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ABSTRACT 

EQUIVALENT CIRCUIT MODEL GENERATION FOR BATTERIES USING 
NON-IDEAL TEST DATA 

by 
 

Logan Crain 
 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Deyang Qu 

 
 
 

 Modeling is a key component in the development of battery products.  While 

there are multiple levels of complexity which may be achieved in model development, 

equivalent circuit modeling is able to quickly produce reliable and accurate predictions 

for battery behavior.  Though the use of equivalent circuit models has been described in 

great detail for lithium ion batteries, it is also desirable to use this methodology 

regardless of chemistry, specifically with respect to lead-acid technology.  When 

developing battery models for predicting battery behavior in a vehicle, the testing 

methods meant to mimic vehicle applications often cause non-ideal data for model 

generation.  Specifically, periods of constant voltage charging can limit the model’s 

robustness and accuracy.  This is due to the imposed voltage limit required for constant 

voltage charging which is not an inherent battery behavior.  By thoroughly examining 

equivalent circuit models of increasing complexity, it is shown that lead-acid and lithium 

ion batteries behave similarly so that minimal impact is had on model development.  

Additionally, three methods are considered for modifying the fitting process so that test 

data which contains voltage limits may still be considered useful for model development. 
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1. Introduction 

As climate change becomes an increasing concern, the fuel efficiency of vehicles is 

receiving a higher level of scrutiny.[1]  With this comes an increased reliance on battery 

performance to sustain the electrification of vehicles.  Regardless of whether the vehicle 

is fully electric or relies on an internal combustion engine, the battery is being tasked 

with a higher level of responsibility.[2,3] Newer battery-vehicle applications such as 

regenerative breaking and start-stop are able to improve fuel efficiency through strategic 

leverage of either the lead acid or lithium ion batteries in their powertrain. 

To meet the growing demand in battery performance, it is imperative to develop battery 

models to accurately assess various designs.  Modeling provides a low cost accelerated 

alternative to testing.  Additionally, it allows for large scale analysis which would be cost 

prohibitive in a testing environment.  The model is selected according to its accuracy in 

predicting battery behavior including peak power performance and energy throughput 

as well as its ease of implementation. 

Choosing a model which delivers the highest accuracy while limiting the time for 

development and implementation requires a careful balancing.  Physical based models 

which deliver the highest level of accuracy also require the greatest number of input 

variables and place the most emphasis on computing power and time.  Statistical 

models require a large sample size and may have hidden bias which cannot be 

assessed depending on data collection methods.  Therefore, in industry it is important to 

find some type of model which has high accuracy with limited parameters and quick 

implementation. 
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Fortunately, equivalent circuit models (ECM) were developed to achieve this goal.[4,5]  

By transforming the complex electrochemistry of a battery into a simple circuit, ECMs 

reduce the number of parameters to a minimum.  Additionally, they require a low level of 

complexity and can be solved with a simpler discretization method when compared to 

full scale physical models. 

Due to the maturity of ECMs, there are ranging levels of complexity developed to 

describe a large range in battery behaviors.[6-10]  The simplest ECM combines a voltage 

source with a resistor meant to mimic the battery’s open circuit voltage and internal 

resistance.  This model is capable of predicting the initial battery response, but does not 

provide insight into the polarization of the battery during and after a charge or 

discharge.  Improvements can be made by adding a resistor can capacitor (RC block, in 

parallel with one another) in series with the primary resistor commonly referred to as the 

Thevenin ECM.  For the highest level of accuracy, multiple RC blocks may be placed in 

series.  Additionally, the model can be transformed into an impedance model when 

considering an infinite number of RC blocks.[11,12]  While these models offer higher 

levels of accuracy, they also require additional testing and circuit elements which need 

to be determined. 

Within industry it is common to use either a one or two block RC ECM.  This requires 

minimal parameters while still capturing some dynamic behavior of the battery – which 

is important for modeling vehicle applications.  However, a one block RC model 

provides near the same accuracy as the two block RC model so that it may typically be 

deemed sufficient.[10] 
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Though research has been conducted on lead-acid battery ECM’s, their primary 

function appears to be within lithium ion battery modeling.  Lead-acid batteries remain 

an integral component to vehicles even in the increasingly electrified environment.  

Therefore, it is necessary to understand the limitations in using the same approach 

towards lead acid battery modeling as lithium ion modeling. 

The behavior of ECMs is well described within research (as previously noted) in areas 

where the battery is not inhibited by the testing or vehicle controls.  However, there is 

little to no available work which relays how these models perform otherwise.  Often 

when a battery is in a vehicle, it is subjected to periods of constant voltage – also known 

as voltage limits.  These limits alter the battery response and lead to inaccurate 

predictions when using models that do not account for them.  Therefore, it is the goal of 

this thesis to describe ECM behavior in voltage limited regions which may result from 

testing at high loads or with the purpose of mimicking vehicle behavior.  The second 

goal is to determine how accuracy may be improved for this type of modeling in both 

lead acid and lithium ion batteries. 
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2. Background 

In battery modeling, there are three key areas which contribute to the model generation:  

battery testing, model selection, and the model validation.  The following section 

provides some background and overview on these three areas as they relate to the 

following discussion. 

2.1 Battery Testing 

In order to develop the model, multiple characterization tests are required.  The number 

of tests which are needed depends on the complexity of the model.  Ideally, the tests 

are selected with model development in mind, however this is not always the case.  This 

test data can provide challenges as will be discussed later.  All tests used in this thesis’ 

model development are outlined and explained below.  

2.1.1 Open Circuit Voltage testing 

A battery’s open circuit voltage (OCV) is the measured potential difference when no 

loads are applied to the battery.  Due to the nature of battery kinetics, it can take 

upwards of an hour, sometimes even a day, after a load is applied to reach a potential 

equilibrium and thus have a reliable OCV measurement.  In the case of this thesis, the 

battery was rested over a day between measurements for both battery chemistries.  

OCV testing is conducted in a way to derive the battery’s relationship with its state of 

charge (SOC).  The state of charge is used to describe the amount of capacity the 

battery has left relative to its rated or measured capacity.  For example, a battery at 

70% SOC with a rated capacity of 10 Ah would be considered to have ~7Ah left in 

capacity.  Testing is carried out by applying a load at its rated amperage with breaks at 
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set intervals of SOC (typically 5-10%).  In some batteries there is a hysteresis in the 

SOC vs OCV curves when the test is conducted from a fully charged or fully discharged 

state.[13]  For the purposes of the following discussions, this will be assumed negligible.  

2.1.2 Capacity Testing 

In order to properly determine the SOC, the capacity of the battery must be determined.  

The capacity test is carried out by bringing a battery to a fully charged state and 

allowing it to rest.  Then, it is discharged according to its rated capacity until it reaches 

the minimum, or cutoff, voltage.  The capacity is extracted from the test by integrating 

the current from the beginning to the end of the discharge yielding a value in Ah.  

2.1.3 Additional Testing 

In addition to the capacity and OCV testing, some dynamic testing is needed to observe 

the battery’s response to varying loads.  Depending on the chemistry of the battery, 

different testing may be available for modeling engineers to extract the model 

parameters.  
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Worldwide Harmonized Light Vehicle Testing 

For the purposes of this thesis, the dynamic testing used to develop the lead acid 

battery models will be the worldwide harmonized light vehicle (WLTP) testing.  The 

WLTP testing is currently phasing out the New European Drive Cycle (NEDC) as 

laboratory testing to determine vehicle energy consumption and emissions within the 

EU.[14,15]  While the WLTP test is given as a vehicle speed profile, it may be transformed 

into a power load profile using vehicle simulation software.  This vehicle test is 

considered energy neutral so that the total Ah discharged from the battery are nearly 

equal to the Ah charged.  This means the battery should start and end at the same SOC 

Figure 1: Example of low load power profile for worldwide harmonized light vehicle testing procedure (WLTP) 
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level.  The test is 30 minutes long with loads meant to mimic a real driving profile.  An 

example of the power curve extracted from a vehicle simulation is shown in Figure 1.  

Hybrid Pulse Power Characterization Testing 

The dynamic testing used to develop lithium ion battery models will be multi current 

hybrid pulse power characterization (HPPC) testing.  HPPC testing is used to 

understand the dynamic response of a battery at different levels of state of charge.  At 

predetermined intervals (usually meant to line up with 10 % SOC increments) the 

battery is subjected to separate discharge and charge pulses at a single current for 30 

seconds each.  The battery is then discharged (or charged) to the following SOC level 

before it is allowed to rest and the pulse is repeated.  In order to create non-ideal test 

Figure 2: Zoomed in look at high power level HPPC pulse @ 25C for lithium ion cell 
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data for the purposes of this thesis, the current of charge and discharge was varied from 

low to high levels.  An example of an HPPC charge pulse at a high level of current is 

given in Figure 2.  

2.1.4 Voltage Limits & Testing 

When designing the WLTP and HPPC tests for model generation, the intensities of the 

loads are typically chosen to avoid reaching voltage limits.  Voltage limits are imposed 

to keep a battery from reaching dangerous levels of electric potential. The upper voltage 

limit is set to keep the battery from thermal runaway and lithium plating in lithium 

batteries and over gassing in lead acid batteries.  The lower voltage, or cutoff voltage, is 

set to keep the battery from irreversible capacity loss and resistance increase.  

Together, they provide a voltage window (Table 1) with which the battery may operate 

freely while under an applied load. 

Table 1: Voltage limits used in testing of lead acid and lithium ion batteries 

Battery Chemistry Upper Limit [V] Lower Limit [V] 

Lead Acid 14.8 6 

Lithium Ion 2.8 1.9 

 

When a voltage limit is reached, the battery tester will switch to a constant current, 

constant voltage charge method for the remaining duration of the load.  This means the 

current is tapered while holding the voltage at the imposed limit – a phenomenon which 

is not representative of the actual battery behavior.  When datasets contain voltage 

limited pulses, they can impact the accuracy of the battery model derived from them. 
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It is therefore ideal for tests to be developed to avoid the voltage limits.  However, this is 

not always possible due to time and monetary constraints.  Additionally, since batteries 

are often charged with constant voltage in a vehicle setting, it might also be beneficial to 

subject the batteries to similar conditions in the test data used for model generation.  

Assuming a dataset must contain voltage limits, it is desirable to use this data to 

produce reliable models. 

2.2 Battery Modeling 

2.2.1 Model Selection 

There are three main categories of battery modeling: physical based models, statistical 

based mathematical models, and equivalent circuit models.  Each model subsection has 

its own pros and cons in both research and industry.   

Physical based models are built from first principles with the fewest number of 

assumptions possible.   One of the most popular physical battery models was 

developed by John Newman and is known as the porous electrode theory (PET).[17-19]  

While there are versions of the PET developed for both lead acid batteries and lithium 

ion batteries, the implementation of these models requires a multitude of 

characterization tests to determine the appropriate constants, and a significant 

computing power.  

Statistical based mathematical models can also be very useful at predicting trends in 

battery production or performance.[20,21]  However, these models must be founded on a 

large enough sample size – which translates into a high up front cost to develop.  Like 
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any statistical model, there might also be an unseen bias if the sample size is not fully 

understood.  These models also tend to be high in mathematical complexity. 

The last common battery modeling method is known as equivalent circuit modeling.  

These models, though derived from physical assumptions, require less complexity than 

pure physical models.[6-10]  Therefore, in industry, they are seen as an acceptable 

middle ground due to their low cost of development and moderate to high accuracy in 

prediction. 

Table 2: Battery model classifications and trade offs 

Model Classification Benefits for Selection Negatives for Selection 

Physical Model High accuracy, greatest 

level of understanding 

Long run time, large 

number of parameters 

Statistical Based Model Easy to assess trends, 

good snapshot of battery 

behavior 

Large sample population 

required, may have 

unseen bias 

Equivalent Circuit Model Moderate accuracy, quick 

development and 

implementation 

Less accurate than 

physical model, less 

insight into battery 

chemistry 

 

2.2.2 Equivalent Circuit Modeling 

The equivalent circuit model (ECM) transforms the complexity of a battery’s 

electrochemistry into a simple circuit with a few elements.  The goal of the model itself is 

to take an input usage profile, in either current or power, and predict the battery’s 

voltage and power performance.  The idea of an equivalent circuit allows for complex 

processes in the battery to be distilled into simple elements.  While only three ECMs are 



 

11 
 

outlined and discussed in this thesis, more complex ECMs are capable of offering 

higher accuracy.  However, in an effort to characterize ECM behavior for a new type of 

testing data, it is important to slowly build in complexity. It is also assumed that the more 

complex ECMs will follow the trend set in the discussion from these simpler models. 

Internal Resistance ECM 

A very basic form of equivalent circuit model is generated by connecting an ideal 

voltage source which represents the OCV to a resistor which represents the internal 

battery resistance.  While an even simpler approach might have a fixed OCV, an 

improvement can be made through the relationship of OCV and SOC.  In all subsequent 

model discussions, it is assumed the OCV is a function of SOC as described by the 

OCV/SOC testing.  The resistance is used to model the instantaneous voltage drop 

when discharging and similarly the voltage increase when charging the battery.  This 

term therefore is intrinsic to the battery within the context of this model.  The schematic 

for the internal resistance model is shown in Figure 3. with the governing equation (1). 

 𝑉𝑇 = 𝑉𝑂𝐶 − 𝑅0𝐼𝑏 (1) 

𝑉𝑂𝐶 

𝑅0 
+ 

− 

𝑉𝑇 

𝐼𝑏 

+ 

− 

Figure 3: Internal Resistance Equivalent Circuit Model schematic 
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Where 𝑉𝑇 is the terminal voltage, 𝑉𝑂𝐶 is the open circuit voltage, 𝑅0 is the internal 

battery resistance, and 𝐼𝑏 is the current flow of the battery. 

Thevenin Battery ECM 

An improved and slightly more complex equivalent circuit model is referred to as the 

Thevenin battery model.  In this model, there is an additional resistor and capacitor 

which are in parallel to each other but in series with the previously established voltage 

source and resistor.  The added resistor/capacitor network (RC block) are used to 

model the dynamic response of the battery.  Specifically, these two components are 

thought to represent the polarization of the battery during a charge or discharge.  

Together they help to model the voltage relaxation that occurs during and after a 

charge/discharge.  Their product is also commonly referred to as the time constant,𝜏1.  

The adjusted diagram is shown in Figure 4 along with governing equations (2) & (3). 

 𝑉𝑇 = 𝑉𝑂𝐶 − 𝐼𝑏𝑅0 − 𝑣1  (2) 

 𝑑𝑣1

𝑑𝑡
= −

𝑣1

𝑅1𝐶1
−

𝐼𝑏

𝐶1
  (3) 

+ 

− 

𝑉𝑂𝐶 

𝑅0 

+ 

− 

𝑉𝑇 

𝐼𝑏 

𝑅1 

𝐶1 

Figure 4: Thevenin Equivalent Circuit Model schematic 
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Where 𝑅1 and 𝐶1 are the added resistor/capacitor to describe the dynamic battery 

behavior under a load, 𝑣1 is the voltage across the RC circuit, and 
𝑑𝑣1

𝑑𝑡
 is the time 

differential of the voltage across the RC circuit which will be discretized and solved at 

each time step. 

Modified Thevenin Battery ECM 

One final model will be considered.  This model will be referred to as the modified 

Thevenin ECM.  Similar to the Thevenin model described previously, this model has a 

voltage source, resistor, and parallel branch of resistor/capacitor.  The modification is 

made by allowing for two time constants; one for charging and one for discharging.  

With this modification, the model is less inhibited when there is an imbalance in 

charging and discharging constant voltage regions as is often the case. 

2.2.3 Discretization of Model Equations 

In order to solve these models, they are all discretized.  The schemes for each 

discretization method are described in detail below. 

IR Model 

Since there are no time derivatives involved outside of SOC tracking within this model, 

the resulting equations (4) & (5) are very simple. 

 𝑉𝑇(𝑡) = 𝑉𝑂𝐶(𝑆𝑂𝐶(𝑡)) − 𝑅0𝐼𝑏(𝑡) (4) 

 
𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − Δ𝑡) + 𝐼𝑏(𝑡) ∗

Δ𝑡

𝑄
 

(5) 

Where 𝑄 is the battery capacity, Δ𝑡 is the sampling rate, and 𝑉𝑂𝐶(𝑆𝑂𝐶(𝑡)) is solved 

using a linear 1D interpolation lookup table generated during OCV testing. 

The SOC is tracked through basic current integration, also known as coulomb counting. 
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Thevenin & Modified Thevenin Models 

Beginning with equations (2) & (3), the system is solved accordingly 

 𝑉𝑇(𝑡) = 𝑉𝑂𝐶(𝑆𝑂𝐶(𝑡)) − 𝑅0𝐼𝑏(𝑡) − 𝑣1(𝑡) (6) 

Where 𝑆𝑂𝐶(𝑡) and subsequently, 𝑉𝑂𝐶(𝑆𝑂𝐶(𝑡)) are solved in the same way as the IR 

model. 

Additionally, since equation (3) is of the form  

 𝑑𝑥

𝑑𝑡
+ 𝑎𝑥(𝑡) = −𝑏𝑢(𝑡) 

(7) 

Where 

 𝑎 =
1

𝑅1𝐶1
  (8) 

 𝑏 =
1

𝐶1
  (9) 

 𝑥(𝑡) = 𝑣1(𝑡) (10) 

 𝑢(𝑡) = 𝐼𝑏(𝑡) (11) 

Then the equation is of the state space configuration and the discretized time domain 

solution is 

 𝑣1(𝑡) = 𝑣1(𝑡 − 𝛥𝑡) ∗ 𝑒𝑥𝑝 (−
𝛥𝑡

𝑅1𝐶1
) − 𝑅1𝐼𝑏(𝑡) ∗ (1 − 𝑒𝑥𝑝 (−

𝛥𝑡

𝑅1𝐶1
))  (12) 

In the case of the modified Thevenin model, the time constant parameters will be 

adjusted according to the following logic in equation (13). 

 
𝑅1𝐶1 = {

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔, 𝐼𝑏(𝑡) < 0

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔, 𝐼𝑏(𝑡) ≥ 0
 

(13) 

2.2.4 Initial Guess Determination for Model Parameters 

Finally, the model coefficients are fit using the MATLAB function nlinfit with initial 

guesses of the coefficients based on simple extraction from a sample pulse in the 

dataset. 
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Initial Guess R0 

Since the R0 parameter represents the internal resistance, an initial guess can be taken 

from any pulse within the dataset.  The internal resistance should be represented by the 

voltage drop of the battery at the instantaneous application of a load.  Therefore, by 

taking a pulse like that shown below, R0 may be estimated according to equation (14). 

 
𝑅0 =

𝛥𝑉

𝛥𝐼
 (𝑓𝑜𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 10 𝑚𝑠) 

(14) 

𝑅0 

𝑅1 

𝐶1 

Figure 5: Initial guess parameter extraction.  R0 taken from initial 10 ms of pulse, R1 taken from final voltage of 
pulse, C1 taken from relaxation after the pulse 



 

16 
 

Initial Guess R1, C1 

Both R1 and C1 together represent the time constant of the model, or the polarization of 

the battery.  The initial guess may be determined from the same pulse.  R1 may be 

calculated directly from equation (15).  From previous work it is understood that the time 

constant for lead acid and lithium ion batteries should be on the order of 10-30 seconds. 

Thus, 𝐶1 may be estimated from 𝑅1 according to equation (16). Since these serve as 

initial guesses, accuracy is of little importance. 

If there is no previous knowledge at hand for a time constant estimation, C1 may be 

taken from the total relaxation time after the pulse is completed assuming there is 

sufficient time without an additional load. 

2.3 Model Verification 

The final step in battery model generation is being able to verify that the model is 

accurate.  As noted in the derivation of section 2.2, each equivalent circuit model has an 

input current 𝐼𝑏 and an output terminal voltage 𝑉𝑇 which are both measured during 

testing.  Therefore, when characterizing the accuracy of each ECM, the voltage 

responses will be the primary focus.  Outside of visual inspection, three statistical 

approaches will be taken into account to define the accuracy of each model: the 

maximum error in voltage, mean absolute error in voltage, and the root mean squared 

error (RMSE) of the voltage for the duration of the profile in question.  The combination 

of these three metrics provides the range of error as well as the precision of the model.   

 
𝑅1 =

𝛥𝑉

𝛥𝐼
− 𝑅0 (𝑓𝑜𝑟 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑛𝑡𝑖𝑟𝑒 𝑝𝑢𝑙𝑠𝑒) 

(15) 

 𝐶1 =
τ1

𝑅1
  (16) 
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Additionally, when characterizing methods which improve accuracy for ECMs in vehicle 

applications, the power, state of charge, current, voltage, and energy throughput will be 

considered.  Since the battery models predict voltage from an input current, some 

modifications will be required towards the implementation of the model.  The scheme by 

which a power profile will instead be used in order to predict current, voltage, power, 

and SOC is described in Figure 6. 

Once again, in addition to visual inspection, the model’s accuracy will be defined by the 

max, mean and RMS error of each variable.  This will allow for a better understanding 

into whether these models are sufficient to be used in real applications despite the 

imperfect datasets used to build them. 
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Start

Determine Current Limit 
based on Voltage Limit, 

OCV, and Battery 
Resistance

If the current limit 
exceeds the profile

Select the 
current limit

Select the 
profile current

Calculate voltage at time 
step based on selected 

current

Calculate power from 
voltage and current

End

NoYes

Loop until profile is 
completed

Get power at time step 
from input profile

Figure 6: Representation of model implementation to predict performance given an input power profile 
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3. Generation and Comparison of Equivalent Circuit Models 

Three equivalent circuit models (IR, Thevenin, and Modified Thevenin) were considered 

for modeling the battery’s behavior.  While it is already understood that an IR model will 

be less accurate than the other two possible models on ideal datasets, it is important to 

verify this is still the case when using non-ideal datasets. Since ECMs are well studied 

in lithium ion battery modeling with ideal datasets, the first focus will be on the HPPC 

testing of lithium ion batteries.  The same methodology will be applied to the WLTP 

testing of lead acid batteries to verify the consistency between both chemistries. 

3.1 Lithium Ion Modeling 

HPPC testing was carried out at four levels of current per charge/discharge at each 

SOC level from 90% to 10%.  A total of 6 Lithium Ion cells were tested at 25 degrees 

Celsius. To observe the impact of voltage limited regions on model accuracy, the 

charge and discharge pulses at 80% from HPPC tests were pieced together in order of 

increasing current level.  Data was captured at a rate of 10 ms.  A summary of the 

current level of each pulse is given in Table 3. 

Table 3: Mutli-current description for charge and discharge at 80% SOC in HPPC testing 

Current Level Charge [A] Discharge [A] 

Low 120 -200 

Moderate Low 250 -260 

Moderate High 350 -330 

High 400 -400 
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The battery SOC vs. OCV relationship was determined through standard testing and an 

example of the curve is shown in Figure 7.  

The capacity was determined at the start of the test for each cell.  An average of the 6 

cells was used as the capacity for fitting since the variability among cells was <1%. 

Figure 7: SOC vs. OCV relationship for lithium ion battery used in HPPC testing 
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3.1.1 Internal Resistance Model 

The internal resistance model was fit to the set of HPPC data for each of the 6 cells 

using an initial guess of 0.0005 Ohm.  The R0 parameter was fit using MATLAB’s nlinfit.  

The voltage response is modeled in Figure 8. for the first of the 6 cells using the 

average R0 fit.  By looking closely at a discharge and charge pulse separately in Figure 

9, it is clear that this approach is not complete enough to model the total battery 

behavior.  Though, it models discharge pulses more accurately than charge pulses, 

likely due to a lack voltage limits. 

Figure 8: (a) Internal Resistance model comparison of predicted voltage vs. measured test voltage, (b) Measured 
test current 
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Table 4: Summary of accuracy for the internal resistance ECM prediction of lithium ion voltage in HPPC testing 

 

A close inspection shows that the voltage appears to be changing non-linearly, which is 

unexpected in the usage of an internal resistance only ECM.  However, due to the high 

starting SOC, during charge pulses the final SOC is near 100%.  By comparing the 

Max error [V] Mean error [V] RMS error [V] 

0.298 0.025 0.067 

Figure 9: Internal resistance model behavior for lithium ion HPPC testing (a) Predicted vs. measured voltage in 
moderate low current discharge pulse, (b) Measured current for pulse in (a), (c) Predicted vs. measured voltage in 
moderate low current charge pulse, (d) Measured current in (c) 
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curvature with the OCV curve (Figure 7.) in the same range, this non-linearity is 

accounted for. 

3.1.2 Thevenin Battery Model 

The Thevenin battery model was fit using nlinfit and an initial guess of 0.0005 Ohm for 

R0 and R1 as well as 1000 F for C1.  An increase in charging voltage accuracy can be 

observed in Figure 10.  With this comes a decrease in accuracy in the discharge pulse 

accuracy.  The model does improve overall accuracy by reducing the maximum error by 

~0.1 V, but the average error actually increases from 0.025 V to 0.028 V while the RMS 

error is improved slightly by 0.02 V.  The discharge relaxation error can be explained as 

a result of the voltage limited charging.  Since the model only has one time constant, 

Figure 10: Thevenin model behavior for lithium ion HPPC testing (a) Predicted vs. measured voltage in moderate low 
current discharge pulse, (b) Measured current for pulse in (a), (c) Predicted vs. measured voltage in moderate low 
current charge pulse, (d) Measured current in (c) 
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which is attempting to fit regions in which the voltage is not allowed to relax at a normal 

rate, the discharge relaxation is equally impacted.  This phenomenon should be 

improved with the modified Thevenin model. 

Table 5: Summary of accuracy for the Thevenin ECM prediction of lithium ion voltage in HPPC testing 

 

3.1.3 Modified Thevenin Battery Model 

Finally, the modified Thevenin model was fit using nlinfit in MATLAB with initial guesses 

of 0.0005 Ohm for R0 as well as both sets of R1, and 1000 for both sets of C1.  The 

resulting fit is summarized in the following Figure. 11 & Figure 12.  Of the three models 

Max error [V] Mean error [V] RMS error [V] 

0.201 0.025 0.048 

Figure 11: (a) Modified Thevenin model comparison of predicted voltage vs. measured test voltage, (b) Measured 
test current 
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considered, it has the lowest maximum error and RMS error with little change in mean 

error.  As predicted, by unlinking the charge and discharge time constants, the voltage 

limiting behavior no longer impacts the discharge relaxation. 

Table 6: Summary of accuracy for the Modified Thevenin ECM prediction of lithium ion voltage in HPPC testing 

 

While the mean error in voltage is a few mV higher than the other two models, both max 

error and RMS error are approximately 30% lower.  Therefore, the model may still be 

Max error [V] Mean error [V] RMS error [V] 

0.140 0.028 0.032 

Figure 12: Modified Thevenin model behavior for lithium ion HPPC testing (a) Predicted vs. measured voltage in 
moderate high current discharge pulse, (b) Measured current for pulse in (a), (c) Predicted vs. measured voltage in 
moderate high current charge pulse, (d) Measured current in (c) 
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considered the best of the three. It should also be noted that Figure 12. shows the 

response on the moderate high current pulses to emphasize the improved accuracy of 

the model despite the increased load. 

3.1.4 Lithium Ion Fitting Summary 

It was expected that the increased complexity of the ECMs would result in a more 

accurate fit.  This was shown to be the case as the most complex, the modified 

Thevenin model, was also the most accurate with the lowest maximum voltage error 

and the lowest voltage RMS error.  A full summary of the accuracy for each model is 

given in Table 7. 

Table 7: Summary of accuracy for each model considered in lithium ion HPPC testing 

 

Despite the improvements made by each model, it is clear that limiting the voltage of 

charge pulses in the moderate high and high current ranges limit the accuracy of the fit.  

This can be shown in greater detail by using only the lowest current pulses (charge and 

discharge) to generate a basic Thevenin model.  The results of which are shown in 

Figure 13. 

Model Max error [V] Mean error [V] RMS error [V] 

IR 0.298 0.025 0.067 

Thevenin 0.201 0.025 0.048 

Modified Thevenin 0.140 0.028 0.032 
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It is also worth noting that in the case of an HPPC test, it is typically easy to avoid hitting 

voltage limits by reducing the current used in testing the moderate high, and high 

pulses.  There is a tradeoff in limiting the model’s performance in high current regions 

that stems from this. 

It will be the goal of the final section of this thesis to provide a way for the modeling 

engineer to adapt the set of data with voltage limits so that the accuracy more closely 

represents that of Figure 13. 

 

  

Figure 13: Thevenin model behavior for lithium ion HPPC testing when fitting for only the low current pulses (a) 
Predicted vs. measured voltage in low current discharge pulse, (b) Measured current for pulse in (a), (c) Predicted vs. 
measured voltage in low current charge pulse, (d) Measured current in (c) 
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3.2 Lead Acid Modeling 

Since the impact of voltage limits were aptly described for lithium ion cells, it is the goal 

of this section to show a similar trend across each model so that voltage limiting impact 

may be assessed independently of battery chemistry.  

The WLTP test was used to capture both voltage and current response of 3 separate 

lead acid batteries of the same size and build.  The WLTP cycling was repeated 5 times 

on each battery under a scaled load to mimic real vehicle loads.  Data was captured at 

10 ms intervals for the duration of the cycling and carried out at 25 degrees Celsius.  

The initial SOC for each WLTP cycle was 80%.  This was achieved by using a 

regeneration sequence after each WLTP cycle to account for any imbalance in charged 

and discharged Ah over the cycle.  Batteries were then allowed to rest prior to repeating 

the WLTP cycle so that the OCV may be measured to confirm the SOC level.  Since the 

WLTP testing is meant to be energy neutral, the regen sequence was of short duration. 
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The battery SOC vs. OCV relationship was determined separately.  An example of the 

nonlinear relationship is shown in Figure 14. 

The capacity was determined for each of the three lead acid batteries.  An average 

value was used for the model fitting procedure as the variability was low enough to be 

negligible (<1%). 

For each model, the coefficients were determined at each individual cycle and then 

averaged together across all 15 cycles.  The accuracy of the model was determined by 

using the average coefficients to model each of the 15 profiles.  Visual inspection as 

well as max voltage error, mean voltage error, and RMS voltage error were all 

calculated for the total of the 15 cycles using the single set of model coefficients. 

Figure 14: SOC vs. OCV relationship for lead acid battery used in WLTP testing 
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3.2.1 Internal Resistance Model 

The first and simplest model considered was the internal resistance model.  Due to the 

simplicity of this model, only one coefficient was determined.  For consistency, the value 

of R0 was determined using the MATLAB function nlinfit with an initial guess of 0.01 

Ohm for R0.  The resulting voltage curve is shown for one representative cycle of WLTP 

below.  As expected, the transient behavior is not well modeled.  Nonetheless, it is still 

capable of providing a good estimation of the battery’s voltage response during charge, 

however it produces a maximum error of ~2V which is quite high. 

Figure 15: (a) Internal Resistance model comparison of predicted voltage vs. measured test voltage, (b) Measured 
test current 



 

31 
 

Table 8: Summary of accuracy for the Internal Resistance ECM prediction of lead acid voltage in WLTP testing 

Max error [V] Mean error [V] RMS error [V] 

2.18 0.24 0.34 

 

Relative to the overall range in battery voltage (6-14.8 V), the maximum error translates 

to ~25% relative error which when compared to the scaled relative maximum voltage 

error in lithium ion IR modeling (~33%) shows there is a consistent level in error. 

3.2.2 Thevenin Battery Model 

The second model considered was the Thevenin battery model which includes an 

additional parallel resistor/capacitor branch in order to model the transient behavior.  

Though the value of R0 in theory should not change from the previous fit, it was refit 

Figure 16: (a) Thevenin model comparison of predicted voltage vs. measured test voltage, (b) Measured test current 
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along with R1 and C1 for consistency.  The values were fit using nlinfit in MATLAB with 

initial guesses of 0.01, 0.008, and 1250 for R0, R1, and C1 respectively.  The resulting 

voltage response on a representative WLTP cycle is shown below.  It appears that while 

the transient behavior is more aptly captured, the inclusion of voltage limits in the fitting 

data set alters the accuracy of the fit as expected.  Additionally, the maximum voltage 

error is still ~1.36 V (15%).  The improvements of the lead acid Thevenin model in 

relative maximum error closely match those of lithium ion with 10% and 11% 

improvements respectively.  There was minimal improvements in RMS and mean error 

however. 

Table 9: Summary of accuracy for the Thevenin ECM prediction of lead acid voltage in WLTP testing 

Max error [V] Mean error [V] RMS error [V] 

1.36 0.23 0.29 

 

3.2.3 Modified Thevenin Battery Model 

The last model is expected to be the more accurate of the three considered as was 

shown for lithium ion.  The initial guesses were the same as those used for the 

Thevenin model.  Additionally, the values of R1 and C1 were kept the same for both 

charge and discharge.  The model was solved using nlinfit in MATLAB.  The resulting fit 

is clearly the best of the three models considered as the relaxation is well matched.  

However, there are still signs of the voltage limit behavior impacting the R0 fitting.   
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Table 10: Summary of accuracy for the Modified Thevenin ECM prediction of lead acid voltage in WLTP testing 

Max error [V] Mean error [V] RMS error [V] 

1.30 0.16  0.25 

 

As was the case with the modified Thevenin model in lithium ion cells, the RMS and 

maximum error are both improved.  In this case, the mean error is also improved from 

0.23 to 0.16 V.  The final relative maximum error of both chemistries is ~15%. 

Figure 17: Modified Thevenin model comparison of predicted voltage vs. measured test voltage, (b) Measured test 
current 
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3.2.4 Lead Acid Fitting Summary 

As expected, there is once again a noticeable improvement in battery voltage prediction 

from the IR model to the modified Thevenin model.  One area of concern may be the 

over prediction of discharge voltage; however, this is considered an artifact of the ECMs 

rather than any impact from voltage limits and is thus outside the scope of the thesis. 

Table 11: Summary of accuracy for each model considered in lead acid WLTP testing 

 

Unlike the lithium ion cells, the relative maximum error was lower initially, however both 

chemistries saw similar improvements over the range of models considered.  Due to the 

final accuracy of each model (Table 11) it can be taken that the voltage limited behavior 

impact is in fact independent of the battery chemistry. 

3.3 Conclusion 

Lead acid batteries follow the same trend as lithium ion batteries with ECM accuracy.  

The modified Thevenin model produces the highest accuracy fit because it establishes 

a separate time constant for charge and discharge.  However, the charging prediction 

still has larger error fluctuations due to the voltage limited behavior. 

While a moderately accurate fit may be achieved using the modified Thevenin model, 

even when the dataset contains constant voltage charging regions, it is desirable to 

Model Max error [V] Mean error [V] RMS error [V] 

IR 0.298 0.025 0.067 

Thevenin 0.201 0.025 0.048 

Modified Thevenin 0.140 0.028 0.032 
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determine a way in which the data may be modified or treated so that the voltage limits 

have less impact on the resulting fit. 
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4. Voltage Limit Impact on Fitting Method 

So far it is clear that regardless of model selection, the impact of voltage limits in testing 

is not negligible.  However, it is the purpose of this section to determine the best way to 

obtain the highest value from these datasets without having to rerun testing.  Three 

methods were characterized with the ultimate goal of finding the method that results in 

the least error. 

As was shown in section three, both lithium ion and lead acid batteries are affected in 

similar ways by constant voltage charging regions.  Therefore, since WLTP testing more 

closely mimics vehicle behavior, it will be used as the dataset for comparison in this 

section (with lead acid batteries).  It is assumed the same methodology would apply to 

lithium ion batteries as well. 

Of the 15 cycles used for model validation, cycle three was used as the representative 

cycle in visual inspection since it was the intermediate cycle of the test profile for the 

first battery.  The behavior across each of the three batteries was similar enough that 

only one battery cycle will be used for visual inspection.  However, all 15 cycles were 

used for statistical analysis. 

Each method was compared in their ability to accurately predict and model the power, 

SOC, voltage, current, and energy throughput of a WLTP test profile conducted at a 

different load level then that used to build the model. 

Due to the high level of accuracy from the modified Thevenin model and to simplify the 

discussion, it will be the only ECM considered. 
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4.1 Baseline Case – No Modification 

The first method considered is to fit the data without any adjustment as was discussed 

in the previous section.  The fitting performance can be observed in both Figure 18. and 

Figure 19.  Since the validation profile in use is the higher load WLTP profile, more 

voltage limiting regions are experienced across each of the 15 cycles. 

Using the same statistical metrics as section 3, the accuracy of the model in predicting 

key metrics is summarized in Table 12. 

 

Figure 18: Baseline case fitting method for Modified Thevenin ECM of high load WLTP power profile (a) Measured 
vs. predicted power, (b) Instantaneous, absolute error in power, (c) SOC calculated from test vs. modeled SOC 
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Table 12: Summary of prediction accuracy for baseline fitting method of high load WLTP power profile using the 
Modified Thevenin ECM 

Performance Max Error Mean Error RMS Error 

Voltage [V] 1.17 0.14 0.22 

Current [A] 97.57 0.93 3.17 

Power [W] 1387.57 4.80 37.16 

SOC [%] 0.22 0.08 0.10 

Energy Throughput [Wh] 1.70 1.27 0.33 

 

Figure 19: Baseline case fitting method for Modified Thevenin ECM of high load WLTP power profile (a) Measured 
vs. modeled voltage, (b) Measured vs. modeled current 
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The model performs as expected, though the voltage prediction is slightly worse on the 

higher load WLTP profile (where a greater number of constant voltage regions are 

incurred).  The most concerning error is that using this model would result in an average 

of 1.27 Wh in energy throughput.  This level of error could have implications on life 

predictions for batteries using this model. 

4.2 Window Skip Algorithm 

The second method which was considered was to simply ignore pulses which reach a 

voltage limit.  This is done by scanning the profile for pulses which reach voltage limits 

Figure 20: Window skip algorithm fitting method for Modified Thevenin ECM of high load WLTP power profile (a) 
Measured vs. predicted power, (b) Instantaneous, absolute error in power, (c) SOC calculated from test vs. modeled 
SOC 
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and omitting them from the fitting algorithm using the same logic shared in Figure 6.  

This method, while not highly sophisticated, was developed in order to reduce error in 

time constant estimation by limiting the amount of forced relaxation at a high voltage.  

While it was expected to under predict voltage in areas where a voltage limit is met, the 

hope was that the average battery behavior would be better described.  The resulting 

predictions of the high load WLTP profiles are shown in Figure 20. and Figure 21 along 

with a statistical summary in Table 13. 

 

  

Figure 21: Window skip algorithm fitting method for Modified Thevenin ECM of high load WLTP power profile (a) 
Measured vs. modeled voltage, (b) Measured vs. modeled current 
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Table 13: Summary of prediction accuracy for window skip algorithm fitting method of high load WLTP power profile 
using the Modified Thevenin ECM 

Performance Max Error Mean Error RMS Error 

Voltage [V] 1.05 0.11 0.20 

Current [A] 84.95 0.61 1.92 

Power [W] 1177.75 1.73 19.72 

SOC [%] 0.20 0.12 0.13 

Energy Throughput [Wh] 1.36 1.01 0.27 

 

By skipping the voltage limited pulses, the model improves in the general accuracy of 

charging voltage predictions.  By improving the charging voltage predictions, all key 

metrics are improved in their accuracy as well.  Therefore, at the very least, voltage 

limits should be omitted from the dataset when conducting the fitting. 

With that said, the behavior of the model under constant voltage charging is still lacking 

in accuracy.  Depending on the actual application, this error could propagate to a level 

which might render the model useless.  Therefore, one more method shall be 

considered for fitting datasets with voltage limiting cases. 

4.3 Secondary Constant Voltage ECM 

The final method introduces an additional equivalent circuit model.  The secondary 

constant voltage ECM is designed so that it may predict the current, rather than the 

voltage, when the voltage is held constant. 

The resulting model is a combination of two modified Thevenin ECMs which are 

switched on and off depending on the charge/discharge control variable. 



 

42 
 

This implementation requires an adjustment to the way in which current is calculated 

according to Figure 6.  The new logic is outlined in Figure 22.  By anticipating the 

constant voltage charge phases, a switch is made to the equivalent circuit model which 

was fit only using the constant voltage pulses. 

Though this does add some complexity, the additional time required in generating the 

model and the subsequent validation require is negligible compared to the time required 

to generate additional test data.  
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No 

Yes If the current limit 
exceeds the profile

Calculate current with 
secondary constant 

voltage ECM

Calculate power from 
voltage and current

Determine Current Limit 
based on Voltage Limit , 

OCV, and Battery 
Resistance

Set voltage to limit

Figure 22: Modification of Figure 6. to include secondary ECM when the battery is in a state of constant voltage 
charging. Branches indicate a return to Figure 6. 
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Fortunately, the implementation of this method yields the highest accuracy of those 

considered.  The relative maximum error in power is reduced by 70% and the average 

energy throughput error is reduced by 56%.  The voltage prediction is unaffected but the 

ability to model the current during constant voltage phases has a significant impact on 

the overall accuracy. 

 

Figure 23: Secondary constant voltage ECM fitting method for Modified Thevenin ECM of high load WLTP power 
profile (a) Measured vs. predicted power, (b) Instantaneous, absolute error in power, (c) SOC calculated from test vs. 
modeled SOC 
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Table 14: Summary of prediction accuracy for secondary constant voltage ECM fitting method of high load WLTP 
power profile using the Modified Thevenin ECM 

Performance Max Error Mean Error RMS Error 

Voltage [V] 1.05 0.11 0.20 

Current [A] 27.45 0.58 1.44 

Power [W] 357.25 1.31 9.91 

SOC [%] 0.21 0.12 0.14 

Energy Throughput [Wh] 0.46 0.44 0.11 

 

Figure 24: Secondary constant voltage ECM fitting method for Modified Thevenin ECM of high load WLTP power 
profile (a) Measured vs. modeled voltage, (b) Measured vs. modeled current 
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4.4 Conclusion 

By assessing two separate methods for treating data with voltage limits, the accuracy of 

the fit was improved.  When using the window algorithm to omit sections which incur 

voltage limited charging, the battery model is improved in accuracy across all 

measurements.  By combining a model fit to only pulses controlled by current with a 

model fit to only pulses controlled by voltage, the power prediction accuracy is further 

improved.  However, with this comes a slight increase in complexity and a small 

decrease in SOC accuracy (0.04% increase in average error).  Therefore, depending on 

the desired optimization of the model, either the simple window algorithm or the 

additional voltage limited ECM should be used. 

While both modifications increase prediction accuracy, it would be up to the engineer 

whether these provide a sufficient level of error for usage.  For example, if the models 

are to be used to assess safety critical pulses, it is recommended to use a different 

characterization method or a higher accuracy model.  However, for the purposes of 

general battery modeling and assessing performance within a vehicle, either fitting 

modification is considered sufficiently accurate. 

By modifying the approach to fitting method, the accuracy was improved by ~70% in 

power prediction and ~56% in energy throughput prediction – two key output metrics 

from the battery modeling. 
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5. Conclusion 

A total three equivalent circuit models were considered for both lithium ion and lead acid 

batteries.  Lithium ion battery models were developed using HPPC data while lead acid 

battery models were developed using WLTP data.  Though there are many differences 

between the two chemistries, they were shown to behave similarly by using the same 

set of equivalent circuit models. 

As expected, an increase in accuracy was achieved by using a Thevenin model instead 

of a simple internal resistance model in both cases.  Additionally, since the time 

constant was constrained by the constant voltage charging, an increase of accuracy 

was observed by using a modified Thevenin model which employs a different time 

constant on charge and discharge.  

Constant voltage charging regions incurred when the battery meets its set limits 

negatively impacted the accuracy of the fit in all three models considered.  By using a 

higher load profile which hit more voltage limits than the data used to develop the 

model, the ability to modify the fitting method to improve accuracy was assessed. 

By fitting only pulses which did not hit voltage limits, the average fitting accuracy was 

improved in all metrics.  Specifically, maximum power error was reduced from 1387 to 

1177 W and average energy throughput error was reduced from 1.27 to 1.07 Wh.  

Because this method is very simple, it might be recommended in areas where modeling 

accuracy isn’t required in voltage limited scenarios.  However, since the models are 

typically used for predicting battery behavior in driving applications, it was still desirable 

to improve the overall accuracy. 



 

48 
 

In the final section, an additional equivalent circuit model was employed to model the 

current during constant voltage phases (as opposed to modeling voltage).  This model 

also employed an adjusted implementation to predict when voltage limits would be met 

in real-time.  The secondary ECM for constant voltage charging led to a large increase 

in accuracy over the previous two methods.  Specifically, the maximum power error was 

reduced from 1177 to 357 W and the average energy throughput error was reduced 

from 1.07 to 0.44 Wh.  The one remaining drawback of this model implementation was 

slight increase from 0.08 to 0.12 % in average SOC error though this is small enough to 

be considered negligible. 

Since the secondary ECM for constant voltage charging required negligible time to 

generate, it is considered the best method for predicting battery behavior when many 

constant voltage phases are present.  In the case where few constant voltage phases 

exist, and the model is not expected to be used in these regions either, the window skip 

algorithm method would be a simpler and sufficient model. 

While the inclusion of voltage limited regions requires some additional complexity in 

model development, it may not require a retesting of data.  This is especially helpful 

when battery testing is developed to support vehicle applications such as the WLTP 

cycling.    
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