q) and S̄ ≡ S̄(q) throughout this

thesis. Moreover we define τH = inf{z|H(z) = 1}.

2.2 Assumptions

The following assumptions will be needed, in order to establish Theorem 1.4:

(A1) The kernel φ : R2 −→ R is measurable, non-negative and symmetric in its

arguments. In effect φ(s, t) = φ(t, s) for all s, t ∈ R+.

(A2) H is continuous and concentrated on the non-negative real line.

(A3) The following statement holds true

∫ τH

0

∫ τH

0

φ(s, t)

m(s, θ0)m(t, θ0)(1−H(s))ε(1−H(t))ε
F (ds)F (dt) <∞

for some 0 < ε ≤ 1.

(A4) m(z, θ) is non-decreasing in z.

Here condition (A1) is a standard assumption for U-Statistics (c. f. Lee (1990)).

Assumptions (A2) is the same as in Dikta (2000). (A3) is here the 2-dimensional

equivalent to the condition in Theorem 1.1 of Dikta (2000). Condition (A4) poses

an additional restriction on the censoring model m here. We will discuss the restric-

tions imposed by (A4) and see examples of different models for m, which satisfy

this condition in Chapter 5. Moreover, Chapter 6 shows simulation studies under

different choices for m.

We will need the following assumptions about the Censoring Model m and the

Maximum Likelihood estimate θ̂n:

12



(M1) θ̂n is measurable and tends to θ0 almost surely.

(M2) For any ε > 0 there exists a neighborhood V (ε, θ0) ⊂ Θ of θ0 s. t. for all

θ ∈ V (ε, θ0)

sup
z≥0
|m(z, θ)−m(z, θ0)| < ε .

Condition (M1) above guarantees the strong consistency of the MLE. (M1) and

(M2) are identical to (A1) and (A2) in Dikta (2000).

13



Chapter 3

Existence of the limit

In this chapter we will establish basic properties of E[Sn|Fn+1]. A representation for

E[Sn|Fn+1], which is similar to the result established in Bose and Sen (1999), Lemma

1, is derived in Section 3.1. In Stute and Wang (1993) the proof of existence of the

limit of the considered estimator was based on the fact that the conditional expec-

tation above was a reverse supermartingale in their case. Later in Dikta (2000) and

in Bose and Sen (1999) the same type of argument was used for the estimators they

considered. We will not be able to establish the reverse supermartingale property

for Sse2,n in general. But we will be able to state a condition on q, s. t. Sn(q) is indeed

a supermartingale. This will be discussed in more detail in Section 3.2. Section 3.3

will show how this implies the almost sure existence by the same argument as in

Stute and Wang (1993).

3.1 Preliminary Considerations

We will first derive an explicit representation for E[Sn|Fn+1], which is similar to the

one established in the proof of Bose and Sen (1999), Lemma 1.

Lemma 3.1. Define for 1 ≤ i < j ≤ n

Qn+1
ij =


Qn+1
i j ≤ n

Qn+1
i − (n+1)πiπn(1−q(Zn:n+1))

(n−i+1)(2−q(Zn:n+1))
j = n+ 1

14



where

Qn+1
i = (n+ 1)

{
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]2

+
πiπi+1

n− i+ 1

}
(3.1)

and

πi =
i−1∏
k=1

n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)
.

Then we have

E[Sn|Fn+1] =
∑∑

1≤i<j≤n+1

φ(Zi:n+1, Zj:n+1)Wi,n+1Wj,n+1Q
n+1
ij .

Proof. We will need the following result for the proof of lemma 3.1. Let

Ai = πi +
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]

for 1 ≤ i ≤ n with πi as defined above. Note that π1 = 1, since the product is empty

and hence taken as 1. Therefore we have A1 = π1 = 1. Moreover the following holds

true for any 1 ≤ i ≤ n− 1

Ai+1 = πi+1 +
i∑

r=1

[
πr

n− r + 2− q(Zr:n+1)

]

= πi

[
n− i+ 1− q(Zi:n+1)

n− i+ 2− q(Zi:n+1)

]
+

i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]
+

[
πi

n− i+ 2− q(Zi:n+1)

]

= πi +
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]
= Ai .

And therefore

1 = A1 = A2 = · · · = An−1 = An . (3.2)

Now let’s establish the statement of Lemma 3.1. Let F q
n denote the measure that

15



assigns mass to Z1:n, . . . , Zn:n, then

E[Sn|Fn+1] = E[
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)Wi,nWj,n|Fn+1]

= E[
∑∑

1≤i<j≤n+1

φ(Zi:n+1, Zj:n+1)F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]

=
∑∑

1≤i<j≤n+1

φ(Zi:n+1, Zj:n+1)E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1] .

Consider for 1 ≤ i < j ≤ n

E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]

= E

[
n+1∑
r=1

F q
n{Zi:n+1}F q

n{Zj:n+1}I{Zn+1=Zr:n+1}|Fn+1

]
.

Define the set Arn := {Zn+1 = Zr:n+1}. Note that on Arn we have for 1 ≤ l ≤ n+ 1

Zl:n+1 =


Zl:n l < r

Zl−1:n l > r

(3.3)

and therefore

F q
n{Zl:n+1} =


Wl:n l < r

0 l = r

Wl−1:n l > r

. (3.4)

We have

n+1∑
r=1

F q
n{Zi:n+1}F q

n{Zj:n+1}I{Zn+1=Zr:n+1}

=
n+1∑
r=1

F q
n{Zi:n+1}F q

n{Zj:n+1}IArn

=
i−1∑
r=1

Wi−1,nWj−1,nIArn +

j−1∑
r=i+1

Wi,nWj−1,nIArn +
n+1∑
r=j+1

Wi,nWj,nIArn

16



=: T1 + T2 + T3 . (3.5)

Let’s now consider each of the sums T1, T2, and T3 in the above equation individually.

First consider T1. We have

T1 =
i−1∑
r=1

q(Zi−1:n)

n− i+ 2

i−2∏
k=1

[
1− q(Zk:n)

n− k + 1

]

× q(Zj−1:n)

n− j + 2

j−2∏
k=1

[
1− q(Zk:n)

n− k + 1

]
IArn

=
i−1∑
r=1

q(Zi:n+1)

n− i+ 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

] i−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]

× q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn

using (3.3). Next we will continue to find an expression for T1 in terms of Wi,n+1

and Wj,n+1. We have

T1 =
i−1∑
r=1

q(Zi:n+1)

n− i+ 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

] i−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]

× q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn

=
i−1∑
r=1

q(Zi:n+1)

n− i+ 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] i−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]

× q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn

×

∏r−1
k=1

[
1− q(Zk:n+1)

n−k+1

]
∏r−1

k=1

[
1− q(Zk:n+1)

n−k+2

]
2

=
i−1∑
r=1

q(Zi:n+1)

n− i+ 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] i−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]

× q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn
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×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]2 r−1∏
k=1

[
n− k + 2

n− k + 1

]2

.

Using index transformation on the products
∏i−2

k=r[. . .] and
∏j−2

k=r[. . .] yields

T1 =
i−1∑
r=1

q(Zi:n+1)

n− i+ 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] i−1∏
k=r+1

[
1− q(Zk:n+1)

n− k + 2

]

× q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−1∏
k=r+1

[
1− q(Zk:n+1)

n− k + 2

]
IArn

×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]2 r−1∏
k=1

[
n− k + 2

n− k + 1

]2

=
i−1∑
r=1

q(Zi:n+1)

n− i+ 2

i−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] [
1− q(Zr:n+1)

n− r + 2

]−1

× q(Zj:n+1)

n− j + 2

j−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] [
1− q(Zr:n+1)

n− r + 2

]−1

IArn

×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]2 r−1∏
k=1

[
n− k + 2

n− k + 1

]2

= Wi,n+1Wj,n+1

i−1∑
r=1

r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]2 r−1∏
k=1

[
n− k + 2

n− k + 1

]2

×
[

n− r + 2

n− r + 2− q(Zr:n+1)

]2

IArn .

Note that

r−1∏
k=1

[
n− k + 2

n− k + 1

]
=
n+ 1

n
· n

n− 1
· · · n− r + 4

n− r + 3
· n− r + 3

n− r + 2

=
n+ 1

n− r + 2
. (3.6)

and recall the following definition

πr =
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]
.
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Now we finally get

T1 = Wi,n+1Wj,n+1

i−1∑
r=1

r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]2

×
[

n+ 1

n− r + 2

]2 [
n− r + 2

n− r + 2− q(Zr:n+1)

]2

IArn

= Wi,n+1Wj,n+1

i−1∑
r=1

π2
r

[
n+ 1

n− r + 2− q(Zr:n+1)

]2

IArn .

Next consider T2. We will, again, firstly express T2 completely in terms of the

ordered Z values w. r. t. order n+ 1 using (3.3). Consider

T2 =

j−1∑
r=i+1

q(Zi:n)

n− i+ 1

i−1∏
k=1

[
1− q(Zk:n)

n− k + 1

]

× q(Zj−1:n)

n− j + 2

j−2∏
k=1

[
1− q(Zk:n)

n− k + 1

]
IArn

=

j−1∑
r=i+1

q(Zi:n+1)

n− i+ 1

i−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

]

× q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn .

Now let’s find a representation of T2 which relies on Wi,n+1 and Wj,n+1 only. Consider

T2 =

j−1∑
r=i+1

[
n− i+ 2

n− i+ 1

] [
q(Zi:n+1)

n− i+ 2

] i−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

]

× q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn

×
i−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] i−1∏
k=1

[
n− k + 2

n− k + 1

]

×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] r−1∏
k=1

[
n− k + 2

n− k + 1

]

=

[
n− i+ 2

n− i+ 1

] [
q(Zi:n+1)

n− i+ 2

] i−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

]
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×
i−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] i−1∏
k=1

[
n− k + 2

n− k + 1

]

×
j−1∑
r=i+1

q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn

×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] r−1∏
k=1

[
n− k + 2

n− k + 1

]
.

Applying (3.6) to
∏i−1

k=1[. . .] yields

T2 =

[
n+ 1

n− i+ 1

] [
q(Zi:n+1)

n− i+ 2

] i−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

]

×
i−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]

×
j−1∑
r=i+1

q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn

×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] r−1∏
k=1

[
n− k + 2

n− k + 1

]
=

[
n+ 1

n− i+ 1

]
Wi,n+1πi

×
j−1∑
r=i+1

q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−2∏
k=r

[
1− q(Zk+1:n+1)

n− k + 1

]
IArn

×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] r−1∏
k=1

[
n− k + 2

n− k + 1

]
.

Again doing an index transformation on
∏j−2

k=r[. . .] yields

=

[
n+ 1

n− i+ 1

]
Wi,n+1πi

×
j−1∑
r=i+1

q(Zj:n+1)

n− j + 2

r−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] j−1∏
k=r+1

[
1− q(Zk:n+1)

n− k + 2

]
IArn

×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] r−1∏
k=1

[
n− k + 2

n− k + 1

]
IArn

= Wi,n+1πi
n+ 1

n− i+ 1

j−1∑
r=i+1

q(Zj:n+1)

n− j + 2

j−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

] [
1− q(Zr:n+1)

n− r + 2

]−1
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×
r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] r−1∏
k=1

[
n− k + 2

n− k + 1

]
IArn

= Wi,n+1Wj,n+1πi
n+ 1

n− i+ 1

×
j−1∑
r=i+1

r−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] r−1∏
k=1

[
n− k + 2

n− k + 1

]
× n− r + 2

n− r + 2− q(Zr:n+1)
IArn .

Now applying (3.6) to the latter product yields

T2 = Wi,n+1Wj,n+1πi
n+ 1

n− i+ 1

j−1∑
r=i+1

πr
n+ 1

n− r + 2− q(Zr:n+1)
IArn .

We will proceed similarly for T3. Consider

T3 =
n+1∑
r=j+1

Wi,nWj,n1{Arn} .

Note that for j = n+ 1 the sum above is empty and hence zero. Consider for j ≤ n

T3 =
n+1∑
r=j+1

q(Zi:n)

n− i+ 1

i−1∏
k=1

[
1− q(Zk:n)

n− k + 1

]

× q(Zj:n)

n− j + 1

j−1∏
k=1

[
1− q(Zk:n)

n− k + 1

]
1{Arn}

=
n+1∑
r=j+1

q(Zi:n+1)

n− i+ 1

i−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

]

× q(Zj:n+1)

n− j + 1

j−1∏
k=1

[
1− q(Zk:n+1)

n− k + 1

]
1{Arn}

=
n+1∑
r=j+1

n− i+ 2

n− i+ 1

q(Zi:n+1)

n− i+ 2

i−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

]

× n− j + 2

n− j + 1

q(Zj:n+1)

n− j + 2

j−1∏
k=1

[
1− q(Zk:n+1)

n− k + 2

]

×
i−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] i−1∏
k=1

[
n− k + 2

n− k + 1

]
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×
j−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] j−1∏
k=1

[
n− k + 2

n− k + 1

]
1{Arn}

=
n+1∑
r=j+1

n− i+ 2

n− i+ 1

n− j + 2

n− j + 1
πiπjWi,n+1Wj,n+1

×
i−1∏
k=1

[
n− k + 2

n− k + 1

] j−1∏
k=1

[
n− k + 2

n− k + 1

]
1{Arn} .

Again, by (3.6), we have

T3 =
n+1∑
r=j+1

(n+ 1)2πiπj
(n− i+ 1)(n− j + 1)

Wi,n+1Wj,n+11{Arn} .

Therefore

T3 =


Wi,n+1Wj,n+1πiπj

[
(n+1)2

(n−i+1)(n−j+1)

] n+1∑
r=j+1

1{Arn} j ≤ n

0 j = n+ 1

for 1 ≤ i < j ≤ n. Next, substituting the expressions for T1, T2 and T3 in equation

(3.5) together with the fact that

E[IArn |Fn+1] =
1

n+ 1

yields

E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]

= E[T1 + T2 + T3|Fn+1]

= Wi,n+1Wj,n+1 ×

{
i−1∑
r=1

π2
r

[
n+ 1

n− r + 2− q(Zr:n+1)

]2

E[IArn |Fn+1]

+

j−1∑
r=i+1

πiπr

[
n+ 1

n− i+ 1

] [
n+ 1

n− r + 2− q(Zr:n+1)

]
E[IArn |Fn+1]
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+πiπj
(n+ 1)2

(n− i+ 1)(n− j + 1)
[1− I{j=n+1}]

n+1∑
i=j+1

E[IArn |Fn+1]

}

= Wi,n+1Wj,n+1

[
1

n+ 1

]
×

{
i−1∑
r=1

π2
r

[
n+ 1

n− r + 2− q(Zr:n+1)

]2

+

j−1∑
r=i+1

πiπr

[
n+ 1

n− i+ 1

] [
n+ 1

n− r + 2− q(Zr:n+1)

]
+πiπj

(n+ 1)2

n− i+ 1
[1− I{j=n+1}]

}
.

Next consider that we have

E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]

= Wi,n+1Wj,n+1(n+ 1)

{
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]2

+
πi

n− i+ 1

[
j−1∑
r=i+1

[
πr

n− r + 2− q(Zr:n+1)

]
+ πj

]}
.

for 1 ≤ i < j ≤ n. Applying (3.2) yields

E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]

= Wi,n+1Wj,n+1(n+ 1)

{
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]2

+
πi

n− i+ 1
(Aj − Ai+1 + πi+1)

}
= Wi,n+1Wj,n+1(n+ 1)

{
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]2

+
πiπi+1

n− i+ 1

}
= Wi,n+1Wj,n+1Q

n+1
i .

It remains to consider the case j = n+ 1. We have

E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]
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= Wi,n+1Wn+1:n+1(n+ 1)

{
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]2

+
πi

n− i+ 1

n∑
r=i+1

[
πr

n− r + 2− q(Zr:n+1)

]}

= Wi,n+1Wn+1:n+1(n+ 1)

{
i−1∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]2

+
πi

n− i+ 1

[
n∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]
−

i∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]]}

= Wi,n+1Wn+1:n+1(n+ 1)

{
Qn+1
i

n+ 1
− πiπi+1

n− i+ 1

+
πi

n− i+ 1

[
n∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]
−

i∑
r=1

[
πr

n− r + 2− q(Zr:n+1)

]]}
.

Now using (3.2) again yields

E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]

= Wi,n+1Wn+1:n+1(n+ 1)

{
Qn+1
i

n+ 1
− πiπi+1

n− i+ 1

+
πi

n− i+ 1
[An+1 − πn+1 − (Ai+1 − πi+1)]

}
= Wi,n+1Wn+1:n+1(n+ 1)

{
Qn+1
i

n+ 1
− πiπi+1

n− i+ 1

+
πi

n− i+ 1
[πi+1 − πn+1]

}
.

Note that for 1 ≤ i < n we have

πi+1 =
πi(1− q(Zi:n+1))

2− q(Zi:n+1)
.

Thus we obtain

E[F q
n{Zi:n+1}F q

n{Zj:n+1}|Fn+1]

= Wi,n+1Wn+1:n+1(n+ 1)

{
Qn+1
i

n+ 1
− πiπi+1

n− i+ 1
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+
πi

n− i+ 1

[
πi+1 −

πn(1− q(Zn:n+1))

2− q(zn:n+1)

]}
= Wi,n+1Wn+1:n+1(n+ 1)

{
Qn+1
i

n+ 1
− πiπn(1− q(Zn:n+1))

(n− i+ 1)(2− q(Zn:n+1))

}
= Wi,n+1Wn+1:n+1

{
Qn+1
i − πiπn(n+ 1)(1− q(Zn:n+1))

(n− i+ 1)(2− q(Zn:n+1))

}
.

The following lemma contains a result on the increases of Qn+1
i w. r. t. i. It is

especially useful, since we can express Qn+1
i as follows

Qn+1
i = Qn+1

1 +
i−1∑
k=1

(Qn+1
k+1 −Q

n+1
k ) .

The result will be used to establish the reverse supermartingale property for Sn in

Lemma 3.3.

Lemma 3.2. Let Qn+1
i be defined as in Lemma 3.1 for 1 ≤ i ≤ n. Moreover define

π̃i :=
i−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

] i−1∏
k=1

[
n− k + 2

n− k + 1

]
.

Then we have

Qn+1
i+1 −Qn+1

i =
(qi − qi+1)(n− i)(n− i+ 1)− qi+1(1− qi)(n− i+ 1− qi)

(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

× π̃i(n− i+ 2)2

n+ 1
.

Proof. For the sake of simplicity we will write qi ≡ q(Zi:n+1) during this proof. From

equation (3.1) we get

Qn+1
i+1 −Qn+1

i

n+ 1
=

{
i∑

r=1

[
πr

n− r + 2− qr

]2

+
πi+1πi+2

n− i

}
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−

{
i−1∑
r=1

[
πr

n− r + 2− qr

]2

+
πiπi+1

n− i+ 1

}

=
π2
i

(n− i+ 2− qi)2
+
πi+1πi+2

n− i
− πiπi+1

n− i+ 1

=
π2
i

(n− i+ 2− qi)2
+

π2
i (n− i+ 1− qi)2(n− i− qi+1)

(n− i)(n− i+ 2− qi)2(n− i+ 1− qi+1)

− π2
i (n− i+ 1− qi)

(n− i+ 1)(n− i+ 2− qi)

= π2
i

{
1

(n− i+ 2− qi)2
+

(n− i+ 1− qi)2(n− i− qi+1)

(n− i)(n− i+ 2− qi)2(n− i+ 1− qi+1)

− n− i+ 1− qi
(n− i+ 1)(n− i+ 2− qi)

}
=: π2

i {a(n, i) + b(n, i)− c(n, i)} . (3.7)

Next consider

b(n, i)− c(n, i)

= (n− i+ 1− qi)
[

(n− i+ 1− qi)(n− i− qi+1)

(n− i)(n− i+ 2− qi)2(n− i+ 1− qi+1)

− 1

(n− i+ 1)(n− i+ 2− qi)

]
= (n− i+ 1− qi)

[
(n− i+ 1− qi)(n− i− qi+1)(n− i+ 1)

(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

− (n− i+ 2− qi)(n− i+ 1− qi+1)(n− i)
(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

]
. (3.8)

Next we will simplify the difference of the numerators above. We have

(n− i+ 1− qi)(n− i− qi+1)(n− i+ 1)

− (n− i+ 2− qi)(n− i+ 1− qi+1)(n− i)

= (n− i+ 1− qi)(n− i)(n− i+ 1)− qi+1(n− i+ 1− qi)(n− i+ 1)

− (n− i+ 2− qi)(n− i+ 1− qi+1)(n− i)

= (n− i+ 1− qi)(n− i)(n− i+ 1)− qi+1(n− i+ 1− qi)(n− i+ 1)
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− (n− i+ 1− qi)(n− i+ 1− qi+1)(n− i)− (n− i+ 1− qi+1)(n− i)

= (n− i+ 1− qi)(n− i)(n− i+ 1)− qi+1(n− i+ 1− qi)(n− i+ 1)

− (n− i+ 1− qi)(n− i+ 1)(n− i) + qi+1(n− i+ 1− qi)(n− i)

− (n− i+ 1− qi+1)(n− i)

= −qi+1(n− i+ 1− qi)− (n− i+ 1− qi+1)(n− i) .

Hence we get, according to (3.8)

b(n, i)− c(n, i)

= −(n− i+ 1− qi)
[

qi+1(n− i+ 1− qi) + (n− i+ 1− qi+1)(n− i)
(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

]
.

Therefore we have

a(n, i) + b(n, i)− c(n, i)

=
1

(n− i+ 2− qi)2

− qi+1(n− i+ 1− qi)2 + (n− i+ 1− qi)(n− i+ 1− qi+1)(n− i)
(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

=
(n− i)(n− i+ 1)(n− i+ 1− qi+1)

(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

− qi+1(n− i+ 1− qi)2 + (n− i+ 1− qi)(n− i+ 1− qi+1)(n− i)
(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

.

Consider again the numerator of the latter expression. We have

= (n− i)(n− i+ 1)(n− i+ 1− qi+1)− qi+1(n− i+ 1− qi)2

− (n− i)(n− i+ 1− qi)(n− i+ 1− qi+1)

= qi(n− i)(n− i+ 1− qi+1)− qi+1(n− i+ 1− qi)2

= qi(n− i)2 + qi(1− qi+1)(n− i)− qi+1(n− i)2

− 2qi+1(1− qi)(n− i)− qi+1(1− qi)2
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= (qi − qi+1)(n− i)2 + qi(n− i)− qiqi+1(n− i)

− 2qi+1(n− i) + 2qiqi+1(n− i)− qi+1(1− qi)2

= (qi − qi+1)(n− i)2 + (qi + qiqi+1 − 2qi+1)(n− i)− qi+1(1− qi)2 .

Thus we get

a(n, i) + b(n, i)− c(n, i)

=
(qi − qi+1)(n− i)2 + (qi + qiqi+1 − 2qi+1)(n− i)− qi+1(1− qi)2

(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

=
(qi − qi+1)(n− i)2 + [(qi − qi+1)− qi+1(1− qi))(n− i)− qi+1(1− qi)2

(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

=
(qi − qi+1)(n− i)(n− i+ 1)− qi+1(1− qi)(n− i+ 1− qi)

(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)
. (3.9)

Finally note that

π̃i =
n+ 1

n− i+ 2

i−1∏
k=1

[
n− k + 1− q(Zk:n+1)

n− k + 2− q(Zk:n+1)

]
= πi ·

n+ 1

n− i+ 2
(3.10)

with πi as defined in Lemma 3.1. Now the statement of the lemma follows directly

by combining (3.7), (3.9) and (3.10)

3.2 Sn is not a reverse supermartingale in general

As discussed in Chapter 1, the strong law of large numbers for Kaplan-Meier U-

statistics was established by Bose and Sen (1999). Recall the definition of the

estimator they considered:

Skm2,n =
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W km
i,n W

km
j,n
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with

W km
i,n =

δ[i:n]

n− i+ 1

i−1∏
k=1

[
1−

δ[k:n]

n− k + 1

]
.

The proof of existence of the almost sure limit S = limn→∞ S
km
n was here essentially

based upon a reverse supermartingale argument together with Neveu (1975), propo-

sition V-3-11. In Lemma 1 of Bose and Sen (1999) a representation for E[Skm2,n |Fn+1]

was derived, which is similar to Lemma 3.1 in this thesis. It was shown that

E[Skm2,n

∣∣∣Fn+1] =
∑∑

1≤i<j≤n+1

φ(Zi:n+1, Zj:n+1)W km
i,n+1W

km
j,n+1Q

km
ij ,

for 1 ≤ i < j ≤ n. Here Qkm
ij is defined as follows

Qkm
ij =


Qkm
i if j ≤ n

Qkm
i − πiπn(1− δ[n:n+1]))

n−i+2
(n+1)(n−i+1)

if j = n+ 1

,

with

Qkm
i =

1

n+ 1

{
i−1∑
r=1

π2
r

[
n− r + 2

n− r + 1

]2δ[r:n+1]

+π2
i (n− i+ 2)

[
(n− i)(n− i+ 2)

(n− i+ 1)2

]δ[i:n+1]

}
.

Next Bose and Sen (1999) show that Qkm
ij ≤ 1 for 1 ≤ i < j ≤ n, in order to

establish the reverse supermartingale property for (Skmn ,Fn). However their proof

relies on the fact that

W km
i,n =

δ[i:n]

n− i+ 1

i−1∏
k=1

[
1−

δ[k:n]

n− k + 1

]

=
δ[i:n]

n− i+ 1

i−1∏
k=1

[
1− 1

n− k + 1

]δ[k:n]

.
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But the corresponding statement is not true for Wi:n(q), since we have in general

that

Wi,n(q) =
q(Zi:n)

n− i+ 1

i−1∏
k=1

[
1− q(Zk:n)

n− k + 1

]

6= q(Zi:n)

n− i+ 1

i−1∏
k=1

[
1− 1

n− k + 1

]q(Zk:n)

.

In Dikta (2000), the following estimator was considered

Sse1,n =
n∑
i=1

φ(Zi:n)W se
i:n .

The proof of existence shows here a similar structure, as the one by Bose and Sen

(1999). In Lemma 2.1 of Dikta (2000), it was shown that E[µn{Z1:n+1}|Fn+1] = W se
1:n

and for 2 ≤ i ≤ n

E[µn{Zi:n+1}
∣∣∣Fn+1] = W se

i:nQ
se
i ,

where µn is the measure assigning mass Wi:n to Zi:n and

Qse
i = πi +

i−1∑
k=1

πk
n− k + 2− q(Zk:n+2)

.

Here πi is defined as in Lemma 3.1. Furthermore it was shown that Qse
i = Qse

i+1 = 1

for all 2 ≤ i ≤ n, which, among other arguments, implies the reverse supermartin-

gale property for Ssen .

The discussion above shows that we can not establish the supermartingale prop-

erty for Sn without further restrictions, by the same arguments as were presented

in Bose and Sen (1999) and Dikta (2000).
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In the following Lemma we will establish the supermartingale property for Sn

under the additional assumption that q is non-decreasing.

Lemma 3.3. Let q(z) be non-decreasing for all z ∈ R+. Then Sn(q) is a non-

negative reverse supermartingale.

Proof. First note that

Qn+1
1 = (n+ 1)

π1π2

n
=

(n+ 1)(n− q1)

n(n+ 1− q1)
=
n(n+ 1)− q1(n+ 1)

n(n+ 1)− q1n
≤ 1 (3.11)

Recall that we have

Qn+1
i+1 −Qn+1

i =
(qi − qi+1)(n− i)(n− i+ 1)− qi+1(1− qi)(n− i+ 1− qi)

(n− i)(n− i+ 1)(n− i+ 2− qi)2(n− i+ 1− qi+1)

× π̃i(n− i+ 2)2

n+ 1
. (3.12)

according to Lemma 3.2. Next consider that we have

qi − qi+1 ≤ 0 and qi+1(1− qi) ≥ 0 ,

since q(z) is non-decreasing in z. Combining the latter with equation (3.12) yields

Qn+1
i+1 −Qn+1

i ≤ 0 for all t ∈ [0,∞) . (3.13)

Consider that we can write Qn+1
i as

Qn+1
i = Qn+1

1 +
i−1∑
k=1

(
Qn+1
k+1 −Q

n+1
i

)
.

Applying inequalities (3.11) and (3.13) to the above equation yields Qn+1
i ≤ 1 for
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all i ≤ n. Next recall from Lemma 3.1 that

Qn+1
ij =


Qn+1
i j ≤ n

Qn+1
i − (n+1)πiπn(1−q(Zn:n+1))

(n−i+1)(2−q(Zn:n+1))
j = n+ 1

Thus Qn+1
ij ≤ Qn+1

i ≤ 1 for all 1 ≤ i < j ≤ n + 1. Now the latter together with

Lemma 3.1 imply the statement of the Lemma.

The assumption that q is monotone non-decreasing in Lemma 3.3, is transfered

to the censoring model m by (A4). This restricts the choices of censoring models

m. Examples for non-decreasing m include the proportional hazards model (see

Example 5.1). We will discuss the above mentioned restriction and give examples

of different censoring models in Chapter 5.

3.3 Existence of the limit

During the preceding section we have seen that Sn(q) is a reverse supermartingale,

whenever q is monotone non-decreasing. We will now show how this implies the

almost sure existence of limn→∞ Sn(q), by a standard argument.

Let F∞ =
⋂
n≥2Fn. The following result applies the Hewitt-Savage zero-one

law, in order to show that F∞ is trivial. It will be useful in order to prove Theorem

3.5, because it implies that E[Sn|F∞] = E[Sn].

Lemma 3.4. For each A ∈ F∞ we have P(A) ∈ {0, 1}.

Proof. Denote Z̃ := (Z1, Z2, . . . ) ∈ R∞ and let 1 ≤ n < ∞ be fixed but arbitrary.

We will use the Hewitt-Savage zero-one law to prove the statement of this lemma.

Let π be a map

π : (R∞,B(R∞)) −→ (R∞,B(R∞))
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(Z1, Z2, . . . , Zn, Zn+1, . . . ) 7−→ (Zπ̃(1), Zπ̃(2), . . . , Zπ̃(n), Zn+1, . . . ) .

where π̃ is some permutation of {1, . . . , n}. Denote by Πn the set of all n! of such

maps. We need to show that for all A ∈ F∞ and for all π0 ∈ Π there exists

B ∈ B(R∞) s. t.

A = {ω|Z̃(ω) ∈ B} = {ω|π0(Z̃(ω)) ∈ B} . (3.14)

Let A ∈ F∞, then A ∈ Fn for all n ∈ N. Note that each of the maps π ∈ Πn is

measurable. Hence the map

(R∞,B(R∞)) −→ (R∞,B(R∞))

(Z1, Z2, . . . , Zn, Zn+1, . . . ) 7−→ (Z1:n, . . . , Zn:n, Zn+1, Zn+2, . . . ) .

is measurable. Therefore there must exist B̃ ∈ B(R∞) such that

A = {ω|(Z1:n(ω), . . . , Zn:n(ω), Zn+1(ω), Zn+2(ω), . . . ) ∈ B̃} .

Thus we can write A as

A =
⋃
π∈Πn

{
ω|π(Z̃) ∈ B̃

}
=
⋃
π∈Πn

{
ω|Z̃ ∈ π−1(B̃)

}
=

{
ω|Z̃ ∈

⋃
π∈Πn

π−1(B̃)

}
.

Consider that ⋃
π∈Πn

π−1(B̃) ∈ B(R∞) ,
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as a countable union of sets in B(R∞). Moreover note that

⋃
π∈Πn

π−1(B̃) =
⋃
π∈Πn

(π0 ◦ π)−1(B̃) ,

since the union is iterating over all π ∈ Πn. Thus we obtain

A =

{
ω|Z̃ ∈

⋃
π∈Πn

(π0 ◦ π)−1(B̃)

}

=
⋃
π∈Πn

{
ω|Z̃ ∈ (π0 ◦ π)−1(B̃)

}
=
⋃
π∈Πn

{
ω|π0(Z̃) ∈ π−1(B̃)

}
=
{
ω|π0(Z̃) ∈ B

}
.

Whence establishing (3.14).

Theorem 3.5. Let q(z) be non-decreasing for all z ∈ R+. Then Sn(q) converges

almost surely to some limit S∞ and the following holds almost surely

S∞ = lim
n→∞

E[Sn] .

Proof. According to Lemma 3.3, (Sn,Fn)n≥2 is a non-negative supermartingale.

Hence Sn converges almost surely to a limit S∞ according to Neveu (1975), Lemma

V-3-11. Moreover we have

S∞ = lim
n→∞

E[Sn|F∞] (3.15)

almost surely, according to Lemma V-3-11. But now Lemma 3.4 implies that the

limit on the right hand side of (3.15) is almost surely constant, in particular

S∞ = lim
n→∞

E[Sn] .
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Chapter 4

Identifying the limit

In the previous chapter we established the existence of the limit limn→∞ Sn(q). We

will now continue to identify the limit limn→∞ S
se
2,n = limn→∞ Sn(m(·, θ̂n)) through-

out this chapter. The interdependence structure of the proofs within this chapter is

shown in figure 4.1 below.

Theorem 1.4

Lemma 4.12

Thm. 3.5 Lem. 4.4 Lem. 4.6 Lem. 4.7

L 4.2 L 4.3

Lem. 4.8

Corollary 4.14

Lem. 4.13

Figure 4.1: Interdependence Structure of the lemmas and theorems within this
chapter.

4.1 The reverse supermartingale Dn

During this chapter, we will closely follow the calculations of Bose and Sen (1999).

They considered the process Dn(s, t, m̃), where m̃(z) = E[δ|Z = z] does not nec-

essarily belong to a parametric family, while we will be considering Dn(s, t, q) for

some measurable function q with values in [0, 1]. Since it was not entirely clear, if

the special representation of m̃ as conditional expectation was used in the proofs of
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lemmas 2, 3 and 4 in Bose and Sen (1999), we conducted a detailed investigation.

It will turn out that the proofs work in the same way for Dn(s, t, q). For the sake

of completeness, we will show the detailed proofs for Dn(s, t, q) in this chapter.

First recall the following quantities from Chapter 2. We have

Bn(s) :=
n∏
k=1

[
1 +

1− q(Zk)
n−Rk,n

]
1{Zk<s}

Cn(s) :=
n+1∑
i=1

[
1− q(s)
n− i+ 2

]
1{Zi−1:n<s≤Zi:n}

Dn(s, t) :=
n∏
k=1

[
1 +

1− q(Zk)
n−Rk,n + 2

]21{Zk<s} n∏
k=1

[
1 +

1− q(Zk)
n−Rk,n + 1

]
1{s<Zk<t}

∆n(s, t) := E [Dn(s, t)]

∆̄n(s, t) := E [Cn(s)Dn(s, t)] .

for n ≥ 2 and s < t. Here Z0:n := 0 and Zn+1:n :=∞.

During this section, we will first derive a representation of E[Sn] which involves

the process Dn. This will be done in Lemma 4.2 and Lemma 4.3. We will then show

that {Dn,Fn} is a reverse supermartingale in Lemma 4.5 and finally identify the

limit of Dn in Lemma 4.4.

The lemma below contains a basic result needed to prove Lemma 4.3.

Lemma 4.1. Let i 6= j. Then the conditional expectation

E[Bn(s)Bn(t)|Zi = s, Zj = t]
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is independent of i, j and hence

E[Bn(s)Bn(t)|Zi = s, Zj = t] = E[Bn(s)Bn(t)|Z1 = s, Z2 = t]

holds almost surely.

Proof. For the sake of notational simplicity denote for s < t snk := 1{Zk:n<s} and

tnk := 1{s≤Zk:n<t}. Note that i 6= j implies s 6= t, since the (Zi)i≤n are pairwise

distinct. Now consider on {s < t}

E [Bn(s)Bn(t)|Zi = s, Zj = t]

= E

[
n∏
k=1

(
1 +

1− q(Zk:n)

n− k

)2snk+tnk ∣∣∣Zi = s, Zj = t

]

= E

[
n−1∑
k1=1

n∑
k2=2

1{Zk1:n
=s}1{Zk2:n

=t}

(
1 +

1− q(s)
n− k1

)

×
k1−1∏
k=1

(
1 +

1− q(Zk:n)

n− k

)2snk+tnk

×
k2−1∏

k=k1+1

(
1 +

1− q(Zk:n)

n− k

)2snk+tnk

×
n∏

k=k2+1

(
1 +

1− q(Zk:n)

n− k

)2snk+tnk ∣∣∣Zi = s, Zj = t

]

since snk1 = 0, tnk1 = 1, snk2 = 0 and tnk2 = 0. Moreover we have


snk = 1 and tnk = 0 if k < k1

snk = 0 and tnk = 1 if k1 < k < k2

snk = 0 and tnk = 0 if k2 < k

.

Therefore we obtain

E [Bn(s)Bn(t)|Zi = s, Zj = t]
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= E

[
n−1∑
k1=1

n∑
k2=2

1{Zk1:n
=s}1{Zk2:n

=t}

(
1 +

1− q(s)
n− k1

)

×
k1−1∏
k=1

(
1 +

1− q(Zk:n)

n− k

)2snk

×
k2−1∏

k=k1+1

(
1 +

1− q(Zk:n)

n− k

)tnk ∣∣∣Zi = s, Zj = t

]
.

Next we need to introduce some more notation. For 1 ≤ i, j ≤ n and n ≥ 2,

let {Zk:n−2}k≤n−2 denote the ordered Z-values among Z1, . . . , Zn with Zi and Zj

removed from the sample. Note that

Zk:n =


Zk:n−2 k < k1

Zk−1:n−2 k1 < k < k2

. (4.1)

Thus we have

E [Bn(s)Bn(t)|Zi = s, Zj = t]

= E

[
n∑

k1=1

n∑
k2=1

1{Zk1−1:n−2<s≤Zk1:n−2}1{Zk2−2:n−2<t≤Zk2−1:n−2}

×
(

1 +
1− q(s)
n− k1

) k1−1∏
k=1

(
1 +

1− q(Zk:n−2)

n− k

)2sn−2
k

×
k2−1∏

k=k1+1

(
1 +

1− q(Zk−1:n−2)

n− k

)tn−2
k−1

|Zi = s, Zj = t

]

= E

[
n∑

k1=1

n∑
k2=1

1{Zk1−1:n−2<s≤Zk1:n−2}1{Zk2−2:n−2<t≤Zk2−1:n−2}

×
(

1 +
1− q(s)
n− k1

) k1−1∏
k=1

(
1 +

1− q(Zk:n−2)

n− k

)2sn−2
k

×
k2−2∏
k=k1

(
1 +

1− q(Zk:n−2)

n− k − 1

)tn−2
k

]

= E

[
n∑

k1=1

1{Zk1−1:n−2<s≤Zk1:n−2}

(
1 +

1− q(s)
n− k1

)
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×
n−2∏
k=1

(
1 +

1− q(Zk:n−2)

n− k

)2sn−2
k

×
n−2∏
k=k1

(
1 +

1− q(Zk:n−2)

n− k − 1

)tn−2
k

]

which is independent of i, j.

Next consider the case t < s. Define t̃nk := 1{Zk:n<t} and s̃nk := 1{t≤Zk:n<s}. Us-

ing similar arguments we can show that in this case

E [Bn(s)Bn(t)|Zi = s, Zj = t]

= E

[
n∑

k1=1

1{Zk1−1:n−2<t≤Zk1:n−2}

(
1 +

1− q(t)
n− k1

)

×
n−2∏
k=1

(
1 +

1− q(Zk:n−2)

n− k

)2t̃n−2
k

×
n−2∏
k=k1

(
1 +

1− q(Zk:n−2)

n− k − 1

)s̃n−2
k

]

which is independent of i, j as well. Thus we have on {s 6= t} that E [Bn(s)Bn(t)|Zi = s, Zj = t]

is independent of i, j and hence

E [Bn(s)Bn(t)|Zi = s, Zj = t] = E [Bn(s)Bn(t)|Z1 = s, Z2 = t] .

Lemma 4.2. Let φ̃ : R2
+ −→ R+ be a Borel-measurable function. Then we have for

any n ≥ 2 and 1 ≤ i, j ≤ n

E[φ̃(Zi, Zj)Bn(Zi)Bn(Zj)]

= E[φ̃(Z1, Z2)Bn(Z1)Bn(Z2)] .
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Proof. Consider that {Zi = Zj} is a measure zero set, since H is continuous. There-

fore the following holds for 1 ≤ i, j ≤ n

E
[
φ̃(Zi, Zj)Bn(Zi)Bn(Zj)

]
= E

[
1{Zi 6=Zj}φ̃(Zi, Zj)E [Bn(Zi)Bn(Zj)|Zi, Zj]

]
= E

[
1{i 6=j}φ̃(Zi, Zj)E [Bn(Zi)Bn(Zj)|Zi, Zj]

]
=

∫ ∞
0

∫ ∞
0

1{i 6=j}φ̃(s, t)E [Bn(s)Bn(t)|Zi = s, Zj = t]H(ds)H(dt) . (4.2)

According to Lemma 4.1 we have for 1 ≤ i 6= j ≤ n

E[Bn(s)Bn(t)|Zi = s, Zj = t] = E[Bn(s)Bn(t)|Z1 = s, Z2 = t]

Therefore we obtain, according to (4.2) that

E
[
φ̃(Zi, Zj)Bn(Zi)Bn(Zj)

]
= E

[
φ̃(Zi, Zj)E [Bn(Zi)Bn(Zj)|Zi, Zj]

]
= E

[
φ̃(Z1, Z2)Bn(Z1)Bn(Z2)

]
.

Lemma 4.3. Let φ̃ : R2
+ −→ R+ be a measurable function. Then we have for n ≥ 2

E[φ̃(Z1, Z2)Bn(Z1)Bn(Z2)]

= E[2φ̃(Z1, Z2){∆n−2(Z1, Z2) + ∆̄n−2(Z1, Z2)}1{Z1<Z2}] .

Proof. Note that w.l.o.g. we can assume that the (Zi)i≤n are pairwise distinct, since

H is continuous. Consider the following

Bn(Z1)Bn(Z2) =
n∏
k=1

[
1 +

1− q(Zk)
n−Rk,n

]
1{Zk<Z1}+1{Zk<Z2}
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=

[
1 +

1− q(Z1)

n−R1,n

]
1{Z1<Z2}

[
1 +

1− q(Z2)

n−R2,n

]
1{Z2<Z1}

×
n∏
k=3

[
1 +

1− q(Zk)
n−Rk,n

]
1{Zk<Z1}+1{Zk<Z2}

= 1{Z1<Z2}

[
1 +

1− q(Z1)

n−R1,n

]
×

n−2∏
k=1

[
1 +

1− q(Zk+2)

n−Rk+2,n

]
1{Zk+2<Z1}+1{Zk+2<Z2}

+ 1{Z1>Z2}

[
1 +

1− q(Z2)

n−R2,n

]
×

n−2∏
k=1

[
1 +

1− q(Zk+2)

n−Rk+2,n

]
1{Zk+2<Z1}+1{Zk+2<Z2}

+ 1{Z1=Z2}

n−2∏
k=1

[
1 +

1− q(Zk+2)

n−Rk+2,n

]21{Zk+2<Z1}

. (4.3)

On {Z1 < Z2} we have

n−2∏
k=1

[
1 +

1− q(Zk+2)

n−Rk+2,n

]
1{Zk+2<Z2}

=
n−2∏
k=1

[
1 +

1− q(Zk+2)

n− R̃k,n−2

]
1{Zk+2<Z1}

×
n−2∏
k=1

[
1 +

1− q(Zk+2)

n− R̃k,n−2 − 1

]
1{Z1<Zk+2<Z2}

where R̃k,n−2 denotes the rank of the Zk, k = 3, . . . , n among themselves. The above

holds since

Rk+2,n =


R̃k,n−2 if Zk+2 < Z1

R̃k,n−2 + 1 if Z1 < Zk+2 < Z2

for k = 1, . . . , n− 2. Therefore (4.3) yields

Bn(Z1)Bn(Z2) = 1{Z1<Z2}

[
1 +

1− q(Z1)

n−R1,n

]
×

n−2∏
k=1

[
1 +

1− q(Zk+2)

n− R̃k,n−2

]21{Zk+2<Z1}
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×
n−2∏
k=1

[
1 +

1− q(Zk+2)

n− R̃k,n−2 − 1

]
1{Z1<Zk+2<Z2}

+ 1{Z2<Z1}

[
1 +

1− q(Z2)

n−R2,n

]
×

n−2∏
k=1

[
1 +

1− q(Zk+2)

n− R̃k,n−2

]21{Zk+2<Z2}

×
n−2∏
k=1

[
1 +

1− q(Zk+2)

n− R̃k,n−2 − 1

]
1{Z2<Zk+2<Z1}

+ 1{Z1=Z2}

n−2∏
k=1

[
1 +

1− q(Zk+2)

n− R̃k,n−2

]21{Zk+2<Z1}

. (4.4)

Now let’s denote Zk:n−2 the ordered Z-values among Z3, . . . , Zn for k = 1, . . . , n−2.

Consider that we can write

[
1 +

1− q(Z1)

n−R1,n

]
=

n−1∑
i=1

[
1 +

1− q(s)
n− i

]
1{Zi−1:n−2<Z1≤Zi:n−2} .

Recall that we set Z0:n = 0 and Zn−1:n−2 =∞. Now note that Zk:n−2 is independent

of Z1 and Z2 for k = 1, . . . , n−2. Therefore we obtain the following, by conditioning

(4.4) on Z1, Z2:

E[Bn(Z1)Bn(Z2)|Z1 = s, Z2 = t]

= 1{s<t}E

[(
n−1∑
i=1

[
1 +

1− q(s)
n− i

]
1{Zi−1:n−2<s≤Zi:n−2}

)

×
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k

]21{Zk:n−2<s}

×
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k − 1

]
1{s<Zk:n−2<t}

]

+ 1{t<s}E

[(
n−1∑
i=1

[
1 +

1− q(t)
n− i

]
1{Zi−1:n−2<t≤Zi:n−2}

)

×
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k

]21{Zk:n−2<t}
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×
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k − 1

]
1{t<Zk:n−2<s}

]

+ 1{s=t}E

[
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k

]21{Zk:n−2<s}
]

= α(s, t) + α(t, s) + β(s, t)

where

α(s, t) := 1{s<t}E

[(
n−1∑
i=1

[
1 +

1− q(s)
n− i

]
1{Zi−1:n−2<s≤Zi:n−2}

)

×
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k

]21{Zk:n−2<s}

×
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k − 1

]
1{s<Zk:n−2<t}

]

and

β(s, t) := 1{s=t}E

[
n−2∏
k=1

[
1 +

1− q(Zk:n−2)

n− k

]21{Zk:n−2<s}
]

.

Consider that we have

E[α(Z1, Z2)] = E[α(Z2, Z1)] ,

because Z1 and Z2 are i. i. d. and α is symmetric in its arguments. Moreover

E[β(Z1, Z2)] = 0

since H is continuous. Therefore we get

E[φ̃(Z1, Z2)Bn(Z1)Bn(Z2)]

= E[φ̃(Z1, Z2)(α(Z1, Z2) + α(Z2, Z1) + β(Z1, Z2))]

= E[2φ̃(Z1, Z2)α(Z1, Z2)] . (4.5)
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under (A1). Next consider that

α(s, t) = 1{s<t}E [(1 + Cn−2(s))Dn−2(s, t)]

= 1{s<t}(∆n−2(s, t) + ∆̄n−2(s, t)) .

The latter equality holds, since

n−1∑
i=1

[
1 +

1− q(s)
n− i

]
1{Zi−1:n−2<s≤Zi:n−2}

=
n−1∑
i=1

1{Zi−1:n−2<s≤Zi:n−2} +
n−1∑
i=1

[
1− q(s)
n− i

]
1{Zi−1:n−2<s≤Zi:n−2}

= 1 + Cn−2(s) .

Now the statement of the lemma follows directly from (4.5).

Next recall the following definition for s < t from Chapter 2:

D(s, t) := exp

(
2

∫ s

0

1− q(x)

1−H(x)
H(dx) +

∫ t

s

1− q(x)

1−H(x)
H(dx)

)
.

The next lemma identifies the almost sure limit of Dn.

Lemma 4.4. For any s < t ≤ T s. t. H(T ) < 1, we have

lim
n→∞

Dn(s, t) = D(s, t)

almost surely.

Proof. First define the following quantities for for s < t and k = 1, . . . , n

xk :=
1− q(Zk)

n(1−Hn(Zk) + 2/n)

yk :=
1− q(Zk)

n(1−Hn(Zk) + 1/n)
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sk := 1{Zk<s}

tk := 1{s<Zk<t} .

Now consider that we have

Dn(s, t) =
n∏
k=1

[
1 +

1− q(Zk)
n(1−Hn(Zk) + 2/n)

1{Zk<s}

]2

×
n∏
k=1

[
1 +

1− q(Zk)
n(1−Hn(Zk) + 1/n)

1{s<Zk<t}

]
=

n∏
k=1

[1 + xksk]
2

n∏
k=1

[1 + yktk]

= exp

(
2

n∑
k=1

ln [1 + xksk] +
n∑
k=1

ln [1 + yktk]

)
.

Note that 0 ≤ xksk ≤ 1 and 0 ≤ yktk ≤ 1. Consider that the following inequality

holds

−x
2

2
≤ ln(1 + x)− x ≤ 0

for any x ≥ 0 (cf. Stute and Wang (1993), p. 1603). This implies

−1

2

n∑
k=1

x2
ksk ≤

n∑
k=1

ln(1 + xksk)−
n∑
k=1

xksk ≤ 0 .

But now

n∑
k=1

x2
ksk =

1

n2

n∑
k=1

(
1− q(Zk)

1−Hn(Zk) + 2
n

)2

1{Zk<s}

≤ 1

n2

n∑
k=1

(
1

1−Hn(s) + 1
n

)2

=
1

n(1−Hn(s) + n−1)2
−→ 0

almost surely as n → ∞, since H(s) < H(t) < 1 (c. f. Stute and Wang (1993), p.
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1603). Therefore we have

|
n∑
k=1

ln(1 + xksk)−
n∑
k=1

xksk| −→ 0

with probability 1 as n→∞. Similarly we obtain

|
n∑
k=1

ln(1 + yktk)−
n∑
k=1

yktk| −→ 0

with probability 1 as n→∞. Hence

lim
n→∞

Dn(s, t) = lim
n→∞

exp

(
2

n∑
k=1

xksk +
n∑
k=1

yktk

)
.

Now consider the following

n∑
k=1

xksk =
1

n

n∑
k=1

1− q(Zk)
1−Hn(Zk) + 2

n

1{Zk<s}

=

∫ s−

0

1− q(z)

1−Hn(z) + 2
n

Hn(dz)

=

∫ s−

0

1− q(z)

1−H(z)
Hn(dz) +

∫ s−

0

1− q(z)

1−Hn(z) + 2
n

− 1− q(z)

1−H(z)
Hn(dz)

=

∫ s−

0

1− q(z)

1−H(z)
Hn(dz) +

∫ s−

0

(1− q(z))(Hn(z)−H(z)− 2
n
)

(1−Hn(z) + 2
n
)(1−H(z))

Hn(dz) .

(4.6)

Note that the second term on the right hand side of the latter equation above tends

to zero for n→∞, because

∣∣∣∣∫ s−

0

(1− q(z))(Hn(z)−H(z)− 2
n
)

(1−Hn(z) + 2
n
)(1−H(z))

Hn(dz)

∣∣∣∣
≤

supz≤T |Hn(z)−H(z)− 2
n
|

1−H(T )

∫ T−

0

1

1−Hn(z)
Hn(dz) −→ 0 (4.7)

almost surely as n → ∞, by the Glivenko-Cantelli Theorem and since H(T ) < 1.
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Moreover we have

∫ s−

0

1− q(z)

1−H(z)
Hn(dz) −→

∫ s

0

1− q(z)

1−H(z)
H(dz)

almost surely by the strong law of large numbers. Therefore we obtain

lim
n→∞

n∑
k=1

xksk =

∫ s

0

1− q(z)

1−H(z)
H(dz) .

By the same arguments, we can show that

lim
n→∞

n∑
k=1

yktk =

∫ t

s

1− q(z)

1−H(z)
H(dz) .

almost surely. Thus we finally conclude

lim
n→∞

Dn(s, t) = exp

(
2

∫ s

0

1− q(z)

1−H(z)
H(dz) +

∫ t

s

1− q(z)

1−H(z)
H(dz)

)

almost surely.

Lemma 4.5. {Dn,Fn}n≥1 is a non-negative reverse supermartingale.

Proof. Consider that for s < t and n ≥ 1, we have

E[Dn(s, t)|Fn+1] = E

[
n∏
k=1

(
1 +

1− q(Zk:n)

n− k + 2

)21{Zk:n<s}

×
n∏
k=1

(
1 +

1− q(Zk:n)

n− k + 1

)
1{s<Zk:n<t}

|Fn+1

]

=
n+1∑
i=1

E

[
1{Zn+1=Zi:n+1}

n∏
k=1

. . . |Fn+1

]

=
n+1∑
i=1

E

[
1{Zn+1=Zi:n+1}

i−1∏
k=1

(
1 +

1− q(Zk:n+1)

n− k + 2

)21{Zk:n+1<s}

×
n∏
k=i

(
1 +

1− q(Zk+1:n+1)

n− k + 2

)21{Zk+1:n+1<s}
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×
i−1∏
k=1

(
1 +

1− q(Zk:n+1)

n− k + 1

)
1{s<Zk:n+1<t}

×
n∏
k=i

(
1 +

1− q(Zk+1:n+1)

n− k + 1

)
1{s<Zk+1:n+1<t}

|Fn+1

]

=
n+1∑
i=1

E

[
1{Zn+1=Zi:n+1}

i−1∏
k=1

(
1 +

1− q(Zk:n+1)

n− k + 2

)21{Zk:n+1<s}

×
n+1∏
k=i+1

(
1 +

1− q(Zk:n+1)

n− k + 3

)21{Zk:n+1<s}

×
i−1∏
k=1

(
1 +

1− q(Zk:n+1)

n− k + 1

)
1{s<Zk:n+1<t}

×
n+1∏
k=i+1

(
1 +

1− q(Zk:n+1)

n− k + 2

)
1{s<Zk:n+1<t}

|Fn+1

]
.

Note that each product within the conditional expectation is measurable w. r. t.

Fn+1. Moreover we have for i = 1, . . . , n

E[1{Zn+1=Zi:n+1}|Fn+1] = P(Zn+1 = Zi:n+1|Fn+1)

= P(Rn+1,n+1 = i)

=
1

n+ 1
.

Therefore we obtain the following

E[Dn(s, t)|Fn+1] =
1

n+ 1

n+1∑
i=1

i−1∏
k=1

(
1 +

1− q(Zk:n+1)

n− k + 2

)21{Zk:n+1<s}

×
(

1 +
1− q(Zk:n+1)

n− k + 1

)
1{s<Zk:n+1<t}

×
n+1∏
k=i+1

(
1 +

1− q(Zk:n+1)

n− k + 3

)21{Zk:n+1<s}

×
(

1 +
1− q(Zk:n+1)

n− k + 2

)
1{s<Zk:n+1<t}

. (4.8)
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We will now proceed by induction on n. First let

xk := 1− q(Zk:2), sk := 1{Zk:2<s} and tk := 1{s<Zk:2<t}

for k = 1, 2. Note that that xk and yk are different, compared to the corresponding

definitions in lemma 4.4, as they involve the ordered Z-values here. Next consider

E[D1(s, t)|F2] =
1

2

[(
1 +

1− q(Z2:2)

2

)21{Z2:2<s}

× (1 + (1− q(Z2:2)))1{s<Z2:2<t}

+

(
1 +

1− q(Z1:2)

2

)21{Z1:2<s}

× (1 + (1− q(Z1:2)))1{s<Z1:2<t}

]

=
1

2

[(
1 +

x2

2
s2

)2

× (1 + x2t2) +
(

1 +
x1

2
s1

)2

× (1 + x1t1)

]
.

Moreover we have

D2(s, t) =
2∏

k=1

[
1 +

1− q(Zk:2)

4− k

]21{Zk:2<s} 2∏
k=1

[
1 +

1− q(Zk:2)

3− k

]
1{s<Zk:2<t}

=
[
1 +

x1

3
s1

]2

×
[
1 +

x1

2
t1

]
×
[
1 +

x2

2
s2

]2

× [1 + x2t2]

=

[
1 +

x1

2
t1 +

(
x2

1

9
+

2

3
x1

)
s1

]
×
[
1 + x2t2 +

(
x2

2

4
+ x2

)
s2

]
.

Therefore we obtain

E[D1(s, t)|F2]−D2(s, t) ≤ x2
1

72
− x1

6
≤ 0 ,

since 0 ≤ x1 ≤ 1. Thus E[D1(s, t)|F2] ≤ D2(s, t) for any s < t, as needed. Now

assume that

E[Dn(s, t)|Fn+1] ≤ Dn+1(s, t)
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holds for any n ≥ 1. Note that the latter is equivalent to assuming

1

n+ 1

n+1∑
i=1

i−1∏
k=1

(
1 +

1− q(yk)
n− k + 2

)21{yk<s}
(

1 +
1− q(yk)
n− k + 1

)
1{s<yk<t}

×
n+1∏
k=i+1

(
1 +

1− q(yk)
n− k + 3

)21{yk<s}
(

1 +
1− q(yk)
n− k + 2

)
1{s<yk<t}

≤
n+1∏
k=1

(
1 +

1− q(yk)
n− k + 3

)21{yk<s} n+1∏
k=1

(
1 +

1− q(yk)
n− k + 2

)
1{s<yk<t}

(4.9)

holds for arbitrary yk ≥ 0. Next define

An+2(s, t) :=
n+2∏
k=2

[
1 +

1− q(Zk:n+2)

n− k + 4

]21{Zk:n+2<s}

×
[
1 +

1− q(Zk:n+2)

n− k + 3

]
1{s<Zk:n+2<t}

for s < t and n ≥ 1. According to (4.8), we have

E[Dn+1(s, t)|Fn+2]

=
1

n+ 2

n+2∑
i=1

i−1∏
k=1

(
1 +

1− q(Zk:n+2)

n− k + 3

)21{Zk:n+2<s}
(

1 +
1− q(Zk:n+2)

n− k + 2

)
1{s<Zk:n+2<t}

×
n+2∏
k=i+1

(
1 +

1− q(Zk:n+2)

n− k + 4

)21{Zk:n+2<s}
(

1 +
1− q(Zk:n+2)

n− k + 3

)
1{s<Zk:n+2<t}

=
An+2

n+ 2
+

1

n+ 2

n+2∑
i=2

i−1∏
k=1

· · · ×
n+2∏
k=i+1

. . .

=
An+2

n+ 2
+

1

n+ 2

n+1∑
i=1

i∏
k=1

· · · ×
n+2∏
k=i+2

. . .

=
An+2

n+ 2
+

1

n+ 2

(
1 +

1− q(Z1:n+2)

n+ 2

)21{Z1:n+2<s}
(

1 +
1− q(Z1:n+2)

n+ 1

)
1{s<Z1:n+2<t}

×
n+1∑
i=1

i−1∏
k=1

(
1 +

1− q(Zk+1:n+2)

n− k + 2

)21{Zk+1:n+2<s}

×
(

1 +
1− q(Zk+1:n+2)

n− k + 1

)
1{s<Zk+1:n+2<t}

×
n+1∏
k=i+1

(
1 +

1− q(Zk+1:n+2)

n− k + 3

)21{Zk+1:n+2<s}
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×
(

1 +
1− q(Zk+1:n+2)

n− k + 2

)
1{s<Zk+1:n+2<t}

.

Using (4.9) on the right hand side of the equation above yields

E[Dn+1(s, t)|Fn+2]

≤ An+2

n+ 2
+
n+ 1

n+ 2

(
1 +

1− q(Z1:n+2)

n+ 2

)21{Z1:n+2<s}
(

1 +
1− q(Z1:n+2)

n+ 1

)
1{s<Z1:n+2<t}

×
n+1∏
k=1

(
1 +

1− q(Zk+1:n+2)

n− k + 3

)21{Zk+1:n+2<s}

×
(

1 +
1− q(Zk+1:n+2)

n− k + 2

)
1{s<Zk+1:n+2<t}

= An+2

[
1

n+ 2
+
n+ 1

n+ 2

(
1 +

1− q(Z1:n+2)

n+ 2

)21{Z1:n+2<s}

×
(

1 +
1− q(Z1:n+2)

n+ 1

)
1{s<Z1:n+2<t}

]
.

For the moment, let

x1 := 1− q(Z1:n+2), s1 := 1{Z1:n+2<s} and t1 := 1{s<Z1:n+2<t} .

Now we can rewrite the conditional expectation above as

E[Dn+1(s, t)|Fn+2] ≤ An+2

[
1

n+ 2
+
n+ 1

n+ 2

(
1 +

x1s1

n+ 2

)2(
1 +

x1t1
n+ 1

)]
. (4.10)

Next consider that we have

(
1 +

x1t1
n+ 1

)
=

(
1 +

x1t1
n+ 2

− 1

n+ 2

)(
1 +

1

n+ 1

)
=

(
1 +

x1t1
n+ 2

)
+

1

n+ 1

(
1 +

x1t1
(n+ 2)

)
− 1

n+ 1

=

(
1 +

x1t1
n+ 2

)
+

x1t1
(n+ 1)(n+ 2)

.
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Thus we obtain

n+ 1

n+ 2

(
1 +

x1s1

n+ 2

)2(
1 +

x1t1
n+ 1

)
=
n+ 1

n+ 2

(
1 +

x1s1

n+ 2

)2(
1 +

x1t1
n+ 2

)
+

(
1 +

x1s1

n+ 2

)2
x1t1

(n+ 2)2
.

But now

(
1 +

x1s1

n+ 2

)2
x1t1

(n+ 2)2
=

(
1 + 2

x1s1

n+ 2
+

x2
1s1

(n+ 2)2

)
x1t1

(n+ 2)2

=
x1t1

(n+ 2)2

since s1 · t1 = 0 for all s < t. Hence we can rewrite the term in brackets in (4.10) as

1

n+ 2
+
n+ 1

n+ 2

(
1 +

x1s1

n+ 2

)2(
1 +

x1t1
n+ 1

)
=

1

n+ 2
+

x1t1
(n+ 2)2

+
n+ 1

n+ 2

(
1 +

x1s1

n+ 2

)2(
1 +

x1t1
n+ 2

)
=

1

n+ 2

(
1 +

x1t1
n+ 2

)
+
n+ 1

n+ 2

(
1 +

x1s1

n+ 2

)2(
1 +

x1t1
n+ 2

)
=

[
1

n+ 2
+
n+ 1

n+ 2

(
1 +

x1

n+ 2

)2s1
](

1 +
x1

n+ 2

)t1
≤
(

1 +
x1

n+ 3

)2s1 (
1 +

x1

n+ 2

)t1
.

The latter inequality above holds, since

[
1

n+ 2
+
n+ 1

n+ 2

(
1 +

x

n+ 2

)2
]
≤
(

1 +
x

n+ 3

)2

for any 0 ≤ x ≤ 1. (c. f. Bose and Sen (1999), page 197). Therefore we can rewrite

(4.10) as

E[Dn+1(s, t)|Fn+2] ≤ An+2

(
1 +

1− q(Z1:n+2)

n+ 3

)21{Z1:n+2<s}
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×
(

1 +
1− q(Z1:n+2)

n+ 2

)
1{s<Z1:n+2<t}

= Dn+2(s, t) .

This concludes the proof.

Lemma 4.6. Let s < t s. t. H(t) < 1. Then ∆n(s, t)↗ D(s, t).

Proof. Consider that we have for n ≥ 2

∆n(s, t) = E[Dn(s, t)] = E[Dn(s, t)|F∞]

by definition of ∆n(s, t) and Lemma 3.4. Next note that we have Dn(s, t)→ D(s, t)

almost surely, according to Lemma 4.4. Moreover we get from Lemma 4.5 that

{Dn,Fn}n≥1 is a reverse supermartingale. Now this together with Proposition V-3-

11 of Neveu (1975) yields

E[Dn(s, t)|F∞]↗ D(s, t) .

We will now proceed to find an explicit representation for E[Sn] in terms of

the reverse supermartingale Dn, in order to identify the limit S(q). Consider the

following lemma.

Lemma 4.7. For continuous H(·), we have

E[Sn(q)] =
n− 1

n
E[φ(Z1, Z2)q(Z1)q(Z2){∆n−2(Z1, Z2) + ∆̄n−2(Z1, Z2)}1{Z1<Z2}] .
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Proof. Consider the following

E[Sn(q)] =
∑∑
1≤i<j≤n

E

[
φ(Zi:n, Zj:n)

q(Zi:n)

n− i+ 1)

i−1∏
k=1

[
1− q(Zk:n)

n− k + 1

]

× q(Zj:n)

n− j + 1

j−1∏
l=1

[
1− q(Zl:n)

n− l + 1

]]

=
1

n2

∑∑
1≤i<j≤n

E

[
φ(Zi:n, Zj:n)q(Zi:n)

i−1∏
k=1

[
1 +

1− q(Zk:n)

n− k + 1

]

× q(Zj:n)

j−1∏
l=1

[
1 +

1− q(Zl:n)

n− l + 1

]]

=
1

n2

∑∑
1≤i<j≤n

E [φ(Zi:n, Zj:n)q(Zi:n)q(Zj:n)Bn(Zi:n)Bn(Zj:n)]

=
1

2n2

n∑
i=1

n∑
j=1

E
[
1{i 6=j}φ(Zi:n, Zj:n)q(Zi:n)q(Zj:n)Bn(Zi:n)Bn(Zj:n)

]
=

1

2n2

n∑
i=1

n∑
j=1

E
[
1{i 6=j}φ(Zi, Zj)q(Zi)q(Zj)Bn(Zi)Bn(Zj)

]
. (4.11)

According to Lemma 4.2 we obtain

E[Sn(q)] =
n− 1

2n
E [φ(Z1, Z2)q(Z1)q(Z2)Bn(Z1)Bn(Z2)] .

Now, since φ and q are measurable, we can apply Lemma 4.3 to obtain the result.

The result of the following lemma will be extended to uniform convergence in

Lemma 4.10.

Lemma 4.8. For continuous H and t ≤ T < τH , we have Cn(t) → 0 as n → ∞

w. p. 1, and Cn(t) ∈ [0, 1] for all n ≥ 1 and t ≥ 0.

Proof. It is easy to see that 0 ≤ Cn(t) ≤ 1 for any t ≥ 0 and n ≥ 2, since 0 ≤ q(t) ≤ 1

and 1{Zi−1:n<t≤Zi:n} = 1 for exactly one i ∈ {1, . . . , n+ 1}. Let’s now consider

Cn(t) =
n+1∑
i=1

1− q(t)
n− i+ 2

[1{Zi−1:n<t} − 1{Zi:n<t}]
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=
n+1∑
i=1

1− q(t)
n− i+ 2

1{Zi−1:n<t} −
n+1∑
i=1

1− q(t)
n− i+ 2

1{Zi:n<t}

=
n∑
i=0

1− q(t)
n− i+ 1

1{Zi:n<t} −
n∑
i=1

1− q(t)
n− i+ 2

1{Zi:n<t}

=
n∑
i=1

1− q(t)
n− i+ 1

1{Zi:n<t} +
(1− q(t))
n+ 1

−
n∑
i=1

1− q(t)
n− i+ 2

1{Zi:n<t}

= (1− q(t))

{
1

n+ 1
+

n∑
i=1

[
1

n− i+ 1
− 1

n− i+ 2

]
1{Zi:n<t}

}

= (1− q(t))
n∑
i=1

[
1

n− nHn(Zi:n) + 1

1

n− nHn(Zi:n) + 2

]
1{Zi:n<t}

+
1− q(t)
n+ 1

= (1− q(t))
∫ t

0

[
1

1−Hn(x) + 1
n

− 1

1−Hn(x) + 2
n

]
Hn(dx)

+
1− q(t)
n+ 1

. (4.12)

In Lemma 4.4 we have seen that

∫ t

0

1

1−Hn(x) + 2
n

Hn(dx)→
∫ t

0

1

1−H(x)
H(dx) .

By the same arguments we obtain

∫ t

0

1

1−Hn(x) + 1
n

Hn(dx)→
∫ t

0

1

1−H(x)
H(dx) .

Therefore the right hand side of (4.12) converges to zero.

The following lemma contains an integration by parts result, which will be useful

in order to prove Lemma 4.10. Recall the following quantities from chapter 2:

H1(x) =

∫ x

0

m(z, θ0)H(dz)
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and

H1
n(x) =

∫ x

0

m(z, θ0)Hn(dz) =
1

n

n∑
i=1

1{Zi:n≤x}m(Zi:n, θ0) ,

c. f. Dikta (1998), Lemma 3.12.

Lemma 4.9. For any 0 ≤ s < t ≤ T we have

∫ t−

s

1

1−H(z)
Hn(dz)−

∫ t

s

1

1−H(z)
H(dz)

=
Hn(t)−H(t)

1−H(t)
− Hn(s−)−H(s)

1−H(s)
−
∫ t

s

Hn(z−)−H(z)

(1−H(z))2
H(dz)− γn(t) (4.13)

and

∫ t−

s

1

1−H(z)
H1
n(dz)−

∫ t

s

1

1−H(z)
H1(dz)

=
H1
n(t)−H1(t)

1−H(t)
− H1

n(s−)−H1(s)

1−H(s)
−
∫ t

s

H1
n(z−)−H1(z)

(1−H(z))2
H(dz)− γ1

n(t) ,

(4.14)

where

γn(t) =
Hn(t)−Hn(t−)

1−H(t)
and γ1

n(t) =
H1
n(t)−H1

n(t−)

1−H(t)
.

Proof. First consider that we can write

∫ t

s

1

1−H(z)
Hn(dz) =

∫ t−

s

1

1−H(z)
Hn(dz) + γn(s) .

Thus we have

∫ t−

s

1

1−H(z)
Hn(dz) =

∫ t

s

1

1−H(z)
Hn(dz)− γn(s)

=

∫ t

s

(
1

1−H(z)
− 1

)
Hn(dz) +

∫ t

s

1Hn(dz)− γn(s)

=

∫ t

s

H(z)

1−H(z)
Hn(dz) +Hn(t)−Hn(s−)− γn(s) ,
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since the following statement holds

∫ t

s

1Hn(dz) =

∫ t

0

1Hn(dz)−
∫ s−

0

1Hn(dz) = Hn(t)−Hn(s−) .

We will now use a version of integration by parts (see Cohn (2013), p. 164) to show

∫ t

s

H(z)

1−H(z)
Hn(dz) +Hn(t)−Hn(s−)

=
Hn(t)

1−H(t)
− Hn(s−)

1−H(s)
−
∫ t

s

Hn(z)

(1−H(z))2
H(dz)

First let’s define G̃(x) := Hn(x) and

F̃ (x) :=
H(x)

1−H(x)
.

Moreover denote µF̃ and µG̃ the measures induced by F̃ and G̃ respectively. Note

that we have

µF̃ (]s, t]) = F̃ (t)− F̃ (s) . (4.15)

Next consider that we can write

F̃ (x) =

∫ x

0

1

(1−H(z))2
H(dz) ,

since we have

∫ x

0

1

(1−H(z))2
H(dz) =

∫ H(x)

0

1

(1− u)2
du

=

∫ H(x)

0

1

(1− u)2
du

=
1

1−H(x)
− 1

=
H(x)

1−H(x)
.
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Now combining the above with (4.15) yields

µF̃ (]s, t]) = F̃ (t)− F̃ (s) =

∫ t

s

1

(1−H(z))2
H(dz) .

Therefore the Radon Nikodym derivative of µF̃ w. r. t. H is given by

µF̃ (dx)

H(dx)
=

1

(1−H(x))2
. (4.16)

Note that F̃ and G̃ are bounded, right-continuous and vanish at −∞. Thus we can

apply Cohn (2013), p. 164, to obtain

∫ t

s

F̃ (z)µG̃(dz) = F̃ (t)G̃(t)− F̃ (s−)G̃(s−)−
∫ t

s

G̃(z−)µF̃ (dz) .

Now we get by (4.16) and by definition of F̃ and G̃ that

∫ s

0

H(z)

1−H(z)
Hn(dz) =

Hn(t)H(t)

1−H(t)
− Hn(s−)H(s)

1−H(s)
−
∫ t

s

Hn(z−)µF̃ (dz)

=
Hn(t)H(t)

1−H(t)
− Hn(s−)H(s)

1−H(s)
−
∫ t

s

Hn(z−)

(1−H(z))2
H(dz) .

Therefore we obtain

∫ t−

s

1

1−H(z)
Hn(dz) =

∫ t

s

H(z)

1−H(z)
Hn(dz) +Hn(t)−Hn(s−)− γn(s)

=
Hn(t)H(t)

1−H(t)
− Hn(s−)H(s)

1−H(s)
−
∫ s

0

Hn(z−)

(1−H(z))2
H(dz)

+Hn(t)−Hn(s−)− γn(s)

=
Hn(t)

1−H(t)
− Hn(s−)

1−H(s)
−
∫ s

0

Hn(z−)

(1−H(z))2
H(dz)

− γn(s) . (4.17)
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The latter equality holds, since

Hn(t)H(t)

1−H(t)
+Hn(t) =

Hn(t)

1−H(t)

and

Hn(s−)H(s)

1−H(s)
+Hn(s−) =

Hn(s−)

1−H(s)
.

Now consider the following

∫ t

s

1

1−H(z)
H(dz) =

∫ t

s

H(z)

1−H(z)
H(dz) +H(t)−H(s) .

Define Ḡ(x) := H(x) and note that Ḡ(x) is bounded, right-continuous and vanishes

at −∞. Therefore applying Cohn (2013), p. 164, to F̃ and Ḡ yields

∫ t

s

H(z)

1−H(z)
H(dz) =

H2(t)

1−H(t)
− H2(s)

1−H(s)
−
∫ t

s

H(z)

(1−H(z))2
H(dz) .

Hence we have

∫ t

s

1

1−H(z)
H(dz) =

H2(t)

1−H(t)
− H2(s)

1−H(s)
−
∫ t

s

H(z)

(1−H(z))2
H(dz)

+H(t)−H(s)

=
H(t)

1−H(t)
− H(s)

1−H(s)
−
∫ t

s

H(z)

(1−H(z))2
H(dz) . (4.18)

Now combining (4.17) and (4.18) yields

∫ t−

s

1

1−H(z)
Hn(dz)−

∫ t

s

1

1−H(z)
H(dz)

=
Hn(t)−H(t)

1−H(t)
− Hn(s−)−H(s)

1−H(s)
−
∫ t

s

Hn(z−)−H(z)

1−H(z)
H(dz)− γn(t) .

Thus equation (4.13) from the statement of the lemma has been established. Next
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define G̃1(x) := H1
n(x) and apply Cohn (2013), p. 164, to F̃ and G̃1 to obtain

∫ t

s

H(z)

1−H(z)
H1
n(dz) =

H1
n(t)H(t)

1−H(t)
− H1

n(s−)H(s)

1−H(s)
−
∫ t

s

H1
n(z)

(1−H(z))2
H(dz) (4.19)

Next define Ḡ1(x) := H1(x) and apply Cohn (2013), p. 164, to F̃ and Ḡ1 to obtain

∫ t

s

H(z)

1−H(z)
H1(dz) =

H1(t)H(t)

1−H(t)
− H1(s−)H(s)

1−H(s)
−
∫ t

s

H1(z)

(1−H(z))2
H(dz) (4.20)

Finally consider the following

∫ t−

s

1

1−H(z)
H1
n(dz)−

∫ t

s

1

1−H(z)
H1(dz)

=

∫ t

s

1

1−H(z)
H1
n(dz)−

∫ t

s

1

1−H(z)
H1(dz)− γ1

n(t)

=

∫ t

s

H(z)

1−H(z)
H1
n(dz) +H1

n(t)−H1
n(s−)

−
∫ t

s

1

1−H(z)
H(dz) +H1(t)−H1(s−)− γ1

n(t) .

Now combining the above with equations (4.19) and (4.20) yields the second part

of the lemma.

The lemma below contains a statement about uniform convergence of processes

considered in the proof of Lemma 4.4. It will be used to establish Corollary 4.11.

Lemma 4.10. The following holds for any T < τH .

sup
0≤s<t≤T

∣∣∣∣∫ t−

s

1−m(z, θ0)

1−H(z)
Hn(dz)−

∫ t

s

1−m(z, θ0)

1−H(z)
H(dz)

∣∣∣∣→ 0

almost surely as n→∞.

Proof. First consider the following

sup
0≤s<t≤T

∣∣∣∣∫ t−

s

1−m(z, θ0)

1−H(z)
Hn(dz)−

∫ t

s

1−m(z, θ0)

1−H(z)
H(dz)

∣∣∣∣
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= sup
0≤s<t≤T

∣∣∣∣∫ t−

s

1

1−H(z)
Hn(dz)−

∫ t−

s

1

1−H(z)
H(dz)

+

∫ t−

s

m(z, θ0)

1−H(z)
H(dz)−

∫ t−

s

m(z, θ0)

1−H(z)
Hn(dz)

∣∣∣∣
= sup

0≤s<t≤T

∣∣∣∣∫ t−

s

1

1−H(z)
Hn(dz)−

∫ t−

s

1

1−H(z)
H(dz)

+

∫ t−

s

1

1−H(z)
H1(dz)−

∫ t−

s

1

1−H(z)
H1
n(dz)

∣∣∣∣
≤ sup

0≤s<t≤T

∣∣∣∣∫ t−

s

1

1−H(z)
Hn(dz)−

∫ t−

s

1

1−H(z)
H(dz)

∣∣∣∣
+ sup

0≤s<t≤T

∣∣∣∣∫ t−

s

1

1−H(z)
H1(dz)−

∫ t−

s

1

1−H(z)
H1
n(dz)

∣∣∣∣ . (4.21)

Applying Lemma 4.9 equation (4.13) to the first term above yields

sup
0≤s<t≤T

∣∣∣∣∫ t−

s

1

1−H(z)
Hn(dz)−

∫ t−

s

1

1−H(z)
H(dz)

∣∣∣∣
= sup

0≤s<t≤T

∣∣∣∣Hn(t)−H(t)

1−H(t)
− Hn(s−)−H(s)

1−H(s)

−
∫ t

s

Hn(z−)−H(z)

(1−H(z))2
H(dz)− Hn(t−)−Hn(t)

1−H(t)

∣∣∣∣
≤ sup

0≤s<t≤T

∣∣∣∣Hn(t)−H(t)

1−H(t)

∣∣∣∣+ sup
0≤s<t≤T

∣∣∣∣Hn(s−)−H(s)

1−H(s)

∣∣∣∣
+ sup

0≤s<t≤T

∣∣∣∣∫ t

s

Hn(z−)−H(z)

(1−H(z))2
H(dz)

∣∣∣∣+ sup
0≤s<t≤T

∣∣∣∣Hn(t−)−Hn(t)

1−H(t)

∣∣∣∣ .

Next consider that we have

sup
0≤s<t≤T

∣∣∣∣Hn(t)−H(t)

1−H(t)

∣∣∣∣ ≤ sup
x≤T
|Hn(x)−H(x)|

1−H(T )

and

sup
0≤s<t≤T

∣∣∣∣Hn(s−)−H(s)

1−H(s)

∣∣∣∣ ≤ sup
x≤T
|Hn(x)−H(x)|+ 1

n

1−H(T )
.
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Furthermore consider that the following holds

sup
0≤s<t≤T

∣∣∣∣∫ t

s

Hn(z−)−H(z)

(1−H(z))2
H(dz)

∣∣∣∣ ≤ sup
0≤s<t≤T

∣∣∣∣∫ t

0

Hn(z−)−H(z)

(1−H(z))2
H(dz)

∣∣∣∣
+ sup

0≤s<t≤T

∣∣∣∣∫ s

0

Hn(z−)−H(z)

(1−H(z))2
H(dz)

∣∣∣∣
≤ 2 ·

sup
x≤T
|Hn(x)−H(x)|+ 1

n

(1−H(T ))2
.

The latter inequality holds, since we have for any t ≤ T

∣∣∣∣∫ t

0

Hn(z−)−H(z)

(1−H(z))2
H(dz)

∣∣∣∣ ≤ ∫ t

0

|Hn(z−)−H(z)|
(1−H(T ))2

H(dz) ≤
sup
x≤T
|Hn(x)−H(x)|+ 1

n

(1−H(T ))2
,

using Jensen’s inequality. Moreover note that Hn(s) − Hn(s−) ≤ n−1 for any 0 ≤

s ≤ T and hence

sup
0≤s<t≤T

∣∣∣∣Hn(s−)−Hn(s)

1−H(s)

∣∣∣∣ ≤ 1

n(1−H(T ))
.

Therefore we obtain

sup
0≤s<t≤T

∣∣∣∣∫ t−

s

1

1−H(z)
Hn(dz)−

∫ t−

s

1

1−H(z)
H(dz)

∣∣∣∣
≤

sup
x≤T
|Hn(x)−H(x)|

1−H(T )
+

sup
x≤T
|Hn(x)−H(x)|+ 1

n

1−H(T )

+ 2 ·
sup
x≤T
|Hn(x)−H(x)|+ 1

n

(1−H(T ))2
+

1

n(1−H(T ))

→ 0

almost surely as n → ∞ by the Glivenko-Cantelli Theorem and since H(T ) < 1.

Now let’s consider the latter term in (4.21). Applying Lemma 4.9 equation (4.14)
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yields

sup
0≤s<t≤T

∣∣∣∣∫ t−

s

1

1−H(z)
H1
n(dz)−

∫ t−

s

1

1−H(z)
H1(dz)

∣∣∣∣
= sup

0≤s<t≤T

∣∣∣∣H1
n(t)−H1(t)

1−H(t)
− H1

n(s−)−H1(s)

1−H(s)

−
∫ t

s

H1
n(z−)−H1(z)

(1−H(z))2
H(dz)− H1

n(t−)−H1
n(t)

1−H(t)

∣∣∣∣
≤ sup

0≤s<t≤T

∣∣∣∣H1
n(t)−H1(t)

1−H(t)

∣∣∣∣+ sup
0≤s<t≤T

∣∣∣∣H1
n(s−)−H1(s)

1−H(s)

∣∣∣∣
+ sup

0≤s<t≤T

∣∣∣∣∫ t

s

H1
n(z−)−H1(z)

(1−H(z))2
H(dz)

∣∣∣∣+ sup
0≤s<t≤T

∣∣∣∣H1
n(t−)−H1

n(t)

1−H(t)

∣∣∣∣
≤

sup
x≤T
|H1

n(x)−H1(x)|

1−H(T )
+

sup
x≤T
|H1

n(x)−H1(x)|+ 1
n

1−H(T )

+ 2 ·
sup
x≤T
|H1

n(x)−H1(x)|+ 1
n

(1−H(T ))2
+

1

n(1−H(T ))

→ 0

almost surely as n→∞ by the Glivenko Cantelli Theorem and since H(T ) < 1.

The following Corollary is important for the proof of Theorem 1.4.

Corollary 4.11. The measure zero sets {ω|Cn(s,m;ω) 9 C(s,m) as n→∞} and

{ω|Dn(s, t,m;ω) 9 D(s, t,m) as n→∞} are independent of s and t.

Proof. In Lemma 4.4 we have seen thatDn(s, t, q) converges almost surely toD(s, t, q)

by Glivenko Cantelli and the SLLN. In order to establish the statement of the corol-

lary, we need to show that this convergence is uniform in s and t. Let q ≡ m(·, θ0)

and recall from the proof of Lemma 4.4 that we have

∣∣∣∣∫ s−

0

(1− q(z))(Hn(z)−H(z)− 2
n
)

(1−Hn(z) + 2
n
)(1−H(z))

Hn(dz)

∣∣∣∣
≤

supz≤T |Hn(z)−H(z)− 2
n
|

1−H(T )

∫ T−

0

1

1−Hn(z)
Hn(dz) −→ 0
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almost surely as n → ∞. Note that the right hand side above converges to zero

independent of s and t. Next recall that

∫ s−

0

1− q(z)

1−H(z)
Hn(dz) −→

∫ s

0

1− q(z)

1−H(z)
H(dz) (4.22)

by the SLLN. Note that this means pointwise convergence. But according to Lemma

4.10 we also have

sup
0≤s≤T

∣∣∣∣∫ s−

0

1−m(z, θ0)

1−H(z)
Hn(dz)−

∫ s

0

1−m(z, θ0)

1−H(z)
H(dz)

∣∣∣∣→ 0

almost surely as n→∞. Thus we can show that the convergence in (4.22) is indeed

uniform in s and t. For the last part of the proof, we need

sup
0≤s<t≤T

∣∣∣∣∫ t−

s

1−m(z, θ0)

1−H(z)
Hn(dz)−

∫ t

s

1−m(z, θ0)

1−H(z)
H(dz)

∣∣∣∣→ 0

almost surely as n→∞, which is provided by Lemma 4.10 as well. HenceDn(s, t,m)→

D(s, t,m) almost surely, uniformly in s and t as n→∞. By similar arguments we

get that Cn(s,m) → C(s,m) almost surely, uniformly in s as n → ∞, considering

the proof of Lemma 4.8.

We will now identify the almost sure limits of Sn(q) and S̄n(q) in Lemma 4.12.

Recall the following definitions from Chapter 2:

S̄n(q) :=
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W̄i,n(q)W̄j,n(q)

where

W̄i,n(q) :=
n∏
k=1

(
1− q(Zk:n)

n− k + 1

)
.
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Furthermore recall that we set

S(q) :=
1

2

∫ ∞
0

∫ ∞
0

φ(s, t)q(s)q(t) exp

(∫ s

0

1− q(x)

1−H(x)
H(dx)

)
× exp

(∫ t

0

1− q(x)

1−H(x)
H(dx)

)
H(ds)H(dt)

and

S̄(q) :=
1

2

∫ ∞
0

∫ ∞
0

φ(s, t) exp

(∫ s

0

1− q(x)

1−H(x)
H(dx)

)
× exp

(∫ t

0

1− q(x)

1−H(x)
H(dx)

)
H(ds)H(dt) .

Lemma 4.12. Let H be continuous and let q(z) be non-decreasing for all z ∈ R+.

Then the following statements hold true:

lim
n→∞

Sn(q) = S(q)

and

lim
n→∞

S̄n(q) = S̄(q)

with probability one, if the limit on the right hand side exists.

Proof. Suppose H is continuous and q is monotone non-decreasing. First consider

that Sn converges almost surely to some limit S∞ and we have

S∞ = lim
n→∞

Sn = lim
n→∞

E[Sn] ,

according to Theorem 3.5. Next consider that we have

E[Sn(q)] =
n− 1

n
E[φ(Z1, Z2)q(Z1)q(Z2){∆n−2(Z1, Z2) + ∆̄n−2(Z1, Z2)}1{Z1<Z2}]

=
n− 1

n
E[φ(Z1, Z2)q(Z1)q(Z2)∆n−2(Z1, Z2)1{Z1<Z2}]
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+
n− 1

n
E[φ(Z1, Z2)q(Z1)q(Z2)∆̄n−2(Z1, Z2)1{Z1<Z2}] (4.23)

by Lemma 4.7. We will now consider the two terms on the right hand side above

individually, starting with the second term above. Consider that for s < t

lim
n→∞

Cn(s)Dn(s, t) ≤ lim
n→∞

Cn(s)D(s, t) = 0

almost surely as n → ∞, since 0 ≤ Cn(s) ≤ 1 and by Corollary 4.11. Also

Cn(s)Dn(s, t) ≥ 0 for all n ≥ 2 and s < t. Thus Cn(s)Dn(s, t)→ 0 almost surely as

n → ∞ if s < t. Furthermore note that Cn(s)Dn(s, t) ≤ D(s, t) almost surely, for

all n ≥ 2 and s < t by Lemma 4.6. Moreover note that D(s, t) is integrable, since

on {Z1 < Z2} we have

E[D(Z1, Z2)] = E
[∫ Z1

0

1− q(x)

1−H(x)
H(dx) +

∫ Z2

0

1− q(x)

1−H(x)
H(dx)

]
≤ E

[∫ Zn:n

0

1

1−H(x)
H(dx) +

∫ Zn:n

0

1

1−H(x)
H(dx)

]
≤ E [−2 ln(1−H(Zn:n))]

<∞ .

Therefore we obtain

lim
n→∞

1{Z1<Z2}∆̄n−2(Z1, Z2) = lim
n→∞

1{Z1<Z2}E [Cn−2(Z1)Dn−2(Z1, Z2)]

= 1{Z1<Z2}E
[

lim
n→∞

Cn(Z1)Dn(Z1, Z2)
]

= 0

according to the Dominated Convergence Theorem. Thus

φ(Z1, Z2)q(Z1)q(Z2)1{Z1<Z2}∆̄n−2(Z1, Z2)→ 0
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almost surely as n→∞. Furthermore note that we have

∆̄n−2(Z1, Z2) ≤ ∆n−2(Z1, Z2) ≤ D(Z1, Z2)

almost surely for all n ≥ 2 by Lemma 4.6. Hence we obtain

lim
n→∞

E[φ(Z1, Z2)q(Z1)q(Z2)1{Z1<Z2}∆̄n−2(Z1, Z2)]

= E[φ(Z1, Z2)q(Z1)q(Z2)1{Z1<Z2} lim
n→∞

∆̄n−2(Z1, Z2)]

= 0

almost surely, by virtue of the Dominated Convergence Theorem. It remains to con-

sider the first term in (4.23). According to Lemma 4.6, we have ∆n(s, t)↗ D(s, t)

for s < t and H(t) < 1. Thus, applying the Dominated Convergence Theorem again,

yields

lim
n→∞

E[φ(Z1, Z2)q(Z1)q(Z2)∆n−2(Z1, Z2)1{Z1<Z2}]

= E[φ(Z1, Z2)q(Z1)q(Z2)D(Z1, Z2)1{Z1<Z2}] .

Therefore we obtain

lim
n→∞

E[Sn(q)] = E[φ(Z1, Z2)q(Z1)q(Z2)D(Z1, Z2)1{Z1<Z2}]

=

∫ ∞
0

∫ ∞
0

1{s<t}φ(s, t)q(s) exp

(∫ s

0

1− q(z)

1−H(z)
H(dz)

)
× q(t) exp

(∫ t

0

1− q(z)

1−H(z)
H(dz)

)
H(ds)H(dt)

=
1

2

∫ ∞
0

∫ ∞
0

φ(s, t)q(s) exp

(∫ s

0

1− q(z)

1−H(z)
H(dz)

)
× q(t) exp

(∫ t

0

1− q(z)

1−H(z)
H(dz)

)
H(ds)H(dt)

almost surely, since φ(s, t)q(s)q(t)D(s, t) is symmetric by (A1), and Z1 and Z2 are
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i. i. d.. This concludes the argument for Sn. By similar arguments, we obtain S̄n → S̄

w. p. 1.

4.2 Calculating the limit

In order to identify the limit of Sse2,n = Sn(m(·, θ̂n)) we need the statement of Corol-

lary 4.14, which is based upon the following lemma. Define for any ε > 0

M1,ε(x) := max(0,m(x, θ0)− ε)) and M2,ε(x) := min(1,m(x, θ0) + ε)) .

Lemma 4.13. Suppose (M1) and (M2) hold. Then the following statements hold

for each 0 < ε ≤ 1 and n large enough

(i) M1,ε(x) ≤ m(x, θ̂n) ≤M2,ε(x)

(ii) M2,ε(x)M2,ε(y)− 4ε ≤ m(x, θ̂n)m(y, θ̂n) ≤M1,ε(x)M1,ε(y) + 4ε.

Proof. For the sake of simpler notation, we will writemn(x) := m(x, θn) andm(x) :=

m(x, θ0). Let’s start with part (i). Suppose M1,ε(x) = 0, then the condition above

is trivially satisfied since mn(x) ≥ 0. Now suppose M1,ε(x) = m(x)− ε. Then

mn(x) = (mn(x)−m(x)) +m(x)

≥ m(x)− |mn(x)−m(x)| .

But under condition (M1), we have for n large enough that for some ε > 0 θn ∈

V (ε, θ0). Now we get, according to (M2) that

sup
x≥0
|mn(x)−m(x)| < ε .

Therefore we obtain mn(x) ≥ m(x) − ε = M1,ε(x). Let’s now consider M2,ε. The

case M2,ε = 1 is trivial again, since mn(x) ≤ 1. Now suppose M2,ε = m(x)+ ε. Then
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we obtain, for n large enough

mn(x) = (mn(x)−m(x)) +m(x)

≤ m(x) + |mn(x)−m(x)|

≤ m(x) + ε

= M2,ε(x) .

This concludes the proof of part (i). Now note that, according to (M1) and (M2),

the following holds for n large enough and some ε > 0

mn(x) = (mn(x)−m(x)) +m(x)

≤ |mn(x)−m(x)|+m(x)

≤ m(x) + ε . (4.24)

Moreover consider that we have

mn(x)mn(y) = (mn(x)−m(x))(mn(y)−m(y))

+m(x)mn(y) +mn(x)m(y)−m(x)m(y)

≤ ε2 +m(x)mn(y) +mn(x)m(y)−m(x)m(y) .

Applying the latter inequality to (4.24) yields

mn(x)mn(y) ≤ ε2 +m(x)(m(y) + ε) + (m(x) + ε)m(y)−m(x)m(y)

= m(x)m(y) + ε(m(x) +m(y)) + ε2 . (4.25)

Now suppose M1,ε(x) = 0 and M1,ε(y) = 0 for x, y ∈ R+. Then m(x) ≤ ε and
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m(y) ≤ ε. Hence, using (4.25) yields

mn(x)mn(y) ≤ 4ε2 .

Next suppose M1,ε(x) = 0 and M1,ε(y) = m(y)− ε. Using (4.25) again, we obtain

mn(x)mn(y) ≤ m(x)m(y) + ε(m(x) +m(y)) + ε2

≤ ε+ ε(1 + ε) + ε2

= 2ε(1 + ε) ,

since m(x) ≤ ε and m(y) ≤ 1. By similar calculations, we obtain the exact same

result for the case M1,ε(x) = m(x) − ε and M1,ε(y) = 0. Now suppose M1,ε(x) =

m(x)− ε and M1,ε(y) = m(y)− ε, and note that

M1,ε(x)M1,ε(y) = (m(x)− ε)(m(y)− ε)

= m(x)m(y)− ε(m(x) +m(y)) + ε2 .

Now (4.25) implies the following

mn(x)mn(y) ≤ m(x)m(y) + ε(m(x) +m(y)) + ε2

= M1,ε(x)M1,ε(y) + 2ε(m(x) +m(y))

≤M1,ε(x)M1,ε(y) + 4ε .

Thus we have for 0 ≤ ε ≤ 1 that

mn(x)mn(y) ≤M1,ε(x)M1,ε(y) + 4ε ,

as claimed in the statement of this lemma. It remains to show that M2,ε(x)M2,ε(y)−

4ε ≤ mn(x)mn(y). By calculations similar to those that lead to (4.24) and (4.25)
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we obtain

mn(x) ≥ m(x)− ε

and

mn(x)mn(y) ≥ m(x)m(y)− ε(m(x) +m(y))− ε2 . (4.26)

Now we will consider M2,ε case by case. Suppose M2,ε(x) = 1 and M2,ε(y) = 1. This

is equivalent to m(x) ≥ 1− ε and m(y) ≥ 1− ε. Therefore (4.26) implies

mn(x)mn(y) ≥ (1− ε)2 − 2ε− ε2

= 1− 4ε

= M2,ε(x)M2,ε(y)− 4ε .

Next consider the case M2,ε(x) = 1 and M2,ε(y) = m(y) + ε. Then we have m(x) ≥

1 − ε and m(y) ≤ 1 − ε. Moreover we have M2,ε(x)M2,ε(y) = m(y) + ε. Hence we

obtain the following, according to (4.26)

mn(x)mn(y) ≥ (1− ε)m(y)− ε((1 + (1− ε))− ε2

= m(y)− εm(y)− 2ε

≥ m(y)− ε(1− ε)− 2ε

≥ m(y)− 3ε

= M2,ε(x)M2,ε(y)− 4ε .

By similar calculations we obtain the same result, if M2,ε(x) = m(x) + ε and

M2,ε(y) = 1. Finally consider the case M2,ε(x) = m(x) + ε and M2,ε(y) = m(y) + ε.

Then we have m(x) ≤ 1− ε and m(y) ≤ 1− ε. Furthermore we have

M2,ε(x)M2,ε(y) = (m(x) + ε)(m(y) + ε)
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= m(x)m(y) + ε(m(x) +m(y)) + ε2 .

Therefore, applying (4.26) again, yields

mn(x)mn(y) ≥ m(x)m(y)− ε(m(x) +m(y))− ε2

= M2,ε(x)M2,ε(y)− 2ε(m(x) +m(y))− 2ε2

≥M2,ε(x)M2,ε(y)− 4ε(1− ε)− 2ε2

≥M2,ε(x)M2,ε(y)− 4ε .

This concludes the proof.

Corollary 4.14. Suppose conditions (A2), (M1) and (M2) are satisfied. Then the

following holds for each 0 < ε ≤ 1 and n large enough

Sn(M2,ε)− 4εS̄n(M2,ε) ≤ Sn(m(·, θ̂n)) ≤ Sn(M1,ε) + 4εS̄n(M1,ε).

Proof. Consider that we have the following for any n ≥ 1

Sn(M2,ε)− 4εS̄n(M2,ε) =
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)(M2,ε(Zi:n)M2,ε(Zj:n)− 4ε)

×
i−1∏
k=1

[
1− M2,ε(Zk:n)

n− k + 1

] j−1∏
k=1

[
1− M2,ε(Zk:n)

n− k + 1

]
.

But according to Lemma 4.13 we have

m(x, θ̂n) ≤M2,ε(x) and M2,ε(x)M2,ε(y) ≤ m(x, θ̂n)m(y, θ̂n)
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for all x, y ∈ R+. Hence we obtain

Sn(M2,ε)− 4εS̄n(M2,ε) ≤
∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)m(Zi:n, θ̂n)m(Zj:n, θ̂n)

×
i−1∏
k=1

[
1− m(Zk:n, θ̂n)

n− k + 1

]
j−1∏
k=1

[
1− m(Zk:n, θ̂n)

n− k + 1

]

= Sn(m(·, θ̂n)).

Similarly we obtain

Sn(M1,ε) + 4εS̄n(M1,ε) ≥ Sn(m(·, θ̂n)).

Now we are in a position, to identify S = limn→∞ S
se
2,n. The proof of the main

theorem follows.

Proof of Theorem 1.4. Assume that conditions (A1) through (A4), (M1) and

(M2) hold. Consider that we have

Sn(M2,ε)− 4εS̄n(M2,ε) ≤ Sn(m(·, θ̂n)) ≤ Sn(M1,ε) + 4εS̄n(M1,ε)

according to Corollary 4.14 under (M1) and (M2). Next take note of the Radon-

Nikodym derivatives (c. f. Dikta (2000), page 8)

m(s, θ0) =
H1(ds)

H(ds)
and (1−G(s)) =

H1(ds)

F (ds)
.

Moreover consider that we have

∫ s

0

1−m(x, θ0)

1−H(x)
H(dx) = − ln(1−G(s))
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and ∫ s

0

ε

1−H(x)
H(dx) = − ln((1−H(s))ε)

according to Dikta (2000). Now note that

M1,ε(x) = 1{m(x,θ0)>ε}(m(x, θ0)− ε)

≤ m(x, θ0)− ε .

Therefore, we obtain the following

S̄(M1,ε) ≤
1

2

∫ ∞
0

∫ ∞
0

φ(s, t) exp

(∫ s

0

1−m(x, θ0)

1−H(x)
+

ε

1−H(x)
H(dx)

)
× exp

(∫ t

0

1−m(x, θ0)

1−H(x)
+

ε

1−H(x)
H(dx)

)
H(ds)H(dt)

=
1

2

∫ ∞
0

∫ ∞
0

φ(s, t)

(1−G(s))(1−G(t))(1−H(s))ε(1−H(t))ε
H(ds)H(dt)

=
1

2

∫ τH

0

∫ τH

0

φ(s, t)

m(s, θ0)m(t, θ0)(1−H(s))ε(1−H(t))ε
F (ds)F (dt) .

But by condition (A3), the integral above is finite. Moreover M1,ε(x) is non-

decreasing in x, since m is non-decreasing under (A4). Therefore S(M1,ε) exists

almost surely under (A1) through (A4), by Theorem 3.5. Hence we have that for

each 0 < ε ≤ 1 we have Sn(M1,ε) + 4εS̄n(M1,ε) → S(M1,ε) + 4εS̄(M1,ε) w. p. 1 as

n→∞, according to Lemma 4.12 . Next consider that

S(M1,ε) + 4εS̄(M1,ε) ≤
1

2

∫ ∞
0

∫ ∞
0

φ(s, t)

(1−H(s))ε(1−H(t))ε

× m(s, θ0)m(t, θ0) + 4ε

(1−G(s))(1−G(t))
H(ds)H(dt) .

By similar arguments we can show that Sn(M2,ε)−4εS̄n(M2,ε)→ S(M2,ε)−4εS̄(M2,ε)
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w. p. 1 as n→∞ and

S(M2,ε)− 4εS̄(M2,ε) ≥
1

2

∫ ∞
0

∫ ∞
0

φ(s, t)(1−H(s))ε(1−H(t))ε

× m(s, θ0)m(t, θ0)− 4ε

(1−G(s))(1−G(t))
H(ds)H(dt) .

We have seen so far that for 0 < ε ≤ 1 small enough

1

2

∫ ∞
0

∫ ∞
0

φ(s, t)(1−H(s))ε(1−H(t))ε

× m(s, θ0)m(t, θ0)− 4ε

(1−G(s))(1−G(t))
H(ds)H(dt)

≤ lim inf
n→∞

Sn(m(·, θ̂n))

≤ lim sup
n→∞

Sn(m(·, θ̂n))

≤ 1

2

∫ ∞
0

∫ ∞
0

φ(s, t)

(1−H(s))ε(1−H(t))ε

× m(s, θ0)m(t, θ0) + 4ε

(1−G(s))(1−G(t))
H(ds)H(dt) .

Finally let ε↘ 0 and apply the Monotone Convergence Theorem to obtain that the

upper and lower bound converge both to the same limit. In effect, we have

lim
ε↘0

1

2

∫ ∞
0

∫ ∞
0

φ(s, t)(1−H(s))ε(1−H(t))ε

× m(s, θ0)m(t, θ0)− 4ε

(1−G(s))(1−G(t))
H(ds)H(dt)

=
1

2

∫ ∞
0

∫ ∞
0

φ(s, t)m(s, θ0)m(t, θ0)

(1−G(s))(1−G(t))
H(ds)H(dt)

=
1

2

∫ τH

0

∫ τH

0

φ(s, t)F (ds)F (dt)

= lim
ε↘0

1

2

∫ ∞
0

∫ ∞
0

φ(s, t)

(1−G(s))(1−G(t))

× m(s, θ0)m(t, θ0) + 4ε

(1−H(s))ε(1−H(t))ε
H(ds)H(dt) .

Hereby the proof of Theorem 1.4 is concluded.
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Chapter 5

The censoring model

During this chapter we will consider the censoring model m more closely. Recall

from the assumptions of SRCM (see Chapter 1) that we have X ∼ F , Y ∼ G and

Z ∼ H, where Z = min(X, Y ). We observe (Zi, δi)i≤n. In the following, we will first

see an expression for m in terms of the hazard rates λF and λG, which was derived

in Dikta (1998). Later we will see examples of different configurations for λF , λG

and m, and how assumption (A4) restricts their use in practice.

First recall from Chapter 1 that the cumulative hazard rate corresponding to F

is defined as

ΛF (z) =

∫ z

0

1

1− F (t)
F (dt) =

∫ z

0

λF (t)dt . (5.1)

with

λF (z) =
f(z)

1− F (z)
.

Now recall that

m(z, θ) = P(δ = 1|Z = z) = E(1{δ=1}|Z = z) .

according to Dikta (1998), page 254. Next consider that we have (c. f. Shorack and

Wellner (2009), page 294)

H1(z) = P (δ = 1, Z ≤ z) = E(I(X ≤ Y )I(X ≤ z))
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= E(I(X ≤ z)E(I(X ≤ Y )|X)) .

Hence we obtain

H1(z) =

∫ z

0

E(I(X ≤ Y )|X = t)F (dt)

=

∫ z

0

E(I(Y > t))F (dt)

=

∫ z

0

P(Y > t)F (dt)

=

∫ z

0

1−G(t)F (dt) .

Thus dH1 = (1−G)dF . Moreover we have dH1 = m ·dH. Therefore we can rewrite

ΛF as

ΛF (z) =

∫ z

0

1−G(t)

(1− F (t))(1−G(t))
F (dt)

=

∫ z

0

1

(1− F (t))(1−G(t))
H1(dt)

=

∫ z

0

1

1−H(t)
H1(dt)

=

∫ z

0

m(t, θ)

1−H(t)
H(dt) (5.2)

Note that combining (5.1) and (5.2) yields

∫ z

0

λF (t)dt =

∫ z

0

f(t)

1− F (t)
dt =

∫ z

0

m(t, θ)h(t)

1−H(t)
dt =

∫ z

0

m(t, θ)λH(t)dt

Now this implies

m(z, θ0) =
λF (z)

λH(z)
=

λF (z)

λF (z) + λG(z)
, (5.3)

c. f. Dikta (1998), page 255. Parametric models for m can be found in Cox (1970)

and Collett (2014).
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We will now see different examples for censoring models in different settings, and

how condition (A4) restricts their application in practice. Consider the following

examples.

Example 5.1. Suppose that F and G satisfy

1−G(z) = (1− F (z))β for some β > 0 ,

in addition to the assumptions of semi-parametric RCM. This model is called pro-

portional hazards model. In this case the censoring model m(·, θ) is independent of

Z. Hence we have

m(z, θ) = E[δ] =
1

1 + β
= θ (5.4)

according to Dikta (1995), p. 1538. Note that m is constant and therefore satisfies

condition (A4). The proportional hazards model was discussed in detail by Koziol

and Green (1976). Breslow and Crowley (1974) established a CLT result about the

Kaplan-Meier PLE under the proportional hazards model. Now

One straight forward approach to obtain a non-parametric estimate of (5.4) is given

by

c̄n :=
1

n

n∑
i=1

δi ≈ E[δ] .

The above quantity was used by Cheng and Lin (1987) to introduce the following

estimator

1− F cl
n (z) =

∏
Zk:Zk≤z

[
n−Rk,n

n−Rk,n + 1

]c̄n
.

It was also shown in Cheng and Lin (1987) that F cl
n is more efficient than F km

n . For

integrals of measurable functions w. r. t. F cl
n , strong consistency was established by

Stute (1992). In Dikta (1995) it was shown that the limiting distribution is normal

under proper conditions.
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Next consider that, if the condition of PHM is satisfied, we have

m(z, θ̂n) = θ̂n =
1

n

n∑
i=1

δi = c̄n

according to Dikta (1998), Example 2.8. Therefore F se,1
n is identical to F cl

n . In Dikta

(2000), page 3, it was pointed out that F se,1
n and F se

n will show the same gain in

efficiency, compared to the Kaplan-Meier PLE.

Section 6.2 shows a simulation study under of a semi-parametric U-statistics es-

timator based on F se
n under the proportional hazards model.

During the next example we will examine the Weibull distribution. We will write

X ∼ Wei(α, β) if the r. v. X follows a Weibull distribution with parameters α and

β. In this case the hazard rate is given by λ(z) = αββzβ−1.

Example 5.2. Let X ∼ Weibull(α1, β1) and Y ∼ Weibull(α2, β2). Then their

respective hazard rates are given by

λF (z) = αβ11 β1z
β1−1 and λG(z) = αβ22 β2z

β2−1 .

According to (5.3), we can now write our censoring model m as

m(z, θ) =
1

1 + λG(z)/λF (z)
=

(
1 +

αβ22 β2

αβ11 β1

zβ2−β1

)−1

=
1

1 + θ1zθ2

with

θ = (θ1, θ2) =

(
αβ22 β2

αβ11 β1

, β2 − β1

)
.

The setup described above is called the generalized hazards model (see Dikta (1998),

Example 2.9). Note that condition (A4) poses a restriction on this model, since we

80



need β2 < β1 s. t. θ2 < 0 and hence m(z, θ0) is non-decreasing in z. In section 6.3, a

simulation study of the setup above is shown.

Let’s introduce the Pareto (type I) distribution Par(α, β) for the next example.

If X ∼ Par(α, β), we have

λF (z) =

[
β

z

]α
1{z≥β} .

Example 5.3. Suppose X ∼ Exp(α) and Y ∼ Par(1, β). Then the censoring

model is given by

m(z, θ) =
α

α + β
z
1{z≥β}

with θ = (α, β) .

Note that m(z, θ) is monotone non-decreasing if β > 0 and z ≥ β. But if z < β, we

have m(z, θ) = 1. At z = β, m has a discontinuity and m(β, θ) = α(α + 1)−1 < 1.

Therefore conditions (A4) is violated in this case. However, we will see a simulation

study for this setup in Section 6.4. The results of this study indicate that the

considered semi-parametric estimator might still be consistent under this setup.

The following example will involve the Gompertz distribution. If X follows a

Gompertz distribution with parameters α and β we will write X ∼ Gom(α, β). In

this case the hazard rate is given by λF (z) = exp(α + βz) .

Example 5.4. Suppose X ∼ Gom(α, β) and Y ∼ Exp(γ). Then the censoring

model is given by

m(z, θ) =
1

1 + γ exp(−α− βz)
.

for β > 0 and γ > 0. Now m(z, θ) is non-decreasing in z, since β > 0.

Example 5.5. Suppose λF is known and m is defined as follows

m(z, θ) =
exp(θz)

1 + exp(θz)
=

1

1 + exp(−θz)
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for θ < 0. We will call the model above logit model.

Remark 5.6. Consider that equation (5.3) implies

λG(z) = λF (z) exp(−θz).

The cumulative hazard function of G is now of the form

ΛG(z) =

z∫
0

λF (t) exp(−θt)dt

Suppose e. g. λF is bounded above, i. e. λF (z) ≤ c for some constant c <∞ and all

z ∈ R+. Then

ΛG(z) ≤ c ·
z∫

0

exp(−θt)dt = c
(
1− θ−1 exp(−θz)

)
.

Note that the right hand side above converges to c < ∞ as z → ∞, if θ > 0. But

this means G is not a proper distribution function, since

lim
z→∞

G(z) = lim
z→∞

1− exp(−ΛG(z)) < 1 .

Hence we must have θ < 0, s. t. ΛG(z)→∞ as z →∞. Next consider that m(z, θ0)

is non-decreasing, whenever θ > 0. Thus we can not use the logit model under

restriction (A4).

Example 5.7. Suppose the censoring model is given by

m(z, θ) = 1− exp(− exp(θz)) .

This model will be called complementary log-log model.

The following remark shows that condition (A4) makes the complementary log-
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log model inapplicable under this setup.

Remark 5.8. Let m(z, θ) = 1−exp(− exp(θz)) and let λF be known. Now consider

ΛG(z) =

z∫
0

λF (t) exp(− exp(θt)

1− exp(− exp(θt))
dt

Now suppose λF is, e. g. either non-increasing or bounded above. In both cases we

need θ < 0 to obtain

lim
z→∞

Λ(z) =∞ .

On the other hand, m(·, θ) is non-decreasing whenever θ ≥ 0. Therefore the model

is not applicable under condition (A4).
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Chapter 6

Simulations

In Chapter 5 we discussed different configurations of our pdf’s f and g, and the

censoring model m. We will now see simulation studies corresponding to some of

those setups. In Section 6.1 we will detail, how those simulations are calculated.

The remaining sections of this chapter will show simulations for different setups of

f , g and m.

6.1 Computational Aspects

Assume that we have (Zi, δi)i≤n is a sample in the sense of RCM. Recall the target

value from Chapter 1

θ∗ = E[φ] =

∫ ∞
0

∫ ∞
0

φ(s, t)F (ds)F (dt) .

In the following, we will estimate the integral above under different setups. For

the simulations, one chooses first an appropriate censoring model m in connection

with the compatible distribution for X and/or Y . The kernel φ can be chosen sepa-

rately. Then the Maximum Likelihood estimate for θ̂n is calculated. Afterwards, the

semi-parametric and the Kaplan-Meier weights are calculated, using the following

formulas

W se
i,n = F se

n (Zi:n)− F se
n (Zi−1:n) =

m(Zi:n, θ̂n)

n− i+ 1

i−1∏
k=1

[
1− m(Zk:n, θ̂n)

n− k + 1

]
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and

W km
i,n = F km

n (Zi:n)− F km
n (Zi−1:n) =

δ[i:n]

n− i+ 1

i−1∏
k=1

[
1−

δ[k:n]

n− k + 1

]
respectively. Now the the semi-parametric and the Kaplan-Meier U-statistics can

be calculated as

U se
n = 2 ·

∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W se
i,nW

se
j,n

and

Ukm
n = 2 ·

∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W km
i,n W

km
j,n .

Note that U se
n = 2·Sse2,n and Ukm

n = 2·Skm2,n . The factor 2 is motivated by Remark 1.5.

As kernel for the following simulation studies, we choose

φ(x1, x2) =
1

2
(x1 − x2)2 .

Hence we are estimating the sample variance, as pointed out in Example 1.1. The

semi-parametric and the Kaplan-Meier estimates of θ∗ will be denoted as σsen and σkmn

respectively. Each simulation is repeated M = 100 times for different samples of size

n. Let (Zi, δi)
j
i≤n be the sample of generated in the j-th repetition for j = 1, . . . ,M ,

and let σn ∈ {σsen , σkmn }. We will denote by σn,j the estimate of θ∗ based on sample

(Zi, δi)
j
i≤n for j = 1, . . . ,M . The Bias of σn will be calculated by the following

formula

Bias(σn) =
1

M

M∑
j=1

(σn,j − θ∗) .

For the Variance of σn we use

V ar(σn) =
1

M − 1

M∑
j=1

(σn,j − σ̄M)2 with σ̄M =
1

M

M∑
j=1

σn,j .
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The mean squared error (MSE) will be calculated as

MSE(σn) =
1

M

M∑
j=1

(σn,j − θ∗)2 .

Additionally, we will calculate the average proportion of uncensored observations by

c̄ =
1

M

M∑
j=1

cn,j with cn,j =
1

n

n∑
i=1

δi .

Furthermore we will calculate quantiles of F km
n and F se

n , by

qsen (p) = inf{t ∈ R+|F se
n (t) ≥ p}

and

qsen (p) = inf{t ∈ R+|F se
n (t) ≥ p} ,

respectively. In order to get information about the underlying estimates F se
n and

F km
n of the true d. f. F , we will calculate the Bias, variance and MSE for qsen (p) and

qkmn (p) for p ∈ {0.25, 0.5, 0.75} as well. The simulation results will be displayed in

two tables. One table contains bias, variance and MSE of σsen and σkmn . The other

table shows the bias and MSE of qsen and qkmn . The results are also illustrated by a

figure at the end of each section. The left image shows the squared Bias, variance

and MSE for σsen and σkmn . The right image displays the MSE of qsen (p) and qkmn (p)

for p ∈ {0.25, 0.5, 0.75}.

6.2 Simulation 1

Suppose X ∼ Exp(α) and Y ∼ Exp(β). Then we have

m(z, θ) =
α

α + β
= θ

86



is constant in this case. Hence we are in the situation of proportional hazards model,

as described in Example 5.1.

For this simulation, we chose α = 2 and β = 1. The target value was here

V ar(X) =
1

α2
=

1

4
.

For this simulation we will calculate the Cheng-Lin estimate (see Example 5.1) of

V ar(X), namely σcln , additionally to σsen and σkmn . We calculate σcln as

∑∑
1≤i<j≤n

φ(Zi:n, Zj:n)W cl
i,nW

cl
j,n

where

W cl
i,n =

[
1−

(
n− i

n− i+ 1

)cn]
×

i−1∏
k=1

[
n− k

n− k + 1

]cn
.

Bias, variance, MSE and quantiles will be calculated and displayed for σcln in Table

6.1 and Table 6.2, in addition to with corresponding values for σsen and σkmn , in order

to compare them. We expect that σsen and σcln will show similar results, because of

Dikta (2000), page 3.

Figure 6.1: Probability density functions f , g and censoring model m for Sim. 1.
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Figure 6.1 shows the pdf’s f and g, as well as the censoring model. Under this setup

we have m(·, θ) = 2/3. Since the censoring model is constant, we can expect that

censoring will be occurring at the same rate over the whole domain.

n = 100 n = 500 n = 1000

Bias(σsen ) -0.0581 -0.0317 -0.0203
Bias(σkmn ) -0.0691 -0.0361 -0.0268
Bias(σcln ) -0.0307 -0.0179 -0.0087
V ar(σsen ) 0.0054 0.0020 0.0013
V ar(σkmn ) 0.0091 0.0028 0.0017
V ar(σcln ) 0.0080 0.0027 0.0016
MSE(σsen ) 0.0087 0.0030 0.0017
MSE(σkmn ) 0.0138 0.0041 0.0025
MSE(σcln ) 0.0089 0.0030 0.0017

c̄ 0.6646 0.66456 0.66831

Table 6.1: Results for Simulation 1.

Table 6.1 shows that bias, variance and MSE are decreasing to zero for all three

estimators. σsen and σcln are performing clearly better than σkmn under this setup,

while σsen and σcln show roughly the same behavior, as we expected in the beginning

of this section.

Figure 6.2: Results for Simulation 1. left: bias, variance and MSE for σsen and σkmn .
right: MSE for qsen and qkmn .
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Figure 6.2 indicates that the gain in efficiency of σsen and σcln versus σkmn is greater

for smaller sample sizes. Moreover we can see that the gain in efficiency for σsen and

σcln is more related to the variance, than to the bias.

The Quantiles are estimated quite well under this setup, although both estimators

mainly underestimated the true quantiles by a small amount.

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000
Bias MSE

qsen (0.25) -0.0105 -0.003 -0.0031 0.0007 0.0001 0.0001
qkmn (0.25) -0.0038 -0.0017 -0.0023 0.0010 0.0002 0.0001
qcln (0.25) -0.0067 -0.0012 -0.0019 0.0007 0.0001 0.0001
qsen (0.5) -0.0109 -0.0010 -0.0032 0.0029 0.0005 0.0003
qkmn (0.5) -0.0046 -0.0001 -0.0017 0.0033 0.0006 0.0003
qcln (0.5) -0.0088 0.0006 -0.0024 0.0029 0.0005 0.0003
qsen (0.75) -0.0123 0.0074 -0.0032 0.0084 0.0018 0.0010
qkmn (0.75) -0.0143 0.0077 -0.0030 0.0103 0.0020 0.0012
qcln (0.75) -0.0190 0.0039 -0.0048 0.0081 0.0017 0.0010

Table 6.2: Results for estimated quantiles of Simulation 1.

6.3 Simulation 2

Let X ∼ Weibull(α1, β1) and X ∼ Weibull(α2, β2). Then we obtain for the censor-

ing model

m(z, θ) =
1

1 + θ1zθ2
with θ =

(
αβ22 β2

αβ11 β1

, β2 − β1

)
.

For the simulation below we chose α1 = 2, α2 = 1, β1 = 1.2 and β2 = 1. The target

value was here

V ar(X) = 0.154936 .

Figure 6.3 indicates that smaller values are censored rather than larger ones under

this setup. This is due to the increasing nature of the censoring model m.
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Figure 6.3: Probability density functions f , g and censoring model m for Sim. 2.

Table 6.3 shows that bias, variance and MSE are converging to zero for both es-

timators, as well under this setup. The semi-parametric estimator is clearly more

efficient than the Kaplan-Meier estimate w. r. t. the MSE. Here again, the difference

in variance between the semi-parametric and the Kaplan-Meier based estimator is

much larger than the difference in squared bias.

n = 100 n = 500 n = 1000

Bias(σsen ) -0.0196 -0.0002 0.0038
Bias(σkmn ) -0.0201 -0.0114 -0.0114
V ar(σsen ) 0.0017 0.0007 0.0003
V ar(σkmn ) 0.0029 0.0008 0.0003
MSE(σsen ) 0.0020 0.0007 0.0003
MSE(σkmn ) 0.0033 0.0009 0.0004

c̄ 0.6705 0.6678 0.66538

Table 6.3: Results for Simulation 2.

Figure 6.4 shows, as before that the gain in efficiency is greater for smaller sample

sizes n. Again, the gain in efficiency is more severe for smaller n in this simulation.
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Figure 6.4: Results for Simulation 2. left: bias, variance and MSE for σsen and σkmn .
right: MSE for qsen and qkmn .

Both estimators are estimating the true quantiles well under this setup, as we can

see from Table 6.4. As before, the quantiles are, for the most part, slightly underes-

timated by both estimators. Figure 6.4 shows that qsen is performing slightly better

qkmn in this situation.

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000
Bias MSE

qsen (0.25) -0.0183 -0.0114 -0.0119 0.0009 0.0002 0.0002
qkmn (0.25) -0.0074 -0.0003 -0.0009 0.0006 0.0002 0.0001
qsen (0.5) -0.0123 -0.0113 -0.008 0.0022 0.0006 0.0003
qkmn (0.5) -0.0068 -0.0058 -0.0021 0.0024 0.0006 0.0002
qsen (0.75) -0.0092 0.0004 0.0074 0.0076 0.0013 0.0007
qkmn (0.75) -0.0158 -0.0104 -0.0025 0.0088 0.0015 0.0007

Table 6.4: Results for estimated quantiles of Simulation 2.
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6.4 Simulation 3

Let X ∼ Exp(α) and Y ∼ Par(1, β). For our model m we obtain in this case

m(z, θ) =
α

α + β
z
1{z≥β}

.

Note that m is not non-decreasing over the whole domain in this case (c. f. Example

5.3). For the following simulation we chose α = 0.5 and β = 1.2. The target value

was here

V ar(X) = 4 .

Considering Figure 6.5, we can not expect any censored observations on [0, β].

Figure 6.5: Probability density functions f , g and censoring model m for Sim. 3.

Moreover the plot indicates that values in [β, 3] are more likely to be censored. On

[β,∞), the censoring model is monotone increasing. This implies that smaller values

are more likely to be censored than larger values.
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n = 100 n = 500 n = 1000

Bias(σsen ) -1.0616 -0.4255 -0.2735
Bias(σkmn ) -1.0972 -0.5142 -0.3189
V ar(σsen ) 2.8281 0.8522 0.3623
V ar(σkmn ) 2.9919 1.2895 0.5611
MSE(σsen ) 3.9553 1.0333 0.4370
MSE(σkmn ) 4.1957 1.5539 0.6628

c̄ 0.6971 0.6970 0.6962

Table 6.5: Results for simulation 3.

From Table 6.5, we see that the MSE values of both estimators, σsen and σkmn , are

substantially larger than in the previous examples, especially for n = 100. How-

ever, the MSE values decrease considerably as n increases. Figure 6.6, shows that

the semi-parametric estimator is performing better than the Kaplan-Meier estimate

again, with a larger gain in efficiency for small n .

Figure 6.6: Results for Simulation 3. left: bias, variance and MSE for σsen and σkmn .
right: MSE for qsen and qkmn .
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Table 6.6 shows that the quantiles are considerably underestimated by both estima-

tors in this case. This might be a consequence of the fact that m violates condition

(A4) under this setup. The large MSE values for the quantile estimates are likely

to cause the much larger MSE scores of σsen and σkmn in this simulation.

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000
Bias MSE

qsen (0.25) -0.9461 -0.9531 -0.9482 0.9064 0.9105 0.9007
qkmn (0.25) -0.9461 -0.9531 -0.9482 0.9064 0.9105 0.9007
qsen (0.5) -0.7617 -0.7637 -0.7513 0.6157 0.5904 0.5682
qkmn (0.5) -0.7565 -0.7589 -0.7484 0.6106 0.5835 0.5644
qsen (0.75) -1.1444 -1.0630 -1.0461 1.4006 1.1587 1.1093
qkmn (0.75) -1.1641 -1.0890 -1.0535 1.5064 1.2227 1.1306

Table 6.6: Results for estimated quantiles of Simulation 3.
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Chapter 7

Discussion

The strong law of large numbers for the semiparametric U-statistics estimator Sse2,n,

under proper conditions, has been established in Theorem 1.4. In addition to the

assumptions made in Dikta (2000) and Bose and Sen (1999), we assumed that the

censoring model, i. e. conditional expectation of the censoring indicator given the

observation, is a monotone non-decreasing function. However Chapter 5 shows a

variety of examples, which are relevant in the field of survival analysis, for which

this additional condition is satisfied. These examples include, among others, the

proportional hazards model. The product limit estimator, upon which the semi-

parametric U-Statistics is based in this example, has the same asymptotic proper-

ties as the Cheng and Lin (1987) estimator (c. f. Dikta (2000), page 3). In Chapter

6, we conducted simulation studies for different scenarios. The simulation studies

verify the SLLN result in Theorem 1.4. Moreover the studies show that the semi-

parametric estimator outperforms the Kaplan-Meier estimate, especially in terms

of variance, in most cases. This was expected because of the results established by

Dikta et al. (2005) and Dikta (2014). The gain in efficiency was especially large for

smaller sample sizes. The results of Section 6.4 indicate, that the semiparametric

estimator might still be consistent, even if the censoring model is not non-decreasing.

There are some obvious options to extend the results of this thesis in the future.

Firstly, one could try to establish the SLLN for the semiparametric estimator un-

der weaker assumptions. In the appendix section, the interested reader may find

thoughts on how to work around the additional restriction for the censoring model
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by modifying Doob’s Upcrossing Theorem. Furthermore a CLT statement for the

the semiparametric estimator could possibly be derived from Dikta et al. (2005) and

Bose and Sen (2002). As another option for future work, based on this thesis, one

could transfer the result of Theorem 1.4 to the estimator derived in Dikta et al.

(2016), using stochastic equivalence.
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Appendix: Thoughts on finding weaker

assumptions

In Section 3.2, we were able to show that Sn(q) is a reverse supermartingale under

the assumptions of Lemma 3.3. To establish the almost sure existence of limits of

supermartingale processes, one considers the number of upcrossings of an interval

[a, b] by the process. This was done in the famous Upcrossing Theorem by Doob.

During this section we will generalize Doob’s Upcrossing Theorem to our framework

in order to explore ways to establish weaker assumptions. To get closer to the

situation of Doob’s Upcrossing Theorem, we define the following quantities. Let

N <∞ and define for 1 ≤ n ≤ N

S̃Nn := SN−n+1, F̃Nn := FN−n+1 and ξ̃Nn := ξN−n+1 .

Note that {F̃Nn }1≤n≤N is now an increasing σ-field in n. Below we will define every-

thing needed, in order to generalize Doob’s Upcrossing Theorem.

Definition A.1. Let N ≥ 2. For 1 ≤ n ≤ N and a, b ∈ R with a < b, let

T0 := 0

T1 :=


min{1 ≤ n ≤ N |S̃Nn ≤ a} if {1 ≤ n ≤ N |S̃Nn ≤ a} 6= ∅

N if {1 ≤ n ≤ N |S̃Nn ≤ a} = ∅

T2 :=


min{T1 ≤ n ≤ N |S̃Nn ≥ b} if {T1 ≤ n ≤ N |S̃Nn ≤ a} 6= ∅

N if {T1 ≤ n ≤ N |S̃Nn ≥ b} = ∅

...
...

...
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T2m−1 :=


min{T2m−2 ≤ n ≤ N |S̃Nn ≤ a} if {T2m−2 ≤ n ≤ N |S̃Nn ≤ a} 6= ∅

N if {T2m−2 ≤ n ≤ N |S̃Nn ≤ a} = ∅

T2m :=


min{T2m−1 ≤ n ≤ N |S̃Nn ≥ b} if {T2m−1 ≤ n ≤ N |S̃Nn ≤ a} 6= ∅

N if {T2m−1 ≤ n ≤ N |S̃Nn ≥ b} = ∅
.

Now we can define the number of upcrossings of [a, b] by S̃N1 , ..., S̃
N
N as follows:

UN
N [a, b] :=


max{1 ≤ m ≤ N |T2m < N} if {1 ≤ m ≤ N |T2m < N} 6= ∅

0 if {1 ≤ m ≤ N |T2m < N} = ∅

Furthermore let for 1 ≤ k ≤ n− 1

εk :=



0 if k < T1

1 if T1 ≤ k < T2

0 if T2 ≤ k < T3

1 if T3 ≤ k < T4

. . . if . . .

and define

Y N
n := S̃N1 +

n−1∑
k=1

εk(S̃
N
k+1 − S̃Nk )

for 1 ≤ n ≤ N .

Let’s now explore how limN→∞ U
N
N [a, b] < ∞ implies that S must exist almost

surely. Suppose for now that limN→∞ U
N
N [a, b] < ∞ and define the set of all ω for

which Sn does not converge as

Λ := {ω|Sn(ω) does not converge} .
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Consider that can write

Λ = {ω| lim inf
n

Sn(ω) < lim sup
n

Sn(ω)}

=
⋃
a,b∈Q

{ω| lim inf
n

Sn(ω) < a < b < lim sup
n

Sn(ω)} .

Recall that we have UN
N [a, b], the number of upcrossings of [a, b] by S̃N1 , . . . , S̃

N
N . But

this is equal to the number of upcrossings of [a, b] by SN , . . . , S1. Furthermore recall

that

U∞[a, b] = lim
N→∞

UN
N [a, b] .

Consider that for each ω ∈ {ω| lim infn Sn(ω) < a < b < lim supn Sn(ω)} we must

have U∞[a, b](ω) = ∞. This follows directly from the definitions of lim inf and

lim sup. Thus we can write

Λ =
⋃
a,b∈Q

{ω|U∞[a, b](ω) =∞} =
⋃
a,b∈Q

Λa,b

where Λa,b := {ω|U∞[a, b](ω) =∞}. Consequently we get that

E[1{Λa,b}U∞[a, b]] =


∞ if P(Λa,b) > 0

0 if P(Λa,b) = 0

. (A1)

Note that UN
N [a, b] is clearly non-decreasing in N . Now if limN→∞ E[UN

N [a, b]] <∞,

we can apply the Monotone Convergence Theorem to obtain

lim
N→∞

E[UN
N [a, b]] = E[U∞[a, b]] <∞

and hence that

E[1{Λa,b}U∞[a, b]] ≤ E[U∞[a, b]] <∞ .

102



Now the latter together with (A1) implies that P(Λa,b) = 0. Therefore we have

P(Λ) = P

( ⋃
a,b∈Q

Λa,b

)
=
∑
a,b∈Q

P(Λa,b) = 0 .

The following Lemmas show how Doob’s Upcrossing Theorem can be adapted to

our framework. We will show that E[UN
n [a, b]] is bounded above by E[Y N

n ]/(b− a).

Lemma A.2. For 1 ≤ n ≤ N we have

E[UN
n [a, b]] ≤ E[Y N

n ]

b− a
.

Proof. Consider for 1 ≤ n ≤ N and N ≥ 2

Y N
n = S̃N1 +

n−1∑
k=1

εk(S̃
N
k+1 − S̃Nk )

= S̃N1 +
n∑
k=1

(S̃NT2k − S̃
N
T2k−1

)

≥
n∑
k=1

(S̃NT2k − S̃
N
T2k−1

)

by definition of εk. The latter inequality above holds, since S̃N1 ≥ 0. Note that by

definition of T1, T2, . . . we have

n∑
k=1

(S̃NT2k − S̃
N
T2k−1

) ≥ (b− a)UN
n [a, b] .

From here the assertion follows directly.

The following lemma provides a useful representation for the expectation of the

process Y n
N .
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Lemma A.3. For 1 ≤ n ≤ N let

Y N
n := S̃N1 +

n−1∑
k=1

εk(S̃
N
k+1 − S̃Nk )

with

εk :=


1 (S̃N1 , . . . , S̃

N
k ) ∈ Bk

0 otherwise

for k = 1, . . . , n− 1. Here Bk is an arbitrary set in B(Rk). Then we have

E[Y N
n ] = E[S̃Nn ]−

n−1∑
k=1

E
[
(1− εk)

(
E[S̃Nk+1|F̃Nk ]− S̃Nk

)]
. (A2)

Proof. Consider for 1 ≤ n ≤ N and N ≥ 2

S̃Nn+1 − Y N
n+1

= (1− ε1)(S̃N2 − S̃N1 ) + (1− ε2)(S̃N3 − S̃N2 ) + ...+ (1− εk)(S̃Nn+1 − S̃Nn )

= (S̃Nn − Y N
n ) + (1− εn)(S̃Nn+1 − S̃Nn ) .

Conditioning on F̃Nn on both sides yields

E[S̃Nn+1 − Y N
n+1|F̃Nn ] = S̃Nn − Y N

n + (1− εn)
(
E[(S̃Nn+1)|F̃Nn ]− S̃Nn

)
.

Now taking expectations on both sides yields

E[S̃Nn+1 − Y N
n+1] ≥ E[S̃Nn − Y N

n ] + E
[
(1− εn)

(
E[S̃Nn+1|F̃Nn ]− S̃Nn

)]
.

Note that

E[S̃N2 − Y N
2 ] = E[S̃N1 − Y N

1 ] + E
[
(1− ε1)

(
E[S̃N2 |F̃N1 ]− S̃N1

)]
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= E
[
(1− ε1)

(
E[S̃N2 |F̃N1 ]− S̃N1

)]

since Y N
1 = S̃N1 . Moreover we have

E[S̃N3 − Y N
3 ] = E[S̃N2 − Y N

2 ] + E
[
(1− ε2)

(
E[S̃N3 |F̃N2 ]− S̃N2

)]
= E

[
(1− ε1)

(
E[S̃N2 |F̃N1 ]− S̃N1

)]
+ E

[
(1− ε2)

(
E[S̃N3 |F̃N2 ]− S̃N2

)]
· · ·

E[S̃Nn − Y N
n ] =

n−1∑
k=1

E
[
(1− εk)

(
E[S̃Nk+1|F̃Nk ]− S̃Nk

)]
.

Hence we get

E[Y N
n ] = E[S̃Nn ]−

n−1∑
k=1

E
[
(1− εk)

(
E[S̃Nk+1|F̃Nk ]− S̃Nk

)]
.

Remark A.4. Note that we have Y N
1 = S̃N1 , as the sum in the definition above is in

this case empty and hence treated as zero. Moreover note that we have Y N
n+1 = S̃Nn+1

if εk = 1 for all 1 ≤ k ≤ n.

The Lemma below establishes an upper bound for E[Y N
N ] in terms of QN−k+1

ij , as

defined in Lemma 3.1.

Lemma A.5. We have for N ≥ 2

E[Y N
N ] ≤ E[S̃NN ] +

N−1∑
k=1

αN−k+1 (A3)
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where

αN−k+1 :=
∑∑

1≤i<j≤N−k+1

E
[
φ(Zi:N−k+1, Zj:N−k+1)Wi,N−k+1Wj,N−k+1(QN−k+1

i,j − 1)
]

.

Proof. Combining Lemmas A.2 and A.3 yields the following

(b− a)E[Un[a, b]] ≤ E[Y N
n ] = E[S̃Nn ]−

n−1∑
k=1

E[(1− εk)
(
E[S̃Nk+1|FNk ]− S̃Nk

)
]

for all n ≤ N . Moreover we have

E[S̃Nk+1|F̃Nk ] = E[SN−k|FN−k+1]

=
∑∑

1≤i<j≤N−k+1

φ(Zi:N−k+1, Zj:N−k+1)Wi,N−k+1Wj,N−k+1Q
N−k+1
i,j ,

according to Lemma 3.1. Therefore we obtain

E[Y N
N ] = E[S̃NN ]−

N−1∑
k=1

E[(1− εk)E[S̃Nk+1|FNk ]− S̃Nk ]

= E[S̃NN ]−
N−1∑
k=1

∑∑
1≤i<j≤N−k+1

E [(1− εk)φ(Zi:N−k+1, Zj:N−k+1)

× Wi,N−k+1Wj,N−k+1(QN−k+1
i,j − 1)

]
≤ E[S̃NN ] +

∣∣∣∣∣
N−1∑
k=1

∑∑
1≤i<j≤N−k+1

E [(1− εk)φ(Zi:N−k+1, Zj:N−k+1)

× Wi,N−k+1Wj,N−k+1(QN−k+1
i,j − 1)

] ∣∣∣∣∣
≤ E[S̃NN ] +

N−1∑
k=1

∑∑
1≤i<j≤N−k+1

|E [(1− εk)φ(Zi:N−k+1, Zj:N−k+1)

× Wi,N−k+1Wj,N−k+1(QN−k+1
i,j − 1)

]∣∣ .
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Now using Jensen’s inequality yields

E[Y N
N ] ≤ E[S̃NN ] +

N−1∑
k=1

∑∑
1≤i<j≤N−k+1

E [(1− εk)φ(Zi:N−k+1, Zj:N−k+1)

× Wi,N−k+1Wj,N−k+1 · |(QN−k+1
i,j − 1)|

]
≤ E[S̃NN ] +

N−1∑
k=1

∑∑
1≤i<j≤N−k+1

E [φ(Zi:N−k+1, Zj:N−k+1)

× Wi,N−k+1Wj,N−k+1 · |(QN−k+1
i,j − 1)|

]
.

The latter inequality above holds because 1− εk ≤ 1 for all k ≤ N − 1.

Remark A.6. For the almost sure existence of the limit limn→∞ Sn, it remains to

show that the upper bound on the right hand side of (A3) is finite.

In addition to the almost sure existence of S(q), one may need that

S∞ = lim
n→∞

E[Sn]

almost surely, in order to identify S∞. This could be established by the following

Lemma (compare Neveu (1975), Lemma V-3-11).

Lemma A.7. The following statement holds true:

S∞ = lim
n→∞

E[Sn|F∞] = lim
n→∞

E[Sn]

almost surely, if the limits above exist.

Proof. Let a > 0 and let Sn converge to some limit S∞ almost surely as n → ∞.

Now consider that we have

lim
n→∞

min(Sn, a) = min(S∞, a)
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almost surely, because min(·, a) is continuous (see van der Vaart (2000), Theorem

2.3). But min(Sn, a) is bounded by a. Hence applying the Dominated Convergence

Theorem yields

lim
n→∞

E[min(Sn, a)|F∞] = E[ lim
n→∞

min(Sn, a)|F∞]

= E[min(S∞, a)|F∞] .

Note that Sk is measurable with respect to Fn whenever k ≥ n, therefore S∞ must be

Fn-measurable for all n ∈ N. Consequently S∞ must be F∞-measurable. Moreover,

for a ∈ R, min(·, a) is a continuous function. Thus min(S∞, a) is F∞-measurable as

well. Hence

lim
n→∞

E[min(Sn, a)|F∞] = min(S∞, a)

almost surely. Thus we have

lim
n→∞

E[Sn|F∞] = lim
n→∞

lim
a→∞

E[min(Sn, a)|F∞]

= lim
a→∞

lim
n→∞

E[min(Sn, a)|F∞]

= lim
a→∞

min(S∞, a)

= S∞ . (A4)

almost surely. Moreover we obtain

E[Sn|F∞] = E[Sn]

for all n, by applying Lemma 3.4. Now the latter together with (A4) implies the

statement of the lemma.

108



Curriculum Vitae

Jan Höft
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