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ABSTRACT 

INDUCIBLE DNA CROSS-LINKING AGENTS: DESIGN, SYNTHESIS, MECHNISM, AND 

ANTICANCER ACTIVITY  

by 

Heli Fan 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Xiaohua Peng 

 

This thesis focuses on investigating the reactivity of DNA towards a wide variety of aromatic 

compounds as novel DNA cross-linking agents and exploring their biomedical applications.  

 

In the first part, we synthesized three series of bifunctional aromatic compounds with various 

core structures, aromatic substituents, and benzylic leaving groups and investigated their 

reactivity towards DNA. Most of these compounds efficiently form DNA interstrand cross-links 

(ICLs) via carbocations generated upon irradiation at 350 nm. The efficiency of DNA ICL 

formation and the pathway of carbocation formation strongly depend on core structures, aromatic 

substituents and leaving groups. Mono benzene analogues bearing an electron donating 

substituent showed higher DNA cross-linking efficiency than those with an electron withdrawing 



iii 

substituent while an opposite trend was observed for the biphenyl compounds. In most cases the 

carbocations were generated through oxidation of the corresponding benzyl radicals. However, 

photo irradiation of the ammonium salt 5b generated the carbocation via direct heterolysis of the 

C-N bond. Surprisingly, both path ways were observed for compound 4b. 

The second part is in vivo efficacy study of H2O2-activated quinone methide (IIi, IIIa) and 

nitrogen mustard (IVq) precursors. Compounds IIi and IIIa inhibited the tumor growth in nude 

mice xenografted with MDA-MB-468 breast cancer cells without obvious toxicity, such as no 

weight loss and other unusual behaviors, while they were less effective towards renal cancer 

cells. Compound IVq greatly shrank the tumor size in nude mice xenografted with MDA-MB-

468. 

The third part focused on investigating the influences of triazole-moieties and the substituents at 

the position-4 of triazole ring on the thermal stability of DNA duplexes by testing the melting 

temperature of the DNA•DNA and DNA•RNA duplexes containing triazole-modified thymidines 

(41-43). The introduction of triazole-modified thymidines decreased the stability of DNA•DNA 

and DNA•RNA duplexes. Bulky substituent at the position-4 of triazole ring further destabilized 

DNA duplex possibly due to steric hindrance interfering with efficient Watson-Crick base-pair 

formation. Due to noncoplanar conformation between substituents and thymine groups, two or 

three consecutive modifications further destabilized the DNA duplex even in the presence of 

efficient π-stacking induced by modified-triazole moieties.
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Chapter 1. Introduction 

1.1. The Structure and Functions of DNA 

Deoxyribonucleic acid (DNA) is a hereditary material carrying genetic information in an 

organism for its development, functions, and reproduction. The structure of DNA was first 

discovered by Watson and Crick in 1953. It is a double helix structure consisting of two 

complementary polynucleotide chains (Scheme 1-1).1 Each polynucleotide strand is constructed 

by nucleotides containing a phosphate group, a deoxyribose, and one of four nitrogen-containing 

nucleobases (adenine [A], thymine [T], guanine [G] and cytosine [C]).  The two complementary 

strands are bound together via hydrogen bonding with Watson-Crick base pair, namely A always 

pairs with T and C pairs with G (Scheme 1-1). Hydrogen bond formation allows temporarily 

dissociation of two DNA strands that enable the process of DNA replication and transcription, 

while specific recognition of Watson-Crick base pairs is essential for maintaining high fidelity of 

DNA replication and transcription.  

     

Scheme 1-1. Structure of DNA double helix and Watson-Crick base pairing. 
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However, DNA can react with a wide variety of chemical agents or undergo photo reactions, 

which disrupt the normal function of DNA. For example, both DNA base moieties and the 

phosphate backbone can be alkylated by a wide variety of electrophiles including alkyl halides, 

quinone methide, and carbocation precursors. The cyclic nitrogens, exocyclic amino groups, and 

carbonyl group in cytosine, guanine or adenine can act as nucleophiles reacting with many 

alkylating agents (Scheme 1-2).2-4 On the other hand, the unsaturated C=C bond of thymine and 

cytosine can react with other unsaturated molecules via [2+2] cycloaddition. All these reactions 

may lead to DNA interstrand cross-link (ICL) formation that inhibits DNA replication and 

transcription. As the carrier of genetic information, understanding the chemical reactivity and 

function of DNA is extremely important. This thesis focuses on investigating the reactivity of 

DNA towards a wide variety of aromatic compounds as novel DNA cross-linking agents and 

exploring their biomedical applications. We use the tools of synthetic and physical organic 

chemistry, as well as biochemistry, and molecular biology for the mechanistic studies of these 

novel DNA cross-linking agents. 

 

Scheme 1-2. Possible alkylation sites on dA, dG, dC, and dT (dR = 2’-deoxyribose). 

1.2. DNA Alkylation and Commonly Used Chemotherapeutic Agents 
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DNA alkylation is one of the most important chemical modifications used in nucleic acid 

research as well as chemotherapy. There are three major types of alkylation: mono-alkylation, 

intrastrand cross-link, and interstrand cross-link (ICL). Mono-alkylation modifies single bases on 

one DNA strand; intrastrand cross-link is formed by alkylating two DNA bases in the same 

strand; and ICL is produced by alkylation on two bases on opposite strands (Figure 1-1).5 

 

Figure 1-1. Three types of DNA alkylation. 

DNA alkylating agents are widely used in cancer chemotherapy asthey can prevent DNA from 

functioning properly by changing the original structure of the DNA. DNA alkylation is the 

source of the cytotoxicity of many antitumor and anticancer agents. It can cause gene mutations 

or block DNA replication and transcription eventually leading to cell death. DNA alkylating 

agents were grouped in two major categories such as mono-functional alkylating and bi-

functional alkylating agents. They have been considered to be one of the significant classes of 

compounds that have been widely utilized or have great potential in cancer treatments.5,6 
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The first type of DNA alkylating agents is methylating agents that are one of the most important 

monoalkylating agents. DNA methylating agents have been well studied and used for DNA 

damage and repair study as well as for cancer treatment, such as Temozolomide (TMZ) and 

dacarbazine (Scheme 1-3).7 In general, methylation occurred either at the N- or O-positions of 

nucleobases. N-Methylation products are the major adducts formed (80%). TMZ is one of the 

earliest oral alkylating drugs approved for cancer therapy. TMZ showed two advantages over 

other existing drugs. It has small size and good lipophilicity so that it can efficiently go through 

the blood-brain barrier and can be used for the treatment of brain cancer. TMZ also showed 

perfect bioavailability (100%) leading to improved efficacy.8 Dacarbazine is a chemotherapeutic 

agent for skin cancer, namely melanoma. The mechanism of their function involved the 

methylation of DNA at the N7 or O6 of guanine moiety (Scheme 1-3), which damaged the DNA 

and led to cell death.9 The damaged DNA double helix stacked together which prevented it from 

functioning.9,10 However, alkylated DNAs can be efficiently repaired by direct reversal proteins 

and base excision repair (BER), which reduced the toxicity of the methylating agents.11 
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Scheme 1-3. Monofunctional methylating agents and mechanism of action. 

Later on, a variety of bi-functional alkylating agents have been developed that can lead to intra 

or interstrand cross-link formation. The intrastrand cross-links can induce bends in DNA, which 

may affect the binding affinity to DNA binding proteins, and inhibit DNA normal function.12 

ICLs covalently bond two complementary DNA strands, which prevents their separation and 

block DNA replication and/or transcription finally leading to cell death. However, the intrastrand 

cross-links are readily repaired by nucleotide excision repair (NER), which decreases its toxicity 

and confines its usage for cancer treatment. DNA ICLs cannot be easily repaired by NER, 

therefore are more toxic than the intrastrand cross-links.13 More attentions have been paid on 

development of DNA interstrand cross-linking agents for cancer treatment and other biological 

applications.6 
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A variety of bi-functional alkylating agents have been employed for the treatment of cancer 

disease, such as cisplatins, mitomycin C and nitrogen mustard analogues (Scheme 1-4). These 

three classes of compounds have been well studied and widely used for cancer treatment.  

 

Scheme 1-4. Commonly used bi-functional alkylating agents as chemotherapeutic agents 

Cisplatin is a well-known anticancer drug approved for medical use. It has been used for half 

cancer patients who have ever received chemotherapy.14 For instance, cis-

diamminedichloridoplatinum (II) (CDDP), carboplatin, and oxaliplatin (Sheme 1-5) are 

medicines used to treat various types of cancers, such as lung cancer, bladder cancer, germ cell 

tumors, sarcomas and cervical cancer.15,16 These platinum compounds are commonly made up of 

platinum (II), two neutral ammonium molecules, and two ligands with negative charge. 

Cisplatins forms both inter- and intrastrand cross-links. The mechanism of ICL formation 

involved the replacement of one of the negatively charged ligands with a neutral water, leading 

to the formation of the positively charged aquo complex that acts as a good electrophile. The 

water molecule in the aquo complex can be easily exchanged by N-heterocyclic bases in the 

DNA, resulting in the formation of the monoadduct. The following replacement of the second 

ligand (chloride or R2) by the nucleobase in the opposite strand led to the formation of the ICLs. 

N7 of guanine and cytosine of N3 were reported to be the major cross-link sites for this class of 

compounds (Scheme 1-5).15,17-18 However, cisplatins can cause a number of side effects, 

including kidney damage, hearing loss, bone marrow suppression and vomiting.19 
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Scheme 1-5. Cisplatin compounds and the mechanism of ICL formation.  

Mitomycin C belongs to a family of azidine-containing natural products. It was originally 

isolated from streptomyces caespitosus. It has been used as DNA alkylating agent for treatment 

of anal cancers, breast cancers and bladder cancers.20 Mitomycin C is inert towards DNA, but 

can be activated by enzymatic reduction of quinone, leading to the formation of methide 

intermediates that cross-link DNA via alkylating dGs.15,21 The detailed mechanism was shown in 

scheme 1-6. Mitomycin C was first reduced to biphenol Ia that was easily converted to Ib by 

releasing one molecule of methanol. Compound Ib was further converted to the methide 

intermediate Ic that alkylated guanine at N2 position to form the monoadduct Id. Elimination 

reaction with the carbamoyl as a leaving group generated the methide Ie that reacted with a 

second guanine in the opposite strand to form ICL products If. Even though Mitomycin C has 

been widely used for cancer treatment, its side effects cannot be overlooked. The common side 

effects included mouth sore, poor appetite, nausea, hair loss and bone marrow toxicity.    
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Scheme 1-6. The mechanism of action for mitomycin C.  

Nitrogen mustard and its analogs are a major kind of synthetic DNA alkylating agents which are 

still widely used for cancer therapy, such as chlorambucil, melphalan, cyclophosphamide, and 

bendamustine (Scheme 1-7). These nitrogen mustard analogues contain a highly reactive N,N-

bis-(2-chloroethyl)amine functional group, which can cross-link DNA by alkylating the N7 

position of adenine or guanine residues.15 The mechanism of action involves the formation of a 

highly reactive aziridinium intermediate Ig that reacts with N7 of adenine or guanine to form a 

monoadduct Ih, followed by the formation of a second aziridinium intermediate Ii that reacts 

with a second adenine or guanine on the opposite strand to produce the ICL product Ij (Scheme 

1-7). Nitrogen mustards were highly reactive DNA alkylating agents which showed poor 
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selectivity and caused serious side effects, such as nausea, hair loss, mouth sores and loss of 

fertility. 

Scheme 1-7. Nitrogen mustards and the mechanism of action. 

Even though these traditional chemotherapeutic agents are powerful drugs for cancer treatment, 

most of these drugs showed poor selectivity. These agents could not differentiate between cancer 

cell DNA and normal cell DNA causing serious side effects. For instance, the use of cisplatins 

may lead to kidney damage, hearing loss, bone marrow suppression and vomiting.19 Mitomycin 

C can cause mouth sore, poor appetite, nausea, hair loss, and permanent bone marrow toxicity 

with long term usage. Nitrogen mustards lead to nausea, hair loss, mouth sores and loss of 

fertility. All these side effects limited their usage in cancer therapy. One effective way to reduce 

the toxicity of DNA alkylating agents towards normal cells is to develop inducible DNA 

alkylating agents that are inert to normal cells but can be activated under tumor specific 

conditions. Such agents can be used to target malignant cells with the unique conditions while 

leaving normal cells untouched, therefore minimizing the side effects. Inducible DNA cross-
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linking agents, being non-toxic and selective, can be also used in other biological applications. 

Great efforts have been made to develop novel strategies to induce DNA ICL formation. 

Examples include photo induction, chemical agent induction, and enzymes induction.  

1.3. Inducible DNA Interstrand Cross-linking Agents 

1.3.1. Photo-induced DNA ICL formation via three mechanisms 

Photo-induction attracted attention for its unique properties, such as biocompatibility and 

orthogonality. Such method is clean and non-invasive and doesn’t require additional chemical 

reagents. Various photo-inducible DNA crosslinking agents have been developed to induce ICL 

formation. In general, three common mechanisms are involved in the ICL formation process, 

including photocylcoadditon, alkylation via quinone methides (QMs), or alkylation via 

carbocations. The photo-induced DNA ICL formation via cycloaddition and QMs mechanisms 

has been extensively studied.22 For instance, psoralens23, p-stibaolze,24 coumarin,25,26 3-cy-

anovinylcarbazole27 can induce DNA ICL formation via [2+2] photocycloaddition, while 

phenol,28 biphenol,28 or binol analogues29-31 induce DNA cross-linking through a QM 

mechanism. However, photo-induced DNA ICL formation via carbocation mechanism was less 

explored. Recently, it was reported by Li32 and Greenberg33 that photoirradiation of modified 

thymidines generated both the radical and cation, but only the cation directly cross-linked DNA. 

Photo-induced DNA ICL formation by [2+2] cycloaddition reaction 

[2+2] Photocyclization takes place between two unsaturated molecules that are photo-sensitive 

and can be activated by light with specific wavelength, resulting in the formation of a new 

cyclobutane adduct. Such reaction has been widely used as a strategy for inducing DNA 

interstrand cross-linking because of its orthogonality. [2+2] Photocyclization is a clean reaction 
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and can easily occur with pyrimidine bases and other compounds containing unsaturated bonds. 

In addition to psoralens, several modified nucleosides with unsaturated bonds were developed 

and incorporated into DNA, which can induce DNA ICL formation upon UV irradiation through 

[2+2] cycloaddition reaction, including p-stilbazole  analogs24,34,35, coumarin analogs26,36 and 3-

cyanovinylcarbazole-modified nucleosides37-39 (Scheme 1-8 ). 

 

Scheme 1-8. Photo-inducible DNA cross-linking agents via [2+2] cycloaddition. 

Psoralens, a class of natural products isolated from plants, are a type of photo-induced DNA 

cross-linking agents. These compounds consist of a coumarin moiety fused with a furan ring. 

The psoralens can be selectively activated by the ultraviolet A (UVA) light (320-410 nm) to 

react with thymidine residues in DNA to form DNA ICLs.21 Due to this unique property, 

combination of psoralens and UVA have been widely used for treatment of skin disorder, such as 

skin cancer and psoriasis.40,41 The mechanism of action involves formation of two cyclobutene 

products via [2+2] cycloadditions, one of which was formed between the pyrone and a thymine, 

while the other was formed between the furan ring and another thymine moiety on the 

complementary strand (Scheme 1-9).  
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Scheme 1-9. The mechanism of action for Psoralen. 

The p-stilbazole analogue Ik was developed by Kashida’s group.24 The DNA cross-linking 

occurred between two complementary ODNs that contain p-stilbazole moiety that  undergo a 

[2+2] cycloadditon reaction upon UV irradiation causing rapid DNA cross-linking (completed 

within 5 min). The DNA cross-linking process can be monitored by UV absorbance (Figure 1-

2B). The p-stilbazole modified ODNs have strong UV absorbance at 323 nm, which became 

weaker upon the formation of the [2+2] cycloaddition adduct and finally disappeared (Figure 1-

2), illustrating the formation of DNA ICL products. 

 

Figure 1-2. Photo-induced DNA cross-linking formation (A) and fluorescence intensity              

change (B) 
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Recently, a coumarin-modified nucleotide Il was developed and incorporated into DNA by Peng 

and co-workers.36 Efficient DNA ICL formation was observed upon UV irradiation at 350 nm 

with a maximum yield of about 90%. The DNA cross-linking occurred between the coumarin 

moiety and the opposing thymidine (dT) or 2’-deoxycytidine (dC) via a [2+2] cycloaddition 

mechanism (Figure 1-3A). Most importantly, the photo-induced ICL formation between Il and 

pyrimidines were photo-switchable, which can be cleaved by 254 nm light and reversed into 

single stranded ODNs. Consistent photo-reversible behaviors can be achieved over six cycles by 

switching the UV light between 350 nm and 254 nm (Figure 1-3B).  

 

 

Figure 1-3. Photoreversible DNA cross-linking formation (A) and reversibility of the DNA 

interstrand cross-linking (B) 

A detailed study on the DNA ICL formation using different coumarin analogues was carried out 

in Peng’s group.26 The linker units at the 4-position of coumarin moieties affect the efficiency of 

DNA ICL formation. A linker with two or more carbons is favored and led to quantitative DNA 

ICL formation. The DNA sequences also affect the efficiency of ICL formation. Higher DNA 

cross-linking efficiency was obtained when coumarin moiety was flanked by an A:T versus G:C 

base pair. This may be due to the efficient photo-induced electron transfer between coumarin and 
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dG that makes the ICL formation process less efficient. The DNA ICL formation process can be 

monitored by fluorescence spectroscopy. The coumarin moiety in DNA has strong fluorescence 

at 380 nm, which became weaker and disappeared after the formation of the [2+2] photo-induced 

cycloaddition adduct, suggesting the formation of the DNA ICLs (Figure 1-4). 
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Figure 1-4. Photoreversible DNA cross-linking formation (A) and fluorescence intensity change 

(B) 

Fujimoto’s group developed a 3-cyanovinylcarbazole-modified nucleoside In that was 

incorporated into DNA.37-39 The photo-induced DNA cross-linking process is ultrafast and photo 

reversible. The photo-cross-link can be done within 1 s upon 366 nm irradiation via a [2+2] 

cycloaddition mechanism. The ICL products can be split into single strands within 60 s upon UV 

irradiation at 312 nm. More interestingly, the target cytosine can be selectively converted to 

uracil by heating the ICL product at 90 ℃ for 3.5 h, followed by photo-splitting at 312 nm for 60 

s.39 Such selective conversion is very important and can be used for gene therapy (Scheme 1-10). 
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Sheme 1-10. Site-specific conversion of cytosine to Uracil in target DNA using the CNVK-

modified oligonucleotide. 

Photo-induced DNA cross-linking via quinone methide formation 

Quinone methides (QMs) are electrophiles with high reactivity with nucleophiles, such as 

nucleobases. The cyclic nitrogens, exocyclic amino groups and oxygens in the cytosine and 

guanine are good nucleophiles that can efficiently react with QMs.2-4 Various kinds of QM 

precursors were developed for inducing DNA ICL formation. Some of them are chemical 

inducible (F-, NaIO4, H2O2) while others are photo-inducible. Photo activated QM formation is 

clean and biorthogonal, which can be carried out under physiological condition. 

QM precursors with various benzylicleaving groups (L = OH, NR2, NMe3I) and aromatic 

substituents (R = OMe, H, Cl, COOMe, CN, NO2) were developed and the structure effects of 

precursors were investigated. Both leaving groups (L) and aromatic substituents affect QM 

formation. The ammonium salts are considered as better leaving groups because they do not 

react with QMs and have higher quantum yield.42 In addition, electron-donating groups favored 

the QM formation and regeneration from formed adducts. Electron-withdrawing groups 

suppressed the QM formation and regeneration. The stability of QM decreased with the 
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increasing strength of the electron withdrawing property for the substituents (Cl, COOMe, CN, 

NO2). This is consistent with the electron-deficient property of the QMs (Scheme 1-11).  

 

Scheme 1-11. Photo-generation of QMs and substituent effects. 

 

Scheme 1-12. General structure of three classes of photo-inducible QM precursors.  

Recently, several classes of bifunctional QM precursors have been developed as DNA cross-

linking agents, such as phenols, biphenols and binol quinone methide (BQM) precursors (scheme 

1-12).28-31, 43-46 It was reported by Zhou28 and Basaric43 that the bifunctional phenols generated 

QM under UV irradiation at 300 nm, which can react with various kinds of nucleophiles (scheme 

1-13A). Such bifunctional phenols were capable of inducing DNA ICL formation. Nevertheless, 
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they have limited usage in biological system due to the short activation wavelength (300 nm). 

The light with a wavelength longer than 350 nm was considered to be safe in bio-system.44 To 

expend their application in biological context, extended conjugation systems were investigated 

for achieving longer wavelength for activation.   

Heterocyclic bifunctional pyr-QM precursor Ir was synthesized by Freccero and co-workers.45 

Such compound can be activated by UV light at 310 nm to generate QMs that efficiently cross-

linked DNA. A water-soluble biphenol ammonium salt Is was developed by Zhou’s group,28 

which could generate the reactive QM intermediate upon UV irradiation at 400 nm. The cross-

linking efficiency of Is is 100 fold higher than that of the prototype phenol ammonium salt Iq, 

suggesting that extending conjugation system is an efficient way to make the activation 

wavelength red-shift and to improve the DNA cross-linking efficiency (Scheme 1-13).  

 

Scheme 1-13. Mechanism for photo-induced DNA ICL formation. 



18 

A series of binol analogues containing extended conjugation system were developed by Freccero 

and co-workers (Scheme 1-13C).29-31,46  All these compounds could be activated by UV light 

(310-360 nm) to produce binol quinone methide (BQM) to cross-link DNA. Among these 

compounds, Iv containing ammonium salts as leaving groups showed better photosensitivity. 

However, the positive charge in Iv made it impossible to go through cell membrane thereby 

confined its usage in bio-system. In order to use them in biological context, the ammonium salt 

was replaced by an amino acid (ester) resulting in Iw and Ix that had higher cell membrane 

permeability than Iv. Compound Iw can be activated upon 360 nm photoirradiation to induce 

DNA ICL formation with high efficiency. Compound Iw showed an ICL efficiency that was 

comparable to that of Iv. Compounds Iw,x can successfully reach the DNA targets in the cells.46  

Photo-induced DNA cross-linking via carbon cation formation 

In comparison to DNA cross-linking via photo-induced [2+2] cycloaddition and QM formation, 

the DNA ICL formation via a photo-induced carbocation generation is relatively novel and less 

explored. Recently, Li32 and Greenberg33 group reported that the modified thymidines (Iy,z and 

IIa) produced both radical IIb and cation IIc under UV irradiation but only the cation IIc 

directly cross-linked DNA (Scheme 1-14).  
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Scheme 1-14. Photo-induced DNA cross-linking via modified thymidines.  

Most recently, a series of biaryl bifunctional compounds IId-j (Scheme 1-15) have been 

developed as photo-inducible DNA cross-linking agents.47-49 All these compounds cross-linked 

DNA efficiently upon UV irradiation at 350 nm. The DNA cross-linking process involved a 

carbocation mechanism. The carbocations can be produced either through oxidation of the 

corresponding radicals or direct heterolysis of C-L bond (Scheme 1-16, 1-17, 1-18).32,33,47-49 
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Scheme 1-15. Three classes of photo-inducible DNA cross-linking agents via a carboncation 

mechanism. 

Binitroimidazole analogues IId-f were observed to generate DNA ICL formation and direct 

strand breaks (DSB) upon UV irradiation at 350 nm.47 Free radicals were involved in the DNA 

cross-linking process but  not the species that directly cross-linked DNA, since the presence of 

O2, which would quench the free radicals, did not affect the ICL formation. Carbon cation was 

proposed to be the key intermediate cross-linking DNA. However there was no direct evidence 

obtained due to the low reactivity of IId-f (scheme 1-16). 

 

Scheme 1-16. Photo-induced DNA cross-linking by binitroimidazoles via a carbon cation 

mechanism. 

Very recently, bifunctional naphthalene compounds IIg,h have been developed in our group as 

photo-inducible DNA cross-linking agents via a carbocation mechanism (Scheme 1-15, 1-

17A).48 All these compounds underwent the same mechanism, namely free radicals IIk,l were 

first formed and then converted to carbocations IIm,n that directly cross-linked DNA. The 

mechanism was determined by free radical and cation trapping using 2,2,6,6-
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tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine, respectively. Both TEMPO and 

methoxyamine inhibited DNA ICL formation induced by IIg,h, indicating that both free radical 

and carbocation were involved in the cross-linking process for compound IIg,h. Direct evidence 

was gained by isolation and determinination of the radical and cation trapping adducts formed 

with the monomers (Scheme 1-17B). To detemine whether the carbocations are produced from 

direct heterolysis of C-L bond or through free radical oxidation, two distinct monomer trapping 

experiments were carried out. One used methoxyamine for the cation trapping while the other 

used co-existence of TEMPO and methoxyaming as trapping agents. The cation trapping product 

IIp was observed in the presence of methoxyamine. But the presence of TEMPO greatly reduced 

the yield of the cation trapping product IIp and produced radical trapping product IIo, 

suggesting that the carbocation was produced from the free radical oxidation. Complete 

inhibition of the ICL formation for IIg,h by addition of methoxyamime, indicated that the 

carbocations cross-linked DNA but not the free radicals.48 

Scheme 1-17. Photo-induced DNA ICL by naphthalene analogues via a carbon cation 

mechanism and the trapping products.  



22 

Bifunctional benzyl boronates IIi,j are another class of DNA cross-linking agents developed by 

our group that cross-link DNA via carbocations under UV irradiation.49 Benzyl cations, 

generated from IIi,j, cross-linked DNA at guanine (dG) and cytosine (dC). The cross-linking 

product IIs was confirmed by LC-MS-MS. The leaving groups have a large effect on the 

pathways of carbocation formation. Bromide IIi would undergo a radical-cation pathway (path 1, 

Scheme 1-18), namely free radical IIq was first formed, and then converted to carbocation IIr 

via the oxidation. The ammonium salt IIj underwent path 2 in which direct heterolysis of C-N 

bond generated carbocation IIr. The mechanism was proved by trapping experiments using 

TEMPO and methoxyamine as a radial and cation trapping reagent, respectively. Methoxyamine 

completely quenched DNA ICL formation for both compounds IIi and IIj, indicating that 

carbocations were involved in the DNA cross-linking process. On the other hand, TEMPO 

showed inhibitory effect on bromide IIi but not for ammonium salt IIj, suggesting that free 

radicals were involved in the DNA ICL formation process for IIi but not for IIj.  

 

Scheme 1-18. Photo-induced DNA cross-linking by benzyl boronates via a carbon cation 

mechanism.  
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1.3.2. DNA Interstrand Cross-linking Induced by Chemical Agents 

Chemical agents, such as fluoride (F-), NaIO4 or 1O2, N-bromosuccinimide (NBS), and hydrogen 

peroxide (H2O2) were employed to activate various precursors to induce DNA ICL formation. 

Fluoride-inducible DNA cross-linking agents contain a silyl-protecting group that can be 

selectively cleaved by fluoride ion (IIt,u and IIv) (Scheme 1-19).50,51 NaIO4 or 1O2 inducible 

DNA cross-linking agents are phenyl selenide-containing compounds. In the presence of NaIO4 

or 1O2, these selenides can be converted to the methide intermediates that cross-link DNA 

(IIw).52 Some furan-containing nucleosides can be activated by NBS to form enal species that 

cross-link DNA (IIx).53 Hydrogen peroxide inducible DNA cross-linking agents contain an 

arylboronate or boronic acid trigger that selectively reacts with H2O2 to release DNA cross-links 

(IIy,z and IIIa-d).54,55 (scheme 1-19). 

 

Scheme 1-19. Four types of chemical agents inducible cross-linking agents.  

Fluoride (F-)-inducible DNA Cross-linking Agents 

Fluoride-induced desilylation is a very important chemical reaction since it can selectively and 

efficiently remove the silyl-protection and release the free alcohols. This reaction has been used 

for designing fluoride inducible DNA cross-linking agents. Recently, a large number of tert-
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butyldimethylsilyl (TBDMS)-containing precursors have been developed as fluoride inducible 

DNA cross-linking agents.50,51,56 Two common mechanisms are involved in the DNA cross-

linking process, either via quinone methide (QM) or nitrogen mustard formation.  

The fluoride inducible quinone methide precursors (QMs) were first reported by Rokita and co-

works (Scheme 1-20).50,56 Compound IIt was the first bifunctional silyl-containing QM 

precursor reported by Rokia group. It could be activated by fluoride ion to form interstrand 

cross-linking. However, the ICL efficiency for this compound was very poor (less than 10%) 

even with high concentration of KF (10 mM).50  Modification of IIt by introducing a strong 

electron donating OMe group para to the silyl group led to compound IIu. The electron donating 

groups were reported to facilitate the QM formation.42 Further modification led to IIIe,f and IIIg 

containing a DNA major (acridine) or minor groove (polyamide) binding group with the goal of 

increasing the delivery selectivity.57,58 As expected, compound IIIe was successfully delivered to 

the cross-linking sites in the major groove, and showed higher DNA ICL yield (64%) than IIt.57 

However, IIIg led to very low ICL yield (only 4%) due to the formation of the intramolecular 

adduct.58 The mechanism of action for this class of compounds involved the cleavage of the Si-O 

bond, leading to the formation of the active QM intermediate (IIIh) that directly produced DNA 

ICL products (scheme 1-20).  
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Scheme 1-20. Fluoride-induced QM precursors and mechanism of action. 

The reaction sites for DNA ICL formation were dC, dA and dG.3,59,60 The dC residue reacted 

with QM at N3 position (IIIi),3  and dA mainly reacted at N1 position to form monoadduct 

(IIIj)59  that was not stable and converted to dA-N6 adduct (IIIk), while multiple active sites 

(N1, N2 or N7) were found in dG residue (IIIl-n) (Scheme 1-21).60 

 

Scheme 1-21. Active sites and monoadducts formed by fluoride-induceble QM precursors. 
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Fluoride-activated nitrogen mustard analogues (IIv, IIIo) were also reported, both of which 

contain a trigger unit (TBDMS-protected phenol) and an effector (nitrogen mustard).51 The 

trigger unit can be selectively removed by fluoride ion that cleaved the Si-O bond releasing the 

active nitrogen mustard that directly cross-linked DNA (scheme 1-22). These compounds (IIv, 

IIIo) showed high selectivity toward fluoride ion. No ICL formation was observed in the 

absence of fluoride, while efficient DNA ICLs were obtained for IIv (73%) and IIIo (99%) in 

the presence of fluoride (10 mM). DNA cross-linking occurred mainly at the N7 of adenine or 

guanine residues.15,51  

 

Scheme 1-22. Fluoride-induced nitrogen mustard precursors and the mechanism for ICL 

formation. 

NaIO4 or 1O2-inducible DNA Cross-linking Agents 

There are two kinds of selenide-containing DNA alkylating agents. One type is phenylselenide-

modified pyrimidine nucleosides (IIw, IIIp), and the other type is the phenol derivatives that 

contain two phenylselenide groups as benzylic leaving groups (IIIq-s) (scheme 1-23). Both can 
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be activated by NaIO4 or 1O2 to generate highly reactive methides that directly alkylate DNA.61-

63 The mechanism of action for compounds IIw, IIIp involved the oxidization of selenide to 

selenoxide, which was converted to the reactive methide intermediates via [2,3]-Sigmatropic 

rearrangement that directly cross-link DNA (Scheme 1-24). The ICL formation by the phenol 

derivatives IIIq-s was also related with the QM formation, which was confirmed via ethyl vinyl 

ether (EVE) trapping. The QM trapping adducts IIIx and IIIy were observed for compounds IIIr 

and IIIs (Scheme 1-24). The dA and dG residues were found to be the major cross-link sites for 

both classes of compounds.61-64 

 

Scheme 1-23. NaIO4 or 1O2 inducible DNA cross-linking agents.   
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Scheme 1-24. Mechanism of action for ICL formation. 

NBS-inducible DNA Cross-linking Agents 

The furan-containing analogues were developed by Madder and co-workers (Scheme 1-25).53,65-

70 After incorporating into DNA, the furan moiety can be oxidized by NBS to generate a reactive 

enal species that directly cross-link DNA. The dA or dC residues were found to be the major 

cross-linking sites.53,65-70 The aldehyde group of the enal was attacked by N6 of dA or N4 of dC to 

form the adduct IVe or IVh that underwent Michael addition to afford the intermediate IVf or 

IVi. Spontaneously, the elimination reaction occurred with IVf or IVi generating more stable 

ICL product IVg or IVj (Scheme 1-26).53,65-70 
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Scheme 1-25. NBS-inducible DNA cross-linking agents.  

 

Scheme 1-26. Mechanism of action for furan-containing analogues. 

H2O2-inducible DNA Cross-linking Agents 

The key problem for most DNA cross-linking agents is the poor selectivity toward cancer cells 

over normal cells. They are not only toxic to the cancer cells but also toxic to the normal cells. In 

order to improve the selectivity and reduce the toxicity of the DNA cross-linking agents, 

prodrugs that can only be activated under tumor-specific conditions were developed. Due to the 

faster growth of cancer cells than normal cells, higher level of reactive oxygen species (ROS), 
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such as superoxide (O2
-), hydroxyl radicals (OH·) and hydrogen peroxide (H2O2), was observed 

in cancer cells.71-74 The higher level of ROS is a unique property of cancer cells that can be used 

to develop novel anticancer drugs.  

Hydrogen peroxide (H2O2) as a normal ROS is well known to react selectively with boronic acid 

or boronic esters (A) that are converted to the HO-

containing compounds (B).75 The huge change from a 

strong electron withdrawing boron group to a strong electron donating hydroxyl group can 

greatly alter the reactivity of the compounds. Based on this understanding, several H2O2-

inducible DNA cross-linking agents have been developed, with the purpose to reduce the toxicity 

toward normal cells,48,54,55,76-80 including H2O2-activated QM precursors (scheme 1-27)48,54,76-78 

and H2O2-activated nitrogen mustard precursors (scheme 1-29).55,79,80 All these molecules 

contain a boronic acid or boronic ester as the trigger unit.  The strong electron withdrawing 

boron group in the trigger unit deactivates these molecules, but can selectively react with H2O2 to 

produce a strong electron donating hydroxyl group therefore activating the prodrugs to release 

DNA alkylating agents, QM or nitrogen mustard that cross-link DNA. 

Compounds IVk-p, IIIa,b, IIg,h and IIy,z  (scheme 1-27) can be activated by H2O2 to form 

highly reactive QM intermediates (scheme 1-28) that directly cross-link DNA. Among them, 

compound IIg,h, IIy,z and IIIa,b  have higher DNA cross-linking efficiency, and were chosen 

as novel scaffolds for anticancer drug development. The leaving group L and the aromatic 

substituent R greatly affected DNA cross-linking efficiency. In comparison with the ammonia 

salts IVl and IIz, compounds IVk and IIy with bromo as the leaving group facilitated QM 

formation and showed higher ICL efficiency.54 The presence of an electron donating aromatic 

B
R'O OR'
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+

R

B
R'O OR' H2O2

ROH
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substituent (R) favored QM formation and afforded higher ICL yield, while the electron 

withdrawing groups inhibited QM formation.77 

 

Scheme 1-27. H2O2-activated QM precursors.  



32 

 

Scheme 1-28. Mechanism of action for H2O2-activated QM precursors.  

Peng and coworkers have developed several classes of H2O2-activated nitrogen mustard 

processors that contain a boronic or boronic ester as a trigger unit (scheme 1-29).55, 79, 80 The 

strong electron withdrawing boron group can deactivate the nitrogen mustard, but selectively 

react with H2O2 to generate a strong electron donating OH group releasing the highly active 

nitrogen mustard. Three ways were employed to bridge nitrogen mustard and the trigger unit, 

including nitrogen directly bonded with the benzene ring (IVq,r),79 via a positively charged 

linker (IVs)55 or a neutral electron withdrawing linker (IVt,u).80  
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Compounds IIIc,d were the first generation of H2O2 activated nitrogen mustard precursors, 

which contain a boronic acid (or ester) and a nitrogen mustard with a positive charge. The 

positively charged nitrogen greatly decreased the activity of nitrogen mustard therefore masking 

the toxicity of these prodrugs. The boronic acid (or ester) in IIIc,d can selectively react with 

H2O2 to form an intermediates IVv containing a hydroxyl group, which spontaneously released 

free nitrogen mustard that directly cross-link DNA. Compounds IIIc,d showed good selectivity 

toward H2O2. High ICL yield was obtained in the presence of H2O2 while no ICL formation was 

observed without H2O2. They also showed selective toxicity towards cancer cells with great 

inhibitory effect for cancer cell growth, while normal cells were less affected.55 However, low 

activity was found for compounds IIIc,d possibly due to the positive charge of the molecule that 

prevented them from going through the cell membrane. 

In order to increase the cell membrane permeability, two classes of neutral compounds (IVq,r, 

IVt,u) were designed. Compounds IVq,r contain the nitrogen of nitrogen mustard directly 

bonded to the benzene ring with a boronic acid (or ester) group on the para-position. The 

electron withdrawing boronic acid (or ester) can greatly pull the electron away from the nitrogen 

to boron via both inductive and resonance effects, therefore deactivating the nitrogen mustard. 

On the other side, the boronic acid (or ester) can selectively react with H2O2, which convert 

IVq,r to IVw with an electron donating OH group that push the electron to the nitrogen of the 

nitrogen mustard therefore activating the prodrug for ICL formation. Compounds IVt,u were 

designed to study the effect of linker units on the selectivity of these prodrugs towards hydrogen 

peroxide (scheme 1-29). The aromatic nitrogen mustard moiety and the trigger unit were 

connected via an electron withdrawing carboxyamide or carbonate linker, which decreased the 

electron density of the nitrogen therefore deactivating the nitrogen mustard. In the presence of 
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H2O2, compound IVt,u can be activated to form Va,b containing a strong electron donating 

group (OH or NH2) that can efficiently cross-link DNA (scheme 1-30). For all these H2O2-

activated nitrogen mustard precursors, dG, dC, and dA were found to be the possible cross-

linking sites.55, 79, 80  

Scheme 1-29. H2O2-inducible DAN cross-linking agents.  
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Scheme 1-30. Mechanism of action for H2O2-activated nitrogen mustard precursors.  

Most of the existing methods for inducing DNA ICL formation require chemical reagents, 

leading to the complexity for the in vivo application. Some require additional chemical reagents 

(CuI) that are highly toxic to the cells, which limited their applications under cellular conditions. 

Among these methods, photo-induction and H2O2-induction are most attractive due to their 

bioorthogonal properties. Photo-induction is a green method that is clean, non-invasive, and 

doesn’t require additional chemical reagents. H2O2 is endogenously generated. More 

importantly, cancer cells produce higher level of H2O2 than normal cells, which enable 

selectively targeting cancer cells by using H2O2-activated DNA cross-linking agents. This thesis 

mainly focus on photo- and H2O2-inducible DNA cross-linking agents.  
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Chapter 2. The Effects of Substituents on Photochemical Generation 

of Benzyl Cations and DNA Cross-linking 

2.1. Introduction   

DNA interstrand cross-linking agents have wide applications. They are used as probes for 

sequence-specific DNA detection,1-3 for DNA damage and repair studies,4-7 for DNA 

nanostructure construction,8 and for cancer treatment.9-12 However, the traditional DNA cross-

linking agents are too reactive and showed poor selectivity. Apart from reacting with DNA, they 

can also interact with other cellular components and lead to unexpected side reactions and 

cellular toxicity, which confined their usage in biological system. To improve the selectivity and 

extend the biological applications of DNA cross-linking agents, various methods have been 

developed to induce DNA ICL formation, including fluoride (F-) induction,13-15 sodium periodate 

(NaIO4),
16-18 hydrogen peroxide (H2O2),

19-22 or photo induction.23-25 Among these strategies, 

photo induction is an important method and attracts attentions because of its biocompatibility 

and potential applications in biological system. Photo induction is clean, non-invasive and does 

not require additional chemical reagents. 

Various photo-inducible DNA cross-linking agents have been developed, which induce DNA 

ICL formation via different mechanisms. Some cross-link DNA via photocylcoadditon, others 

alkylate DNA via photo-generated quinone methides (QMs) or carbocations. The photo-induced 

DNA cross-linking via photocycloadditon or QM mechanism have been extensively studied. For 

instance, p-stibaolze,26 coumarin,27-29 psoralen30,31 and 3-cy-anovinylcarbazole32,33 were reported 

to induce DNA ICL formation via [2+2] photocycloaddition while phenol, biphenol, or binol 

analogues were described to induce DNA cross-linking through QM mechanism.34-37 Moreover, 
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the effects of the chemical structure of the precursors for QM activity and subsequent DNA ICL 

formation have been well investigated.38-41 In contrast, photo-induced DNA ICL formation via a 

carbocation mechanism was less explored. Recently, the research groups of Li42 and Greenberg43 

reported that photo irradiation of the modified thymidines led to the formation of both 5-(2’-

dexoyuridinyl)methyl radical and cation, while only cation can directly cross-link DNA. Most 

recently, several bifunctional aromatic boronates were developed in our group, which were found 

to cross-link DNA via a carbocation mechanism upon UV irradiation at 350 nm.23,24 

To date, there are three classes of photo-induced DNA cross-linking agents with limited structure 

variations that induce DNA ICL formation through a photo-generated carbocation. These are 

binitroimidazole analogues (IId, IIe), binaphthalene boronates (IIg, IIh), and bifunctional 

benzyl boronates (IIi, IIj) (Scheme 2-1). Among these compounds, compounds IIi and IIj 

showed better DNA cross-linking efficiency than IId,e and IIg,h (Figure 1). Thus, IIi and IIj 

were chosen as lead compounds for further modification. Even though the DNA cross-linking 

capability of IIi,j is higher than other existing compounds, their photo reactivity towards DNA is 

still low. They took more than 8 hours to complete the cross-linking reaction.23,24 It appears that 

the strong electron withdrawing boronate ester on the benzene ring played a very important role 

in controlling formation of the cationic intermediates and subsequent DNA interstrand cross-

linking. The goal of this work is to understand the generality of the photo-induced DNA ICL 

formation via a carbocation mechanism, investigate the role of the aromatic substituents in 

carbocation formation and subsequent DNA ICL formation, and find ways to improve the 

efficiency of photo-induced DNA cross-linking and expand its potential biological applications. 
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Scheme 2-1. The existing photo-induced DNA cross-linking agents via a carbocation 

mechanism.  
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Figure 2-1. DNA ICL efficiency of three classes of the existing compounds upon UV irradiation. 

To achieve these goals, we developed a series of compounds via chemical modifications on the 

lead compounds (IIi, IIj). The boronate ester group was replaced by a variety of other functional 

groups. As the carbocation intermediates are electron deficient, an electron donating group may 
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offset the electron deficient property therefore facilitating the carbocation formation. In contrast, 

the electron withdrawing groups may destabilize the carbocation intermediate thus suppressing 

the carbocation formation. In addition, the incorporation of auxochromic groups into the 

aromatic rings, either electron-donating or withdrawing groups, may affect the UV absorption of 

the compounds, which in turn may affect compounds’ sensitivity towards UV light. Based on 

this understanding, a series of compounds with various aromatic substituents (1a-5a, and 1b-5b) 

were designed and synthesized by replacing the boronate ester group of the lead compounds 

(IIi,j) with different functionalities (Scheme 2-2). We further investigated the influence of 

chemical structure on carbocation generation and subsequent DNA cross-linking formation, 

DNA cross-linking sites and the mechanism for DNA ICL formation. 

 

Scheme 2-2.  The structures of 1a-5a, and 1b-5b. 

2.2. Bifunctional Benzylic Derivatives as Photo-inducible DNA Cross-linking Agents 

2.2.1. Synthesis of compounds with various substituents 

The general synthetic route is based on our previous work.23,44 Meta-xylene precursors 6, 8, and 

10 were used as staring materials for the preparation of bromides 1a-5a (scheme 2-3). 

Methylation of 6 with methyl iodide (MeI) afforded 2,5-dimethoxy-1,3-dimethylbenzene (7) that 
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was converted to 1a via bormination with N-bromosuccinimide (NBS) using 

azobisisobutyronitrile (AIBN) as a radical initiator (Scheme 2-3A). Compound 2a was 

synthesized using commercially available 8 as starting material via Suzuki coupling reaction (→ 

9), followed by brominiation (→ 2a) (Scheme 2-3B). Compound 4a was produced from direct 

bromination of 8 using NBS/AIBN (Scheme 2-3D).45 A different synthetic route was used for the 

synthesis of 3a and 5a, since direct bromination of 10 or 14 with NBS/AIBN did not afford the 

desired products. Instead of 3a, a mixture of 8 and 4a was obtained by treating 10 with 

NBS/AIBN while bromination product was not observed with 14 possibly due to the deactivating 

effect of the strong electron withdrawing nitro group. To synthesize bromide 3a, we started with 

10. Compound 10 was first converted to dibenzoic acid 11, which was then converted to 

bifunctional benzyl alcohol 13 via esterification (→ 12) and reduction (→ 13).46 The dialcohol 

13 was then further converted to 3a by PBr3 bromination (Scheme 2-3C).47 To synthesize 

compound 5a, the nitro functionality was first introduced using nitrification reaction in the 

presence of HNO3. Followed by oxidation (→ 15), reduction (→ 16) and bromination (→ 5a) 

(Scheme 2-3E). Finally, the bromides 1a-5a were converted to corresponding ammonium salts 

1b-5b by treating with trimethylamine in nearly quantitative yields (Scheme 2-3). 



48 

 

Scheme 2-3. Synthesis of 1a-5a and 1b-5b. 
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2.2.2. Preparation of DNA duplex 

ODN sequence design 

DNA duplex 17 (Scheme 2-4) is part of a p53 gene that plays an important role in cell cycle 

control and apoptosis. Damaged p53 gene may lose its function leading to uncontrolled cell 

cycles, where abnormal cells grow rapidly leading to cancer eventually. There are more than 

50% human cancers caused by p53 gene mutation.48,49  

 

Scheme 2-4. The sequence of DNA duplex 17. 

ODN synthesis 

Oligonucleotides were synthesized via standard solid-phase oligonucleotide DNA synthesis 

techniques using commercially available phosphoramidites (Scheme 2-5). Phosphoramidite oligo 

synthesis goes from the 3′- to 5′-direction. One nucleotide is attached per synthesis cycle. Each 

cycle contains four steps: (1) detriylation (removal of 4,4′-dimethoxytrity group), (2) activation 

(protonation of diisopropylamino group of the incoming phosphoramidite building block C) and 

coupling (the terminal 5’-hydroxyl group of the growing ODN chain (B) attacks the phosphorus 

atom of the incoming phosphoramidite building block (C) to form a new P-O bond), (3) capping 

(block the unreacted 5’-end hydroxyl groups (E)), and (4) oxidation (convert P (III) to P (V)).  
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Scheme 2-5. Automated DNA synthesis cycle (A) and structures of phosphoramidites (B).  

ODN deprotection 

Deprotection of the synthesized ODN was performed under mild deprotection conditions using a 

mixture of 40% aqueous MeNH2 and 28% aqueous NH3 (1:1) at room temperature for 2 h via a 

β-elimination mechanism. 20% Denaturing polyacrylamide gel electrophoresis (PAGE) was used 

for DNA purification. 



51 

 

Scheme 2-6. DNA deprotection 

32P-Labeling at the 5’-end of oligodeoxyribonucleotides  

[γ-32P] ATP was used for DNA labeling with standard protocol. ODN 17a was 5’-end labeled 

using gamma 32P ATP ([γ-32P] ATP) and T4 polynucleotide kinase (T4 PNK), where T4 PNK 

transfers the gamma-phosphate from ATP to the 5'-OH group (Figure 2-2).  
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Figure 2-2. The structure of [γ-32P] ATP and 5’-end oligonucleotide labeling. 

2.2.3. DNA interstrand cross-linking assay 

After synthesizing compounds 1a-5a and 1b-5b, we investigated their DNA cross-linking ability 

using a 49-mer DNA duplex (17) in a phosphate buffer (pH 8.0) under UV irradiation at 350 

nm.23,24 PAGE was used for DNA ICL analysis. The cross-linked and the single-stranded DNA 

can be distinguished by PAGE because they migrate differently in the polyacrylamide gel due to 

different molecular size. The cross-linked products with larger molecular size migrate slower 

than the single-stranded ODN. Molecular Dynamics phosphorimager (ImageQuant, version 5.2) 

was used for quantification of DNA ICL yields, where the ICLs and the single strands show 

different bands on the image plate. Origin 8.0 software was used for data plot and curve fitting. 

Initially, we tested the DNA cross-linking ability of 1a-5a and 1b-5b in the presence or absence 

of 350 nm light. These compounds did not induce DNA ICL formation without photo irradiation 

while efficient DNA cross-linking was achieved upon UV irradiation at 350 nm. Previous study 

showed that the DNA cross-linking efficiency strongly depended on the irradiation time and the 

concentration of the substrates.23 To fully understand how the aromatic substituents and benzylic 

leaving groups affect the DNA cross-linking ability, we first optimized the reaction time and 

concentration to obtain optimal DNA cross-linking efficiency for 1a-5a and 1b-5b.     
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Time-dependent DNA cross-link study 

We carried out the time-depended DNA cross-link study with 1a-5a and 1b-5b to determine the 

time needed to achieve the highest DNA ICL yield. In general, the DNA ICL yields gradually 

enhanced with the increased reaction time, and then reached a balance at specific time points. 

Further increasing reaction time did not increase ICL yield. This time was then defined as 

optimal reaction time for the compound. The optimal time for 1a-5a is 0.75 h, 8 h, 35 h, 6 h, and 

24 h, while that is 6 h, 12 h, 40 h, 24 h and 12 h for 1b-5b respectively (table 2-1 and Figure 2-

3). 
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Figure 2-3. Time-dependence of DNA ICL formation of duplex 17 for 1a-5a and 1b-5b upon 

photo-irradiation. 1a at time points 0’, 5’, 10’, 20’, 30’, 45’, 1 h, 1.5 h, 2 h.   [1a] = 500 µM; 1b 

at time points 0, 30’, 1 h, 1.5 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, [1b] = 500 µM; 2a at time points 0’, 

15’, 30’, 1 h, 2 h, 4 h, 6 h, 8 h, 12h, [2a] = 1mM; 2b at time points 0’, 15’, 30’, 1 h, 2 h, 4 h, 6 h, 

8 h, 12h, 24h, [2b] = 1 mM; 3a at time points 0’, 1 h, 2 h, 4 h, 6 h, 9 h, 12 h, 24 h, 36 h, 48 h, 

[3a] = 1 mM; 3b at time points 0, 1 h, 2 h, 4 h, 6 h, 9 h, 12 h, 24 h, 36 h, 48 h,  [3b] = 1 mM; 4a 

at time points 0’, 15’, 30’, 1 h, 2 h, 4 h, 6 h, 8 h. 12h, [4a] = 1.0 mM; 4b at time points 0’, 15’, 

30’, 1 h, 2 h, 4 h, 6 h, 8 h, 12h, 24h, [4b] = 1mM; 5a at time points 0’, 1 h, 2 h, 3h, 5 h, 8 h, 12 h, 

24 h, 36 h, [5a] = 1 mM; 5b at time points 0’, 1 h, 2 h, 3h, 5 h, 8 h, 12 h. 24h,  [5b] = 1.0 mM. 

Reaction mixtures were irradiated with UV at 350 nm. 

It was observed that the bromides (1a-4a) showed faster photo-induced DNA cross-linking 

reaction rate than that for the trimethyl ammonium salts (1b-4b), while opposite trend was 

observed for 5a and 5b possibly because they undergo different mechanisms.We also observed 

that the introduction of a substituent on the benzene ring promoted photo-induced DNA ICL 

formation rate regardless of the presence of an electron donating or withdrawing group (OMe, 

Ph, Br, and NO2). Namely, all compounds (1a-4a) needed shorter reaction time to complete the 

DNA cross-linking reactions than the parent compound 3a, indicating the poorest photo-

reactivity for 3a towards DNA. Among all introduced substituents, the methoxy group (OMe) (a 

strong electron donating group) displayed the greatest promoting effect. For instance, 1a with a 

methoxy required the shortest reaction time (~ 0.7 h) to complete the photo-induced DNA cross-

linking reaction, suggesting the fastest reaction rate. For 2a, 4a, and 5a with weak electron 

donating (Ph) or electron withdrawing groups (Br and NO2), moderate reactivity was observed. 

Similar trend was found for the ammonia salts 1b-5b.  
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Concentration-dependent DNA cross-linking study 

Having determined the optimal reaction time for 1a-5a and 1b-5b, we performed the 

concentration-dependent DNA cross-linking study to determine the optimized concentration to 

reach the highest DNA cross-linking yields. In general, the DNA ICL yields were gradually 

raised by increasing the concentration of compounds. The DNA cross-linking reaction reached a 

balance at specific concentrations, and further increase of compounds’ concentration did not 

increase the ICL yields. This concentration was defined as optimal concentration for the 

compound. For example, the DNA ICL yield reached the highest at 0.2 mM concentration for 

1b, and the concentration higher than 0.2 mM did not further increase the DNA ICL yield. Thus, 

0.2 mM was the optimal concentration for 1b. The optimal concentration is 0.5 mM for 1a and 

5a, 1.0 mM for 2a-4a and 2b-4b, and 3.5 mM for 5b (Table 2-1 and Figure 2-4).  
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Figure 2-4. The concentration dependence of DNA ICL formation of duplex 17 for 1a-5a and 

1b-5b upon 350 nm irradiation. 1a with an irradiation of 0.75 h; 1b with an irradiation of 6 h; 2a 

with an irradiation of 8 h; 2b with an irradiation of 12 h; 3a with an irradiation of 35 h; 3b with 

an irradiation of 40 h; 4a with an irradiation of 6 h; 4b with an irradiation of 24 h; 5a with an 

irradiation of 24 h; 5b with an irradiation of 12 h. The reaction mixtures were irradiated with UV 

at 350 nm.  

For compounds with the bromide as a leaving group (1a-5a), the electron donating groups in the 

benzene ring slightly increased the DNA ICL yields (1a and 2a), while the electron withdrawing 

groups decreased the ICL yields (4a and 5a). This is consistent with the electron-deficient 

property of the carbocations that were stabilized by the electron donating groups while 

destabilized by the electron withdrawing ones. However, an opposite trend was found for the 

ammonium salts (1b-5b). Higher ICL yields were obtained for compounds with electron 

withdrawing groups (4b and 5b) in comparison with those with electron donating functionalities 

(1b and 2b), even though withdrawing groups were expected to suppress the carbocation 

generation and subsequent DNA ICL formation. 
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Figure 2-5. Photo-induced DNA ICL formation for 1a-5a and 1b-5b. Lane 1: DNA without UV 

irradiation; lane 2: DNA with 24 h UV irradiation at 350 nm; lanes 3-12: DNA with the 

compound (500 µM) but no UV irradiation at 350 nm for designed time; lanes 13-22: DNA with 

the compound (500 µM) upon 350 nm irradiation for designed time: lane 13: 1a (ICL yield, 33 ± 

5%); lane 14: 2a (ICL yield, 33 ± 3%) ; lane 15: 3a (ICL yield, 31 ± 3%); lane 16: 4a (ICL yield, 

29 ± 4%); lane 17: 5a (ICL yield, 21 ± 3%); lane 18: 1b (ICL yield, 25 ± 3%); lane 19: 2b (ICL 

yield, 27 ± 4%); lane 20: 3b (ICL yield, 20 ± 4%); lane 21: 4b (ICL yield, 27 ± 3%); lane 22: 5b 

(ICL yield, 32 ± 5%). All DNA ICL yields were obtained by triplicate experiments and shown as 

average ± standard deviation. 

As all compounds studied have different optimal concentrations to achieve an highest DNA 

cross-linking yield, it is hard to make a conclusion on how the subsituents affect the DNA ICL 

efficiency based on the ICL yields under optimized conditions. For better comparison, we 

performed DNA cross-linking assay under the same concentration (500 µM) and the optimized 

reaction time for each compound (Figure 2-5). For all compounds (1a-5a, and 1b-5b) tested, the 

trend of ICL yields at 500 µM (Figure 2-5) was consistent with that achieved under optimized 

conditions (Table 2-1). All these results suggested that for the bromides (1a-5a), electron 
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donating groups promoted the DNA ICL formation (1a, 2a), while electron withdrawing groups 

suppressed the process (4a, 5a). However, from the electronic effect point of view no conclusive 

data was obtained for the ammonium salts (1b-5b). 

2.2.4. Correlation between UV absorbance and the photo-reactivity 

Apart from the electronic effect, the aromatic substitutions could also affect the UV absorption 

which in turn might influence the reactivity and DNA cross-linking ability. Therefore the UV 

absorbance of the target compounds were investigated (Figure 2-6).  
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Figure 2-6. UV absorption spectra for 1a-5a and 1b-5b at 1.0 mM concentration. 

UV-Vis spectra of target compounds were determined at 1.0 mM concentration in acetonitrile 

(1a-5a) or water (1b-5b) as the solvent. A clear correlation was observed between the UV 

absorption and the photo reactivity of these compounds. In general, compounds with a UV 

absorption closer to 350 nm (maximum output for rayonet photoreactor used in the study) and/or 

stronger UV absorbance exhibited higher DNA cross-linking reactivity. For instance, the 

bromides (1a-4a) whose maximum UV absorption showed red shift (~ 300 nm) have higher 

DNA cross-linking efficiency than that of the corresponding ammonium salts (1b-4b) with 

shorter maximum UV absorption (~ 290 nm). For compounds with the same leaving group, the 

ones with the maximum absorption band closer to 350 nm and the stronger absorbance showed 

higher DNA ICL efficiency. For example, 1a bearing a maximum absorption at 307 nm with an 

extintion coefficiency (λmax) of 4000 M−1⋅cm−1 has higher DNA cross-linking efficiency in 

comparison with the parent compound 3a that has a maximum absorption at 295 nm with the 

biggest  λmax of  2700 M−1⋅cm−1. The photo-induced DNA ICL reaction rates follows the order of 
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1a > 4a > 2a > 3a, which correlates well with the order of bathochromic shift  (1a > 4a > 2a > 

3a). Similarly, the DNA cross-linking rates of 1b-3b follows the order of 1b > 2b > 3b, which is 

consistent with their maximum absorption trend (1b > 2b > 3b). However, the photo-induced 

DNA cross-linking reactivity of 4b, 5a, and 5b (eletron withdrawing) does not correlate with 

their bathochromic shift. Although these compounds have their maximum absorption shift to 

longer wavelength, none of them showed the highest DNA ICL reaction rates. This is possibly 

due to the electron withdrawing property of the substituents that offsets the increased photo 

sensitity of 4b, 5a, and 5b resulted from bathochromic shift, which hindered the carbocation 

generation and subsequent DNA ICL formation. Our data indicated that the introduction of 

aromatic subsittuents not only affect compounds’ electronic properties but also their absorption 

properties. Both of them influenced the photo-induced DNA cross-linking reactivity of these 

compounds. 

2.2.5. Correlation between heterolytic cleavage energy and the photo-reativity 

The bond-dissociation energy may also play an important role in compounds’ photoreactivity. 

Thus, we calculated the heterolytic cleavage energy (∆EHCE), defined as the energy needed to 

release the first leaving group to form a carbocation. The ∆EHCE (5.01–6.52 eV) is higher for the 

compounds with bromo (-Br) as a leaving group than that with trimethylamine as a leaving group 

(2.22–3.42 eV). This indicated that the direct bond cleavage via heterolysis is harder for C-Br in 

1a-5a than for C-N in 1b-5b. The bromides (1a-5a) have similar heterolytic cleavage energy 

with the exception of 5a, which has lower ∆EHCE than other bromides. Similar phenomenon was 

found for the ammonium salts. Compounds 1b-4b have similar heterolytic cleavage energy while 

5b has much lower ∆EHCE. In comparison with all other compounds, 5b has the lowest ∆EHCE. 
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Table 2-1. The optimized conditions, ICL yields, heterolytic cleavage energy (ΔEHCE) and UV 

absorption data for 1a-5a and 1b-5b. 

Bromides 

Reactio

n Time 

(h) 

Con.b 

(mM)  

ICL 

(%)c 

ΔEHCE 

(eV) 

λmax 

(nm) 

 λmax (M
-

1·cm-1) 

1a (R = OMe) 0.75  0.5 36 ± 3 6.07 307 4000 

2a (R = Ph) 8 1.0 34 ± 4 6.16 303 2850 

3a (R = H) 35 1.0 30 ± 3 6.42 295 2700 

4a (R = Br) 6 1.0 29 ± 4 6.52 305 2500 

5a (R = NO2) 24 0.5 23 ± 2 5.01 288, 347 3400, 1550 

Ammonia 

Salts 
      

1b (R = OMe) 6 0.2 25 ± 2 3.30 295 3400 

2b (R = Ph) 12 1.0 27 ± 3 3.26 294 2950 

3b (R = H) 40 1.0 21 ± 3 3.42 285 2800 

4b (R = Br) 24 1.0 33 ± 4 3.24 298 2600 

5b (R = NO2) 12 3.5 65 ± 3 2.22 287, 356 3100, 1300 
a The DNA cross-linking reaction was performed in a pH 8 phosphate buffer with 50 

nM DNA duplex 17 upon 350 nm irradiation.                                                          
bThe minimum compound concentration needed to obtain the highest DNA cross-

linking efficiency.                                                                                                            
c The maximum DNA ICL yield obtained for each compound under optimized 

conditions (all data are the average of three experiments). 

 

2.2.6. Mechanism of DNA ICL formation and substituent effects. 

Our previous study showed that the phenyl boronates with bromo or trimethyl amine as a leaving 

group undergoes different path ways for the generation of carbocations.23 The carbocations were 

generated from initial radicals via free radical oxidation for phenyl boronate esters with bromo as 

a leaving group, while carbocations were formed via direct heterolysis of C-N bond for those 

with trimethyl ammoniums as leaving groups. However, it is hard to conclude that this is a 

general phenomenon due to the limited literature data. Only few compounds with limited 
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structure variations have been reported to cross-link DNA via a carbocation mechanism upon 

photo irradiation. The study on photo inducible DNA ICL formtion via a carbocation mechanism 

is still in its nascent stage. To understand the generality of such a mechanism and fully 

understand how the aromatic substituents (R) affect the DNA cross-link mechanism, radical and 

cation trapping experiments were carried out for 1a-5a and 1b-5b under the optimized DNA ICL 

formation conditions. The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) was used as a radical 

trap while methoxyamine was used as a carbotion trapping agent.23 The results are showing in 

Figure 2-7.  

In general, the DNA ICL yield gradually decreased for all compounds (1a-5a, 1b-5b) with 

increased concentration of methoxyamine. The complete inhibition of DNA ICL formation was 

observed when the concentration of methoxyamine was increased to 100 mM, indicating that the 

carbocations were involved in the photo-induced DNA ICL formation process. To figure out 

whether carbocations were generated from the radical oxidation or via direct heterolysis of C-X 

bonds, we performed radical trapping experiments using TEMPO as a trapping agent. For all 

compounds tested (1a-5a and 1b-5b), 1a-5a and 1b-3b showed similar phenomenon. The 

addition of TEMPO hindered the DNA cross-linking process, and complete inhibition was 

obtained at 100 mM TEMPO. These results indicated that photo-induced DNA ICL formation 

for 1a-5a and 1b-3b was via a radical-cation pathway (defined as first to generate radicals, then 

the radicals were converted to cations via free radial oxidation) where the radials were first 

formed upon photo irradiation of these compounds, then oxidized to cations that directly cross-

link DNA (Scheme 2-7). Different from 1a-5a and 1b-3b, no obvious decrease of DNA ICL 

yield was observed for 5b even with high concentration of TEMPO (100 mM), suggesting that 

free radicals were not involved in the DNA ICL formation process for 5b. The slight decrease of 
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DNA ICL yields was possibly due to the inner filter effect or interaction blockage of TEMPO.50 

Only carbocations were involved for the photo-induced ICL formation for 5b, where the 

carbocations were generated via direct heterolysis of the C-N bond. The result is consistent with 

our previous results obtained for IIj. Apart from that, the lowest heterolytic cleavage energy 

(∆EHCE) for 5b provided another evidence that 5b might undergo a different mechanism. 
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Figure 2-7. Carbocation and radical trapping with DNA ICL formation for 1a-5a, and 1b-5b. 

Interestingly, different results were obtained for the trapping reaction of 4b. The DNA ICL yield 

of 4b first decreased with addition of TEMPO (0-2.0 mM), then gradually increased with higher 

concentration of TEMPO (5.0-100 mM), eventually reached the highest one with 50-100 mM 

TEMPO (Figure 2-7). The decreased DNA ICL yield with 0-2.0 mM TEMPO indicated that the 

free radicals were involved in the DNA ICL formation process while later increased ICL yield 

may suggest a more complicate mechanism. Thus, we proposed that the carbocations might be 

produced via two different pathways for 4b, either through direct C-N bond heterolysis (path 1) 

or via free radial oxidation (path 2) (Scheme 2-7). The concentration of TEMPO might have a 

huge effect on the pathway for carbocation generation. However, we do not have a good 

explaination at this stage. On the other hand, the efficient DNA ICL formation at 50-100 mM 

TEMPO indicated that path 1 is predominant, where the carbocation was produced via direct C-

N bond heterolysis. To provide evidence for our proposal, we performed the cation trapping 

experiment in the presence of 100 mM TEMPO. The DNA ICL yield gradually decreased by the 

addition of methoxyamine and reached the background level with 100 mM methoxyamine, 

which provided further evidence for the proposed mechanism.  
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Overall, our results showed that the mechanism pathway for photo-induced DNA cross-link by 

these bifunctional phenyl compounds was not only influenced by the leaving groups but also by 

the aromatic substituents. 

Scheme 2-7. Proposed mechanism for DNA ICL formation. 

In order to provide direct evidence that free radicals and carbocations were formed, the 

carbocation and radical trapping reactions were carried out with monomers 1a-5a and 1b-5b 

using large excesses of methoxyamine and TEMPO as trapping agents, respectively.  

The cation trapping adducts (2d-4d) were obtained for compounds 2a-4a and 2b-4b upon UV 

irradiation, which was confirmed by NMR and HRMS analysis, suggesting the generation of 

carbocations. However, the cation trapping adducts of 1a and 1b were not observed due to the 

complexity of the trapping reactions. The trapping reactions completed within 60 min under UV 
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irradiation at 350 nm while more than 8 new products were formed. This might be due to the 

strong electron donating effect of the methoxy group that highly improved the reactivity of the 

compounds leading to a lot of side reactions. Similar situation was found for 5a and 5b. 

Compound 5a was completely consumed after UV irradiation for 6 h, while a very complex 

reaction occurred and no expected trapping adduct was obtained. For compound 5b, the cation 

trapping adduct was formed but not sufficient for NMR analysis, so it was confirmed by HRMS 

analysis.   

The free radical trapping adducts 1e-5e and 1f-4f were obtained for compound 1a-5a and 1b-4b 

upon UV irradiation in the presence of the excess of TEMPO, suggesting that the free radicals 

were generated by UV irradiation of 1e-5e and 1f-4f. Apart from 4e, the trapping adduct 4g was 

also isolated from the reaction of 4a or 4b with TEMPO. Different from 5a, photo irradiation of 

5b in the presence of large excess of TMEPO did not produce the trapping adduct. This provided 

further evidence that free radicals were not involved in the DNA ICL formation process for 5b. 

The free radicals and carbocations were generated via a stepwise manner, which was confirmed 

by the formation of mono-trapping products 1e-5e and 1f-4f. (Scheme 2-8)  

 

Scheme 2-8. Cation and free radical trapping products obtained with 1a-5a and 1b-5b upon 350 

nm irradiation. 

2.2.7. Determination of DNA alkylation sites and alkylation products.  
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In order to identify the DNA alkylation sites for 1a-5a and 1b-5b upon UV irradiation at 350 nm, 

we performed the heat stability study under basic or neutral conditions, which allowed us to 

determine heat-labile and/or alkaline-labile DNA alkylation sites. It was reported that N7-

alkylated purines can be cleaved by piperiding treatment. The heat stability experiment for 

alkylated products formed by 1a is shown in Figure 2-8, and the rest are shown in Appendix A.  

The DNA ICL products formed by 1a were damaged by 1.0 M piperidine treatment upon heating 

at 90 ℃ for 30 mim while they were stable in a pH 7.0 phosphate buffer. The cleavage bands 

were observed at dAs and dGs, such as dG27, dG22, dG6, and dA5. These date indicated that dAs 

and dGs were the major alkylation sites for 1a. Similar phenomenon was observed for other 

compounds (Appendix A). Apart from dAs and dGs, cleavage bands were also found at dCs and 

dTs for 5b, which possibly due to the formation pyrimidine glycol as a result of nitro group. It is 

reported that the electron-affinic nitro compounds greatly facilitated thymine glycol formation.51   
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Fig 2-8. Determination of the reaction sites of 1a. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of the isolated DNA ICL products and alkylated single-stranded DNA 

(17a’) upon heating in piperidine or phosphate buffer. The ICL product and 17a’ were produced 

by 350 nm irradiation of duplex 17 in the presence of 1a (500 µM). 17a was radiolabeled at the 

5’-terminus. Lane 1: isolated alkylated single stranded DNA (17a’). Lane 2: 17a’ was heated in a 

pH 7 phosphate buffer at 90 °C for 30 min. Lane 3: 17a’ was heated in 1.0 M piperidine at 90 °C 

for 30 min. Lane 4: Isolated DNA ICL products. Lane 5: the DNA ICL products were heated in a 

pH 7 phosphate buffer at 90 °C for 30 min. Lane 6: the DNA ICL products were heated in 1.0 M 

piperidine at 90 °C for 30 min.  Lane 7: G+A sequencing.  
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Even though the heat-stability study of the DNA ICL products provided evidences for that dAs 

and dGs were the possible alkylation sites, it is hard to determine the alkylation sites that are 

stable in heating. In addition, the structure of the DNA alkylating adducts formed by these 

compounds could not be determined by heat stability study. Previously, the LC-MS was used to 

determine the DNA ICL adducts formed by a photo-generated carbotion.23 However, the detailed 

structure could not be fully determined because it was impossible to isolate sufficient amount of 

adducts for NMR analysis. To further investigate the possible DNA cross-linking sites and test 

the reactivity of the benzyl cations towards four nucleoside, monomer reactions were carried out 

by treating 1a with four nucleosides (dA, dC, dG and dT) using DMF as the solvent. Compound 

1a was chosen as a representative for the monomer reaction because it exhibited the highest 

DNA cross-linking reactivity. HPLC was used to monitor reactions. After one day reaction, new 

products were observed with dA, dC, and dG but not with dT. The photoreaction of 1a and dA 

provided a major adduct (23a) with a retention time of about 41 min. Similarly, a major adduct 

(24a) with a retention time of around 41 min was observed for the reaction between 1a and dC 

(Scheme 2-9). The structures of 23a and 24a were determined based on NMR and HRMS 

analysis. In addition to the major adducts, the hydrolyzed products of 23a and 24a were also 

observed based on LC-MS analysis (Scheme 2-10). The photoreaction of 1a with dG was too 

complex to obtain the pure adducts for NMR analysis. In addition, decomposition was observed 

during the purification process. Thus, the major adduct isolated was analyzed by HRMS, 

indicating formation of 25a. In addition, LC-MS analysis suggested that two minor adducts 

formed with dG (retention time of around 37 min) corresponded to 25b and 25c, caused by the 

hydrolysis of 25a and substitution of bromo in 25a with the second guanine base, respectively. 

We propose that 23a and 25a resulted from a deglycosylation of the corresponding N7 adduct 
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23c and 25d, respectively (Scheme 2-9). Deglycosylation of N-7 alkylated purine nucleosides is 

well-documented.21 These data suggested that the benzyl cations mainly alkylate N7 of purines 

and NH2 of dC. Thus, we conclude that the DNA interstrand crosslinking induced by these 

benzyl cations took place with both dG and dC, whereas mono-alkylation would also occur with 

dA, dG, and dC. 

 

Scheme 2-9. Monomer reactions of 1a and the nucleosides dG, dA, and dC. 
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Scheme 2-10: The proposed structures for the minor adducts detected by LC-MS. (LCMS 2020 

Single Quad and IT-TOF) 

2.2.8. Conclusions 

Recently, several bifunctional aryl compounds were reported to undergo photo activation to 

induce DNA ICL formation via a carbocation mechanism. To better understand the generality of 

such a mechanism and investigate the effect of chemical structures on carbocation formation and 

subsequent DNA interstrand cross-linking, we synthesized a series of bifunctional phenyl 

compounds (1a-5a and 1b-5b) containing a variety of substituents and tested their DNA cross-

linking capability. Upon UV irradiation, all bifunctional phenyl compounds (1a-5a and 1b-5b) 

generated carbocations that directly cross-link DNA. The mechanism pathways for carbocation 

and subsequent DNA ICL formation highly depend on the aromatic substitutions and leaving 

groups. For compounds with bromo as a leaving group, the benzyl cations were produced via 
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free radical oxidation, no matter what substituents are present. Different from bromide 

compounds, two pathways were involved for the ammonium salts, either via free radical 

oxidation or through direct C-N bond heterolysis, which highly relies on the aromatic 

substituents. The ammonium salts with an electron withdrawing group preferred direct C-N bond 

heterolysis but suppressed the radical formation. Generally speaking, the introduction of 

substituents to the benzene ring led to red shift of the maximum UV absorption (closer to 350 nm 

UV light), which in turn increased the photo-sensitivity of these compounds, therefore promoting 

their DNA cross-linking ability. An electron-donating group exhibited a stronger promoting 

effect than the electron withdrawing ones, which is consistent with the electron-deficient 

property of the carbocations. This study provides systematic data regarding how the aromatic 

substituents and leaving groups affect the photo-induced carbocation mechanism pathways and 

DNA cross-linking efficiency, which are important mechanistic fundamentals for developing 

novel photo-induced drugs.    

2.3. Experiment Section 

General Information. All chemicals from commercial available source were directly used 

without further purification. Oligonucleotides were synthesized via standard automated DNA 

synthesis techniques. Deprotection of the synthesized DNA were performed under mild 

deprotection conditions using a mixture of 40% aqueous MeNH2 and 28% aqueous NH3 (1:1) at 

room temperature for 2 h. 20% denaturing polyacrylamide gel electrophoresis was used for DNA 

purification. [γ-32P] ATP was used for DNA labeling with standard method. Quantification of 

radiolabeled oligonucleotides was carried out using a Molecular Dynamics phosphorimager 

equipped with ImageQuant, version 5.2, software. 1H NMR and 13C NMR spectra were taken on 
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a Bruker DRX 300 MHz spectrophotometer with TMS as internal stander. High-resolution mass 

spectrometry IT-TOF was used for molecular measurement. 

Synthesis of 2,5-dimethoxy-1,3-dimethylbenzene (7): The 2,6-dimethylhydroquinone (2.0 g, 

14.47 mmol) was added to a solution of NaH (60%, 2.3 g, 57.88 mmol) in DMF (20 mL). The 

reaction mixture was stirred at rt for 10 min and cooled to 0 ℃. Methyl iodide (8.22 g, 57.88 

mmol) was added dropwise into the reaction mixture, which was allowed to warm to rt naturally, 

stirred at rt overnight, and then diluted with ethyl acetate (3 × 40 mL). The organic layer was 

combined, washed with brine, and dried over anhydrous Na2SO4. Solvent was removed and the 

residue was purified by column chromatography (Hexane: Ethyl acetate = 10:1, Rf = 0.7) to 

afford 7 as a colorless liquid (2.16 g, 13 mmol). 1H NMR (300 MHz, CDCl3): δ. 6.60 (s, 2H), 

3.78 (s, 3H), 3.72 (s, 3H), 2.31 (s, 6H) (the NMR spectra were in agreement with those 

reported).52 

1,3-Bis(bromomethyl)-2,5-dimethoxybenzene (1a): Into a solution of compound 7 (1.66 g, 10 

mmol) in benzene (40 mL), N-bromosuccinimide (3.56 g, 20 mmol) and azobisisobutyronitrile 

(164.21 mg, 1 mmol) were added. The reaction mixture was refluxed for 3 h. Solvent was 

removed and the residue was purified by column chromatography (Hexane: DCM= 5:1, Rf = 

0.24) to afford 1a as a white solid (1.70 g, 5.28 mmol): m.p. 92-93 ℃; 1H NMR (300 MHz, 

CDCl3): δ.6.92 (s, 2H), 4.55 (s, 4H), 3.99 (s, 3H), 3.82 (s, 3H) (the NMR spectra were in 

agreement with those reported).50     

1,1'-(2,5-Dimethoxy-1,3-phenylene)bis(N,N,N-trimethylmethanaminium) bromide (1b): Into 

a solution of compound 1a (200 mg, 0.62 mmol) in ethyl acetate (10 mL), trimethylamine (4.2 

M, 2.2 mL, 9.3 mmol) was added. The reaction mixture was stirred at rt overnight. The mixture 

was filtrated to afford 1b as a white solid (270 mg, 0.61 mmol): m.p. 270-271 ℃; 1H NMR (300 
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MHz, Methanol-d4): δ. 7.40-7.38 (d, J = 6.0 Hz, 2H), 4.62-4.60 (d, 4H), 3.92 (s, 3H), 3.88 (s, 

3H), 3.21 (s, 18H). 13C NMR (75 MHz, Methanol-d4): δ. 156.37, 153.87, 123.69, 122.94, 63.75, 

63.05, 55.39, 52.31. HRMS-ESI (+) (m/z): [M-2Br]2+ calcd. for C16H30N2O2
2+, 141.1148; found: 

141.1139. 

4-Methoxy-2,6-dimethyl-1,1'-biphenyl (9): To a mixture of compound 8 (2.14 g, 10 mmol), 

phenylboronic acid (2.2 g, 18 mmol), and tetrakis(triphenylphosphine)palladium(0) (1.15 g, 2 

mmol) in a two-neck round-bottom flask (100 mL), THF (60 mL) was added under N2. Then, a 

solution of K2CO3 (6.9 g, 50 mmol) in water (20 mL) was added using syringe. The reaction 

mixture was refluxed for 24 h, diluted with DCM (3 × 40 mL), washed with brine, and dried over 

anhydrous Na2SO4. Solvent was removed and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 10:1, Rf = 0.3) to obtain 9 as a colorless oily product 

(2 g, 9.4 mmol) that was solidified at -20 ℃. 1H NMR (300 MHz, CDCl3): δ. 7.48-7.34 (m, 3H), 

7.20-7.17 (d, J = 9.0, Hz, 2H), 3.87 (s, 3H), 2.08 (s, 6H) (the NMR spectra were in agreement 

with those reported).53  

2,6-Bis(bromomethyl)-4-methoxy-1,1'-biphenyl (2a): Into a solution of compound 9 (1.4 g, 

6.6 mmol) in benzene (50 mL), N-bromosuccinimide (2.35 g, 13.2 mmol) and 

azobisisobutyronitrile (108 mg, 0.66 mmol) were added. The reaction mixture was refluxed for 2 

h. Solvent was removed and the residue was purified by column chromatography (Hexane: DCM 

= 5:1, Rf = 0.33) to obtain 2a as a white solid (1.4 g, 3.81 mmol): m. p. 75-76 ℃; 1H NMR (300 

MHz, CDCl3): δ. 7.52-7.36 (m, 5H), 7.05 (s, 2H), 4.21 (s, 4H), 3.89 (s, 3H). 13C NMR (75 MHz, 

CDCl3): δ. 159.04, 137.97, 136.56, 134.31, 129.88, 128.37, 127.93, 115.98, 55.48, 31.91. 

HRMS-ESI (+) (m/z): [M-Br]+ calcd. for C15H14OBr, 289.0223; found: 289.0205. 
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1,1'-(4-Methoxy-[1,1'-biphenyl]-2,6-diyl)bis(N,N,N-trimethylmethanaminium) bromide 

(2b): To a solution of compound 2a (200 mg, 0.54 mmol) in ethyl acetate (10 mL), 4.2 M 

trimethylamine solution in ethanol (1.93 mL, 8.11 mmol) was added. The reaction mixture was 

stirred at rt overnight and then filtrated to afford 2b as a white solid (260 mg, 0.53 mmol): m.p. 

261-262 ℃; 1H NMR (300 MHz, Methanol-d4): δ. 7.68-58 (m, 5H), 7.45-7.43 (d, J = 6.0 Hz, 

2H), 4.64 (s, 4H), 4.02 (s, 3H), 2.89 (s, 18H). 13C NMR (75 MHz, Methanol-d4): δ. 158.72, 

139.17, 135.84, 131.98, 129.47, 128.81, 122.31, 66.27, 55.30, 52.52. HRMS-ESI (+) (m/z): [M-

2Br]2+ calcd. for C21H32N2O
2+, 164.1252; found: 164.1241.  

2-Bromo-1,3-bis(bromomethyl)-5-methoxybenzene (4a): To a solution of compound 8 (1.90 

g, 8.88 mmol) in benzene (25 mL), N-bromosuccinimide (3.32 g, 18.65 mmol) and 

azobisisobutyronitrile (145 mg, 0.89 mmol) was added. The reaction mixture was refluxed for 2 

h, then the second portion of N-bromosuccinimide (0.33 g, 1.86 mmol) and 

azobisisobutyronitrile (14.5 mg, 0.089 mmol) were added and refluxed for another 0.5 h. Solvent 

was removed. The residue was diluted with ethyl acetate (3 × 30 mL), washed with brine, and 

dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 25:1, Rf = 0.4) to obtain 4a as a white solid (1.2 g, 3.25 

mmol): m. p. 126-127 ℃; 1H NMR (300 MHz, CDCl3): δ. 7.00 (s, 2H), 4.62 (s, 4H), 3.84 (s, 3H) 

(the NMR spectra were in agreement with those reported).45  

1,1'-(2-Bromo-5-methoxy-1,3-phenylene)bis(N,N,N-trimethylmethanaminium) bromide 

(4b): To a solution of compound 4a (200 mg, 0.54 mmol) in ethyl acetate (4 mL), 4.2 M 

trimethylamine solution in ethanol (1.93 mL, 8.11 mmol) was added. The reaction mixture was 

stirred at rt overnight and then filtrated to afford 4b as a white solid (250 mg, 0.51 mmol): m. p. 

263-264 ℃; 1H NMR (300 MHz, Methanol-d4): δ. 7.55 (s, 2H), 4.89 (s, 4H), 3.97 (s, 3H), 3.31 
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(s, 18H). 13C NMR (75 MHz, Methanol-d4): δ.157.52, 129.42, 122.09, 120.30, 66.77, 54.11, 

51.23. HRMS-ESI (+) (m/z): [M-2Br]2+ calcd. for C15H27N2OBr2+, 165.0648; found: 165.0638. 

5-Methoxyisophthalic acid (11): To a solution of compound 10 (5.0 g, 36.71 mmol) in 150 mL 

of tBuOH: H2O (1:1) solution, KMnO4 (11.6 g, 73.43 mmol) was added. The mixture was 

refluxed for 2 h and cooled to rt, then the second portion of KMnO4 (11.6 g) was added. The 

reaction mixture was refluxed for another 16 h. The insoluble byproducts were removed by hot 

filtration. Then, tBuOH was removed, and the concentrated HCl (100 mL) was added. The 

resulting white solid 11 (3.93 g) was collected by filtration and dried overnight under vacuum. 

1H NMR (300 MHz, DMSO-d6): δ. 13.23 (s, 2H), 8.08 (s, 1H), 7.65 (s, 2H), 3.87 (s, 3H) (the 

NMR spectra were in agreement with those reported).54  

Dimethyl 5-methoxyisophthalate (12): A solution of 11 (3.92 g, 20 mmol) in methanol (70 mL) 

was added concentrated H2SO4 (4.0 mL) dropwise at 0 ℃. The reaction mixture was refluxed 

overnight, then poured to ice cold water (50 mL) and extracted with ethyl acetate (3 × 50 mL). 

The organic phases were combined, washed with water (30 mL), NaHCO3 (5%) and brine, and 

dried over anhydrous Na2SO4. Solvent was removed to provide the crude product that was 

precipitated with ethyl acetate and hexane to afford pure 12 as a white solid (2.75 g, 12.27 

mmol). 1H NMR (300 MHz, CDCl3): δ. 8.30 (s, 1H), 7.77 (s, 2H), 3.96 (s, 6H), 3.91 (s, 3H) (the 

NMR spectra were in agreement with those reported).54  

(5-Methoxy-1,3-phenylene)dimethanol (13): To a solution of compound 12 (2.25 g, 10 mmol) 

in THF, LiAlH4 (835 mg, 22 mmol) was slowly added at 0℃. The reaction mixture was stirred 

for 2 h, quenched with water, and washed with ethyl acetate (3 × 40 mL). The organic phases 

were combined, washed with brine, and dried over anhydrous Na2SO4. Solvent was removed to 

provide the crude product as a colorless oil that was purified by column chromatography 
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(Hexane: Ethyl acetate = 1:1, Rf = 0.15) to obtain 13 as a white solid (1.46g, 8.69 mmol). 1H 

NMR (300 MHz, CDCl3): δ. 6.94 (s, 1H), 6.85 (s, 2H), 4.67 (s, 4H), 3.83 (s, 3H), 2.04 (a, broad, 

2H) (the NMR spectra were in agreement with those reported).46  

1,3-Bis(bromomethyl)-5-methoxybenzene (3a): A solution of 13 (1.0 g, 5.95 mmol) in DCM 

(40 mL) was cooled to 0℃ under argon. Then, phosphorus tribromide (3.54 g, 13.09 mmol) was 

added at 0℃ under argon. The reaction mixture was warmed to rt, stirred for 4 h, and diluted 

with DCM (3 × 40 mL). The organic phases were combined, washed with brine, and dried over 

anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 20:1, Rf = 0.58) to obtain 3a as a white solid (1.2 g, 

4.11 mmol). 1H NMR (300 MHz, CDCl3): δ. 7.03 (s, 1H), 6.89 (s, 2H), 4.46 (s, 4H), 3.85-3.84 

(d, J = 3.0, Hz, 3H) (the NMR spectra were in agreement with those reported).55 

1,1'-(5-Methoxy-1,3-phenylene)bis(N,N,N-trimethylmethanaminium) bromide (3b): To a 

solution of compound 3a (200 mg, 0.68 mmol) in ethyl acetate (6 mL), 4.2 M trimethylamine in 

ethanol (2.43 mL, 10.2 mmol) was added. The reaction mixture was stirred at rt overnight, and 

then filtrated to provide 3b as a white solid (266 mg, 0.65 mmol): m. p. 254-255 ℃; 1H NMR 

(300 MHz, Methanol-d4): δ. 7.48 (s, 1H), 7.37 (s, 2H), 4.65 (s, 4H), 3.95 (s, 3H), 3.21 (s, 18H). 

13C NMR (125 MHz, Methanol-d4): δ. 160.58, 130.17, 129.03, 120.53, 68.20, 55.23, 52.15. 

HRMS-ESI (+) (m/z): [M-2Br]2+ calcd. for C15H28N2O
2+, 126.1095; found: 126.1088. 

5-Methoxy-1,3-dimethyl-2-nitrobenzene (14): To a solution of compound 10 (13.6 g, 100 

mmol) in DCM (250 mL), concentrated HNO3 (10 mL, 68-70%) in 100 mL DCM) was added 

dropwise at -20 ℃. The reaction mixture was stirred at rt for 4 h. Solvent was removed and the 

residue was purified by column chromatography (Hexane: Ethyl acetate = 10:1, Rf = 0.5) to 
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afford 14 as a light yellow solid (2.4 g, 13.19 mmol). 1H NMR (300 MHz, CDCl3): δ. 6.62 (s, 

2H), 3.84 (s, 3H), 2.35 (s, 6H) (the NMR spectra were in agreement with those reported).56 

5-Methoxy-2-nitroisophthalic acid (15): To a solution of compound 14 (2.0 g, 10.99 mmol) in 

water (70 mL), NaOH (0.88 g, 21.98 mmol) was added. The reaction mixture was heated to 

reflux and KMnO4 (6.94 g, 43.96 mmol) was added. The reaction mixture was refluxed for 6 h, 

then the second portion of KMnO4 (8 g, 50 mmol) and NaOH (1 g, 25 mmol) were added. The 

resulting mixture was refluxed for another 20 h, then the third portion of KMnO4 (80 g, 50 

mmol) was added. The reaction mixture was refluxed overnight, cooled to rt, and filtrated. The 

filtrate was acidified with concentrated HCl, and extracted with ethyl acetate (3 × 50 mL). 

Solvent was removed to afford 15 as a white solid (1.06 g, 4.4 mmol) (1:1 MeOH: Ethyl acetate, 

Rf = 0.5): m.p. 218-219 ℃; 1H NMR (75 MHz, Methanol-d4): δ. 7.62 (s, 2H), 3.96 (s, 3H). 13C 

NMR (300 MHz, DMSO-d6): δ. 164.84, 161.38, 160.34, 128.21, 118.64, 56.92. HRMS-ESI (+) 

(m/z): [M+Na]+ calcd. for C9H7NNaO7
+, 264.0115; found: 264.0102. 

(5-Methoxy-2-nitro-1,3-phenylene)dimethanol (16): A solution of compound 15 (1.0 g, 4.15 

mmol) in THF (20 mL) was cooled to 0 ℃, followed by addition of borane tetrahydrofuran 

complex solution (1.0 M in THF, 20.75 mL, 20.75 mmol). The reaction mixture was allowed to 

warm up to rt and stirred at rt for 48 h. Then, the second portion of borane tetrahydrofuran 

complex solution (1.0 M in THF, 15 mL, 15 mmol) was added and stirred for another 36 h. 

Solvent was removed and the resulting mixture was quenched with water, and diluted with ethyl 

acetate (3 × 40 mL). The organic layers were combined, washed with brine, and dried over 

anhydrous Na2SO4. Solvent was removed and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.3) to afford 16 as a light yellow solid (0.54 

g, 2.53 mmol): m.p. 125-126 ℃; 1H NMR (300 MHz, Methanol-d4): δ. 7.15 (s, 2H), 4.70 (s, 4H), 
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3.91 (s, 3H). 13C NMR (75 MHz, Methanol-d4): δ. 161.63, 140.50, 137.87, 111.69, 60.02, 54.82. 

HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C9H11NNaO5
+, 236.0529; found: 236.0522.  

1,3-Bis(bromomethyl)-5-methoxy-2-nitrobenzene (5a): Into a solution of compound 16 (426 

mg, 2 mmol) in DCM (20 mL), phosphorus tribromide (1.19 g, 0.42 mL, 4.4 mmol) was added at 

0 ℃ under argon. The reaction mixture was stirred for 2 h. Then, the second portion of 

phosphorus tribromide (0.6 g, 0.21 mL, 2.2 mmol) was added. The reaction mixture was stirred 

for another 2 h and diluted with DCM (3 × 25 mL). The organic layers were combined, washed 

with brine, and dried over anhydrous Na2SO4. Solvent was removed, and the residue was 

purified by column chromatography (Hexane:Ethyl acetate = 10:1, Rf = 0.15) to obtain 5a as a 

light yellowish solid (300 g, 0.89 mmol): m.p. 116-117 ℃; 1H NMR (300 MHz, CDCl3): δ. 6.98 

(s, 2H), 4.54 (s, 4H), 3.91 (s, 3H). 13C NMR (75 MHz, CDCl3): δ. 160.83, 142.81, 133.62, 

116.73, 55.97, 27.31. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C9H9NNaO3Br2
+, 359.8841; 

found: 359.8830.  

1,1'-(5-Methoxy-2-nitro-1,3-phenylene)bis(N,N,N-trimethylmethanaminium) bromide (5b): 

To a solution of compound 5a (70 mg, 0.21 mmol) in ethyl acetate (3 mL), 4.2 M trimethylamine 

solution in ethanol (0.74 mL, 3.11 mmol) was added. The reaction mixture was stirred at rt 

overnight and filtrated to afford 5b as a light yellow solid (82 mg, 0.18 mmol): m. p. 229-230 ℃ 

1H NMR (300 MHz, Methanol-d4): δ. 7.64 (s, 2H), 4.79 (s, 4H), 4.07 (s, 3H), 3.24 (s, 18H). 13C 

NMR (75 MHz, Methanol-d4): δ. 159.59, 145.79, 121.96, 121.58, 62.20, 54.65, 51.22. HRMS-

ESI (+) (m/z): [M-2Br]2+ calcd. for C15H27N3O3
2+, 148.6021; found: 148.6013.  

General procedure for trapping assay.  

Radical trapping: To a solution of compounds 1a-5a (1 eq) in CH3CN (2 mL) or 1b-5b (1 eq) 

in MeOH (2 mL), TEMPO (10 eq) were added at rt while stirring. The resulting mixture was 
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allowed to react upon UV irradiation until all starting material was consumed. Solvent was 

removed and the residue was purified by chromatography (Hexane: DCM = 10:1 for 1a-5a, 

DCM: Methanol = 10:1 for 1b-5b) to afford the trapping adducts 1e-5e, 1f-4f, and 4g.  

1-((3-(Bromomethyl)-2,5-dimethoxybenzyl)oxy)-2,2,6,6-tetramethylpiperidine (1e): 1H 

NMR (300 MHz, CDCl3): δ. 7.10 (s, 1H), 6.86 (s, 1H), 4.89 (s, 2H), 4.58 (s, 2H), 3.86-3.83 (d, J 

= 9.0 Hz, 6H), 1.58-1.51 (m, 6H), 1.28-1.18 (d, J = 30 Hz, 12H). 13C NMR (75 MHz, CDCl3): δ. 

155.82, 149.46, 133.31, 131.55, 115.77, 114.24, 73.25, 62.21, 60.05, 55.55, 39.76, 33.01, 28.12, 

20.41, 17.10. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C19H31NO3Br+, 400.1482; found: 

400.1475.  

1-((6-(Bromomethyl)-4-methoxy-[1,1'-biphenyl]-2-yl)methoxy)-2,2,6,6-

tetramethylpiperidine (2e): 1H NMR (300 MHz, CDCl3): δ. 7.42-7.40 (m, 3H), 7.27-7.21 (m, 

3H), 7.00 (s, 1H), 4.48 (s, 2H), 4.23 (s, 2H), 3.91 (s, 3H), 1.62-1.23 (m, 6H), 1.11-1.00 (d, J = 33 

Hz, 12H). 13C NMR (75 MHz, CDCl3): δ. 158.88, 138.84, 137.46, 136.92, 133.29, 129.85, 

128.28, 127.43, 114.54, 113.51, 59.86, 55.32, 39.67, 39.60, 32.66, 32.37, 20.32, 17.05. HRMS-

ESI (+) (m/z): [M+H]+ calcd. for C24H33NO2Br+, 446.1689; found: 446.1678. 

1-((3-(Bromomethyl)-5-methoxybenzyl)oxy)-2,2,6,6-tetramethylpiperidine (3e): 1H NMR 

(300 MHz, CDCl3): δ. 6.97 (s, 1H), 6.91-6.87 (m, 2H), 4.83 (s, 2H), 4.50 (s, 2H), 3.86 (s, 3H), 

1.53-1.51 (m, 6H), 1.27-1.20 (m, 12H). 13C NMR (75 MHz, CDCl3): δ. 159.82, 140.53, 138.92, 

120.12, 113.32, 113.07, 60.05, 55.32, 39.74, 33.63, 33.10, 20.36, 17.13. HRMS-ESI (+) (m/z): 

[M+H]+ calcd. for C18H29NO2Br+, 370.1376; found: 370.1370. 

1-((2-Bromo-3-(bromomethyl)-5-methoxybenzyl)oxy)-2,2,6,6-tetramethylpiperidine (4e): 1H 

NMR (300 MHz, CDCl3): δ. 7.19 (s, 1H), 6.94 (s, 1H), 4.89 (s, 2H), 4.63 (s, 2H), 3.86 (s, 3H), 

1.6-1.53 (m, 6H), 1.23-1.22 (d, J = 3.3 Hz, 12H). 13C NMR (75 MHz, CDCl3): δ. 158.81, 140.64, 
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137.65, 114.55, 113.80, 60.10, 55.47, 39.72, 33.99, 32.91, 20.46, 17.10. HRMS-ESI (+) (m/z): 

[M+H]+ calcd. for C18H28NO2Br2
+, 448.0481; found: 448.0475. 

1-((3-(Bromomethyl)-5-methoxy-2-nitrobenzyl)oxy)-2,2,6,6-tetramethylpiperidine (5e): 

HRMS-ESI (+) (m/z): [M+H]+ calcd. for C18H28N2O4Br2
+, 415.1227; found: 415.1220 (Note: the 

amount of 5e obtained was not sufficient to conduct NMR analysis due to an extremely slow 

reaction). 

1-(2,5-Dimethoxy-3-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)phenyl)-N,N,N-

trimethylmethanaminium (1f): 1H NMR (300 MHz, Methanol-d4): δ. 7.28 (s, 1H), 7.09 (s, 1H), 

4.94 (s, 2H), 4.55 (s, 2H), 3.86 (s, 3H), 3.79 (s, 3H), 3.14 (s, 9H), 1.55-1.53 (m, 6H), 1.27-1.19 

(d, J = 24 Hz, 12H). 13C NMR (75 MHz, Methanol-d4): δ. 156.04, 151.38, 133.78, 121.61, 

117.97, 117.64, 73.10, 64.06, 62.01, 59.87, 54.91, 52.18, 39.39, 32.07, 19.39, 16.64. HRMS-ESI 

(+) (m/z): [M-Br]+ calcd. for C22H39N2O3
+, 379.2955; found: 379.2945.  

1-(4-Methoxy-6-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)-[1,1'-biphenyl]-2-yl)-

N,N,N-trimethylmethanaminium (2f): 1H NMR (300 MHz, CDCl3): δ. 7.48-7.35 (m, 5H), 

7.12-7.09 (d, 2H), 4.76 (s, 2H), 4.47 (s, 2H), 3.92 (s, 3H), 3.17 (s, 9H), 1.41-1.40 (m, 6H), 1.08 

(s, 6H), 0.97(s, 6H). 13C NMR (75 MHz, CDCl3): δ. 158.89, 139.80, 136.85, 135.27, 130.67, 

129.00, 128.22, 126.38, 117.80, 117.07, 66.29, 59.90, 55.93, 53.22, 39.59, 32.96, 32.68, 20.32, 

19.89, 16.97. HRMS-ESI (+) (m/z): [M-Br]+ calcd. for C27H41N2O2
+, 425.3163; found: 425.3138. 

1-(3-Methoxy-5-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)phenyl)-N,N,N-

trimethylmethanaminium (3f): 1H NMR (300 MHz, CDCl3): δ. 7.23 (s, 1H), 7.06 (s, 1H), 6.99 

(s, 1H), 4.94 (s, 2H), 4.80 (s, 2H), 3.84 (s, 3H), 3.45 (s, 9H), 1.53-1.32 (m, 6H), 1.19 (s, 6H), 

1.13(s, 6H). 13C NMR (75 MHz, CDCl3): δ. 160.12, 141.25, 128.44, 123.17, 117.19, 115.32, 
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69.21, 60.01, 55.73, 52.88, 39.63, 33.09, 20.31, 17.03. HRMS-ESI (+) (m/z): [M-Br]+ calcd. for 

C21H37N2O2
+, 349.2850; found: 349.2822. 

1-(2-Bromo-5-methoxy-3-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)phenyl)-N,N,N-

trimethylmethanaminium (4f): 1H NMR (300 MHz, Methanol-d4): δ. 7.38 (s, 1H), 7.27 (s, 1H), 

4.94 (s, 2H), 4.81 (s, 2H), 3.92 (s, 3H), 3.26 (s, 9H), 1.57-1.56 (m, 6H), 1.23 (d, 12H). 13C NMR 

(75 MHz, Methanol-d4): δ. 159.07, 141.17, 128.70, 118.69, 116.78, 116.09, 78.01, 67.81, 59.94, 

54.98, 52.62, 39.36, 31.97, 19.44, 16.63. HRMS-ESI (+) (m/z): [M-Br]+ calcd. for 

C21H36N2O2Br+, 427.1955; found: 427.1931. 

1,1'-(((2-Bromo-5-methoxy-1,3-phenylene)bis(methylene))bis(oxy))bis(2,2,6,6-

tetramethylpiperidine) (4g): 1H NMR (300 MHz, CDCl3): δ. 7.13 (s, 2H), 4.89 (s, 4H), 3.88 (s, 

3H), 1.59-1.53 (m, 12H), 1.22-1.13 (m, 24H). 13C NMR (75 MHz, CDCl3): δ. 158.69, 139.13, 

112.29, 111.14, 60.06, 55.33, 39.73, 32.93, 20.44, 17.11.  HRMS-ESI (+) (m/z): [M+H]+ calcd. 

for C27H46N2O3Br+, 525.2686; found: 525.2679. 

Carbocation trapping: To a solution of MeONH2·HCl (40 eq) in DMF (2 mL), trimethylamine 

(44 eq.) was added. After stirring at rt for 30 min, 2a-4a (1 eq.) in DMF or 2b-4b (1 eq.) in 

MeOH were added. The resulting mixture was stirred for 20 min, then irradiated with 350 nm 

light until the starting material was consumed. The reaction was quenched by water and 

extracted with ethyl acetate (3 × 3 mL). The combined organic phases were washed with brine 

and dried over anhydrous Na2SO4. After removing solvent, the residue was purified by 

chromatography (Hexane: ethyl acetate = 5:1) to provide the corresponding trapping adducts 2d-

5d. 

N,N'-((4-Methoxy-[1,1'-biphenyl]-2,6-diyl)bis(methylene))bis(O-methylhydroxylamine) 

(2d): 1H NMR (300 MHz, CDCl3): δ. 7.43-7.40 (m, 3H), 7.25-7.23 (d, J = 6.0 Hz, 2H), 7.00 (s, 
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2H), 5.49 (s, 2H), 3.89 (s, 3H), 3.78 (s, 4H), 3.43-3.42 (d, J = 3.0 Hz, 6H). 13C NMR (75 MHz, 

CDCl3): δ. 158.75, 138.37, 136.99, 134.46, 129.96, 128.41, 127.36, 114.00, 61.42, 55.31, 53.70. 

HRMS-ESI (+) (m/z): [M+H]+ calcd. for C17H23N2O3
+, 303.1703; found: 303.1683. 

N,N'-((5-Methoxy-1,3-phenylene)bis(methylene))bis(O-methylhydroxylamine) (3d): 1H 

NMR (300 MHz, CDCl3): δ. 6.94 (s, 1H), 6.85 (s, 1H), 5.74 (s, 1H), 4.04 (s, 4H), 3.83 (s, 3H), 

3.54 (s, 6H). 13C NMR (75 MHz, CDCl3): δ. 159.84, 139.26, 121.44, 113.38, 61.85, 56.09, 

55.27. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C11H19N2O3
+, 227.1390; found: 227.1380. 

N,N'-((2-Bromo-5-methoxy-1,3-phenylene)bis(methylene))bis(O-methylhydroxylamine) 

(4d): 1H NMR (300 MHz, CDCl3): δ. 6.94 (s, 2H), 5.94 (s, 2H), 4.17 (s, 4H), 3.83 (s, 3H), 3.57 

(s, 6H). 13C NMR (75 MHz, CDCl3): δ. 158.55, 138.28, 116.10, 115.87, 61.64, 56.31, 55.47. 

HRMS-ESI (+) (m/z): [M+H]+ calcd. for C11H18N2O3Br+, 304.0417; found: 304.0408. 

N,N'-((5-methoxy-2-nitro-1,3-phenylene)bis(methylene))bis(O-methylhydroxylamine) (5d): 

HRMS-ESI (+) (m/z): [M+H]+ calcd. for C11H18N3O5
+ 272.1241; found: 272.1228 (Note: the 

amount of 5d obtained was not sufficient to conduct NMR analysis due to an extremely slow and 

complex reaction). 

ICL formation with duplex DNA. The 32P-labelled oligonucleotide (0.5 μM) was annealed with 

1.5 equiv of the complementary strand by heating to 90 °C for 5 min in potassium phosphate 

buffer (pH 7, 10 mM), followed by naturally cooling down to rt in heating block. The 32P-labeled 

ODN duplex (2 μL, 0.5 μM) was then mixed with 1 M NaCl (2 μL), 100 mM potassium 

phosphate (2 μL, pH 8), and 1a-5a or 1b-5b (concentration range: 10 μM to 10 mM in 6 μL 

CH3CN) and autoclaved distilled water to give a final volume of 20 μL. The reaction mixture 

was irradiated with light at 350 nm until the reaction was completed, followed by quenching with 
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an equal volume of 90% formamide loading buffer. The resulting mixture was then subjected to 

20% denaturing polyacrylamide gel for electrophoresis. 

Trapping assay of oligonucleotides. The 32P-labeled oligonucleotide duplex (2 μL, 0.5 μM) was 

mixed with 1 M NaCl (2 μL) and 100 mM potassium phosphate (2 μL, pH 8). The stock solution 

of MeONH2·HCl (2 M) was titrated with 5 M NaOH to adjust the pH to ~ 7.0, which was diluted 

to the desired concentration (100/3 µM to 2000/3 mM). Then, 3 μL was added to the reaction 

mixture as appropriate for the desired concentration (final MeONH2 concentration: 50 µM to 100 

mM). Similarly, 3 μL of TEMPO in CH3CN (100/3 µM to 2000/3 mM) was added to the 

reaction mixture as appropriate for the desired concentration (final TEMPO concentration: 50 

µM to 100 mM). Compounds 1a-5a (40/3 mM, 3 μL in CH3CN) or 1b-5b (40/3 mM, 3 μL in 

H2O) and the appropriate amount of autoclaved water and CH3CN were added to give a final 

volume of 20 μL (final: 6 μL CH3CN and 14 μL H2O). The reaction was irradiated with light at 

350 nm for 0.75 h (1a), 6 h (4a and 1b), 8 h (2a), 12 h (2b and 5b), 24 h (4b and 5a), 35 h (3a) 

or 40 h (3b) and quenched by an equal volume of 90% formamide loading buffer, then subjected 

to 20% denaturing polyacrylamide gel electrophoresis. 

Stability study of ICL products formed with 17. The 32P-labeled oligonucleotide duplex 17 

(30 μL, 0.5 μM) was mixed with 1 M NaCl (6 μL), 100 mM potassium phosphate (6 μL, pH 8), 

and 20/3 mM 1a-5a in CH3CN (18 μL) or 1b-5b in H2O (18 μL). The solution was irradiated 

with light at 350 nm for 0.75 h (1a), 6 h (4a and 1b), 8 h (2a), 12 h (2b and 5b), 24 h (4b and 

5a), 35 h (3a) or 40 h (3b). After the cross-linking reaction was done, the DNA ICL products and 

monoalkylated ODNs were separated by gel electrophoresis. The isolated DNA fragments were 

dissolved in H2O (60 μL) and divided into three portions. One portion (20 μL) was incubated 

with 1.0 M piperidine (10 μL) at 90 oC for 30 min, and the second portion (20 μL) was incubated 
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with 0.1 M NaCl and 10 mM potassium phosphate buffer (pH 7, 10 μL) under the same 

condition, and the third portion (5 μL) was used as a control sample. The samples were subjected 

to electrophoresis on a 20% denaturing polyacrylamide gel. 

Synthesis of the adducts formed between 1a and dC, dA, or dG. To a solution of dA, dT, dG, 

or dC (0.2 mmol, 1.0 eq.) in DMF (1.0 mL), 1,3-bis(bromomethyl)-2,5-dimethoxybenzene (1a, 

0.4 mmol, 2.0 eq.) was added. The reaction mixture was irritated with light at 350 nm for 1 day 

at rt. After removing solvents under reduced pressure, the products were isolated upon 

purification by column chromatography. 
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Chapter 3. Substituents and Benzylic Leaving Groups Have a Large 

Effect on Photo-Induced DNA Cross-Linking 

3.1. Introduction 

Previous results suggested that the aromatic substituents and benzylic leaving groups affected not 

only the efficiency of DNA ICL formation but also the mechanism pathway for DNA cross-

linking. Among all designed compounds, 1a and 5b (Scheme 3-1) showed the highest DNA 

cross-linking efficiency.1 However, bromide 1a is not relatively stable and led to DNA cleavages 

upon 350 nm irradiation for a long period while the positively charged ammonium salt 5b has a 

slow reaction rate and shows poor cell membrane permeability, which hinders further 

investigation for biological applications. New compounds with improved properties are needed 

to expand the biological applications of photo-induced DNA cross-linking agents. In this chapter, 

1a and 5b are used as lead compounds for further modification in order to develop compounds 

with highly efficient and fast DNA cross-linking therefore having potential biological 

application. To achieve this goal, we will modify 1a and 5b by varying the leaving groups. 

 

Scheme 3-1.  The structures of 26a-i, and 27a-i. 
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Rokita and coworkers found that the benzylic leaving groups have a huge effect on QM 

formation for the fluoride-cleavable precursors.2,3 Peng and coworkers also reported that the 

leaving group greatly affected DNA cross-linking efficiency, where bromides showed higher 

photo-reactivity and DNA cross-linking efficiency than the corresponding ammonium salts.4 A 

series of leaving groups have been introduced to different QM precursors, such as -Br, -OAc, -

NMe2, -NMe3Br, -OH, -COOH, morpholine or amino acids. Among them, -OAc, -NMe2 and -

morpholine groups are reported to be good leaving groups for QM formation.5-8 However, it is 

not clear how these leaving groups affect photo-induced carbocation formation and subsequent 

DNA ICL formation. Phenyl sulfide and phenyl selenide were also reported to be good leaving 

groups which can be activated either by UV or by NaIO4.
9,10 Fast-photo-cleaving ether groups 

were reported that can be cleaved within seconds upon UV irradiation.11 Inspired by the previous 

work, we used 1a and 5b as the parent compounds, designed and synthesized the analogues with 

a series of different leaving groups, including OAc, NMe2, morpholine, OCH3, OCHCH=CH2, 

OCH2Ph, SPh, and SePh. Triphenylphosphonium bromide group was also introduced with the 

expectation of increasing the UV absorption and improving water solubility (Scheme 3-1). We 

investigated the effect of the benzylic leaving groups and substituents on the photo-induced 

DNA cross-linking activity, and determined the mechanism pathways and DNA cross-linking 

sites. 

3.2. Synthesis of compounds with various leaving groups 

Compounds 26a-i were synthesized starting from 4-methoxyphenol (28) (Scheme 3-2). The 

reaction of 28 with formaldehyde in the presence of NaOH resulted in 4-methoxy-2,6-

bis(hydroxymethyl)phenol (29). Methylation of 29 with methyl iodide provided (2,5-dimethoxy-

1,3-phenylene)dimethanol (30) that was further converted to 1a via bromination with PBr3. 
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Compounds 30 and 1a were used as starting materials for the synthesis of 26a-d and 26e-i 

through basic nucleophilic substitution reactions.  

 

 

Scheme 3-2. Synthesis of 26a-i. 
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1-Methoxy-3,5-dimethylbenzene (10) was used as the starting material to synthesize 27a-i 

(Scheme 3-3). Compound 10 was first converted to 2-nitro bifunctional benzyl alcohol 16 via 

nitrotration, oxidation and reduction.1 Bromination of 16 was performed with PBr3 affording 5a. 

Compounds 16 and 5a were then transformed to 27a-d and 27e-i via nucleophilic substitution 

reactions. 

 

Scheme 3-3. Synthesis of 27a-i. 



 
 

97 

3.3. DNA interstrand cross-linking assay.  

Similar to our previous study, a 49-mer DNA duplex (17) was used for the photo reactivity study 

of compound 26a-i and 27a-i in a phosphate buffer (pH 8.0)12 upon 350 nm irradiation. 

Denaturing polyacrylamide gel electrophoresis (PAGE) was used for DNA ICL analysis. The 

initial study suggested that the UV irradiation is essential for the DNA ICL formation. For all 

tested compounds, no ICL formation was observed in the absence of UV irradiation, while 

efficient DNA ICL formation were observed upon UV irradiation. Previous study suggested that 

both the irradiation time and the concentration of the substrates affect the photo-induced ICL 

efficiency.12 So, we optimized the reaction time and concentration for 26a-i and 27a-i (Table 3-1 

and Appendix A) For all tested compounds, the DNA ICL yield increased gradually with 

increased reaction time. Then the ICL reaction reached an equilibrium at some point. After that, 

further increase of the reaction time didn’t lead to higher ICL yield. This time was defined as 

optimal reaction time for the tested compound. The optimal reaction time for all compounds is 

shown in Table 3-1. Compounds with a strong electron donating group (OMe) as a substituent 

showed a faster photo-induced DNA cross-linking reaction rate than those with with a NO2 

group as an aromatic substituent. This result indicated that electron donating substituent 

promoted the cross-linking reaction rate while electron withdrawing substituent suppressed this 

process. It was also observed that the leaving groups did affect the reaction rate of the DNA ICL 

formation when comparing those compounds with the same aromatic substituent. For example, 

among the nitro compounds, 27e and 27g showed the fastest reaction rate, followed by 27i, 27f, 

and 27h, while a very slow reaction rate was observed for 27a-d with 27a as the slowest. For 

compounds with OMe as a substituent, compounds 26g and 26h have the fastest reaction rate, 
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followed by 26i, 26e and 26b, then 26d and 26f, while the ICL reaction rate for 26a and 26c was 

much slower.  

 

Table 3-1. The optimized conditions, ICL yields, and UV absorption data for 26a-i and 27a-i.a 

Compound                     

R = OMe (26a-i) 

Reaction 

Time (h) 

Con.b 

(mM)  
ICL (%)c λmax (nm)  λmax (M

-1·cm-1) 

26a (L= OAc) 22 0.5 27 ± 3 286 2600 

26b (L= OCH3) 6 0.6 34 ± 3 286 2640 

26c(L= OCH2CH=CH2 ) 36 2.0 28 ± 2 286 2900 

26d (L= OCH2Ph ) 12 0.5 37 ± 1 287 3350 

26e (L= NMe2) 6 0.4 25 ± 3 287 3120 

26f (L= N(CH2CH2)2O) 12 0.4 18 ± 2 286 2940 

26g (L= SPh) 2 0.6 28 ± 3 291 6900 

26h (L= SePh) 2 0.6 24 ± 1 299 7050 

26i (L= PPh3
+Br-) 5 0.2 34 ± 3 268, 302 7060, 5090 

R = NO2 (27a-i)      

27a (L= OAc) 44 0.4 18 ± 1 282, 347 4340, 2100 

27b (L= OCH3) 40 0.4 17 ± 2 282, 347, 3190, 1630 

27c (L= OCH2CH=CH2 

) 
40 0.4 14 ± 1 282, 347 3200, 1600 

27d (L= OCH2Ph ) 40 0.8 17 ± 2 282, 348 2920, 1400 

27e (L= NMe2) 24 1 17 ± 2 273, 346 2760, 1040 

27f (L= N(CH2CH2)2O) 32 0.6 15 ± 1 273, 346 2640, 990 

27g (L= SPh) 24 0.6 23 ± 3 345 1750 

27h (L= SePh) 36 0.3 21 ± 2 345 2190 

27i (L= PPh3
+Br-) 28 0.4 21 ± 1 347 2030 

a The DNA cross-linking reaction was performed in a pH 8 phosphate buffer with 50 nM 

DNA duplex 17 upon 350 nm irradiation.                                                                                                                                                                                
bThe minimum compound concentration needed to obtain the highest DNA cross-linking 

efficiency.                                                                                                                                    
c The maximum DNA ICL yield obtained for each compound under optimized conditions (all 

data are the average of three experiments). 
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After optimizing reaction time for all compounds, the concentration dependent DNA cross-link 

study was performed with 26a-i and 27a-i in order to figure out the optimized concentration (the 

minimum compound concentration needed to gain the highest DNA crosss-linking yield). The 

cross-linking reaction was performed with the optimized reaction time. For all compounds tested, 

the DNA ICL yield increased gradually with increasing the compounds concentration, then the 

ICL reaction reached an equilibrium at a certain concentration (defined as optimal concentration 

in which the DNA alkylation reaction was complete and the best ICL efficiency was achieved). 

After that, further increasing compounds’ concentration didn’t further increase the ICL yield. 

The optimized concentration was 0.2 mM for 26i, 0.3 mM for 27h, 0.4 mM for 26e, 26f, 27a-c 

and 27i, 0.5 mM for 26a and 26d, 0.6 mM for 26b, 26g, 26h, 27f and 27g, 0.8 mM for 27d, 1.0 

mM for 27e, and 2.0 mM for 26c (Table 3-1 and Appendix A). In general, compounds with a 

strong electron donating (OMe) substituent have higher DNA ICL efficiency than those with a 

strong electron withdrawing (NO2) substituent. It is likely that the electron donating group 

(OMe) stabilizes the electron-deficient carbocation intermediate therefore facilitating its 

formation, while electron withdrawing group (NO2) decreases its stability thus inhibiting its 

formation.  

For compounds with the same substituent, the leaving group did affect the ICL efficiency. 

Among NO2 substituted compounds (27a-i), 27g-i showed higher cross-linking efficiency, while 

27c and 27f gave the lowest ICL efficiency and 27a, 27b, 27d, and 27e had medium cross-

linking yield. Similarly, the ICL efficiency of compounds with OMe as a substituent (26a-i) also 

depends on the leaving groups. Compound 26d with a benzyloxy as a leaving group showed the 

highest ICL yield, followed by 26b and 26i.  Compound 26f with a morpholine as a leaving 

group had the lowest ICL efficiency, while the rest showed medium ICL efficiency. There is no 
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general rule about which leaving group is the best as the cross-linking efficiency depends on the 

combined effect of the aromatic substituent and the leaving groups. 

Since different compounds need different optimal concentrations to obtain the highest DNA 

cross-linking efficiency, it is hard to conclude how the substituent and leaving group affect the 

ICL efficiency. For better comparison, the DNA cross-linking efficiency was determined at the 

same concentration (500 µM) under the optimized reaction time for each compound (Figure 3-1).  

For both classes of compounds, the trend of ICL yields at 500 µM was slightly different with that 

at optimized conditions. The cross-linking efficiency for 27a-i is in the following order 27g ≈ 

27h ≈ 27i > 27a ≈ 27b ≈ 27d ≈ 27e > 27f ≈ 27c while the ICL yields for the bromide 26a-i is in a 

different order 26d > 26b  ≈ 26i > 26a  ≈ 26e  ≈ 26g > 26h > 26f > 26c. From these results, we 

conclude that the electron donating substituent increased the ICL efficiency while the electron 

withdrawing substituent decreased the ICL efficiency. Although the leaving groups also affect 

the DNA cross-linking, its overall effect depends on the aromatic substituent. For both cases, 

compounds with triphenylphosphonium as a leaving group showed higher ICL efficiency in 

comparison with compounds with same substituent but different leaving groups. As the 

substituents and leaving groups not only affect the electronic property but also the UV absorption 

of the compounds, next we investigate the correlation between the photo reactivity of these 

compounds and their UV absorption.   
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Figure 3-1. Photo-induced DNA ICL formation for 26a-i and 27a-i. A. Lane 1: DNA without 

UV irradiation; lane 2: DNA with 24 h UV irradiation at 350 nm; lanes 3-20: DNA with the drug 

(500 M) but no UV irradiation at 350 nm for designed time; B. lanes 1-18: DNA with the drug 

(500 M) upon 350 nm irradiation for designed time: lane 1: 26a (ICL yield, 27 ± 2%); lane 2: 

26b (ICL yield, 32 ± 4%) ; lane 3: 26c (ICL yield, 10 ± 1%); lane 4: 26d (ICL yield, 37 ± 3%); 

lane 5: 26e (ICL yield, 26 ± 2%); lane 6: 26f (ICL yield, 18 ± 1%); lane 7: 26g (ICL yield, 26 ± 

2%); lane 8: 26h (ICL yield, 21 ± 2%); lane 9: 26i (ICL yield, 34 ± 3%);lane 10: 27a (ICL yield, 

18 ± 2%). lane 11: 27b (ICL yield, 17 ± 2%); lane 12: 27c (ICL yield, 15 ± 1%) ; lane 13: 27d 

(ICL yield, 14 ± 2%); lane 14: 27e (ICL yield, 12 ± 1%); lane 15: 27f (ICL yield, 14 ± 2%); lane 

16: 27g (ICL yield, 23 ± 3%); lane 17: 27h (ICL yield, 22 ± 2%); lane 18: 27i (ICL yield, 21 ± 
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3%);  All DNA ICL yields were obtained by triplicate experiments and shown as average ± 

standard deviation.   

Correlation between UV absorbance and the photo-reactivity. 

Our previous study showed that the aromatic substituents and benzylic leaving groups strongly 

affect the UV absorbance of the compounds, which in turn affect the photo-reactivity of the 

compounds.1 So, we tested the UV-Vis spectra of these compounds in acetonitrile at a 

concentration of 500 µM (Table 3-1 and Figure 3-2) to check whether there is clear correlation 

between the UV absorbance and the photo-reactivity of the compounds. In general, the 

compounds with OMe group showed different UV absorption spetra from those with NO2 group. 

Two obvious UV absorption peaks were observed for most compounds containing a NO2 

substituent (27a-i) with a major peak at 270-280 nm and a minor one at 340-350 nm. However, 

only one major UV absorption band was found for most compounds with the OMe group except 

for 26i that showed two bands at 268 nm and 302 nm, respectively. The wavelength of maximum 

UV absorbance (λmax) of the OMe compounds (26) is slightly shifted to longer wavelength 

region than the major band of the nitro compounds (27) with the exception of 26g-i. In addition, 

the UV absorbance of the OMe compounds is stronger than that of the corresponding NO2 ones 

with the exception of 26a-c. This may explain why the OMe compounds have higher photo-

reactivity than the corresponding NO2 ones.  

For each class of compounds, the maximum UV absorption is similar for compounds with the 

same atom bonded at the benzylic position. For example, compounds 27a-d with an oxygen at 

the benzylic position have similar wavelength of maximum UV absorbance, while the maximum 

UV absorbance of 27e and 27f with a benzyl amine group occurs at similar wavelength (273 
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nm). Similar trend was observed for compounds with OMe as a substituent. For both classes of 

compounds (27a-i or 26a-i), the leaving groups, such as phenylsulfide, phenylselenide or 

triphenylphosphonium lead to a red shift of maximum UV absorption (λmax) and stronger UV 

absorbance (Table 3-1 and Figure 3-2) in comparison with the ester, ether or amine as leaving 

groups, which in turn led to higher ICL efficiency (27g-i) or better photoreactivity (26g-i). 

However, the correlation between the UV absorbance and phto-reactivity is observed for some 

compounds while no obvious correlation for others. For example, clear correlation was found for 

27a-d and 27e-f, compounds 27a-d have similar UV absorption, as a result, they showed similar  

photoreactivity towards DNA. The wavelength of maximum UV absorbance (λmax)  for  27e and 

27f is similar, while 27e has slightly stronger UV absorbance leading to higher ICL efficiency. 

Similar phenomenon was observed for 26e and 26f. Compound 26e showed stronger UV 

absroption at 287 nm than 26f. As a result, 26e showed a faster reaction rate for DNA cross-

linking and higher ICL yields than 26f. However, no clear correlation was found for compound 

26a-d. The UV absorption for 26a-d are in the order of 26d>26c>26b>26a, while the 

photoreactivity of these compounds are in a different order 26b>26d>26a>26c. There is no 

general conclusion for the correlation between UV absorption and photoreactivity. 
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Figure 3-2. UV absorption spectra for 26a-i and 27a-i (500 µM). 

3.4. Mechanism of DNA ICL formation. 
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Previously, we observed  that the photo-induced DNA cross-link formation by compounds 

containing bromo as leaving group involved generation of free radicals followed by oxidation to 

carbocations that directly alkylate DNA while the pathway of for compounds with trimethyl 

ammonium salts as leaving group highly depends on the substitutions.1,12 Compounds with an 

electron donating substituent undergo the radical-cation mechanism (defined as first generate 

radicals, then radicals converted to cations via free radical oxidation that directly cross-link 

DNA), while those with a strong electron withdrawing substituent directly generate cations via 

heterolysis of C-N bond.1 In order to figure out the generality of such a phenomenon and 

determine whether benzylic leaving groups affect the pathway for DNA ICL formation, we 

carried out free radical and carbocation trapping reactions using 2,2,6,6-tetramethylpiperidin-1-

oxyl (TEMPO) and methoxyamine as radical and carbocation trapping agents, respectively 

(Figure 3-3). In all cases, increasing the concentration of methoxyamine led to decreased ICL 

yields. No DNA ICL formation was observed for all tested compounds when the concentration 

of methoxyamine reached 100 mM. These data indicated that the carbocations were involved in 

DNA cross-linking process. To determine whether the cations were generated from heterolysis of 

C-X bonds or through free radical oxidation, we performed TEMPO trapping experiments. The 

addition of TEMPO suppressed the DNA ICL formation, and the ICL yield gradually decreased 

to background level for all tested compounds (26a-i and 27a-i) (Figure 3-3 and Appendix A), 

suggesting that free radicals (31) were involved in the DNA ICL formation process. Overall, 

these data suggested that both cation and radicals were involved in DNA cross-linking process 

(Scheme 3-4).   
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Figure 3-3. Carbocation and radical trapping during DNA ICL formation for 26a-i and 27a-i. 
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Scheme 3-4. Proposed mechanism for DNA ICL formation. 

In order to provide direct evidence for the formation of free radicals and carbocations, we did 

monomer trapping reactions using methoxyamine and TEMPO as carbocation and free radical 

trapping agents, respectively. Compound 26i that is easy to synthesize and showed relatively 

higher ICL yield, was selected as a representative for this study. TLC showed that the cation 

trapping reaction resulted in several new spots with similar Rf value, which were impossible to 

be separated using chromatography. Thus, LC-MS was used for the analysis of the adducts 

formed in cation trapping reaction (Figure 3-4). Adducts 33a and 33b were detected on LCMS 

2020 at a retention time of ~57.8 min and ~60.4 min, respectively. Both adducts were further 

confirmed by HRMS. Formation of 33a and 33b indicated that carbocations (32) were generated 

upon UV irradiation. In contrast, the free radical trapping reaction was clean leading to one 

major product 33c that was purified by chromatography. The structure of 33c was determined by 

NMR and HRMS, suggesting that free radical 31 was generated upon 350 nm irradiation of 26i. 

These results provided direct evidences for the proposed mechanism shown in Scheme 3-4. 
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Scheme 3-5. Cation and free radical trapping products obtained with 26i upon UV irradiation at 

350 nm. 
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Figure 3-4. LC-MS chromatogram for the reaction mixture of 26i and methoxyamine 

hydrochloride upon 350 nm irradiation:  A. PDA spectrum of the reaction mixture of 26i and 

methoxyamine hydrochloride (reaction time: 24 h) (LCMS 2020); B. Mass spectrum of peak at 

retention time 57.796 min; C. Mass spectrum of peak at retention time 60.416 min. (analyzed by 

reversed-phase HPLC, TC-C18 at 256 nm using gradient: 0-30 min 2-20% MeOH in water, 30-

35 min 20-50% MeOH in water, 35-42 min 50-100% MeOH in water, 42-50 min 100% MeOH 

in water, at a flow rate 1.0 mL/min). 

3.5. Determination of DNA alkylation sites. 

It was reported that the N7-alkylated purines can be cleaved in the presence of piperidine upon 

heating.13-15 The heat stability of the isolated single-stranded DNA and ICL products formed by 

27a and 26a are shown in Figure 3-5. The ICL products were relatively stable upon heating in a 

pH 7.0 phosphate buffer for 30 min, while obvious cleavage bands were observed in 1.0 M 

piperidine. The major cleavage bands were observed at both dA and dG sites for 27a-d, 27f, 27h, 
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26a, 26b, and 26d, while the cleavage mainly occurred  at dGs for compounds 27e, 27g, 27i and 

26c, 26e, 26f-i. From the heat-stability experiments of the isolated DNA ICL products, we can 

conclude that compounds 27a-d, 27f, 27h, 26a, 26b and 26d alkylated both dAs and dGs upon 

photo irradiation while photo-induced alkylation by 27e, 27g, 27i, 26c, 26e and 26f-i mainly 

occurred with dGs). These data suggested that aromatic substituents and benzylic leaving groups 

affect the cross-linking site. 
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Fig 3-5. Determination of the reaction sites of 26a-i and 27a-i. Phosphorimage autoradiogram of 

20% denaturing PAGE analysis of the isolated DNA ICL products and alkylated single-stranded 

DNA (17a’) upon heating in piperidine or phosphate buffer. The optimal condition for each 

compound was used for the ICL reaction and ICL products and 17a’ were isolated via PAGE. 

17a was radiolabeled at the 5’-terminus. Lane 1: isolated alkylated single stranded DNA (17a’). 

Lane 2: 17a’ was heated in a pH 7 phosphate buffer at 90 °C for 30 min. Lane 3: 17a’ was heated 
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in 1.0 M piperidine at 90 °C for 30 min. Lane 4: Isolated DNA ICL products. Lane 5: the DNA 

ICL products were heated in a pH 7 phosphate buffer at 90 °C for 30 min. Lane 6: the DNA ICL 

products were heated in 1.0 M piperidine at 90 °C for 30 min.  Lane 7: G+A sequencing.  

3.6. Conclusions 

In this work, we have synthesized two classes of bifunctional phenyl compounds with OMe or 

NO2 aromatic substituent and various benzylic leaving groups. The photo-activity of these 

compounds towards DNA was determined using 20% denaturing PAGE analysis. Compounds 

with an electron donating aromatic substituent (26a-i) showed higher DNA ICL efficiency than 

the corresponding compounds with an electron withdrawing group (27a-i). Benzylic leaving 

groups also greatly affect DNA ICL efficiency. Photo-irradiation of 27a-i and 26a-i generated 

the benzyl cations that directly cross-link DNA. The carbocations were produced through free 

radical oxidation for all tested compounds. The stability of the alkylated DNA was determined 

upon heating in pH 7 phosphate buffer or in piperidine, which indicated that dAs and/or dGs 

were the major alkylation sites for all tested compounds. Both aromatic substituents and leaving 

groups affect the cross-linking sites. This study provides valuable fundamentals for developing 

photo-induced DNA alkylating agents with higher efficiency. It also provide guidelines for 

designing potential photo-activated drugs. 

3.7. Experimental Section 

General Information. All chemicals came from commercial available source were used without 

further purification. Oligonucleotides were synthesized via standard automated DNA synthesis 

techniques. Deprotection of the synthesized DNA was performed under mild deprotection 

conditions using a mixture of 40% aqueous MeNH2 and 28% aqueous NH3 (1:1) at room 
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temperature for 2 h. 20% denaturing polyacrylamide gel electrophoresis was used for DNA 

purification. [γ-32P] ATP was used for DNA labeling with standard method. Quantification of 

radiolabeled oligonucleotides was carried out using a Molecular Dynamics phosphorimager 

equipped with ImageQuant, version 5.2, software. 1H NMR and 13C NMR spectra were taken on 

either a Bruker DRX 300 or DRX 500 MHz spectrophotometer with TMS as internal stander. 

High-resolution mass spectrometry IT-TOF was used for molecular measurement. 

1,3-Bis(bromomethyl)-5-methoxy-2-nitrobenzene (5a): Into a solution of compound 16 (3.0 g, 

14.0 mmol) in DCM (50 mL) at 0 ℃, phosphorus tribromide (8.72 g, 32.22 mmol) was added. 

The reaction mixture was allowed to warm to rt and stirred overnight. The reaction mixture was 

quenched with water (30 mL), diluted with DCM (3 × 30 mL), washed with brine, and dried over 

anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: ethyl acetate = 2:1, Rf = 0.65) to afford 5a as a yellowish solid (2.09 g, 

6.44 mmol). 1H NMR (300 MHz, CDCl3): δ. 6.98 (s, 2H), 4.54 (s, 4H), 3.91 (s, 3H) (the NMR 

spectra were in agreement with those reported).1 

(5-Methoxy-2-nitro-1,3-phenylene)bis(methylene) diacetate (27a): Compound 16 (300 mg, 

1.41 mmol) and 4-dimethl aminopyridine (517 mg, 4.23 mmol) in DCM was cooled to 0 ℃. 

Acetyl chloride (443 mg, 5.64 mmol) was added using syringe. The reaction mixture was 

warmed to rt and stirred overnight. The reaction mixture was quenched with H2O (10 mL), 

diluted with DCM (3 × 15 mL), washed with brine, and dried over anhydrous Na2SO4. Solvent 

was removed, and the residue was purified by column chromatography (Hexane: Ethyl acetate = 

2:1, Rf = 0.35) to obtain 27a as a light yellowish solid (397 mg, 1.34 mmol): m.p. 95-96 ℃. 1H 

NMR (300 MHz, CDCl3): δ. 6.96 (s, 2H), 5.23 (s, 4H), 3.89 (s, 3H), 2.11 (s, 6H). 13C NMR (75 
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MHz, CDCl3): δ.170.21, 161.21, 141.72, 132.77, 114.19, 62.43, 55.85, 20.61. HRMS-ESI (+) 

(m/z): [M+Na]+ calcd. for C13H15NO7Na+, 320.0741; found: 320.0717.  

5-Methoxy-1,3-bis(methoxymethyl)-2-nitrobenzene (27b): To a solution of compound 16 (300 

mg, 1.41 mmol) in DMF (6.0 mL) at 0 ℃, NaH (169 mg, 60%, 4.23 mmol) was added. The 

reaction mixture was stirred at 0 ℃ for 10 min, and CH3I (800 mg, 5.64 mmol) was added. The 

mixture was allowed to warm to rt and stirred overnight. The reaction mixture was quenched 

with water (10 mL), diluted with ethyl acetate (3 × 15 mL), washed with brine, and dried over 

anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 2:1, Rf = 0.68) to obtain 27b as a yellow solid (280 

mg, 1.16 mmol): m.p. 39-40 ℃. 1H NMR (300 MHz, CDCl3): δ. 7.05 (s, 2H), 4.58 (s, 4H), 3.90 

(s, 3H), 3.43 (s, 6H). 13C NMR (75 MHz, CDCl3): δ. 161.54, 140.89, 135.27, 112.57, 71.71, 

58.82, 55.79. HRMS-ESI (+) (m/z): [M-OMe]+ calcd. for C10H12NO4
+, 210.0761; found: 

210.0737.  

1,3-Bis((allyloxy)methyl)-5-methoxy-2-nitrobenzene (27c): To a solution of compound 16 

(300 mg, 1.41 mmol) in DMF (6.0 mL) at 0 ℃, NaH (169 mg, 60%, 4.23 mmol) was added. The 

resulting mixture was stirred for 10 min, and then allyl iodide (948 mg, 5.64 mmol) was added. 

The reaction mixture was allowed to warm to rt and stirred overnight. The reaction mixture was 

quenched with water (10 mL), diluted with ethyl acetate (3 × 15 mL), washed with brine, and 

dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 2:1, Rf = 0.8) to obtain 27c as a yellowish liquid (286 

mg, 0.98 mmol). 1H NMR (300 MHz, CDCl3): δ. 7.09 (s, 2H), 6.00-5.88 (m, 2H), 5.35 (s, 1H), 

5.30 (s, 1H), 5.25-5.22 (d, J = 9.0 Hz, 2H), 4.64 (s, 4H), 4.07-4.05 (d, J = 6.0 Hz, 4H), 3.89 (s, 

3H). 13C NMR (75 MHz, CDCl3): δ. 161.48, 140.98, 135.39, 134.04, 117.58, 112.68, 71.88, 
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68.21, 55.76. HRMS-ESI (+) (m/z): [M-OC3H5]
+ calcd. for C12H14NO4

+, 236.0917; found: 

236.0915.  

((((5-Methoxy-2-nitro-1,3-phenylene)bis(methylene))bis(oxy))bis(methylene))dibenzene 

(27d): Compound 16 in (300 mg, 1.41 mmol) in DMF (6.0 mL) was cooled to 0 ℃, followed by 

the addition of NaH (169 mg, 60%, 4.23 mmol). The resulting mixture was stirred for 10 min. 

Then benzyl bromide (720 mg, 4.23 mmol) was added. The reaction mixture was allowed to 

warm to rt and stirred overnight. The reaction mixture was quenched with water (10 mL), diluted 

with ethyl acetate (3 × 15 mL), washed with brine, and dried over anhydrous Na2SO4. Solvent 

was removed, and the residue was purified by column chromatography (Hexane: Ethyl acetate = 

2:1, Rf = 0.76) to afford 27d as a yellowish oily (414 mg, 1.06 mmol). 1H NMR (300 MHz, 

CDCl3): δ. 7.42-7.30 (m, 10H), 7.12 (s, 2H), 4.71 (s, 4H), 4.60 (s, 4H), 3.88 (s, 3H). 13C NMR 

(75 MHz, CDCl3): δ.161.45, 141.18, 137.55, 135.28, 128.52, 127.91, 127.82, 112.92, 73.15, 

68.49, 55.79. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C23H23NO5Na+, 416.1468; found: 

416.1453.  

1,1'-(5-Methoxy-2-nitro-1,3-phenylene)bis(N,N-dimethylmethanamine) (27e): Into a solution 

of 5a (150 mg, 0.44 mmol) in ethyl acetate (4.0 mL), dimethylamine solution (2.0 M in 

methanol) (2.2 mL, 4.4 mmol) was added. The reaction mixture was stirred at rt for 8 h. Solvent 

was removed, and the residual was purified by column (DCM: Methanol = 10:1, Rf = 0.5) to 

afford 27e as a yellowish solid (108 mg, 0.40 mmol): m.p. 44-45 ℃. 1H NMR (300 MHz, 

CDCl3): δ. 7.05 (s, 2H), 3.89 (s, 3H), 3.51 (s, 4H), 2.26 (s, 12H). 13C NMR (75 MHz, CDCl3): 

δ.160.50, 144.22, 133.33, 114.58, 59.59, 55.91, 45.22. HRMS-ESI (+) (m/z): [M+H]+ calcd. for 

C13H22N3O3
+, 268.1656; found: 268.1633.  
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4,4'-((5-Methoxy-2-nitro-1,3-phenylene)bis(methylene))dimorpholine (27f):  Into a solution 

of 5a (150 mg, 0.44 mmol), morpholine (387 mg, 4.40 mmol) was added. The resulting mixture 

was stirred at rt overnight. Solvent was removed, and the residue was purified by column (DCM: 

Methanol = 10:1, Rf = 0.72) to afford 27f as a yellowish solid (143 mg, 0.41 mmol): m.p. 88-89 

℃.  1H NMR (300 MHz, CDCl3): δ. 6.89 (s, 2H), 3.88 (s, 4H), 3.66 (s, 8H), 3.57 (s, 3H), 2.41 (s, 

8H). 13C NMR (75 MHz, CDCl3): δ.160.16, 144.30, 133.70, 114.52, 66.84, 59.31, 55.78, 53.33. 

HRMS-ESI (+) (m/z): [M+H]+ calcd. for C17H26N3O5
+, 352.1867; found: 352.1865.  

((5-Methoxy-2-nitro-1,3-phenylene)bis(methylene))bis(phenylsulfane) (27g): To a solution of 

compound 5a (170 mg, 0.5 mmol) in DMF (5.0 mL), thiophenol (165.3 mg, 1.5 mmol) was 

added, followed by the addition of trimethylamine (0.6 mL). The reaction mixture was stirred at 

70 ℃ overnight. The reaction mixture was quenched with water (10 mL), diluted with ethyl 

acetate (3 × 15 mL), washed with brine, and dried over anhydrous Na2SO4. Solvent was 

removed, and the residue was purified by column chromatography (Hexane: ethyl acetate = 5:1, 

Rf = 0.45) to afford 27g as a yellowish solid (130 mg, 0.33 mmol): m.p. 73-74 ℃. 1H NMR (300 

MHz, CDCl3): δ. 7.30-7.26 (m, 10H), 6.65 (m, 2H), 4.15 (s, 4H), 3.64 (s, 3H). 13C NMR (75 

MHz, CDCl3): δ. 160.07, 143.40, 134.65, 133.52, 131.42, 129.04, 127.36, 114.93, 55.56, 36.13. 

HRMS-ESI (+) (m/z): [M+K]+ calcd. for C21H19NO3S2K+, 436.0438; found: 436.0429.  

((5-Methoxy-2-nitro-1,3-phenylene)bis(methylene))bis(phenylselane) (27h): To a solution of 

diphenyl diselenide (368.3 mg, 1.18 mmol) in DMF (5.0 mL), NaBH4 (11.2 mg, 0.295 mmol) 

was added. The reaction mixture was stirred at rt for 2 h. Compound 5a (100 mg, 0.295 mmol) in 

DMF (2.0 mL) was added. The resulting mixture was stirred at rt for another 4 h. The reaction 

mixture was quenched with water (10 mL), diluted with ethyl acetate (3 × 15 mL), washed with 

brine, and dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by 
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column chromatography (Hexane: ethylacetate = 5:1, Rf = 0.4) to afford 27h as a light yellowish 

solid (80.0 mg, 0.16 mmol): m.p. 95-97 ℃. 1H NMR (300 MHz, CDCl3): δ. 7.50-7.48 (d, J = 6.0 

Hz, 4H), 7.30-7.27 (m, 6H), 6.32 (s, 2H), 4.08 (s, 4H), 3.53 (s, 3H). 13C NMR (75 MHz, CDCl3): 

159.54, 135.07, 134.66, 129.03, 128.91, 128.85, 127.81, 114.45, 55.14, 28.28. HRMS-ESI (+) 

(m/z): [M+K]+ calcd. for C21H19NO3Se2K+, 531.9331; found: 531.9320.  

((5-Methoxy-2-nitro-1,3-phenylene)bis(methylene))bis(triphenylphosphonium) bromide 

(27i): Compound 5a (170 mg, 0.5 mmol) and triphenylphosphine (289 mg, 1.1 mmol) in dry 

toluene (5 mL) was stirred at rt for 2 days under argon. The crude white powder was obtained by 

filtration, which was further purified by column chromatography (DCM: Methanol = 10:1, Rf = 

0.32) to yield 27i as a yellowish foam (259 mg, 0.30 mmol). 1H NMR (300 MHz, CDCl3): δ. 

7.83-7.78 (m, 6H), 7.71-7.55 (m, 24H), 7.18 (s, 2H), 5.58-5.53 (d, J = 15.0 Hz, 4H), 3.46 (s, 3H). 

13C NMR (75 MHz, CDCl3): δ.161.35, 143.10, 135.50, 134.30, 134.16, 130.63, 130.46, 126.91, 

126.78, 120.23, 117.31, 116.17, 55.62, 30.93, 29.25, 28.60. HRMS-ESI (+) (m/z): [M-2Br]2+ 

calcd. for C45H39NO3P2
2+, 351.6197; found: 351.6183.  

(2-Hydroxy-5-methoxy-1,3-phenylene)dimethanol (29): Into a solution of compound 28 (24.8 

g, 0.2 mol) in H2O (180 mL), NaOH (16 g, 0.4 mol) was added, followed by the addition of 

paraformaldehyde (18.0 g, 0.6 mol) and methanol (30 mL). The reaction mixture was stirred at 

50 ℃ for 2 days. After addition of hydrochloric acid (5.0 M) to pH 5.0, methanol was removed. 

The mixture was diluted with ethyl acetate (3 × 100 mL), washed with brine, and dried over 

anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.33) to obtain 29 as a white solid (55.2 g, 0.3 

mol). 1H NMR (300 MHz, CDCl3): δ. 8.04 (s, 1H), 6.76 (s, 2H), 5.24-5.20 (t, J = 6.0 Hz, 2H), 
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4.54-4.52 (d, J = 6.0 Hz, 4H), 3.68 (s, 3H) (the NMR spectra were in agreement with those 

reported).16  

(2,5-Dimethoxy-1,3-phenylene)dimethanol (30): To a solution of compound 29 (18.4 g, 0.1 

mol) in acetone (100 mL), K2CO3 ( g, 0.2 mol) and CH3I ( g, 0.2 mol) was added. The reaction 

mixture was stirred at 50 ℃ overnight. Solvent was removed. The residue was diluted with ethyl 

acetate (3 × 80 mL), washed with brine, and dried over anhydrous Na2SO4. Solvent was 

removed, and the residue was purified by column chromatography (Hexane: Ethyl acetate = 1:1, 

Rf = 0.3) to obtain 30 as a white solid (17.4 g, 88 mmol). 1H NMR (300 MHz, CDCl3): δ. 6.87 (s, 

2H), 5.12-5.08 (t, J = 6.0 Hz, 2H), 4.52-4.50 (d, J = 6.0 Hz, 4H), 3.72 (s, 3H), 3.61 (s, 3H) (the 

NMR spectra were in agreement with those reported).17  

1,3-Bis(bromomethyl)-2,5-dimethoxybenzene (1a): Compound 30 (4.0 g, 20.18 mmol) in 

DCM (50 mL) was cooled to 0 ℃, followed by the addition of phosphorus tribromide (12.02 g, 

44.4 mmol). The reaction mixture was allowed to warm to rt and stirred for 4 h. The reaction 

mixture was quenched with water (30 mL), diluted with DCM (3 × 20 mL), washed with brine, 

and dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: DCM = 5:1, Rf = 0.35) to afford 1a as a white solid (5.88 g, 18.16 

mmol). 1H NMR (500 MHz, CDCl3): δ. 6.92 (s, 2H), 4.56 (s, 4H), 4.00 (s, 3H), 3.82 (s, 3H) (the 

NMR spectra were in agreement with those reported).1   

(2,5-Dimethoxy-1,3-phenylene)bis(methylene) diacetate (26a): Into a solution of compound 

30 (0.99 g, 5 mmol) in DCM (10 mL), 4-dimethylaminopyridine (1.83 g, 15 mmol) was added. 

After cooling the resulting mixture to 0 ℃, acetyl chloride (1.57 g, 20 mmol) was added using 

syringe.  The reaction mixture was warmed to rt and stirred for another 4 h. The reaction mixture 

was quenched with H2O (8.0 mL), diluted with DCM (3 × 20 mL), washed with brine, and dried 
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over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.7) to obtain 26a as a slightly yellowish 

liquid (1.28 g, 4.55 mmol). 1H NMR (300 MHz, CDCl3): δ. 6.90 (s, 2H), 5.15 (s, 4H), 3.78 (s, 

6H), 2.11-2.10 (d, J = 3.0 Hz, 6H) (the NMR spectra were in agreement with those reported).[]  

HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C14H18O6Na+, 305.0996; found: 305.0985.18  

2,5-Dimethoxy-1,3-bis(methoxymethyl)benzene (26b): To a solution of compound 30 (1.0 g, 

5.04 mmol) in DMF (10 mL) at 0 ℃, NaH (605 mg, 60%, 15.12 mmol) was added. The reaction 

mixture was stirred at 0 ℃ for 10 min, and then CH3I (2.86 g, 20.16 mmol) was added. The 

mixture was allowed to warm to rt and stirred for another 4 h. The reaction mixture was 

quenched with water (20 mL), diluted with ethyl acetate (3 × 30 mL), washed with brine, and 

dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.8) to obtain 26b as a colorless liquid (1.10 

g, 4.86 mmol). 1H NMR (500 MHz, CDCl3): δ. 6.92 (s, 2H), 4.51 (s, 4H), 3.81 (s, 3H), 3.76 (s, 

3H), 3.44 (s, 6H). 13C NMR (125 MHz, CDCl3): δ. 155.95, 150.02, 132.28, 114.09, 69.44, 62.53, 

58.32, 55.59. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C12H18O4Na+, 249.1103; found: 

249.1094.  

1,3-Bis((allyloxy)methyl)-2,5-dimethoxybenzene (26c): To a solution of compound 30 (1.0 g, 

5.04 mmol) in DMF (10 mL) at 0 ℃, NaH (605 mg, 60%, 15.12 mmol) was added. The resulting 

mixture was stirred for 10 min, and then allyl iodide (2.54 g, 15.12 mmol) was added. The 

reaction mixture was allowed to warm to rt and stirred for 3 h. The reaction mixture was 

quenched with water (10 mL), diluted with ethyl acetate (3 × 30 mL), washed with brine, and 

dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: Ethyl acetate = 3:1, Rf = 0.85) to obtain 26c as a colorless liquid (1.20 
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g, 4.31 mmol). 1H NMR (500 MHz, CDCl3): δ. 6.95 (s, 2H), 6.03-5.96 (m, 2H), 5.37-5.33 (d, J = 

20.0 Hz, 2H), 5.24-5.22 (d, J = 10.0 Hz, 2H), 4.58 (s, 4H), 4.10-4.09 (d, J = 5.0 Hz, 4H), 3.81 (s, 

3H), 3.76 (s, 3H). 13C NMR (125 MHz, CDCl3): δ. 155.96, 150.05, 134.75, 132.40, 117.11, 

114.18, 71.44, 66.96, 62.56, 55.58. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C16H23O4
+, 

279.1591; found: 279.1583.  

((((2,5-Dimethoxy-1,3-phenylene)bis(methylene))bis(oxy))bis(methylene))dibenzene (26d): 

Compound 30 in (1.0 g, 5.04 mmol) in DMF (10 mL) was cooled to 0 ℃, followed by the 

addition of NaH (605 mg, 60%, 15.12 mmol).  The resulting mixture was stirred for 10 min, and 

then benzyl chloride (1.91 g, 15.12 mmol) was added. The reaction mixture was allowed to 

warm to rt and reacted for another 3 h. The reaction mixture was quenched with water (10 mL), 

diluted with ethyl acetate (3 × 30 mL), washed with brine, and dried over anhydrous Na2SO4. 

Solvent was removed, and the residue was purified by column chromatography (Hexane: Ethyl 

acetate = 3:1, Rf = 0.8) to afford 26d as a colorless liquid (1.52 g, 4.03 mmol). 1H NMR (500 

MHz, CDCl3): δ. 7.45-7.33 (m, 10H), 7.03 (s, 2H), 4.66 (s, 8H), 3.84 (s, 3H), 3.74 (s, 3H). 13C 

NMR (125 MHz, CDCl3): δ. 156.01, 150.20, 138.27, 132.41, 128.46, 127.86, 127.70, 114.38, 

72.56, 67.07, 62.62, 62.59, 55.66, 55.63. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C24H26O4Na+, 

401.1723; found: 401.1717. 

1,1'-(2,5-Dimethoxy-1,3-phenylene)bis(N,N-dimethylmethanamine) (26e): Into a solution of 

1a (500 mg, 1.54 mmol) in ethyl acetate (5 mL), dimethylamine solution (2.0 M in methanol) 

(3.85 mL, 7.7 mmol) was added. The reaction mixture was stirred at rt for 2 h. Solvent was 

removed. The residue was diluted with ethyl acetate (3 × 10 mL), washed with NaOH (1.0 M), 

brine, and dried over anhydrous Na2SO4. Solvent was removed to afford 26e as a slightly 

yellowish gel (350 mg, 1.39 mmol). 1H NMR (500 MHz, CDCl3): δ. 6.85 (s, 2H), 3.76 (s, 3H), 
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3.69 (s, 3H), 3.42 (s, 4H), 2.24 (s, 12H). (the NMR spectra were in agreement with those 

reported).[]  HRMS-ESI (+) (m/z): [M+H]+ calcd. for C14H25N2O2
+, 253.1911; found: 253.1905.19  

4,4'-((2,5-Dimethoxy-1,3-phenylene)bis(methylene))dimorpholine (26f): Into a solution of 1a 

(324 mg, 1.0 mmol), was added morpholine (871 mg, 10.0 mmol). The resulting mixture was 

stirred at rt overnight. The reaction mixture was diluted with ethyl acetate (3 × 10 mL), washed 

with NaOH (1.0 M), brine, and dried over anhydrous Na2SO4. Solvent was removed to afford 26f 

as a white solid (333 mg, 0.99 mmol): m.p. 114-115 ℃. 1H NMR (500 MHz, CDCl3): δ. 6.92 (s, 

2H), 3.81 (s, 3H), 3.78 (s, 3H), 3.74-3.72 (t, J = 5.0 Hz, 8H), 3.54 (s, 4H), 2.52 (s, 8H). 13C NMR 

(125 MHz, CDCl3): δ. 155.50, 151.49, 132.07, 114.52, 67.15, 62.18, 57.13, 55.57, 53.72. 

HRMS-ESI (+) (m/z): [M+H]+ calcd. for C18H29N2O4
+, 337.2122; found: 337.2113.  

((2,5-Dimethoxy-1,3-phenylene)bis(methylene))bis(phenylsulfane) (26g): To a solution of 

compound 1a (624 mg, 2.0 mmol) in DMF (10 mL), thiophenol (661.2 mg, 6.0 mmol) was 

added, followed by the addition of trimethylamine (0.6 mL). The reaction mixture was stirred at 

70 ℃ overnight. The reaction mixture was quenched with water (20 mL), diluted with ethyl 

acetate (3 × 20 mL), washed with brine, and dried over anhydrous Na2SO4. Solvent was 

removed, and the residue was purified by column chromatography (Hexane: ethyl acetate = 6:1, 

Rf = 0.4) to afford 26g as a white solid (620 mg, 1.62 mmol): m.p. 63-64 ℃. 1H NMR (500 MHz, 

CDCl3): δ. 7.40-7.38 (m, 4H), 7.33-7.30 (m, 4H), 7.25-7.22 (m, 2H), 6.74 (s, 2H), 4.18 (s, 4H), 

3.86 (s, 3H), 3.66 (s, 3H). 13C NMR (125 MHz, CDCl3): δ. 155.51, 150.16, 136.51, 131.63, 

129.89, 128.95, 126.44, 115.03, 62.65, 55.45, 33.32. HRMS-ESI (+) (m/z): [M+K]+ calcd. for 

C22H22O2S2K+, 421.0693; found: 421.0687. 

((2,5-Dimethoxy-1,3-phenylene)bis(methylene))bis(phenylselane) (26h): Diphenyl diselenide 

(624 mg, 2.0 mmol) in DMF (5.0 mL), NaBH4 (151 mg, 4.0 mmol) was added. The reaction 
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mixture was stirred at rt for 10 min. Compound 1a (324 mg, 1.0 mmol) in DMF (4.0 mL) was 

added. The resulting mixture was stirred overnight. The reaction mixture was quenched with 

water (20 mL), diluted with ethyl acetate (3 × 20 mL), washed with brine, and dried over 

anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: DCM = 4:1, Rf = 0.5) to offer 26h as a white solid (300 mg, 0.63 

mmol): m.p. 38-39 ℃. 1H NMR (500 MHz, CDCl3): δ. 7.55-7.54 (m, 4H), 7.31-7.29 (t, J = 5.0 

Hz, 6H), 4.16 (s, 4H), 3.86 (s, 3H), 3.59 (s, 3H). 13C NMR (125 MHz, CDCl3): δ.155.19, 149.75, 

133.64, 132.94, 130.71, 129.09, 127.39, 114.90, 62.09, 55.36, 26.46. HRMS-ESI (+) (m/z): 

[M+K]+ calcd. for C22H22O2Se2K+, 516.9586; found: 516.9580.  

((2,5-Dimethoxy-1,3-phenylene)bis(methylene))bis(triphenylphosphonium) bromide (26i): 

A mixture of 1a (324 mg, 1.0 mmol) and triphenylphosphine (630 mg, 2.4 mmol) in dry toluene 

(5.0 mL) was refluxed for 6 h under argon. The crude white powder was obtained by filtration, 

which was washed with ether (3 × 20 mL) to produce 26i as a white solid (840 mg, 0.99 mmol). 

1H NMR (500 MHz, CDCl3): δ. 7.79-7.62 (m, 6H), 7.67-7.64 (m, 24H), 6.53 (s, 2H), 5.18-5.15 

(d, J = 15.0 Hz, 4H), 3.17 (s, 3H), 2.86 (s, 3H): m.p. 270-271 ℃. 13C NMR (125 MHz, CDCl3): 

δ.151.46, 135.31, 134.21, 134.17, 134.13, 130.53, 130.48, 130.43, 123.25, 118.05, 117.92, 

117.90, 117.86, 117.36, 55.47, 26.03, 25.64. HRMS-ESI (+) (m/z): [M-2Br]2+ calcd. for 

C46H42O2P2
2+, 344.1325; found: 344.1319.  

Monomer trapping.  

Radical trapping: To a solution of compound 26i (100 mg, 0.118 mmol) in CH3CN (1.5 mL), 

TEMPO (184 mg, 1.18 mmol) was added under stirring at rt. The resulting mixture was 

irradiated under UV at 350 nm for 5 days. Solvent was removed, and the residue was purified by 
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chromatography. (DCM: MeOH = 10:1) to afford compound 33c as a white foam (24 mg, 0.036 

mmol, 31%). 1H NMR (300 MHz, CDCl3): δ. 7.74-7.61 (m, 15 H), 6.97 (s, 1H), 6.69 (s, 1H), 

5.23-5.19 (d, J = 12.0 Hz, 2H), 4.58 (s, 2H), 3.52-3.49 (d, J = 9 Hz, 6H), 1.47 (s, 4H), 1.34 (s, 

2H), 1.15-1.11 (d, J = 12.0 Hz, 12H). 13C NMR (75 MHz, CDCl3): δ. 155.73, 155.68, 134.86, 

134.37, 134.24, 130.08, 129.91, 121.09, 120.97, 118.65, 117.52, 116.51, 114.66, 72.94, 61.96, 

60.00, 55.66, 39.66, 32.92, 20.73, 17.01. HRMS-ESI (+) (m/z): [M-Br]+ calcd. for C37H45NO3P+, 

582.3132; found: 582.3115. 

Carbocation trapping: To a solution of MeONH2·HCl (394 mg, 4.72 mmol) in DMF (2 mL), 

trimethylamine (567 mg, 5.20 mmol) was added. After stirring at rt for 30 min, 26i (100 mg, 

0.118 mmol.) in DMF (1 mL) was added. The resulting mixture was stirred for 20 min, and then 

irradiated with UV at 350 nm for 2 days. The reaction was quenched with water and the mixture 

was extracted with ethyl acetate (3×3 mL). The combined organic phases were washed with 

brine and dried over anhydrous Na2SO4. After removing solvent, the residue was redissolved in 

CH3CN and analyzed by LCMS. The formation of 33a and 33b were confirmed by both LCMS 

and HRMS. 33a: HRMS-ESI (+) (m/z): [M-Br]+ calcd. for C28H27O2PCl+, 461.1432; found: 

461.1408. 33b: HRMS-ESI (+) (m/z): [M-Br]+ calcd. for C29H29NO3P+, 470.1880; found: 

470.1839. (Note: the obtained amount of 33a or 33b was not sufficient to conduct NMR 

spectroscopic analysis due to an extremely slow and complex reaction). 

ICL formation with duplex DNA: The 32P-labeled oligonucleotide (0.5 µM) was annealed with 

1.5 equiv of the complementary strand by heating to 90 ℃ for 5 min in potassium phosphate 

buffer (pH 7, 10 mM), followed by cooling to rt. The 32P-labeled ODN duplex (2 µL, 0.5 µM) 

was then mixed with 1.0 M NaCl (2 µL), 100 mM potassium phosphate (2 µL, pH 8), and 27a–i 

or 26a-i (concentration range: 10 µM to 2 mM in 6 µL CH3CN) and autoclaved distilled water to 
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give a final volume of 20 µL. The reaction was irradiated under UV (350 nm) until the reaction 

was completed, followed by quenching with an equal volume of 90% formamide loading buffer. 

The resulting mixture was then subjected to 20% denaturing polyacrylamide gel for 

electrophoresis. 

Trapping assay of oligodeoxynucleotides: For carbocation trapping, the stock solution of 

MeONH2·HCl (2.0 M) was titrated with NaOH (5 M) to adjust the pH to 7.0, which was then 

diluted to desired concentration (1/3-1000/3 mM). The solution (6 µL) was mixed with 32P-

labeled DNA duplex (2 µL, 0.5 µM), NaCl (2 µL, 1 M) potassium phosphate (2 µL, pH 8.0, 100 

mM), compound (27a-i, 26a-i) in 6 µL CH3CN (optimized concentration was used for each 

compound) and water (2 µL) to give the desired concentration (final MeONH2 concentration: 

100 µM to 100 mM). For radical trapping reaction, 3 µL of TEMPO in CH3CN (200/3 µM to 

2000/3 mM) was mixed with the following solutions: 32P-labeled DNA duplex (2 µL, 0.5 µM), 

NaCl (2 µL, 1 M), potassium phosphate (2 µL, pH 8.0, 100mM), compound (27a-i, 26a-i) in 

CH3CN (3 µL) (optimized concentration was used for each compound) and water (8 µL) as 

appropriate for the desired concentration (final TEMPO concentration: 10 µM to 100 mM). The 

reaction mixture was irradiated under UV (350 nm) for desired time (optimized time for each 

compound was used) and quenched with an equal volume of 90% formamide loading buffer, and 

then subjected to 20% denaturing polyacrylamide gel electrophoresis. 

Stability study of ICL products formed with 17: The 32P-labeled oligonucleotide duplex 17 

(60 µL, 0.5 µM) was mixed with NaCl (12 µL, 1 M), 100 mM potassium phosphate (12 µL, pH 

8.0) and compounds in CH3CN (36 µL) (optimized concentration used for all the compounds). 

The reaction mixture was irradiated under UV for desired time (optimized time). After the cross-

linking reaction, the DNA ICLs and the monoalkylated ODNs were purified by gel 
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electrophoresis. The isolated DNA fragments were dissolved in 60 µL water, and divided into 

three portions equally. One portion was incubated with 1.0 M piperidine at 90 ℃ for 30 min, the 

second portion was incubated with 0.1 M NaCl and 10 mM potassium phosphate buffer (pH 7.0) 

under the same condition, and the third portion (without treatment) was used as control without 

heating. Solvent was removed under vacuum after heating. The resulting residue was dissolved 

in 90% formamide loading buffer, and then subjected to electrophoresis on a 20% denaturing 

polyacrylamide gel. 
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Chapter 4. The Effects of Core Structure and Leaving Groups on 

Photo-induced DNA Cross-linking 

4.1. Introduction 

Previous studies indicated that both aromatic substituents and benzylic leaving groups affected 

DNA ICL efficiency. Compounds with OMe as a substituent (26) showed higher photo-reactivity 

and DNA cross-linking efficiency than the corresponding compounds (27) with nitro as a 

substituent (Chapter 3). Among them, compounds with OMe as a substituent and phenyl sulfide 

or phenyl selenide as a leaving group showed the highest photo-reactivity towards DNA (shortest 

reaction time: 2 h).  

However, there are still some unsolved problems for these two classes of compounds. First, most 

of the compounds studied have poor UV absorption above 300 nm, which limited their 

applications in biological context, because many biomolecules have UV absorption under 300 

nm. The UV irradiation at or > 350 nm is more compatible in biological systems.1 Thus, we 

expect to develop compounds with maximum absorbance (λmax) in longer wavelength period. 

Second, apart from ICL formation, DNA strand breaks were observed for compounds containing 

methoxy group with a high concentration or by exposure to UV irradiation for a long time. It is 

possibly due to the presence of a strong electron donating methoxy group that highly increased 

the photo-reactivity of these compounds and led to unwanted side reactions. Third, compounds 

containing NO2 group showed poor photo-reactivity and low DNA cross-linking efficiency, 

possibly due to the strong electron withdrawing property of NO2.  
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Scheme 4-1.  The structures of 34a-j and 35a-j. 

Herein, we designed and synthesized 34a-j and 35a-j by introducing a benzene ring to the 

existing structure 26 and 27 with the expectation of increasing the wavelength of maximum 

absorbance (λmax) and reducing the electronic effects of OMe and NO2 groups. The extended π 

system is expected to lead to red shift of the wavelength of maximum absorbance (λmax). In 

addition, the reduced inductive effects, bridged by an aromatic ring, may reduce the electronic 

effects of OMe or NO2 group. We performed a detailed study on how the substituents, leaving 

groups, and core structure affect the photo-reactivity of these compounds toward DNA, DNA 

cross-linking efficiency, mechanism pathways, and DNA cross-linking sites. The information 

obtained shed light on further design of novel photo-inducible DNA cross-linking agents as 

potential antitumor drugs and for other biological applications.  

4.2. Modification of core structure to improve DNA cross-linking efficiency 

4.2.1. Synthesis of compounds with different core structure and various leaving groups 

The general synthetic route is based on our previous work [Chapter 3]. Compound 37 was 

synthesized starting from compound 12 that was reduced to benzyl dialcohol 13 (Scheme 4-2). 

Bromination of 13 at the position-2 afforded 36 that was converted to 37 via metal catalyzed 

Suzuki coupling reaction. Then, compound 37 was transformed to 34a-e by reacting with the 
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corresponding electrophiles via basic nucleophilic substitution reactions. Finally, compounds 

34f-j were prepared from 34e by reacting with the corresponding nucleophiles.  

A synthetic route similar as 34a-j was employed to synthesize 35a-j. Compound 36 was first 

converted to 38 via metal catalyzed Suzuki coupling reaction, which was then used as starting 

material to prepare 35a-e via substitution reactions accordingly. Compounds 35f-j was 

synthesized from 35e by reacting with various nucleophiles. (Scheme 4-3) 
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Scheme 4-2. Synthesis of 34a-j. 
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Scheme 4-3. Synthesis of 35a-j. 

4.2.2. DNA interstrand cross-linking assay.  

The photo reactivity of 34a-j and 35a-j towards DNA was determined using a 49-mer DNA 

duplex (17) in a phosphate buffer (pH 8.0) upon photoirradiation at 350 nm. Denaturing 
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polyacrylamide gel electrophoresis (PAGE) was used for DNA cross-linking analysis or adducts 

purification. No ICL formation was observed without photoirradiation, while efficient DNA 

cross-linking was obtained upon UV irradiation at 350 nm. Our previous study showed that the 

photo-induced DNA ICL efficiency highly relied on the irradiation time and the concentration of 

the corresponding compounds.2 In order to obtain the optimized reaction condition for all 

compounds, we determined the reaction time and concentration required for each compound to 

complete the DNA cross-linking reaction (Table 4-1 and Appendix A).  

In general, the DNA ICL yield increased gradually with increasing irradiation time until reaching 

the best yield, where the DNA alkylation was completed and further increased irradiation time 

would not increase the DNA ICL yields. The time-dependent study indicated that both aromatic 

substituents and benzylic leaving groups affect the reaction rate of the ICL formation. However, 

to our surprise, most of compounds with a strong electron withdrawing substituent have faster 

reaction rate for DNA ICL formation than the corresponding compounds with OMe group. 

Compounds 35a-d and 35h-j with an electron withdrawing NO2 substituent showed faster 

reaction rate than 34a-d and 34h-j with an OMe substituent. However, an opposite trend was 

observed for 35e-g and the corresponding 34e-g. Compounds with the same aromatic substituent 

but different leaving groups showed different reaction rates, indicating that leaving groups also 

affected the photo-reactivity of these compounds toward DNA. The reaction rates for 34a-j 

follow the order of 34j>34a>34d-34f>34b>34g, 34h>34i>34c, while that of 35a-j is in the order 

of 35a, 35j>35b, 35c>35d>35e>35h, 35i>35f>35g. For both classes of compounds, 34a and 35a 

with an ester as a leaving group (OAc) and 34j and 35j with triphenylphosphonium as a leaving 

group showed faster reaction rate than other compounds, which suggested that the good leaving 



 
 

140 

property of OAc and triphenylphosphonium facilitate the photo-induced cation formation and 

subsequent DNA cross-linking.  

 

Table 4-1. The optimized conditions, ICL yields, and UV absorption data for 34a-j and 35a-j.a 

Compound                    

R = OMe (34a-j) 

Reaction 

Time (h) 

Con.b 

(mM)  
ICL (%)c λmax (nm)  λmax (M

-1·cm-1) 

34a L=OAc 12 0.5 30.5 ± 3 278 3500 

34b L=OCH3 24 0.4 31.2 ± 3 278 3700 

34c L=OCH2CH=CH2 44 0.6 10.2 ± 1 278 3400 

34d L=OCH2Ph 16 0.5 29.7 ± 2 278 3500 

34e L=Br 16 0.5 30.4 ± 3 304 3250 

34f L=NMe2 16 0.05 31.5 ± 4 279 3760 

34g L=N(CH2CH2)2O 32 0.2 28.1 ± 1 279 3450 

34h L=SPh 32 0.5 26 ± 2 295 6720 

34i L=SePh 36 0.3 14.6 ± 2 296 7150 

34j (L= PPh3
+Br-) 10 0.2 28.0 ± 3 302 4460 

R = NO2 (35a-j)      

35a L=OAc 1.5 0.4 45.5 ± 4 272 11800 

35b L=OCH3 2.5 0.4 36.0 ± 3 272 10000 

35c L=OCH2CH=CH2 3 0.3 30.8 ± 3 272 9650 

35d L=OCH2Ph 10 0.5 30.6 ± 2 273 9500 

35e L=Br 20 0.5 36.0 ± 4 293 8600 

35f L=NMe2 28 0.6 24.5 ± 2 266 9500 

35g L=N(CH2CH2)2O 36 0.5 17.6 ± 2 266 8540 

35h L=SPh 24 0.5 27.0 ± 3 287 13000 

35i L=SePh 24 0.5 15.0 ± 1 292 11000 

35j(L= PPh3
+Br-) 1.5 0.5 33.4 ± 3 268, 301 14700, 9070 

a The DNA cross-linking reaction was performed in a pH 8 phosphate buffer with 50 nM 

DNA duplex 17 upon 350 nm irradiation.                                                                                                                                                                                
bThe minimum concentration needed to obtain the highest DNA cross-linking efficiency.                                                                                                                                     
c The maximum DNA ICL yield obtained for each compound under optimized conditions (all 

data are the average of three experiments). 
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In order to determine the optimal concentration for achieving the highest DNA cross-linking 

efficiency, the concentration-dependent DNA cross-link study was performed with the optimized 

reaction time for each substrate. In general, the DNA ICL yields increased gradually with 

increasing concentration of compounds until reaching the maximum yield, where further 

increased concentration would not obviously alter DNA ICL yields. The optimized concentration 

is 0.05 mM for 34f, 0.2 mM for 34g and 34j, 0.3 mM 34i and 35c, 0.4 mM for 34b, 35a and 35b, 

0.5 mM for 34a, 34d, 34e, 34h, 35d, 35e, 35g-j, and 0.6 mM for 34c and 35f (Table 4-1 and 

Appendix A). For all tested compounds, 35a-j with a strong electron withdrawing substituent 

(NO2) generated a higher ICL yield than corresponding compounds bearing an electron donating 

substituent (OMe) with the exception of 35f and 35g that led to lower ICL yields than 34f and 

34g, respectively. This indicated that the aromatic substituents have significant effects on ICL 

formation. On the other hand, compounds with the same substituent but different benzylic 

leaving groups showed different ICL yields, indicating that benzylic leaving groups also affect 

DNA ICL formation. For compounds 34a-j, DNA ICL efficiency is in the following order: most 

of them showed similar and high ICL yields (26%-32%) with the order 34f, 34b>34a, 

34e>34d>34g>34j>34h>34i>34c, while 34c and 34i showed similar but much lower ICL yields 

(10%, 15%). For nitro compounds, 35a showed the highest ICL yield, followed by 35b, 35e and 

35j, then 35c, 35d, 35h and 35f, while 35g and 35i have the lowest ICL yield. Since the 

optimized concentrations for different compounds varied, it is hard to compare the ICL 

efficiency under optimized concentration. To better understand how the aromatic substitutions 

and benzylic leaving groups affect the DNA ICL efficiency, further DNA cross-link study was 

carried out under the same concentration (500 µM) with the optimized reaction time for each 
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substrate (Figure 4-1). For both classes of compounds, the trend of DNA ICL yields at 500 µM 

was similar as that obtained with optimized concentration.  

 

Figure 4-1. Photo-induced DNA ICL formation for 34a-j and 35a-j. A. Lane 1: DNA without 

UV irradiation; lane 2: DNA with UV irradiation at 350 nm for 24 h; lanes 3-22: DNA with the 

drug (500 µM) but no UV irradiation at 350 nm for designed time; B. lanes 1-20: DNA with the 

drug (500 µM) upon irradiation at 350 nm for designed time: lane 1: 34a (ICL yield, 30.5 ± 3%); 

lane 2: 34b (ICL yield, 32.1 ± 3%) ; lane 3: 34c (ICL yield, 9.4 ± 1%); lane 4: 34d (ICL yield, 

29.7 ± 2%); lane 5: 34e (ICL yield, 30.4 ± 3%); lane 6: 34f (ICL yield, 32.1 ± 4%); lane 7: 34g 

(ICL yield, 29.0 ± 3%); lane 8: 34h (ICL yield, 26.0 ± 3%); lane 9: 34i (ICL yield, 15.0 ± 2%); 

lane 10: 34j (ICL yield, 28.6 ± 4%). lane 11: 35a (ICL yield, 46.6 ± 3%); lane 12: 35b (ICL 
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yield, 36.7 ± 4%) ; lane 13: 35c (ICL yield, 31.4 ± 2%); lane 14: 35d (ICL yield, 30.6 ± 3%); 

lane 15: 35e (ICL yield, 36.0 ± 2%); lane 16: 35f (ICL yield, 23.4 ± 2%); lane 17: 35g (ICL 

yield, 17.6 ± 1%); lane 18: 35h (ICL yield, 27.0 ± 3%); lane 19: 35i (ICL yield, 15.0 ± 2%); lane 

20: 35j (ICL yield, 33.4 ± 3%). All DNA ICL yields were obtained by triplicate experiments and 

shown as average ± standard deviation.   

Correlation between UV absorbance and the photo-reactivity.  

UV-Vis spectra of compounds 34a-j and 35a-j were measured at a concentration of 500 µM in 

acetonitrile (Table 4-1 and Figure 4-2). In general, compounds with a NO2 group showed slightly 

shorter wavelength of maximum absorbance (λmax) but much stronger absorption than the 

corresponding compounds with OMe group. The stronger UV apsorption may explain why the 

nitro compounds have higher photo-reactivity toward DNA than the OMe ones. For compounds 

34a-j, the UV absorption spectra for 34a-d, 34f and 34g are very similar. They have similar 

wavelength of maximum absorbance (λmax) with slightly different strength of UV absorbance. 

The relationship between UV absorption and reaction rate seems not clear, while the ICL yield is 

consistent with the strength of the UV absorption with the exception of 34c. For example, the 

order of photo-induced DNA ICL yield is 34f ≈ 34 b> 34a ≈ 34d > 34g, which is consistent with 

the order of UV absorption strength 34f ≈ 34b > 34a ≈ 34d > 34g. Absorption spectra of 34e and 

34h-i are red-shifted. In particular, 34e and 34j showed more red-shift than 34h and 34i. 

Accordingly, 34e and 34j showed higher photo reactivity toward DNA as shown by faster 

reaction rate and higher ICL yield than 34h and 34i. For nitro compounds, 35a-d have the same 

wavelength of maximum absorbance (λmax) while the strength of the UV absorption ( λmax) 

follows the order of 35a > 35b > 35c > 35d, which was  consistent with the order of ICL 

efficiency 35a > 35b > 35c > 35d. Compounds 35f and 35g have shorter wavelength of 
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maximum absorbance (λmax) (266 nm), which in turn showed lower ICL efficiency (a longer 

reaction time and a lower ICL yield). Compounds 35e and 35h-j showed obvious red-shift with 

an order of 35j > 35e > 35h for the extent of red shift that is consistent with the order of reaction 

rates (35j > 35e > 35h) with the exception of 35i. However, the order of ICL yields (35e > 35j > 

35h > 35i) does not match with the order of UV absorbance (35j > 35e >35i > 35h) (Table 4-1 

and Figure 4-2). 
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Figure 4-2. UV spectra for 34a-j and 35a-j (500 µM). 

4.2.3. Mechanism of DNA ICL formation. 

 Previous study showed aromatic substitution greatly affected the photochemical generation of 

benzyl cations.3 However, there were limited examples about how the benzylic leaving groups 

and core structure affect the photochemical generation of carbocation and subsequent DNA ICL 

formation. To further investigate whether the benzylic leaving groups and core structure 

influence the pathways of ICL formation, we performed free radical and carbocation trapping 

experiments separately under the optimized DNA cross-linking conditions. Similar to previous 

study, TEMPO was used to trap free radicals, while methoxyamine was used as a carbocation 

trapping agent. The effect of TEMPO and methoxyamine on ICL formation was shown in Figure 

4-3. The DNA ICL yields decreased gradually for all compounds with increasing concentration 

of methoxyamine. Almost no ICL was produced when the concentration of methoxyamine went 
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up to 100 mM. Similar results were observed for TEMPO trapping reactions. The addition of 

TEMPO suppressed the DNA cross-linking process while 100 mM of TEMPO totally quenched 

the DNA cross-link reaction. These results suggested that both carbocations and radicals were 

involved in the photo-induced DNA cross-linking process, and the carbocations were generated 

via free radical oxidation. The proposed mechanism was shown in Scheme 4-4. Photo-irradiation 

of compounds 34a-j or 35a-j generated free radicals (39) that are further oxidized to the 

corresponding carbocations (40) that directly produce DNA ICL formation.    
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Figure 4-3. Carbocation and radical trapping of DNA ICL formation for 34a-j and 35a-j. 

 

Scheme 4-4. Proposed mechanism for DNA ICL formation. 
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4.2.4. Determination of DNA alkylation sites. 

It is well known that N7-alkylated purines can be cleaved upon heating in piperidine.4-6 In order 

to check whether the benzylic leaving groups and the core structure affect the DNA alkylation 

sites, heat stability study was performed with DNA ICL products formed with 34a-j and 35a-j. 

Similar to previous study, the ICL products as well as the monoalkylated single stranded DNA 

were heated in pH 7.0 phosphate buffer or 1.0 M piperidine. The stability of DNA ICL products 

for 34a-j and 35a-j are demonstrated in Figure 4-4. All DNA ICL products are relatively stable 

upon heating in a pH 7.0 phosphate buffer, while obvious cleavage bands were observed upon 

heating in 1.0 M piperidine. The major cleavage sites were located at dAs and dGs for 

compounds 34a, 34b, 34f, 34h-j, 35c, 35d and 35f-i, while the dGs were the major alkylation 

sites for compounds 34c-e, 34g, 35a, 35b, 35e and 35j. This indicated that dAs and dGs were the 

major alkylation sites for 34a, 34b, 34f, 34h-j, 35c, 35d and 35f-i, while dGs were the major 

alkylation sites for 34c-e, 34g, 35a, 35b, 35e and 35j.  
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Fig 4-4. Determination of the alkylation sites of 34a-j and 35a-j. Phosphorimage autoradiogram 

of 20% denaturing PAGE analysis of the isolated DNA ICL products and alkylated single-

stranded DNA (17a’) upon heating in piperidine or phosphate buffer. The ICL product and 17a’ 

were produced upon irradiation at 350 nm under optimal conditions. 17a was radiolabeled at the 

5’-terminus. Lane 1: isolated alkylated single stranded DNA (17a’). Lane 2: 17a’ was heated in a 

pH 7 phosphate buffer at 90 °C for 30 min. Lane 3: 17a’ was heated in 1.0 M piperidine at 90 °C 

for 30 min. Lane 4: Isolated DNA ICL products. Lane 5: the DNA ICL products were heated in a 
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pH 7 phosphate buffer at 90 °C for 30 min. Lane 6: the DNA ICL products were heated in 1.0 M 

piperidine at 90 °C for 30 min.  Lane 7: G + A sequencing.  

4.2.5. Conclusions 

In this work, we have synthesized two classes of bifunctional biphenyl compounds with an 

electron donating group -OMe or withdrawing group -NO2 as an aromatic substituent and 

various benzylic leaving groups. The UV absorbance and DNA cross-link efficiency of these 

compounds were investigated, the mechanism for the ICL formation was studied, and their 

alkylation sites were determined. Compared with the corresponding compounds of chapter 3 

with the same leaving group, the introduction of an additional benzene ring in the parent 

structure (26, 27) did not lead to red shift of the maximum absorption band but led to the 

enhanced UV absorbance for most compounds (34a-j, 35a-j), especially the NO2-containing 

ones. For all tested compounds, compounds 35a-j with a NO2 group as a substituent showed 

better DNA cross-link efficiency than the corresponding ones with OMe group (34a-j) except for 

35f and 35g. Compounds with the same substituent but different leaving groups showed different 

DNA ICL efficiency suggested that the benzylic leaving groups also have obvious effects on 

DNA ICL efficiency. All these compounds undergo the same mechanism pathway for DNA 

cross-linking.  The free radicals were first generated upon UV irradiation, which were then 

converted to the carbocations directly alkylate DNA. The dAs and dGs were the major alkylation 

sites for compounds 34a, 34b, 34f, 34h-j, 35c, 35d and 35f-i while dGs were the major 

alkylation site for others. This work presents insight about the photo reactivities of these 

aromatic compounds towards DNA, which provides further guidance for development of novel 

DNA cross-linking agents with potential biological application.  
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4.3. Experiment Section 

General Information. All commercial available chemicals were used without further 

purification. Oligonucleotides were synthesized via standard automated DNA synthesis 

techniques. Deprotection of the synthesized DNA was performed under mild deprotection 

conditions using a mixture of 40% aqueous MeNH2 and 28% aqueous NH3 (v/v = 1:1) at room 

temperature for 2 h. 20% denaturing polyacrylamide gel electrophoresis was used for DNA 

purification. [γ-32P] ATP was used for DNA labeling with standard method. Quantification of 

radiolabeled oligonucleotides was carried out using a Molecular Dynamics phosphorimager 

equipped with ImageQuant version 5.2. 1H NMR and 13C NMR spectra were taken on a Bruker 

DRX 300/500 MHz spectrometer with TMS as the internal standard. High-resolution mass 

spectrometry IT-TOF was used for molecular confirmation. 

 (5-Methoxy-1,3-phenylene)dimethanol (13): Into a solution of compound 12 (8.52 g, 38.0 

mmol) in THF (50 mL) at 0 ℃, LiAlH4 (3.2 g, 83.6 mmol) was added. The reaction mixture was 

allowed to warm to rt and stirred overnight. The reaction mixture was quenched with water (20 

mL) anddiluted with ethyl acetate (3 × 50 mL). The combined organic phases were washed with 

brine, and dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by 

column chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.2) to obtain 13 as a white solid 

(5.86 g, 34.8 mmol). 1H NMR (500 MHz, CDCl3): δ. 6.93 (s, 1H), 6.83 (s, 2H), 4.65 (s, 4H), 3.83 

(s, 3H), 2.55 (s, 2H). (the NMR spectra were in agreement with those reported).7 

(2-bromo-5-methoxy-1,3-phenylene)dimethanol (36): Into a solution of compound 13 (5.72 g, 

34.0 mmol) in acetonitrile (30 mL) at 0 ℃, N-Bromosuccinimide (6.23 g, 35.0 mmol) in 

acetonitrile (50 mL) was added dropwised. The reaction mixture was allowed to warm to rt 

naturally and stirred overnight. Solvent was removed. The residue was diluted with ethyl acetate 



 
 

161 

(3 × 50 mL), washed with brine, and dried over anhydrous Na2SO4. Solvent was removed, and 

the residue was purified by column chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.5) to 

obtain 36 as a white solid (8.0 g, 32.4 mmol). 1H NMR (500 MHz, DMSO-d6): δ. 7.02 (s, 2H), 

5.45-5.43 (t, J = 3.0 Hz, 2H), 4.51-4.50 (d, J = 3.0 Hz, 4H), 3.79 (s, 3H). (the NMR spectra were 

in agreement with those reported).7 

(4,4'-Dimethoxy-[1,1'-biphenyl]-2,6-diyl)dimethanol (37): To a solution of compound 36 

(2.48 g, 10.04 mmol), 4-Methoxyphenylboronic acid (2.28 g, 15.06 mmol) and 

Tetrakis(triphenylphosphine)palladium(0) (1.16 g, 1.004 mmol) in THF (72 mL) under argon, 

potassium carbonate (6.32 g, 45.0 mmol) in H2O (24 mL) was added. The reaction mixture was 

refluxed for 20 h. After cooling to rt, the mixture was diluted with ethyl acetate (3 × 75 mL), 

washed with brine, and dried over anhydrous Na2SO4. Solvent was removed, and the residue was 

purified by column chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.33) to afford 37 as a 

brownish oil (2.2 g, 8.02 mmol). 1H NMR (500 MHz, DMSO-d6): δ. 7.05-6.97 (m, 6H), 5.01-

4.99 (t, J = 3.0 Hz, 2H), 4.13-4.12 (d, J = 3.0 Hz, 4H), 3.80 (s, 6H). 13C NMR (125 MHz, 

DMSO-d6): δ. 158.94, 158.58, 142.05, 130.98, 130.32, 129.89, 114.15, 110.48, 61.35, 55.47, 

55.39. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C16H18O4Na+, 297.1103; found: 297.1088.  

 (4-Methoxy-4'-nitro-[1,1'-biphenyl]-2,6-diyl)dimethanol (38): To a solution of compound 36 

(5.0 g, 20.2 mmol), 4-Nitrophenylboronic acid (5.07 g, 30.3 mmol) and 

Tetrakis(triphenylphosphine)palladium(0) (2.33 g, 2.02 mmol) in THF (108 mL) under argon, 

potassium carbonate (13.9 g, 101 mmol) in H2O (36 mL) was added. The reaction mixture was 

refluxed for 20 h. After cooling to rt, the mixture was diluted with ethyl acetate (3 × 75 mL) and 

washed with brine. The combined organic phases were dried over anhydrous Na2SO4. Solvent 

was removed, and the residue was purified by column chromatography (Hexane: Ethyl acetate = 



 
 

162 

1:1, Rf = 0.4) to obtain 7 as a brownish solid (2.8 g, 9.70 mmol). 1H NMR (500 MHz, DMSO-d6): 

δ. 8.28-8.26 (d, J = 6.0 Hz, 2H), 7.48-7.46 (d, J = 6.0 Hz, 2H), 7.06 (s, 2H), 5.12-5.10 (t, J = 3.0 

Hz, 2H), 4.12-4.11 (d, J = 3.0 Hz, 4H), 3.83 (s, 3H). 13C NMR (125 MHz, DMSO-d6): δ. 159.60, 

147.06, 146.06, 141.48, 131.67, 128.67, 123.69, 111.30, 61.27, 55.51. HRMS-ESI (+) (m/z): 

[M+Na]+ calcd. for C15H15NO5Na+, 312.0848; found: 312.0833.  

 (4,4'-Dimethoxy-[1,1'-biphenyl]-2,6-diyl)bis(methylene) diacetate (34a): Into a solution of 

compound 37 (200 mg, 0.73 mmol) in DCM (10 mL), 4-dimethylaminopyridine (268 mg, 2.19 

mmol) was added. The resulting mixture was cooled to 0 ℃. Acetyl chloride (230 mg, 2.92 

mmol) was added using syringe. The reaction mixture was warmed to rt and stirred for another 2 

h. The reaction mixture was quenched with H2O (8.0 mL), diluted with DCM (3 × 15 mL), and 

washed with brine. The combined organic phases were dried over anhydrous Na2SO4. Solvent 

was removed, and the residue was purified by column chromatography (Hexane: Ethyl acetate = 

1:1, Rf = 0.95) to obtain 34a as a white solid (200 mg, 0.56 mmol): m.p. 76-77 ℃. 1H NMR (500 

MHz, CDCl3): δ. 7.12-7.11 (d, J = 5.0 Hz, 2H), 7.01 (s, 2H), 6.96-6.94 (d, J = 10.0 Hz, 2H), 4.83 

(s, 4H), 3.89-3.87 (d, J = 10.0 Hz, 6H), 2.06 (s, 6H). 13C NMR (125 MHz, CDCl3): δ. 170.58, 

159.03, 158.84, 136.28, 133.67, 130.82, 129.07, 113.82, 64.44, 55.43, 55.26, 20.96. HRMS-ESI 

(+) (m/z): [M+K]+ calcd. for C20H22O6K+, 397.1048; found: 397.1062. 

4,4'-Dimethoxy-2,6-bis(methoxymethyl)-1,1'-biphenyl (34b): To a solution of compound 37 

(200 mg, 0.73 mmol)  in DMF (5.0 mL) at 0 ℃, NaH (87.6 mg, 60%, 2.19 mmol) was added. 

The reaction mixture was stirred at 0 ℃ for 10 min, and CH3I (624 mg, 4.4 mmol) was added. 

The mixture was allowed to warm to rt and stirred overnight. The reaction mixture was quenched 

with water (10 mL), and diluted with ethyl acetate (3 × 15 mL). The combined organic phases 

were washed with brine, and dried over anhydrous Na2SO4. Solvent was removed, and the 
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residue was purified by column chromatography (Hexane: Ethyl acetate = 3:1, Rf = 0.8) to obtain 

34b as a white solid (120 mg, 0.40 mmol): m.p. 70-71 ℃. 1H NMR (500 MHz, CDCl3): δ. 7.13-

7.11 (d, J = 10.0 Hz, 2H), 7.05 (s, 2H), 6.98-6.96 (d, J = 10.0 Hz, 2H), 4.14 (s, 4H), 3.90 (s, 6H), 

3.29 (s, 6H). 13C NMR (125 MHz, CDCl3): δ. 159.04, 158.67, 138.27, 132.17, 130.89, 130.18, 

113.52, 112.28, 72.42, 58.28, 55.39, 55.25. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for 

C18H22O4Na+, 325.1416; found: 325.1392.  

2,6-Bis((allyloxy)methyl)-4,4'-dimethoxy-1,1'-biphenyl (34c): To a solution of compound 37 

(200 mg, 0.73 mmol) in DMF (5.0 mL) at 0 ℃, NaH (87.6 mg, 60%, 2.19 mmol) was added. The 

resulting mixture was stirred for 10 min, and then allyl iodide (368 mg, 2.19 mmol) was added. 

The reaction mixture was allowed to warm to rt and stirred overnight. The reaction mixture was 

quenched with water (10 mL), and diluted with ethyl acetate (3 × 15 mL), the combined organic 

phases were washed with brine, and dried over anhydrous Na2SO4. Solvent was removed, and 

the residue was purified by column chromatography (Hexane: Ethyl acetate = 3:1, Rf = 0.95) to 

obtain 34c as a browish oily (155 mg, 0.44 mmol). 1H NMR (500 MHz, CDCl3): δ. 7.14-7.12 (d, 

J = 10.0 Hz, 2H), 7.10 (s, 2H), 6.98-6.96 (d, J = 10.0 Hz, 2H), 5.93-5.85(m, 2H), 5.28 (d, J = 1.5 

Hz, 1H), 5.24 (d, J = 1.5 Hz, 1H), 5.18-5.16 (d, J = 10.0 Hz, 2H), 4.22 (s, 4H), 3.92-3.91 (m, 

10H). 13C NMR (125 MHz, CDCl3): δ. 159.00, 158.68, 138.37, 134.81, 132.36, 130.95, 130.21, 

116.83, 113.49, 112.51, 71.36, 70.05, 55.39, 55.29. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for 

C22H26O4Na+, 377.1729; found: 377.1709. 

2,6-Bis((benzyloxy)methyl)-4,4'-dimethoxy-1,1'-biphenyl (34d): Compound 37 (200 mg, 0.73 

mmol) in DMF (5.0 mL) was cooled to 0 ℃, followed by the addition of NaH (87.6 mg, 60%, 

2.19 mmol).  The resulting mixture was stirred for 10 min, and then benzyl chloride (280 mg, 

2.19 mmol) was added. The reaction mixture was allowed to warm to rt and stirred overnight. 
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The reaction mixture was quenched with water (10 mL), and diluted with ethyl acetate (3 × 15 

mL). The combined organic phases were washed with brine, and dried over anhydrous Na2SO4. 

Solvent was removed, and the residue was purified by column chromatography (Hexane: Ethyl 

acetate = 3:1, Rf = 0.9) to afford 34d as a white solid (200 mg, 0.44 mmol): m.p. 39-40 ℃. 1H 

NMR (500 MHz, CDCl3): δ. 7.38-7.30 (m, 10H), 7.16-7.14 (d, J = 10.0 Hz, 4H), 6.97-6.95 (d, J 

= 10.0 Hz, 2H), 4.47 (s, 4H), 4.30 (s, 4H), 3.91 (s, 6H). 13C NMR (125 MHz, CDCl3): δ. 159.03, 

158.69, 138.37, 138.33, 132.66, 130.98, 130.19, 128.36, 127.71, 127.55, 113.55, 112.88, 72.49, 

70.31, 55.42, 55.29. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C30H30O4Na+, 477.2036; found: 

477.2028.  

2,6-Bis(bromomethyl)-4,4'-dimethoxy-1,1'-biphenyl (34e): Into a solution of compound 37 

(1.5 g, 5.48 mmol) in DCM (30 mL) at 0 ℃, phosphorus tribromide (3.26 g, 12.05 mmol) was 

added. The reaction mixture was allowed to warm to rt and stirred for 3 h. The reaction mixture 

was quenched with water (20 mL), and diluted with DCM (3 × 30 mL). The combined organic 

phases were washed with brine, and dried over anhydrous Na2SO4. Solvent was removed, and 

the residue was purified by column chromatography (Hexane: ethyl acetate = 1:1, Rf = 0.85) to 

afford 34e as a white solid (1.71 g, 4.27 mmol): m.p. 107-108 ℃. 1H NMR (500 MHz, CDCl3): 

δ. 7.30-7.28 (d, J = 6.0 Hz, 2H), 7.04-7.02 (d, J = 6.0 Hz, 4H), 4.23 (s, 4H), 3.91-3.89 (d, J = 6.0 

Hz, 6H). 13C NMR (125 MHz, CDCl3): δ. 159.21, 158.94, 138.41, 134.12, 130.98, 128.59, 

115.94, 113.79, 55.49, 55.30, 32.14. HRMS-ESI (+) (m/z): [M-Br]+ calcd. for C16H16O2Br+, 

319.0328; found: 319.0288.  

1,1'-(4,4'-Dimethoxy-[1,1'-biphenyl]-2,6-diyl)bis(N,N-dimethylmethanamine) (34f): Into a 

solution of 34e (200 mg, 0.50 mmol) in ethyl acetate (4.0 mL), dimethylamine solution (2.0 M in 

methanol) (2.5 mL, 5 mmol) was added. The reaction mixture was stirred at rt overnight. The 
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reaction mixture was diluted with ethyl acetate (3 × 10 mL), and washed with brine. The 

combined organic phases were dried over anhydrous Na2SO4. Solvent was removed, and the 

residue was purified by column chromatography (DCM: Methanol = 5:1, Rf = 0.48) to afford 34f 

as a white solid (100 mg, 0.30 mmol): m.p. 64-65 ℃. 1H NMR (500 MHz, CDCl3): δ. 7.15-7.14 

(d, J = 5.0 Hz, 2H), 7.03-7.01 (d, J = 10.0 Hz, 2H), 6.96-6.94 (d, J = 10.0 Hz, 2H), 3.91-3.90 (d, 

J = 5.0 Hz, 6H), 3.18 (s, 4H), 2.18 (s, 12H). 13C NMR (125 MHz, CDCl3): δ. 159.00, 158.38, 

138.31, 133.90, 131.43, 131.19, 113.37, 113.10, 61.07, 55.52, 55.23, 45.31. HRMS-ESI (+) 

(m/z): [M+H]+ calcd. for C20H29N2O2
+, 329.2224; found: 329.2215.  

4,4'-((4,4'-Dimethoxy-[1,1'-biphenyl]-2,6-diyl)bis(methylene))dimorpholine (34g): Into a 

solution of 34e (200 mg, 0.5 mmol), morpholine (348 mg, 4.0 mmol) in ethyl acetate (5.0 mL) 

was added. The resulting mixture was stirred at rt overnight. Solvent was removed. The residue 

was diluted with ethyl acetate (3 × 15 mL), washed with brine, and dried over anhydrous 

Na2SO4. Solvent was removed, and the residue was purified by column chromatography (DCM: 

Methanol = 10:1, Rf = 0.86) to obtain 34g as a colorless gel (167 mg, 0.41 mmol).  1H NMR (500 

MHz, CDCl3): δ. 7.06-7.04 (m, 4H), 6.94-6.92 (d, J = 10.0 Hz, 2H), 3.88 (s, 6H), 3.67-3.65 (t, J 

= 5.0 Hz, 8H), 3.16 (s, 4H), 2.32 (s, 8H). 13C NMR (125 MHz, CDCl3): δ.158.50, 158.36, 138.24, 

134.66, 131.39, 131.13, 113.15, 112.91, 67.14, 60.43, 55.32, 55.24, 53.73, 53.46. HRMS-ESI (+) 

(m/z): [M+H]+ calcd. for C24H33N2O4
+, 413.2435; found: 413.2434. 

((4,4'-Dimethoxy-[1,1'-biphenyl]-2,6-diyl)bis(methylene))bis(phenylsulfane) (34h): To a 

solution of compound 34e (200 mg, 0.5 mmol) in DMF (5.0 mL), thiophenol (165 mg, 1.5 

mmol) was added, followed by the addition of trimethylamine (0.6 mL). The reaction mixture 

was stirred at 70 ℃ overnight. The reaction mixture was quenched with water (10 mL), and 

diluted with ethyl acetate (3 × 15 mL). The combined organic phases were washed with brine, 
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and dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: ethyl acetate = 10:1, Rf = 0.5) to offer 34h as a white solid (198 mg, 

0.43 mmol): m.p. 90-91 ℃. 1H NMR (500 MHz, CDCl3): δ. 7.26-7.19 (m, 10H), 7.13-7.12 (d, J 

= 5.0 Hz, 2H), 6.94-6.92 (d, J = 10.0 Hz, 2H), 6.87 (s, 2H), 3.88 (s, 3H), 3.83 (s, 4H), 3.74 (s, 

3H). 13C NMR (125 MHz, CDCl3): δ. 158.79, 158.47, 137.56, 136.52, 133.98, 131.31, 130.26, 

130.07, 128.79, 126.39, 114.01, 113.63, 55.28, 55.23, 37.69. HRMS-ESI (+) (m/z): [M+K]+ 

calcd. for C28H26O2S2K+, 497.1006; found: 497.1016. 

((4,4'-Dimethoxy-[1,1'-biphenyl]-2,6-diyl)bis(methylene))bis(phenylselane) (34i): To a 

solution of diphenyl diselenide (312 mg, 1.0 mmol) in DMF (5.0 mL), NaBH4 (75.7 mg, 2.0 

mmol) was added. The reaction mixture was stirred at rt for 10 min. Compound 34e (200 mg, 

0.50 mmol) in DMF (2.0 mL) was added. The resulting mixture was stirred at rt overnight. The 

reaction mixture was quenched with water (10 mL), and diluted with ethyl acetate (3 × 15 mL). 

The combined organic phases were washed with brine, and dried over anhydrous Na2SO4. 

Solvent was removed, and the residue was purified by column chromatography (Hexane: DCM = 

5:1, Rf = 0.25) to afford 34i s as a light yellowish solid (248 mg, 0.45 mmol): m.p. 101-102 ℃. 

1H NMR (500 MHz, CDCl3): δ. 7.36-7.35 (d, J = 5.0 Hz, 4H), 7.27-7.22 (m, 6H), 7.15-7.13 (d, J 

=10.0 Hz, 2H), 6.95-6.93 (d, J = 10.0 Hz, 2H), 6.66 (s, 2H), 3.89 (s, 3H), 3.85 (s, 4H), 3.67 (s, 

3H). 13C NMR (125 MHz, CDCl3):158.75, 158.15, 138.96, 133.83, 133.43, 131.34, 130.78, 

130.20, 128.95, 127.29, 113.80, 113.60, 55.29, 55.14, 31.27. HRMS-ESI (+) (m/z): [M+K]+ 

calcd. for C28H26O2Se2K+, 592.9900; found: 592.9913.  

((4,4'-Dimethoxy-[1,1'-biphenyl]-2,6-diyl)bis(methylene))bis(triphenylphosphonium) 

bromide (34j): Compound 34e (200 mg, 0.5 mmol) and triphenylphosphine (289 mg, 1.1 mmol) 

in dry toluene (5.0 mL) was stirred at rt for one day under argon. The crude white powder was 
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obtained by filtration, which was purified by column chromatography (DCM: Methanol = 10:1, 

Rf = 0.45) to afford 34j as a white foam (280 mg, 0.42 mmol). 1H NMR (500 MHz, CDCl3): δ. 

7.78-7.75 (t, J = 7.5 Hz, 6H), 7.64-7.60 (m, 12H), 7.29-7.25 (m, 12H), 6.79 (s, 2H), 6.52-6.50 (d, 

J = 10.0 Hz, 2H), 5.70-5.68 (d, J = 10.0 Hz, 2H), 5.11-5.09 (d, J = 10.0 Hz, 4H), 3.80 (s, 3H), 

3.26 (s, 3H). 13C NMR (125 MHz, CDCl3): δ.158.80, 158.33, 136.31, 135.15, 134.20, 134.11, 

131.35, 130.44, 130.39, 129.02, 128.92, 127.73, 117.75, 117.07, 114.24, 55.49, 55.32, 53.48, 

29.68, 29.48, 29.11. HRMS-ESI (+) (m/z): [M-2Br]2+ calcd. for C52H46O2P2
2+, 382.1481; found: 

382.1461. 

(4-Methoxy-4'-nitro-[1,1'-biphenyl]-2,6-diyl)bis(methylene) diacetate (35a): Into a solution 

of compound 38 (300 mg, 1.04 mmol) in DCM (10 mL), 4-dimethylaminopyridine (381 mg, 

3.12 mmol) was added. The resulting mixture was cooled to 0 ℃. Acetyl chloride (327 mg, 4.16 

mmol) was added using syringe. The reaction mixture was warmed to rt and stirred for another 4 

h. The reaction mixture was quenched with H2O (8.0 mL), and diluted with DCM (3 × 15 mL). 

The combined organic phases were washed with brine, and dried over anhydrous Na2SO4. 

Solvent was removed, and the residue was purified by column chromatography (Hexane: Ethyl 

acetate = 1:1, Rf = 0.78) to obtain 35a as a white solid (220 mg, 0.59 mmol): m.p. 99-100 ℃. 1H 

NMR (500 MHz, CDCl3): δ. 8.32-8.30 (d, J = 10.0 Hz, 2H), 7.45-7.43 (d, J = 10.0 Hz, 2H), 7.05 

(s, 2H), 4.77 (s, 4H), 3.91 (s, 3H), 2.04 (s, 6H). 13C NMR (125 MHz, CDCl3): δ. 170.31, 159.66, 

147.51, 144.55, 135.60, 131.68, 131.07, 123.51, 114.65, 63.95, 55.52, 20.84. HRMS-ESI (+) 

(m/z): [M-OAc]+ calcd. for C17H16NO5
+, 314.1023; found: 314.1024. 

4-Methoxy-2,6-bis(methoxymethyl)-4'-nitro-1,1'-biphenyl (35b): To a solution of compound 

38 (300 mg, 1.04 mmol)  in DMF (5.0 mL) at 0 ℃, NaH (166 mg, 60%, 4.16 mmol) was added. 

The reaction mixture was stirred for 10 min at 0 ℃, and then CH3I (886 mg, 6.24 mmol) was 
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added. The reaction mixture was allowed to warm to RT and stirred overnight. The reaction 

mixture was quenched with water (10 mL), and diluted with ethyl acetate (3 × 15 mL). The 

combined organic phases were washed with brine, and dried over anhydrous Na2SO4. Solvent 

was removed, and the residue was purified by column chromatography (Hexane: Ethyl acetate = 

5:1, Rf = 0.45) to obtain 35b as a white solid (148 mg, 0.47 mmol): m.p. 69-70 ℃. 1H NMR (500 

MHz, CDCl3): δ. 8.31-8.29 (d, J = 10.0 Hz, 2H), 7.44-7.42 (d, J = 10.0 Hz, 2H), 7.06 (s, 2H), 

4.07 (s, 4H), 3.91 (s, 3H), 3.26 (s, 6H). 13C NMR (125 MHz, CDCl3): δ. 159.69, 147.20, 145.63, 

137.47, 131.07, 130.73, 123.21, 113.40, 72.39, 58.31, 55.45. HRMS-ESI (+) (m/z): [M+Na]+ 

calcd. for C17H19NO5Na+, 340.1161; found: 340.1143. 

2,6-Bis((allyloxy)methyl)-4-methoxy-4'-nitro-1,1'-biphenyl (35c): To a solution of compound 

38 (300 mg, 1.04 mmol) in DMF (5.0 mL) at 0 ℃, NaH (166 mg, 60%, 4.16 mmol) was added. 

The resulting mixture was stirred for 10 min, and then allyl iodide (699 mg, 4.16 mmol) was 

added. The reaction mixture was allowed to warm to rt and stirred overnight. The reaction was 

quenched with water (10 mL), and diluted with ethyl acetate (3 × 15 mL). The combined organic 

phases were washed with brine, and dried over anhydrous Na2SO4. Solvent was removed, and 

the residue was purified by column chromatography (Hexane: Ethyl acetate = 5:1, Rf = 0.50) to 

obtain 35c as a light yellowish solid (190 mg, 0.50 mmol): m.p. 36-37 ℃. 1H NMR (500 MHz, 

CDCl3): δ. 8.29-8.28 (d, J = 5.0 Hz, 2H), 7.44-7.42 (d, J = 10.0 Hz, 2H), 7.08 (s, 2H), 5.86-5.78 

(m, 2H), 5.23-5.20 (d, J = 15.0 Hz, 2H), 5.16-5.14 (d, J = 10.0 Hz,  2H), 4.14 (s, 4H), 3.90 (s, 

3H), 3.87-3.86 (d, J = 5.0 Hz, 4H). 13C NMR (125 MHz, CDCl3): δ. 159.65, 147.19, 145.66, 

137.53, 134.35, 131.16, 130.96, 123.14, 117.24, 113.63, 71.43, 69.91, 55.43. HRMS-ESI (+) 

(m/z): [M+Na]+ calcd. for C21H23NO5Na+, 392.1474; found: 392.1463.  
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2,6-Bis((benzyloxy)methyl)-4-methoxy-4'-nitro-1,1'-biphenyl (35d): Compound 38 in (300 

mg, 1.04 mmol) in DMF (5.0 mL) was cooled to 0 ℃, followed by the addition of NaH (166 mg, 

60%, 4.16 mmol).  The resulting mixture was stirred for 10 min, and then benzyl chloride (527 

mg, 4.16 mmol) was added. The reaction mixture was allowed to warm to rt and stirred 

overnight. The reaction mixture was quenched with water (10 mL), and diluted with ethyl acetate 

(3 × 15 mL). The combined organic phases were washed with brine, and dried over anhydrous 

Na2SO4. Solvent was removed, and the residue was purified by column chromatography 

(Hexane: Ethyl acetate = 5:1, Rf = 0.48) to afford 35d as a yellowish oily (200 mg, 0.44 mmol).  

1H NMR (500 MHz, CDCl3): δ. 8.19-8.17 (d, J = 10.0 Hz, 2H), 7.37-7.29 (m, 8H), 7.24-7.23 (d, 

J = 5.0 Hz, 4H), 7.12 (s, 2H), 4.41 (s, 4H), 4.18 (s, 4H), 3.91 (s, 3H). 13C NMR (125 MHz, 

CDCl3): δ. 159.66, 147.08, 145.49, 137.72, 137.44, 131.26, 131.05, 128.40, 127.83, 127.78, 

123.13, 114.04, 72.63, 69.94, 55.47. HRMS-ESI (+) (m/z): [M+Na]+ calcd. for C29H27NO5Na+, 

492.1787; found: 492.1775.  

2,6-Bis(bromomethyl)-4-methoxy-4'-nitro-1,1'-biphenyl (35e): Into a solution of compound 

38 (2.1 g, 7.27 mmol) in DCM (30 mL) at 0 ℃, phosphorus tribromide (4.34 g, 16.02 mmol) was 

added. The reaction mixture was allowed to warm to rt and stirred overnight. The reaction 

mixture was quenched with water (20 mL), and diluted with DCM (3 × 30 mL). The combined 

organic phases were washed with brine, and dried over anhydrous Na2SO4. Solvent was 

removed, and the residue was purified by column chromatography (Hexane: DCM = 2:1, Rf = 

0.45) to afford 35e as a white solid (1.26 g, 3.05 mmol): m.p. 137-138 ℃. 1H NMR (500 MHz, 

CDCl3): δ. 8.38-8.36 (d, J = 6.0 Hz, 2H), 7.61-7.60 (d, J = 3.0 Hz, 2H), 7.05 (s, 2H), 4.15 (s, 

4H), 3.91 (s, 3H). 13C NMR (125 MHz, CDCl3): δ. 159.74, 150.08, 147.74, 143.76, 137.70, 
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131.22, 123.57, 116.27, 55.59, 31.18. HRMS-ESI (+) (m/z): [M-Br]+ calcd. for C15H13NO3Br+, 

334.0073; found: 334.0061. 

1,1'-(4-Methoxy-4'-nitro-[1,1'-biphenyl]-2,6-diyl)bis(N,N-dimethylmethanamine) (35f): Into 

a solution of 35e (200 mg, 0.48 mmol) in ethyl acetate (5.0 mL), dimethylamine solution (2.0 M 

in methanol) (2.41 mL, 4.82 mmol) was added. The reaction mixture was stirred at rt overnight. 

Solvent was removed. The residue was diluted with ethyl acetate (3 × 10 mL), washed with 

brine, and dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by 

column chromatography (DCM: Methanol = 10:1, Rf = 0.62) to afford 35f as a white solid (153 

mg, 0.45 mmol): m.p. 135-136 ℃. 1H NMR (500 MHz, CDCl3): δ. 8.28-8.26 (d, J = 10.0 Hz, 

2H), 7.37-7.35 (d, J = 10.0 Hz, 2H), 7.08 (s, 2H), 3.90(s, 3H), 3.05 (s, 4H), 2.11 (s, 12H). 13C 

NMR (125 MHz, CDCl3): δ.159.46, 146.99, 146.84, 138.08, 132.22, 131.55, 122.92, 113.56, 

61.40, 55.49, 45.28. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C19H26N3O3
+, 344.1969; found: 

344.1955.  

4,4'-((4-Methoxy-4'-nitro-[1,1'-biphenyl]-2,6-diyl)bis(methylene))dimorpholine (35g): Into a 

solution of 35e (200 mg, 0.48 mmol) in ethyl acetate (5.0 mL), morpholine (420 mg, 4.82 mmol) 

was added. The resulting mixture was stirred at rt overnight. Solvent was removed. The residue 

was diluted with ethyl acetate (3 × 15 mL), washed with brine, and dried over anhydrous 

Na2SO4. Solvent was removed, and the residue was purified by column chromatography (DCM: 

Methanol = 10:1, Rf = 0.82) to obtain 35g as a white solid (200 mg, 0.47 mmol): m.p. 121-122 

℃.  1H NMR (500 MHz, CDCl3): δ. 8.28-8.26 (d, J = 10.0 Hz, 2H), 7.41-7.39 (q, J = 10.0 Hz, 

2H), 7.02 (s, 2H), 3.90 (s, 3H), 3.62-3.60 (t, J = 5.0 Hz, 8H), 3.11 (s, 4H), 2.27 (s, 8H). 13C NMR 

(75 MHz, CDCl3): δ.159.06, 146.86, 137.49, 132.95, 131.52, 122.72, 113.83, 67.01, 60.71, 

55.40, 53.30. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C23H30N3O5
+, 428.2180; found: 428.2189. 
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((4-Methoxy-4'-nitro-[1,1'-biphenyl]-2,6-diyl)bis(methylene))bis(phenylsulfane) (35h): To a 

solution of compound 35e (200 mg, 0.48 mmol) in DMF (5.0 mL), thiophenol (159 mg, 1.45 

mmol) was added, followed by the addition of trimethylamine (0.5 mL). The reaction mixture 

was stirred at 70 ℃ for 2 days. The reaction mixture was quenched with water (10 mL), and 

diluted with ethyl acetate (3 × 15 mL). The combined organic phases were washed with brine, 

and dried over anhydrous Na2SO4. Solvent was removed, and the residue was purified by column 

chromatography (Hexane: ethyl acetate = 10:1, Rf = 0.5) to afford 35h as an orange solid (223 

mg, 0.47 mmol): m.p. 114-116 ℃. 1H NMR (500 MHz, CDCl3): δ. 8.22-8.20 (d, J = 10.0 Hz, 

2H), 7.35-7.33 (d, J = 10.0 Hz, 2H), 7.28-7.22 (m, 6H), 7.18-7.16 (m, 4H), 6.84 (s, 2H), 3.76 (s, 

3H), 3.73 (s, 4H). 13C NMR (125 MHz, CDCl3): δ. 159.17, 147.22, 145.27, 136.98, 135.64, 

131.88, 131.53, 130.90, 128.95, 127.01, 123.25, 114.55, 55.32, 37.97. HRMS-ESI (+) (m/z): 

[M+NH4]
+ calcd. for C27H27N2O3S2

+, 491.1458; found: 491.1450.  

((4-Methoxy-4'-nitro-[1,1'-biphenyl]-2,6-diyl)bis(methylene))bis(phenylselane) (35i): To a 

solution of diphenyl diselenide (301 mg, 0.96 mmol) in DMF (5.0 mL), NaBH4 (73 mg, 1.93 

mmol) was added. The reaction mixture was stirred at rt for 10 min. Compound 35e (200 mg, 

0.48 mmol) in DMF (2.0 mL) was added. The resulting mixture was stirred at rt for 24 h. The 

reaction mixture was quenched with water (10 mL), and diluted with ethyl acetate (3 × 15 mL). 

The combined organic phases were washed with brine, and dried over anhydrous Na2SO4. 

Solvent was removed, the residue was purified by column chromatography (Hexane: DCM = 

10:1, Rf = 0.4) to afford 35i as a light yellowish solid (258 mg, 0.45 mmol): m.p. 105-107 ℃. 1H 

NMR (500 MHz, CDCl3): δ. 8.19-8.17 (d, J = 10.0 Hz, 2H), 7.34-7.22 (m, 12H), 6.65 (s, 2H), 

3.74 (s, 4H), 3.69 (s, 3H). 13C NMR (125 MHz, CDCl3): 158.88, 147.13, 145.39, 138.24, 134.08, 
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131.50, 131.21, 129.99, 129.08, 127.71, 123.24, 114.15, 55.21, 30.81. HRMS-ESI (+) (m/z): 

[M+NH4]
+ calcd. for C27H27N2O3Se2

+, 587.0352; found: 587.0345. 

((4-Methoxy-4'-nitro-[1,1'-biphenyl]-2,6-diyl)bis(methylene))bis(triphenylphosphonium) 

bromide (35j): Compound 35e (150 mg, 0.36 mmol) and triphenylphosphine (209 mg, 0.8 

mmol) in dry toluene (5.0 mL) was stirred at rt for 1 day under argon. The crude white powder 

was obtained by filtration, which was further purified by column chromatography (DCM: 

Methanol = 10:1, Rf = 0.46) to afford 35j as a white solid (268 mg, 0.29 mmol): m.p. 287-288 ℃. 

1H NMR (500 MHz, Methanol-d4): δ. 7.92-7.85 (m, 8H), 7.69-7.65 (m, 12H), 7.39-7.34 (m, 

12H), 6.67 (s, 2H), 6.46-6.44 (d, J = 10.0 Hz, 2H), 4.69-4.66 (d, J = 15.0 Hz, 4H), 3.31 (s, 3H). 

13C NMR (125 MHz, Methanol-d4): δ.159.29, 147.33, 141.83, 135.25, 134.02, 133.95, 133.87, 

131.24, 130.25, 130.14, 123.87, 117.89, 117.28, 116.60, 54.62. HRMS-ESI (+) (m/z): [M-2Br]2+ 

calcd. for C51H43NO3P2
2+, 389.6354; found: 389.6338.  

ICL formation with duplex DNA: The 32P-labeled oligonucleotide (0.5 µM) was annealed with 

1.5 equiv of the complementary strand by heating to 90 ℃ for 5 min in potassium phosphate 

buffer (pH 7, 10 mM), followed by slowly cooling to rt. The 32P-labeled ODN duplex (2 µL, 0.5 

µM) was then mixed with 1 M NaCl (2 µL), 100 mM potassium phosphate (2 µL, pH 8), and 

34a–j or 35a-j in 6 µL CH3CN and autoclaved distilled water to give a final volume of 20 µL 

(final concentration of compounds ranges from 10 µM to 1.0 mM). The reaction mixture was 

irradiated under UV (350 nm) until the reaction was completed, followed by quenching with an 

equal volume of 90% formamide loading buffer. The resulting mixture was then subjected to 

20% denaturing polyacrylamide gel for electrophoresis. 
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Trapping assay of oligodeoxynucleotides: (1) Carbocation trapping: the stock solution of 

MeONH2·HCl (2 M) was titrated with NaOH (5 M) to adjust the pH to 7.0, which was then 

diluted to desired concentration (1/3-1000/3 mM). MeONH2 (6 µL) was mixed with 32P-labeled 

DNA duplex (2 µL, 0.5 µM), NaCl (2 µL, 1 M), potassium phosphate (2 µL, pH 8.0, 100mM), 

compound (34a-j, 35a-j) in 6 µL CH3CN and water (2 µL) to give the desired concentration 

(final concentration of MeONH2: 100 µM to 100 mM; final concentration of compounds: 

optimized concentration). (2) Radical trapping: 3 µL of TEMPO in CH3CN (200/3 µM to 2000/3 

mM) was mixed with the following: 32P-labeled DNA duplex (2 µL, 0.5 µM), NaCl (2 µL, 1 M), 

potassium phosphate (2 µL, pH 8.0, 100 mM), compound (34a-j, 35a-j) in CH3CN (3 µL) and 

water (8 µL) as appropriate for the desired concentration (final concentration of TEMPO: 10 µM 

to 100 mM, final concentration of compounds: optimized concentration). The reaction mixture 

was irradiated under UV (350 nm) for desired time (optimized time) and quenched with an equal 

volume of 90% formamide loading buffer, and then subjected to 20% denaturing polyacrylamide 

gel electrophoresis. 

Stability study of ICL products formed with 17: The 32P-labeled oligonucleotide duplex 17 

(30 µ, 0.5 µM) was mixed with NaCl (6 µL, 1 M), 100 mM potassium phosphate (6 µL, pH 8.0) 

and compound in CH3CN (18 µL) (optimized concentration used for all the compounds). The 

reaction mixture was irradiated under UV for desired time (optimized time). After the cross-

linking reaction, the DNA ICLs and the monoalkylated ODNs were purified by gel 

electrophoresis. The isolated DNA fragments were dissolved in 45 µL water, and divided into 

three portions. One portion (15 µL) was incubated with 1.0 M piperidine at 90 ℃ for 0.5 h, the 

second portion (15 µL) was incubated with 0.1 M NaCl and 10 mM potassium phosphate buffer 

(pH 7.0) under the same condition, and the third portion (15 µL) was used as control. Solvent 
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was removed under vacuum after the treatment. The residue was dissolved in 90% formamide 

loading buffer, and then subjected to electrophoresis on a 20% denaturing polyacrylamide gel. 
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Chapter 5. In vivo efficacy of hydrogen peroxide activated DNA 

interstrand cross-linking agents  

5.1. Introduction 

DNA cross-linking (ICL) agents have been an important class of drugs for cancer 

chemotherapy.1 They cross-link DNA either within the same strand or between two 

complementary strands, blocking DNA replication and/or transcription which prevents cell 

division and finally leads to cell death. A variety of DNA ICL agents have been employed for the 

treatment of various cancer diseases, such as cisplatins, mitomycin C, nitrogen mustards and 

psoralens.2 However, these traditional DNA ICL agents showed serious side effects towards the 

host cells due to their poor selectivity towards cancer cells. DNA cross-linking agents targeting 

cancer cells were expected to reduce side effects. One effective way to reduce the toxicity of 

DNA cross-linking agents towards host cells is creation of inducible DNA alkylation agents that 

can only be activated under tumor-specific conditions. Several strategies have been developed 

for inducing DNA ICL formation under control, including photoirradiation,3-11 fluoride 

induction,12-14 oxidation,15-18 and reduction.19 Most of these induction methods led to high DNA 

cross-linking efficiency and selectivity under designed specific conditions. However, most 

conditions used are not tumor-specific that cannot be employed for targeting cancer cells. 

Exploring the intrinsic factor of the cancer cells has been an effective way to develop novel 

drugs that can be specifically activated in cancer cells. The unique hypoxic condition in tumor 

offered one possible way for developing selective anticancer agents.20 Recently, several hypoxia-

selective DNA cross-linking agents have been developed and showed good selectivity towards 

cancer cells.21-25 On the other hand, due to the rapid proliferation and mitochondria malfunction, 
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cancer cells are believed to be under oxidative stress. Higher level of reactive oxygen species 

(ROS, such as superoxide (O2
-), hydroxyl radicals (OH·) and hydrogen peroxide (H2O2),

26-28 

were observed in cancer cells than in the corresponding normal cells. Thus, DNA cross-linking 

agents that can be selectively activated by ROS are expected to target cancer cells. Recently, two 

classes of hydrogen peroxide (H2O2) inducible DNA cross-linking agents have been developed in 

our group,29-36 including the quinone methide precursors (QMs)29-33 and nitrogen mustard 

analogues.34-36 Both classes of compounds contain an electron withdrawing boronic acid or 

pinacol boronate ester as a trigger unit that mask the toxicity of DNA alkylating functional 

groups while allows its activation by selectively reacting  with H2O2. Among all five QM 

precursors designed (Scheme 1-15 and Scheme 1-27), compounds IIi and IIIa (Scheme 5-1) 

exhibited higher DNA cross-linking efficiency and good selectivity towards H2O2 (Figure 5-1). 

These compounds significantly inhibited cancer cell growth for several cancer cell lines.29-33 

They were even more effective than the clinically used DNA alkylating agents such as 

chlorambucil and melphalan. Compound IIi was more potent than IIIa in most cells lines tested, 

where the inhibitory effect followed the order of MDA-MB-468>UO-31=786-0>A-498.33  

Several classes of H2O2-activated nitrogen mustard precursors have been developed.34 These 

compounds not only showed good selectivity and activity toward H2O2 but also exhibited 

selective toxicity toward cancer cells and spared normal cells. Among these compounds, neutral 

molecules IVq with the nitrogen mustard moiety directly bonded to the benzene ring showed 

improved cell membrane permeability and improved cytotoxicity towards cancer cells (Scheme 

1-29)35-36 For example, compound IVq (Sheme 5-1) showed higher DNA ICL efficiency (Figure 

5-1) and inhibitory effect for most cell lines tested. In particular, the breast cancer cell line 

MDA-MB-468 was most sensitive towards IVq.35 The in vitro study indicated that these ROS-
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inducible DNA cross-linking agents (IIi, IIIa, IVq) are potential and selective anti-cancer 

prodrugs, which can be used as lead compounds for further drug design. Evaluation of their in 

vivo efficacy will provide further guides for exploring their application and further drug design. 

In this work, we performed the in vivo study in mice to determine the in vivo toxicity and 

efficacy of compounds IIi, IIIa, IVq.  

  

Scheme 5-1. Compounds used for in vivo study. 

 

Figure 5-1. DNA ICL formation with/without H2O2 for compounds IIi, IIIa, IVq.  

In order to investigate the in vivo efficacy of these compounds, the maximum safe dose was first 

determined using CD-1 mice. The maximum safe dose in this work was defined as maximum 

dosage that will not lead to weight loss or abnormal behavior. To determine the safe dosage, we 

carried out two sets of experiments for each compound, including single dose toxicity study and 
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five dose toxicity tests. Single dose toxicity study was done before five dose treatments. Three 

mice (4-6 weeks old) were used for each single test.  

The in vitro study showed that breast cancer cell line MDA-MB-468 was most sensitive towards 

compounds IIi, IIIa, IVq.33,35 So the breast cancer cell line MDA-MB-468 was the first choice 

for the in vivo efficacy study. Compounds IIi and IIIa also showed good inhibitory effect on 

several renal cancer cell lines where the inhibitory effect follows the order of UO-31 = 786-0 > 

A-498. Thus, we also determined the in vivo efficacy for these renal cancer cell lines. 

Cell lines were cultured following the standard protocol (5.5) from one small flask to 16 big 

flasks (150 cm2). Finally, 16 big flasks of cells were harvested and injected to mice under the 

skin of the back that is close to the legs. The tumors were allowed to grow in the mice for one 

week before the drug treatment. On the first day of each week, the body weight and the size of 

tumor for each mouse were recorded. The mice were euthanized after drug treatment for 6-8 

weeks or when the mice weight decreased 20% of the original weight. Tumors were collected, 

and the weight of tumors was recorded. 

5.2. In Vivo Efficacy of H2O2-activited Nitrogen Mustard Precursor 

5.2.1. Toxicity Study with CD-1 Mice 

One dose treatment. Four different doses were tested (20, 40, 60 and 80 mg/kg) for nitrogen 

mustard precursor IVq. All mice survived after seven days. No obvious toxicity was observed 

for mice treated with 20 mg/kg dose, where the weight of mice slightly increased, which was 

similar to the control mice (Figure 5-2). However, obvious weight loss was observed with the 

mice treated with 40 mg/kg or higher doses. The mice weight significantly decreased next day 
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after drug treatment, while the mice weight slightly increased when the injection was 

discontinued.    

One dose of compound IVq

1 3 5 7
22

23

24

25

26

27
control

80 mg/kg

60 mg/kg

40 mg/kg

20 mg/kg

**
**

**
*
*

*

Days

M
ic

e
 w

e
ig

h
t 

(g
)

 

Figure 5-2. The results of one dose treatment for compound IVq. 

Five dose treatments. The mice were injected with four different dosages of compound IVq (10 

mg/kg, 20 mg/kg, 40 mg/kg, and 50 mg/kg) and each dose with five continuous injections within 

five days. All mice treated with lower dosages (10 and 20 mg/kg) of compound IVq survived 

after seven days. Mice treated with 10 mg/kg dose had no obvious weight loss in the first three 

days, weight loss was observed at the 5th day, while obvious weight loss was observed on the 7th 

day. Mice treated with 20 mg/kg dosage showed obvious weight loss from the 3rd day. Mice 

treated with higher dose (40 mg/kg, 50 mg/kg) of compound IVq showed obvious weight loss 

and euthanized on the fifth day.  



 
 

180 

Five dose of compound IVq
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Figure 5-3. The results of five injections per week for compound IVq. 

5.2.2. In vivo efficacy study with athymic nude mice xenografted with breast cancer cell line 

MDA-MB-468 

Twenty four athymic nude mice were employed to investigate the in vivo efficacy of compound 

IVq. The mice were xenografted with MDA-MB-468 breast cancer cell line and the tumor were 

developed in the mice within one week. The mice were equally separated into three groups. One 

group of mice was used as control treated with vehicle; the second group was treated with 7 

mg/kg chlorambucil, while the third group was treated with compound IVq with a dosage of 7 

mg/kg. The size of tumors and weight of mice were recorded on the first day of each week. After 

nine weeks, the mice were euthanized, the tumors were harvested, and the weight of tumors was 

recorded. The tumor size decreased every week for IVq- and chlorambucil-treated mice, while 

the size of tumors in control mice increased. After nine week treatment, the tumor size in IVq-

treated mice decreased to 6%-26% of the original size, and those in chlorambucil-treated mice 

decreased to 10%-44% of the original size, while that in the control mice increased to 121%-
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480% of the initial size. Normal weight increase was observed for the control mice, while 

obvious weight loss was observed for mice treated with compound IVq or chlorambucil. Weight 

loss ranged from 1% to 18% for IVq-treated mice, while 2% to 11% weight loss was observed 

for the chlorambucil-treated ones. The size of final harvested tumors was the smallest for IVq-

treated mice (~ 7% of the ones from control mice), and tumors for chlorambucil-treated mice 

were slightly bigger those in IVq-treated mice (13% of the ones of the control mice). Altogether, 

these results suggested that both compound IVq and chlorambucil greatly suppressed tumor’s 

growth in mice, while the inhibitory effect for compound IVq is slightly better than that for 

chlorambucil. However, compound IVq with a dose of 7 mg/kg for nine week treatment is 

slightly more toxic than chlorambucil at 7 mg/kg dose. Further optimization of dosage is 

required for a safer treatment.   
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Fig 5-4. The volume of tumors for control and IVq-treated mice from 1st to 9th week (7 mg/kg). 

[the volume was calculated by Xweek a·Yweek a·X (min week a)] 
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Fig 5-5. Body weight of mice for control and IVq-treated mice from 1st to 9th week (7 mg/kg). 
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Figure 5-6. Final harvested tumor weight for control, Chlorambucil and IVq-treated mice after 

9-week’s treatment. 

5.3. In Vivo Efficacy of H2O2-activited QM Precursors 

5.3.1. Toxcity Study with CD-1 Mice 
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One dose treatment. For QM precursors IIi and IIIa, 10 mg/kg and 20 mg/kg doses were used 

for single dose treatment. Higher dose was not possible due to the poor solubility of IIi and IIIa. 

All mice survived after one week. No weight loss was observed for the mice treated with 10 

mg/kg of IIi and IIIa while weight loss was observed for the mice treated with 20 mg/kg of IIi 

and IIIa after first day treatment where body weight gain was observed when the injection was 

discontinued. The toxicity of compound IIi is similar with that of compound IIIa (Figure 5-7).  
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Figure 5-7. The result of one dose treatment for compounds IIi and IIIa.  

Five doses treatment. Single dose treatment suggested that 10 mg/kg and 20 mg/kg dosages of 

IIi, IIIa were safe for the mice. Thus, we performed five dose treatments with 10 mg/kg and 20 

mg/kg of IIi, IIIa. All mice survived after seven days. No obvious toxicity was observed for 10 

mg/kg dose, while slight weight loss was observed for the mice treated with 20 mg/kg dosage. 

This suggested that the maximum safe dose for IIi and IIIa is 10 mg/kg (no weight loss or 

abnormal behavior) (Figure 5-8). 
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Figure 5-8. The results of five dose treatment for compounds IIi and IIIa. 

5.3.2. In Vivo Efficacy Study with Athymic Nude Mice Xenografted with Breast cancer cell 

line MDA-MB-468 

Initially, the in vivo efficacy of compound IIi was tested with mice xenografted with MDA-MB-

468 breast cancer cell line. Twenty two mice were used for this study. Eleven of them were 

treated with compound IIi with a dosage of 5 mg/kg while another eleven were treated with 

vehicle. The size of tumors and weight of mice were recorded every week. After eight weeks 

treatment, the tumor size for IIi-treated mice did not increase obviously. The tumor size ranged 

from 84% to 220% of the initial size, while the control mice showed obvious tumor growth, 

reaching 256 % to 680% of the initial tumor size. The IIi-treated mice showed normal increase 

for body weight that was similar to that of the control mice. Tumors harvested from IIi-treated 

mice are slightly smaller than that from the control mice, which provided evidence that 

compound IIi inhibited tumor growth in mice. Collectively, these results suggested that 

compound IIi inhibited tumor growth in xenograft mice with no obvious toxicity.    
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Figure 5-9. The volume of tumors for control and IIi-treated mice from 1st to 8th week. 

[Volume was calculated by Xweek a·Yweek a·X (min week a)] 
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Fig 5-10. Body weight of mice for control and IIi-treated mice from 1st to 8th week. 
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Figure 5-11. Final harvested tumor weight for control and IIi-treated mice after 8 week’ 

treatment. (5mg/kg). 

5.3.3. In Vivo Efficacy Study with Athymic Nude Mice Xenografted with Renal Cancer Cell 

Lines (UO-31, 786-O or A-498) 

Apart from breast cancer cell line, compound IIi and IIIa also showed good inhibitory effect on 

several renal cancer cell lines where the inhibitory effect follows the order of UO-31 = 786-0 > 

A-498.33 Therefore, we determined the in vivo efficacy of compounds IIi and IIIa toward renal 

cancer cell lines. Initially, renal cancer cell line UO-31 was chosen for the study since the highest 

inhibitory effect was observed in this cell line.   

The in vivo efficacy of IIi and IIIa with Renal cancer cell line UO-31. Twenty four UO-31-

derived xenograft mice were used to investigate the in vivo efficacy of compounds IIi and IIIa 

toward UO-31. The mice were equally separated into three groups. One group of mice was used 

as control treated with vehicle; the second group was treated with compound IIi at a dose of 7 

mg/kg, while the third group was treated with compound IIIa with a dose of 7 mg/kg. The tumor 

size and weight of mice were recorded every week. Obvious tumors were developed in all mice 
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at the location of tumor cell injection after one week of injection. However, to our surprise, the 

tumor size decreased significantly for all mice starting from the second week. No obvious tumor 

was observed after three weeks while the weight of mice increased normally. These results 

suggested that the UO-31 cell line cannot successfully survive in the xenograft mice used in this 

study.     
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Figure 5-12. The volume of tumors for control, IIi and IIIa-treated mice 1st to 6th week. 

[Volume was calculated by Xweek a·Yweek a·X (min week a)] 



 
 

188 

Mice weight (g)

0 1 2 3 4 5 6 7
20

22

24

26

28

30 vehicle

Compound IIi

Compound IIIa
ns

Weeks

m
ic

e
 w

e
ig

h
t 

(g
)

 

Fig 5-13. Body weight of mice for control, IIi and IIIa-treated mice from 1st to 6th week. 

The in vivo efficacy of IIi with Renal cancer cell line 786-O. Since renal cancer cell line UO-31 

cannot successfully survive in xenograft mice, renal cancer cells 786-O were chosen for further 

study. Twenty two mice that were xenografted with 786-O cells line were used for this study, 

which were separated into two groups equally. One group was used as control while another 

group was treated with compound IIi with a dosage of 7 mg/kg. The tumor size and weight of 

mice were monitored every week. Tumors were observed for all mice after one week of the 

injection of 786-O cells. The tumor size did not change for the first three weeks for the control 

mice, while slightly decreased size was observed for the ones treated with compound IIi. 

However, the size of tumors increased rapidly for all mice starting from the fourth week. After 

seven week treatment, the size of tumors in both group of mice increased significantly, reaching 

180% to 420% of the initial size for control mice and 96% to 280% for IIi-treated mice. Normal 

weight increase was observed for all mice. The weight of final harvested tumor is slightly less 

for IIi-treated mice than that of the control ones. All data indicated that 786-O xenografted mice 
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successfully survived, and compound IIi did inhibited the tumor growth for the nude mice 

xenograft with 786-O cells (Figure 5-14). The dosage of compound IIi at 7 mg/kg is safe for 

xenograft mice.  
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Figure 5-14. The volume (A) or percentage growth (B) of tumors for control and IIi-treated 

mice from 1st to 7th week. [Volume was calculated by Xweek a·Yweek a·X (min week a); %: Vweek 

a/Vweek 0] 
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Fig 5-15. Body weight of mice for control and IIi-treated mice from 1st to 7th week. 
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Figure 5-16. Final harvested tumor weight for control and IIi-treated mice after 7 weeks’ 

treatment. (7mg/kg). 

The in vivo efficacy of IIi and IIIa with Renal cancer cell line A-498. Since no satisfactory data 

was obtained with the renal cell lines IIi and IIIa, we further investigated the in vivo efficacy of 

compounds IIi and IIIa toward renal cancer cell line A-498. Twenty four A498-derived 

xenograft mice were used and divided into three groups. One group was used as control, the 

second group was treated with compound IIi at a dose of 7 mg/kg while the third group was 
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treated with compound IIIa at a dose of 7 mg/kg. The tumor size and body weight of mice were 

determined in the first day of each week. The tumor was developed in mice at the location of 

cancer cell injection after one week injection but the tumor size was small. The tumor grew 

slowly in the first-four weeks but grew rapidly from the fourth to seventh week after treatment 

with IIi and IIIa. Faster growth of tumor size was observed with control mice. After seven 

weeks, the tumor size increased obviously in all mice, while smaller increase was observed with 

IIi- or IIIa-treated mice (reaching 130%-865% of the original size) than the control mice 

(reaching 223 % to 1100% of the initial size). All mice had normal weight increase. The weight 

of harvested tumors provided further evidence that both compounds IIi and IIIa showed slight 

inhibitory effect toward renal cancer A-498. Compound IIi and IIIa showed similar inhibitory 

effect. These results indicated that compounds IIi and IIIa can inhibit A-498 tumor growth, but 

the inhibitory effect is very poor. Compounds IIi and IIIa did not show obvious toxicity at a 

dose of 7 mg/kg. 
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Figure 5-17. The volume of tumors for control, IIi and IIIa-treated mice from 1st to 7th week. 

 [Volume was calculated by Xweek a·Yweek a·X (min week a)] 
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Fig 5-18. Body weight of mice for control, IIi and IIIa-treated mice 1st to 7th week. 
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Figure 5-19. Final harvested tumor weight for control, IIi and IIIa-treated mice after 7 weeks’ 

treatment. (7 mg/kg). 

5.4. Conclusions 

In summary, breast cancer cell line MDA-MB-468, renal cancer cell lines 786-O and A-498 can 

successfully grow in Xenograft nude mice while renal cancer cell line UO-31 cannot. Compound 

IIi inhibited MDA-MB-468 tumor growth in mice without obvious toxicity, while such 

inhibitory effect was much lower in renal cancer cell lines 786-O and A-498. Compound IIIa 
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slightly inhibited A-498 tumor growth in mice with no obvious toxicity. Compound IVq greatly 

suppressed MDA-MB-468 tumor growth in mice with slight toxicity. 

5.5. Experiment protocol 

5.5.1. Protocol for cell preparation 

Everything must be done in biosafety hood. The hood was sprayed down with 70% ethanol and 

cleaned. 16 of big flasks (150 cm2), full of cancer cells, were prepared before xenograft mice 

study. The matrigel was stored in ice and put in 2-8 ℃ overnight before xenograft mice study. 

The media and trypsin (HyClone, cat #: SH30042.01) was pre-warmed at 37 ℃and 25 ℃

respectively for 30 min before the assay. 

Breast cancer cell line MDA-MB-468 

Media component: 500 mL of L-15 Leibovitz media (cat #: SH30525.01), 50 mL of Fetal bovine 

serum (MIDSCI Cat#: S01520HI), 5 mL of NEAA (HyClone, cat #: SH30238.01), 5 mL of 

Penicillin (HyClone, cat #: SV30010). Note: don’t need CO2 for growth (small incubator without 

CO2, “VENT” flask) 

Preparation of cancer cells in 16 big flasks: 

i. The media and trypsin (HyClone, cat #: SH30042.01) was pre-warmed at 37 oC and 25 oC 

respectively for 30 min before the assay. Media component: 500 mL of L-15 Leibovitz 

media (cat #: SH30525.01), 50 mL of fetal bovine serum (MIDSCI Cat#: S01520HI), 5 mL 

of NEAA (HyClone, cat #: SH30238.01), 5 mL of penicillin (HyClone, cat #: SV30010). 

ii. Coating: add 3.0 mL matrigel solution (0.5 mL matrigel + DMEM/High modified 200 mL) 

and spread to the whole bottom of the flask, incubate the flask at 37 °C for 10 min. Then, 
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remove the matrigel by aspiration. 

iii. Pretreat the flask: prewash the flask with 5.0 mL media and remove the media, then add 25 

mL media in the flask; meanwhile, quickly thaw the cancer cells at 37 °C within 1-2 minutes 

(Note: cells can easily die at r.t. in DMSO). 

iv. One flask cell growth: transfer the cells to the pre-washed flask (150 cm2) with about 25.0 

mL media and incubate the cells at 37 °C for about 2-7 days (the cells are spreading in the 

bottom of the flask).  

v. Remove the media in the flask with MDA-MB-468 cell lines by aspiration and 5 mL media 

was added to wash the bottom of the flash, remove the media carefully not touching the 

bottom. 

vi. Add trypsin (SH 30042.01, Hyclone) (4 mL) to the flask and incubate at 37 degree for 5 

min. 

vii. Homogenization of cells solution by pipetting the solution up and down 10 times in the 

corner of the flask. 

viii. Transfer 1 mL solution into four new flasks (150 cm2) which were pre-treated with 3 mL of 

matrigel solution (VWR cat #: 47743-715) (Step ii, coating), and add 25 mL media to the 

flask for cells growing. 

ix. Three to seven days later, prepare 16 big flasks of cells by repeating step i to v on every 

flask which is full cancer cells. The total approximate time is two to three weeks. 

Renal cancer cell line (UO-31, 786-O, A-498) 

Media component: 500 mL of RPMI 1640, 1X with L-glutamine media (VWR cat #: 45000-

396), 50 mL of Fetal bovine serum (MIDSCI Cat#: S01520HI), 5 mL of Penicillin (HyClone, cat 
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#: SV30010). Note: CO2 is necessary for cell growth (big incubator with CO2, flask: not vent). 

Other renal cancer cell lines in our lab use the same method for growth.  

i. One flask cell growth: transfer the cells to the flask (don’t need coating) (150 cm2) 

with about 25.0 mL media and incubate the cells at 37 °C for about 2-7 days (the 

cells are spreading in the bottom of the flask).  

ii. Remove the media in the flask with cell lines by aspiration and 5 mL media was 

added to wash the bottom of the flash, remove the media carefully not touching the 

bottom. 

iii. Add the trypsin (SH 30042.01, Hyclone) (4 mL) to the flask and incubate at 37 

degree for 5 min. 

iv. Homogenize the cells solution by pipetting the solution up and down 10 times in the 

corner of the flask. 

v. Transfer 1 mL solution into four new flasks (150 cm2), and add 25 mL media to the 

flask for cells growing. 

vi. Three to seven days later, prepare 16 big flasks of cell lines by repeating step ii to v 

on every flask which is full cancer cell lines. The total approximate time is two to 

three weeks. 

5.5.2. Protocol for cell injection to nude mice 

1. Store the matrigel on ice and stay in 2-8 oC overnight before xenograft mice study. 

Remove the media in the flask containing cancer cell lines by aspiration and 5 mL media was 

added to wash the bottom of the flask, remove the media carefully not touching the bottom. 4 

flasks were done one time. 
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2. Add trypsin (6 mL) to the flask and incubate at 37 oC for 10 min until all the cells 

detached from the bottom.  

3. Homogenize the cells solution by pipetting the solution up and down 10 time in the 

corner of the flask and transfer the detached cells (4 flasks) to a 50 mL conical tube (4 X 6 mL), 

then wash the 4 flasks with 25 mL media, collect in the conical tube (4 X 6 mL+25 mL), total 4 

conical tubes. 

4. Spin down the cells in the 4 conical tubes (1000 rpm, 5 min) and remove the media 

carefully. 

5. Add 10 mL media to each conical tube mix (up and down 10 times) and combine the 

solution in 50 mL conical tube, centrifuge (1000 rpm, 5 min) and remove the media again.  

6. Add 5 mL media to the cell lines, mix and devided them into 25 small tubes (150-200 uL 

each tube). 

7. Spin down for (1000 rpm, 1 min) and discard half of the supernatant. 

8. Mix the cell lines with the same volume of matrigel (100-160 uL) with pipette (keep the 

matrigel in ice, then put in 4°C refrigerator as the matrigel can easily solidify at room 

temperature) and inject 100 µL of the mixture to each mice. 

9. Injection: 0.1 mL of above solution was injected under skin of the mice, the inject position 

was on the back close to the legs.  

5.5.3. Protocol for compound injection to nude mice 

Formulation:  
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Vehicle: In two of 1.5 mL vials, add 75 µL of DMSO, 712 µL of PEG400 and 712 µL of PBS 

(1X) (Cat No SH30256.01). Mix well by pipetting 10 times or shaking tube. 

Drug solution (Order of adding different solutions is extremely important): (1) In two of 1.5 mL 

vials, add 75 µL of drug solution (DMSO); (2) add 712 µL of PEG400 and mix; (3) add 712 µL 

of PBS (1X) (Cat No SH30256.01) and mix well (add half of it and mix, then add remaining); (4) 

For a dose of 10 mg/kg, the weight of mice is 20 g in average. Compound (6 mg) was dissolved 

in 150 µL of DMSO.  

Injection protocol: 

0.1 mL of compound solution was injected each day and 5 days/per week in the belly of the 

mice, the injection position was close to and under the nipple. The treatment lasts for 6-8 weeks. 
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Chapter 6. The Effect of Triazole-modified Thymidines on DNA and 

RNA Duplex Stability 

6.1. Introduction 

Chemical modification of nucleosides or nucleotides is an important tool to introduce functional 

or desired group in oligodeoxynucleotides (ODNs). The chemically modified ODNs have wide 

applications in biological research. For example, they have been used for DNA damage and 

repair studies,1-2 as fluorescent dyes for nucleic acid detection,3-4 for developing photo-reversible 

DNA fluorescent switches,5 and as building blocks for nanostructure construction.6 The chemical 

modifications have been incorporated either at sugar phosphate backbond, sugar ring or the 

nucleobase moieties in order to control many important properties of nucleic acids,7-11 such as 

nuclease stability, binding affinity for RNA/DNA targeting, thermal stability, and 

immunostimulatory properties.7 The modification at nucleobase is especially important due to its 

multiple biological applications. Base-modified nucleosides have been applied for reducing 

immunostimulation, as fluorophores for mutation detection, and to adjust nucleic acid binding 

efficiency and thermal stabilities.7,12 Two major strategies have been used for nucleobase 

modification, namely by introduction of functional groups or via ring extension.13 The 

incorporation of functional groups can change the property of the nucleobases while ring 

extension can increase the π-πstacking, therefore increasing the stability of DNA duplex.14 

One good example for the ring extension is the construction of the phenothiazine tricyclic 

pyrimidine nucleoside, which greatly improved the thermal stability of the DNA: RNA duplex 

(up to 5 ℃).9 Moreover, the [1,2,3]-triazole was considered to be an ideal group for nucleobase 

modification, not only because the [1,2,3]-triazoles have wide biological activities and industrial 
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applications,15 but also because they can be easily incorporated via the Cu(I)-catalyzed “click” 

reactions. Several triazole-modified nucleosides have been synthesized and their applications 

have been explored in different areas.5,14,16 They are used as DNA interstrand cross-linking 

agents,5 as drugs for the treatment of tuberculosis,16 and for improving the thermal stability of 

the ODN duplexes.14 The effect of triazole-modified 2’-deoxyuridines on the stability of 

DNA•DNA and DNA•RNA duplexes has been investigated by Nielsen’s group.17,18 The results 

showed that even though a single nucleobase modification decreased the stability of the DNA 

duplexes, the introduction of two or more consecutive modifications did improve the duplex 

stability due to the additional π-π stacking of triazole moieties. Such stabilizing effect was found 

even stronger in DNA•RNA duplexes. Most of the triazole-modified pyrimidines were 

constructed by treating the alkyne-modified 2’-deoxyuridines with azides to form 5-(1,2,3-

triazol-4-yl)-2’-deoxyuridines. However, less attention has been paid on the properties of a 

triazole moiety synthesized from azide-modified nucleosides. In addition, the effect of C4-

substituents on the triazole moieties towards the thermal stability of DNA•DNA and DNA•RNA 

duplexes has not been explored, which limited our understanding about the thermal properties of 

triazole-modified ODNs.  

In this chapter, a systematic investigation was carried out to understand how triazole-modified 

thymidines affect the thermal stabilities of DNA•DNA and DNA•RNA duplexes. The triazole-

modified thymidines were constructed by treating azide-modified thymidine with alkynes to 

form 5-((1H-1,2,3-triazol-1-yl)methyl)-2’-deoxyuridines (41-43) (Scheme 6-1). A detailed study 

was performed to figure out how the triazole moieties affect pKa values of the modified 

thymidines and the thermal stability of DNA•DNA and DNA•RNA duplexes. The pH 

dependence of the duplex stability was also investigated and DFT computation was used for 
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DNA modeling and geometry study. Such systematic study provides more information about the 

thermal properties of triazole-modified ODNs, which is important for further design of 

biologically functionalized ODNs.  

 

Scheme 6-1. The structure of triazole-modified pyrimidine nucleosides. 

6.2. Synthesis of triazole-modified pyrimidine nucleosides and oligodeoxyribonucleotides 

containing triazole-modified thymidines. 

Three triazole-modified thymidines (41-43) were designed and synthesized to investigate the 

effects of triazole ring and C4-subsitituents of the triazole moiety on stability of 

DNA:DNA/RNA duplexes. A triazole moiety was introduced to thymidine to form 41 while 

triazoles with a phenyl or coumarin substituent at the position-4 of triazole ring were 

incorporated to yield compounds 42 and 43, respectively (Scheme 6-2). Acetylation of thymidine 

provided 44 that was further converted to azide-modified thymidine 45 via bromimation with N-

bromosuccinimide (NBS) using azobisisobutyronitrile (AIBN) as an activator, followed by 

sodium azide treatment (Scheme 6-2A).19 The Cu (I)-catalyzed “click reaction” was used for the 

introduction of triazole moiety by treating 45 with different alkynes (46, 47, 48) to afford 41a, 

42a and 43a, respectively (Scheme 6-2). Deacetylation of 41a, 42a and 43a afforded 41, 42, and 

43, respectively. Compounds 41, 42, and 43 were converted to 41b, 42b, and 43b, respectively 

via selective tritylation at 5’-O-position. Finally, the phosphoramidites 41c, 42c, and 43c were 
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prepared from the corresponding DMT-derivatives 41b, 42b, and 43b by reacting with 2-

cyanoethyl-N,N-diisopropylchlorophosphoramidite.5 The phosphoramidites (41c, 42c, and 43c) 

were used for ODN synthesis with the standard solid-phase DNA synthesis method.  

Scheme 6-2. Synthesis of compounds 41-43 and the corresponding phosphoramidites 41c-43c.   

Reagents and conditions: (i) Ac2O, pyridine; (ii) NBS, AIBN, benzene, reflux; (iii) NaN3, DMF; 

(iv) Cu2SO4, sodium ascorbate, MeOH; (v) TBAF, MeOH, 70 ℃; (vi) NH4OH, MeOH; (vii) 

Dimethoxytrityl chloride (DMTCl), pyridine; (viii) 2-cyanoethyl-N,N-

diisopropylchlorophosphoramidite, N,N-diisopropylethylamine and CH2Cl2. 

In order to figure out whether the base-pairing properties, π-π stacking, or the stability of the 

duplex DNAs will be affected by the triazole moieties, we synthesized ODNs with single or 

consecutive modifications of 41-43 (Scheme 6-4). For better comparison, the native DNA 

duplex-49 [3’-d(TCTACCTAAATCCATG) (49a) • 5’-d(AGATGGATTTAGGTAC (49b)] and 
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native DNA·RNA duplex-59 [3’-d(UCUACCUAAAUCCAUG) (59a) • 5’-

d(AGATGGATTTAGGTAC (49b)] were used as reference.  

The native ODNs (49a, 49b, 59a) were synthesized via standard solid-phase ODN synthesis 

technique (Scheme 2-5) using corresponding phosphoramidites (Scheme 2-5 and Scheme 6-3). 

The ODNs (50b-58b) containing modified nucleotides (41-43) were synthesized using β-

cyanoethyl phosphoramidites where the exocyclic amines of dA and dG were protected by 

phenoxyacetyl groups (Scheme 6-3), which can be deprotected under mild conditions.  

 

Scheme 6-3. Structures of regular phosphoramidites used for DNA (A) or RNA (B) 

oligonucleotidesynthesis.  

Deprotection/cleavage of the native ODNs was carried out in a mixture of 40% aqueous MeNH2 

and 28% aqueous NH3 (1:1) at room temperature for 2 h. Modified ODNs were deprotected and 

cleaved under mild conditions using 28% aq. NH3 at room temperature for 2 h. The deprotection 

of native RNA was carried out using a mixture of 40% aqueous MeNH2 and 28% aqueous NH3 
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(1:1) at room temperature for 3 h. The desilylation was performed in a mixture of 100 μL 

anhydrous DMSO and 125 μL of TEA.3HF at 65°C for 2.5 h. All ODNs were purified by 20% 

PAGE and characterized by MALDI-TOF-MS (Appendix B).  

 

Scheme 6-4. Double-stranded DNAs and RNA•DNAs used for this study. 

6.3. Determination of pKa values by UV spectroscopy.  

The base-pairing strength of DNA duplexes highly depends on the acid ionization/dissociation 

constants (pKa) of the nucleobases. The greater the pKa difference (pKa) between two matched 
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nucleobases, the stronger the base pairing.20 To investigate whether the triazole moiety 

influences the pKa value of thymine, we tested the pKa values of 42-43 using UV spectroscopy 

(Figure 6-1 to Figure 6-9). The pKa values obtained for compounds 41 and 43 are 8.4 and 10.7, 

respectively, possibly due to deprotonation of thymine moiety. Interestingly, two pKa values (4.3 

and 8.4) were observed for compound 42. The pKa value of 8.4 possibly arose from 

deprotonation of thymine base, which is similar to that of compound 41 and 43, while the pKa 

value of 4.3 might result from protonation of triazole moiety. In comparison with native 

thymidine (pKa 9.8), the introduction of triazole or 4-phenyltriazole moiety slightly decreased the 

pKa value of thymdine. On the other hand, the incorporation of coumarin-modified triazole 

moiety led to increased pKa value. It was reported that the strong base-pairing can be formed 

only when the pKa value between two complementary nucleobases is 5 or greater.20 For 

example, the pKa between native deoxyadenosine (dA) (pKa of 3.8) and deoxythymidine (dT) 

(pKa 9.8) is 6.0, so a strong A-T base pair can be formed. Similar to that of native dA-dT, the 

pKa between compound 43 and deoxyadenosine (dA) is 6.9, greater than 5, therefore the base 

pairing between them is expected to be strong. The pKa of 41-dA and 42-dA is 4.6, which is 

smaller than 5, so the base pairs’ strength should be smaller than that of native dT-dA.  
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Figure 6-1. UV-Spectra changes of compound 41 in phosphate buffer solution from pH 2.7 to 12.1. 
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Figure 6-2. UV-absorbance of compound 41 as a function of pH values measured at 265 nm. 
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Figure 6-3. UV-absorbance of compound 41 as a function of pH values measured at 237 nm. 

 

Figure 6-4. UV-Spectra changes of compound 42 in phosphate buffer solution from pH 2.4 to 11.3. 
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Figure 6-5. UV-absorbance of compound 42 as a function of pH values measured at 254 nm. 
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Figure 6-6. UV-absorbance of compound 42 as a function of pH values measured at 240 nm. 
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Figure 6-7. UV-Spectra changes of compound 43 in phosphate buffer solution from pH 2.5 to 12.5. 
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Figure 6-8. UV-absorbance of compound 43 as a function of pH values measured at 326 nm. 
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Figure 6-9. UV-absorbance of compound 43 as a function of pH values measured at 236 nm. 

6.4. The effect of pH values on the stability of DNA duplexes. 

It was reported that the pH value of the medium has a large effect on the stability of DNA 

duplexes.21 Thus, we investigated the stability of DNA duplexes in phosphate buffer of different 

pH (pH 5-9). The ODN duplexes’ thermal stability was determined by testing the melting 

temperature (Tm), defined as the temperature at which half of a double helix dissociates into 

single strands. For better comparison, the melting temperature of the native DNA duplex 

(duplex-49) was determined first in different buffers (pH 5-9) (Table 6-1). The results showed 

that the pH value of the medium has a large effect on the stability of duplex 49. The stability of 

DNA duplex was found to be the highest at pH 7, slightly reduced at pH 6 and 8, and 

significantly decreased at pH 5 and 9. This phenomenon is explainable from pKa. The pKa values 

of dA and dT are 3.8 and 9.8, respectively. Protonation of dA is possible at pH 5 (about 6%) 

while deprotonation of thymine may occur at pH 9 (about 16%), which both could in turn disrupt 

the dA-dT base pairs formation, destabilizing the DNA duplexes (Scheme 6-5). Then, we tested 
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the melting temperature of the ODNs containing artificial bases (41-43) by incubating in buffers 

with different pH (5-9). Similar trends were observed for the modified ODN duplexes-50, 51, 

and 52 containing 41-43 in buffers with different pH values (pH 5-9). The DNA duplexes are the 

most stable in neutral condition, while the stability slightly decreased at weak acidic or basic 

conditions, and significantly reduced at strong acidic or basic conditions. Even though the 

introduction of triazole moieties slightly alters the pKa values of thymidine, the stability response 

of the modified ODNs toward pH value of the media is consistent to that of regular DNA duplex. 

Since the highest DNA duplex stability was found at pH 7.0 (highest Tm), further experiments 

were carried out in the pH 7.0 phosphate buffer. 

Table 6-1. Tm-Values of oligonucleotides in different pH valuesa,b 

Duplex 

DNA 

pH 5 pH 6 pH 7 pH 8 pH 9 

Tm   

(℃) 

ΔTm 

(℃) 

Tm   

(℃) 

ΔTm 

(℃) 

Tm   

(℃) 

ΔTm 

(℃) 

Tm   

(℃) 

ΔTm 

(℃) 

Tm   

(℃) 

ΔTm 

(℃) 

ds DNA-49 48.7±0.2 --- 51.8±0.3 --- 52.0±0.2 --- 52.0±0.3 --- 50.9±0.1 --- 

ds DNA-50 45.1±0.1 -3.6 48.0±0.2 -3.8 48.8±0.2 -3.2 48.5±0.1 -3.5 47.3±0.3 -3.6 

ds DNA-51 41.9±0.2 -6.8 45.4±0.2 -6.4 45.9±0.3 -6.1 45.7±0.3 -6.3 43.8±0.2 -7.1 

ds DNA-52 39.5±0.2 -9.2 43.3±0.1 -8.5 43.8±0.1 -8.2 43.3±0.1 -8.7 42.0±0.2 -8.9 

a The melting temperatures were determined in 10 mM potassium phosphate buffer (pH 5.0-9.0), 

100 μM ethylenediaminetetraacetic acid (EDTA), and 100 mM NaCl, with 4 μM + 4 μM single-

strand concentration. bAll data are the average of three experiments.  
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Scheme 6-5. Watson-Crick base pair motifs of dA-dT/41/42/43. 

6.5. Substituent effects on the thermal stability of DNA duplexes. 

The regular DNA duplex-49 has a melting temperature (Tm) of 52.0 ℃, which decreased to 48.8 

℃ (ΔTm = -3.3 ℃) by replacing one thymidine with a triazole-modified dT (41) (Table 6-2 and 

Figure 6-10). This is consistent with previous reports that a single introduction of a triazole-

modified dU decreases the stability of the DNA duplex.22,23 The introduction of a phenyl group 

at the position-4 of triazole moiety (42) further destabilized the stability of the DNA duplex. For 

instance, single introduction of 4-phenyltriazole-modified dT (42) decreased the DNA melting 

temperature by 6.1 ℃ (duplex-51 vs duplex-49). From the electronic effect point of view, the 

reduced stability of the modified DNA duplexes (duplex-50, 51) might be caused by the lower 
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pKa of 41 and 42 than that of native thymidine leading to a weaker base pair with dA. However, 

the situation for duplex-52 seemed more complex. Although the pKa value of 43 is higher than 

that of thymidine, which in turn should lead to a stronger base pair with dA, a destabilizing effect 

was observed for the coumarin-modified triazole moiety 43. The introduction of 43 reduced the 

DNA duplex stability by 8.2 ℃ (duplex-52 vs duplex-49). These results indicated that apart from 

electronic effect, steric effect may also play an important role for the stability of DNA duplex. 

The substituents with a larger size led to more steric hinderance than the smaller ones, which in 

turn lead to further decrease for the stability of the ODN duplex. Collectively, the incorporation 

of triazole moieties to thymidine destabilized the stability of ODN duplexes, and the steric 

hindrance induced by the substituents at the 4-position of the triazole further decreased the 

stability of the DNA duplexes. The bigger size the substituent is, the less stable the DNA duplex 

is.  
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Figure 6-10. Comparison of the melting temperatures of ds DNAs containing 41, 42, or 43 in a 

buffer (pH = 7.0). 
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6.6. Thermal stability of the DNA duplexes with multiple incorporations.  

Apart from Watson-Crick base pairing, π-π stacking also plays an important role for DNA 

duplexes stability. The research of Nielson’s group demonstrated that single replacement of dT 

with 5-(1,2,3-triazol-4-yl)-2’-deoxyuridine led to decreased stability of the ODN duplex, while 

the introduction of two to four consecutive modifications increased the stability of duplexes. The 

increased stability arises from the additional π-π stacking of triazole moieties in the major 

groove.14,23 To check the generality of such a phenomenon, two or three consecutive 

modifications were incorporated by replacing thymidine with 41-43 to provide ODNs 53b-58b 

(Scheme 6-4 and Table 6-2). The results we obtained with 41-43 are different from Nielson’s. 

Two or three consecutive modifications further destabilized the DNA duplexes (ΔTm of -6 to -

12.7) in comparison with that of single modification (Table 6-2). On the other hand, we did 

notice that ΔTm per modification (ΔTm/mod) increased as increasing number of modifications. 

For instance, single replacement of dT with 43 reduced the DNA duplex stability by 8.2 ℃ 

(ΔTm/mod -8.2), two modification result in a ΔTm/mod of -4.8 ℃, while three modifications 

led to a ΔTm/mod of -4.2 ℃. Similar trend was observed for 42-modified ODNs, while ΔTm/mod 

for 41 is less dependent on the number of modifications. The data indicated that the additional π-

π stacking caused by consecutive phenyl or coumarin substituent at the 4-position of triazole ring 

lead to extra stability for ODN duplexes. The effect of the π-π stacking followed the order 43 > 

42 > 41 which is consistent with the size of the triazole moiety [Coumarin-modified triazole (43) 

>4-Phenyltriazole (42) >triazole (41)]. 
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Table 6-2. Tm-Values of oligonucleotides in pH 7.0 buffera,b  

ODNs                    DNA                                        

49a: 3'- dTCTACCTAAATCCATG 

                     RNA                                                

59a: 3'-dUCUACCUAAAUCCAUG 

Tm (℃) ΔTm (℃) ΔTm/mod

. (℃)c 

Tm (℃) ΔTm (℃) ΔTm/mod. 

(℃)c 

  49b: 5'-dAGATGGATTTAGGTAC 52.0 --- --- 48.4 ---  

50b: 5'-dAGATGGAT41TAGGTAC 48.8 -3.2 -3.2 44.3 -4.1 -4.1 

51b: 5'-dAGATGGAT42TAGGTAC 45.9 -6.1 -6.1 42.1 -6.3 -6.3 

52b: 5'-dAGATGGAT43TAGGTAC 43.8 -8.2 -8.2 39.3 -9.1 -9.1 

53b: 5'-dAGATGGAT4141AGGTAC 46.0 -6 -3.0 41.7 -6.7 -3.4 

54b: 5'-dAGATGGAT4242AGGTAC 45.0 -7 -3.5 39.7 -8.7 -4.4 

55b: 5'-dAGATGGAT4343AGGTAC 42.3 -9.7 -4.8 38.8 -9.6 -4.8 

56b: 5'-dAGATGGA414141AGGTAC 44.5 -7.5 -2.5 38.7 -9.7 -3.2 

57b: 5'-dAGATGGA424242AGGTAC 42.8 -9.2 -3.1 36.9 -11.5 -3.8 

58b: 5'-dAGATGGA434343AGGTAC 39.3 -12.7 -4.2 35.5 -12.9 -4.3 
a The melting temperatures were determined in 10 mM potassium phosphate buffer (pH 7.0), 100 μM 

ethylenediaminetetraacetic acid (EDTA), and 100 mM NaCl, with 4 μM + 4 μM single-strand concentration.  
b All data are the average of three experiments. 
c ΔTm increase per modification. 
 

It was reported that the consecutive modifications caused even lager effect on the stability of 

DNA·RNA duplexes than that of DNA•DNA duplexes.17,18 To investigate the generality of such 

a phenomenon, a complementary RNA strand 59a was synthesized and the DNA•RNA 

hybridization studies were carried out by recording UV absorbance at 260 nm. The results are 

shown in Table 6-2. In general, the melting temperature for all DNA•RNA duplexes is lower (~4 

℃) than that of DNA•DNA duplex. Apart from that, we found that the stability trend of 

DNA•RNA duplexes is similar to that of DNA•DNA duplexes. The introduction of 41-43 

decreased the stability of the DNA•RNA duplexes with single or multiple modifications (Table 
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6-2). Two or three consecutive modifications further decreased the stability of the DNA•RNA 

duplexes in comparison with that of single modification, but the ΔTm/mod decreased with 

increasing number of modifications for all compounds. This data indicated that π- π stacking did 

stabilize ODN duplex. However, the stabilizing effect caused by π-stacking is smaller than 

destabilizing effect caused by the steric hinderance for all triazole-modified thymidines. 

Collectively, these data indicated that the introduction of triazole moieties at the C5-methyl 

group of thymidines decreased the stability of the DNA duplexes. The bigger the substituent was, 

the less stable the ODN duplexes were.    

-8

-6

-4

-2

0

T
m

 d
e
c
re

a
s
e
 p

e
r 

m
o

d
if

ic
a
ti

o
n

 (
o

C
)

ODN Dupluxes
   62 65 6861 64 6760  63  6651 54 5750  53  56    52 55 58

 DNA/DNA

 DNA/RNA

 

Figure 6-11. Tm decrease per modification in different DNADNA or DNARNA duplexes in 

phosphate buffer (pH = 7). 

6.7. DNA computational Study.  
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To gather evidence that the additional π- π stacking did occur and figure out the possible reason 

for destabilizing effect of the triazole-modified thymidines on DNA duplexes, we carried out 

computational study (Figure 6-13). To simplify density functional theory (DFT) computation, 

model systems containing substituted-dT3/dA3 base pairs were constructed. All geometries were 

optimized using M06-2x functional, in combination with 6-31G basis set. Solvent effects of 

water were accounted using SMD solvation model and all computations were performed using 

Gaussian 09 (revision D.01) program package.24 The optimized geometries of DNA duplexes 

containing three consecutive modifications supported that the stability of DNA duplexes 

depended on the combined effects of π-stacking and steric hinder resulted from nonplanar 

conformation between substituted triazole moieties and thymine group (Figure 6-13).  
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Figure 6-12. Geometries of (un)substituted-dT3/dA3 in duplexes 49 (A), 56 (B), 57 (C) and 58 

(D) optimized by DFT computation. 

Consecutive incorporations of triazole modified thymidine did not significantly change 

geometries of DNA duplexes. Meanwhile, the increased size of the substituents’ π-conjugated 

system in the major grooves led to more efficient π-π stacking among substituents, which is in 

favor of stabilizing duplex helices. However, the steric hinderance towards nearby base pairs, 

arising from flipped conformation of 5-substitutents and thymine, increased with increased size 

of substituents. Both are combined to contribute to the thermal stability of duplexes. Considering 

A) B)

C) D)
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total effects from stacking interaction and steric hinderance, the stability of DNA duplex 

decreased as a function of substituents’ size, if noncoplanar group was introduced in nucleotides 

of DNA.  

6.8. Conclusions 

It was reported that multiple consecutive incorporation of 5-(1,2,3-triazol-4-yl)-2’-deoxyuridines 

increased DNA duplexes’ stability due to the -stacking of triazole-moieties in the major groove. 

Our detailed study provided novel insights in their effects that the introduction of triazole-

modified thymine decreased the stability of DNADNA and DNARNA duplexes containing 

single or multiple consecutive modifications. The additional π-π stacking effect among 

substituents increased the duplexes’ stability while the steric effects, arising from flipped 

conformation of 5-substitutents and thymine, decreased the stability of the duplexes. In addition, 

the pH values of the medium/buffers also affect ODN duplexes’ stability. Much lower melting 

temperature was observed under acidic or basic condition (pH 5.0, or 9.0), arising from 

protonation or deprotonation of nucleobases, which disturbed efficient base-pair formation.    

6.9. Experiment Section 

General Methods. All chemicals from commercially available source were used without further 

purification. Oligodeoxyribonucleotides (ODNs) were synthesized via standard automated DNA 

synthesis techniques. Cyanoethyl phosphoramidites with phenoxyacetyl protecting groups on the 

exocyclic amines of dA and dG were used for the synthesis of modified ODNs. 

Deprotection/cleavage of the synthesized normal ODNs was performed under mild conditions 

using a mixture of 40% aqueous MeNH2 and 28% aqueous NH3 (1:1) at room temperature for 2 

h. Functionalized ODNs were deprotected and cleaved using 28% aq. NH3 at room temperature 
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for 2 h. 20% Denaturing polyacrylamide gel electrophoresis was used for DNA purification. The 

RNA resin was transferred into a sealable polypropylene vial. Added 1.0 mL solution of 

Ammonium hydroxide/Methyl Amine (AMA, v/v = 1:1) and incubated at room temperature for 3 

h. After centrifuging and cooling to 0 °C, transfer the supernatant using a sterile pipette to a new 

sterile polypropylene tube. Rinse the resin with 2 × 0.25 mL RNase free water and add to the 

tube. The supernatant was dried under reduced pressure and subjected to desilylation with a 

mixture of 100 μL anhydrous DMSO and 125 μL of TEA.3HF at 65 °C for 2.5 h. After cooling 

in freezer briefly, add 25 µL of 3 M sodium acetate in RNase free water and 1 mL butanol. Mix 

well by vortexing and cool by dry ice for 30 min. The mixture was centrifuged at 13.2 K RPM 

for 30 min at 4 °C. Decant the supernatant and rinse the precipitate with 2 × 0.75 mL cold 

ethanol (- 20 °C). The white solid was dried under reduced pressure and purified by 20% 

denaturing PAGE gel. Melting temperatures (Tm) were measured on a UV/vis spectrometer 

equipped with a thermo electrical temperature controller via changing the temperature of DNA 

duplex at a rate of 1 °C/min. 1H NMR and 13C NMR, and 31P NMR spectra were taken on a 

Bruker DRX 300 MHz spectrophotometer with TMS (1H and 13C) or H3PO4 (
31P) as internal 

standard. High-resolution mass spectrometry IT-TOF was used for molecular analysis. 

Determination of DNA duplex thermal stability. All measurements were carried out in 10 mM 

potassium phosphate buffer (pH 5.0-9.0), 100 μM ethylenediaminetetraacetic acid (EDTA), and 

100 mM NaCl, with 4 μM + 4 μM single-strand concentration. Samples were heated at 1 °C 

min−1 from 20 °C to 80 °C and the absorbance of ODNs at 260 nm was measured at 1.0 °C steps.  

Determing of pKa value of compounds 41-43. Compounds 41-43 (2.0 mg) were dissolved in 5 

mL methanol, followed by the addition of phosphate buffer solution (45 mL, pH 4.8) (7.8 g 

NaH2PO4⋅H2O in 500 mL water). An aliquot (25 mL) was placed in an erlenmeyer flasks (25 
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mL) and the pH was adjusted to the different values (pH 2.0-13.0) using 1 M H3PO4 and 10 M 

NaOH. The UV spectra were recorded between 200-400 nm. The absorbance data vs. pH values 

were plotted with Origin software 8.0 and the first derivative of the absorption (dA/dpH) was 

calculated.25   

Experimental procedures and characterizations. 

(2R,3S,5R)-3-Acetoxy-5-(5-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-

yl)tetrahydrofuran-2-yl)methyl acetate (44). A solution of thymidine (5.0 g, 21.0 mmol) in 50 

mL pyridine was cooled to 0 ℃, and Ac2O (5.0 g, 4.6 mL) was added dropwise. The reaction 

mixture was allowed to warm up to room temperature and stirred overnight. After removing the 

solvent, the residue was diluted with ethyl acetate (3 × 50 mL). The mixture was washed with 

hydrochloric acid (1.0 M, 50 mL), water (100 mL), and brine (50 mL). The organic layer was 

dried over Na2SO4. The solvent was removed under reduced pressure. The residue was purified 

by column chromatography (Hexane: Ethyl acetate = 1:1, Rf = 0.25) to obtain 44 as a white solid 

(6.5 g, 19.92 mmol, 95%). 1H NMR (300 MHz, CDCl3): δ. 9.55 (s, 1H), 6.36-6.31 (t, J = 12 Hz, 

1H), 5.23-5.21 (d, J = 6 Hz, 1H), 4.36 (s, 2H), 4.25 (s, 1H), 2.51-2.44 (m, 1H), 2.22-2.17 (m, 

1H), 2.13-2.12 (d, J = 3 Hz, 6H), 1.94 (s, 3H). (the NMR spectra were in agreement with those 

reported).26  

(2R,3S,5R)-3-Acetoxy-5-(5-(azidomethyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-

yl)tetrahydrofuran-2-yl)methyl acetate (45). To a mixture of compound 44 (3.26 g, 10 mmol), 

N-bromosuccinimide (2.14 g, 12 mmol) and azobisisobutyronitrile (86 mg, 0.5 mmol) in a 100 

mL flask, benzene (40 mL) was added. The reaction mixture was refluxed for 4 h, and cooled to 

room temperature. The solvent was removed under reduced pressure. The residue was re-

dissolved in DMF (10 mL), and then a solution of NaN3 (3.25 g, 50 mmol) in DMF (25 mL) was 



 
 

224 

added dropwise. The mixture was stirred at room temperature overnight. After diluting with 

ethyl acetate (3 × 50 mL), the mixture was washed with water (50 mL) and brine (50 mL). The 

organic phase was dried over anhydrous Na2SO4. The solvent was removed under reduced 

pressure. The residue was purified by column chromatography (Hexane: Ethyl acetate = 1:2, Rf = 

0.4) to provide compound 45 as a white solid (3.0 g, 8.2 mmol, 82%). 1H NMR (300 MHz, 

CDCl3): δ. 9.08 (s, 1H), 7.50 (s, 1H), 6.27-6.22 (q, J = 6 Hz, 1H), 5.17-5.15 (d, J = 6 Hz, 1H), 

4.38-4.04 (m, 5H), 2.51-2.44 (m, 1H), 2.15-2.12 (m, 1H), 2.08-2.06 (d, J = 6 Hz, 6H).  (the NMR 

spectra were in agreement with those reported).19 

(2R,3S,5R)-5-(5-((1H-1,2,3-Triazol-1-yl)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-

2-(acetoxymethyl)tetrahydrofuran-3-yl acetate (41a). Into a solution of 45 (1.0 g, 2.72 mmol) 

in methanol (25 mL), ethynyltrimethylsilane (2.5 mL, 14.96 mmol) and sodium ascorbate (aq, 

0.296 M, 18 mL) were added, followed by the addition of CuSO4 (aq, 0.368 M, 11 mL). The 

reaction mixture was stirred at room temperature for 3 h. After removing the solvent, the residue 

was diluted with ethyl acetate (3 × 20 mL). The combined organic phase was washed with water 

(20 mL), brine (20 mL), and dried over anhydrous Na2SO4. The solvent was removed under 

reduced pressure. The residue was re-dissolved in methanol (20 mL), followed by the addition of 

TBAF (13.6 mL, 1.0 M in THF). The reaction mixture was stirred at 70 ℃ for 1 h. The solvent 

was removed, and the residue was diluted with ethyl acetate (3 × 15 mL). The combined organic 

phase was washed with water (15 mL), brine (15 mL), and dried over anhydrous Na2SO4. The 

solvent was removed under reduced pressure. The residue was purified by column 

chromatography (pure Ethyl acetate, Rf = 0.25) to yield 41a as a white solid (1.9 mmol, 747 mg). 

1H NMR (300 MHz, CDCl3): δ. 9.16 (s, 1H), 7.85 (s, 2H), 7.69 (s, 1H), 6.29-6.24 (q, J = 6 Hz, 

1H), 5.37-5.22 (m, 3H), 4.50-4.44 (m, J = 6 Hz, 1H), 4.35-4.30 (m, 2H), 2.58-2.51 (q, J = 6 Hz, 
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1H), 2.24 (s, 3H), 2.21-2.16 (m, 1H), 2.13 (s, 3H).  13C NMR (75 MHz, CDCl3): δ. 170.66, 

170.32, 162.60, 149.78, 140.36, 108.98, 85.87, 82.86, 74.23, 63.73, 46.54, 37.88, 20.98, 20.88. 

HRMS-ESI (+) (m/z): [M+H]+ calcd. for C16H20N5O7
+, 394.1357; found: 394.1360.  

5-((1H-1,2,3-Triazol-1-yl)methyl)-1-((2R,4S,5R)-4-hydroxy-5-

(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (41). To a solution of 

compound 41a (1.0 g, 2.54 mmol) in methanol (13 mL), NH4OH (aq, 30% v/v, 18 mL) was 

added. The reaction mixture was stirred at room temperature overnight. The solvent was 

removed under reduced pressure. The residue was purified by column chromatography (DCM: 

methanol = 9:1, Rf = 0.2) to afford 41 as a white solid (600 mg, 1.94 mmol, 76%). 1H NMR (300 

MHz, DMSO-d6): δ. 11.55 (s, 1H), 8.13 (s, 1H), 8.04 (s, 1H), 7.69 (s, 1H), 6.16-6.12 (t, J = 6 Hz, 

1H), 5.27-5.21 (m, 3H), 5.04-5.01 (t, J = 3 Hz, 1H), 4.24 (s, 1H), 3.79 (s, 1H), 3.64-3.51 (m, 

2H), 2.13 (m, 2H). 13C NMR (300 MHz, DMSO-d6): δ. 163.03, 150.64, 141.32, 133.54, 125.26, 

108.25, 87.97, 84.92, 70.62, 61.65, 46.35. (the NMR spectra were in agreement with those 

reported).16 

5-((1H-1,2,3-Triazol-1-yl)methyl)-1-((2R,4S,5R)-5-((bis(4-methoxyphenyl)(phenyl) 

methoxy)methyl)-4-hydroxytetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (41b). 

Compound 41 (500 mg, 1.62 mmol) was azeotropically dried with pyridine (5 mL × 3). Pyridine 

(5 mL) was added, followed by the addition of 4, 4’-dimethoxytriphenylmethyl chloride (822 

mg, 2.42 mmol). The reaction mixture was stirred at room temperature overnight. The mixture 

was diluted with DCM (45 mL), washed with water (15 mL) and brine (15 mL), and dried over 

anhydrous Na2SO4. The solvent was removed under reduced pressure. The residue was purified 

by column chromatography (DCM: Methanol: Et3N= 95:5:2, Rf = 0.2) to yield 41b as a white 

solid (600 mg, 0.98 mmol, 61%). Spectrum contains Et3N peak. 1H NMR (300 MHz, CDCl3): 
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δ.8.08 (s, 1), 7.65 (s, 1), 7.60 (s, 1), 7.45-7.42 (d, J = 9 Hz, 2), 7.34-7.32 (m, 6), 7.25-7.20 (m, 1), 

6.89-6.86 (d, J = 9 Hz, 4), 6.34-6.30 (t, J = 6 Hz, 1), 4.71-4.66 (d, J = 15 Hz, 2), 4.52-4.47 (d, J = 

15 Hz, 1), 4.08 (s, 1), 3.79 (s, 6), 3.45 (s, 2), 2.53-2.30 (m, 2).  13C NMR (300 MHz, CDCl3): 

δ.162.61, 158.74, 149.96, 144.40, 140.70, 135.41, 135.26, 133.50, 130.19, 130.13, 128.19, 

128.11, 127.18, 124.54, 113.42, 108.75, 87.06, 86.28, 85.31, 71.84, 63.40, 55.28, 45.97, 41.30, 

10.61. HRMS-ESI (-) (m/z): [M-H]- calcd. for C33H32N5O7
-, 610.2307; found: 610.2298.  

(2R,3S,5R)-5-(5-((1H-1,2,3-Triazol-1-yl)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-

2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)tetrahydrofuran-3-yl (2-cyanoethyl) 

diisopropylphosphoramidite (41c). A solution of 41b (200 mg, 0.32 mmol) in DCM (20 mL) 

was cooled to 0 ℃ under Ar atmosphere, and then N,N-Diisopropylethylamine (106 mg, 0.82 

mmol) was added. After 10 min stirring, 2-cyanoethyl N,N-diisopropylchlorophosphoramidite 

(147 mg, 0.62 mmol) was added. The reaction mixture was stirred at room temperature for 1.5 h, 

then diluted with DCM (45 mL), washed with NaHCO3 (5%, 20 mL) followed by brine (20 mL), 

and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure and the 

residue was purified by column chromatography (DCM: Methanol: Et3N= 95:5:2, Rf = 0.48) to 

afford 41c as a white foam (170 mg, 0.21 mmol, 65%). 31P NMR (CDCl3, 300 MHz): δ 148.73, 

148.94. HRMS-ESI (-) (m/z): [M-H]- calcd. for C42H49N7O8P
-, 810.3386; found: 810.3379.  

((2R,3S,5R)-3-Acetoxy-5-(2,4-dioxo-5-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-3,4-

dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl acetate (42a). To a solution of 

compound 45 (800 mg, 2.18 mmol) and ethynylbenzene (480.8 mg, 2.62 mmol) in DCM (21 

mL), sodium ascorbate (aq, 0.296 M, 14 mL) was added, followed by the addition of aqueous 

CuSO4 (0.368 M, 8 mL). The reaction mixture was stirred at room temperature for 1h, and then 

diluted with DCM (3 × 20 mL). The combined organic phase was washed with water (20 mL) 
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and brine (20 mL), and dried over anhydrous Na2SO4. The solvent was removed under reduced 

pressure. The residue was purified by column chromatography (DCM: Methanol = 19:1, Rf = 

0.32) to provide 42a as a white solid (880 mg, 1.85 mmol, 85%). 1H NMR (300 MHz, DMSO-

d6): δ. 11.67 (s, 1H), 8.50 (s, 1H), 8.06 (s, 1H), 7.85-7.83 (d, J = 6 Hz, 2), 7.46-7.42 (t, J = 6 Hz, 

2H), 7.35-7.30 (t, J = 6 Hz, 1H), 6.19 (s, 1H), 5.28 (s, 3H), 4.26 (m, 3H), 2.42-2.36 (m, 2H), 

2.09-2.05 (m, 6H). 13C NMR (300 MHz, DMSO-d6): δ. 170.68, 170.51, 163.00, 150.65, 146.52, 

141.63, 131.23, 129.31, 128.26, 125.58, 121.78, 108.40, 85.35, 81.85, 74.30, 64.09, 46.65, 36.55, 

21.23, 21.04.  HRMS-ESI (+) (m/z): [M+H]+ calcd. for C22H24N5O7
+, 470.1670; found: 

470.1667.  

1-((2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((4-phenyl-1H-1,2,3-

triazol-1-yl)methyl)pyrimidine-2,4(1H,3H)-dione (42). To a solution of compound 42a (640 

mg, 1.36 mmol) in methanol (10 mL), aqueous ammonia (30% v/v, 12 mL) was added. The 

reaction mixture was stirred at room temperature overnight. The solvent was removed under 

reduced pressure. The residue was purified by column chromatography (DCM: methanol = 9:1, 

Rf = 0.2) to afford 42 as a white solid (440 mg, 1.14 mmol, 84%). 1H NMR (300 MHz, DMSO-

d6): δ. 11.57 (s, 1H), 8.47 (s, 1H), 8.21 (s, 1H), 7.86-7.83 (d, J = 9 Hz, 2H), 7.46-7.41 (t, J = 6 

Hz, 2H), 7.35-7.30 (t, J = 9 Hz, 1H), 6.19-6.14 (t, J = 6 Hz, 1H), 5.28-5.18 (m, 3H), 5.06-5.02 (t, 

J = 6 Hz, 1H), 4.28-4.25 (t, J = 6 Hz, 1H), 3.81-3.80 (d, J = 3 Hz, 1H)3.66-3.53 (m, 2H), 2.19-

2.15 (t, J = 6 Hz, 2H) (the NMR spectra were in agreement with those reported).27 

1-((2R,4S,5R)-5-((Bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-

hydroxytetrahydrofuran-2-yl)-5-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)pyrimidine-

2,4(1H,3H)-dione (42b). Compound 42 (470 mg, 1.22 mmol) was azeotropically dried with 

pyridine (5 mL × 3). Pyridine (5 mL) was added, followed by the addition of 4,4’-
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dimethoxytriphenylmethyl chloride (620.3 mg, 2.95 mmol). The reaction mixture was stirred at 

room temperature overnight. The mixture was diluted with DCM (3 × 15 mL). The combined 

organic phase was washed with water (15 mL), brine (15 mL), and dried over anhydrous 

Na2SO4. The solvent was removed under reduced pressure. The residue was purified by column 

chromatography (DCM: Methanol: Et3N= 95:5:2, Rf =0.20) to afford compound 42b as a white 

solid (520 mg, 0.76 mmol, 62%). 1H NMR (300 MHz, CDCl3): δ. 8.11 (s, 1H), 7.85 (s, 1H), 

7.80-7.77 (d, J = 6 Hz, 2H), 7.45-7.31 (m, 11H), 7.25-7.22 (m, 1H), 6.88-6.85 (d, J = 9 Hz, 4H), 

6.36-6.31 (t, J = 6 Hz, 1H), 4.73-4.68 (d, J = 15 Hz, 2H), 4.49-4.44 (d, J = 15 Hz, 1H), 4.09 (s, 

1H), 3.76 (s, 6H), 3.46 (s, 2H), 2.53-2.31 (m, 2H). 13C NMR (75 MHz, CDCl3): δ. 163.24, 

158.70, 150.47, 147.40, 144.44, 140.99, 135.47, 135.24, 130.56, 130.17, 128.73, 128.21, 128.06, 

127.15, 125.68, 120.71, 113.37, 108.51, 86.97, 86.38, 85.36, 71.59, 63.43, 55.22, 41.29.  HRMS-

ESI (-) (m/z): [M-H]- calcd. for C39H36N5O7
-, 686.2620; found: 686.2620.  

(2R,3S,5R)-2-((Bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-5-(2,4-dioxo-5-((4-phenyl-

1H-1,2,3-triazol-1-yl)methyl)-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-3-yl (2-

cyanoethyl) diisopropylphosphoramidite (42c). A solution of 42b (200 mg, 0.29 mmol) in 

DCM (10 mL) was cooled to 0 ℃ under Ar atmosphere. Then, N,N-diisopropylethylamine (93.1 

mg, 0.72 mmol) was added, followed by the addition of  2-cyanoethyl N,N-

diisopropylchlorophosphoramidite (128 mg, 0.54 mmol). The reaction mixture was stirred at 

room temperature for 1.5 h, diluted with DCM (3 × 15 mL), washed with NaHCO3 (5%, 20 mL) 

and brine (20 mL), and dried over anhydrous Na2SO4. The solvent was removed under reduced 

pressure and the residue was purified by column chromatography (DCM: Methanol: Et3N= 

95:5:2, Rf = 0.5) to afford compound 42c as a white foam (210 mg, 0.24 mmol, 82%).  
31P NMR 
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(CDCl3, 300 MHz): δ 148.80, 148.94. HRMS-ESI (-) (m/z): [M-H]- calcd. for C48H53N7O8P
-, 

886.3699; found: 886.3688.  

((2R,3S,5R)-3-Acetoxy-5-(5-((4-(4-methyl-2-oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-

yl)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl acetate 

(43a). To a solution of compound 45 (700 mg, 1.91 mmol) and 4-methyl-2H-chromen-2-one 

(422 mg, 2.3 mmol) in methanol (18 mL), sodium ascorbate (aq, 0.296 M, 11.5 mL) was added, 

followed by the addition of CuSO4 (aq, 0.368 M, 7.0 mL). The reaction mixture was stirred at 

room temperature for 1 h. The solvent was removed under reduced pressure. The residue was 

purified by column chromatography (DCM: Methanol = 19:1, Rf = 0.3) to yield 43a as a white 

solid (1.0 g, 1.8 mmol, 95%). 1H NMR (300 MHz, DMSO-d6): δ. 11.69 (s, 1H), 8.72 (s, 1H), 

8.08 (s, 1H), 7.91-7.83 (m, 3H), 6.40 (s, 1H), 6.22-6.17 (t, J = 6 Hz, 1H), 5.30 (s, 2H), 5.25-5.23 

(t, J = 3 Hz, 1H), 4. 27-4.21 (m, 3H), 2.46-2.35 (m, 5H), 2.08 (s, 3H), 2.04 (s, 3H).   
13C NMR 

(75 MHz, CDCl3): 177.96, 170.75, 170.41, 163.01, 160.65, 153.73, 152.22, 149.89, 140.82, 

140.78, 125.26, 121.64, 119.73, 114.94, 113.73, 108.62, 85.92, 82.83, 74.18, 63.74, 37.90, 29.59, 

21.00, 20.87, 18.56. HRMS-ESI (+) (m/z): [M+H]+ calcd. for C26H26N5O9
+, 552.1725; found: 

552.1713.  

1-((2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-((4-(4-methyl-2-oxo-

2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)pyrimidine-2,4(1H,3H)-dione (43). To a 

solution of compound 43a (500 mg, 0.9 mmol) in methanol (6.0 mL), NH4OH (aq, 30% v/v, 8.0 

mL) was added. The reaction mixture was stirred at room temperature overnight. The solvent 

was removed under reduced pressure, and the residue was purified by column chromatography 

(DCM: methanol = 9:1, Rf = 0.2) to afford 43 as a white solid (341 mg, 0.73 mmol, 81%). 1H 

NMR (300 MHz, DMSO-d6): δ. 11.58 (s, 1H), 8.70 (s, 1H), 8.23 (s, 1H), 7.91-7.84 (m, 3H), 6.40 
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(s, 1H), 6.19-6.15 (t, J = 6 Hz, 1H), 5.27 (s, 3H), 5.05 (s, 1H), 4.27 (s, 1H), 3.82-3.81 (d, J = 3 

Hz, 1H), 3.60 (s, 2H), 2.26 (s, 3H), 2.19-2.16 (t, J = 6 Hz, 2H).  (the NMR spectra were in 

agreement with those reported).5 

1-((2R,4S,5R)-5-((Bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-

hydroxytetrahydrofuran-2-yl)-5-((4-(4-methyl-2-oxo-2H-chromen-7-yl)-1H-1,2,3-triazol-1-

yl)methyl)pyrimidine-2,4(1H,3H)-dione (43b). Compound 43 (340 mg, 0.73 mmol) was 

azeotropically dried with pyridine (5 mL × 3). Then, pyridine (5 mL) was added, followed by the 

addition of 4, 4’-dimethoxytriphenylmethyl chloride (370 mg, 1.1 mmol). The reaction mixture 

was stirred at room temperature overnight, and then diluted with DCM (3 × 15 mL). The 

combined organic phase was washed with water (15 mL× 3), brine (15 mL), and dried over 

anhydrous Na2SO4. The solvent was removed under vacuum. The residue was purified by 

column chromatography (DCM: Methanol: Et3N= 95:5:2, Rf = 0.30) to afford compound 43b as 

a white solid (337 mg, 0.44 mmol, 60%). 1H NMR (300 MHz, CDCl3): δ. 8.25 (s, 2H), 7.98-7.95 

(d, J = 9 Hz, 1H), 7.83 (s, 1H), 7.64-7.62 (d, J = 6 Hz, 1H), 7.48-7.23 (m, 9H), 6.91-6.89 (d, 4H), 

6.51-6.47 (t, J = 6 Hz, 1H), 6.27 (s, 1H), 4.87-4.82 (d, J = 6 Hz, 1H), 4.70 (s, 1H), 4.45-4.41 (d, J 

= 6 Hz, 1H), 4.19 (s, 1H), 3.80 (s, 6H), 3.49-3.39 (q, J = 6 Hz, 2H), 2.80-2.74 (m, 1H), 2.46-2.35 

(m, 4H). (the NMR spectra were in agreement with those reported).5 

(2R,3S,5R)-2-((Bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-5-(5-((4-(4-methyl-2-oxo-

2H-chromen-7-yl)-1H-1,2,3-triazol-1-yl)methyl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-

yl)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite (43c). Compound 43b 

(200 mg, 0.26 mmol) in DCM (10 mL) was cooled to 0 ℃ under Ar atmosphere. N,N-

Diisopropylethylamine (85.3 mg, 0.66 mmol) was added, followed by the addition of 2-

cyanoethyl N,N-diisopropylchlorophosphoramidite (117 mg, 0.49 mmol). The reaction mixture 
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was stirred at room temperature for 1.5 h, and then diluted with DCM (45 mL). The organic 

phase was washed with NaHCO3 (5%, 20 mL), brine (20 mL), and dried over anhydrous 

Na2SO4. The solvent was removed under reduced pressure and the residue was purified by 

column chromatography (DCM: Methanol: Et3N= 95:5:2, Rf = 0.53) to yield 43c as a white foam 

(two isomers isolated) (150 mg, 0.155 mmol, 60%).  
31P NMR (CDCl3, 300 MHz): δ 148.89, 

148.91. (Two isomers were isolated) (the NMR spectra were in agreement with those reported).5  
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Appendices: 

Appendix A: Phosphor Image Autoradiograms 
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Representative gels for the effect of methoxyamine or TEMPO on DNA cross-link 

formation induced by 1a-5a and 1b-5b upon UV irradiation. 
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Determination of the reaction sites for 2a-5a and 1b-5b. 
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The rate of ICL formation of duplex 17 for 26a upon photo-irradiation. A. 26a at time points 0, 2 

h, 4 h, 6 h, 8 h, 10 h, 12 h, 14 h, 16 h, 18 h, 20 h, 22 h, 24 h.  [26a] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26b upon photo-irradiation. A. 26b at time points 0, 

0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h.  [26b] = 500 µM. Reaction mixtures were photo-irradiated under 

UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26c upon photo-irradiation. A. 26c at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h.  [26c] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26d upon photo-irradiation. A. 26d at time points 0, 

0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 8 h, 10 h, 12h.  [26d] = 500 µM. Reaction mixtures were photo-

irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26e upon photo-irradiation. A. 26e at time points 0, 

15 min, 30 min, 1 h, 1.5 h, 2 h, 2.5 h, 4 h, 6 h, 8 h.  [26e] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26f upon photo-irradiation. A. 26f at time points 0, 1 

h, 1.5 h, 2 h, 3 h, 3.5 h, 4 h, 6 h, 8 h, 12 h, 20 h.  [26f] = 500 µM. Reaction mixtures were photo-

irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26g upon photo-irradiation. A. 26g at time points 0, 5 

min, 15 min, 30 min, 45min, 60 min, 80 min, 100 min, 2 h, 2.5 h, 3 h.  [26g] = 500 µM. Reaction 

mixtures were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26h upon photo-irradiation. A. 26h at time points 0, 6 

min, 20 min, 35 min, 1 h, 1.5 h, 2 h, 3 h, 3.5 h, 4 h.  [26h] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 26i upon photo-irradiation. A. 26i at time points 0, 5 

min, 15 min, 30 min, 1 h, 1.5h, 2 h, 3 h, 4 h, 5 h, 6 h.  [26i] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 27a upon photo-irradiation. A. 27a at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h, 48 h.  [27a] = 500 µM. 

Reaction mixtures were photo-irradiated under UV (350nm), duplicates was done at each time 

point. 
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The rate of ICL formation of duplex 17 for 27b upon photo-irradiation. A. 27b at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h.  [27b] = 500 µM. Reaction 

mixtures were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 27c upon photo-irradiation. A. 27c at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h, 48 h.  [27c] = 500 µM. 

Reaction mixtures were photo-irradiated under UV (350nm), duplicates was done at each time 

point. 
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The rate of ICL formation of duplex 17 for 27d upon photo-irradiation. A. 27d at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h.  [27d] = 500 µM. Reaction 

mixtures were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 27e upon photo-irradiation. A. 27e at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h.  [27e] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 27f upon photo-irradiation. A. 27f at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h.  [27f] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 27g upon photo-irradiation. A. 27g at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h.  [27g] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 27h upon photo-irradiation. A. 27h at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h.  [27h] = 500 µM. Reaction 

mixtures were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 27i upon photo-irradiation. A. 27i at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h.  [27i] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The concentration dependence of ICL formation of duplex 17 for 26a upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26a under varying 

concentration. 0, 10 µM, 25 µM, 50 µM, 150 µM, 300 µM, 500 µM, 600 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 22 h. 
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The concentration dependence of ICL formation of duplex 17 for 26b upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26b under varying 

concentration. 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 400 µM, 600 µM, 800 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 6 h. 
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The concentration dependence of ICL formation of duplex 17 for 26c upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26c under varying 

concentration. 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 600 µM, 800 µM, 

1.2 mM, 2 mM.  Reaction mixtures were photo-irradiated under UV (350nm) for 36 h. 
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The concentration dependence of ICL formation of duplex 17 for 26d upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26d under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM. 

Reaction mixtures were photo-irradiated under UV (350nm) for 12 h. 
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The concentration dependence of ICL formation of duplex 17 for 26e upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26e under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 400 µM, 600 µM.  Reaction mixtures 

were photo-irradiated under UV (350nm) for 6 h. 

  

0 100 200 300 400 500

0

5

10

15

20

IC
L

 Y
ie

ld
 (

%
)

Concentration (uM)  

The concentration dependence of ICL formation of duplex 17 for 26f upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26f under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 12 h. 
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The concentration dependence of ICL formation of duplex 17 for 26g upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26g under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 250 µM, 400 µM, 500 µM, 600 µM.  

Reaction mixtures were photo-irradiated under UV (350nm) for 2 h. 
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The concentration dependence of ICL formation of duplex 17 for 26h upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26h under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 400 µM, 600 µM, 800 µM, 1 mM. 

Reaction mixtures were photo-irradiated under UV (350nm) for 2 h. 
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The concentration dependence of ICL formation of duplex 17 for 26i upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 26i under  varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM.  Reaction mixtures 

were photo-irradiated under UV (350nm) for 5 h.  
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The concentration dependence of ICL formation of duplex 17 for 27a upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27a under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 44 h. 
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The concentration dependence of ICL formation of duplex 17 for 27b upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27b under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 40 h. 
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The concentration dependence of ICL formation of duplex 17 for 27c upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27c under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 40 h. 



 
 

253 

 

0 200 400 600 800 1000

0

4

8

12

16

IC
L

 Y
ie

d
l 

(%
)

Concentration (uM)  

The concentration dependence of ICL formation of duplex 17 for 27d upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27d under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM, 

800 µM, 1 mM.  Reaction mixtures were photo-irradiated under UV (350nm) for 40 h. 
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The concentration dependence of ICL formation of duplex 17 for 27e upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27e under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM, 

800 µM, 1 mM, 2 mM.  Reaction mixtures were photo-irradiated under UV (350nm) for 24 h. 
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The concentration dependence of ICL formation of duplex 17 for 27f upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27f under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM, 

800 µM.  Reaction mixtures were photo-irradiated under UV (350nm) for 32 h. 
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The concentration dependence of ICL formation of duplex 17 for 27g upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27g under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM.  

Reaction mixtures were photo-irradiated under UV (350nm) for 24 h. 
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The concentration dependence of ICL formation of duplex 17 for 27h upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27h under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 36 h. 
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The concentration dependence of ICL formation of duplex 17 for 27i upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 27i under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM. 
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The rate of ICL formation of duplex 17 for 34a upon photo-irradiation. A. 34a at time points 0, 1 

h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 16 h.  [34a] = 500 µM. Reaction mixtures were photo-irradiated 

under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 34b upon photo-irradiation. A. 34b at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h.  [34b] = 500 µM. Reaction mixtures were photo-irradiated 

under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 34c upon photo-irradiation. A. 34c at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h, 48 h.  [34c] = 500 µM. 

Reaction mixtures were photo-irradiated under UV (350nm), duplicates was done at each time 

point. 
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The rate of ICL formation of duplex 17 for 34d upon photo-irradiation. A. 34d at time points 0, 1 

h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 16 h, 20 h.  [34d] = 500 µM. Reaction mixtures were photo-

irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 34e upon photo-irradiation. A. 34e at time points 0, 

0.5 h, 1 h, 2 h, 3 h, 6 h, 8 h, 12 h, 16 h, 20 h.  [34e] = 500 µM. Reaction mixtures were photo-

irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 34f upon photo-irradiation. A. 34f at time points 0, 1 

h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 16h, 18 h, 20 h.  [34f] = 500 µM. Reaction mixtures were photo-

irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 34g upon photo-irradiation. A. 34g at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h.  [34g] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 34h upon photo-irradiation. A. 34h at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h.  [34h] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 34i upon photo-irradiation. A. 34i at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h.  [34i] = 500 µM. Reaction 

mixtures were photo-irradiated under UV (350nm), duplicates was done at each time point. 



 
 

259 

 
0 2 4 6 8 10 12

0

5

10

15

20

25

30

IC
L

 Y
ie

ld
 (

%
)

Reaction time (h)  

The rate of ICL formation of duplex 17 for 34j upon photo-irradiation. A. 34j at time points 0, 1 

h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h, 12 h.  [34j] = 500 µM. Reaction mixtures were photo-irradiated 

under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35a upon photo-irradiation. A. 35a at time points 0, 5 

min, 10 min, 20 min, 30 min, 45 min, 1 h, 1.5h, 2 h.  [35a] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35b upon photo-irradiation. A. 35b at time points 0, 

10 min, 20 min, 30 min, 45 min, 1 h, 1.5 h, 2 h, 2.5 h, 3 h.  [35b] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35c upon photo-irradiation. A. 35c at time points 0, 5 

min, 15 min, 30 min, 45 min, 1 h, 1.5 h, 2 h, 3 h, 4 h.  [35c] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 

 
0 2 4 6 8 10 12

0

5

10

15

20

25

30

IC
L

 Y
ie

ld
 (

%
)

Reaction time (h)  

The rate of ICL formation of duplex 17 for 35d upon photo-irradiation. A. 35d at time points 0, 5 

min, 15 min, 0.5 h, 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h, 12 h.  [35d] = 500 µM. Reaction mixtures 

were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35e upon photo-irradiation. A. 35e at time points 0, 1 

h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h, 12 h, 16 h, 20 h, 24 h.  [35e] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35f upon photo-irradiation. A. 35f at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h.  [35f] = 500 µM. Reaction mixtures were 

photo-irradiated under UV (350nm), duplicates was done at each time point.  
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The rate of ICL formation of duplex 17 for 35g upon photo-irradiation. A. 35g at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, 44 h.  [35g] = 500 µM. Reaction 

mixtures were photo-irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35h upon photo-irradiation. A. 35h at time points 0, 1 

h, 3 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h.  [35h] = 500 µM. Reaction mixtures were photo-

irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35i upon photo-irradiation. A. 35i at time points 0, 2 

h, 4 h, 6 h, 9 h, 12 h, 16 h, 20 h, 24 h, 28 h.  [35i] = 500 µM. Reaction mixtures were photo-

irradiated under UV (350nm), duplicates was done at each time point. 
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The rate of ICL formation of duplex 17 for 35j upon photo-irradiation. A. 35j at time points 0, 2 

min, 5 min, 10 min, 20 min, 30 min, 45 min, 60 min, 75 min, 90 min, 105 min, 120 min. [35j] = 

500 µM. Reaction mixtures were photo-irradiated under UV (350nm), duplicates was done at 

each time point. 
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The concentration dependence of ICL formation of duplex 17 for 34a upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34a under varying 

concentration. 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM.  

Reaction mixtures were photo-irradiated under UV (350nm) for 12 h. 
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The concentration dependence of ICL formation of duplex 17 for 34b upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34b under varying 

concentration. 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM. Reaction 

mixtures were photo-irradiated under UV (350nm) for 24 h. 

  
0 100 200 300 400 500 600

0

2

4

6

8

10

IC
L

 Y
ie

ld
 (

%
)

Concentration (uM)  

The concentration dependence of ICL formation of duplex 17 for 34c upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34c under varying 

concentration. 0, 10, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM. 

Reaction mixtures were photo-irradiated under UV (350nm) for 44 h. 
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The concentration dependence of ICL formation of duplex 17 for 34d upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34d under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 400 µM, 500 µM, 600 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 16 h. 
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The concentration dependence of ICL formation of duplex 17 for 34e upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34e under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM, 

800 µM, 1000 µM.  Reaction mixtures were photo-irradiated under UV (350nm) for 16 h. 
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The concentration dependence of ICL formation of duplex 17 for 34f upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34f under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM.  Reaction mixtures were photo-

irradiated under UV (350nm) for 16 h. 
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The concentration dependence of ICL formation of duplex 17 for 34g upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34g under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM.  Reaction mixtures 

were photo-irradiated under UV (350nm) for 32 h. 
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The concentration dependence of ICL formation of duplex 17 for 34h upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34h under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 500 µM, 600 µM.  Reaction mixtures 

were photo-irradiated under UV (350nm) for 32 h. 
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The concentration dependence of ICL formation of duplex 17 for 34i upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34i under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM.  Reaction mixtures 

were photo-irradiated under UV (350nm) for 36 h. 



 
 

266 

  
0 100 200 300 400 500

-5

0

5

10

15

20

25

30

IC
L

 Y
ie

ld
 (

%
)

Concentration (uM)  

The concentration dependence of ICL formation of duplex 17 for 34j upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 34j under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 10 h. 
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The concentration dependence of ICL formation of duplex 17 for 35a upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35a under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM.  

Reaction mixtures were photo-irradiated under UV (350nm) for 1.5 h. 
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The concentration dependence of ICL formation of duplex 17 for 35b upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35b under varying 
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concentration 0, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 2.5 h. 
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The concentration dependence of ICL formation of duplex 17 for 35c upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35c under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 500 µM.  Reaction mixtures 

were photo-irradiated under UV (350nm) for 3 h. 
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The concentration dependence of ICL formation of duplex 17 for 35d upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35d under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 350 µM, 500 µM, 600 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 10 h. 
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The concentration dependence of ICL formation of duplex 17 for 35e upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35e under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM.  

Reaction mixtures were photo-irradiated under UV (350nm) for 20 h. 
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The concentration dependence of ICL formation of duplex 17 for 35f upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35f under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 400 µM, 600 µM, 800 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 28 h. 
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The concentration dependence of ICL formation of duplex 17 for 35g upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35g under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 500 µM, 600 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 36 h. 
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The concentration dependence of ICL formation of duplex 17 for 35h upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35h under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 500 µM, 600 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 24 h. 
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The concentration dependence of ICL formation of duplex 17 for 35i upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35i under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 500 µM, 600 µM.  Reaction 

mixtures were photo-irradiated under UV (350nm) for 24 h. 
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The concentration dependence of ICL formation of duplex 17 for 35j upon photo-irradiation. 

Phosphor image autoradiogram of 20% denaturing PAGD analysis of 35j under varying 

concentration 0, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 300 µM, 400 µM, 500 µM, 600 µM.  

Reaction mixtures were photo-irradiated under UV (350nm) for 1.5 h. 

General condition for cation and radical trapping:  

A. MeONH2 trapping: lane 1: No drug with UV. Lane 2-12 with drug with UV. MeONH2 

concentration: lane 2: 0, lane 3: 100 µM:, lane 4: 200 µM, lane 5: 500 µM, lane 6: 1 mM, 

lane 7: 2 mM, lane 8: 5 mM, lane 9: 10 mM, lane 10: 20 mM, lane 11: 50 mM, lane 12: 

100 mM. 

B. TEMPO trapping: lane 1: No drug with UV. Lane 2-15 with drug with UV. Tempo 

concentration: lane 2: 0, lane 3: 10 µM:, lane 4: 25 µM, lane 5: 50 µM, lane 6: 100 µM, 

lane 7: 250 µM, lane 8: 500 µM, lane 9: 1 mM, lane 10: 2.5 mM, lane 11: 5 mM, lane 12: 

10 mM, lane 13: 25 mM, lane 14: 50 mM, lane 15: 100 mM. 
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Carbocation and radical trapping with ICL formation of duplex 17 for 26a at optimized 

conditions: 500 µM, 22 h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 26b at optimized 

conditions: 600 µM, 6 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 26c at optimized 

conditions: 2 mM, 36 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 26d at optimized 

conditions: 500 µM, 12 h. 

  

Carbocation and radical trapping with ICL formation of duplex 17 for 26e at optimized 

conditions: 400 µM, 6 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 26f at optimized 

conditions: 400 µM, 12 h.  

  

Carbocation and radical trapping with ICL formation of duplex 17 for 26g at optimized 

conditions: 600 µM, 2 h.   

 

Carbocation and radical trapping with ICL formation of duplex 17 for 26h at optimized 

conditions: 600 µM, 2 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 26i at optimized 

conditions: 200 µM, 5 h.  

 

 

 

Carbocation and radical trapping with ICL formation of duplex 17 for 27a at optimized 

conditions: 400 µM, 44 h. 
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Carbocation and radical trapping with ICL formation of duplex 17 for 27b at optimized 

conditions: 400 µM, 40 h.   

 

Carbocation and radical trapping with ICL formation of duplex 17 for 27c at optimized 

conditions: 400 µM, 40 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 27d at optimized 

conditions: 800 µM, 40 h.  

  

Carbocation and radical trapping with ICL formation of duplex 17 for 27e at optimized 

conditions: 1 mM, 24 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 27f at optimized 

conditions: 600 µM, 32 h.  

  

Carbocation and radical trapping with ICL formation of duplex 17 for 27g at optimized 

conditions: 600 µM, 24 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 27h at optimized 

conditions: 300 µM, 36 h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 27i at optimized 

conditions: 400 µM, 28 h. 
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Carbocation and radical trapping with ICL formation of duplex 17 for 34a at optimized 

conditions: 500 µM. 12 h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 34b at optimized 

conditions: 400 µM, 24 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 34c at optimized 

conditions: 600 µM, 44h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 34d at optimized 

conditions: 500 µM, 16h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 34e at optimized 

conditions: 500 µM, 16h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 34f at optimized 

conditions: 50 µM, 16h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 34g at optimized 

conditions: 200 µM, 32 h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 34h at optimized 

conditions: 500 µM, 32 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 34i at optimized 

conditions: 300 µM, 36 h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 34j at optimized 

conditions: 200 µM, 10 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 35a at optimized 

conditions: 400 µM, 1.5 h.  

 

Carbocation and radical trapping with ICL formation of duplex 17 for 35b at optimized 

conditions: 400 µM, 2.5 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 35c at optimized 

conditions: 300 µM, 3 h.    

 

Carbocation and radical trapping with ICL formation of duplex 17 for 35d at optimized 

conditions: 500 µM, 10 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 35e at optimized 

conditions: 500 µM, 20 h. 

 

Carbocation and radical trapping with ICL formation of duplex 17 for 35f at optimized 

conditions: 600 µM, 28 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 35g at optimized 

conditions: 500 µM, 36 h.  

     

Carbocation and radical trapping with ICL formation of duplex 17 for 35h at optimized 

conditions: 500 µM, 24 h.  
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Carbocation and radical trapping with ICL formation of duplex 17 for 35i at optimized 

conditions: 500 µM, 24 h.  

     

Carbocation and radical trapping with ICL formation of duplex 17 for 35j at optimized 

conditions: 500 µM, 1.5 h. 
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Appendix B: ODN Characterization  

 

 

Maldi-TOF-MS spectrum of ODN-50b. 

 

Maldi-TOF-MS spectrum of ODN-51b. 
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Maldi-TOF-MS spectrum of ODN-52b. 

 

 Maldi-TOF-MS spectrum of ODN-53b. 
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Maldi-TOF-MS spectrum of ODN-54b. 

 

Maldi-TOF-MS spectrum of ODN-55b. 
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Maldi-TOF-MS spectrum of ODN-56b. 

 

Maldi-TOF-MS spectrum of ODN-57b. 
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Maldi-TOF-MS spectrum of ODN-58b. 

 

 

 

 

 

 

Maldi-TOF-MS spectrum of ODN-59a.  
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