
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2018

Multi-Base Chains for Faster Elliptic Curve
Cryptography
Saud Al Musa
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Al Musa, Saud, "Multi-Base Chains for Faster Elliptic Curve Cryptography" (2018). Theses and Dissertations. 1970.
https://dc.uwm.edu/etd/1970

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1970&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1970&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1970?utm_source=dc.uwm.edu%2Fetd%2F1970&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

MULTI-BASE CHAINS FOR FASTER ELLIPTIC CURVE

CRYPTOGRAPHY

by

Saud Al Musa

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin–Milwaukee

December 2018

ABSTRACT

MULTI-BASE CHAINS FOR FASTER ELLIPTIC CURVE
CRYPTOGRAPHY

by

Saud Al Musa

The University of Wisconsin–Milwaukee, 2018
Under the Supervision of Professor Guangwu Xu

This research addresses a multi-base number system (MBNS) for faster elliptic

curve cryptography (ECC). The emphasis is on speeding up the main operation of

ECC: scalar multiplication (tP). Mainly, it addresses the two issues of using the MBNS

with ECC: deriving optimized formulas and choosing fast methods. To address the first

issue, this research studies the optimized formulas (e.g., 3P , 5P) in different elliptic

curve coordinate systems over prime and binary fields. For elliptic curves over prime

fields, affine Weierstrass, Jacobian Weierstrass, and standard twisted Edwards

coordinate systems are reviewed. For binary elliptic curves, affine, λ-projective, and

twisted µ4-normal coordinate systems are reviewed. Additionally, whenever possible,

this research derives several optimized formulas for these coordinate systems.

To address the second issue, this research theoretically and experimentally studies

the MBNS methods with respect to the average chain length, the average chain cost,

and the average conversion cost. The reviewed MBNS methods are greedy,

ternary/binary, multi-base NAF, tree-based, and rDAG-based. The emphasis is on

these methods’ techniques to convert integer t to multi-base chains. Additionally, this

research develops bucket methods that advance the MBNS methods. The experimental

results show that the MBNS methods with the optimized formulas, in general, have

good improvements on the performance of scalar multiplication, compared to the

single-base number system methods.

ii

TABLE OF CONTENTS

1 Introduction 1
1.1 Problem Statement . 4
1.2 Our Contributions . 5
1.3 ECC Applications . 8

2 Basic Background 9
2.1 Finite Field Arithmetic . 10

2.1.1 Squaring . 11
2.1.2 Inversion . 11
2.1.3 Multiplication . 12

2.2 Formulas . 13
2.2.1 P + Q derivation . 14

2.3 Methods . 16
2.3.1 The converting phase . 16
2.3.2 The performing phase . 18
2.3.3 An optimal chain . 19

2.4 Protocols . 21
2.4.1 ECDH . 21
2.4.2 ECDSA . 22

3 Elliptic Curves over Prime Fields 25
3.1 Simplified Weierstrass Curves . 25

3.1.1 3P formulas . 25
3.1.2 A proposal for a 4P formula . 26
3.1.3 A proposal for a 5P formula . 28

3.2 Jacobian Coordinates . 31
3.2.1 P +Q formulas . 32
3.2.2 2P formulas . 33
3.2.3 3P formulas . 33
3.2.4 5P formulas . 34

3.3 Extended Jacobian Coordinates . 34
3.3.1 A proposal for a 2P formula . 35
3.3.2 A proposal for a P +Q formula 37

3.4 Twisted Edwards Curves . 37
3.4.1 Standard projective coordinates 38
3.4.2 A proposal for a P +Q formula 39
3.4.3 2P and 3P formulas . 40
3.4.4 A proposal for a 5P formula . 42
3.4.5 A proposal for a 2Q+ P formula 45

4 Elliptic Curves over Binary Fields 48
4.1 Binary Elliptic Curves . 48

4.1.1 3P formulas . 48
4.1.2 4P formulas . 49
4.1.3 5P formulas . 49

4.2 Lambda Coordinates . 52
4.2.1 P +Q formulas . 53

iii

4.2.2 2P formulas . 53
4.2.3 3P formulas . 54
4.2.4 5P formulas . 56

4.3 Twisted µ4-normal Coordinates . 59
4.3.1 P +Q formulas . 59
4.3.2 A proposal for a 2P formula . 60

4.4 Koblitz Curves . 61
4.4.1 The window τ -NAF . 62
4.4.2 A proposal for a τ̄P formula when a = 0 64
4.4.3 A proposal for a τ̄P formula when a = 1 66

5 MBNS Methods without Pre-computation 69
5.1 Binary Method . 69
5.2 NAF Method . 69
5.3 Greedy Method . 71

5.3.1 Look-up table . 72
5.3.2 Line equation . 72

5.4 Ternary/binary Method . 74
5.5 Multi-base NAF Method . 76
5.6 Tree-based Method . 77

6 MBNS Methods with Pre-computation 80
6.1 rDAG-based Method . 80
6.2 Proposed Bucket Methods . 82

6.2.1 DAG/bucket method . 82
6.2.2 Tree/bucket method . 85
6.2.3 Bucket-size and bucket-max . 87

7 Experimental Results 89
7.1 Experiment I . 90

7.1.1 Results of Experiment I . 91
7.2 Experiment II . 93

7.2.1 Results of Experiment II . 94
7.3 Experiment III . 95

7.3.1 Results of Experiment III . 96

8 Conclusion & Future Directions 98
8.1 Conclusion . 98
8.2 Future Directions . 100

9 References 103

10 Appendix: Algorithms 111

11 Curriculum Vitae 115

iv

LIST OF FIGURES

2.1 Examples of Weierstrass Curves over R 10
2.2 ECC Operations Hierarchy . 10
2.3 P +Q and 2P Geometric Descriptions 14
2.4 Description of a Scalar Multiplication Method 16
5.1 An Example of Line Search: b = −a log3 2 + log3 935811 74
7.1 Experimental Comparison between Tree/bucket and DAG/bucket Methods 94

v

LIST OF TABLES

2.1 ECC Domain Parameters . 22
3.1 P +Q in Affine Weierstrass Coordinates over Fp 25
3.2 2P in Affine Weierstrass Coordinates over Fp 25
3.3 3P in Affine Weierstrass Coordinates over Fp 26
3.4 4P in Affine Weierstrass Coordinates over Fp 27
3.5 5P in Affine Weierstrass Coordinates over Fp 29
3.6 P +Q in Jacobian Weierstrass Coordinates over Fp 32
3.7 2P in Jacobian Weierstrass Coordinates over Fp 33
3.8 3P in Jacobian Weierstrass Coordinates over Fp 34
3.9 5P in Jacobian Weierstrass Coordinates over Fp 35
3.10 2P in Extended Jacobian Weierstrass Coordinates over Fp 35
3.11 P +Q in Extended Jacobian Weierstrass Coordinates over Fp 38
3.12 The Cost of Efficient Formulas in Twisted Edwards and Jacobian Weier-

strass Coordinates over Fp . 39
3.13 P +Q in Standard Twisted Edwards Coordinates over Fp 40
3.14 P + Q with Pre-computation in Standard Twisted Edwards Coordinates

over Fp . 40
3.15 2P in Standard Twisted Edwards Coordinates over Fp 41
3.16 3P in Standard Twisted Edwards Coordinates over Fp 41
3.17 5P in Standard Twisted Edwards Coordinates over Fp 42
3.18 2Q+ P with Pre-computation in Standard Twisted Edwards Coordinates

over Fp . 45
4.1 P +Q for Binary Elliptic Curves in Affine Coordinates 48
4.2 2P for Binary Elliptic Curves in Affine Coordinates 48
4.3 3P for Binary Elliptic Curves in Affine Coordinates 49
4.4 4P for Binary Elliptic Curves in Affine Coordinates 50
4.5 5P for Binary Elliptic Curves in Affine Coordinates 50
4.6 The Cost for Efficient Formulas in Different Projective Coordinates over F2m 52
4.7 The Cost of Efficient Formulas in Affine and λ-coordinates for Binary

Elliptic Curves . 53
4.8 P +Q in λ-coordinates over F2m . 54
4.9 2P in λ-coordinates over F2m . 54
4.10 3P in λ-coordinates over F2m . 55
4.11 5P in λ-coordinates over F2m . 57
4.12 The Cost of Efficient Formulas in Twisted µ4-normal Coordinates and λ-

coordinates over F2m . 60
4.13 P +Q in Twisted µ4-normal Coordinates over F2m 60
4.14 2P in Twisted µ4-normal Coordinates over F2m 61
4.15 The Cost of Efficient Formulas in Different Coordinates for Koblitz Curves 62
4.16 The Optimal Pre-computation of Window τ -NAF when a = 0 63
4.17 The Novel Pre-computation of Window τ -NAF when a = 0 63
4.18 τ̄P in λ-Coordinates when a = 1 . 64
4.19 τ̄P in Twisted µ4-normal Coordinates when a = 0 64
4.20 τ̄P in Twisted µ4-normal Coordinates when a = 1 67
5.1 Greedy Method with Different Upper Bounds (amax, bmax) in Different Co-

ordinates . 72

vi

5.2 An Example of the Difference between the Binary Expansion Lengths for
t and 3b . 72

6.1 Node Attributes for the rDAG-based Method 80
6.2 Example of the rDAG-based Method for t = 13 82
6.3 Node Attributes for the DAG/bucket Method 83
6.4 Example of the DAG/bucket Method for t = 13 84
6.5 Node Attributes for the Tree/bucket Method 86
7.1 Theoretical Comparison between Single-base and Multi-base Methods in

Standard Twisted Edwards Coordinates over Fp 92
7.2 Theoretical Comparison between Single-base and Multi-base Methods in

λ-coordinates over F2m . 92
7.3 Running Time Comparison between Single-base and Multi-base Methods

in Standard Twisted Edwards Coordinates over Fp 92
7.4 Running Time Comparison between Single-base and Multi-base Methods

in λ-coordinates over F2m . 93
7.5 Experimental Comparison between Optimal and Near Optimal Chains . . 95
7.6 Theoretical Comparison between the Optimal and the Novel Pre-computation

Schemes when a = 0 . 97
7.7 Running Time Comparison between the Optimal and the Novel Pre-computation

Schemes when a = 0 . 97
7.8 Theoretical Comparison between the Optimal and the Novel Pre-computation

Schemes when a = 1 . 97
7.9 Running Time Comparison between the Optimal and the Novel Pre-computation

Schemes when a = 1 . 97

vii

LIST OF ALGORITHMS

2.1 ECDH . 22
2.2 ECDSA Signature Generation . 22
2.3 ECDSA Signature Verification . 23
5.1 Binary Method . 69
5.2 Performing Scalar Multiplication on Binary Chains 70
5.3 NAF Method . 70
5.4 Greedy Method . 71
5.5 Line Search . 73
5.6 Performing Scalar Multiplication on Greedy Chains 74
5.7 Ternary/binary Method . 75
5.8 Performing Scalar Multiplication on Ternary/binary Chains 76
5.9 Multi-base NAF Method . 76
5.10 Tree-based Method . 78
6.1 rDAG-based Method . 81
6.2 get-chain for the rDAG-based Method . 82
6.3 DAG/bucket Method . 84
6.4 get-chain for the DAG/bucket Method 85
6.5 Tree/bucket Method . 87
6.6 get-chain for the Tree/bucket Method . 87
10.1 TPL in Standard Twisted Edwards Coordinates 111
10.2 QPL in Standard Twisted Edwards Coordinates 112
10.3 TPL in λ-coordinates over F2m . 113
10.4 QPL in λ-coordinates over F2m . 114

viii

LIST OF ABBREVIATIONS

ECC elliptic curve cryptography

SBNS single-base number system

DBNS double-base number system

MBNS multi-base number system

F field

Fq finite field

Fp prime field

F2m binary field

S field squaring

M field multiplication

I field inversion

E elliptic curve

P point on an elliptic curve

Q another point on an elliptic curve

t positive integer

tP scalar multiplication

ADD point addition (P +Q)

DBL point doubling (2P)

TPL point tripling (3P)

QPL point quintupling (5P)

NAF non-adjacent form

DAG directed acyclic graph

rDAG rectangular directed acyclic graph

ix

ACKNOWLEDGEMENTS

First, I thank my advisor Prof. Guangwu Xu for the time he spent on me to teach

me what it means to become a good researcher. I will always appreciate his help and

his support. I acknowledge that many ideas in this research were based on his

suggestions during our weekly meetings. Second, my thanks go to Prof. Seyed Hosseini

for being my initial advisor and being a part of the committee for this research. He

supported me and opened the door for me to study at UWM.

Third, I thank the rest of the committee members: Prof. Adrian Dumitrescu,

Prof. Jeb Willenbring, Prof. Lingfeng Wang, and Prof. Yi Hu. Prof. Dumitrescu

supported me and suggested valuable comments to enhance the content of this research.

Prof. Willenbring’s comments were encouraging and his words are still motivating me

to achieve my next goals. Finally, I thank my sponsor Taibah University in Saudi

Arabia. They believe in me and granted me a scholarship to study at UWM. I also

thank Erich Wegenke from the UWM writing center. He helped me to edit this research

and suggested good comments to enhance the writing.

x

1 Introduction

Koblitz (1987) and Miller (1986) introduced Elliptic curve cryptography (ECC) as

a new type of public-key cryptography. Another well-known type of public-key

cryptography is Rivest, Shamir and Adleman (RSA) (Rivest, Shamir, & Adleman,

1978). The main advantage of ECC is that it is more efficient than RSA. For example,

283-bit integer in ECC is considered as secure as 3072-bit integer in RSA (Lenstra &

Verheul, 2001). Public-key cryptography is also known as asymmetric-key cryptography,

and it uses two different keys for data encryption and decryption. The first key is called

a public key, and it is accessible to the public. The second key is called a private key

because it is kept a secret by the owner. In contrast, symmetric-key cryptography uses

one shared secret key for data encryption and decryption. As a result, public-key

cryptography has the advantage of eliminating the need to share a secret key with

others. Another advantage of public-key cryptography is that it provides the digital

signature schemes. With this scheme, we guarantee that the message is sent by the

owner and is not been modified by an attacker.

Besides the advantages, public-key cryptography has the disadvantage of slow

performance in comparison to symmetric-key cryptography. As a result, public-key

cryptography in practice is used to encrypt or decrypt data of a small size. For

example, we use public-key cryptography to establish a shared secret key between two

parties, which involves encrypting data of a small size (e.g., public key size bits). In

digital signature schemes, we use public key cryptography to encrypt or decrypt a

message digest (hash value) which is data of a small size (e.g., 512 bits).

The most expensive ECC operation is scalar multiplication (tP) where P is a

point on an elliptic curve over finite fields and t is a positive integer. Scalar

multiplication is an operation that adds a point to itself t times such that

tP = P + P + ...+ P︸ ︷︷ ︸
t times

. One of the primary techniques to speed up scalar multiplication

is to use single-base number system (SBNS) forms. Integer t is represented in the SBNS

in the form of t =
l∑

i=1
si 2ai where ai > 0, si ∈ {−1,+1}, and l is the form length. A

single-base chain is a special form of SBNS that is utilized by ECC. The main methods

1

that convert integer t to a single-base chain are binary and NAF methods.

Dimitrov, Jullien, and Miller (1998) initially introduced a double-base number

system (DBNS) for applications other than ECC, such as digital signal processing

(Dimitrov, Eskritt, Imbert, Jullien, & Miller, 2001). Later, Dimitrov, Imbert, and

Mishra (2005) proposed the DBNS to speed up ECC scalar multiplication operations.

Integer t is represented in the DBNS in the form of t =
l∑

i=1
si 2ai 3bi where

ai, bi > 0, si ∈ {−1,+1}, and l is the form length. When we represent integer t in the

DBNS, the form length, on average, is shorter than when we represent integer t in the

SBNS. In other words, when we represent integer t in the DBNS, on average, the

number of point additions is minimized and leads to accelerate scalar multiplication.

This is because point addition moves slowly to reach the target tP , while other formulas

such as point doubling and point tripling move quickly. A multi-base number system

(MBNS) is an extended idea of the DBNS (Mishra & Dimitrov, 2007). When we

represent integer t in the MBNS, the number point additions continues to reduce.

In this research, the first elliptic curves that we work on are Weierstrass curves E

over finite fields Fq, as represented by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ Fq and the discriminant of E is not equal to 0. The reason for

working on Weierstrass curves is that they are recommended by the National Institute

of Standards and Technology (NIST). In fact, NIST recommends using three types of

Weierstrass curves: the random curves over both binary and prime fields and Kobilitz

curves over binary fields (Barker, 2013). Points on these curves not only can be

represented in affine coordinate systems as x-coordinate and y-coordinate, but also in

projective coordinate systems as X-coordinate, Y -coordinate, and Z-coordinate.

Representing points using projective coordinate systems can achieve significant

improvement for scalar multiplication operations, especially for a high inversion to

multiplication (I/M) ratio device. This improvement is obtained by replacing

inversions with multiplication operations. Therefore, other studies proposed projective

2

coordinate systems for simplified Weierstrass curves over prime fields such as

Chudnovsky and Jacobian (Chudnovsky & Chudnovsky, 1986; Hankerson, Menezes, &

Vanstone, 2004). They also proposed projective coordinate systems for binary elliptic

curves over binary fields such as Lopez-Dahab, Lambda, twisted µ4-normal form

(Lange, 2004; Oliveira, Lopez, Aranha, & Rodriguez-Henriquez, 2014; Kohel, 2017).

A special class of Weierstrass curves can have an efficiently computable

endomorphism (Gallant, Lambert, & Vanstone, 2001; Koblitz, 1992). Other studies

show that these special curves which have efficiently commutable endomorphisms can

significantly speed up scalar multiplication (Xu, 2009; Ajeena & Kamarulhaili, 2014;

Kim & Lim, 2002). However, this technique, unlike the MBNS, is applicable for a

certain class of Weierstrass curves. The second type of elliptic curves that we study is

twisted Edward curves E over prime fields Fp, as represented by

E : ax2 + y2 = 1 + dx2y2

where a, d ∈ Fp, p > 3 is a prime number, a 6= d and a, d 6= 0. The reason for studying

twisted Edwards curves is that they have the most efficient 2P formula in comparison

to other elliptic curves over prime fields. In the context of the MBNS, 2P is the most

important formula because it is the most used operation during scalar multiplication.

For efficiency reasons, the MBNS requires concise point tripling (3P) and point

quintupling (5P) formulas. Therefore, other studies developed concise 3P and 5P

formulas in different coordinates systems. The most efficient 3P and 5P formulas are

described as follows. For Weierstrass curves, Yu, Kim, and Jo (2015) developed 3P

formulas in affine coordinates over both prime and binary fields. Longa and Miri

(2008a) developed 3P formula, and Giorgi, Imbert, and Izard (2009) developed 5P

formula in Jacobian Weierstrass projective coordinates over prime fields. Al Musa and

Xu (2017) developed 3P and 5P formulas in λ-projective coordinates over binary fields.

For twisted Edwards curves over prime fields, Bernstein, Chuengsatiansup, and Lange

(2017) developed 3P formula, and Li, Yu, and Wang (2016) developed 5P formula in

standard projective coordinates.

3

For other efficiency reasons, when we represent integer t in the DBNS, we

represent it as a double-base chain. The double-base chain is a special form of the

DBNS where the sequence of the exponents ai and bj decreases. Therefore, other

studies introduced methods that represent t as a double-base chain. Dimitrov et al.

(2005) introduced the greedy method. Ciet, Joye, Lauter, and Montgomery (2006)

introduced the ternary/binary method. Longa and Gebotys (2009) introduced the

multi-base NAF method. Doche and Habsieger (2008) introduced the tree-based

method. Bernstein et al. (2017) introduced the rDAG-based method. Similar to the

DBNS, when we represent integer t in the MBNS, we represent it as a multi-base chain.

The above methods can be extended to represent integer t to a multi-base chain.

1.1 Problem Statement

This dissertation studies the efficiency problem of scalar multiplication for elliptic

curve cryptography. The approach of solving this problem is to use a multi-base number

system (MBNS). The motivation to investigate this approach is that when integer t is

represented by a multi-base chain, the chain length, on average, becomes shorter than a

single-base chain. This property can speed up scalar multiplication. However, this

approach needs further work in two parts: we need to derive optimized formulas (e.g.,

3P , 5P) and find a method that utilizes these formulas efficiently during scalar

multiplication.

Dedicated formulas for small bases (e.g., 3P , 5P) in many elliptic curve

coordinate systems have not been derived, or they need further optimization.

Additionally, other studies proposed MBNS methods such as greedy, multi-base NAF,

ternary/binary, tree-based, and rDAG-based. Some of the aspects of theoretical analysis

and experimental results of these MBNS methods have not been investigated. These

aspects include the average chain length, the average chain cost, and the average

conversion cost. They determine a method that utilizes formulas efficiently. Therefore,

deriving optimized formulas and choosing a method that utilizes the formulas efficiently

lead to faster scalar multiplication.

4

1.2 Our Contributions

The first part of our contribution is to derive optimized formulas for elliptic curves

over prime and binary fields. We work on simplified Weierstrass curves over prime and

binary elliptic curves. We also work on twisted Edwards curves over prime fields. We

propose several formulas for these curves using various techniques in both affine and

projective coordinates. We use the notations I, M, or S to represent field inversions,

multiplications, or squarings respectively. We also use the notations Ma, Mb, or Md to

represent field multiplication with one of the multiplicands to be the curve coefficient a,

b, or d respectively. We can summarize our efforts in this part as follows:

1. We propose 4P and 5P formulas in affine coordinates for simplified Weierstrass

curves over prime fields. When the curve coefficient a is selected as a small

constant, our proposed 4P formula saves 1M in comparison to the state of the art

4P formula. Our proposed 5P formula trades 2I with 6M + 3S in comparison to

2(2P) + P . To the best of our knowledge, our proposed 5P formula is the first 5P

formula in affine coordinates for simplified Weierstrass curves over prime fields.

2. We propose a 2P formula in extended Jacobian coordinates for simplified

Weierstrass curves over prime fields. To the best of our knowledge, we are the first

study that proposes this extended Jacobian coordinates for simplified Weierstrass

curves over prime fields. When the curve coefficient a is selected as a large

constant, this proposed 2P formula saves approximately 0.6M in comparison to

the state of the art 2P formula in non-extended Jacobian coordinates.

3. We propose 5P and 2Q+P formulas in standard projective coordinates for twisted

Edwards curves over prime fields. Our proposed 5P formula saves approximately

4.2M in comparison to the state of the art 5P formula. Our proposed 2Q+ P

formula saves 1M + 1Md + 1Ma + 1S in comparison to a non-dedicated formula.

To the best of our knowledge, our proposed 2Q+ P formula is the first 2Q+ P

formula for twisted Edwards curves. Additionally, we are able to save 1M for the

P +Q formula in these coordinate systems by using the pre-computation concept.

5

4. Al Musa and Xu (2017) proposed a 5P formula in affine coordinates for binary

elliptic curves. Their proposed 5P formula saves 2M− 1S in comparison to the

state of art 5P formula.

5. Al Musa and Xu (2017) proposed 3P and 5P formulas in λ-projective coordinates

for binary elliptic curves. Their proposed 3P formula saves 2M + 1Ma + 2S in

comparison to the state of the art 3P formula in Lopez-Dahab projective

coordinates. Their 5P formula saves 6M+ 1Ma + 2S in comparison to 2(2P) + P .

To the best of our knowledge, their 5P formula is the first 5P formula in

projective coordinates for binary elliptic curves.

6. We generalize the 2P formula in twisted µ4-normal coordinates for binary elliptic

curves. When the curve coefficient b is selected as a small constant, this proposed

2P saves approximately 1M in comparison to the state of the art 2P formula in

λ-projective coordinates.

7. We propose a τ̄P = µP − τP formula in twisted µ4-normal coordinates for Koblitz

curve over binary fields. When the curve coefficient a = 0, our proposed τ̄P

formula saves 1M in comparison to the state of the art τ̄P formula in twisted

µ4-normal coordinates. It has the same cost as the state of the art τ̄P formula in

Lopez-Dahab projective coordinates. However, this proposed τ̄P formula is still

preferred because when a = 0, twisted µ4-normal coordinates have the most

efficient P +Q formula for Koblitz curve over binary fields.

In the second part of our contributions, we advance the MBNS methods in three

ways. First advancement: we theoretically study the MBNS methods, including the

greedy, the ternary/binary, the multi-base NAF, the tree-based, the rDAG-based

methods. We emphasize three properties of the methods: the conversion cost, the chain

cost, and the chain length. Second advancement: we develop bucket methods for the

DAG-based and the tree-based abstract ideas. The bucket methods systematically

balance the chain cost and the time to find the chain. As a consequence, they enable us

to produce a near optimal chain in significantly less running time than an optimal

6

chain. The optimal chain is the one produced by the rDAG-based method. The bucket

methods also enable us to show that the tree-based method does not produce a near

optimal chain. We understand that we are the first study that suggests systematically

finding a near optimal chain for the MBNS methods.

Third advancement: we experimentally study the MBNS methods with and

without pre-computation. In these experimental results, we utilize the state of the art

formulas presented in this dissertation. To the best of our knowledge, we are the first

study that shows experimental comparison results between the MBNS methods over

both binary and prime fields. We show the results with respect to the chain length, the

chain cost, and the running time. The running time evaluates the two phases of the

methods: the converting phase and the performing phase. The chain cost evaluates only

the performing phase of the methods. Other experimental results were conducted either

in binary fields or prime fields without evaluating the converting phase. The compared

MBNS methods without pre-computation are the greedy, the ternary/binary, the

multi-base NAF, and the tree-based. The compared MBNS methods with

pre-computation are the rDAG-based and the bucket. These methods utilize the

pre-computation concept in the converting phase to further lower the average chain cost.

Our experimental results show that MBNS methods without pre-computation had

an approximately 6% to 11% lower average chain cost in comparison to the SBNS

methods. Except for the greedy method, they had an approximately 6% to 14% faster

running time in comparison to the SBNS methods. They show that the MBNS method

with pre-computation could further lower the average chain cost and affect the average

running time.

Additionally, we conducted experiments to compare the optimal and the novel

pre-computation schemes of window τ -NAF for Koblitz curves. Our experimental

results show that novel scheme improved the performance significantly in comparison to

the optimal scheme. To the best of our knowledge, these are the first experimental

results for the optimal and the novel pre-computation schemes in twisted µ4-normal

coordinates in both cases, a = 0 and a = 1.

7

1.3 ECC Applications

ECC is widely deployed in the restricted resources computing systems. Embedded

systems and sensors are often manufactured with restricted resource capabilities such as

lower battery capacity, smaller memory size, and slower processor speed. Therefore,

ECC is suitable to be deployed in these systems because it uses the resources more

efficiently, compared to other public-key cryptographic systems. For example, He and

Zeadally (2014) proposed ECC authentication schemes for radio-frequency identification

(RFID) chips. These small chips can be used as real-time monitoring systems that are

attached to patients to gather and transfer health information to physicians. Santoso

and Vun (2015) also suggested ECC authentication schemes for smart home systems.

These systems rely on small sensors that send information related to a home’s energy

efficiency.

ECC is also used with blockchains. The blockchain can be seen as a type of a

distributed system that proves transactions (Crosby, Nachiappan, Pattanayak, Verma,

& Kalyanaraman, 2016). For example, the Bitcoin blockchain uses ECC digital

signature schemes to prove digital currency exchange transactions between two users

(Nakamoto, 2011). Ethereum, Litecoin, and Ripple blockchains also use ECC digital

signature schemes to prove transactions (Watson, 2018).

ECC is supported by computer network protocols. Computer networks use ECC

in key agreement and digital signature schemes. For example, the transport layer

security (TLS) protocol, which provides secure communications through a web browser,

supports ECC in key agreement and digital signature schemes (Rescorla, 2018). The

Kerberos authentication protocol also supports ECC in the key agreement scheme (Zhu,

Jaganathan, & Lauter, 2008). Additionally, Secure Shell (SSH) protocol, which provides

remote access to computer systems, supports ECC in key agreement and digital

signature schemes (Stebila & Green, 2009).

8

2 Basic Background

Definition 1. An elliptic curve E over a field F in the general Weierstrass equation is

represented by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where a1, a2, a3, a4, a6 ∈ F and the discriminant of E is not equal to 0.

The above equation (1) can be simplified through the use of the admissible

changes of variables. When the characteristic of F is not equal to 2 or 3, we can

transform the equation to what we call simplified Weierstrass curves over prime fields,

as represented by

y2 = x3 + a4x+ a6

where the discriminant −16(4a3
4 + 27a2

6) 6= 0. When the characteristic of F is equal to 2,

we can transform the equation (1) to both supersingular and non-supersingular curves

over binary fields. We say that E is supersingular curves if the characteristic of F

divides the trace of E; otherwise, E is non-supersingular curves. Non-supersingular

curves over binary fields are called binary elliptic curves, as represented by

y2 + xy = x3 + a2x
2 + a6

where the discriminant a6 6= 0. Supersingular curves over binary fields are not used in

practice because of security issues related to the discrete logarithm problem (Granger,

Kleinjung, & Zumbrägel, 2014). See Figure 2.1 for examples of Weierstrass curves over

real numbers (R).

In elliptic curve cryptographic systems, we have to define an elliptic curve E over

finite fields Fq. The denotation E(Fq) is the set of all points (x, y) where x, y ∈ Fq that

satisfies the above equation (1) together with the point at infinity O. This set forms an

abelian group under point addition. Precisely, this group is closed, associative,

commutative, has an identity, and has the inverse property. The identity point of the

group is the point at infinity O. The point addition can be computed by the chord and

9

E : y2 = x3 − 2x+ 1 E : y2 = x3 − x+ 1

Figure 2.1 . Examples of Weierstrass Curves over R

tangent rule. See Section 2.2 for the chord and tangent rule.

Let r be the group order of E(Fq). For security reasons, it is important that r be

selected as a large prime number or a product of a large prime number and a small

number. We focus on two types of finite fields: prime fields Fp and binary fields F2m

where p > 3 is a prime number and m is the degree of an irreducible polynomial. The

finite field arithmetic (e.g., squaring, addition) gets affected by the finite field types. In

Figure 2.2, we see the finite field arithmetic in the bottom layer of ECC operations,

which means it affects all upper layers of ECC operations.

Protocols: ECDH ECDSA

Methods: scalar multiplication (tP)

Formulas: point doubling (2P) point addition (P +Q)

Finite field arithmetic: inversion (I) multiplication (M) squaring (S) addition/subtraction

Figure 2.2 . ECC Operations Hierarchy

2.1 Finite Field Arithmetic

The main operations for finite field arithmetic are inversion (I), multiplication

(M), squaring (S), and addition/subtraction. Our focus in the context of finite field

arithmetic is to reduce the number of inversion, multiplication, and squaring operations.

We ignore addition/subtraction operations because they are cheap operations over both

10

binary and prime fields. It is not our intention to improve the finite field arithmetic

algorithms. This is because there are tremendous ongoing efforts to improve the finite

field arithmetic algorithms. For example, GMP and MIRACL are well-known available

software libraries for finite field arithmetic (Granlund & et al., n.d.; Matula & Kornerup,

n.d.). Therefore, we utilize GMP and MIRACL to perform the finite field arithmetic.

2.1.1 Squaring. We use the squaring to multiplication (S/M) ratio to

measure the squaring cost. This is because the S/M ratio varies in different devices

over different finite fields. One field squaring costs less than or equal to one field

multiplication operation. For prime fields, the S/M ratio is a high ratio and it is closer

to one. For binary fields, it is a low ratio and the squaring is closer to a free operation.

For example, Bernstein et al. (2017) assumed 1S = 0.8M over prime fields. Doche,

Kohel, and Sica (2009) assumed 1S = 0.1M over binary fields. To simplify the

comparison over prime fields, we assume 1S = 0.8M.

The main technique that we use to reduce the number of squaring operations is

substitution. Substitution can be obtained from the curve equation or relations that are

derived. For example, we use this relation over binary fields: a2 + b2 = (a+ b)2, which

saves 1S. We use this relation over prime fields: a2 − b2 = (a+ b) · (a− b), which trades

2S with 1M.

2.1.2 Inversion. An inversion operation is the most expensive finite field

arithmetic over both binary and prime fields. We use the inversion to multiplication

(I/M) ratio to measure the inversion cost. This is also because the I/M ratio varies in

different devices over different finite fields. We say that a low I/M ratio is 5, and a high

I/M ratio is 8, as suggested by Hankerson et al. (2004). We use two techniques to

reduce the number of inversion operations: Montgomery’s trick and projective

coordinate systems.

Montgomery’s trick performs multiple inversions at once to reduce the number of

inversions. However, it adds extra 3(n− 1)M where n is the number of inversion

operations. We see that Montgomery’s trick only reduces the number of inversions by

replacing an inversion with multiplication operations. However, we still use inversion

11

operations. For more examples on Montgomery’s trick, see theorem proofs in Section

3.1 and Section 4.1.

Another technique for reducing the number of inversion operations is to use a

projective coordinate system. A projective point is commonly represented as

X-coordinate, Y -coordinate, and Z-coordinate, while an affine point represented as

x-coordinate and y-coordinate. It is important to note that we capitalize projective

point elements because we want to differentiate projective point elements from affine

point elements.

When we represent a point in projective coordinates, inversion operations are not

used during scalar multiplication operation. However, we need to do the following extra

steps. First, before performing scalar multiplication, we need to convert an affine point

to a projective point. Then, after scalar multiplication, we need to reverse a projective

point to an affine point. The cost of these extra steps are minor in comparison to the

cost of scalar multiplication. These extra steps minimize the number of operations and

speed up scalar multiplication. This minimization increases in a high I/M ratio device.

Other studies used projective coordinate systems for different elliptic curves to

speed up scalar multiplication. For simplified Weierstrass curves over prime fields, the

most efficient projective coordinates are Jacobian and Chudnovsky coordinates

(Hankerson et al., 2004; Chudnovsky & Chudnovsky, 1986). For binary elliptic curves,

the most efficient projective coordinates are Lopez-Dahab (LD), Lambda (λ), and

twisted µ4-normal coordinates (Lange, 2004; Oliveira et al., 2014; Kohel, 2017).

For twisted Edwards curves over prime fields, the most efficient projective

coordinates are standard and inverted coordinates (Bernstein, Birkner, Joye, Lange, &

Peters, 2008). See Section 3.2 for Jacobian Weierstrass projective coordinates and

Section 3.4 for standard twisted Edwards coordinates. Also, see Section 4.2 for

λ-projective coordinates and Section 4.3 for twisted µ4-normal coordinates.

2.1.3 Multiplication. We use multiplication as the main unit to measure the

cost of a formula or a method. Therefore, we usually approximate squaring and

inversion to multiplication by using the I/M and S/M ratio assumptions. We use the

12

notations Ma, Mb, or Md to represent field multiplication with one of the multiplicands

to be the curve coefficient a, d, or d respectively. To simplify the comparison over prime

fields, we assume Md = 1M, Mb = 1M, and Ma is a free operation. This is because the

coefficient b or d are often selected as large constants and the coefficient a is often

selected as a small constant.

The following techniques are used to reduce the number of multiplication

operations: the distribution law, the cancellation law, substitution, and factoring

polynomials. For example, this relation: a · b+ c · d = (a+ d) · (b+ c)− a · c− b · d saves

1M in certain cases. Also, this relation over prime fields: 2 · a · b = (a+ b)2 − a2 − b2

replaces 1M with 1S in certain cases. For more examples, see the theorem proofs in

Section 3 and Section 4.

2.2 Formulas

One of the main factors that impacts the efficiency of scalar multiplication is

formulas, as Figure 2.2 shows. We measure a formula by the number of S, M, and I

operations. An example formula is P +Q, 2P , 3P , and 5P . We also called them point

addition (ADD), point doubling (DBL), point tripling (TPL), and point quintupling

(QPL) respectively. We use the notation mixed P +Q to indicate that one point is

represented in affine coordinates (e.g., P = (x, y)), and the other point is represented in

projective coordinates (e.g., Q = (X, Y, Z)). When we state that a formula is an

“efficient formula”, it is to indicate that efforts were made to reduce the number of

operations.

P +Q is necessary for any proposed coordinate systems. In fact, it is sufficient to

perform scalar multiplication using P +Q. However, we use 2P , 3P , and 5P formulas

to speed up scalar multiplication. Other formulas that are used to speed up scalar

multiplication are 2Q+ P and 4P . All formulas can be derived from a P +Q formula.

For example, 2P in twisted Edward coordinates is directly obtained from a P +Q

formula. A 3P formula can be derived from the fact that 3P = 2P + P and a 5P

formula can be derived from the fact that 5P = 3P + 2P .

13

2.2.1 P + Q derivation. Assume we work on the following curve

E : y2 = x3 + ax+ b over R. Let P = (x1, y1) and Q = (x2, y2) be two different points

on the curve E. We want to find P +Q = (x3, y3). We can geometrically find P +Q, as

Figure 2.3 shows. First, we draw the line L : y = sx+m where s is slope and m is the

y-intercept. This line L intersects with points P and Q and intersects with the curve E

at the third point. This third point is the inverse of P +Q. Second, we draw a vertical

line that intersects with the third point. This vertical line will intersect with the curve

at the fourth point. This fourth point is P +Q.

Figure 2.3 . P +Q and 2P Geometric Descriptions
To translate the above P +Q geometric descriptions to a formula, we have

E : y2 = x3 + ax+ b.

L : y = sx+m.

By substituting the y value, we have

(sx+m)2 = x3 + ax+ b.

By solving the above cubic equation, we have three solutions, such that

x3 + ax+ b− (sx+m)2 = (x− x1)(x− x2)(x− x3).

The above equation can be expressed by

x3− s2x2− (2ms−a)x+ b−m2 = x3− (x1 +x2 +x3)x2 + (x1x2 +x1x3 +x2x3)x−x1x2x3.

14

It implies that

s2 = x1 + x2 + x3.

By rearranging the above equation, we have

x3 = s2 − x1 − x2.

Therefore, we obtained x3. Next, we want to obtain y3. From the above line equation,

we have

y3 = sx3 +m.

By using this relation: m = y1 − sx1, we have

y3 = s(x3 − x1) + y1.

By taking the negative of y3, we have

y3 = s(x1 − x3)− y1.

To derive a 2P formula for the above curve E, we can follow the same steps of

P +Q derivation. However, since P = Q, we have a tangent line L : y = λx+m where

λ is the slope. Figure 2.2 shows this tangent line touches the curve E only at point P .

To compute the slope λ of this tangent line, we compute the first derivative of the curve

equation E. We use the power rule to compute the first derivate of E. Therefore, we

have

λ = 3x2
1 + a

2y1
.

We use the above x3 and y3 equations to obtain a 2P formula. Therefore, we have

x3 = λ2 − 2x1.

y3 = λ(x1 − x3)− y1.

15

2.3 Methods

integer t =⇒ Converting phase =⇒ chain =⇒ Performing phase =⇒ tP

conversion cost chain length
chain cost

Figure 2.4 . Description of a Scalar Multiplication Method

In the context of the MBNS, a scalar multiplication method consists of two

phases: the converting phase and the performing phase. Figure 2.4 shows that the

converting phase takes integer t and produces a chain. The performing phase takes a

chain and produces tP . We focus on the converting phase of the methods. This is

because the converting phase is sufficient to evaluate the methods. It determines the

conversion cost, the chain cost, and the chain length of the methods.

2.3.1 The converting phase.

Definition 2. A positive integer t is represented in a single-base chain with

{2}-integers in the form of

t =
l∑

i=1
si 2ai

where si ∈ {−1,+1}, l is the chain length, a1 > a2 > · · · > al > 0.

Definition 3. A positive integer t is represented in a double-base chain with

{2, 3}-integers in the form of

t =
l∑

i=1
si 2ai 3bi

where si ∈ {−1,+1}, l is the chain length, a1 > a2 > · · · > al > 0, and

b1 > b2 > · · · > bl > 0.

Definition 4. A positive integer t is represented in a multi-base chain with

{2, 3, 5}-integers in the form of

t =
l∑

i=1
si 2ai 3bi 5ci

16

where si ∈ {−1,+1} , l is the chain length, a1 > a2 > · · · > al > 0,

b1 > b2 > · · · > bl > 0, and c1 > c2 > · · · > cl > 0.

Other researchers introduced methods that convert integer t to single-base,

double-base, or multi-base chains. The binary and the NAF methods convert integer t

to a single-base chain with {2}-integers. These methods can be altered to convert

integer t to a single-base chain with {3}-integers or {5}-integers (Takagi, Reis, Yen, &

Wu, 2006). We focus on the single-base chain with {2}-integers since it is the most

widely used type of the single-base chain.

The ternary/binary, the multi-base NAF, the tree-based, and the rDAG-based

methods convert integer t to a double-base chain with {2, 3}-integers. These

double-base methods can be altered to produce other types of chains, such as chains

with {2, 5}-integers or {3, 5}-integers. We focus on the double-base chain with

{2, 3}-integers since it is the simplest type of the double-base chain. These methods also

can be extended to convert integer t to a multi-base chain with {2, 3, 5}-integers. We

explain these methods in Section 5 and Section 6.

We use the conversion cost to evaluate the converting phase of a method. This is

because these methods utilize different techniques to convert integer t to a chain. The

conversion cost is the time complexity of the converting phase. For example, the

conversion cost of the binary method is O(log2 t) and of the rDAG-based method is

approximately O ((log2 t)2). It is important to note that the time complexity does not

pay attention to the size of constants. These ignored constants can affect the running

time of the methods. Therefore, the conversion cost might not be an accurate

evaluation of the converting phase of methods. For example, the converting phase of the

ternary/binary and the tree-based methods both take logarithmic time. However, they

are different in the constant that is associated with the logarithmic time.

The conversion cost can be hard to be known for some methods, such as the

greedy method. Therefore, we use our experimental results to estimate the conversion

cost of these methods. The converting phase in the single-base methods is efficient.

However, the converting phase in the multi-base methods can be inefficient. Some of

17

these multi-base methods generate a high quality chain, but they require extra time to

find the chain, such as the rDAG-based method. See Section 7 for experimental

comparison between these methods.

2.3.2 The performing phase. In this phase, we execute the chain that we

received from the converting phase. The chain consists of number of ADD, DBL,

TPL, and QPL. We use the chain length and the chain cost to evaluate this phase.

The chain length is a rough estimate of the chain quality. This is because it considers

only the number of ADD to evaluate a chain. The chain cost is an accurate estimate of

the chain quality. This is because it considers ADD, DBL, TPL, and QPL to

evaluate a chain.

For example, we want to know the chain length and the chain cost when we

represent 935811 by a single-base chain with {2}-integers. We have

935811 = 220 − 217 + 214 + 211 − 27 + 22 − 1.

The chain length is 7, which indicates that we have 6ADD. The chain cost is

6ADD + 20DBL. We obtain 20DBL from the exponent of the leading factor. When

we represent 935811 by a double-base chain with {2, 3}-integers, we have

935811 = 21235 − 2835 + 2534 + 253 + 3.

The chain length is 5 and costs 4ADD + 12DBL + 5TPL. When we represent 935811

by a multi-base chain with {2, 3, 5}-integers, we have

935811 = 28365 + 23345− 22335− 32.

The chain length is 4 and costs 3ADD + 8DBL + 6TPL + 1QPL. From the previous

example, we see that the length of the double-base chain is less than the length of the

single-base chain. However, the double-base chain has an extra number of TPL. We

also see that the length of the triple-base chain is less than the length of the

18

double-base chai, but the triple-base chain has an extra number of QPL.

Remark 1. Our theoretical studies and experimental results show that when integer t

is represented by a multi-base chain, on average, we have a shorter length and a lower

cost than a single-base chain.

The question is, why does a multi-base chain, on average, have a lower cost? This

is because the multi-base chain is based on the idea of replacing ADD with DBL,

TPL, or QPL. This idea reduces the chain cost because ADD moves slowly to reach

tP , while DBL, TPL, and QPL move quickly to reach tP . In other words, DBL,

TPL, and QPL is the least costly way to do two, three, and five jumps respectively.

See Table 3.12 and Table 4.6 for the cost of ADD, DBL, TPL, and QPL in twisted

Edwards coordinates and λ-coordinates, as an example.

2.3.3 An optimal chain. The definition of an optimal chain for integer t

varies among studies. Some studies defined an optimal chain as a high quality chain.

Some studies defined an optimal chain as a chain with the shortest length. Other

studies defined an optimal chain as a chain with the lowest cost. In this dissertation, we

define an optimal chain as a chain with the lowest cost, as Definition 5 shows. The

question is, is there a method can convert integer t to an optimal chain? Two studies

introduced two methods that find an optimal chain: the enumeration method and the

rDAG-based method.

Definition 5. An optimal chain for integer t is a chain that represents t, and it is the

least costly in a particular coordinate system.

Definition 6. A near optimal chain is a chain that has a small cost difference from an

optimal chain. This small difference is at most the cost of 1DBL in a particular

coordinate system.

The first study to find an optimal chain is the enumeration method (Doche, 2014).

The enumeration method focuses on an optimal chain with the shortest length. It takes

exponential time to find an optimal chain for integer t. Moreover, this study defined an

optimal chain for integer t as a chain that meets the following requirements: It has the

shortest length that represents integer t and has a leading factor that divides a given

19

upper bound.

An optimal chain with respect to the length has the following disadvantages.

First, we have many optimal chains for integer t that have similar length and different

costs. For example, let t = 935811 and the upper bound = 220313. Then we can use the

enumeration approach to represent t by the following optimal double-base chains:

t = 212 35 − 28 35 + 25 34 + 25 3 + 3.

t = 27 38 + 27 36 + 25 34 + 25 3 + 3.

t = 24 310 − 22 37 − 35 + 33 − 32.

From the above chains, we have three optimal chains with length 5, and they have

different costs in a coordinate system. The chain with the leading factor 21235 is the

least costly among the above chains in standard twisted Edwards coordinates.

Second, a shorter chain length generally indicates a lower chain cost. However, it

is not true in all cases. For example, let t = 1118848774838. Then we can represent t by

the following double-base chains:

t = 216315 + 215314 + 214313 − 213312 − 21039 + 2938 − 2837 + 2734 − 2333 + 223 + 2.

t = 23235 + 23034 − 22734 − 22533 − 22132 − 21932 − 21432 − 21132 − 293 + 263− 23 − 2.

The first chain length is 11 and costs 368.2M in standard twisted Edwards coordinates.

To explain the cost of the first chain, as Table 3.12 shows, we have

10ADD + 16DBL + 15TPL = 10 · 9.8 + 16 · 6.2 + 15 · 11.4 = 368.2M.

The second chain length is 12 and costs 363.2M in standard twisted Edwards

coordinates. To explain the cost of the second chain, we have

11ADD + 32DBL + 5TPL = 11 · 9.8 + 32 · 6.2 + 5 · 11.4 = 363.2M.

We see that the first chain has a shorter chain length and a higher cost than the second

20

chain.

The second study to find an optimal chain is the rDAG-based method (Bernstein

et al., 2017). The rDAG-based method focuses on an optimal chain with the lowest

cost. The conversion cost in this method is approximately O ((log2 t)2). We see that the

conversion cost of the rDAG-based method is significantly better than the enumeration

method. However, the rDAG-based method takes impractical running time when the

converting phase is performed on-the-fly, as Experiment II shows.

In this dissertation, we suggest finding a near optimal chain instead of finding an

optimal chain. We define a near optimal chain as a chain that has a small difference

from the optimal chain. We suggest the difference to be the cost of 1DBL, as Definition

6 shows. We propose the bucket methods to find a near optimal chain. The advantage

of this method is that it significantly improves the running time of the rDAG-based

method, as Experiment II shows.

2.4 Protocols

2.4.1 ECDH. One of main protocols that our work improves is Elliptic Curve

Diffie Hellman (ECDH) (Diffie & Hellman, 1976). This protocol provides steps that

help to establish a shared secret key between two parties over an insecure channel. This

secret key is used by symmetric key cryptography (e.g., AES) to encrypt or decrypt

data (Dworkin et al., 2011). ECDH protocol can be described as follows. First, assume

ECC domain parameters are known for two parties (e.g., Alice, Bob). The ECC domain

parameters are in the form of < E, a, b, r, h,G,Fq > and are explained in Table 2.1.

Then, we can use Algorithm 2.1 to establish a shared secret key (K) between two

parties.

We see that the secret key K in both parties has the same value because

tA · PB = tB · PA =⇒ tA · tB ·G = tB · tA ·G. We also see that the main operation in

ECDH algorithm is scalar multiplication. In fact, K is temporary and lives for a short

period of time. Therefore, step 5 and step 6 in Algorithm 2.1 are repeated every time

we have a new communication between two parties.

21

Table 2.1
ECC Domain Parameters

E the curve equation (e.g., y2 = x3 + ax+ b)
a, b the curve coefficients (e.g., a = 2, b = 2)
r the main subgroup order (e.g., r = 19)
h cofactor (the group order = h · r)
G base point or generator (e.g., (x, y) = (5, 1))
Fq finite fields (e.g., prime fields with q = 17)

Algorithm 2.1 ECDH
Input: domain parameters < E, a, b, r, h,G,Fq >
Output: shared secret key K
1. Alice chooses random integer tA ∈ {1, 2, ..., r − 1} (private key)
2. Alice obtains point PA such that PA = tA ·G (public key)
4. Bob does similar steps to obtain tB and PB
3. Alice and Bob announce PA and PB
5. Alice obtains K such that K = tA · PB
6. Bob obtains K such that K = tB · PA

2.4.2 ECDSA. Another important protocol that our work improves is Elliptic

Curve Digital Signature Algorithm (ECDSA) (Johnson, Menezes, & Vanstone, 2001).

In digital signature schemes, we guarantee that the message is sent by the owner. In

addition, we guarantee that the message is not modified by an attacker. We can

describe ECDSA as follows. First, let us assume that the ECC domain parameters are

known. Then, this scheme goes through two phases: signature generation and signature

verification. In signature generation, Alice uses her private key (tA) to sign the message,

as Algorithm 2.2 shows. In signature verification, Bob uses Alice’s public key (PA) to

ensure that the message was sent by Alice and is not modified by an attacker, as

Algorithm 2.3 shows.

Algorithm 2.2 ECDSA Signature Generation
Input: domain parameters < E, a, b, r, h,G,Fq >, message m, private key tA
Output: signature (c, s)
1. Alice obtains e such that e = hash(m)
2. Alice chooses random integer k ∈ {1, 2, . . . , r − 1}
3. Alice obtains point Q = (x, y) such that Q = k ·G
4. Alice obtains c such that c ≡ x (mod r). If c = 0, Alice repeats the steps
5. Alice obtains s such that s ≡ k−1(e+ c · tA) (mod r). If s = 0, Alice repeats the steps
6. Alice sends message m and signature (c, s) to Bob

22

Algorithm 2.3 ECDSA Signature Verification
Input: domain parameters < E, a, b, r, h,G,Fq >, signature (c, s), message m, public key PA
Output: accept or reject the signature
1. Bob obtains e such that e = hash(m)
2. Bob obtains w such that w ≡ s−1 (mod r)
3. Bob obtains u1 and u2 such that u1 ≡ e · w (mod r) and u2 ≡ c · w (mod r)
4. Bob obtains point Q = (x, y) such that Q = u1 ·G+ u2 · PA
5. Bob rejects the signature if Q = O
6. Bob accepts the signature if c ≡ x (mod r), otherwise, Bob rejects the signature

In these schemes, we actually sign the hash value of the message instead of the

entire message for efficiency reasons. The hash value is a unique identifier for the

message. We use a hash function to generate a hash value. This hash function is a

one-way function that inputs a message of any bit size and outputs a small fixed-bit size

(e.g., 512 bits). An example of a hash function that is recommended by NIST is SHA-3

(Dworkin, 2015). We see that we accept the signature in Algorithm 2.3 only if c ≡ x

(mod r). This is because the right side:

x = u1 ·G+ u2 · PA

= u1 ·G+ u2 · tA ·G

= G · (u1 + u2 · tA)

= G · (e · w + c · w · tA)

= G · w · (e+ c · tA)

= G · s−1 · (e+ c · tA)

is equal to the left side:

c = k ·G

= s−1 · (e+ c · tA) ·G.

ECC protocols are trusted for use because it is difficult to solve the discrete

logarithm problem (DLP). The discrete logarithm problem in an elliptic curve

cryptosystem (ECDLP) is defined as if two points, P and Q, on an elliptic curve over

23

finite fields are known. It is assumed to be hard to find integer t such that tP = Q

where t is a relatively large integer.

The fastest, general-purpose, known method for attacking ECDLP is Pollard’s rho

(Pollard, 1975). The Pollard’s rho method takes exponential running time O (
√
r)

(Koblitz & Menezes, 2015). Therefore, NIST recommends using an elliptic curve over

finite fields with a large group order (e.g., r ≥ 2163), since it requires an enormous

amount of computation that make it impossible to solve ECDLP by today’s

technologies (Barker, 2013).

24

3 Elliptic Curves over Prime Fields

3.1 Simplified Weierstrass Curves

The simplified Weierstrass curves Ea,b over prime fields Fp are represented by

Ea,b : y2 = x3 + ax+ b

where a, b ∈ Fp , p > 3 is a prime number, and the discriminant −16(4a3 + 27b2) 6= 0.

The denotation Ea,b(Fp) is the set of all points (x, y) where x, y ∈ Fp that satisfies the

above equation together with the point at infinity O. This set forms an abelian group

under the point addition operation. The identity point for the group is the point at

infinity O. The negative of point P = (x, y) ∈ Ea,b(Fp) is another point

−P = (x,−y) ∈ Ea,b(Fp).

Let P = (x1, y1) ∈ Ea,b(Fp) and Q = (x2, y2) ∈ Ea,b(Fp) with P 6= ±Q. Then

P +Q = (x3, y3) ∈ Ea,b(Fp) can be computed by the formula shown in Table 3.1. It

costs 1I + 2M + 1S. Let 2P = (x2, y2) ∈ Ea,b(Fp). Then, 2P can be computed by the

formula shown in Table 3.2. It costs 1I + 2M + 2S.
Table 3.1
P +Q in Affine Weierstrass Coordinates over Fp

Formula terms Operation counts
s = y2−y1

x2−x1
1I + 1M

x3 = s2 − x1 − x2 1S
y3 = s · (x1 − x3)− y1 1M

1I + 2M + 1S

Table 3.2
2P in Affine Weierstrass Coordinates over Fp

Formula terms Operation counts
λ = 3x2

1+a
2y1

1I + 1M + 1S
x2 = λ2 − 2x1 1S
y2 = λ · (x1 − x2)− y1 1M

1I + 2M + 2S

3.1.1 3P formulas. 3P can be obtained without a dedicated formula through

2P + P . The cost of 2P + P is 2I + 4M + 3S. However, many studies show that a

25

dedicated 3P formula in affine coordinates has a lower cost. Ciet et al. (2006) initially

proposed a dedicated formula in affine Weierstrass coordinates over prime fields with

cost 1I + 7M + 4S. Yu et al. (2015) proposed the most efficient 3P formula in affine

Weierstrass coordinates over prime fields with cost 1I + 7M + 3S. It trades 1I with 3M

in comparison to a non-dedicated formula. It saves 1S in comparison to Ciet et al.’s

formula. It seems hard to further reduce the cost of Yu et al.’s formula. See Table 3.3

for the cost of this 3P formula.
Table 3.3
3P in Affine Weierstrass Coordinates over Fp

Formula terms Operation counts
t = 3x2

1 + a 1S
α = t2 − 12x1 · y2

1 1M + 2S
β = −4y1

α
1I + 1M

x3 = 2y1 · β · (y2
1 · 2y1β − t) + x1 3M

y3 = β · (2y3
1β − t) · (t− 4y3

1β)− y1 2M
1I + 7M + 3S

3.1.2 A proposal for a 4P formula. 4P can be obtained without a

dedicated formula through 2(2P) or 3P + P . The cost of 2(2P) is 2I + 4M + 4S and

the cost of 3P + P is 2I + 9M + 4S. As a result, 2(2P) is the most efficient way to

obtain 4P without a dedicated formula because 2(2P) saves 5M over 3P + P . However,

two studies proposed a dedicated 4P formula in affine coordinates to speed up scalar

multiplication. Ciet et al. (2006) initially proposed a 4P formula in affine Weierstrass

coordinates with cost 1I + 8M + 1Ma + 9S. Le (2011) also proposed a 4P formula in

affine Weierstrass coordinates with cost 1I + 8M + 8S. We see that Le’s 4P formula

saves 1Ma + 1S over Ciet et al.’s 4P formula.

We propose a 4P formula in affine Weierstrass coordinates with cost

1I + 7M + 1Ma + 8S. When the curve coefficient a is selected as a small constant, our

4P formula has a lower cost than Le’s 4P formula. For example, when a = −3, we can

save 1M by using our proposed 4P formula instead of Le’s formula. This is because the

cost of our 4P formula when a = −3 becomes 1I + 7M + 8S. Our proposed 4P formula

approximately trades 1I with 3M + 4S in comparison to 2(2P). See Theorem 1 for the

4P formula and Table 3.4 for the cost of this formula.

26

Table 3.4
4P in Affine Weierstrass Coordinates over Fp

Formula terms Operation counts
t = 3x2

1 + a 1S
12x1y

2
1 = 6

(
(x1 + y2

1)2 − x2
1 − y4

1

)
3S

α = t2 − 12x1y
2
1 1S

β = −(2t · α + 16y4
1) 1M

λ = − t·β
2y1·β 1I + 3M

λ2 = 3(α+4x1y2
1)2+a·16y4

1
2y1β

1M + 1Ma + 1S
x4 = λ2

2 − 2λ2 + 4x1 2S
y4 = λ2 · (λ2 − 2x1 − x4)− λ · (3x1 − λ2) + y1 2M

1I + 7M + 1Ma + 8S

Theorem 1. Let P = (x1, y1) ∈ Ea,b(Fp). Then 4P = (x4, y4) is represented by

t = 3x2
1 + a

α = t2 − 12x1y
2
1

β = −(2tα + 16y4
1)

λ = tβ
2y1β

λ2 = 3(α+4x1y2
1)2+a16y4

1
2y1β

x4 = λ2
2 − 2λ2 + 4x1

y4 = λ2(λ2 − 2x1 − x4)− λ(3x1 − λ2) + y1.

Proof. We shall prove Theorem 1 by the fact 4P = 2(2P). From the 2P formula

shown in Table 3.2, we have

λ2 = 3x2
2 + a

2y2
.

We substitute x2, y2 with their equivalent terms in Table 3.2. We have

λ = 3x2
1 + a

2y1
.

λ2 = 3(λ2 − 2x1)2 + a

2λ(3x1 − λ2)− 2y1
.

Let t = 3x2
1 + a. We substitute λ with its equivalent term. We have

λ2 =
3(t2−8x1y2

1)2+a16y4
1

16y4
1

2t(12x1y2
1−t2)−16y4

1
8y3

1

.

27

Let α = t2 − 12x1y
2
1. We have

λ2 = 3(α + 4x1y
2
1)2 + a16y4

1
2y1(−2tα− 16y4

1) .

Let β = −(2tα + 16y4
1). We have

λ2 =
3
(
α + 4x1y

2
1

)2
+ a16y4

1

2y1β
.

From the 2P formula, we have

x4 = λ2
2 − 2x2.

y4 = λ2(3x2 − λ2
2)− y2.

We use the relations x2 = λ2 − 2x1 and y2 = λ(3x1 − λ2)− y1. We have

x4 = λ2
2 − 2λ2 + 4x1.

y4 = λ2(3λ2 − 6x1 − λ2
2)− λ(3x1 − λ2) + y1

= λ2(λ2 − 2x1 − x4)− λ(3x1 − λ2) + y1.

We equalize the denominators of λ and λ2 . We have

λ = tβ

2y1β
.

3.1.3 A proposal for a 5P formula. 5P can be obtained without a

dedicated formula through 2(2P) + P or 3P + 2P . The cost of 2(2P) + P is

3I + 6M + 5S and the cost of 3P + 2P is 3I + 11M + 6S. Therefore, 2(2P) + P is the

most efficient way to obtain 5P without a dedicated formula. Also, 5P can be obtained

using the dedicated 4P formulas with cost 2I + 9M + 1Ma + 9S.

However, we can utilize a dedicated 5P formula to speed up the performance. We

propose a 5P dedicated formula in affine Weierstrass coordinates with cost

28

1I + 12M + 8S. This formula trades 2I with 6M + 3S in comparison to 2(2P) + P . We

see that this proposed formula is useful for devices with I/M ratio ≥ 5M. It also trades

1I with 3M− 1Ma − 1S in comparison to 4P + P . To the best of our knowledge, this is

the first dedicated 5P formula in affine Weierstrass coordinates over prime fields. See

Theorem 2 for the formula and Table 3.5 for the cost of this formula.

Table 3.5
5P in Affine Weierstrass Coordinates over Fp

Formula terms Operation counts
t = 3x2

1 + a 1S
12x1y

2
1 = 6

(
(x1 + y2

1)2 − x2
1 − y4

1

)
3S

α = t2 − 12x1y
2
1 1S

2y1α = (y1 + α)2 − y2
1 − α2 2S

β = 16y4
1 · (2t · α + 16y4

1)− α · α2 3M
λ = tα·β

2y1α·β 1I + 3M
s = −

(16y4
1 ·β

2y1αβ
+ λ

)
1M

s2 = 16y4
1(2tα+16y4

1)·(2tα+16y4
1)

2y1αβ
− λ 2M

x5 = (s2 − s) · (s2 + s) + x1 1M
y5 = s2 · (λ2 − 2x1 − x5)− λ · (3x1 − λ2) + y1 2M + 1S

1I + 12M + 8S

Theorem 2. Let P = (x1, y1) ∈ Ea,b(Fp). Then 5P = (x5, y5) is represented by

t = 3x2
1 + a

α = t2 − 12x1y
2
1

β = 16y4
1(2tα + 16y4

1)− α3

λ = tαβ
2y1αβ

s = −
(16y4

1β

2y1αβ
+ λ

)
s2 = 16y4

1(2tα+16y4
1)2

2y1αβ
− λ

x5 = (s2 − s)(s2 + s) + x1

y5 = s2(λ2 − 2x1 − x5)− λ(3x1 − λ2) + y1.

Proof. We shall prove Theorem 2 by the fact 5P = 3P + 2P . From the P +Q formula

shown in Table 3.1, we have

s2 = y3 − y2

x3 − x2
.

29

We use the following relations from the 2P and 3P formulas

t = 3x2
1 + a.

λ = t

2y1
.

x2 = λ2 − 2x1.

y2 = λ(3x1 − λ2)− y1.

α = t2 − 12x1y
2
1.

s = −
(16y4

1
2y1α

+ λ
)
.

x3 = (s− λ)(s+ λ) + x1.

y3 = −
(
s(x3 − x1) + y1

)
.

Therefore, s2 becomes

s2 = −s(s− λ)(s+ λ)− λ(3x1 − λ2)
(s− λ)(s+ λ) + 3x1 − λ2

=
(tα+16y4

1)(2tα+16y4
1)16y4

1+tα4

8y3
1α

3

(2tα+16y4
1)16y4

1−α3

4y2
1α

2

= (tα + 16y4
1)(2tα + 16y4

1)16y4
1 + tα4

2y1α
(
(2tα + 16y4

1)16y4
1 − α3

) .

Let β = (2tα + 16y4
1)16y4

1 − α3. We have

s2 = (tα + 16y4
1)(2tα + 16y4

1)16y4
1 + tα4

2y1αβ
.

We note that (tα + 16y4
1)(2tα + 16y4

1)16y4
1 + tα4 = 16y4

1(2tα + 16y4
1)2 − tαβ.

Therefore, we have

s2 = 16y4
1(2tα + 16y4

1)2 − tαβ
2y1αβ

= 16y4
1(2tα + 16y4

1)2

2y1αβ
− λ.

30

From the P +Q formula, we have

x5 = s2
2 − x2 − x3.

y5 = s2(x2 − x5)− y2.

We substitute x2, y2, x3 with their equivalent terms. We have

x5 = s2
2 − λ2 − (s− λ)(s+ λ) + x1

= s2
2 − s2 + x1

= (s2 − s)(s2 + s) + x1.

y5 = s2(λ2 − 2x1 − x5)− λ(3x1 − λ2) + y1.

We equalize the denominators of λ, s and s2. We have

λ = tαβ

2y1αβ
.

s = −
(16y4

1β

2y1αβ
+ λ

)
.

3.2 Jacobian Coordinates

The well-known projective coordinates for simplified Weierstrass curves over prime

fields are Chudnovsky and Jacobian coordinates. The main advantage of Jacobian

coordinates is that they have the most efficient 2P formula for simplified Weierstrass

curves over prime fields. In contrast, Chudnovsky coordinates have the most efficient

P +Q formula for simplified Weierstrass curves over prime fields. We focus on

projective coordinates that have the most efficient 2P formula for the following reasons.

2P has a higher impact on the performance of multi-base scalar multiplication methods

than P +Q. An efficient 2P formula can lead us to derive efficient 3P and 5P formulas.

For these reasons, many researchers proposed efficient formulas for Jacobian

coordinates. In this subsection, we show their efforts to derive efficient formulas in

Jacobian coordinates.

31

In Jacobian coordinates, a point is represented as (X, Y, Z). An affine point can be

converted to a projective point by using the relation (X, Y, Z) = (x, y, 1). A projective

point can be reversed to an affine point by using the relation (x, y) = (X
Z2 ,

Y
Z3) where

Z 6= 0. The simplified Weierstrass curves in Jacobian coordinates are represented by

Y 2 = X3 + aXZ4 + bZ6.

3.2.1 P +Q formulas. The cost of the original P +Q formula in Jacobian

coordinates is 12M + 4S ≈ 15.2M. The mixed P +Q formula can be deduced from the

P +Q when Z1 = 1. As a result, the mixed P +Q formula costs 8M + 3S ≈ 10.4M.

The original P +Q formula in Jacobian coordinates costs extra 1M + 1S in comparison

to the P +Q formula in Chudnovsky coordinates. However, the mixed P +Q formulas

in both Jacobian and Chudnovsky coordinates have the same cost. See Hankerson et al.

(2004) for more details about the cost of P +Q formulas in Jacobian and Chudnovsky

coordinates.

Longa and Miri (2008a) proposed a minor improvement for the original P +Q

formula. They used the facts x = 22X
22Z2 , y = 23Y

23Z3 and applied the relation

2 · a · b = (a+ b)2− a2− b2 to trade 1M with 1S. Their formula costs 11M+ 5S ≈ 15M,

as Table 3.6 shows. We see that their mixed P +Q formula costs 7M + 4S ≈ 10.2M. It

is important to note that the improved P +Q formula has extra multiplications with

small constants in comparison to the original P +Q formula.

Table 3.6
P +Q in Jacobian Weierstrass Coordinates over Fp

Formula terms Operation counts
F = X1 · Z2

2 −X2 · Z2
1 2M + 2S

G = Y1 · Z3
2 − Y2 · Z3

1 4M
X3 = 4

(
G2 − F 3 − 2X2Z

2
1 · F 2

)
2M + 2S

Y3 = 2
(
G · (4X2Z

2
1F

2 −X3)− 4Y2Z
3
1 · F 3

)
2M

Z3 =
(
(F + Z2)2 − F 2 − Z2

2

)
· Z1 1M + 1S

11M + 5S

32

3.2.2 2P formulas. The cost of the original 2P formula in Jacobian

coordinates is 3M + 1Ma + 6S ≈ 7.8M. When the curve coefficient a = −3, the cost of

2P becomes 4M + 4S ≈ 7.2M. This is because the relation

3X2 − 3Z4 = 3(X + Z2)(X − Z2) reduces the cost from 1Ma + 3S to 1M+ 1S. The 2P

formula in Jacobian coordinates saves 1M in comparison to 2P in Chudnovsky

coordinates. See Hankerson et al. (2004) for more details about the cost of the 2P

formulas in Jacobian and Chudnovsky coordinates.

Similar to the P +Q formula, Longa and Miri (2008a) suggested a minor

improvement to the original 2P formula by trading 2M with 2S. They used the same

idea of improving P +Q to improve the 2P formula. As a result, their 2P formula costs

1M + 1Ma + 8S ≈ 7.4M, as Table 3.7 shows. Their 2P formula can be reduced to

3M + 5S ≈ 7M when the coefficient a = −3.

Table 3.7
2P in Jacobian Weierstrass Coordinates over Fp

Formula terms Operation counts a = −3
T = 3X2

1 + a · Z4
1 1Ma + 3S 1M + 1S

8X1Y
2

1 = 4
(
(X1 + Y 2

1)2 −X2
1 − Y 4

1

)
3S

X2 = T 2 − 8X1Y
2

1 1S 1M + 2S
Y2 = T · (4X1Y

2
1 −X2)− 8Y 4

1 1M 1M + 1S
Z2 = (Y1 + Z1)2 − Y 2

1 − Z2
1 1S 1S

1M + 1Ma + 8S 3M + 5S

3.2.3 3P formulas. Recall that 3P can be obtained without a dedicated

formula through 2P + P . The cost of 2P + P in Jacobian coordinates is

8M + 1Ma + 12S ≈ 17.6M. However, the following studies show that a dedicated 3P

formula has a lower cost. Dimitrov, Imbert, and Mishra (2008) initially proposed a

dedicated 3P formula with cost 9M + 1Ma + 6S ≈ 13.8M.

Later, Longa and Miri (2008a) proposed the most efficient 3P formula in Jacobian

coordinates with cost 6M + 1Ma + 9S ≈ 13.2M. They also further improved their 3P

formula by using the same technique that was used to improve the P +Q formula. As a

result, their 3P formula costs 5M + 1Ma + 10S ≈ 13M, as Table 3.8 shows. Their 3P

formula costs 7M + 7S ≈ 12.6M when the coefficient a = −3. We see that a dedicated

33

3P formula can save 4.6M in comparison to 2P + P in Jacobian coordinates.

Table 3.8
3P in Jacobian Weierstrass Coordinates over Fp

Formula terms Operation counts a = −3
T = 3X2

1 + a · Z4
1 1Ma + 3S 1M + 1S

12X1Y
2

1 = 6
(
(X1 + Y 2

1)2 −X2
1 − Y 4

1

)
3S

A = T 2 − 12X1Y
2

1 1S 1M + 2S
B = (T + A)2 − T 2 − A2 + 16Y 4

1 2S 3S
X3 = 4

(
4Y 2

1 ·B +X1 · A2
)

2M 2M
Y3 = 8Y1 ·

(
(B + 16Y 4

1) ·B − A3
)

3M 3M
Z3 = (A+ Z1)2 − A2 − Z2

1 1S 1S
5M + 1Ma + 10S 7M + 7S

3.2.4 5P formulas. 5P can be obtained without a dedicated formula through

2(2P) + P or 3P + 2P . The cost of 2(2P) + P is 13M + 2Ma + 21S ≈ 29.8M and it is

more efficient than 3P + 2P . However, the following studies show that using a

dedicated 5P formula can significantly reduce the cost of obtaining 5P . Mishra and

Dimitrov (2007) initially proposed a dedicated 5P formula with cost

14M + 1Ma + 10S ≈ 22M. Longa and Miri (2008c) also proposed a 5P formula. When

the curve coefficient a = −3, their 5P formula costs 11M + 11S ≈ 19.8M.

Later, Giorgi et al. (2009) proposed the most efficient 5P formula in Jacobian

coordinates with cost 7M + 1Ma + 16S ≈ 19.8M. When the curve coefficient a = −3,

their 5P formula costs 9M+ 13S ≈ 19.4M, as Table 3.9 shows. We see that a dedicated

5P formula saves approximately 10M in comparison to 2(2P) + P in Jacobian

coordinates.

3.3 Extended Jacobian Coordinates

In this subsection, we propose new projective coordinates for simplified

Weierstrass curves over prime fields, which is called extended Jacobian coordinates. The

idea of the proposed coordinates is to extend Jacobian coordinates with the value

λ = 3x2+a
2y . An affine point in extended Jacobian coordinates is represented as (x, y, λ).

A projective point in extended Jacobian coordinates is represented as (X, Y, L, Z). An

affine point can be converted to a projective point by using the relation

34

Table 3.9
5P in Jacobian Weierstrass Coordinates over Fp

Formula terms Operation counts
T = 3X2

1 + a · Z4
1 1Ma + 3S

12X1Y
2

1 = 6
(
(X1 + Y 2

1)2 −X2
1 − Y 4

1

)
3S

A = T 2 − 12X1Y
2

1 1S
B = (T + A)2 − T 2 − A2 + 16Y 4

1 2S
C = −16Y 4

1 ·B + A3 2M
2Y 2

1 B = (B + Y 2
1)2 −B2 − Y 4

1 2S
2A(C −B2) = (A+ C −B2)2 − A2 − (C −B2)2 2S
X5 = 4

(
X1 · C2 − 2Y 2

1 B · 2A(C −B2)
)

2M + 1S
Y5 = 4Y1 ·

(
32Y 4

1 B ·B4 − A3 ·
(
C2 +B4 − 3(C −B2)2

))
3M + 1S

Z5 = (C + Z1)2 − C2 − Z2
1 1S

7M + 1Ma + 16S

(X, Y, L, Z) = (x, y, λ, 1). A projective point can be reversed to an affine point by using

the relation (x, y, λ) = (X
Z2 ,

Y
Z3 ,

L
Z

) where Z 6= 0. The curve equation in extended

Jacobian coordinates can be represented by

3X2 + aZ4 = 2LY.

Table 3.10
2P in Extended Jacobian Weierstrass Coordinates over Fp

Formula terms Operation counts
A = L2

1 − 2X1 1S
B = L1 · (X1 − A)− Y1 1M
X2 = 4A ·B2 1M + 1S
Y2 = 8B4 1S
L2 = 3(A−X1) · (A+X) + 2L1 · Y1 2M
Z2 = 2Z1 ·B 1M

5M + 3S

3.3.1 A proposal for a 2P formula. The cost of the proposed 2P formula is

5M + 3S ≈ 7.4M, as Table 3.10 shows. We saw that the cost of 2P in Jacobian

coordinates is 1M+ 1Ma + 8S. The question is which one has a lower cost: 5M+ 3S or

1M + 1Ma + 8S? The answer is that it depends on the selection of the curve coefficient

a. When a = −3 , the 2P in extended Jacobian coordinates costs approximately extra

0.4M in comparison to 2P in Jacobian coordinates. This is because 2P n Jacobian

35

coordinates costs 3M + 5S ≈ 7M, as Table 3.7 shows. However, when a is a large

constant, 2P in extended coordinates saves 0.6M in comparison to 2P in Jacobian

coordinates. See Theorem 3 for our proposed 2P formula.

Theorem 3. Let P = (X1, Y1, L1, Z1) ∈ Ea,b(Fp). Then 2P = (X2, Y2, L2, Z2) in

extended Jacobian coordinates is represented by

A = L2
1 − 2X1

B = L1(X1 − A)− Y1

X2 = 4AB2

Y2 = 8B4

L2 = 3(A−X1)(A+X1) + 2L1Y1

Z2 = 2Z1B.

Proof. From the 2P formula as shown in Table 3.2, we have

x2 = λ2 − 2x1.

y2 = λ(x1 − x2)− y1.

λ2 = 3x2
2 + a

2y2
.

We convert an affine point to a projective point by the relation (x, y, λ) = (X
Z2 ,

Y
Z3 ,

L
Z

).

We have

x2 = L2
1 − 2X1

Z2
1

= A

Z2
1
.

y2 = L1(X1 − A)− Y1

Z3
1

= B

Z3
1
.

λ2 = 3A2 + aZ4
1

2Z1B
.

From the curve equation aZ4
1 = 2L1Y1 − 3X2

1 , we have

3A2 + aZ4
1 = 3A2 + 2L1Y1 − 3X2

1 = 3(A−X1)(A+X1) + 2L1Y1.

36

We equalize the denominators. We have

x2 = 4AB2

(2Z1B)2 = X2

Z2
2
.

y2 = 8B4

(2Z1B)3 = Y2

Z3
2
.

λ2 = 3(A−X1)(A+X1) + 2L1Y1

2Z1B
= L2

Z2
.

3.3.2 A proposal for a P +Q formula. The P +Q formula in Jacobian

coordinates can be used in extended Jacobian coordinates. However, we need to add

extra computation for λ. Let P +Q = (X3, Y3, Z3) be a point represented by Jacobian

coordinates and P +Q = (X3,Y3,L3,Z3) be a point represented by extended Jacobian

coordinates. Then X3 = X3,Y3 = Y3,Z3 = Z3, and L3 can be obtained by using the

relation:

λ3 = 3X2
3 + aZ4

3
2Z3Y3

.

Moreover, we need to equalize the denominators of x3, y3 and λ3. Therefore, we have

X3 = 4X3Y
2

3 .

Y3 = 8Y 4
3 .

L3 = 3X2
3 + aZ4

3 .

Z3 = 2Z3Y3.

The cost of the extra step to obtain L3 is 1Ma + 7S. Therefore, the cost of P +Q is

12M+ 1Ma + 11S and the cost of mixed P +Q is 8M+ 1Ma + 10S. See Table 3.11 for

the cost of P +Q in extended Jacobian coordinates.

3.4 Twisted Edwards Curves

Bernstein and Lange (2007a) initially introduced Edwards curves over prime fields

Fp. Edwards curves Ed are represented by

Ed : x2 + y2 = 1 + dx2y2

37

Table 3.11
P +Q in Extended Jacobian Weierstrass Coordinates over Fp

Formula terms Operation counts
F = X1 · Z2

2 −X2 · Z2
1 2M + 2S

G = Y1 · Z3
2 − Y2 · Z3

1 4M
X3 = G2 − F 3 − 2X2Z

2
1 · F 2 2M + 2S

Y3 = G · (X2Z
2
1F

2 −X3)− Y2Z
3
1 · F 3 2M

Z3 = F · Z2 · Z1 2M
X3 = 2

(
(X3 + Y 2

3)2 −X2
3 − Y 4

3

)
4S

Y3 = 8Y 4
3

L3 = 3X2
3 + aZ4

3 1Ma + 2S
Z3 = (Z3 + Y3)2 − Z2

3 − Y 2
3 1S

12M + 1Ma + 11S

where d ∈ Fp, p > 3 is a prime number, and d 6= {0, 1}. Later, Bernstein et al. (2008)

generalized Edwards curves and called them twisted Edwards curves. Twisted Edwards

curves Ea,d over prime fields Fp are represented by

Ea,d : ax2 + y2 = 1 + dx2y2

where a, d ∈ Fp, p > 3 is a prime number, a 6= d and a, d 6= 0. We see that Edwards

curves are twisted Edwards curves with the coefficient a = 1. We denote Ea,d(Fp) to be

the set of all points (x, y) where x, y ∈ Fp that satisfies the above equation. This set

forms an abelian group under the point addition operation. The identity point for the

group is point (0, 1). The negative of point P = (x, y) ∈ Ea,d(Fp) is another point

−P = (−x, y) ∈ Ea,d(Fp). One advantage of Ea,d is that it can resist side-channel

attacks. This is because Ea,d has a unified formula for both P +Q and 2P . Let

P = (x1, y1) ∈ Ea,d(Fp) and Q = (x2, y2) ∈ Ea,d(Fp). Then P +Q = (x3, y3) ∈ Ea,d(Fp)

can be computed by

x3 = x1y2 + y1x2

1 + dx1y1x2y2

y3 = y1y2 − ax1x2

1− dx1y1x2y2
.

3.4.1 Standard projective coordinates. Twisted Edwards curves can be

represented mainly in two projective coordinate systems: standard and inverted

38

(Bernstein et al., 2008). We focus on standard projective coordinates because they are

the most efficient system in the context of the MBNS. To explain, 2P in standard

projective coordinates saves 1Md in comparison to 2P in inverted projective coordinates

(Bernstein & Lange, 2007b). In contrast, P +Q in standard projective coordinates costs

extra 1M in comparison to P +Q in inverted projective coordinates. In the context of

the MBNS, 2P is used more repeatedly than P +Q during scalar multiplication

operations. As a result, 2P has a greater impact on scalar multiplication than P +Q.

In standard projective coordinates, we represent a point as (X, Y, Z). An affine

point can be mapped to a projective point by using the relation (X, Y, Z) = (x, y, 1). A

projective point can be mapped to an affine point by using the relation (x, y) = (X
Z
, Y
Z

)

where Z 6= 0. The negative of point P = (X, Y, Z) in standard projective coordinates is

another point −P = (−X, Y, Z). The curve equation in standard projective coordinates

can be represented by

(aX2 + Y 2)Z2 = Z4 + dX2Y 2.

Table 3.12
The Cost of Efficient Formulas in Twisted Edwards and Jacobian Weierstrass
Coordinates over Fp

Standard twisted Edwards (a = 1) Jacobian Weierstrass (a = −3)
Mixed P +Q 9M + 1S ≈ 9.8M (this work) 7M + 4S ≈ 10.2M
P +Q 10M + 1S ≈ 10.8M (this work) 11M + 5S ≈ 15M
2P 3M + 4S ≈ 6.2M 3M + 5S ≈ 7M
3P 9M + 3S ≈ 11.4M 7M + 7S ≈ 12.6M
Mixed 2Q+ P 11M + 4S ≈ 14.2M (this work) 11M + 7S ≈ 16.6M
5P 15M + 3S ≈ 17.4M (this work) 9M + 13S ≈ 19.4M
≈ means 1S = 0.8M.

3.4.2 A proposal for a P +Q formula. In standard projective coordinates,

P +Q costs 10 M + 1Md + 1 Ma + 1S ≈ 11.8M, as Table 3.13 shows. Mixed P +Q

costs 9 M + 1Md + 1Ma + 1S ≈ 10.8M. In Table 3.13, we say that the conjugate of F

is F̄ . The conjugate of a binomial can be obtained by changing the sign between the

two terms. For example, let T = Y +X. Then T̄ = Y −X. As mentioned earlier,

P +Q costs extra 1M in comparison to inverted projective coordinates. It also costs

approximately extra 0.6M in comparison to P +Q in Jacobian Weierstrass coordinates

39

over Fp, as Table 3.12 shows.

Table 3.13
P +Q in Standard Twisted Edwards Coordinates over Fp

Formula terms Operation counts
F = (Z1 · Z2)2 − d ·X1 ·X2 · Y1 · Y2 4M + 1Md + 1S
X3 = Z1Z2 · F ·

(
(X1 + Y1) · (X2 + Y2)−X1X2 − Y1Y2

)
3M

Y3 = Z1Z2 · F̄ · (Y1Y2 − a ·X1X2) 2M + 1Ma

Z3 = F · F̄ 1M
10M + 1Md + 1Ma + 1S

F̄ is the conjugate of F .

Table 3.14
P +Q with Pre-computation in Standard Twisted Edwards Coordinates over Fp

Formula terms Operation counts
F = (Z1 · Z2)2 − dX1Y1 ·X2 · Y2 3M + 1S
X3 = Z1Z2 · F ·

(
(X1 +X2) · (Y1 + Y2)−X1Y1 −X2Y2

)
3M

Y3 = Z1Z2 · F̄ ·
(
(X2 + Y1) · (Y2 − aX1)−X2Y2 + aX1Y1

)
3M

Z3 = F · F̄ 1M
10M + 1S

F̄ is the conjugate of F .
Underlined terms are pre-computed.

Let P = (X1, Y1, Z1) ∈ Ea,d(Fp) be the base point and Q = (X2, Y2, Z2) ∈ Ea,d(Fp)

be a temporary derived point. Then, we can improve the P +Q formula by using the

pre-computation concept. First, before performing scalar multiplication, we

pre-compute the values X1 · Y1, d ·X1Y1, a ·X1Y1, and a ·X1. This pre-computation step

costs 1M + 1Md + 2Ma ≈ 2M. Second, during scalar multiplication, we use the

pre-computed values with the proposed P +Q formula, as Table 3.14 shows. We see

that the P +Q formula with pre-computation saves 1Md + 1Ma ≈ 1M in comparison

to the P +Q formula without pre-computation. It saves 0.4M in comparison to the

mixed P +Q formula in Jacobian Weierstrass coordinates over Fp, as Table 3.12 shows.

3.4.3 2P and 3P formulas. 2P in twisted Edwards coordinates is one of the

most efficient 2P formulas for elliptic curves over prime fields. The cost of this formula

is 3M + 1Ma + 4S ≈ 6.2M, as Table 3.15 shows. It saves approximately 0.8M in

comparison to 2P in Jacobian Weierstrass (a = −3) coordinates, as Table 3.12 shows.

40

Table 3.15
2P in Standard Twisted Edwards Coordinates over Fp

Formula terms Operation counts
T = Y 2

1 + a ·X2
1 1Ma + 2S

X2 =
(
(X1 + Y1)2 −X2

1 − Y 2
1

)
· (T − 2Z2

1) 1M + 2S
Y2 = −T · T̄ 1M
Z2 = T · (T − 2Z2

1) 1M
3M + 1Ma + 4S

T̄ is the conjugate of T .

Recall that 3P can be obtained without a dedicated formula through 2P +P . The

cost of 2P + P in twisted Edwards coordinates is 13M + 2Md + 1Ma + 5S ≈ 19M.

However, many studies show that a dedicated 3P formula has a lower cost. Bernstein,

Birkner, Lange, and Peters (2007) initially proposed dedicated 3P formulas in Edwards

coordinates. They proposed two 3P formulas in standard Edwards coordinates with

cost 9M + 4S ≈ 12.2M and 7M + 7S ≈ 12.6M. They also proposed dedicated 3P

formulas in inverted Edwards coordinates with extra 1Md in comparison to 3P

standard Edwards coordinates. Later, Li et al. (2016) proposed a minor improvement to

the 3P formula in standard Edwards coordinates by trading 1M with 1S.

Recently, Bernstein et al. (2017) proposed the most efficient 3P formula in twisted

Edwards coordinates with cost 9M + 1Ma + 3S ≈ 11.4M, as Table 3.16 shows. It saves

approximately 1.2M in comparison to the 3P in Jacobian Weierstrass (a = −3)

coordinates, as Table 3.12 shows. The 3P formula in standard twisted Edwards

coordinates needs 2 temporary variables to perform the formula terms. See Appendix

for the steps to perform this 3P formula with the fewest temporary variables.

Table 3.16
3P in Standard Twisted Edwards Coordinates over Fp

Formula terms Operation counts
T = Y 2

1 + a ·X2
1 1Ma + 2S

A = T · T̄ + 2Y 2
1 · (T − 2Z2

1) 2M + 1S
B = T T̄ − 2aX2

1 · (T − 2Z2
1) 1M

X3 = X1 · A · Ā 2M
Y3 = −Y1 ·B · B̄ 2M
Z3 = Z1 · A ·B 2M

9M + 1Ma + 3S
T̄ , Ā, and B̄ are the conjugates of T,A, and B respectively.

41

3.4.4 A proposal for a 5P formula. It is possible to obtain 5P through

2(2P) + P or 3P + 2P . In standard projective coordinates, 2(2P) + P costs

16M + 1Md + 3Ma + 9S ≈ 26.2M and 3P + 2P costs

22M+ 1Md + 3Ma + 8S ≈ 29.4M. We see that 2(2P) + P saves 3.2M in comparison to

3P + 2P . However, a 5P dedicated formula has a lower cost than 2(2P) + P , as we will

show. Bernstein et al. (2007) was the first to propose two different 5P formulas in

standard projective coordinates. The first formula costs 17M + 7S ≈ 22.6M, and the

second formula costs 14M + 11S ≈ 22.8M. Later, Subramanya Rao (2016) and Li et al.

(2016) proposed 5P formulas in standard projective coordinates with lower costs. Rao’s

formula costs 15M + 9S ≈ 22.2M and Li et al.’s formula costs 12M + 12S ≈ 21.6M.

We propose a 5P formula with cost 15M + 1Ma + 3S ≈ 17.4M, as Table 3.17

shows. This proposed 5P formula saves approximately 5.2M and 5.4M over Bernstein

et al.’s formulas. It saves approximately 4.8M and 4.2M over Rao’s formula and Li et

al.’s formula respectively. Also, it saves approximately 2M in comparison to the 5P

formula in Jacobian Weierstrass (a = −3) coordinates, as Table 3.12 shows.

Table 3.17
5P in Standard Twisted Edwards Coordinates over Fp

Formula terms Operation counts
T = Y 2

1 + a ·X2
1 1Ma + 2S

A = T · T̄ + 2Y 2
1 · (T − 2Z2

1) 2M + 1S
B = T T̄ − 2aX2

1 · (T − 2Z2
1) 1M

C = −T T̄ · A · Ā+ 2Y 2
1 (T − 2Z2

1) ·B · B̄ 4M
D = T T̄ ·BB̄ + 2aX2

1 (T − 2Z2
1) · AĀ 2M

X5 = X1 · C · C̄ 2M
Y5 = Y1 ·D · D̄ 2M
Z5 = Z1 · C ·D 2M

15M + 1Ma + 3S
T̄ , Ā, B̄, C̄, and D̄ are the conjugates of T,A,B,C, and D respectively.

Moreover, this proposed 5P formula requires at least two temporary variables. It

is similar to the number of temporary variable requirement of the 3P formula. This

implies that it is not necessary for a higher-base formula to require more temporary

variables than a lower-base formula. See Appendix for the steps to perform this 5P

formula with the fewest temporary variables. See Theorem 4 for our 5P formula.

42

Theorem 4. Let P = (X1, Y1, Z1) ∈ Ea,d(Fp). Then 5P = (X5, Y5, Z5) in standard

twisted Edwards coordinates is represented by

T = Y 2
1 + aX2

1

A = T T̄ + 2Y 2
1 (T − 2Z2

1)

B = T T̄ − 2aX2
1 (T − 2Z2

1)

C = −T T̄AĀ+ 2Y 2
1 (T − 2Z2

1)BB̄

D = T T̄BB̄ + 2aX2
1 (T − 2Z2

1)AĀ

X5 = X1CC̄

Y5 = Y1DD̄

Z5 = Z1CD

where T̄ , Ā, B̄, C̄, and D̄ are the conjugates of T,A,B,C, and D respectively.

Proof. We shall prove Theorem 4 by the fact 5P = 2P + 3P . From the P +Q formula

shown in Table 3.13, we have

F = (Z2 · Z3)2 − dX2X3Y2Y3.

We substitute X2, Y2, Z2, X3, Y3, Z3 with their equivalent terms in Table 3.15 and Table

3.16. We have

F =
(
T (T − 2Z2

1)Z1AB
)2
− 2dX2

1Y
2

1 (T − 2Z2
1)AĀT T̄BB̄.

From the curve equation dX2
1Y

2
1 = Z2

1(T − Z2
1), we have

F =
(
T (T − 2Z2

1)Z1AB
)2
− 2Z2

1(T − Z2
1)(T − 2Z2

1)AĀT T̄BB̄

= T (T − 2Z2
1)Z2

1AB
(
T (T − 2Z2

1)AB − 2(T − Z2
1)ĀT̄ B̄

)
.

From the P+Q formula, we have

X5 = Z2Z3F (X2Y3 + Y2X3).

Y5 = Z2Z3F̄ (Y2Y3 − aX2X3).

43

Z5 = FF̄ .

We cancel Z2Z3 by the facts x5 = X5
Z5

and y5 = Y5
Z5
. We have

F = T (T − 2Z2
1)AB − 2(T − Z2

1)ĀT̄ B̄.

X5 = F (X2Y3 + Y2X3).

Y5 = F̄ (Y2Y3 − aX3X2).

Z5 = Z1FF̄ .

For X5, we substitute X2, X3, Y2, X3 with their equivalent terms. We have

X5 = F
(
− 2X1Y1(T − 2Z2

1)Y1BB̄ − T T̄X1AĀ
)

= X1F
(
− T T̄AĀ− 2Y 2

1 (T − 2Z2
1)BB̄

)
.

Let C̄ = −T T̄X1AĀ− 2X1Y
2

1 (T − 2Z2
1)BB̄. Then C = F where C̄ is the conjugate of

C. Thus, we have

X5 = X1CC̄.

For Y5, we also substitute X2, X3, Y2, Y3 with their equivalent terms. We have

Y5 = F̄
(
T T̄Y1BB̄ − aX1AĀ2X1Y1(T − 2Z2

1)
)

= Y1F̄
(
T T̄BB̄ − 2aX2

1AĀ(T − 2Z2
1)
)
.

Let D̄ = T T̄BB̄ − 2aX2
1AĀ(T − 2Z2

1). Then D = F̄ where D̄ is the conjugate of D.

Thus, we have

Y5 = Y1DD̄.

For Z5, we use the relations F = C and F̄ = D. Thus, we have

Z5 = Z1CD.

44

3.4.5 A proposal for a 2Q+ P formula. It is possible to obtain 2Q+ P

without a dedicated formula through 2P and P +Q. In standard projective coordinates,

2Q+ P without a dedicated formula costs 12M + 1Md + 2Ma + 5S. However, we will

show that a dedicated 2Q+ P formula has a lower cost than a non-dedicated formula.

Our proposed 2Q+ P formula can be used with or without pre-computation.

Table 3.18
2Q+ P with Pre-computation in Standard Twisted Edwards Coordinates over Fp

Formula terms Operation counts
T = Y 2

2 + a ·X2
2 1Ma + 2S

2X2Y2 = (X2 + Y2)2 −X2
2 − Y 2

2 1S
F = Z2

1 · T · (T − 2Z2
2) + dX1Y1 · 2X2Y2 · T̄ 4M + 1S

G = 2X2Y2 · (T − 2Z2
2) 1M

X3 = F ·
(
(G+X1Z1) · (Y1Z1 − T · T̄) +G · T T̄ −X1Z1 Y1Z1

)
4M

Y3 = F̄ ·
(
(G+ Y1Z1) · (−aX1Z1 − T T̄) +GTT̄ + aX1Z1 Y1Z1

)
2M

Z3 = F · F̄ 1M
12M + 1Ma + 4S

T̄ and F̄ are the conjugates of T and F respectively.
Underlined terms are pre-computed.

The cost of the proposed 2Q+ P formula with pre-computation is

12M+ 1Ma + 4S ≈ 15.2M, as Table 3.18 shows. The pre-computation is for the values:

Z2
1 , X1 · Y1, d ·X1Y1, X1 · Z1, Y1 · Z1, X1Z1 · Y1Z1, a ·X1Z1, and a ·X1Z1Y1Z1. The

pre-computation costs 4M + 1Md + 2Ma + 1S ≈ 5.8M. We see that the 2Q+ P

formula with pre-computation saves 1M+ 1Md + 1Ma + 1S ≈ 2.8M in comparison to a

non-dedicated 2Q+ P formula.

The cost of the proposed mixed 2Q+ P formula with pre-computation is

11M+ 1Ma + 4S ≈ 14.2M. It saves 1M+ 1Md + 1Ma + 1S ≈ 2.8M in comparison to a

non-dedicated mixed 2Q+ P formula. The cost of the proposed mixed 2Q+ P formula

without pre-computation is 12M+ 1Md + 3Ma + 4S ≈ 16.2M. It trades 1S with 2Ma in

comparison to a non-dedicated mixed 2Q+ P formula. Also, it saves 3S in comparison

to the 2Q+ P formula in Jacobian Weierstrass (a = −3) coordinates, as Table 3.12

shows (Longa & Miri, 2008b). We understand that it is the first proposed 2Q+ P

formula for twisted Edwards curves. See Theorem 5 for our proposed 2Q+ P formula.

45

Theorem 5. Let P = (X1, Y1, Z1) ∈ Ea,d(Fp) and Q = (X2, Y2, Z2) ∈ Ea,d(Fp). Then

2Q+ P = (X3, Y3, Z3) in standard twisted Edwards coordinates is represented by

T = Y 2
2 + aX2

2

F = Z2
1T (T − 2Z2

2) + dX1Y1 2X2Y2T̄

G = 2X2Y2(T − 2Z2
2)

X3 = F
(
− T T̄X1Z1 + Y1Z1G

)
Y3 = F̄

(
− T T̄Y1Z1 − aX1Z1G

)
Z3 = FF̄

where T̄ and F̄ are the conjugates of T and F respectively.

Proof. We shall prove Theorem 5 by the fact

(X2Q+P , Y2Q+P , Z2Q+P) = (X2Q, Y2Q, Z2Q) + (XP , YP , ZP).

From the Q+ P formula shown in Table 3.13, We have

F = (ZPZ2Q)2 − dXPYPX2QY2Q.

Let T = Y 2
Q + aX2

Q. We substitute X2Q, Y2Q with their equivalent terms in Table 3.15.

We have

F =
(
ZPT (T − 2Z2

Q)
)2

+ dXPYP2XQYQ(T − 2Z2
Q)T T̄

= T (T − 2Z2
Q)
(
Z2
PT (T − 2Z2

Q) + dXPYP2XQYQT̄
)
.

From the P +Q formula, we have

X2Q+P = ZPZ2QF (XPY2Q + YPX2Q).

Y2Q+P = ZPZ2QF̄ (YPY2Q − aXPX2Q).

Z2Q+P = FF̄ .

46

We cancel Z2Q by the facts x2Q+P = X2Q+P/Z2Q+P and y2Q+P = Y2Q+P/Z2Q+P . We have

F = Z2
PT (T − 2Z2

Q) + dXPYP2XQYQT̄ .

X2Q+P = ZPF (XPY2Q + YPX2Q).

Y2Q+P = ZP F̄ (YPY2Q − aXPX2Q).

Z2Q+P = FF̄ .

Let G = 2XQYQ(T − 2Z2
Q). Then X2Q+P can be obtained by substituting X2Q, Y2Q with

their equivalent terms. We have

X2Q+P = ZPF
(
XP (−T T̄) + YPG

)
.

= F
(
− T T̄XPZP + YPZPG

)
.

= F
(
(G+XPZP)(YPZP − T T̄) +GTT̄ −XPYPZ

2
P

)
.

For Y2Q+P , we substitute X2Q, Y2Q with their equivalent terms. We have

Y2Q+P = ZP F̄
(
YP (−T T̄)− aXPG

)
.

= F̄
(
− T T̄YPZP − aXPZPG

)
.

= F
(
(G+ YPZP)(−aXPZP − T T̄) +GTT̄ + aXPYPZ

2
P

)
.

47

4 Elliptic Curves over Binary Fields

4.1 Binary Elliptic Curves

Non-supersingular elliptic curves Ea,b over binary fields F2m are represented by the

Weierstrass equation

Ea,b : y2 + xy = x3 + ax2 + b

where a, b ∈ F2m and b 6= 0. The denotation Ea,b(F2m) is the set of all points (x, y)

where x, y ∈ F2m that satisfies the above equation together with the point at infinity O.

This set forms an abelian group under the point addition operation. The identity point

for the group is the point at infinity O. The negative of point P = (x, y) ∈ Ea,b(F2m) is

another point −P = (x, x+ y) ∈ Ea,b(F2m).

Let P = (x1, y1) ∈ Ea,b(F2m) and Q = (x2, y2) ∈ Ea,b(F2m) with P 6= ±Q. Then

P +Q = (x3, y3) ∈ Ea,b(F2m) can be computed by the formula shown in Table 4.1. It

costs 1I + 2M + 1S. Let P = (x1, y1) ∈ Ea,b(F2m) with P 6= −P . Then

2P = (x2, y2) ∈ Ea,b(F2m) can be computed by the formula shown in Table 4.2. It costs

1I + 2M + 2S.

Table 4.1
P +Q for Binary Elliptic Curves in Affine Coordinates

Formula terms Operation counts
λ = y1+y2

x1+x2
1I + 1M

x3 = λ2 + λ+ x1 + x2 + a 1S
y3 = λ · (x1 + x3) + x3 + y1 1M

1I + 2M + 1S

Table 4.2
2P for Binary Elliptic Curves in Affine Coordinates

Formula terms Operation counts
λ = x1 + y1

x1
1I + 1M

x2 = λ2 + λ+ a 1S
y2 = x2

1 + λ · x2 + x2 1M + 1S
1I + 2M + 2S

4.1.1 3P formulas. Recall that 3P can be obtained without a dedicated

formula through 2P + P . The cost of 2P + P is 2I + 4M + 3S. However, studies show

48

that a dedicated 3P formula in affine coordinates has a faster performance. Therefore,

efforts were made to derive a dedicated 3P formula for binary elliptic curves in affine

coordinates. Ciet et al. (2006) proposed one of the earliest dedicated 3P formulas with

cost 1I + 7M + 4S. Dimitrov et al. (2008) derived a dedicated 3P formula with cost 1I

+ 6M + 3S. Recently, Yu et al. (2015) derived the most efficient 3P formula for binary

elliptic curves in affine coordinates. Their 3P formula costs 1I + 5M + 2S. We can see

that a dedicated a 3P formula trades approximately 1I with 1M over 2P + P . See

Table 4.3 for the cost of the 3P formula.

Table 4.3
3P for Binary Elliptic Curves in Affine Coordinates

Formula terms Operation counts
β = x2

1
x2

1·(x2
1+x1)+b 1I + 2M + 1S

x3 = (x1 · β)2 + x1β + x1 1M + 1S
yy = (1 + x1β) ·

(
(x1β)2 + β · (x2

1 + y1)
)

+ x1 + y1 2M
1I + 5M + 2S

4.1.2 4P formulas. We saw that 4P can be obtained without a dedicated

formula through 2(2P) or 3P + P . The cost of 2(2P) for binary elliptic curves in affine

coordinates is 2I + 4M + 4S and the cost of 3P + P is 2I + 7M + 3S. We see that

2(2P) saves approximately 3M over 3P +P . However, the following studies show that a

dedicated 4P formula has a lower cost.

Lopez and Dahab (1999) initially proposed a 4P formula for binary elliptic curves

in affine coordinates with cost 1I + 5M + 1Mb + 5S. Ciet et al. (2006) later proposed

a 4P formula for binary elliptic curves in affine coordinates with cost 1I + 8M + 5S.

Their formula costs extra 3M + 1Mb in comparison to Lopez and Dahab’s 4P formula.

See Table 4.4 for the cost of Lopez and Dahab’s formula.

4.1.3 5P formulas. We know that 5P can be obtained without a dedicated

formula through 4P + P , 3P + 2P , or 2(2P) + P . The cost of 4P + P for binary elliptic

curves in affine coordinates is approximately 2I + 8M + 6S. The cost of 3P + 2P is 3I

+ 9M + 5S and the cost of 2(2P) + P is 3I + 6M + 5S. We see that 4P + P saves

approximately 1I + 1M in comparison to 3P + 2P and trades 1I with 2M + 1S in

49

Table 4.4
4P for Binary Elliptic Curves in Affine Coordinates

Formula terms Operation counts
β = 1

x1·(x4
1+b) 1I + 1M + 2S

λ = x1 + β · (x4
1 + b) · y1 2M

x2 = λ2 + λ+ a 1S
λ2 = λ2 + β · x1 · b+ a 1M + 1Mb

x4 = λ2
2 + λ2 + a 1S

y4 = x2
2 + λ2 · x4 + x4 1M + 1S

1I + 5M + 1Mb + 5S

comparison to 2(2P) + P . However, studies show that a dedicated 5P formula has a

lower cost than 4P + P .

Mishra and Dimitrov (2007) initially derived a dedicated 5P formula for binary

elliptic curves in affine coordinates with cost 1I+ 13M+ 5S. Recently, Al Musa and Xu

(2017) derived the most efficient 5P formula for binary elliptic curves in affine

coordinates. Their 5P formula costs 1I+ 11M+ 6S. It saves 2M− 1S in comparison to

Mishra and Dimitrovs’ 5P formula. It trades 1I with 3M in comparison to 4P + P . See

Theorem 6 for the formula and Table 4.5 for the cost of this formula.

Table 4.5
5P for Binary Elliptic Curves in Affine Coordinates

Formula terms Operation counts
α = x4

1 + x3
1 + b 1M + 2S

β = α2 + x2
1 · (x4

1 + b) 1M + 1S
γ = α2 · (x4

1 + b) + x3
1 · β 2M

x5 = x1 + x3
1·β
γ

+
(
x3

1β

γ

)2
1I + 1M + 1S

y5 = y1 + x1 + (x5 + x1) ·
(
x3

1β

γ
+ x2

1 + a
)

+ x1·β·α2·(β+(x4
1+b)·(x4

1+b+y2
1+x2

1))
γ2 6M + 2S

1I + 11M + 6S

Theorem 6. Let P = (x1, y1) ∈ E(F2m). Then 5P = (x5, y5) is represented by

α = x4
1 + x3

1 + b

β = α2 + x2
1(x4

1 + b)

γ = α2(x4
1 + b) + x3

1β

x5 = x1 + x3
1β

γ
+
(
x3

1β

γ

)2

y5 = y1 + x1 + (x5 + x1)
(
x3

1β

γ
+ x2

1 + a
)

+ x1βα2(β+(x4
1+b)(x4

1+b+y2
1+x2

1))
γ2 .

50

Proof. We shall prove Theorem 6 by the fact

(x5, λ5) = (x2, λ2) + (x3, λ3).

By using the P +Q λ-affine formula given in Oliveira et al. (2014), we have

x5 = x3x2

(x3 + x2)2 (λ3 + λ2). (2)

λ5 = x3(x5 + x2)2

x5x2
+ λ2 + 1. (3)

We apply x3 = x1 + x3
1
α

+
(
x3

1
α

)2
and x2 = x4

1+b
x2

1
in equation (2). We have

x5 = x3
1(α2 + x2

1(x4
1 + b))α2(x4

1 + b)(
α2(x4

1 + b) + x3
1(α2 + x2

1(x4
1 + b))

)2 (λ3 + λ2) (4)

= x3
1βα

2(x4
1 + b)

γ2 (λ3 + λ2). (5)

We note that

λ3 + λ2 = x1γ
2

x3
1βα

2(x4
1 + b) + 1. (6)

By applying equation (6) in equation (5), we have

x5 = x1 + x3
1βα

2(x4
1 + b)

γ2 (7)

= x1 + x3
1β

γ
+
(x3

1β

γ

)2
. (8)

We have derived x5. Next, we want to derive y5. From equation (3), we have

λ5 = x3

x2
x5 + x3x2

x5
+ λ2 + 1. (9)

We apply equation (9) to the fact y5 = x5(λ5 + x5). We have

y5 = x5(x3

x2
x5 + λ2 + 1 + x5) + x3x2. (10)

51

We apply x3, x2 , and λ2 = x4
1

x4
1+b + λ2

1 + a+ 1 in equation (10). We have

y5 = x5
(x3

1β

α2(x4
1 + b)x5 + x4

1
x4

1 + b
+ y2

1
x2

1
+ x2

1 + a+ x5
)

+ (x4
1 + b)β
x1α2

= x5
((x3

1β

γ

)2
+ x2

1 + a+ x5
)

+ (x4
1 + b)β
x1α2 + x4

1β

α2(x4
1 + b)x5 + x6

1 + y2
1(x4

1 + b)
x2

1(x4
1 + b) x5

= y1 + x1 + (x5 + x1)
((x3

1β

γ

)2
+ x2

1 + a+ x5 + x1
)

+ x1βα
2(x6

1 + y2
1(x4

1 + b))
γ2 .

We note that x6
1 = β + (x4

1 + b)2 + x2
1(x4

1 + b) and
(
x3

1β

γ

)2
= x3

1β

γ
+ x5 + x1. We have

y5 = y1 + x1 + (x5 + x1)
(x3

1β

γ
+ x2

1 + a
)

+ x1βα
2(β + (x4

1 + b)(x4
1 + b+ y2

1 + x2
1))

γ2 .

4.2 Lambda Coordinates

Oliveira et al. (2014) proposed lambda coordinates (λ-coordinates) for binary

elliptic curves. The main advantage of λ-coordinates is that they have the most efficient

2P formula, as Table 4.6, Table 4.7, and Table 4.12 show, in projective coordinates over

binary fields. λ-coordinates, unlike Lopez-Dahab (LD) and Jacobian coordinates, have

their own affine and projective coordinates. Lambda affine coordinates are called

λ-affine coordinates. λ-projective coordinates are derived from λ-affine coordinates and

most of the time are called λ-coordinates.
Table 4.6
The Cost for Efficient Formulas in Different Projective Coordinates over F2m

λ-projective LD projective Jacobian projective
2P 4M + 1Ma + 4S 4M + 1Ma + 4S 4M + 1Mb + 5S
P +Q 11M + 2S 13M + 4S 15M + 1Ma + 3S
3P 8M + 1Ma + 5S (this work) 10M + 2Ma+ 7S 13M + 2Ma,b + 7S
5P 13M + 1Ma + 8S (this work) N/A N/A

Affine point (x, y) can be converted to λ-affine point (x, λ) by using the relation

(x, λ) = (x, x+ y
x
). The reverse from a λ-affine point to an affine point can be done by

(x, y) = (x, x(x+ λ)). In addition, a λ-affine point can be converted to λ-projective

point (X,L, Z) by using the relation (X,L, Z) = (x, λ, 1). The reverse from a

52

λ-projective point to a λ-affine point can be done by (x, λ) = (X
Z
, L
Z

) where Z 6= 0.

Therefore, the Weierstrass equation in λ-projective coordinates can be represented by

(L2 + LZ + aZ2)X2 = X4 + bZ4.

The conversion from affine coordinates to λ-affine coordinates costs 1I + 1M and

the reverse costs 1M. The conversion from λ-affine coordinates to λ-projective

coordinates has no cost, and the reverse costs 1I + 2M. Therefore, the total cost of

conversion and reverse from affine coordinates to λ-projective coordinates is 2I+ 4M. It

has higher cost than other coordinates. However, the cost of conversion and reverse is

performed only one time and it has no impact on scalar multiplication operations.

Table 4.7
The Cost of Efficient Formulas in Affine and λ-coordinates for Binary Elliptic Curves

Affine Coordinates λ-projective Coordinates
2P 1I + 2M + 2S 4M + 1Ma + 4S
Mixed P +Q 1I + 2M + 1S 8M + 2S
3P 1I + 5M + 2S 8M + 1Ma + 5S (this work)
5P 1I + 11M + 6S (this work) 13M + 1Ma + 8S (this work)

4.2.1 P +Q formulas. The cost of P +Q formula in λ-projective coordinates,

as Table 4.8 shows, is 11M + 2S. It saves 2M + 2S in comparison to P +Q in LD

projective coordinates (Lange, 2004). It saves 4M + 1Ma + 1S in comparison to P +Q

in Jacobian projective coordinates over binary fields (Avanzi et al., 2005). The mixed

P +Q formula can be deduced from the P +Q formula when Z1 = 1. As a result, the

mixed P +Q formula in λ-coordinates costs 8M + 2S. It saves 1Ma + 3S in

comparison to the mixed P +Q formula in LD coordinates (Lange, 2004). It trades 1I

with 6M + 1S in comparison to P +Q in affine coordinates, as Table 4.7 shows.

4.2.2 2P formulas. The cost of 2P formula in λ-projective coordinates, as

Table 4.8 shows, is 4M + 1Ma + 4S. It has the same cost as 2P in LD projective

coordinates (Lange, 2004). It saves 1S in comparison to 2P in Jacobian projective

coordinates over binary fields (Avanzi et al., 2005). It trades 1I with 2M + 1Ma + 2S

in comparison to 2P in affine coordinates, as Table 4.7 shows. When the curve

53

Table 4.8
P +Q in λ-coordinates over F2m

Formula terms Operation counts
A = L1 · Z2 + L2 · Z1 2M
B = (X1 · Z2 +X2 · Z1)2 2M + 1S
X3 = A ·X1Z2 ·X2Z1 · A 3M
L3 = (AX2Z1 +B)2 + A ·B · Z2 · (L1 + Z1) 3M + 1S
Z3 = ABZ2 · Z1 1M

11M + 2S

coefficients are selected as small constants, the 2P formula in λ-projective coordinates

can be reduced to 3M + 1Ma2+b + 2Ma + 5S. This is because L2 can be represented by

L2 = (L1 +X1)2 ·
(
(L1 +X1)2 + T + Z2

1

)
+ (a2 + b) · Z4

1 + T 2 + (a+ 1) · Z2.

Table 4.9
2P in λ-coordinates over F2m

Formula terms Operation counts
T = L2

1 + L1 · Z1 + a · Z2
1 1M + 1Ma + 2S

X2 = T 2 1S
Z2 = T · Z2

1 1M
L2 = (T +X1 · Z1)2 + T · (L1Z1 + Z2

1) 2M + 1S
4M + 1Ma + 4S

4.2.3 3P formulas. We saw that 3P can be obtained without a dedicated

formula by 2P + P . The cost of 2P + P in λ-coordinates is 15M+ 1Ma + 6S. However,

we can achieve more savings by using a dedicated 3P formula. Dimitrov et al. (2008)

initially derived a 3P formula in Jacobian coordinates for binary elliptic curves. Their

formula costs 13M + 2Ma,b + 7S. Yasin and Muda (2015) also derived a dedicated 3P

formula in LD projective coordinates with cost 10M + 2Ma + 7S. We see that Yasin

and Muda’s 3P formula saves approximately 3M over Dimitrov et al.’s 3P formula.

Recently, Al Musa and Xu (2017) derived the most efficient 3P formula in

λ-projective coordinates with cost 8M+ 1Ma + 5S. Their 3P formula saves 7M+ 1S in

comparison to 2P + P . It saves 2M+ 1Ma + 2S in comparison to Yasin and Muda’s 3P

formula. It trades 1I with 3M+ 1Ma + 3S in comparison to 3P in affine coordinates, as

54

Table 4.7 shows. Moreover, it requires at least three temporary variables for

implementation. See Appendix for the steps to perform the 3P formula with the fewest

temporary variables. See Theorem 7 for the 3P formula and Table 4.10 for the cost of

this formula.

Table 4.10
3P in λ-coordinates over F2m

Formula terms Operation counts
T = L2

1 + L1 · Z1 + a · Z2
1 1M + 1Ma + 2S

A = (T +X1 · Z1)2 1M + 1S
B = T · Z2

1 + A 1M
X3 = X1Z1 ·B2 1M + 1S
Z3 = Z2

1 · A ·B 2M
L3 = T · (A+B)2 + (L1Z1 + Z2

1) · AB 2M + 1S
8M + 1Ma + 5S

Theorem 7. Let P = (X1, L1, Z1) ∈ E(F2m). Then 3P = (X3, L3, Z3) in λ-projective

coordinates is represented by

T = L2
1 + L1Z1 + aZ2

1

A = (T +X1Z1)2

B = TZ2
1 + A

X3 = X1Z1B
2

Z3 = Z2
1AB

L3 = T (A+B)2 + (L1Z1 + Z2
1)AB.

Proof. We shall prove Theorem 7 by the fact

(x3, λ3) = (x1, λ1) + (x2, λ2). (11)

By using the P +Q λ-affine formula given in Oliveira et al. (2014), we have

x3 = x1x2

(x1 + x2)2 (λ1 + λ2). (12)

λ3 = x2(x3 + x1)2

x3x1
+ λ1 + 1. (13)

55

We apply the relation λ1 + λ2 = (x1+x2)2

x2
+ 1 in equation (12). We have

x3 = x1 + x1x2

(x1 + x2)2 (14)

=
x1
(
x2 + (x2 + x1)2

)
(x1 + x2)2 . (15)

We convert λ-affine point (x1, λ1) to λ-projective point (X1, L1, Z1) by using the

relation (x1, λ1) = (X1
Z1
, L1
Z1

). Thus, the equations above become

x2 = L2
1 + L1Z1 + aZ2

Z2
1

= T

Z2
1
.

x3 =
X1
Z1

(
T
Z2

1
+ (T+X1Z1)2

Z4
1

)
(T+X1Z1)2

Z4
1

=
X1
(
TZ2

1 + (T +X1Z1)2
)

Z1(T +X1Z1)2 = X1B

Z1A
.

λ3 =
T
Z2

1

(
X1B
Z1A

+ X1
Z1

)2

X2
1B

Z2
1A

+ L1Z1 + Z2
1

Z2
1

= T (A+B)2

Z2
1AB

+ L1Z1 + Z2
1

Z2
1

= T (A+B)2 + (L1Z1 + Z2
1)AB

Z2
1AB

.

4.2.4 5P formulas. We recall that 5P can be obtained in projective

coordinates without a dedicated formula through 2(2P) + P or 3P + 2P . The cost of

2(2P) + P in λ-coordinates is 19M + 2Ma + 10S and the cost of 3P + 2P is

23M + 2Ma + 11S. We see that 2(2P) + P is more efficient than 3P + 2P because

2(2P) + P saves 4M + 1S over 3P + 2P .

Recently, Al Musa and Xu (2017) derived a dedicated 5P formula with cost

13M+ 1Ma + 8S. Their 5P formula saves 6M+ 1Ma + 2S in comparison to 2(2P) +P .

It trades 1I with 2M + 1Ma + 2S in comparison to 5P in affine coordinates, as Table

4.7 shows. It seems that it is the only 5P formula for projective coordinates over binary

fields. Moreover, their 5P formula requires at least five temporary variables for

56

implementation. See Appendix for the steps to perform the 5P formula with the fewest

temporary variables. See Theorem 8 for the 5P formula and see Table 4.11 for the cost

of this formula.

Table 4.11
5P in λ-coordinates over F2m

Formula terms Operation counts
T = L2

1 + L1 · ZP + a · Z2
1 1M + 1Ma + 2S

A = (T +X1 · Z1)2 1M + 1S
B = T · Z2

1 + A 1M
C = (T · (A+B))2 + A ·B2 2M + 2S
D = AB2 + A2 ·B + C 1M + 1S
X5 = X1Z1 ·D2 1M + 1S
Z5 = Z2

1 · C ·D 2M
L5 = T · (C +D)2 + (L1Z1 + Z2

1) · CD + Z2
1 · AB2 · A2B 4M + 1S

13M + 1Ma + 8S

Theorem 8. Let P = (X1, L1, Z1) ∈ E(F2m). Then 5P = (X5, L5, Z5) in λ-projective

coordinates is represented by

T = L2
1 + L1Z1 + aZ2

1

A = (T +X1Z1)2

B = TZ2
1 + A

C = (T (A+B))2 + AB2

D = A2B + AB2 + C

X5 = X1Z1D
2

Z5 = Z2
1CD

L5 = T (C +D)2 + (L1Z1 + Z2
1)CD + Z2

1(AB)3.

Proof. We shall prove the first part of Theorem 8 by the fact

(x5, λ5) = (x2, λ2) + (x3, λ3).

From the P +Q λ-affine formula given in Oliveira et al. (2014), we have

x5 = x2x3

(x2 + x3)2 (λ2 + λ3). (16)

57

We apply the relation λ2 + λ3 = x1(x2+x3)2

x2x3
+ 1 to equation (16). We have

x5 = x1 + x2x3

(x2 + x3)2 (17)

= x1(x2 + x3)2 + x2x3

(x2 + x3)2 . (18)

Next, we shall prove the second part of Theorem 8 by the fact

(x5, λ5) = (x1, λ1) + (x4, λ4).

From the P +Q λ-affine formula, we have

λ5 = x4(x5 + x1)2

x5x1
+ λ1 + 1. (19)

We convert λ-affine point (x1, λ1) to λ-projective point (X1, L1, Z1) by using the

relation (x1, λ1) = (X1
Z1
, L1
Z1

). Thus, the equations above become

x2 = L2
1 + L1Z1 + aZ2

Z2
1

= T

Z2
1
.

x3 =
X1
(
TZ2

1 + (T +X1Z1)2
)

Z1(T +X1Z1)2 = X1B

Z1A
.

x4 = L2
2 + L2TZ

2
1 + a(TZ2

1)2

(TZ2
1)2 = T2

(TZ2
1)2 .

x5 =
X1
Z1

(
T
Z2

1
+ X1B

Z1A

)2
+ TX1B

Z3
1A

(T
Z2

1
+ X1B

Z1A
)2

=
X1
(
(TA+X1Z1B)2 + TZ2

1AB
)

Z1(TA+X1Z1B)2

= X1D

Z1C
.

λ5 =
T2

(TZ2
1)2

(
X1D
Z1C

+ X1
Z1

)2

X2
1D

Z2
1C

+ L1Z1 + Z2
1

Z2
1

= T2(C +D)2

(TZ2
1)2CD

+ L1Z1 + Z2
1

Z2
1

= Z2
1T2(AB)2 + (L1Z1 + Z2

1)CD
Z2

1CD
.

58

We note the following relations

Z2
1T2 = T (A+B)2 + Z2

1AB.

C = (TA+X1Z1B)2 = (T (A+B))2 + AB2.

D = TZ2
1AB + C = A2B + AB2 + C.

Thus, we have

L5 = T (C +D)2 + (L1Z1 + Z2
1)CD + Z2

1(AB)3.

4.3 Twisted µ4-normal Coordinates

Kohel (2017) proposed twisted µ4-normal coordinates for binary elliptic curves.

The main advantage of twisted µ4-normal coordinates is that they have the most

efficient P +Q formula over binary fields when the curve coefficient a = 0. A point in

twisted µ4-normal coordinates is represented as (X, Y, Z, T). An affine point (x, y) of

binary elliptic curves can be mapped to a corresponding point in twisted µ4-normal

coordinates by using the relation (X, Y, Z, T) = (x2, x2 + y, 1, x2 + y + x). A point in

twisted µ4-normal coordinates can be reversed to a corresponding affine point by using

the relation (x, y) = (Y+T
Z
, Y+X

Z
) where Z 6= 0. The negative of point P = (X, Y, Z, T)

in twisted µ4-normal coordinates is another point −P = (X,T, Z, Y). The curve

equations in twisted µ4-normal coordinates can be represented by

Y T = X2 + bZ2 + a(Y + T)2,

XZ = (Y + T)2.

4.3.1 P +Q formulas. The cost of P +Q in twisted µ4-normal coordinates is

9M + 1Ma + 2S, as Table 4.13 shows. It saves approximately 2M in comparison to

P +Q in λ-coordinates. Mixed P +Q can be deduced from P +Q by assuming Z1 = 1.

As a result, the cost of mixed P +Q in twisted µ4-normal coordinates is

8M + 1Ma + 2S. We see that mixed P +Q in twisted µ4-normal coordinates has

59

Table 4.12
The Cost of Efficient Formulas in Twisted µ4-normal Coordinates and λ-coordinates
over F2m

twisted µ4-normal coordinates λ-coordinates
Mixed P +Q 8M + 1Ma + 2S 8M + 2S
P +Q 9M + 1Ma + 2S 11M + 2S
2P 2M + 1Ma2+b + 1Mb + 1Ma + 5S (this work) 3M + 1Ma2+b + 2Ma + 5S

or 4M + 1Ma + 4S

approximately the same cost as mixed P +Q in λ-coordinates since in practice the

curve coefficient a is selected as a small constant. Moreover, the cost of P +Q in

twisted µ4-normal coordinates can be significantly reduced when the curves coefficient

a = 0. This is because the cost of P +Q becomes 7M + 2S and the cost of mixed

P +Q becomes 6M + 2S.

Table 4.13
P +Q in Twisted µ4-normal Coordinates over F2m

Formula terms Operation counts a = 0
A = X1 · Z2 +X2 · Z1 2M 2M
B = Y1 · T2 + Y2 · T1 2M 2M
X3 = B2 1S 1S
Z3 = A2 1S 1S
F = (Y1 + T1) · (Y2 + T2) · A 2M
T3 = X1Z2 · Y1T2 +X2Z1 · Y2T1 + a · F 2M + 1Ma 2M
Y3 = T3 + A ·B 1M 1M

9M + 1Ma + 2S 7M + 2S

4.3.2 A proposal for a 2P formula. Kohel (2017) proposed a 2P formula in

twisted µ4-normal coordinates with the assumption that the curve coefficient b = 1. We

propose a 2P formula in twisted µ4-normal coordinates for any value of b. Also, we

propose an improvement to this newly proposed 2P formula by precomputing the value

of
√
b. This extra step saves 1S in comparison to 2P without precomputing

√
b.

Therefore, the cost of this proposed 2P formula is 2M + 1Ma2+b + 1Mb + 1Ma + 5S, as

Table 4.14 shows. We see that this proposed 2P formula saves approximately 1M in

comparison to 2P in λ-coordinates when the curve coefficients are small constants.

However, when the curve coefficients are large constants, it costs extra 1S in

comparison to 2P in λ-coordinates.

60

Table 4.14
2P in Twisted µ4-normal Coordinates over F2m

Formula terms Operation counts
A = (X1 +

√
b · Z1)2 1Mb + 1S

B = (Y1 + T1)2 1S
X2 = A2 1S
Z2 = B2 1S
T2 = X2 + (a2 + b) · Z2 +

(
(X1 + Y1) · (T1 +

√
b Z1)

)2 + a ·A ·B 2M + 1Ma2+b + 1Ma + 1S
Y2 = T2 + AB

2M +1Ma2+b + 1Mb + 1Ma + 5S

4.4 Koblitz Curves

Koblitz (1987) introduced an efficiently computable endomorphism with a special

class of elliptic curves over binary fields. Koblitz Curves Ea can be represented by

Ea : y2 + xy = x3 + ax2 + 1

where a ∈ {0, 1}. The denotation Ea(F2m) is the set of all points (x, y) that satisfies the

equation above, together with the point at infinity O. The main advantage of Koblitz

curves is that their properties allow scalar multiplication methods to use the Frobenius

map instead of point doubling. The Frobenius map τ : Ea(F2m)→ Ea(F2m) is defined by

τ(x, y) = (x2, y2),

τ(O) = O.

One important property of Ea is that τ 2(P) + 2P = µτ(P) for all P ∈ Ea(F2m) where

µ = (−1)1−a. This means τ can be considered to be a complex number that satisfies

τ 2 + 2 = µτ . By solving τ 2 − µτ + 2 = 0, we have τ = µ+
√
−7

2 .

Let Z[τ] be a ring of polynomials in τ with integer coefficients. New scalar

multiplication methods that take advantage of Frobenius map τ were proposed by the

following studies. Koblitz (1992) initially proposed a method that converts a positive

integer t to a unique unsigned base-τ form. The base-τ form can be represented by

t = ∑l−1
i=0 uiτ

i where ui ∈ {0, 1} and ul−1 6= 0.

61

Later, Solinas (2000) showed an improved method that converts a positive integer

t to a unique signed digits representation called τ -NAF. When we represent t in τ -NAF,

the average form length becomes less than its base-τ form. As a result, the number of

point additions are minimized, and that significantly improves the performance of a

scalar multiplication operation. Moreover, Avanzi, Dimitrov, Doche, and Sica (2006)

proposed a double-base number system (DBNS) method that take advantage of the

Frobenius map τ for Koblitz Curves. A positive integer t is represented by τ -DBNS in

the form of t = ∑l−1
i=0± τ ζ where ζ can be τ̄ or 3. The τ̄ is called the conjugate of τ

and it can be defined by

τ̄P = µP − τP.

Table 4.15
The Cost of Efficient Formulas in Different Coordinates for Koblitz Curves

twisted µ4-normal λ-projective LD projective
τP 4S 3S 3S
τ̄P (a = 0) 2M + 2S (this work) 5M + 3S 2M + 2S
τ̄P (a = 1) 6M + 5S (this work) 5M + 3S 2M + 1S
mixed P +Q(a = 0) 6M + 2S 8M + 2S 8M + 5S
mixed P +Q(a = 1) 8M + 2S 8M + 2S 8M + 5S

4.4.1 The window τ-NAF. Solinas (2000) suggested using the reduced

window τ -NAF method with Koblitz curves for speeding up scalar multiplication. The

window τ -NAF method initially needs to pre-compute Qj = cjP for each

j = 1, 3, · · · , 2w−1 − 1 where w is the window width. Then, the performing phase of the

method utilizes the pre-computed Qj for faster performances. See Hankerson et al.

(2004) for the converting and the performing phases of the window τ -NAF method.

More details of the window τ -NAF can be found in Blake, Murty, and Xu (2005) and

Blake, Murty, and Xu (2008).

Trost and Xu (2016) suggested an optimal arrangement scheme for the

pre-computed points of window τ -NAF, as Table 4.16 shows. The optimal

pre-computation of window τ -NAF costs 1ADD + 2S at most for each pre-computed

point. Moreover, Trost and Xu (2016) implied that a τ̄P formula can be used with the

62

optimal pre-computation of window τ -NAF. Recently, Yu, Al Musa, Xu, and Li (2018)

introduced a novel arrangement scheme for the window τ -NAF. This pre-computation

scheme takes advantage of the efficiency of τ̄P , as Table 4.17 shows.

Table 4.16
The Optimal Pre-computation of Window τ -NAF when a = 0

w cj ≡ j (mod τw) pre-computed points
4 c3 = −3− τ c5 = −1− τ Q3 = −P + τ 2P Q5 = −P − τP

c7 = 1− τ Q7 = P − τP
5 c3 = −3− τ c5 = −1− τ Q3 = −P + τ 2P Q5 = −P − τP

c7 = 1− τ c9 = −3− 2τ Q7 = P − τP Q9 = Q3 − τP
c11 = −1− 2τ c13 = 1− 2τ Q11 = Q5 − τP Q13 = Q7 − τP
c15 = 1 + 3τ Q15 = −Q11 + τP

6 c29 = 3 + τ c3 = 3 Q29 = P − τ 2P Q3 = Q29 − τP
c31 = 5 + τ c5 = 5 Q31 = Q3 − τ 2P Q5 = Q31 − τP
c7 = −5− 2τ c9 = −3− 2τ Q7 = −Q31 − τP Q9 = −Q29 − τP
c27 = 1 + τ c11 = −1− 2τ Q27 = P + τP Q11 = −Q27 − τP
c25 = −1 + τ c13 = 1− 2τ Q25 = −P + τP Q13 = −Q25 − τP
c15 = 1 + 3τ c17 = 3 + 3τ Q15 = −Q11 + τP Q17 = −Q9 + τP
c19 = 5 + 3τ c21 = −3− 4τ Q19 = −Q7 + τP Q21 = −Q17 − τP
c23 = −3 + τ Q23 = −Q3 + τP

When a = 1, Qj and cj can be obtained by changing only the sign of τ .

Table 4.17
The Novel Pre-computation of Window τ -NAF when a = 0

w cj ≡ j (mod τw) pre-computed points
4 c5 = −1− τ c7 = 1− τ Q5 = τ̄P Q7 = −τ̄Q5

c3 = −3− τ Q3 = τ̄Q7
5 c5 = −1− τ c7 = 1− τ Q5 = τ̄P Q7 = −τ̄Q5

c3 = −3− τ c15 = 1 + 3τ Q3 = τ̄Q7 Q15 = τ̄Q3
c11 = −1− 2τ c9 = 3− τ Q11 = Q5 − τP Q9 = −τ̄Q11
c13 = −5− 3τ Q13 = τ̄Q9

6 c27 = 1 + τ c25 = −1 + τ Q27 = −τ̄P Q25 = −τ̄Q27
c29 = 3 + τ c15 = 1 + 3τ Q29 = τ̄Q25 Q15 = −τ̄Q29
c21 = −5 + τ c9 = −3− 2τ Q21 = −τ̄Q15 Q9 = −Q29 − τP
c3 = 3 c13 = −1 + 3τ Q3 = Q29 − τP Q13 = τ̄Q9
c31 = −7− τ c17 = 3 + 3τ Q31 = −τ̄Q13 Q17 = −τ̄Q3
c11 = −3 + 3τ c23 = −1− 4τ Q11 = −τ̄Q17 Q23 = −Q15 − τP
c5 = −7− 2τ c7 = 7 Q5 = Q31 − τP Q7 = −Q31 − τP
c19 = −7 + τ Q19 = τ̄Q23

When a = 1, Qj and cj can be obtained by changing the sign of τ and τ̄ .

63

Table 4.18
τ̄P in λ-Coordinates when a = 1

Formula terms Operation counts
A = X1 · (X1 + Z1)2 1M + 1S
X3 = (X1 + Z1)4 1S
L3 = L1 · A+X3

1 · Z1 3M + 1S
Z3 = Z1 · A 1M

5M + 3S
When a = 0, τ̄P can be obtained by taking the negative of this formula.

4.4.2 A proposal for a τ̄P formula when a = 0. Let the curve coefficient

a = 0. Then τ̄P can be obtained without a dedicated formula in twisted µ4-normal

coordinates with cost 7M + 6S. However, a τ̄P dedicated formula has a lower cost than

a non-dedicated formula as the following studies show. Doche et al. (2009) proposed a

dedicated τ̄P formula in LD coordinates. When a = 0, their formula costs 2M + 2S.

Recently, Trost and Xu (2016) proposed a dedicated P − µτP formula in

λ-coordinates. When a = 0, we can use the negative of the P − µτP formula to obtain

τ̄P , as Table 4.18 shows. As a result, their formula costs 5M + 3S. Yu et al. (2018)

proposed a τ̄P formula only for the case a = 0. Their formula costs 3M + 2S. We

propose a dedicated τ̄P formula for Koblitz curves when a = 0. The cost of this newly

proposed formula in twisted µ4-normal coordinates is 2M + 2S, as Table 4.19 shows.

Table 4.19
τ̄P in Twisted µ4-normal Coordinates when a = 0

Formula terms Operation counts
X3 = (X1 + Z1)2 1S
Z3 = (Y1 + T1)2 1S
T3 = X3 + Z3 + (X1 + Y1) · (Z1 + T1) 1M
Y3 = T3 + (X1 + Z1) · (Y1 + T1) 1M

2M + 2S

This proposed formula saves 5M + 4S in comparison to a non-dedicated formula.

It saves 3M + 1S in comparison to τ̄P in λ-coordinates. It saves 1M in comparison to

Yu et al.’s formula. It has the same cost as τ̄P in LD coordinates. However, this

proposed τ̄P formula may be preferred in comparison to τ̄P in LD coordinates because

the cost of P +Q in twisted µ4-normal coordinates is less than the cost of P +Q in LD

64

coordinates, as Table 4.15 shows. See Theorem 9 for our proposed τ̄P formula.

Theorem 9. Let P = (X1, Y1, Z1, T1) ∈ Ea(F2m) where a = 0. Then

τ̄P = (X3, Y3, Z3, T3) in twisted µ4-normal coordinates is represented by

X3 = (X1 + Z1)2

Z3 = (Y1 + T1)2

T3 = X3 + Z3 + (X1 + Y1)(Z1 + T1)

Y3 = T3 + (X1 + Z1)(Y1 + T1).

Proof. Let a = 0. We shall prove Theorem 9 by the negative of the fact

(XP+τP , YP+τP , ZP+τP , TP+τP) = (XτP , YτP , ZτP , TτP) + (XP , YP , ZP , TP).

From the Q+ P formula shown in Table 4.13, We have

XP+τP = (YτPTP + YPTτP)2

ZP+τP = (XτPZP +XPZτP)2

TP+τP = XτPZP YτPTP +XPZτP YPTτP

YP+τP = TP+τP + (YτPTP + YPTτP)(XτPZP +XPZτP).

We substitute XτP , YτP , ZτP , TτP with their τ evaluations. We have

XP+τP = (Y 2
PTP + YPT

2
P)2

= (YPTP)2(YP + TP)2 = (YPTP)2XPZP

ZP+τP = (X2
PZP +XPZ

2
P)2

= (XPZP)2(XP + ZP)2 = (XPZP)2YPTP

TP+τP = X2
PZP Y 2

PTP +XPZ
2
P YPT

2
P

= XPZP YPTP (XPYP + TPZP)

YP+τP = TP+τP + YPTP (YP + TP) XPZP (XP + ZP).

We cancel XPZP YPTP by the facts xP+τP = YP+τP+TP+τP
ZP+τP

and yP+τP = YP+τP+XP+τP
ZP+τP

.

65

We have

XP+τP = YPTP = (XP + ZP)2

ZP+τP = XPZP = (YP + TP)2

TP+τP = XPYP + TPZP = XP+τP + ZP+τP + (XP + TP)(YP + ZP)

YP+τP = TP+τP + (YP + TP)(XP + ZP).

We take the negative of (XP+τP , YP+τP , ZP+τP , TP+τP). We have

Xτ̄P = YPTP = (XP + ZP)2

Zτ̄P = XPZP = (YP + TP)2

Tτ̄P = Xτ̄P + Zτ̄P + (XP + YP)(ZP + TP)

Yτ̄P = Tτ̄P + (YP + TP)(XP + ZP).

4.4.3 A proposal for a τ̄P formula when a = 1. Let the curve coefficient

a = 1. The cost of τ̄P without a dedicated formula in twisted µ4-normal coordinates is

9M + 6S. The cost of a dedicated τ̄P formula in LD coordinates is 2M + 1S (Doche et

al., 2009). The cost of a dedicated τ̄P formula in λ-coordinates is 5M + 3S (Trost &

Xu, 2016). We propose a dedicated τ̄P formula for Koblitz curves when a = 1. The cost

of this newly proposed formula in twisted µ4-normal coordinates is 6M + 5S, as Table

4.20 shows.

We see that this proposed formula saves 3M + 1S in comparison to a

non-dedicated formula. It costs extra 1M + 2S in comparison to τ̄P in λ-coordinates

and extra 4M + 4S in comparison to τ̄P in LD coordinates. As Table 4.15 shows, we

conclude that when a = 1, twisted µ4-normal coordinates is not the best choice for the

window τ -NAF method. However, it is still one of the best choices for the window

τ -NAF method when a = 0. See Theorem 10 for our proposed τ̄P formula.

66

Table 4.20
τ̄P in Twisted µ4-normal Coordinates when a = 1

Formula terms Operation counts
A = (Y1 + T1) · (X1 + Z1) 1M
X3 = (X1 + Z1)4 2S
Z3 = A2 1S
F = (Y 2

1 + T 2
1) · A 1M + 2S

T3 = X3 + Z3 + (T 2
1 + Y1 · Z1) · (Y 2

1 +X1 · T1) + F 3M
Y3 = T3 + (X1 + Z1)2 · A 1M

6M + 5S

Theorem 10. Let P = (X1, Y1, Z1, T1) ∈ Ea(F2m) where a = 1. Then

τ̄P = (X3, Y3, Z3, T3) in twisted µ4-normal coordinates is represented by

A = (Y1 + T1)(X1 + Z1)

X3 = (X1 + Z1)4

Z3 = A2

F = (Y 2
1 + T 2

1)A

T3 = X3 + Z3 + (T 2
1 + Y1Z1)(Y 2

1 +X1T1) + F

Y3 = T3 + (X1 + Z1)2A.

Proof. Let a = 1. We shall prove Theorem 10 by the fact

(XP−τP , YP−τP , ZP−τP , TP−τP) = −(XτP , YτP , ZτP , TτP) + (XP , YP , ZP , TP)

= (XτP , TτP , ZτP , YτP) + (XP , YP , ZP , TP).

From the Q+ P formula shown in Table 4.13, we have

XP−τP = (TτPTP + YPYτP)2

ZP−τP = (XτPZP +XPZτP)2

F = (YτP + TτP)(YP + TP)(XτPZP +XPZτP)

TP−τP = XτPZP TτPTP +XPZτP YPYτP + F

YP−τP = TP−τP + (TτPTP + YPYτP)(XτPZP +XPZτP).

67

We substitute XτP , YτP , ZτP , TτP with their τ evaluations. We have

XP−τP = (T 2
PTP + YPY

2
P)2 = (Y 3

P + T 3
P)2

= (YP + TP)2(XP + ZP)4 = XPZP (XP + ZP)4

ZP−τP = (X2
PZP +XPZ

2
P)2 = (XPZP)2(XP + ZP)2

F = (Y 2
P + T 2

P)(YP + TP)XPZP (XP + ZP)

TP−τP = X2
PZP T 2

PTP +XPZ
2
P YPY

2
P + F

= XPZP (XPT
3
P + ZPY

3
P) + F

YP−τP = TP−τP + (YP + TP)(XP + ZP)2 XPZP (XP + ZP).

We cancel XPZP by the facts xP−τP = YP−τP+TP−τP
ZP−τP

and yP−τP = YP−τP+XP−τP
ZP−τP

. We have

XP−τP = (XP + ZP)4

ZP−τP = (XPZP)(XP + ZP)2

= (YP + TP)2(XP + ZP)2

F = (Y 2
P + T 2

P)(YP + TP)(XP + ZP)

TP−τP = (XPT
3
P + ZPY

3
P) + F

YP−τP = TP−τP + (YP + TP)(XP + ZP)(XP + ZP)2.

Let A = (YP + TP)(XP + ZP). We have

Xτ̄P = (XP + ZP)4

Zτ̄P = A2

F = (Y 2
P + T 2

P)A

Tτ̄P = Xτ̄P + Zτ̄P + (T 2
P + YPZP)(Y 2

P +XPTP) + F

Yτ̄P = Tτ̄P + (XP + ZP)2A.

68

5 MBNS Methods without Pre-computation

5.1 Binary Method

The binary method is one of the primary methods that converts integer t to an

unsigned single-base chain with {2}-integers. Even though the binary method cannot

convert t to a multi-base chain, it is important to understand the steps of this method,

because the MBNS methods are extended steps of the binary method. We can describe

the binary method in the following three steps. Step one: the reduction step is that t is

repeatedly divided by 2. We can perform this step by utilizing 2-adic valuation of t.

Step two: the problem step is that t cannot be divided by 2. In other words, t is coprime

to 2. Step three: the solution step is t− 1. This method repeats the steps until t = 1.

Algorithm 5.1 shows the three explained steps of the binary method. It shows the

first phase of the method, which converts integer t to an unsigned single-base chain.

The second phase of the method is to perform a scalar multiplication on a given chain,

as Algorithm 5.2 shows. The average chain length of the binary method is

approximately O
(

log2 n
2

)
. The average chain cost of the binary method is approximately

log2 n
(

1
2ADD + DBL

)
.

Algorithm 5.1 Binary Method
Input: positive integer t
Output: (s1, a1), ..., (sl, al) where si ∈ {0, 1}, ai ≥ 0, l is chain length
t← t/2a where a is the 2-adic valuation of t
l← 1
(sl, al)← (0, a)
while (t > 1) do
l← l + 1
s← 1
t← (t− s)/2a where a is the 2-adic valuation of (t− s)
(sl, al)← (s, a)

return (s1, a1), ..., (sl, al)

5.2 NAF Method

The NAF method converts integer t to a signed single-base chain with

{2}-integers. We can describe this method in the following four steps: the reduction,

69

Algorithm 5.2 Performing Scalar Multiplication on Binary Chains
Input: (s1, a1), ..., (sl, al) and P ∈ E(Fq)
Output: tP
Q← P
for i← l to 1 do
for j ← 1 to ai do Q← 2Q
if (si = 1) then Q← Q+ P
else if (si = −1) then Q← Q− P

return Q

problem, solution, and selection steps. The first two steps are similar to the binary

method. However, it is different in the solution step. It selects either t− 1 or t+ 1. We

see that t mod 4 decides the selection of either t− 1 or t+ 1 because the result of t

mod 4 is either 1 or −1.

Algorithm 5.3 shows the four explained steps of the NAF method. It shows the

first phase of the NAF method. The second phase of the method is similar to the binary

method, as Algorithm 5.2 shows. The average chain length of the NAF method is

approximately O
(

log2 n
3

)
. The average chain cost of the NAF method is approximately

log2 n
(

1
3ADD + DBL

)
. We see that the NAF method has a shorter average chain

length than the binary method because the NAF method utilizes the sign technique in

the selection step. It is important to note that the sign technique is used in the MBNS

methods also.

Algorithm 5.3 NAF Method
Input: positive integer t
Output: (s1, a1), ..., (sl, al) where si ∈ {−1, 0,+1}, ai ≥ 0, l is chain length
t← t/2a where a is the 2-adic valuation of t
l← 1
(sl, al)← (0, a)
while (t > 1) do
l← l + 1
if (t (mod 4) ≡ 1) then s← 1 else s← −1
t← (t− s)/2a where a is the 2-adic valuation of (t− s)
(sl, al)← (s, a)

return (s1, a1), ..., (sl, al)

70

5.3 Greedy Method

Dimitrov et al. (1998) initially proposed the greedy method to generate a

double-base number system. Later, Dimitrov et al. (2005) modified the greedy method

to convert integer t to a double-base chain. The modification required adding the upper

bound (amax, bmax) to find the best approximation for t. The modified version is called

the greedy method with restricted exponents which this dissertation focuses on. The

steps of the greedy method with restricted exponents are shown in Algorithm 5.4.

Algorithm 5.4 Greedy Method
Input: positive integer t and the upper bound (amax, bmax)
Output: (s0, a0, b0), ..., (sl, al, bl) where si ∈ {−1, 0,+1}, ai, bi ≥ 0, l is chain length
l← 0, s← 1
while (t ≥ 1) do
find the best approximation of t in the form of z = 2a3b where 0 ≤ a ≤ amax and 0 ≤ b ≤ bmax

(sl, al, bl)← (s, a, b)
(amax, bmax)← (a, b)
if (t < z) then s← −s
t← |t− z|, l← l + 1

(sl, al, bl)← (0, 0, 0)
return (s0, a0, b0), ..., (sl, al, bl)

The greedy method has two factors that impact the quality of a chain and the

time to find the chain. The first factor is to determine the upper bound (amax, bmax).

This upper bound varies in each coordinate system. This is because each coordinate

system has a different cost for DBL, TPL, and ADD. Therefore, it is recommended to

test different values of (amax, bmax) in particular coordinate system such that

amax + bmax log2 3 = log2 t.

Then, the value of (amax, bmax) that results in the lowest chain cost is selected. For

example, Table 5.1 shows that the value of (amax = 160, bmax = 78) is selected for 283-bit

integers in λ-coordinates over binary fields. The value of (amax = 140, bmax = 73) is

selected for 254-bit integers in standard twisted Edwards coordinates over prime fields.

The second factor that impacts the greedy method is finding the best

approximation of t in the form of z = 2a3b. This dissertation explains two approaches to

71

Table 5.1
Greedy Method with Different Upper Bounds (amax, bmax) in Different Coordinates

λ-coordinates standard twisted Edwards coordinates
283-bit 254-bit

amax bmax l m amax bmax l m
140 91 63.73 2229.81 120 85 58.78 2322.45
150 84 62.47 2211.32 130 79 56.52 2288.31
160 78 62.67 2206.11 140 73 55.49 2272.66
170 72 64.41 2214.64 150 66 57.34 2276.93
180 65 67.07 2230.56 160 60 59.64 2292.25
200 52 72.50 2263.33 180 47 65.03 2330.07
220 40 77.57 2294.31 200 34 70.41 2368.2
240 27 82.91 2327.21 220 22 75.46 2403.47
l: The average chain length.
m: The average chain cost.

find the best approximation of t: the look-up table and the line equation.

5.3.1 Look-up table. Doche and Imbert (2006) proposed a look-up table to

find the best approximation of t. The table contains the binary expansion for elements

30, . . . , 3bmax . These elements are sorted in lexicographic order. Then, a binary search is

performed to find the element 3b that best matches t. The difference between the binary

expansion lengths for t and 3b is used to find element 2a. For example, assume we have

a table that contains the binary expansion for the element 30, . . . , 310. We want to find

the best approximation for t = 935811 in the form of 2a3b.

Table 5.2
An Example of the Difference between the Binary Expansion Lengths for t and 3b

Decimal Binary
310 1110011010101001
935811 11100100011110000011

A binary search in the table returns element 310 because element 310 is the closest

match to t. The difference of the binary expansion lengths of 310 and 935811 is 4. This

implies that element 2a = 24, as shown in Table 5.2. Thus, the best approximation for

935811 is 31024.

5.3.2 Line equation. The line equation can be used to find the best

approximation for integer t in the form of z = 2a3b (Berthe & Imbert, 2004). The line

equation can be obtained from the form z = 2a3b by multiplying both sides by log3. We

72

have log3 z = a log3 2 + b. This implies

b = −a log3 2 + log3 z.

The main advantage of the line equation solution is that, unlike the look-up table, it

does not require space memory consumption to find the best approximation of t. Yu,

Wang, Li, and Tian (2013) proposed the line search method that scans the values (a, b)

that are near the line equation. Algorithm 5.5 shows the steps of scanning the values

that are near the line equation. Then, the algorithm returns the value of (a, b) that has

the smallest difference from z.

Algorithm 5.5 Line Search
Input: positive integer t and the upper bound (amax, bmax)
Output:(z, a, b) such that t ≈ (z = 2a3b)
n← 2amax
(z, i, j)← (t, amax, 0)
while (i ≥ 0) do
if (z > |t− n|) then (z, a, b)← (|t− n|, i, j)
if (t > n) then
n← 3 · n, j ← j + 1
if (j > bmax) then return (z, a, b)

else n← n/2, i← i− 1
return (z, a, b)

For example, assume the upper bound (amax = 10, bmax = 10) is given. We want

to find the best approximation for z = 935811 in the form of 2a3b using line search

algorithm. We have the line equation is b = −a log3 2 + log3 93581. It can be drawn, as

Figure 5.1 shows. The algorithm scans values that are near the line and selects the

value of (a = 4, b = 10) because it has the smallest difference from z.

The average expansion length of the greedy method with {2, 3}-integers is

approximately O
(

log t
log log t

)
(Dimitrov et al., 2008). However, the average chain length of

the greedy method with restricted exponents is still unknown (Doche & Habsieger,

2008). Mishra and Dimitrov (2007) extended the greedy method to convert integer t to

a multi-base chain with {2, 3, 5}-integers. The extension can be achieved by finding the

best approximation of t in the form of z = 2a3b5c. They also extended the line search

73

Figure 5.1 . An Example of Line Search: b = −a log3 2 + log3 935811

algorithm to find the best approximation of t in the form of z = 2a3b5c. Algorithm 5.6

shows how to perform scalar multiplication for the greedy chain.

Algorithm 5.6 Performing Scalar Multiplication on Greedy Chains
Input: (s0, a0, b0), ..., (sl, al, bl) and P ∈ E(Fq)
Output: tP
Q← P
for i← 0 to l − 1 do
u← ai − ai+1, v ← bi − bi+1
for j ← 1 to u do Q← 2Q
for j ← 1 to v do Q← 3Q
if (si+1 = 1) then Q← Q+ P
else if (si+1 = −1) then Q← Q− P

return Q

5.4 Ternary/binary Method

Ciet et al. (2006) proposed the ternary/binary method that can be used for a

double-base number system. The ternary/binary method, as Algorithm 5.7 shows,

converts integer t to a double-base chain with {2, 3}-integers. It can be described in the

following four step process. Step one: the reduction step is that t is repeatedly divided

by 2 or 3 and is performed by utilizing 2-adic and 3-adic valuations of t. Step two: the

problem step is that t cannot be divided by 2 or 3. In other words, t is coprime to 6.

Step three: the solution step is to select either t+ 1 or t− 1. Step four: the selection

step is directed by t mod 6 and determines the selection of either t+ 1 or t− 1. This is

because the result of t mod 6 is either 1 or 5. This method repeats the steps until t = 1.

74

Algorithm 5.7 Ternary/binary Method
Input: positive integer t
Output: (s1, a1, b1), ..., (sl, al, bl) where si ∈ {−1, 0,+1}, ai, bi ≥ 0, l is chain length
t← t/(2a3b) where a, b are the 2-adic and 3-adic valuations of t
l← 1
(sl, al, bl)← (0, a, b)
while (t > 1) do
l← l + 1
if (t (mod 6) ≡ 1) then s← 1 else s← −1
t← (t− s)/(2a3b) where a, b are the 2-adic and 3-adic valuations of (t− s)
(sl, al, bl)← (s, a, b)

return (s1, a1, b1), ..., (sl, al, bl)

For example, we want to find a chain for t = 4627 using the ternary/binary

method. Then, the output of Algorithm 5.7 is the following:

(t, (s1, a1, b1)) (t, (s2, a2, b2)) (t, (s3, a3, b3)) (t, (s4, a4, b4)) (t, (s5, a5, b5))

(4627, (0, 0, 0)) (257, (1, 1, 2)) (43, (−1, 1, 1)) (7, (1, 1, 1)) (1, (1, 1, 1))

To demonstrate the steps, we add integer t to the output. Getting the chain can be

accomplished by Algorithm 5.8 in the following Horner’s rule manner:

(1, (1, 1, 1)) =⇒ chain = 2 3 + 1

(7, (1, 1, 1)) =⇒ chain = (2 3 + 1)2 3 + 1

(43, (−1, 1, 1)) =⇒ chain = ((2 3 + 1)2 3 + 1)2 3− 1

(257, (1, 1, 2)) =⇒ chain = (((2 3 + 1)2 3 + 1)2 3− 1)2 32 + 1.

Thus, chain = 2435 + 2334 + 2233 − 2 32 + 1 = 4627.

The average chain length of the ternary/binary method is approximately

O
(

log2 t
4.3774

)
. The average chain cost of the ternary/binary method is approximately

log2 t
(1

4.3774ADD + 0.4569DBL + 0.3427TPL
)

(Doche & Habsieger, 2008). The ternary/binary method can be extended to convert

integer t to a multi-base chain with {2, 3, 5}-integers. The extension is achieved by

modifying the reduction step. The reduction step change to t is repeatedly divided by 2,

3, or 5. As a result, t becomes coprime to 15 in the problem step.

75

Algorithm 5.8 Performing Scalar Multiplication on Ternary/binary Chains
Input: (s1, a1, b1), ..., (sl, al, bl) and P ∈ E(Fq)
Output: tP
Q← P
for i← l to 1 do
for j ← 1 to ai do Q← 2Q
for j ← 1 to bi do Q← 3Q
if (si = 1) then Q← Q+ P
else if (si = −1) then Q← Q− P

return Q

5.5 Multi-base NAF Method

Longa and Gebotys (2009) proposed the multi-base NAF method for a multi-base

number system. One form of this method is to convert t to a double-base chain with

{2, 3}-integers. Algorithm 5.9 shows the steps of this method, and it can be described

in the following four steps: the reduction, problem, solution, and selection steps. The

first three steps are similar to the ternary/binary method. The selection step is different

from the ternary/binary method in that it is directed by t mod 4. It is important to

note that t mod 4 decides the selection of either t− 1 or t+ 1 because the result of t

mod 4 is either 1 or 3.

Algorithm 5.9 Multi-base NAF Method
Input: positive integer t
Output: (s1, a1, b1), ..., (sl, al, bl) where si ∈ {−1, 0,+1}, ai, bi ≥ 0, l is chain length
t← t/(2a3b) where a, b are the 2-adic and 3-adic valuations of t
l← 1
(sl, al, bl)← (0, a, b)
while (t > 1) do
l← l + 1
if (t (mod 4) ≡ 1) then s← 1 else s← −1
t← (t− s)/(2a3b) where a, b are the 2-adic and 3-adic valuations of (t− s)
(sl, al, bl)← (s, a, b)

return (s1, a1, b1), ..., (sl, al, bl)

For example, we want to find a chain for t = 4627 using the multi-base NAF

method with {2, 3}-integers. Then, the output of Algorithm 5.9 is the following:

(t, (s1, a1, b1)) (t, (s2, a2, b2)) (t, (s3, a3, b3)) (t, (s4, a4, b4))

(4627, (0, 0, 0)) (1157, (−1, 2, 0)) (289, (1, 2, 0)) (1, (1, 5, 2))

76

Getting the chain steps can be accomplished in the same way of the ternary/binary

method.

(1, (1, 5, 2)) =⇒ chain = 2532 + 1

(289, (1, 2, 0)) =⇒ chain = (2532 + 1)22 + 1

(1157, (−1, 2, 0)) =⇒ chain = ((2532 + 1)22 + 1)22 − 1.

Thus, chain = 2932 + 24 + 22 − 1 = 4627.

The average chain length of the multi-base NAF method with {2, 3}-integers is

approximately O
(

log2 t
4.1887

)
. The average chain cost of the multi-base NAF method with

{2, 3}-integers is approximately

log2 t
(1

4.1887ADD + 0.7162DBL + 0.179TPL
)
.

The multi-base NAF method also can be extended to convert t to a multi-base chain

with {2, 3, 5}-integers. The extension can be achieved in the same manner as the

ternary/binary method. The reduction step change to t is repeatedly divided by 2, 3, or

5. Thus, the problem step becomes t is coprime to 15. The average chain length of the

multi-base NAF method with {2, 3, 5}-integers is approximately O
(

log2 t
4.9143

)
. The average

chain cost of the multi-base NAF method with {2, 3, 5}-integers is approximately

log2 t
(1

4.9143ADD + 0.6104DBL + 0.1526TPL + 0.0635QPL
)
.

5.6 Tree-based Method

Doche and Habsieger (2008) proposed the tree-based method for a multi-base

number system. The simplest form of the tree-based method is to convert t to a

double-base with {2, 3}-integers. This section emphasizes the primary version of the

tree-based method as Algorithm 5.10 shows. The next section emphasizes on the

tree-based method with bound-size for a higher quality chain. The tree-based method

uses the same four steps as the ternary/binary method. However, the approach is

different in the selection step because it is dependent on whether t− 1 or t+ 1 results in

77

the smallest t after the reduction step. For an example of the selection step, assume

t = 115. Then the method will select t− 1 because the result 19 is less than 29. To

explain, the result of t− 1 after the reduction step is (115− 1)/(2 3) = 19 and the result

of t+ 1 after the step is (115 + 1)/22 = 29.

Algorithm 5.10 Tree-based Method
Input: positive integer t
Output: (s1, a1, b1), ..., (sl, al, bl) where si ∈ {−1, 0,+1}, ai, bi ≥ 0, l is chain length.
t← t/(2a3b) where a, b are the 2-adic and 3-adic valuations of t
l← 1
(sl, al, bl)← (0, a, b)
while (t > 1) do
l← l + 1, s← 1
t← (t− 1)/(2a3b) where a, b are the 2-adic and 3-adic valuations of (t− 1)
n← (t+ 1)/(2c3d) where c, d are the 2-adic and 3-adic valuations of (t+ 1)
if (t > n) then t← n, (s, a, b)← (−1, c, d)
(sl, al, bl)← (s, a, b)

return (s1, a1, b1), ..., (sl, al, bl)

For an example of this method, let us find a chain for t = 4627. Then the output

of Algorithm 5.10 is the following:

(t, (s1, a1, b1)) (t, (s2, a2, b2)) (t, (s3, a3, b3))

(4627, (0, 0, 0)) (257, (1, 1, 2)) (1, (1, 8, 0))

The steps of getting the chain follows the same manner of the ternary/binary method.

(1, (1, 8, 0)) =⇒ chain = 28 + 1

(257, (1, 1, 2)) =⇒ chain = (28 + 1)2 32 + 1.

Therefore, chain = 2932 + 2 32 + 1 = 4627.

The average chain length of the tree-based method with {2, 3}-integers is

approximately O
(

log2 t
4.6419

)
. The average chain cost of the tree-based chain with

{2, 3}-integers is approximately

log2 t
(1

4.6419ADD + 0.5569DBL + 0.2795TPL
)
.

The tree-based method can be extended to convert t to multi-base chain with

78

{2, 3, 5}-integers. The extension also can be achieved as the same manner of the

ternary/binary method. The reduction step change is to repeatedly divide t by 2, 3 or 5.

Thus, the problem step becomes t is coprime to 15. Yu et al. (2013) proved the average

chain length of the tree-based method with {2, 3, 5}-integers is approximately O
(

log2 t
5.6142

)
.

The average chain cost of the tree-based method with {2, 3, 5}-integers is approximately

log2 t
(1

5.6142ADD + 0.454DBL + 0.216TPL + 0.0876QPL
)
.

79

6 MBNS Methods with Pre-computation

The pre-computation concept can be used with the MBNS methods to speed up

the performance. It is used in both the converting phase and the performing phase of

the methods. For example, the window τ -NAF method uses the pre-computation

concept in the performing phase, as explained in Section 4.4.1. In this section, we focus

on the pre-computation concept in the converting phase of the methods. The main

advantage of using the pre-computation concept in the converting phase, compared to

the performing phase, is that we do not have to do this pre-computation on-the-fly.

This might be useful for certain applications such as the MBNS in controlled

environments (Doche, 2014).

6.1 rDAG-based Method

Bernstein et al. (2017) recently proposed the rDAG-based method for a

double-base number system. The main objective for the rDAG-based method is to find

an optimal chain with respect to its cost. The idea of the rDAG-based method is to

create a table with bmax columns and amax rows. The value of (amax, bmax) can be

estimated by amax = dlog2 te and bmax = dlog3 te. Each table cell contains 4 nodes at

most, according to the theorem in Bernstein et al. (2017). A node is represented in the

form of (t, (s, a, b), cost, (seq, pre)), as Table 6.1 shows.

Table 6.1
Node Attributes for the rDAG-based Method

t positive integer
(s, a, b) s 2a3b where s ∈ {+1, 0,−1} and a, b ∈ {0, 1}
cost chain cost
(seq, pre) seq is a node sequence number in Table[i][j], and seq ∈ {0, 1, 2, 3}

pre is an index of the previous node in Table[i− 1][j] or Table[i][j − 1]

Algorithm 6.1 explains the steps of the rDAG-based method. First, the method

starts to investigate nodes in the table cell with row = 0 and column = 0. Next, the

method moves to investigate nodes in the table cell with row = 0 and column = 1. Once

all nodes in table cells with row = 0 are investigated, the method moves to investigate

80

nodes in the next table cell row. The method repeats these steps for all rows. It doesn’t

stop when it finds a node with t = 1. It stops when all the table cells are investigated.

Finally, the method returns an optimal chain using the steps in Algorithm 6.2.

Definition 7. The DAG-based abstract idea states that if t is odd, three options are

investigated: (t− 1)/2, (t+ 1)/2, and (t− s)/3. If t is even, two options are

investigated: t/2 and (t− s)/3 where s ∈ {−1, 0,+1}.

An investigated node creates two or three nodes that are inserted into the next

right and the next below table cells. This is because this method follows the

DAG-based abstract idea. A node is inserted into a bucket according to its value (a, b).

The value (a, b) of nodes monotonically increases. This property guarantees that the

method investigates all nodes and no node is skipped. The time complexity of the

rDAG-based method is approximately O ((log2 t)2).

Algorithm 6.1 rDAG-based Method
Input: positive integer t and the upper bound (amax, bmax)
Output: (s1, a1, b1), ..., (sl, al, bl) where l is expansion length
initialize Table[amax][bmax] and optimal(0, 0, 0,∞)
insert new node(t, (0, 0, 0), 0, (0, 0)) in Table[0][0]
for i← 0 to amax do
for j ← 0 to bmax do
if (Table[i][j] is empty) then continue
for each node in Table[i][j]
if (node.t = 1) then
if (optimal.cost > node.cost) then optimal(i, j, node.seq, node.cost)
continue

for each s ∈ {+1, 0,−1}
if ((node.t− s) (mod 2) ≡ 0) then
t← (node.t− s)/2
cost← node.cost + DBL + |s| ADD
insert new node(t, (s, 1, 0), cost, (seq, node.seq)) in Table[i+ 1][j]
If there are nodes with similar t in Table[i+ 1][j] then
keep only the one with the lowest cost

if ((node.t− s) (mod 3) ≡ 0) then
t← (node.t− s)/3
cost← node.cost + TPL + |s| ADD
insert new node(t, (s, 0, 1), cost, (seq, node.seq)) in Table[i][j + 1]
If there are nodes with similar t in Table[i][j + 1] then
keep only the one with the lowest cost

return get-chain(Table, optimal)

81

For example, we want to find a chain for t = 13 using the rDAG-based method

with {2, 3}-integers. Assume the cost of ADD = 2, DBL = 1, TPL = 2, and the

upper bound (amax = 4, bmax = 2) is given. Then, Algorithm 6.1 creates a table, as

shown in Table 6.2.

Table 6.2
Example of the rDAG-based Method for t = 13

0 1 2
0 (13, (0, 0, 0), 0, (0, 0)) (4, (1, 0, 1), 4, (0, 0)) (1, (1, 0, 1), 8, (0, 0))
1 (6, (1, 1, 0), 3, (0, 0)) (2, (0, 1, 0), 5, (0, 0)) (1, (−1, 0, 1), 9, (0, 0))

(7, (−1, 1, 0), 3, (1, 0))
2 (3, (0, 1, 0), 4, (0, 0)) (1, (0, 1, 0), 6, (0, 0))

(4, (−1, 1, 0), 6, (1, 1))
3 (1, (1, 1, 0), 7, (0, 0)) (1, (−1, 0, 1), 11, (0, 1))

(2, (−1, 1, 0), 7, (1, 0))
4 (1, (0, 1, 0), 8, (0, 1)

Getting the chain steps can be accomplished by Algorithm 6.2 in the following Horner’s

rule manner:

(1, (0, 1, 0), 6, (0, 0)) =⇒ chain = 2

(2, (0, 1, 0), 5, (0, 0)) =⇒ chain = (2)2

(4, (1, 0, 1), 4, (0, 0)) =⇒ chain = ((2)2)3 + 1.

Thus, chain = 22 3 + 1 = 13.

Algorithm 6.2 get-chain for the rDAG-based Method
Input: Table, i, j, k
Output: (s1, a1, b1), ..., (sl, al, bl)
l← 0
while (i > 0 or j > 0) do
l← l + 1
find node in Table[i][j] such that node.seq = k
(sl, al, bl)← (node.s, node.a, node.b)
if (node.a = 1) then i← i− 1 else j ← j − 1
k ← node.pre

return (s1, a1, b1), ..., (sl, al, bl)

6.2 Proposed Bucket Methods

6.2.1 DAG/bucket method. The idea of the DAG/bucket method is that

we have buckets that are indexed by chain cost. A bucket contains nodes. A node can

82

be represented by (t, (s, a, b), (cost, seq), (prei, prej)), as Table 6.3 describes. Nodes in a

bucket have similar chain cost and different t, and they are ordered by their t. This is

because the method deletes any repeated nodes with similar t in a bucket. The number

of nodes in a bucket is determined by bucket-size.

Table 6.3
Node Attributes for the DAG/bucket Method

t positive integer
(s, a, b) s 2a 3b where s ∈ {+1, 0,−1} and a, b ∈ {0, 1}
(cost, seq) cost is chain cost

seq is a node sequence number in Bucket[i], and seq ∈ {0, ..., bucket-size− 1}
(pre_i, pre_j) pre_i is an index of the previous bucket

pre_j is an index of the previous node in Bucket[pre_i]

Algorithm 6.3 shows the steps of the DAG/bucket method. First step: the

method investigates a bucket that has nodes with chain cost = 0. In this case, we have

only one node that needs to be investigated. An investigated node generates two or

three new nodes. This is because this method follows the DAG-based abstract idea, as

Definition 7 shows. These news nodes are inserted into the next buckets. These next

buckets have not been investigated yet. In other words, an investigated node cannot

generate new nodes that are inserted into the same bucket. This is because the chain

cost of nodes monotonically increases. This is an important property because it

guarantees that the method investigates all nodes and does not skip any nodes.

Next step: the method moves to the next bucket that has nodes with the next

lowest chain cost. In this bucket, the method starts to investigate the node with the

smallest t. The method continues to investigate all nodes in this bucket and generates

new nodes that are inserted into the next buckets. Then, the method moves to the next

bucket and repeats the steps of investigating nodes and generating new nodes. Finally,

when the method finds a node with t = 1, it stops and returns the chain. Algorithm 6.4

shows the steps of returning the chain.

For example, we want to find a chain for t = 13 using the DAG/bucket method

with {2, 3}-integers. Assume the cost of ADD=2, DBL=1, TPL=2. Algorithm 6.3

creates the buckets shown in Table 6.4.

83

Algorithm 6.3 DAG/bucket Method
Input: positive integer t
Output: (s1, a1, b1), ..., (sl, al, bl) where l is expansion length
initialize Bucket[bucket-max]
insert new node(t, (0, 0, 0), (0, 0), (0, 0)) in Bucket[0]
for i← 0 to bucket-max do
if (Bucket[i] is empty) then continue
for each node in Bucket[i]
if (node.t = 1) then return get-chain(Bucket, i, node.seq)
for each s ∈ {+1, 0,−1}
if ((node.t− s) (mod 2) ≡ 0) then
t← (node.t− s)/2
cost← node.cost + DBL + |s| ADD
insert new node(t, (s, 1, 0), (cost, seq), (i, node.seq)) in Bucket[round(cost)]
remove any redundant nodes with respect to t
keep the smallest nodes with respect to t within bucket-size

if ((node.t− s) (mod 3) ≡ 0) then
t← (node.t− s)/3
cost← node.cost + TPL + |s| ADD
insert new node(t, (s, 0, 1), (cost, seq), (i, node.seq)) in Bucket[round(cost)]
remove any redundant nodes with respect to t
keep the smallest nodes with respect to t within bucket-size

Table 6.4
Example of the DAG/bucket Method for t = 13

cost nodes
0 (13, (0, 0, 0), (0, 0), (0, 0))
3 (6, (1, 1, 0), (3, 0), (0, 0)), (7, (−1, 1, 0), (3, 1), (0, 0))
4 (3, (0, 1, 0), (4, 0), (3, 0)), (4, (1, 0, 1), (4, 1), (0, 0))
5 (2, (0, 0, 1), (5, 0), (3, 0))
6 (1, (0, 0, 1), (6, 0), (4, 0)), (3, (1, 1, 0), (6, 1), (3, 1)), (4, (−1, 1, 0), (6, 2), (3, 1))
7 (1, (1, 1, 0), (7, 0), (4, 0)), (2, (1, 0, 1), (7, 1), (3, 1))
8 (1, (1, 0, 1), (8, 0), (4, 1))
9 (1, (−1, 0, 1), (9, 0), (5, 0))

Getting the chain steps can be accomplished by Algorithm 6.4 in the following manner:

(1, (0, 0, 1), (6, 0), (4, 0)) =⇒ chain=3

(3, (0, 1, 0), (4, 0), (3, 0)) =⇒ chain=(3)2

(6, (1, 1, 0), (3, 0), (0, 0)) =⇒ chain=((3)2)2 + 1.

Thus, chain=22 3 + 1 = 13.

The similarity between the DAG/bucket and the rDAG-based methods is in the

way of generating new nodes. This is because they both follow the DAG-based abstract

84

Algorithm 6.4 get-chain for the DAG/bucket Method
Input: Bucket, i, j
Output: (s1, a1, b1), ..., (sl, al, bl)
l← 0
while (i > 0) do
l← l + 1
find node in Bucket[i] such that node.seq = j
(sl, al, bl)← (node.s, node.a, node.b)
i← node.pre_i, j ← node.pre_j

return (s1, a1, b1), ..., (sl, al, bl)

idea, as Definition 7 shows. However, the main difference between the DAG/bucket and

the rDAG-based method is the following. The main objective of the rDAG-based

method is to find an optimal chain for integer t. It emphasizes finding an optimal chain

without paying much attention to the time to find the chain. In contrast, the

DAG/bucket method provides a systematic way to control the chain quality and the

time to find the chain. This can be achieved by using the bucket-size idea. The

bucket-size is a value that allow us to balance the chain quality and the time to find the

chain.

6.2.2 Tree/bucket method. The idea of the tree/bucket method, in general,

is similar to the DAG/bucket method because they both use the bucket-size to control

the chain quality and the time to find the chain. In fact, this is the key idea of the

bucket methods. However, they are different in the following ways. The tree/bucket

method follows the tree-based abstract idea to generate new nodes, as Definition 8

shows. As a result, the tree/bucket generates a chain in faster running time than the

DAG/bucket method. In contrast, the DAG/bucket follows the DAG-based abstract

idea to generate new nodes. As a result, the DAG/bucket generates a higher quality

chain than tree/bucket, as Experiment II shows.

Definition 8. The tree-based abstract idea states that if t is coprime with 6, then two

options are investigated: (t− 1)/(2a3b) and (t+ 1)/(2a3b) where a, b are 2-adic and

3-adic valuations of (t− 1) or (t+ 1).

Besides the first difference, structurally, buckets in the tree/bucket method are

indexed by chain length. A node can be represented by (t, (s, a, b), (seq, pre)), as Table

85

6.5 describes. Nodes in a bucket have similar chain length and different t, and they are

ordered by their t.

Table 6.5
Node Attributes for the Tree/bucket Method

t positive integer
(s, a, b) s 2a 3b where s ∈ {+1, 0,−1} and a, b ≥ 0
(seq, pre) seq is a node sequence number in Bucket[i], and seq ∈ {0, ..., bucket-size− 1}

pre is an index of the previous node in Bucket[i− 1]

Algorithm 6.5 shows the steps of the tree/bucket method. It follows the same

general idea of the DAG/bucket algorithm. However, we will explain the steps because

we need to point out some differences. First step: the method initially investigates a

bucket that has nodes with chain length = 1. In this bucket, we have only one node

that needs to be investigated.

An investigated node generates two nodes. This is because this method follows the

tree-based abstract idea, as Definition 8 shows. These new nodes are inserted into the

next following bucket. An investigated node cannot generate new nodes that inserted

into the same bucket. This is because the chain length of nodes monotonically increases.

This guarantees that the method investigates all nodes and does not skip any nodes.

Next step: the method moves to the next bucket that has nodes with chain length

= 2. In this bucket, the method starts to investigate the node with the smallest t. The

method continues to investigates all nodes and generates new nodes that are inserted

into the next following bucket. Then, the method moves to the next bucket and repeats

the steps of investigating nodes and generating new nodes. The method stops and

returns the chain when it finds a node with t = 1. The method must find nodes with

t = 1 because t of nodes monotonically decreases. Algorithm 6.6 shows the step of

returning the chain.

For example, we want to find a chain for t = 29 using the tree/bucket method

with {2, 3}-integers. Algorithm 6.5 creates the following buckets:

86

Algorithm 6.5 Tree/bucket Method
Input: positive integer t
Output: (s1, a1, b1), ..., (sl, al, bl) where l is chain length
initialize Bucket[bucket-max]
t← t/(2a 3b) where a, b are 2-adic and 3-adic valuations of t
insert new node(t, (0, a, b), (0, 0)) in Bucket[1]
for i← 1 to bucket-max do
if (Bucket[i] is empty) then continue
for each node in Bucket[i]
if (node.t = 1) then return get-chain(Bucket, i, node.seq)
for each s ∈ {+1,−1}
t← (node.t− s)/(2a 3b) where a, b are 2-adic and 3-adic valuations of (node.t− s)
insert new node(t, (s, a, b), (seq, node.seq)) in Bucket[i+ 1]
remove any redundant nodes with respect to t
keep the smallest nodes with respect to t within bucket-size

length nodes

1 (29, (0, 0, 0), (0, 0))

2 (5, (−1, 1, 1), (0, 1)), (7, (1, 2, 0), (1, 1))

3 (1, (1, 2, 0), (0, 2))

Getting the chain steps can be accomplished by Algorithm 6.6 in the following manner:

(1, (1, 2, 0), (0, 2)) =⇒ chain = 22 + 1

(5, (−1, 1, 1), (0, 1)) =⇒ chain = (22 + 1)2 3− 1

(29, (0, 0, 0), (0, 0)) =⇒ chain = (22 + 1)2 3− 1.

Thus, chain = 23 3 + 2 3− 1 = 29.

Algorithm 6.6 get-chain for the Tree/bucket Method
Input: Bucket, i, j
Output: (s1, a1, b1), ..., (sl, al, bl)
l← 0
while (i > 0) do
l← l + 1
find node in Bucket[i] such that node.seq = j
(sl, al, bl)← (node.s, node.a, node.b)
i← i− 1, j ← node.pre

return (s1, a1, b1), ..., (sl, al, bl)

6.2.3 Bucket-size and bucket-max. The performance of the bucket

methods, including the tree/bucket and the DAG/bucket, is affected by two main

87

factors: bucket-size and bucket-max. The bucket-size is the number of nodes at

maximum in a bucket. It also can be described as a value that controls the chain

quality and the time to find the chain. A large bucket-size gives a higher quality chain

and a higher conversion cost. A smaller bucket-size gives a lower chain quality and a

lower conversion cost, as Experiment II shows. The question is what is the best value

for the bucket-size? In applications where the converting phase is performed offline, a

higher bucket-size is more practical. In applications where the converting phase is

performed on-the-fly, we select a bucket-size that gives a faster running time. This is

with the assumption that the running time considers the converting phase and the

performing phase as one operation.

Bucket-max is the second factor that affects the performance of the bucket

methods. The bucket-max is the number of buckets that are needed at maximum to

convert t to a chain. The question is how can we determine the bucket-max of the

bucket methods? We can use the NAF method properties to estimate the bucket-max of

the bucket methods. To explain, in the tree/bucket method, buckets are indexed by

chain length. Therefore, we can use the average chain length of NAF method to

estimate the bucket-max of the tree/bucket method. Recall that the average chain

length of the NAF method is approximately (log2 t)/3. In the DAG/bucket method,

buckets are indexed by chain cost. Therefore, we can use the average chain cost of the

NAF method to estimate the bucket-max of the DAG/bucket method. In this case, we

round the chain cost of nodes to the nearest integer. Recall that the average chain cost

of the NAF method is approximately log2 t(1/3 ADD + DBL).

88

7 Experimental Results

In this section, we show three different experimental results. The purpose of these

experiments was to verify some of the theoretical results in this dissertation. In the first

experiment, we compared the performance of the multi-base methods without

pre-computation. In the second experiment, we compared the performance of the

multi-base methods with pre-computation. In the third experiment, we compared the

pre-computation schemes of window τ -NAF for Koblitz curves. In these experiments,

we utilized the most efficient formulas presented in Section 3 and Section 4. We used

three properties to compare the performance of the methods: the average chain length,

the average chain cost, and the average running time.

The main advantage of the chain length and the chain cost is that they are not

affected by the device specifications. In contrast, the running time is affected by the

device specifications. To explain, the chain length is affected by the integer bit size.

Besides the integer bit size, the chain cost is affected by various factors, such as the

method, the cost of formulas in particular coordinate systems, and the S/M and the

I/M ratio assumptions. We assumed 1S = 0.8M over prime fields as suggested in

Bernstein et al. (2017). We assumed 1S = 0.4M over binary fields because it agrees

with the S/M ratio of the experiments’ device. We did not have an assumption about

the I/M ratio because we worked on projective coordinates over both prime and binary

fields. We see that chain cost is more accurate than chain length because it considers

various factors to evaluate a chain.

The main advantage of the running time is that it evaluates all implementation

details of the methods. It evaluates the time to convert integer t to a chain. This is an

important evaluation because some methods spend more time in the converting phase

to enhance the chain cost. The running time is affected by the experiment computing

environment, such as the CPU, the OS, the program language, the number of

temporary variables, and the finite field arithmetic library. We used an Intel Core

i5-8250U processor with the speed 1.6 GHz. We used C programming language and

GCC compiler on 64-bit Ubuntu Linux OS.

89

For prime fields, we used GMP library for field arithmetic operations and worked

in standard twisted Edwards coordinates (Granlund & et al., n.d.; Bernstein et al.,

2008). We selected twisted Edwards curves that are suggested in Josefsson and

Liusvaara (2017) and Aranha, Barreto, Pereira, and Ricardini (2013) because standard

twisted Edwards coordinates are the most efficient option for curves with coefficient a as

a small constant (e.g., 1, −1) and d as a large constant. More twisted Edwards curves

were suggested by Hamburg (2015) and Bos, Costello, Longa, and Naehrig (2014).

For binary fields, we used MIRACL library for field arithmetic operations (Matula

& Kornerup, n.d.). We worked in λ-coordinates with the NIST random elliptic curves

because λ-coordinates are the most efficient option for these curves when their

coefficient a = 1 and b is a large constant. We also worked in twisted µ4-normal

coordinates with the NIST Koblitz curves because µ4-normal coordinates are the most

efficient option for these curves when their coefficient a = 0 and b = 1 (Barker, 2013).

We utilized the formulas presented in Section 4.

7.1 Experiment I

Our objective in this experiment was to compare the performance of the

multi-base methods without pre-computation. We wanted to know whether the

multi-base methods improved the performance over the single-base methods. What was

the percentage of improvement if we used the multi-base methods over the single-base

methods? Which one of the multi-base methods gave the fastest performance? We

present the results of this experiment in tables: Table 7.1 and Table 7.2 show

performance comparison between the methods with respect to the average chain length

(l) and the average chain cost (m) over both prime and binary fields. Table 7.3 and

Table 7.4 show performance comparison between the methods with respect to the

average running time (time) over both prime and binary fields.

We selected the binary and the NAF for the single-base methods, as shown in

Algorithm 5.1 and Algorithm 5.3 respectively. We selected the greedy, the

ternary/binary, the multi-base NAF, and the tree-based for the multi-base methods, as

90

shown in Algorithm 5.4, Algorithm 5.7, Algorithm 5.9, and Algorithm 5.10 respectively.

For standard twisted Edwards coordinates, we utilized the mixed P +Q, 2P , 3P , and

5P formulas, as shown in Table 3.13, Table 3.15, 3.16, and Table 3.17 respectively. For

λ-coordinates, we utilized the mixed P +Q, 2P , 3P , and 5P formulas, as shown in

Table 4.8, Table 4.9, 4.10, and Table 4.11 respectively.

7.1.1 Results of Experiment I. We obtained four main results from

Experiment I. First result: the multi-base methods, in general, had a better

performance than the single-base methods over both prime and binary fields. To

explain, the results show that the multi-base methods gave an approximately 6% to 9%

lower m than the single-base methods over both prime and binary methods. They,

except for the greedy, gave an approximately 6% to 14% less time than the single-base

methods over both prime and binary fields. The tree-based method had the highest

percentage of improvement among the tested methods.

Second result: the methods over binary fields had lower m than the methods over

prime fields. In contrast, the methods over prime fields had less time than the methods

over binary fields. To explain, the reason for having lower m over binary fields is that

the S/M ratio over binary fields is lower than the S/M ratio over prime fields. The

reason for having lesser time over prime fields is that GMP library was faster than

MIRACL library. GMP library can only support prime field arithmetic, while MIRACL

library can support both binary and prime field arithmetic. We decided to use GMP

library for prime field arithmetic because GMP library gave us a faster performance

than MIRACL library.

Third result: the performance improvement decreases with a higher-base method.

To explain, the results show that the improvement from a single-base method to a

double-base method was higher than the improvement from a double-base method to a

triple-base method. For example, consider m of the multi-base NAF method over prime

fields. The improvement from the single-base method to the double-base method is

7.65%. The improvement from the double-base method to the triple-base method is

2.37%. This drop implies that a higher-base formula (e.g., 7P , 11P) is less important

91

Table 7.1
Theoretical Comparison between Single-base and Multi-base Methods in Standard
Twisted Edwards Coordinates over Fp

254-bit 382-bit 521-bit
l m % l m % l m %

Binary 126.97 2922.86 191.01 4408.98 260.52 6020.79
(2)NAF 85.13 2475.16 127.78 3729.39 174.17 5092.31
(2, 3)greedy 55.94 2272.66 8.18 83.42 3419.97 8.20 113.64 4666.11 8.36
ternary/binary 58.48 2322.94 6.14 87.67 3500.82 6.12 119.51 4781.17 6.10
(2, 3)NAF 61.07 2285.58 7.65 91.59 3444.74 7.63 124.87 4705.08 7.60
(2, 3)tree 55.11 2260.44 8.67 82.62 3407.26 8.63 112.63 4654.09 8.60
(2, 3, 5)NAF 52.11 2226.92 10.02 78.21 3357.49 9.97 106.60 4585.60 9.95
(2, 3, 5)tree 45.65 2202.94 10.99 68.40 3320.77 10.95 93.15 4535.11 10.94
l: The average chain length.
m: The average chain cost.
%: The improvement percentage with respect to m in comparison to (2)NAF.

Table 7.2
Theoretical Comparison between Single-base and Multi-base Methods in λ-coordinates
over F2m

283-bit 409-bit 571-bit
l m % l m % l m %

Binary 141.49 2809.84 204.53 4070.26 285.43 5689.35
(2)NAF 94.77 2402.42 136.78 3477.85 190.83 4860.64
(2, 3)greedy 62.67 2206.11 8.17 88.98 3190.37 8.26 123.71 4453.86 8.36
ternary/binary 65.13 2249.43 6.35 93.89 3256.74 6.35 130.94 4552.48 6.33
(2, 3)NAF 68.01 2222.78 7.47 98.05 3218.30 7.46 136.72 4498.39 7.45
(2, 3)tree 61.45 2196.23 8.5 88.52 3179.72 8.57 123.34 4444.23 8.56
(2, 3, 5)NAF 57.98 2183.51 9.11 83.71 3162.88 9.05 116.69 4420.97 9.04
(2, 3, 5)tree 50.87 2164.95 9.88 73.23 3134.84 9.86 101.89 4380.68 9.87
l: The average chain length.
m: The average chain cost.
%: The improvement percentage with respect to m in comparison to (2)NAF.

Table 7.3
Running Time Comparison between Single-base and Multi-base Methods in Standard
Twisted Edwards Coordinates over Fp

254-bit 382-bit 521-bit
time % time % time %

Binary 618.24 1121.56 2132.3
(2)NAF 544.52 1025.42 1864.24
(2, 3)greedy 557.59 -2.40 1064.81 -3.84 1923.91 -3.20
ternary/binary 491.15 9.80 915.92 10.63 1646.30 11.69
(2, 3)NAF 493.37 9.39 918.69 10.41 1652.19 11.37
(2, 3)tree 488.06 10.36 913.26 10.93 1644.94 11.76
(2, 3, 5)NAF 476.59 12.47 886.84 13.51 1604.57 13.92
(2, 3, 5)tree 470.93 13.51 881.19 14.06 1593.85 14.50
time: The average running time in µs.
%: The improvement percentage in comparison to (2)NAF.

92

Table 7.4
Running Time Comparison between Single-base and Multi-base Methods in
λ-coordinates over F2m

283-bit 409-bit 571-bit
time % time % time %

Binary 889.85 1924.70 4016.82
(2)NAF 772.19 1651.49 3437.60
(2, 3)greedy 788.48 -2.10 1696.77 -2.74 3534.77 -2.82
ternary/binary 712.15 7.77 1529.90 7.36 3218.32 6.37
(2, 3)NAF 710.70 7.96 1516.71 8.16 3185.95 7.32
(2, 3)tree 709.51 8.11 1515.82 8.21 3177.18 7.57
(2, 3, 5)NAF 695.16 9.97 1502.76 9.01 3117.46 9.31
(2, 3, 5)tree 690.52 10.57 1490.13 9.77 3112.44 9.45
time: The average running time in µs.
%: The improvement percentage in comparison to (2)NAF.

than a lower-base formula (e.g. 2P , 3P). This is because a higher-base method gives

less percentage of improvement than a lower-base method.

Fourth result: the greedy method is impractical for implementation for two

reasons. The first reason is that the greedy method requires finding the best upper

bound (amax, bmax). We describe how to find the best upper bound in Section 5.3. In

standard twisted Edwards coordinates, we found that the best upper bound for 254-bit,

382-bit, and 521-bit integers is (140, 73), (210, 109), and (290, 146) respectively. In

λ-projective coordinates, the best upper bound for 283-bit, 409-bit, and 571-bit integers

is (160, 78), (220, 120), and (310, 165) respectively. We see that the greedy method

requires extra step to find the best upper bound, while the other multi-base methods do

not require this step.

The second reason is that it requires finding the best approximation for integer t

in terms of a {2, 3}-integer. We describe two ways to find the best approximation in

Section 5.3. We decided to use the line search to find the best approximation because it

does not require any pre-computation. However, the converting phase in the greedy

method with the line search is still not as efficient as the other multi-base methods. This

is because the other methods use a dynamic approach to convert integer t to a chain.

7.2 Experiment II

Our objective in this experiment was to compare the performance of the

multi-base methods with pre-computation. We considered, unlike Experiment I, the

93

pre-computation concept in the converting phase of a method, as explained in Section 6.

We compared the performance of the tree/bucket and the DAG/bucket methods with

respect to the average chain cost (m) and the average running time (time) in µs. We

wanted to know the impact of the bucket-size on the bucket methods. We focused on

254-bit integers in standard twisted Edwards coordinates over prime fields. We present

the results of this experiment in Figure 7.1. It shows the impact of the bucket-size on

the performance of the bucket methods.

Figure 7.1 . Experimental Comparison between Tree/bucket and DAG/bucket Methods

1 2 3 4 5 6 7 8

2,160

2,180

2,200

2,220

2,240

2,260

bucket-size

m

tree/bucket
DAG/bucket

1 2 3 4 5 6 7 8
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000

bucket-size

ti
m
e

tree/bucket
DAG/bucket

7.2.1 Results of Experiment II. We obtained three main results from

Experiment II. First result: the bucket-size of the bucket methods is a value to balance

the chain cost and the time to find the chain. To explain, a higher bucket-size gave

lower m and more time. In contrast, a lower bucket-size gave higher m and less time.

The highest percentage increase of m was when bucket-size = 2. The percentage

increase of m became minor when bucket-size > 4. Therefore, it is more practical to

select the bucket-size from 2 to 4 in standard twisted Edwards coordinates. It is

important to note that this conclusion might be slightly different when we use different

coordinate systems over different finite fields.

Second result: the tree-based method with unbound-size does not produce an

optimal chain. We define an optimal chain as a chain that represents integer t with the

lowest cost, as Definition 5 shows. We know the optimal chain is approximately

2165.58M, as Table 7.5 shows. The average chain cost of the tree/bucket with

94

Table 7.5
Experimental Comparison between Optimal and Near Optimal Chains

254-bit
l m time

(2, 3)tree/bucketsize=∞ 51.01 2210.97
(2, 3)DAG/bucketsize=4 49.71 2170.55 4093.47
(2, 3)rDAG-based 49.43 2165.58 14818.80
l: The average chain length.
m: The average chain cost.
time: The average running time in µs.

bucket-size =∞ is approximately 2210.97M. The difference between them is 45.39M.

This implies that the tree-based method with unbound-size is far from generating an

optimal chain. We also saw that the tree/bucket method with bucket-size =∞ does not

produce lower m than the DAG/bucket with bucket-size > 1. Nevertheless, the

tree/bucket had less time than DAG/bucket when it comes to generating a good quality

chain.

Third result: generating a near optimal chain is more practical than generating an

optimal chain. We define that a near optimal chain is a chain that is different from an

optimal chain by 1DBL cost at most, as Definition 6 shows. The results show that the

DAG/bucket method generated a near optimal chain in significantly less time than the

rDAG-based method. To explain, Table 7.5 shows that when bucket-size = 4, the

DAG/bucket method generated a near optimal chain. This is because the m difference

between the rDAG-based method and the DAG/bucket method with bucket-size = 4 is

2170.55M− 2165.58M = 4.97M. This implies it is a near optimal chain because 4.97M

is less than 1DBL cost in standard twisted Edwards coordinates. We noted that

time = 4093.47µs in the DAG/bucket method with bucket-size = 4 and

time = 14818.8µs in the rDAG-based method. This implies that the percentage increase

of time is 72.37%. Therefore, it is more practical to generate an near optimal chain

because it takes significantly less time than an optimal chain.

7.3 Experiment III

Our objective in this experiment was to compare the optimal and the novel

pre-computation schemes of window τ -NAF for Koblitz curves. We implemented the

95

optimal and the novel pre-computation schemes, as Table 4.16 and Table 4.17 show. We

utilized the τ̄P formula in λ-projective and twisted µ4-normal coordinates, as Table

4.18, Table 4.19, and Table 4.20 show. We present the results of Experiment III in

Table 7.6, Table 7.7, Table 7.8, and Table 7.9.

Table 7.6 and Table 7.8 show the theoretical comparison between the optimal and

the novel pre-computation schemes in both λ-projective and twisted µ4-normal

coordinates. In these tables, we counted the number of multiplications (m) for the

window width 4, 5, and 6. For twisted µ4-normal coordinates, when a = 0, we assumed

the cost of mixed P +Q = 6M + 2S, τ̄P = 2M + 2S and τP = 3S. When a = 1, the

cost of mixed P +Q = 8M + 2S, τ̄P = 6M + 5S and τP = 3S. For λ-coordinates, we

assumed the cost of mixed P +Q = 8M + 2S, τ̄P = 5M + 3S and τP = 2S.

Table 7.7 and Table 7.9 show the average running time (time) comparison

between the optimal and the novel pre-computation schemes in λ-projective and twisted

µ4-normal coordinates. We focused on 283-bit integers when Koblitz curve coefficient

a = 0 and 163-bit integers when Koblitz curve coefficient a = 1. The domain

parameters for the used Koblitz curves can be found in Barker (2013).

7.3.1 Results of Experiment III. We obtained two main results from

Experiment III. First result: with respect to m and time, the novel scheme had a better

performance than the optimal scheme. To explain, for λ-coordinates, the novel scheme

had an approximately 20% to 33% lower m than the optimal scheme. For twisted

µ4-normal coordinates, when a = 0, the novel scheme had an approximately 39% to

63% lower m than the optimal scheme. When a = 1, the novel scheme had an

approximately 6% to 16% lower m. We see that when a = 0, the novel scheme in

twisted µ4-normal coordinates showed significant improvement over the optimal scheme.

We also see that the novel scheme in λ-coordinates had the same percentage of

improvement in both cases, a = 1 and a = 0.

Second result: consider only the novel scheme. With respect to m and time, when

a = 0, the novel scheme in µ4-normal coordinates had a better performance than

λ-coordinates. In contrast, when a = 1, the novel scheme in λ-coordinates had a better

96

performance than µ4-normal coordinates. To explain, when a = 0, the novel scheme in

µ4-normal coordinates had an approximately 40% to 54% lower m than λ-coordinates.

When a = 1, the novel scheme in λ-coordinates had an approximately 14% to 22% lower

m than µ4-normal coordinates.

Table 7.6
Theoretical Comparison between the Optimal and the Novel Pre-computation Schemes
when a = 0

λ-projective µ4-normal
Optimal Novel % Optimal Novel %

w = 4 24M + 10S ≈ 28.0M 15M + 9S ≈ 18.6M 33.57 18M + 12S ≈ 22.8M 6M + 6S ≈ 8.4M 63.15
w = 5 56M + 18S ≈ 63.2M 38M + 22S ≈ 46.8M 25.94 42M + 20S ≈ 50.0M 18M + 17S ≈ 24.8M 50.40
w = 6 120M + 34S ≈ 133.6M 90M + 42S ≈ 106.8M 20.05 90M + 36S ≈ 104.4M 50M + 33S ≈ 63.2M 39.46
%: The improvement percentage.

Table 7.7
Running Time Comparison between the Optimal and the Novel Pre-computation
Schemes when a = 0

λ-projective µ4-normal
Optimal∗ Novel∗ % Optimal∗ Novel∗ %

w = 4 9.17 5.90 35.65 7.75 3.11 59.87
w = 5 21.67 15.25 29.62 16.94 9.11 46.22
w = 6 47.07 36.08 23.34 34.96 22.25 36.35
%: The improvement percentage.
∗: The average running time in µs.

Table 7.8
Theoretical Comparison between the Optimal and the Novel Pre-computation Schemes
when a = 1

λ-projective∗ µ4-normal
Optimal Novel % Optimal Novel %

w = 4 24M + 10S ≈ 28.0M 15M + 9S ≈ 18.6M 33.57 24M + 12S ≈ 28.8M 18M + 15S ≈ 24.0M 16.66
w = 5 56M + 18S ≈ 63.2M 38M + 22S ≈ 46.8M 25.94 56M + 20S ≈ 64.0M 44M + 35S ≈ 58.0M 9.37
w = 6 120M + 34S ≈ 133.6M 90M + 42S ≈ 106.8M 20.05 120M + 36S ≈ 134.4M 100M + 63S ≈ 125.2M 6.84
%: The improvement percentage.

Table 7.9
Running Time Comparison between the Optimal and the Novel Pre-computation
Schemes when a = 1

λ-projective µ4-normal
Optimal∗ Novel∗ % Optimal∗ Novel∗ %

w = 4 5.79 3.75 35.23 5.84 4.79 17.97
w = 5 13.28 9.37 29.44 12.73 11.52 9.51
w = 6 28.04 21.32 23.96 27.09 28.08 7.41
%: The improvement percentage.
∗: The average running time in µs.

97

8 Conclusion & Future Directions

8.1 Conclusion

Elliptic curve cryptography (ECC) is one of the most efficient types of public-key

cryptography. It is appropriate for application when computing resources are restricted.

Scalar multiplication (tP), an operation that adds point P on an elliptic curve to itself t

times, is the main operation that is extensively used by ECC protocols. Therefore, this

research studied the efficiency problem of scalar multiplication of ECC. One of the

primary methods of speeding up scalar multiplication is to represent integer t by a

single-base number system (SBNS). In the SBNS, point additions (P +Q) are replaced

with point doublings (2P) for a faster performance. Minimizing the number of point

additions is an essential technique to speed up scalar multiplication because a P +Q

formula has a higher cost than other formulas, such as 2P .

A multi-base number system (MBNS) is a natural extension of the SBNS. The

theoretical analysis and experimental results showed that when integer t was

represented in the MBNS, the form length, on average, became shorter than when it is

represented in the SBNS. This property leads to continued minimization of the number

of point additions. However, it raises two new problems that need to be solved: the first

problem is that the MBNS requires new optimized formulas such as 3P and 5P . The

second problem is that the MBNS needs a method that generates a high quality chain

in an efficient manner.

To address the first problem, whenever possible, this research derived several

optimized formulas in different elliptic curve coordinate systems. Weierstrass curves

were the main focus because they are recommended by the National Institute of

Standards and Technology (NIST). In the context of the MBNS, Jacobian projective

coordinates are the most efficient coordinates for simplified Weierstrass curves over

prime fields. λ-projective and twisted µ4-normal coordinates are the most efficient

coordinates for binary elliptic curves and Koblitz curves. Additionally, this research

studied twisted Edwards curves because they have the most efficient 2P formulas over

prime fields. In the context of the MBNS, 2P is the most important formula because it

98

is the most frequently used operation during scalar multiplication.

For Weierstrass curves, this research reviewed the previous studies of formula

derivations in affine and projective coordinates over prime and binary fields. Then, new

4P and 5P formulas in affine coordinates and a new 2P formula in projective

coordinates over prime fields were proposed. Also, new 2P and τ̄P formulas in twisted

µ4-normal coordinates over binary fields were proposed. For Koblitz curves, the

τ̄P = µP − τP formula was used to improve the performance of the pre-computation

schemes of the window τ -NAF. For twisted Edwards curves, this research reviewed

previous studies of formula derivations and proposed 2Q+ P and 5P formulas in

standard projective coordinates.

To address the second problem, this research theoretically and experimentally

advanced the MBNS methods. First, this research studied the existing MBNS methods:

greedy, ternary/binary, multi-base NAF, tree-based, and rDAG-based. The emphasis

was on the average chain length, the average chain cost, and the average conversion cost

of the methods. The conversion cost can be expressed by the time complexity of a

method to convert integer t to a chain. It is critical for a method to balance the

conversion cost and the chain cost for a faster performance. This is because this research

assumed a method goes through two phases. The first phase is to convert integer t to a

chain and the second phase is to perform scalar multiplication on a given chain. Second,

this research developed bucket methods for the tree-based and DAG-based abstract

ideas. These bucket methods systematically balance the chain cost and the time to find

the chain. They can generate a near optimal chain in efficient manner.

Last, this research conducted experiments to compare the SBNS methods and the

MBNS methods utilizing state of the art formulas in both prime and binary fields. The

experimental results showed that the MBNS methods without pre-computation had an

approximately 6% to 11% lower average chain cost than the SBNS methods. Except for

the greedy method, the experimental results showed that the MBNS methods sped up

the running time by approximately 6% to 14% in comparison to the SBNS methods.

They showed that the average chain cost of the MBNS methods could be further

99

improved when the pre-computation concept was considered. However, this

pre-computation could affect the average running time of a method. Additionally, this

research conducted experiments to compare the pre-computation schemes of the window

τ -NAF. The experimental results showed that the pre-computation scheme with the

newly proposed τ̄P formula improved the performance significantly in comparison to

other schemes.

8.2 Future Directions

The next step in this research is to continue the work of deriving optimized

formulas for different elliptic curves over prime fields. This research studied only

Weierstrass curves and twisted Edwards curves and learned many techniques that can

be applied to other elliptic curves. First, we need to review the previous studies of

formula derivations represented by other elliptic curves. Second, we need to see in

which situations these other elliptic curves are useful. Third, we need to apply this

research’s techniques of deriving optimized formulas to the other elliptic curves. Finally,

we need to conduct experiments to see whether the MBNS methods represented by the

other elliptic curves speed up scalar multiplication.

Other studies proposed optimized formulas for different elliptic curves over prime

fields. Doche, Icart, and Kohel (2006) proposed an elliptic curve with the most efficient

3P formula over prime fields. Their 3P costs 6M + 6S when the curve coefficient is

selected as a small constant. It saves approximately 0.6M in comparison to 3P in

twisted Edwards curves. Additionally, Jacobi intersection and Jacobi quartic curves are

suggested against side-channel attacks (Liardet & Smart, 2001; Billet & Joye, 2003).

Later, Hisil, Carter, and Dawson (2007) and Li et al. (2016) derived formulas

represented by these curves. Smart (2001) and Joye and Quisquater (2001) suggested

Hessian curves for multiprocessing systems and side-channel attack resistance. Later,

Hisil, Wong, Carter, and Dawson (2007) derived formulas represented by Hessian

curves. We see that other studies suggested different elliptic curves for different

purposes such as for efficiency, side-channel resistance, and multiprocessing systems.

100

Further research needs to be done on deriving optimized formulas for these curves.

The second future direction of this research is to study the MBNS in controlled

environments. Doche (2014) introduced the idea that states that we do not need to

convert integer t to its MBNS form, but instead we should generate direct uniform

random integer t in its MBNS form. In this research, we assumed that we should

convert integer t to its MBNS form as a part of the MBNS methods. Nevertheless, this

idea has the potential to significantly speed up scalar multiplication. However, it raises

many questions that need answers. How can we generate direct uniform random integer

t in its MBNS form? How can we guarantee the optimality of the generated random

number in its MBNS form? It is important that the uniform random number in its

MBNS form be optimal so that the MBNS methods can achieve the highest possible

performance. This will lead us to investigate the question of how we can know if the

MBNS form is an optimal. In Section 2.3, we assumed that the rDAG-based method

generates an optimal MBNS form because we do not know a method that is better than

the rDAG-based method. Therefore, generating a uniform random number in its

optimal MBNS form will be one of our future studies.

The third future direction of this research is to investigate how resistant the

MBNS is against side-channel attacks. In a side-channel attack, an attacker listens to a

channel (e.g., power consumption, noise level, length of time) to predict internal

operations of ECC. We know that the SBNS methods without countermeasures are not

resistant to side-channel attacks because it is possible for an attacker to predict the

secret key by listening to P +Q and 2P operations during scalar multiplication

(Kocher, Jaffe, & Jun, 1999; Kocher, 1996).

The situation is different in the MBNS methods, so we need to answer the

following questions. First, how hard is it for an attacker to predict the secret key by

listening to the internal operations (e.g., P +Q, 2P , 3P , 5P) of the MBNS methods?

Second, which techniques should we use in the MBNS methods to resist side-channel

attacks? In SBNS, we use Montgomery ladder, double-and-add always, or unified P +Q

formulas to resist simple side-channel attacks (Montgomery, 1987; Coron, 1999; Brier &

101

Joye, 2002). Third, which elliptic curve is more efficient for the MBNS methods to

resist side-channel attacks? Twisted Edwards, Weierstrass, Doche/Icart/Kohel, Jacobi

intersection, Jacobi quartic, and Hessian curves have potential for future studies.

Fourth, do the MBNS methods with side-channel countermeasures give faster

performance than SNBS methods? To answer this question, we need to conduct

experiments to see if the MBNS methods that resist side-channel attacks can speed up

scalar multiplication over SNBS methods. We see many questions about the MBNS

methods regarding their resistance to side-channel attacks that need to be answered.

Therefore, we plan to study the MBNS methods that resist side-channel attacks.

The fourth direction of this research is to propose formulas for multiprocessing

systems. In this research, we proposed our formulas with the goal of minimizing the

number of inversion, multiplication, and squaring operations. We relied on operating

systems to utilize the multiprocessing capability. In future studies, we plan to propose

algorithms for P +Q, 2P , 3P , and 5P formulas that are capable of working in parallel

on multiple processors. Our goal in this new approach is to distribute the operations

evenly among processors such that we minimize the number of steps to perform the

formulas.

In this research, we stated that Twisted Edwards curves are the most efficient

option for serial processors but that they might not be the most efficient option for

multiprocessing systems. In fact, Smart (2001) suggested that Hessian curves are

efficient options for multiprocessing systems. For example, by using three processors

working in parallel, Smart (2001) proposed P +Q and 2P formulas represented by

Hessian curves with cost 4M and 2M + 1S respectively. We also need to conduct

experiments to verify if these formulas are capable of working on multiprocessing

systems to speed up scalar multiplication. Therefore, we will derive optimized formulas

for multiprocessing systems in our future studies.

102

9 References

Ajeena, R. K. K., & Kamarulhaili, H. (2014). Point multiplication using integer

sub-decomposition for elliptic curve cryptography. Applied Math. Info. Sciences,

8 (2).

Al Musa, S., & Xu, G. (2017). Fast scalar multiplication for elliptic curves over binary

fields by efficiently computable formulas. In A. Patra & N. Smart (Eds.), Proc.

INDOCRYPT 2017 (p. 206-226). Cham: Springer.

Aranha, D. F., Barreto, P. S. L. M., Pereira, G. C. C. F., & Ricardini, J. E. (2013). A

note on high-security general-purpose elliptic curves. Cryptology ePrint Archive,

Report 2013/647. (https://eprint.iacr.org/2013/647)

Avanzi, R., Cohen, H., Doche, C., Frey, G., Nguyen, K., Lange, T., & Vercauteren, F.

(2005). Handbook of elliptic and hyperelliptic curve cryptography. Chapman &

Hall/CRC.

Avanzi, R., Dimitrov, V., Doche, C., & Sica, F. (2006). Extending scalar multiplication

using double bases. In K. Chen (Ed.), Proc. ASIACRYPT 2006 (p. 130-144).

Heidelberg: Springer.

Barker, E. (2013). Digital signature standard (DSS). FIPS PUB. Retrieved from

https://www.nist.gov/publications/digital-signature-standard-dss-2

Bernstein, D., Birkner, P., Joye, M., Lange, T., & Peters, C. (2008). Twisted Edwards

curves. In S. Vaudenay (Ed.), Proc. AFRICACRYPT 2008 (p. 389-405).

Heidelberg: Springer.

Bernstein, D., Birkner, P., Lange, T., & Peters, C. (2007). Optimizing double-base

elliptic curve single-scalar multiplication. In K. Srinathan, C. Rangan, & M. Yung

(Eds.), Proc. INDOCRYPT 2007 (p. 167-182). Heidelberg: Springer.

Bernstein, D., Chuengsatiansup, C., & Lange, T. (2017). Double-base scalar

multiplication revisited. Cryptology ePrint Archive, Report 2017/037.

(https://eprint.iacr.org/2017/037)

Bernstein, D., & Lange, T. (2007a). Faster addition and doubling on elliptic curves.

Cryptology ePrint Archive, Report 2007/286.

103

(https://eprint.iacr.org/2007/286)

Bernstein, D., & Lange, T. (2007b). Inverted Edwards coordinates. In S. Boztas &

H. Lu (Eds.), Proc. AAECC 2007 (p. 20-27). Heidelberg: Springer.

Berthe, V., & Imbert, L. (2004). On converting numbers to the double-base number

system. Adv. Signal Pro. Algo. Archit. Implement. XIV., 5559 , 70–78.

Billet, O., & Joye, M. (2003). The Jacobi model of an elliptic curve and side-channel

analysis. In M. Fossorier, T. Høholdt, & A. Poli (Eds.), Proc. AAECC 2003

(p. 34-42). Heidelberg: Springer.

Blake, I. F., Murty, V. K., & Xu, G. (2005). A note on window τ -NAF algorithm. Info.

Processing Letters., 95 (5), 496-502.

Blake, I. F., Murty, V. K., & Xu, G. (2008). Nonadjacent radix-τ expansions of integers

in euclidean imaginary quadratic number fields. Canadian J. of Math., 60 ,

1267-1282.

Bos, J. W., Costello, C., Longa, P., & Naehrig, M. (2014). Selecting elliptic curves for

cryptography: An efficiency and security analysis. Cryptology ePrint Archive,

Report 2014/130. (https://eprint.iacr.org/2014/130)

Brier, E., & Joye, M. (2002). Weierstrass elliptic curves and side-channel attacks. In

D. Naccache & P. Paillier (Eds.), Proc. PKC 2002 (p. 335-345). Heidelberg:

Springer.

Chudnovsky, D. V., & Chudnovsky, G. V. (1986). Sequences of numbers generated by

addition in formal groups and new primality and factorization tests. Advances in

Applied Math., 7 , 385–434.

Ciet, M., Joye, M., Lauter, K., & Montgomery, P. (2006). Trading inversions for

multiplications in elliptic curve cryptography. Designs, Codes and Cryptography,

39 (2), 189-206.

Coron, J.-S. (1999). Resistance against differential power analysis for elliptic curve

cryptosystems. In C. Koc & C. Paar (Eds.), Proc. CHES 1999 (p. 292-302).

Heidelberg: Springer.

Crosby, M., Nachiappan, Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016).

104

Blockchain technology: Beyond bitcoin. Retrieved from

http://scet.berkeley.edu/wp-content/uploads/AIR-2016-Blockchain.pdf

Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Information

Theory Society, 22 , 644-654.

Dimitrov, V., Eskritt, J., Imbert, L., Jullien, G., & Miller, W. (2001). The use of the

multi-dimensional logarithmic number system in DSP applications. In Proc. 15th

IEEE Symposium on Computer Arithmetic. USA: IEEE.

Dimitrov, V., Imbert, L., & Mishra, P. (2005). Efficient and secure elliptic curve point

multiplication using double-base chains. In B. Roy (Ed.), Proc. ASIACRYPT

2005 (p. 59-78). Heidelberg: Springer.

Dimitrov, V., Imbert, L., & Mishra, P. (2008). The double-base number system and its

application to elliptic curve cryptography. Mathematics of Computation, 77 (262),

1075-1104.

Dimitrov, V., Jullien, G., & Miller, W. (1998). An algorithm for modular

exponentiation. Information Processing Letters, 66 , 155-159.

Doche, C. (2014). On the enumeration of double-base chains with applications to

elliptic curve cryptography. In P. Sarkar & T. Iwata (Eds.), Proc. ASIACRYPT

2014 (p. 297-316). Heidelberg: Springer.

Doche, C., & Habsieger, L. (2008). A tree-based approach for computing double-base

chains. In Y. Mu, W. Susilo, & J. Seberry (Eds.), Proc. ACISP 2008 (p. 433-446).

Heidelberg: Springer.

Doche, C., Icart, T., & Kohel, D. R. (2006). Efficient scalar multiplication by isogeny

decompositions. In M. Yung, Y. Dodis, A. Kiayias, & T. Malkin (Eds.), Proc.

PKC 2006 (p. 191-206). Heidelberg: Springer.

Doche, C., & Imbert, L. (2006). Extended double-base number system with

applications to elliptic curve cryptography. In R. Barua & T. Lange (Eds.), Proc.

INDOCRYPT 2006 (p. 335-348). Heidelberg: Springer.

Doche, C., Kohel, D., & Sica, F. (2009). Double-base number system for multi-scalar

multiplications. In A. Joux (Ed.), Proc. EUROCRYPT 2009 (p. 502-517).

105

Heidelberg: Springer.

Dworkin, M. J. (2015). SHA-3 standard: Permutation-based hash and extendable-output

functions. FIPS PUB. Retrieved from https://www.nist.gov/publications/

Dworkin, M. J., Barker, E. B., Nechvatal, J. R., Foti, J., Bassham, L. E., Roback, E., &

Jr., J. F. D. (2011). Advanced encryption standard (AES). FIPS PUB. Retrieved

from

https://www.nist.gov/publications/advanced-encryption-standard-aes

Gallant, R., Lambert, R., & Vanstone, S. (2001). Faster point multiplication on elliptic

curves with efficient endomorphisms. In J. Kilian (Ed.), Proc. CRYPTO 2001

(p. 190-200). Heidelberg: Springer.

Giorgi, P., Imbert, L., & Izard, T. (2009). Optimizing elliptic curve scalar multiplication

for small scalars. Mathematics for Signal and Information Processing, 7444 .

Granger, R., Kleinjung, T., & Zumbrägel, J. (2014). Breaking ‘128-bit secure’

supersingular binary curves. Cryptology ePrint Archive, Report 2014/119.

(https://eprint.iacr.org/2014/119)

Granlund, T., & et al. (n.d.). GNU multiple precision arithmetic library. Retrieved

from http://www.gmplib.org

Hamburg, M. (2015). Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint

Archive, Report 2015/625. (https://eprint.iacr.org/2015/625)

Hankerson, D., Menezes, A., & Vanstone, S. (2004). Guide to elliptic curve

cryptography. Springer-Verlag.

He, D., & Zeadally, S. (2014). An analysis of RFID authentication schemes for internet

of things in healthcare environment using elliptic curve cryptography. IEEE

Internet of Things Journal, 2 , 72-83.

Hisil, H., Carter, G., & Dawson, E. (2007). New formulae for efficient elliptic curve

arithmetic. In S. K., R. C.P., & Y. M. (Eds.), Proc. INDOCRYPT 2007

(p. 138-151). Heidelberg: Springer.

Hisil, H., Wong, K. K.-H., Carter, G., & Dawson, E. (2007). Faster group operations on

elliptic curves. Cryptology ePrint Archive, Report 2007/441.

106

(https://eprint.iacr.org/2007/441)

Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital signature

algorithm (ECDSA). International Journal of Information Security, 1 , 36-63.

Josefsson, S., & Liusvaara, I. (2017). RFC8032: Edwards-curve digital signature

algorithm (EdDSA). Retrieved from https://tools.ietf.org/html/rfc8032

Joye, M., & Quisquater, J.-J. (2001). Hessian elliptic curves and side-channel attacks.

In C. Koc, D. Naccache, & C. Paar (Eds.), Proc. CHES 2001 (p. 402-410).

Heidelberg: Springer.

Kim, D., & Lim, S. (2002). Integer decomposition for fast scalar multiplication on

elliptic curves. In K. Nyberg & H. Heys (Eds.), Proc. SAC 2002 (p. 13-20).

Heidelberg: Springer.

Koblitz, N. (1987). Elliptic curve cryptosystems. Math. of Computation, 48 (177),

203-209.

Koblitz, N. (1992). CM-curves with good cryptographic properties. In J. Feigenbaum

(Ed.), Proc. CRYPTO 1991 (p. 279-287). Heidelberg: Springer.

Koblitz, N., & Menezes, A. (2015). A riddle wrapped in an enigma. Cryptology ePrint

Archive, Report 2015/1018. (https://eprint.iacr.org/2015/1018)

Kocher, P. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In N. Koblitz (Ed.), Proc. CRYPTO 96 (p. 104-113).

Heidelberg: Springer.

Kocher, P., Jaffe, J., & Jun, B. (1999). Differential power analysis. In M. Wiener (Ed.),

Proc. CRYPTO 99 (p. 388–397). Heidelberg: Springer.

Kohel, D. (2017). Twisted µ4-normal form for elliptic curve. Cryptology ePrint

Archive, Report 2017/121. (https://eprint.iacr.org/2017/121)

Lange, T. (2004). A note on Lopez-Dahab coordinates. Cryptology ePrint Archive,

Report 2004/323. (https://eprint.iacr.org/2004/323)

Le, D. (2011). Fast quadrupling of a point in elliptic curve cryptography. Cryptology

ePrint Archive, Report 2011/039. (https://eprint.iacr.org/2011/039)

Lenstra, A., & Verheul, E. (2001). Selecting cryptographic key sizes. Journal of

107

Cryptology, 14 , 255-293.

Li, W., Yu, W., & Wang, K. (2016). Improved tripling on elliptic curves. In D. Lin,

X. Wang, & M. Yung (Eds.), Proc. Inscrypt 2015 (p. 193-205). Cham: Springer.

Liardet, P., & Smart, N. (2001). Preventing SPA/DPA in ECC systems using the

Jacobi form. In C. Koc, D. Naccache, & C. Paar (Eds.), Proc. CHES 2001

(p. 391-401). Heidelberg: Springer.

Longa, P., & Gebotys, C. (2009). Fast multibase methods and other several

optimizations for elliptic curve scalar multiplication. In S. Jarecki & G. Tsudik

(Eds.), Proc. PKC 2009 (p. 443-462). Heidelberg: Springer.

Longa, P., & Miri, A. (2008a). Fast and flexible elliptic curve point arithmetic over

prime fields. IEEE Transactions on Computers, 57 , 289-302.

Longa, P., & Miri, A. (2008b). New composite operations and precomputation scheme

for elliptic curve cryptosystems over prime fields. In R. Cramer (Ed.), Proc. PKC

2008 (p. 229-247). Heidelberg: Springer.

Longa, P., & Miri, A. (2008c). New multibase non-adjacent form scalar multiplication

and its application to elliptic curve cryptosystems. Cryptology ePrint Archive,

Report 2008/052. (https://eprint.iacr.org/2008/052)

Lopez, J., & Dahab, R. (1999). Improved algorithms for elliptic curve arithmetic in

GF(2n). In S. Tavares & H. Meijer (Eds.), Proc. SAC 1998 (p. 201–212).

Heidelberg: Springer.

Matula, D., & Kornerup, P. (n.d.). Multiprecision integer and rational arithmetic c

library. Retrieved from http://www.miracl.com

Miller, V. (1986). Use of elliptic curves in cryptography. In H. Williams (Ed.), Proc.

CRYPTO 1985 (p. 417-426). Heidelberg: Springer.

Mishra, P., & Dimitrov, V. (2007). Efficient quintuple formulas for elliptic curves and

efficient scalar multiplication using multibase number representation. In J. Garay,

A. Lenstra, M. Mambo, & R. Peralta (Eds.), Proc. ISC 2007 (p. 390-406).

Heidelberg: Springer.

Montgomery, P. L. (1987). Speeding the Pollard and elliptic curve methods of

108

factorization. Mathematics of Computation, 48 , 243–264.

Nakamoto, S. (2011). Bitcoin: A peer-to-peer electronic cash system. Retrieved from

https://bitcoin.org/bitcoin.pdf

Oliveira, T., Lopez, J., Aranha, D., & Rodriguez-Henriquez, F. (2014). Two is the

fastest prime: lambda coordinates for binary elliptic curves. Journal of

Cryptographic Engineering, 4 (1), 3-17.

Pollard, J. M. (1975). A monte carlo method for factorization. BIT Numerical

Mathematics, 15 , 331–334.

Rescorla, E. (2018). RFC8446: The transport layer security (TLS) protocol version 1.3.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM , 21 (2).

Santoso, F., & Vun, N. (2015). Securing iot for smart home system. In Proc. ISCE

2015 (p. 1-2). Spain: IEEE.

Smart, N. (2001). The Hessian form of an elliptic curve. In C. Koc, D. Naccache, &

C. Paar (Eds.), Proc. CHES 2001 (p. 118-125). Heidelberg: Springer.

Solinas, J. (2000). Efficient arithmetic on Koblitz curves. Designs, Codes and

Cryptography, 19 (23), 195-249.

Stebila, D., & Green, J. (2009). RFC5656: Elliptic curve algorithm integration in the

secure shell transport layer. Retrieved from

https://tools.ietf.org/html/rfc5656

Subramanya Rao, S. (2016). Three dimensional Montgomery ladder, differential point

tripling on Montgomery curves and point quintupling on Weierstrass’ and

Edwards curves. In D. Pointcheval, A. Nitaj, & T. Rachidi (Eds.), Proc.

AFRICACRYPT 2016 (p. 84-106). Cham: Springer.

Takagi, T., Reis, D., Yen, S.-M., & Wu, B.-C. (2006). Radix-r nonadjacent form and its

application to pairing-based cryptosystem. IEICE Transactions, E89-A, 115-123.

Trost, W., & Xu, G. (2016). On the optimal pre-computation of window tNAF for

Koblitz curves. IEEE Transactions on Computers, 65 , 29195-249.

Watson, L. (2018). Blockchain: The ultimate guide to understanding the technology

109

behind bitcoin and cryptocurrency. CreateSpace Independent Publishing Platform.

Xu, G. (2009, 01). Short vectors, the GLV method and discrete logarithms. , 45 .

Yasin, S., & Muda, Z. (2015). Tripling formulae of elliptic curve over binary field in

Lopez-Dahab model. Journal of Theoretical and Applied Information Technology,

75 (2).

Yu, W., Al Musa, S., Xu, G., & Li, B. (2018). A novel pre-computation scheme of

window τNAF for Koblitz curves. Cryptology ePrint Archive, Report 2017/1020.

(https://eprint.iacr.org/2017/1020)

Yu, W., Kim, K., & Jo, M. (2015). New fast algorithms for elliptic curve arithmetic in

affine coordinates. In K. Tanaka & Y. Suga (Eds.), Proc. IWSEC 2015 (p. 56-64).

Cham: Springer.

Yu, W., Wang, K., Li, B., & Tian, S. (2013). Triple-base number system for scalar

multiplication. In A. Youssef, A. Nitaj, & A. Hassanien (Eds.), Proc.

AFRICACRYPT 2013 (p. 433-451). Heidelberg: Springer.

Zhu, L., Jaganathan, K., & Lauter, K. (2008). RFC5349: Elliptic curve cryptography

(ECC) support for public key cryptography for initial authentication in Kerberos

(PKINIT). Retrieved from https://www.ietf.org/rfc/rfc5349.txt

110

10 Appendix: Algorithms

Algorithm 10.1 shows that point tripling (TPL) in standard twisted Edwards

coordinates needs 2 temporary variables. This 3P formula is shown in Table 3.16.

Algorithm 10.1 TPL in Standard Twisted Edwards Coordinates
Input: P = (X, Y, Z)
Output: 3P = (X3, Y3, Z3)
X3 = Y 2

Y3 = X2

Y3 = a ·X3
Z3 = X3 + Y3 {Z3 = Y 2 + aX3 = T}
T1 = X3 − Y3 {T1 = T̄}
T1 = T1 · Z3 {T1 = T T̄}
T2 = Z2

T2 = T2 + T2
T2 = Z3 − T2 {T2 = T − 2Z2}
X3 = X3 +X3
X3 = X3 · T2 {X3 = 2Y 2(T − 2Z2)}
Y3 = Y3 + Y3
Y3 = Y3 · T2 {Y3 = 2aX2(T − 2Z2)}
Z3 = T1 +X3 {Z3 = T T̄ + 2Y 2(T − 2Z2) = A}
X3 = T1 −X3 {X3 = Ā}
X3 = X3 · Z3 {X3 = AĀ}
T2 = T1 − Y3 {T2 = T T̄ − 2aX2(T − 2Z2) = B}
Y3 = T1 + Y3 {Y3 = B̄}
Y3 = Y3 · T2 {Y3 = BB̄}
Z3 = Z3 · T2 {Z3 = AB}
Z3 = Z · Z3 {Z3 = ZAB}
X3 = X ·X3 {X3 = XAĀ}
Y3 = Y · Y3
Y3 = −Y3 {Y3 = −Y BB̄}
return: (X3, Y3, Z3)

111

Algorithm 10.2 shows that point quintupling (QPL) in standard twisted Edwards

coordinates needs 2 temporary variables. This 5P formula is shown in Table 3.17.

Algorithm 10.2 QPL in Standard Twisted Edwards Coordinates
Input: P = (X, Y, Z)
Output: 5P = (X5, Y5, Z5)
Z5 = Y 2

Y5 = X2

Y5 = a · Y5
X5 = Z5 + Y5 {X5 = Y 2 + aX2 = T}
T1 = Z2

T1 = T1 + T1
T1 = X5 − T1 {T1 = T − 2Z2}
Z5 = Z5 + Z5 {Z5 = 2Y 2}
Y5 = Y5 + Y5 {Y5 = 2aX2}
Z5 = Z5 · T1 {Z5 = 2Y 2(T − 2Z2)}
T1 = Y5 · T1 {T1 = 2aX2(T − 2Z2)}
Y5 = X5 − Y5 {Y5 = T − aX2 = T̄}
Y5 = Y5 ·X5 {Y5 = T T̄}
X5 = Y5 + Z5 {X5 = T T̄ + 2Y 2(T − 2Z2) = A}
T2 = Y5 − Z5 {T2 = Ā}
X5 = X5 · T2 {X5 = AĀ}
T2 = Y5 − T1 {T2 = T T̄ − 2aX2(T − 2Z2) = B}
Y5 = Y5 + T1 {Y5 = B̄}
Y5 = T2 · Y5 {Y5 = BB̄}
T2 = T2 + T1 {T2 = T T̄}
T1 = T1 ·X5 {T1 = 2aX2(T − 2Z2)AĀ}
Z5 = Z5 · Y5 {Z5 = 2Y 2(T − 2Z2)BB̄}
X5 = T2 ·X5
X5 = −X5 {X5 = −T T̄ AĀ}
Y5 = T2 · Y5 {Y5 = T T̄ BB̄}
T2 = X5 + Z5 {T2 = −T T̄ AĀ+ 2Y 2(T − 2Z2)BB̄ = C}
X5 = X5 − Z5
X5 = T2 ·X5
X5 = X ·X5 {X5 = X CC̄}
Z5 = Y5 + T1 {Z5 = T T̄ BB̄ + 2aX2(T − 2Z2)AĀ = D}
Y5 = Y5 − T1
Y5 = Z5 · Y5
Y5 = Y · Y5 {Y5 = Y DD̄}
Z5 = T2 · Z5
Z5 = Z · Z5 {Z5 = ZCD}
return: (X5, Y5, Z5)

112

Algorithm 10.3 shows that TPL in λ-coordinates needs 3 temporary variables. This 3P

formula is shown in Table 4.10.

Algorithm 10.3 TPL in λ-coordinates over F2m

Input: P = (X,L, Z)
Output: 3P = (X3, L3, Z3)
L3 = L · Z
T1 = Z2

X3 = a · T1 {X3 = aZ2}
Z3 = L2

Z3 = Z3 + L3
Z3 = Z3 +X3 {Z3 = L2 + LZ + aZ2 = T}
X3 = Z3 · T1 {X3 = TZ2}
T2 = X2

3
T2 = Z3 · T2 {T (A+B)2}
T3 = X · Z
Z3 = Z3 + T3
Z3 = Z2

3 {Z3 = (T +XZ)2 = A}
X3 = X3 + Z3 {X3 = TZ2 + A = B}
Z3 = Z3 ·X3 {Z3 = AB}
X3 = X2

3
X3 = T3 ·X3 {X3 = XZB2}
L3 = L3 + T1 {L3 = LZ + Z2}
L3 = L3 · Z3 {L3 = (LZ + Z2)AB}
L3 = T2 + L3 {L3 = T (A+B)2 + (LZ + Z2)AB}
Z3 = T1 · Z3 {Z3 = Z2AB}
return: (X3, L3, Z3)

113

Algorithm 10.4 shows that QPL in λ-coordinates needs 5 temporary variables. This 5P

formula is shown in Table 4.11.

Algorithm 10.4 QPL in λ-coordinates over F2m

Input: P = (X, Y, Z)
Output: 5P = (X5, L5, Z5)
X5 = L2

L5 = L · Z
Z5 = Z2

T1 = a · Z5 {T1 = aZ2}
T1 = X5 + T1 {T1 = L2 + aZ2}
T1 = L5 + T1 {T1 = LZ + L2 + aZ2 = T}
L5 = L5 + Z5 {L5 = LZ + Z2}
X5 = X · Z {X5 = XZ}
T2 = T1 +X5
T2 = T 2

2 {T2 = (T +XZ)2 = A}
T3 = T1 · Z5 {T3 = TZ2}
T4 = T3 · T1
T4 = T 2

4 {T4 = (T (A+B))2}
T3 = T3 + T2 {T3 = TZ2 + A = B}
T5 = T 2

3
T5 = T2 · T5 {T5 = AB2}
T4 = T4 + T5 {T4 = (T (A+B))2 + AB2 = C}
T2 = T 2

2
T2 = T2 · T3 {T2 = A2B}
T3 = T2 + T5 {T3 = A2B + AB2}
T2 = T2 · T5 {T2 = A2BAB2}
T5 = T3 + T4 {T5 = A2B + AB2 + C = D}
T3 = T 2

3
T3 = T3 · T1 {T3 = T (C +D)2}
T4 = T4 · T5 {T4 = CD}
L5 = L5 · T4
L5 = T3 + L5 {L5 = T (C +D)2 + (LZ + Z2)CD}
T2 = Z5 · T2 {T2 = Z2A2BAB2}
L5 = L5 + T2 {L5 = T (C +D)2 + (LZ + Z2)CD + Z2A2BAB2}
Z5 = Z5 · T4 {Z5 = Z2CD}
T5 = T 2

5
X5 = X5 · T5 {XZD2}
return: (X5, L5, Z5)

114

11 Curriculum Vitae

Personal Information
Name: Saud Al Musa

Place of birth: Saudi Arabia
Education
Dec 2018 University of Wisconsin Milwaukee (UWM). U.S.A.

Graduated with doctoral’s degree in computer science.

Aug 2011 Middle Tennessee State University (MTSU). U.S.A

Graduated with master’s degree in computer science.

Dec 2005 King Saud University (KSU). Saudi Arabia.

Graduated with bachelor’s degree in computer science.
Work Experience

Sept 2012 to Present Taibah University, Saudi Arabia.

Working as a Teaching Assistant.

Jan 2006 to Mar 2008 CERT-SA, Saudi Arabia.

Worked as an Information Security Engineer.
Certification
Jan 2012 Cisco Certified Network Associate (CCNA).

Dec 2011 CompTIA Security+.

Mar 2008 Certified Information Systems Security Professional (CISSP).

Aug 2007 Certified Ethical Hacker.

Publication

• Al Musa, S., & Xu, G. (2018). Fast scalar multiplication for elliptic curves over
prime fields by efficiently computable formulas. Cryptology ePrint Archive, Report
2018/964. (https://eprint.iacr.org/2018/964) [In submission].

• Yu, W., Al Musa, S., Xu, G., & Li, B. (2018). A novel pre-computation scheme of
window τNAF for Koblitz curves. Cryptology ePrint Archive, Report 2017/1020.
(https://eprint.iacr.org/2017/1020) [In submission].

• Al Musa, S., & Xu, G. (2017). Fast scalar multiplication for elliptic curves over
binary fields by efficiently computable formulas. In A. Patra & N. Smart (Eds.),
Proc. INDOCRYPT 2017 (p. 206-226). Cham: Springer.

115

	University of Wisconsin Milwaukee
	UWM Digital Commons
	December 2018

	Multi-Base Chains for Faster Elliptic Curve Cryptography
	Saud Al Musa
	Recommended Citation

	tmp.1551362413.pdf.BzmUJ

