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ABSTRACT 

FABRICATION OF SILVER-DOPED ZINC OXIDE THIN FILMS 
THROUGH OPTIMIZED SOL-GEL DEPOSITION  

 AND NANOPARTICLE WETTING PROCESS 
 

by 
 

Reed T. Heintzkill 
 
 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Nidal Abu-Zahra 

 
 
 

Zinc Oxide (ZnO) has been of significant interest as a Transparent Conductive Oxide (TCO) 

given its sizable direct band-gap, and as a potential substitute for Indium-Tin Oxide for use in opto-

electronic and piezo-electric devices, due to its comparatively abundant and nontoxic precursor 

materials.  Sol-gel processing is an easy, low-energy method for fabricating ZnO thin films, and there 

has been increasing interest in doping the compound such to give it p-type semiconductive character. 

This thesis thoroughly investigates sol-gel processing of ZnO thin solid films, with focus on wet-

chemistry (sol-gel) methods of doping the material with silver (both as elemental ions and 

nanoparticles,) in the interest of achieving p-type doped ZnO.  From dozens of similar but varying 

documented procedures, optimal processing methods and parameters for experimentation involving 

solutions-based doping were investigated and codified into a repeatable standard operating procedure 

(SOP), confirmed by X-Ray Diffraction results showing preferential (002)-peak, c-axis crystalline 

orientation.  Heretofore unexplored study of the use of organic solvents as wetting agents and 

introduction of silver nanoparticles in layering processes within the sol-gel processing framework are 

shown to further improve c-axis orientation.  A newly-adapted, quantified method of XRD 

preferential orientation analysis is implemented alongside UV-Visual bandgap analysis and SEM/AFM 
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microscopy methods to further confirm improved crystallinity and reduced-diameter nanoscale c-axis 

oriented crystallites. 

These experiments and characterizations are analyzed in the context of structure and properties 

leading to material performance, with results documented in detailed appendices.  

ProQuest Print Index: 

Sol-gel processing of Zinc Oxide (ZnO) thin solid films were investigated as a means of 

synthesizing Transparent Conductive Oxide (TCO) layers for use in optoelectronic and piezo-electric 

devices, with concentration on wet-chemistry (sol-gel) methods of doping the material with silver, 

(both as elemental ions and nanoparticles,) in the interest of obtaining p-type doped ZnO.  Optimal 

processing methods and parameters for experimentation involving solutions-based doping were 

investigated and codified into a codified and repeatable standard operating procedure (SOP), 

confirmed by XRD results showing preferential (002)-peak, c-axis crystalline orientation.  Heretofore 

unexplored study of the use of organic solvents as wetting agents and introduction of silver 

nanoparticles in layering processes within sol-gel framework are shown to further improve c-axis 

orientation.  A newly-adapted, quantified method of XRD preferential orientation analysis is 

implemented alongside UV-Visual bandgap analysis and SEM/AFM microscopy methods to further 

confirm improved crystallinity and reduced-breadth nanoscale c-axis oriented crystallites. 
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1.1. Introduction 

The epoch of functional optoelectronic devices is upon us: throughout our lives, we find ourselves 

interfacing with touchscreen devices that depend upon interaction between light and electronic 

response – and this trend is in no danger of faltering.  Our now omnipresent touch devices’ 

functionalities rely upon a number of highly-engineered conglomerations of electronic and materials 

engineering breakthroughs. Although not often considered in the same breath, it ought to be noted 

that the fields of Materials Science and Electrical Engineering shall be forever intertwined in the realm 

of digital device fabrication. 

One of the most fundamental innovations that led to our ability to fabricate these amazing devices 

was the discovery of special materials which exhibit both optical transparency and electrical 

conductivity – a family of materials known as transparent conductors, or more specifically, 

Transparent Conductive Oxides (TCOs).  The use of TCO materials in optoelectronic devices has 

become ubiquitous and necessary in technological implementations of everyday life.  Whether the 

consumer is aware of these foundational materials’ integral connection with their terminal usage is 

another question entirely, but there is little doubt that TCO materials play a fundamental role in nearly 

any modern human-interface device. 

1.2. TCO Application in Opto-electronic Devices 

Specific applications of TCO materials in devices are many, and include transparent electrodes [1] 

for various morphologies of solar cell technology [2] and LED devices [3]; photoelectrochemical 

cells[4]; photodiodes and metal-insulator-semiconductor diodes[3];  and most specifically of interest 

to our group, as protective buffer layers to prevent degradation of organic solar cells (OSC) [5]. 

By utilizing a conductive Metal Oxide (MO) as the electron-transport layer (ETL) of a bulk-

heterojunction (BHJ) OSC (Figure 1-1, left), improved resistance to oxygen diffusion can be achieved, 
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leading to increased stability of Organic Photovoltaic (OPV) cells. MO materials such as ZnO, Al2O3, 

TiO2, and MoO3 have been shown to be practical buffer layers in OSCs, due to the low diffusion rate 

of oxygen through MO materials [6].  Zinc Oxide and TCO materials have been studied as n-type 

semiconductors as far back as a 1957 Bell Labs study, but p-type doping has been historically more 

difficult, only forthcoming in the last 20-30 years [2].    To act as successful charge-carriers, MO 

materials used as ETLs must be n-type semiconductors, but an additional p-type TCO material is 

required for the hole-transport layer (HTL) and transparent MO cathode.  In an alternate “inverted” 

architecture (Figure 1-1, right), the cathode and anode layers are reversed, with a transparent n-type 

MO anode on the top of the cell, but once again, a p-type material is needed for the cathode HTL.  

The need for an inexpensive, easily-produced p-type TCO is inescapable. 

 
Figure 1-1.  Traditional and Inverted architectures of BHJ OSC devices.  Left: Normal device with p-type TCO 
cathode.  Right: Inverted design in which n-type TCO is utilized as a transparent anode. 

 

By far, the most widely-used TCO in contemporary devices is Sn-doped In2O3, commonly referred 

to as Indium-Tin Oxide (ITO).  While not excessively toxic, ITO has been shown to be harmful to 

animals and humans [7].  Indium is among the least prevalent elements in the earth’s crust, and is only 

able to be obtained as a byproduct of zinc smelting [8]. It is therefore a highly energy- and resource-
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dependent commodity and is vulnerable to volatile market events.  Given these deficiencies, low-cost, 

low-energy and scalable alternatives to ITO are being actively pursued by industry [9].   

1.3. Zinc Oxide and Sol-gel Processing 

Zinc oxide offers a particularly desirable set of properties as a candidate for an ITO replacement.  

Zinc is an abundant element, and is an essential trace mineral with extremely low toxicity to humans 

[10].  Zinc oxide is a direct band gap (Eg) semiconductor, with an optical band gap energy of Eg=3.2eV 

[4], and exciton binding energy of 60 meV [11] at room temperature.  While natively an n-type 

semiconductor like other TCOs, many recent studies have reported success in various methods of p-

type doping [1, 4].  Zinc oxide also has the advantage of being easily synthesized at relatively low 

temperatures by sol-gel chemistry [12], making it ideal for industrial scale-up, such as roll-to-roll 

processing [13]. 

Sol-gel chemistry is a low-temperature, solutions-based approach to ceramic MO synthesis (Figure 

1-2).  Organometal salts are dissolved in an alcohol solution with a stabilizer.  The solution is mixed 

and aged at a set temperature, causing hydrolysis and bimolecular addition of ions.  This aged sol is 

then evenly deposited onto a substrate, at which time the sol is evaporated in a “pre-heat” step to 

form a xerogel – a network formed via hydroxo- and oxo-ligand dimerization [14]. Finally, the xerogel 

is exposed to thermal sintering, in which nucleation is followed by crystallite growth.  The sintering 

process also serves to burn off residual organics left in the xerogel network. 
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Figure 1-2.  Sol-gel process flow chart.  Illustrates processing from precursor to intermediate, through final stages. Source: 
by Claudionico [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) or CC BY-SA 4.0 
(https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons.] 

 

One advantage of the sol-gel fabrication method is the ability to tune the nucleation and 

morphology of the material by manipulation of various parameters in the sol-gel process.  For 

example, preferential c-axis crystal growth may be encouraged by changing the concentration or 

identity of the precursor salt, or by altering the times and temperatures of the pre-heat and sintering 

stages.  Further, solutions-based fabrication of TCOs allow for precise, even, and homogeneous 

addition of dopant ions, bypassing the need to resort to high-temperature diffusion processes. 



7 
 

 
Figure 1-3.  ZnO Sol-gel equilibria systems and mechanisms. Starting precursor materials (left) go through multiple 
interacting equilibria, including complexation with stabilizer, hydrolysis, and condensation to final Zn-oxo-acetate 
particle (right) before pre-heat treatment evaporates volatile species and post-heat treatment carburates remaining 
organics and begins crystallization process.  Source: Znaidi et al [15]. 

 
In general, sol-gel chemistry is a well-established and reliable methodology for a variety of 

solution-solid fabrication scenarios.  That said, each unique chemical instance of sol-gel processing 

possesses distinct and often complicated mechanisms and interactions between its systems of chemical 

equilibria.   A simplified scheme of systems of equilibria in ZnO sol-gel process is shown in Figure 1-

3 above, although thorough review the detailed mechanisms involved are beyond the scope of this 

endeavor. 

While sol-gel ZnO thin-film synthesis is a relatively new and novel method of TCO fabrication, it 

has been well studied and documented.  Indeed, throughout our studies, a primary source of technique 

and methodology was followed at length: Lamia Znaidi of the Laboratory for High Pressures Materials 

Engineering at the University of Paris published a thorough review [16] of sol-gel deposited ZnO thin film 

studies, citing over 70 individual publications, and summarizing many of the primary parameters 

utilized by these studies (Appendix A).  As thorough and thoughtful as the review was, it was quickly 

apparent to the UWM team that while detailed methodologies for ZnO sol gel synthesis existed, no 

clear and concise ‘recipe’ came to light that produced high-quality, useful and dopable ZnO thin films 
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ideal for our purposes.  A major objective of our ongoing research became the optimization of a 

standard repeatable process in our efforts to produce high-quality TCO thin films. 

1.4. ZnO Crystalline Structure, Preferential Orientation, and XRD Characterization 

As a stoichiometric oxide in its pristine state, ZnO’s crystalline geometry is defined by its atoms’ 

respective radii, their two shared electrons forming the solid into adjacent tetrahedra in a hexagonal 

close-packed wurtzite structure (Figure 1-4A).  An ionic compound, the zinc atom donates its two 4s 

valence electrons to fill oxygen’s 2p orbital band, making it a wide band-gap II-VI semiconductor [17]. 

 
Figure 1-4.  ZnO wurtzite unit cell and diagram of z-axis ZnO growth.  Unit cell (A) shows two units of stoichiometric 
ZnO forming dual tetrahedra; B and C show different axial growth methods. Source: A: public domain; B/C: adapted from Znaidi et 

al [15]. 

 
 

It is important to note that the wurtzite unit cell consists of two ZnO formula units, and that 

depending on how the unit cell is oriented, the [001] plane will consist of either Zn-polar or O-polar 

faces [18].  The orientation of the ZnO crystal growth in sol-gel thin films is extremely important to 

their optoelectronic properties: 
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“Polycrystalline ZnO films usually grow with the c-axes of the 

crystallites oriented approximately perpendicular to the film plane [117 [19], 118 

[20]].  Therefore, the electrical transport in polycrystalline films, which is 

measured laterally, occurs in almost all cases perpendicular to the c-axes of the 

crystallites.” – Ellmer, ([1], p. 56) 

Early work by Znaidi et al determined that ZnO crystal growth orientation (Figure 1-4 B/C) was 

tunable through various solution parameters [21].  They later showed that many sol-gel preparations 

exhibited (002) preferential peak intensity, indicating “c//n” orientation [16].  Because of these 

characteristics of ZnO thin films, our primary method of determining the quality of our films was 

based upon the intensity of the (002) X-Ray Diffraction (XRD) peaks, as well as the intensity ratio of 

(002) compared to other known ZnO crystallographic orientations (esp. (100) and (101) peaks). 

A quantifiable method of comparing one preferential peak to others is known as the Texture 

Coefficient, and has been used by many researchers to compare XRD peaks [22], [23], [24].  It is 

defined as follows: 

𝑇𝐶 =

𝐼(ℎ𝑘𝑙)

𝐼0(ℎ𝑘𝑙)

(
1
𝑛) ∑ [

𝐼(ℎ𝑘𝑙)

𝐼0(ℎ𝑘𝑙)
]

 

“where I(hkl) and I0(hkl) are the integrated intensities of (h k l) reflections measured for an experimental 

specimen and a standard powder sample, respectively, and n is the total number of reflection planes.” 

[25].  While this method is not utilized in our analyses per se, an adapted version of it was developed 

for use in analyzing second phase experiments, as laid out in Section 3.3.1.  Powder diffraction file 

(PDF) intensity for naturally-occurring polycrystalline ZnO (zincite) is shown in figure 1-7 (red lines). 
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1.5. p-type doping of ZnO Thin Films 

Early in the exploration stages of this research endeavor, the group’s founder and original team 

leader, Jon Wolgamott, posited that given the relative ease of solutions-based doping methods, the 

sol-gel process was an ideal avenue for exploring new methods of p-type doping in ZnO.  If the sol-

gel process relied upon a dissolution of organometallic salts as a basis for the precursor solution, he 

surmised that it should be a straightforward process to introduce a discrete quantity of dopant atoms 

as cations in a similar metal salt. 

 

Figure 1-5.  Formation energies of intrinsic and substitutional defects in ZnO. Intrinsic defects are shown in grey while 
silver-doped interstitial and vacancy defect formation energies are shown in color for both Zinc-(left) and Oxygen-rich 
(right) circumstances.  Source: Yim et al [26]. 

 
In investigating this theory, Wolgamott came across a just-published study by Yim et al at The 

Research Institute of Advanced Materials at Seoul National University, in which computational 

methods were utilized to establish a database of theoretical formation energies of dopant atoms in a 
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ZnO lattice [27]. The database utilized automated first-principles calculations to provide formation 

energy vs. fermi level diagrams (Figure 1-5) in Zn-rich and O-rich conditions as opposing limits, for 

periodic elements through row six [26]. 

Analysis of thermodynamic favorability for defect formation based upon the Yim database led 

Wolgamott to compare p-type favorable dopants from Group 15(VA): [N, P, As Sb]; Group 1(IA): 

[Li, Na, K, Rb]; and Group 11(IB): [Cu, Ag, Au].  Elements from both groups 15 and 1 were ultimately 

dismissed as study candidates based upon various issues of practicality, safety, and compatibility with 

the sol-gel process.  Based partially upon the fundamental p-type extrinsic semiconductor electron 

bonding model (Figure 1-6), as well as additional first principles calculations from a National 

Renewable Energy Lab paper [28], Group 11 atoms were identified as the  focus of our study. 

 
Figure 1-6.  Extrinsic p-type semiconduction model (electron bonding). (a) An impurity atom such as boron, having 
three valence electrons, may substitute for a silicon atom. This results in a deficiency of one valence electron, or a hole 
associated with the impurity atom. (b) The motion of this hole in response to an electric field. Source: Callister [29]. 

 

To achieve p-type doping of ZnO with group-IB elements requires both zinc substitution (𝑀𝑍𝑛) 

acceptor defects, as well as the suppression of native hole-killer defects such as oxygen vacancies (𝑉𝑂
∙∙) 

and zinc interstitials (𝑍𝑛𝑖
∙∙) [28].  Calculations by Yan et al indicate that given the formation and 

transition energies of 𝐴𝑔𝑍𝑛, silver is the ideal Group 11 atom for p-type doping of ZnO, and may in 
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fact be more effective than 𝑁𝑂
∙  substitution [28], which has already been shown to produce p-type 

ZnO.  Silver is also well known to be an excellent conductor, and while a precious metal, the cost of 

doping on the scale of 1-2 at% was not deemed prohibitive to research.  Thus the ZnO Solar research 

group was established, intent on determining the feasibility of using sol-gel chemistry to dope ZnO 

with silver as a p-type semiconductor. 

1.6. Initial stages and early attempts at synthesis 

As discussed, the ZnO sol-gel Review by Znaidi was utilized extensively as a starting point for 

initial stage experiments, proof of concept, and technique sources.  Before a doped ZnO thin film 

could be attempted, a standard procedure for synthesizing simple ZnO from sol-gel technique was 

required.  The first several iterations of experiments attempted to discern a set of common and 

repeatable processing steps amid a blur of various documented methods.  In general, the processes 

described in Section 1.3 above were followed, but early trials were stymied simply by unfamiliarity 

with the chemistry methods.  These early efforts were further thwarted by unclear understanding of 

the dynamics of pre-heat operations on the morphology of ZnO crystal structure, and how the post-

heat stage temperature influences decarburization of organics from the sol matrix. 

At the infancy of this project, many difficulties were encountered in confirming synthesis of ZnO 

thin films and powders, stemming largely from unfamiliarity with specific lab procedures and incorrect 

assumptions in cases wherein literature was not specific.  We subsequently developed a fast-paced 

trial-and-error protocol aimed at successful synthesis, and to determine whether the brown residue 

found in all the samples was some sort of contaminant or if there was simply something wrong with 

the process.  The XRD output from some of these early attempts are shown in Figure 2-2.  After 

further literature review and experimentation, we discovered that a vital aspect of the 

sintering/annealing process, in addition to grain formation and crystal growth, was the elimination of 
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residual organic matter from the initial sol.  The precursor materials being alcohol, amine, and acetate, 

various species of organics and volatiles were present in the sol, which needed to be removed in order 

to purify the final ZnO product.  Longer post-heat treatment time and higher temperatures were called 

for, but literature describing post-heat treatment protocols varied dramatically (see Appendix A, Post-

heat treatment column). 

 
Figure 1-7.  XRD Spectra illustrating progress through ZnO Thin Films Project. Examples of peak intensities and 
orientation ratios can be seen progressing from early stages in 2016 through final stages in 2018. 

 
For several weeks, rapid trial and error experimentation with dramatic variation of parameters 

involving time and temperature of the various stages of synthesis (mixing, aging, deposition, pre-heat, 

and post-heat treatments) was undergone.  After 17 independent experiments including 35 separate 

iterations of parameter modification, we were eventually able to achieve successful synthesis of ZnO 

thin films, as confirmed by XRD analysis (Figure 1-7).  Although ZnO peaks were now appearing on 

XRD spectra, the peaks were short and broad in comparison to literature.  Furthermore, the 
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preferential (002) peak at ~34° 2θ, representing c-axis crystal orientation was not dominant compared 

to (100) and (101) peaks.   

 
1.7. ZnO Thin Films Optimization, Doping Attempts, and Process Breakthroughs 

Given the many methods and variables described in the ZnO Sol-gel Review, our initial difficulties 

synthesizing ZnO at all, and the still less-than-ideal quality of films being produced, it was determined 

that a more comprehensive and methodological study of processing variables was necessary.  Chapter 

2, Optimization of Sol-Gel Spin-Coated ZnO Thin Films for Silver Doping, is a comprehensive review of over 

a dozen independent experiments performed over the first-year course of this project, under the 

direction of Mr. Wolgamott.  As experiments were designed and performed, the authors’ 

comprehensive understanding of the sol-gel synthesis process evolved in turn.  In some cases, certain 

experimental parameters that were examined early in the project needed to be reexamined to account 

for unexpected confounding factors. In other cases, variables identified early in the project and 

thought to be significant did not prove to be so.  A diagram of the ZnO sol-gel process and the 

variables determined to be applicable can be found in the introductory section of Chapter 2. 

With p-type silver doping of ZnO films representing the genesis of this project, throughout the 

thesis, extra attention is paid toward doping attempts.  Indeed, many of the experiments discussed in 

Chapters 2 and 3 were performed in duplicate with an undoped control group and a second batch of 

doped product.  In this way, confounding parameters to silver doping can be either identified or ruled-

out. 

Chapter 3 presents late-stage experiments performed after the major parametric analysis had been 

completed, and after the thesis author had taken charge of the project.  Innovative and unconventional 

layering and wetting techniques were implemented in attempt to improve surface smoothness and 
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conductivity, some with unexpectedly extraordinary success.  These breakthroughs are laid out in 

careful detail, and theories as to their otherwise unexplained success are discussed. 
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2. Chapter 2: Optimization of Sol-Gel Spin-Coated ZnO Thin Films for Silver Doping 
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2.1. Introduction 

Incorporation of silver ions in sol-gel fabrication of ZnO thin films has been proposed as a 

method of achieving p-type semiconduction in ZnO as a Transparent Conductive Oxide.  While 

fabrication methods for sol-gel ZnO thin film synthesis are ample in literature, the exact methods and 

parameters of the procedures vary significantly from one source to the next.  After replication of 

several distinct analyses’ processing parameters for plain sol-gel fabrication and foreign-element 

doping techniques, best practices for each process were established and optimized.  These parameters 

were then incorporated into combined methodology for silver doping. 

Sol-gel fabrication of ZnO thin films via spin-coating consists of several common sequential steps, 

as illustrated in Figure 2-1.  A soluble zinc salt, usually Zinc Acetate dihydrate (ZnAc) is dissolved in 

an alkyl alcohol with a stoichiometric ratio (‘r’ value) of stabilizer.  Generally, this stabilizer is an amine 

alcohol with a primary hydroxyl group, which both assists in the solvation of ZnAc, and acts as a base 

in assisting in the complexing of Zn(II) cations [16].  This solution is mixed at an elevated temperature 

until ZnOAc is fully dissolved, and then aged for a period to allow for hydrolysis of the various zinc 

and organic species, and to begin the formation of colloids that will later polymerize to form the gel.  

After aging, the sol is deposited on a spinning substrate in dropwise addition through the use of a 

spin-coater machine.  After applying a coat of sol, the layer is dried and may undergo ‘pre-heat’ 

treatment.  This deposition and pre-heat treatment is repeated until the desired number of coats have 

been applied, at which point the coated substrate is subjected to a ‘post-heat’ sintering step, resulting 

in the formation of ZnO grains and ultimately crystal growth. 
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Figure 2-1.  Zinc Oxide Sol-gel process and variables.  Each step in the process may involve one or more variable methods.  
These variables are color-coded in the “Variable Types” key in the upper-right. 

  
Each step in the sol gel synthesis and spin-coating fabrication process is the subject of a number 

of variables, as further illustrated in Figure 2-1.  Over the course of this study, many of these variables 

were identified, examined, researched, and methodologically adjusted to optimize these values for our 

specific application.  A detailed review of undoped ZnO synthesis methods was consulted, as 

discussed in Chapter 1, as well as several other research studies.    These variables are identified in 
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Table 2-1, where their default literature values are compared to the range of values explored in our 

experiments.   

Process Variable 
(1)Literature; (2)Znaidi 

Review; (3)Physical Limit 
Bounds of UWM Study 

Solution 

Salt 
(2) mostly ZnOAc, few 

exceptions 
ZnOAc 

Alcohol (2) Alkyl Alcohols, Glycols 
Ethanol, Propylene glycol, 

Propylene glycol methyl ether 

Concentration (2) 0.02 – ~2 mol/L 0.25 – 1.5 mol/L 

Additive 
(2) Primary amines, glycerol, 

acids and bases 
MEA/DEA 

pH (1) 6.4 – 10.6 not investigated 

r-ratio (2) 0 – 2 0.75 - 2.0 

Mixing 

Time (3) 0 – unbound 60 min 

Temperature (3) (-114) – 173° C 50-60 C 

Speed (3) 0 – max RPM 300-400 

Aging 

Time (3) unbound 0-96 hrs 

Temperature (2) 25, 60 25 

Add'l Variable (1) none found density, viscosity, mass loss 

Substrate 
Identity (2) many Soda Glass, ITO, Silicon, Quartz 

Cleaning Process (2) many Indexed per expt. 

Spin-coating 
and Addition 
Method 

Sol Concentration (2) 0.02 – 2M 0.25 – 0.75M 

Drops (2) many 1-10 

Time (2) many 30, 60s 

Speed (2) many 3000 

Coat Count (1) 5–20 1–10 

Drying ("pre-
heat") 

Time - 0–15 

Temperature (2) 40-500 0-200 

Action (1) various 
Air-circulated oven, Ambient 

Furnace, Conduction Hotplate 

Anneal/Sinter 
("post-heat') 

Time - 60-240 

Temperature (2) 150-900 250-500 

Other - 
Air-circulated oven, Ambient 

Furnace, Conduction Hotplate 

Other per-
layer 
Treatment 

Substrate 
temperature before 

deposition 
- 200, 220, 300 

Table 2-1.  Processing variables involved in ZnO thin film fabrication.  The middle column describes the bounds of some 
variables as found in literature, compared to the bounds undertaken by this study (right column). 
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Experimental Narrative and Sequence of Labeling 

In the interest of clarity, experimental narrative has been divided into major classifications 

representing separate subchapters herein, based upon experiments performed and variables examined.  

Each subchapter will outlay experimental procedure and summary results, plus immediate implications 

leading to the subsequent subchapter; intensive examination of results, discussion, and conclusions 

for the summation of experimental procedures are addressed collectively at the end of the chapter. 

Within each subchapter’s ‘experimental’ section, a matrix summarizing the experimental variables 

is presented to clarify the methodology of the experiment.  In some cases, these tables will also include 

the sample identification codes that were used in the experimental process.  While these codes are not 

necessarily valuable to the reader, they may help in identifying applicable results, and illustrate the 

thought process involved in the design of experiment.  In general, each individual experiment was 

coded with a sequential alphabetical prefix, followed by additional numerals to identify variables tested 

and replicated samples. 
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2.2. Experimental Narrative and Preliminary Results 

Early proof of concept experiments focused on successful replication of established sol-gel 

methods, mostly following Znaidi’s ZnO Sol-gel Review document [16], choosing parameter values 

essentially arbitrarily, based on methods perceived as most common.  A series of rapid trial-and-error 

experiments eventually led to an initial formulation of sols which, when heat-processed, produced 

films that indicated presence of ZnO by XRD characterization.  However, the XRD peaks obtained 

from these early trials were short and broad (Figure 2-2,) indicating lower-than-ideal crystallinity, and 

the slides appeared opaque and discolored.  In order to achieve a standard formulation for 

experimental doping, significant improvement upon these early trial procedures was necessary, and a 

series of more careful and methodological optimization experiments were undertaken. 

 
Figure 2-2.  XRD Spectra from a variety of early-stage experiments carried out prior to those documented in Chapter 2.  
Early attempts yielded low-intensity, broad peaks indicating low-crystallinity and sometimes outright failure to achieve the 
desired ZnO product. 
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As soon as successful ZnO film synthesis could be confirmed, attempts to implement silver 

doping became a priority, as outlined in Section 2.2.2.  As it happened, this doping process was a 

rather simple and straightforward matter, discussed in Section 2.2.3 (Experiments D & G,) but 

optimized ZnO film fabrication remained wrought with difficulty.  Much of the remaining work in 

this phase (indeed, all that is reported in this Experimental section) focused on continued optimization 

of the sol-gel process, and the establishment of a Standard Operating Procedure (SOP) for future 

doping attempts.  

In addition to the experiments documented in this section, dozens of other less formal trials were 

conducted over the course of 2016-17, addressing such issues as film porosity and crystallinity, and 

how those relate to film conductivity.  Unfortunately, lack or loss of documentation and poor training 

of lab personnel during times of turnover rendered much of these experiments’ data useless, as 

mentioned in Section 2.2.4. While these trials are not useful in documenting our study, many of the 

lessons learned from these trials led to minor improvements in technique, and contributed in terms 

of improving our general knowledge and experience with this science.  Furthermore, negative findings 

are findings nonetheless, and helped steer us away from further unnecessary or inapplicable 

experiments. 

Unless otherwise indicated, all samples were characterized by X-Ray Diffraction (XRD) on a 

Bruker D8-Discover instrument, using a CuKα1 source at 40kV and 40mA, with a wavelength of 

λ=1.54Å, scanning between 30 - 40° 2θ to examine primary ZnO (100), (002), and (101) orientation 

peaks (Figure 1-6).  Electron microscopy and Energy-Dispersive X-ray Spectroscopy (EDS) were 

carried out with a JEOL JSM-6460 LV scanning electron microscope. 
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2.2.1.  (Project A/B) – Solution Stabilizer, Aging & Massloss 

This experiment was designed to simultaneously determine an ideal stabilizing agent, and to better 

understand the role of solution aging in the sol-gel process. Literature indicated that a stabilizer 

chemical with a primary amine group (a terminal NH2) was an important additive, “act(ing)… as a 

base and a complexing agent”[16].  It was observed early in the project that the additive also 

significantly aided in dissolution of the zinc salt in alcohol solutions.  Initial trials used diethanolamine 

(DEA) as stabilizer, but Znaidi’s review suggested monoethanolamine (MEA) may be sterically 

preferable as a bidentate ligand both in chelating (Figure 2-3a) the Zn ions and bridging (Figure 2-

3b,c) them to one another in the initial formation of the gel colloid.  All solutions in this experiment 

were made in duplicate, one with DEA as stabilizer, the other at higher concentration of ZnAc with 

MEA as stabilizer. 

 
Figure 2-3.  Various schema of zinc bridging with ligand stabilizers. a) MEA chelating zinc ion as a bidentate ligand. b) 
MEA acting as a bridging ligand in the partial polymerization of the gel. c) DEA likewise acts as a bridging ligand but is 
sterically hindered from chelating with a single zinc ion. 

 

The precise mechanism of gel formation is not completely agreed upon in literature [15, 20], owing 

largely to the fact that many distinct hydrolysis, condensation, chelation, and complexing reactions are 

occurring simultaneously in both equilibrium and competition with one another [31]. At this early 

stage, it was unclear to the group exactly how the aging process affected the final quality of thin films, 

and whether gelation could be caused by evaporation of solvent in the forming Zn matrix.  Early 

attempts at sol-gel synthesis indicated viscosity of the precursor solution may play a role in the 

thickness of deposited layers, which in turn may affect the quality of the final film. 
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The protocol devised for this experiment tested evaporation of solvent by allowing one solution 

to age covered only by a permeable tissue paper, one control solution sealed with parafilm, and one 

solution sealed for 24 hours, then uncovered and allowed to evaporate.  Each solution was then 

deposited onto glass slides after 18, 24, 42, and 48 hours, as shown in Table 2-2. 

Experimental 

Aged 
DEA-Stabilized MEA-Stabilized 

Covered Uncovered 
Covered for 

24-hours 
Covered Uncovered 

Covered for 
24-hours 

18 hrs A.1.1 A.2.1 – B.1.1 B.2.1 – 
24 hrs A.1.2 A.2.2 – B.1.2 B.2.2 – 
42 hrs A.1.3 A.2.3 A.3.3 B.1.3 B.2.3 B.3.3 
48 hrs A.1.4 A.2.4 A.3.4 B.1.4 B.2.4 B.3.4 

>48 hrs A.1.5 A.2.5 A.3.5 B.1.5 B.2.5 B.3.5 
Table 2-2.  Project A/B matrix of variables.  Two major trials consisting of different stabilizers (A & B) are treated 
identically by aging time and how they are covered. 

 
DEA-stabilized precursor solution was prepared by dissolving ZnAc (Zn(CH3COO)2·2H2O; 

Sigma-Aldrich) in anhydrous ethanol (C2H5OH; Sigma-Aldrich) to a concentration of [0.5M], stirred 

magnetically while DEA was added dropwise until ZnAc fully dissolved, yielding a ratio of stabilizer 

to salt (‘r’ value, defined as [additive]/[Zn2+],) at approximately 1.  MEA-stabilized solution was 

prepared identically, using MEA instead of DEA, and at a Zinc concentration of [0.75M].  Solutions 

were covered and mixed for 1 hour on a 60°C hot plate.  Solutions were then each split into three 

~15mL aliquots, weight of each recorded, covered as described above, and aged 18 hours at room 

temperature. 

The first batch of 18-hr aged slides were processed by dropping 1-3 drops of each solution on a 

respective 1x1 inch glass microscope slide, cleaned with detergent and DI water.  Each sample was 

placed directly into a 250°C tube furnace for 1 hour, then removed and allowed to air cool.  

Subsequent samples were made by repeating this process at 24, 42, and 48 hours of aging.  Sample 
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flasks were weighted before and after each deposition event to track evaporation of solvent as mass 

loss, adjusted to account for mass loss from drop-coat. 

Results 

Processed slides appeared cloudy with brown and yellow discoloration.  At the time of the 

experiment, our analysis of XRD spectra was somewhat qualitative and subjective, focused on finding 

improvement in intensity and narrowing of peaks.  Given the preliminary nature of this experiment, 

extensive and rigorous analysis has not been carried out, instead screening for commonalities and 

correlation between shared variables. 

Comparing DEA- and MEA-stabilized solutions, we tend to see more consistent (002) preferential 

peak intensity in MEA-stabilized samples (Figure 2-4, top), with (002) peak generally twice as intense 

as (100) and (101).  In contrast, samples from the DEA-stabilized solutions were inconsistent in peak-

intensity and ratios, rarely showing (002) preference, sometimes exhibiting approximately equal peak 

intensities or ratios more closely matching powder diffraction ratios (Figure 2-4, bottom). 

In comparing samples by aging time, some correlation in peak intensity and preferential 

orientation ratio was observed between each of the stabilizers’ solutions separately.  For DEA-

stabilized samples, both covered and uncovered solutions’ samples found the 18-hour aged trials to 

be superior in intensity and (002) preference (Figure 2-5, bottom), while MEA-stabilized samples 

indicated 48-hour aging to be superior in intensity and preferential peak ratio (Figure 2-5, top). 
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Figure 2-4.  XRD spectra of covered MEA- and uncovered DEA-stabilized samples.  MEA-stabilized (top) samples 
show superior 002-peak orientation to DEA-stabilized samples (bottom). 
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Figure 2-5.  XRD spectra comparing all solutions, aged 48-hours and 18 hours.  In general, we see improvement to 
peak intensity in 48-hour aged samples (top), but generally better (002)-ratio in 18-hour aged (bottom) samples.  
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2.2.2.  (Projects D & G) – Preliminary Doping Attempts 

While the precise processing parameters for fabricating ZnO thin films had not been optimized 

to ideal specifications at this point, the major encumbrances to successful ZnO synthesis had been 

remedied, and attention shifted to achieving proof-of-concept in doping.  Having identified silver as 

the preferred dopant element, the next milestone was to determine a solutions-chemistry method of 

incorporating silver into the sol-gel process. 

Continued literature review revealed successful attempts to achieve silver-doped ZnO thin films 

by Touam et al [32], and our first doping efforts focused on replicating this work.  Touam’s method 

relied upon the use of silver nitrate (AgNO3) as the dopant salt, to be incorporated stoichiometrically 

into the ZnAc solution.  Silver compounds are notoriously insoluble, with the exception of its nitrate 

and acetate salts, so only cursory efforts were made to investigate alternative elemental sources of 

silver.  Given the complex systems of equilibria (Figure 1-3) involved in the sol-gel process, it initially 

seemed intuitive to utilize silver acetate as a precursor, if only to limit the mere quantity of species 

involved and to reduce more complex equilibria interactions.  However, in consideration of silver’s 

dubious solubility in water, let alone our nonaqueous ethanol solvent, we determined that the risk of 

insolubility from the common-ion effect was less desirable than the inclusion of the additional nitrate 

species.    

An initial experiment was contrived in which two solutions – undoped 1.5M ZnAc; and 4 at% Ag-

doped (1.5M metal salt) – were deposited by spin-coating 12 layers on to 200°C glass slides, then 

annealed at 500°C for 1hr.  XRD analysis for these samples confirmed ZnO as per previous trials 

(Figure 2-5).  The doped sample shows broader, less intense peaks which are uniformly right-shifted 

by less than 0.1° 2θ.   
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Figure 2-6.  XRD spectra of Project D preliminary silver-doped and undoped ZnO films.  Doped films (black line) tend 
to exibit lower intensity and slight shift to the right compared to undoped ZnO films (blue line), although this 
formulation has resulted in less (002)-preference than other experiments. 

 
The apparent success of this initial doped solution offered proof of concept that AgNO3 could be 

incorporated into ZnAc solutions to yield ZnO thin films.  The composition of the solution was 

known to include elemental silver, so no attempts were made at this point to quantitatively verify the 

silver concentration.  Encouraged by this success, a more rigorous doping protocol was envisioned, 

continuing in the effort to replicate the Touam findings by adjusting dopant concentration as the 

primary variable.  Table 2-3 illustrates four solutions that were formulated, representing 1-4 at% silver 

concentration.  No additional undoped control sample was prepared in this case, as an undoped batch 

had just been produced and characterized. 

 

  



33 
 

Experimental: 

In the interest of focusing on consistency of silver dopant concentration above precise ZnAc 

molarity, this experiment was initially formulated with a standard AgNO3 solution, volumetrically 

separated, and ZnAc added gravimetrically to each sample subsequently, in proportional 

concentrations indicated on Table 2-3, above.  MEA stabilizer was added dropwise to each solution 

separately, measured by recording each solution’s mass change, and yielding r-values between 0.87 – 

0.98.  Solutions were covered and stirred with magnetic spinvane on a hotplate at 60°C for 1 hour, 

then transferred to lab drawer for 24 hour aging. 

 

Solution ID 
(5mL aliquots)  

mol AgNO3 mol Zn at% Ag:Zn 
Combined salt 

[SZO] M 

G1 3.850E
-05 3.718 E

 -03 1.035% 0.751 

G2 7.700E
-05 3.684 E

 -03 2.090% 0.752 

G3 1.155E
-04 3.647 E

 -03 3.167% 0.753 

G4 1.540 E
 -04 3.611 E

 -03 4.265% 0.753 

Table 2-3.  Project G doping concentration table.  Generally, the same molar ratio of zinc atoms (‘mol Zn’ column) are 
mixed with differing concentrations of silver (mol AgNO3 column) to yield different silver-zinc atomic ratios but nearly 
identical total metal salt molar ratio. 

 

Triplicate slide samples were engraved, cleaned with soap and water, bathed in dilute nitric acid, 

rinsed with DI water and ethanol, then dried in furnace at 200°C for 10 minutes.  Slides were removed 

from furnace and spin-coated (3000RPM, 30s) with 4 drops of solution per spin, then returned to 

furnace for appx. 10 mins.  Spin-coat deposition was repeated 4 times per slide, then samples were 

transferred to 500°C furnace, annealed for 2-3 hours, and quenched in ambient air. 

Results: 

While the intention of triplicating samples was to verify reproducibility, logistical issues in 

transferring so many samples between a heat-plate and small tube-furnace resulted in inconsistencies 

in annealing time/temperature variables.  The slides produced were mostly transparent, with moderate 
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cloudiness throughout the surface.  Unlike previously fabricated samples, these doped samples also 

had light blue-black discoloration throughout the film, observed to be darker and more prominent as 

dopant concentration increased.  This discoloration is understandable, as silver compounds are known 

to be a highly photoactive, and silver nitrate itself is commonly used to stain biological and organic 

samples.  Indeed, throughout the project, the silver staining was helpful in identifying doped samples, 

and in confirming that silver was present in the samples.   Due to other inconsistencies mentioned, 

samples for XRD and EDS characterization were selected based on optimal visual appearance and 

transparency. 

X-ray Diffraction confirmed the presence of ZnO as identified by the three ‘signature’ peaks 

between 30-40° 2θ.  As discussed in the previous chapter, the middle (002) peak represents the 

preferred orientation, and the ratio of (002) to other peaks is seen to decrease with increased silver 

concentration (Figure 2-7).   

 
Figure 2-7.  Comparison of XRD output for varying concentrations of silver-doped ZnO.  Dopant concentration 
increases by appx 1% from bottom (black line, 1%) to top (green line, 4%). 
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EDS (Energy-Dispersive X-Ray Spectroscopy) characterization was performed to verify 

existence of elemental silver, and to confirm the stoichiometric ratios.  While the EDS output did 

generally confirm increasing silver concentration within the samples, the calculated atomic percent did 

not align with theoretical dopant concentration, as shown in Figure 2-8.  This is partially due to EDS 

detecting elements from within the glass substrate, and partially due to the miniscule quantity of silver 

in the sample to begin with.  The 1%-doped solution, for example, is conceivably below the 

instrument’s detection limit.  

 
Figure 2-8.  EDS-detected elemental proportions of silver in doped ZnO thin films.  Blue line indicates EDS-calculated 
concentration of Zinc, indicating approximate error range. 
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2.2.3. (Project F) – Factorial Analysis of Aging and Time/Temperature 

Having successfully replicated a silver-doping method and confirming the feasibility of the 

project’s endeavor, we returned focus toward optimization of processing parameters for our ZnO 

films.  Initial attempts discussed in Section 2.2 determined that MEA was a preferable stabilizer to 

DEA, and that the solutions should rest at least 24 hours before deposition, but thermal processing 

variables of temperature and time were still poorly understood and not well documented in literature.  

The Znaidi review reports ‘pre-heat’ temperature ranges from room temperature up to 500°C, and 

‘post-heat’ treatments ranging from 150-900°C. 

Beyond simply determining the ideal times and temperatures for our process, we also sought to 

examine any causal factors that could correlate time/temperature variables with film properties.  To 

this end, a ‘high/low’ factorial analysis was devised to examine the roles of solution aging once again, 

pre-heat time and temperature, and post-heat time.  Given the limitations of our furnace at the time, 

we were unable to perform the post-heat processing at temperatures greater than 350°C.  (Sequentially, 

this experiment was performed prior to the doping experiment reported in the previous section, in 

which a furnace with higher temperature threshold was able to be used.) We have since determined 

higher post-heat processing temperatures to be the most important variable in fabrication of high-

quality films but were unfortunately unable to factor that into this experiment. 

A single standard solution would be made up, and eight samples prepared after solution aged 24 

and 48 hours.  Each iteration would test low and high values for pre-heat temperatures (220, 280°C), 

pre-heat time (30, 90 minutes), and post-heat processing (1, 3 hours) at 350°C.  Once again, in 

retrospect, broader ranges would likely have returned more significant and actionable data. 
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F24.LL.L 24 220 30 1 F48.LL.L 48 220 30 1 

F24.HL.L 24 280 30 1 F48.HL.L 48 280 30 1 

F24.LL.H 24 220 30 3 F48.LL.H 48 220 30 3 

F24.HL.H 24 280 30 3 F48.HL.H 48 280 30 3 

F24.LH.L 24 220 90 1 F48.LH.L 48 220 90 1 

F24.HH.L 24 280 90 1 F48.HH.L 48 280 90 1 

F24.LH.H 24 220 90 3 F48.LH.H 48 220 90 3 

F24.HH.H 24 280 90 3 F48.HH.H 48 280 90 3 

Table 2-4.  Project F time and temperature matrix. Sample coding sequentially indicates aging time, whether pre-heat 
temperature and time will be “hi or low”, and whether post-heat time will be high or low. 

 
Solution was prepared to our current SOP, 0.72M ZnAc in ethanol with an MEA r-ratio of 0.8, 

stirred at 60°C for 1 hour, then aged in the lab drawer.  Slides bathed in dilute nitric acid, washed with 

DI water, and rinsed with ethanol were dried at 220°C for 15 minutes, and spin-coated at 3000RPM 

for 30 seconds with 5-10 drops solution per coat.  Slides were transferred to 220°C and 275-300°C 

ovens respectively for approximately 10 minutes between each of five coats, then left in their 

respective ovens for 30 or 90 minutes per table 2-4, above.  Samples were removed from pre-heat 

furnaces and allowed to cool to room temperature, while post-heat furnace ramped to 350°C.  Samples 

were annealed for 1 hour at 350°C, then 1-hour samples were removed, and oven was mistakenly 

turned off, with the second set cooling-down with the oven.  These samples that should have been 

treated for a full 3 hours were re-annealed the next day for 3 hours at 350°C and air-quenched. 
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After the solution had aged 48 hours, the above process was repeated exactly as above, except that 

3-hour post-heat samples were removed after 3 hours and air-quenched.  Appearance of processed 

films is displayed in Figure 2-9, below: 

Results: 

 

 

 

 
Figure 2-9.  Appearance of slides produced in Project F.  Increased opacity is observed in longer-aged samples, but 
generally improved transparency for samples exposed initially to higher pre-heat processing. 
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Processed films were generally cloudier than past trials, although the yellow discoloration observed 

in many prior experiments was mostly absent from these samples, with the exception of those aged 

48-hours and pre-treated at 275-300°C.  Photographs of the output slides are shown in Figure 2-8. 

XRD analysis returned a host of complicated, seemingly counterintuitive and contrary results, 

which are analyzed and discussed at length in Chapter 2.7.  In general, samples aged 24 hours and 

initially dried at higher temperatures showed greater peak intensity and preferential orientation (figure 

2-10), whereas 48-hour aged samples tended to have lower intensity and poorer (002)-ratio (figure 2-

11). 

 
Figure 2-10.  XRD spectra of Project F samples aged 24 hours. Greater peak intensity and 002-preferential orientation 
are observed in these samples than 48-hour samples, and those with higher initial pre-heat temperature also seem to be 
preferable. 

 



41 
 

 
Figure 2-11.  XRD spectra of Project F samples aged 48-hours. These samples show generally less peak intensity and 
unequal (002)-peak preferential orientation. 
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2.2.4.  (Projects J & H) – Additional Heat Processing Parameters 

While Project F’s parametric analysis attempted to decode the causal factors behind time and 

temperature variation in the aging, pre-heat and post-heat processing of ZnO sol-gel, the results were 

inconsistent and inconclusive.  Owing partly to equipment limitations, the ‘high/low’ factorial method 

did not have range enough to offer much useful information leading to a standardized SOP. 

Having seen marked improvements in the quality of films produced when annealed in our new 

furnace capable of higher temperatures, our next trial focused on the pre-heat (drying) temperature 

while also further addressing solution aging as an interaction.  An additional procedure was carried 

out in an attempt to replicate findings by Natsume & Sakata [33], in which films were subjected to 

thermal annealing between each deposition layer, rather than a single annealing after all coats had dried 

under normal pre-heat conditions, as shown in Table 2-5. 

Experimental 

Age Expt. J Expt. H 

Pre-Heat Temp  70˚C 100˚C 150˚C 200˚C 80˚C 

24-hour Aged 
J.1.1-1 
J.1.1-2 

J.1.2-1 
J.1.2-2 

J.1.3-1 
J.1.3-2 

J.1.4-1 
J.1.4-2 

– 

48-hour Aged 
J.2.1-1 
J.2.1-1 

J.2.2-1 
J.2.2-2 

J.2.3-1 
J.2.3-2 

J.2.4-1 
J.2.4-2 

H.2.1-1 
H.2.1.-2 

Table 2-5.  Variable naming matrix for Projects J & H.  Additional experiments were carried-out but were not accurately 
recorded. 

 
 

Solution J was prepared per SOP to a ZnAc concentration of 0.75M and r-ratio around 1, mixed 

at 60°C for one hour, then aged.  Slides were washed in dilute nitric acid, rinsed with ethanol, and 

dried at 100°C for 10 minutes.  Deposition of 3-4 drops on spin-coater at 3000RPM for 30 seconds, 

then pre-heat treated at the temperatures above for 10 minutes, then repeated for total of four coats.  

All slides were then annealed together at 500°C for one hour. 
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Solution H was likewise prepared per SOP to ZnAc concentration of 0.75M and r-ratio of 

approximately 1.2, stirred one hour at 60°C and aged covered in lab drawer for 48hours.  These 

samples were prepared as above, but dried and pre-heat treated at 80°C for 10 minutes and annealed 

at 500°C for 20 minutes between each coat, for a total of five coats.  Although it appears that samples 

identified as H.1.1 through H.1.7 were also fabricated, records of what these trials represented were 

lost, so the only valid data are for the two samples noted above.  

Results 

In general, solutions aged 24-hours demonstrated superior preferred (002)-orientation ratio 

compared to 48-hour aged samples (Figure 2-12).  Of these 24-hour aged solution samples, those 

treated at 150°C showed highest peak intensities and (002)-preferred orientation, where samples aged 

at 200°C seemed to mirror PDF peak-ratios.  Solutions aged at lower temperatures also have 

significantly-reduced (100) and (101) peaks, although their overall intensities are greatly diminished. 

Samples from Project H yielded intense peaks and preferential peak ratios, indicating annealing 

between coats may be effective, but with no control sample or documentation of early trials, little can 

be positively deduced.  Findings from this experiment are further analyzed later in this chapter, and 

the method of annealing between coats is re-examined in Section 3.2.4. 
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Figure 2-12.  XRD Spectra of Project J Trials aged 24- (top) and 48-hours (bottom).  Of solution aged 24-hours, samples 
pre-heat treated at 150˚C (blue and pink lines) show preferred (002)-peak ratio compared to samples treated at higher and 
lower temperatures. 
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2.3. Analysis and Discussion 

The experiments described in this chapter are representative of a profound and rather unique 

learning process that our working group was embarking upon, in a field of wet-chemistry processing 

that none of us were familiar with, and we had few sources of experiential knowledge other than 

literature review.  While many masters’ research projects are performed under the strict control and 

direction of a faculty advisor, Dr. Abu-Zahra gave us wide berth in choosing the subjects, methods, 

and direction of our research. This academic freedom has been subjectively greatly beneficial as a 

pedagogical approach for learning research methods such as scientific process, experimental design, 

project management, and countless other lessons, although the tradeoff for this style of advising was 

that we did not have access to a subject-matter expert, and therefore had no easy way to debug stalled 

or failed experimental obstacles. 

Given this lack of experience and know-how, many of the hard-won conclusions and answered 

questions of the first half of this project were later found to be answered in extant literature.  While 

this portion of the project did not, in fact, produce much by way of new findings or novel results, 

many of our experimental results may now serve to confirm previous findings, and more importantly, 

have given us the experience to establish a standard operating procedure of best practices for our 

application, from which further experimental activities have been based. 

In the interest of completeness, comparative X-ray Diffractograms for all experiments discussed 

in Section 2.2 have been included in Appendix B.  They may be referenced in the discussion herein 

but are generally not re-printed. 
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2.3.1. Precursor Solution 

Solvent 

The use of alcohol solvents (defined as organics whose primary functional group is one or more 

terminal hydroxide, e.g. R-OH,) in ZnO sol-gel chemistry has been widely discussed, both by the 

Znaidi review and countless other studies which do not warrant specific reference.  In general, primary 

alcohols’ most important attribute in sol-gel solubility is its dielectric constant, which is largely 

dependent on the number of carbons in its organic chain.  Given the ubiquity and low-toxicity of 

ethanol compared to methanol, it is by far the most used solvent, and generally considered the most 

optimum for use in this sol-gel chemistry.  The only other solvent reported in the review was 2-

methoxyethanol, also called ethylene glycol monomethyl ether (EGME, Table 3-6), which is not 

generally used because of its high toxicity [16].  In Section 3.2.5, we report on the use of propylene 

glycol methyl ether (PGME,) an alternative to EGME proposed by Tseng et al [34].  Meanwhile, the 

results of our experiments in Chapter 2 give us no reason to propose a solvent other than ethanol for 

use in our SOP. 

 
Stabilizer / Ligand 

The Znaidi review also goes in to significant detail concerning the use of amine ligands as 

stabilizers in the systems of equilibria that take place within the sol.  While the review does mention 

some publications in which other additives are used to modify the pH of the solutions, by far the most 

common additives used were DEA and MEA amine ligands (see Figure 2-3), and these were the only 

additives investigated in our experiments. 

Project “A/B” discussed in Section 2.2.1 is the only applicable experiment to our determination 

of utilizing MEA exclusively as our stabilizing ligand.  As shown in Appendix B: Experiments A/B, 
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comparison of XRD output from samples treated with equal molar ratio of DEA and MEA, those 

treated with MEA showed significantly improved (002)-peak ratio to other crystal reflection planes, 

where DEA samples generally showed peak ratios equal to the PDF literature data.  These findings 

remain consistent despite aging and covering (evaporation, mass-loss) treatments, which 

demonstrated changes in peak intensity, but not preferred orientation ratios throughout the study. 

Our findings are consistent with Znaidi’s previous work and summary conclusions in the review 

document, and our SOP has been adjusted to include the use of MEA as stabilizing ligand. 

The molar ratio (so-called ‘r-value’) of the amine ligands to Zn(II) ions is broadly reported between 

0-2 in the review.  While one Znaidi publication reports unsurprising improvement in (002)-

orientation by increasing MEA r-ratio from 0 to 1 [15], another notes that (002)-face dominates XRD 

spectra as the r value is moved toward 2:1 MEA to zinc.  Intuitively, we can consider that in a perfect 

solution system, MEA would act 50% as a bidentate ligand with a 1:1 zinc partnership, and 50% as a 

bridging ligand between two zinc ions (see Figure 2-3).  Imagining a Boltzmann distribution of such 

a system, we would see the peak at around 1.5 MEA to Zinc.  Additionally, as amines are generally 

basic in nature, solution pH tends to increase with r, which was shown by Sagar et al to inhibit 

uncontrolled hydrolysis reactions and promote ZnO formation [35].  While nearly all experiments in 

this study utilized a 1:1 r-value, we propose that a value between 1.5-2 is more appropriate for future 

SOPs. 
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Doping 

As we approached early attempts at doping, including Experiment D (Section 2.2.2), we were 

unaware of any previous attempts to implement silver doping in sol-gel chemistry.  However, 

continued literature review showed us that Touam et al had apparently achieved success in using sol-

gel to synthesize silver doped ZnO (SZO) thin films in atomic concentrations from 1-5%, but chose 

to focus on the effects of doping on resistivity of films, rather than p-type character [32].  The Touam 

paper identified a number of other studies that carried-out silver doping in ZnO through sol-gel 

processing, although none of them confirmed p-type character either [36]–[38].  Touam’s justification 

for focusing on resistivity rather than p-type character was explained by indicating that the studies, 

incorporating various SZO fabrication methods[36]–[56], all tended to focus on p-type character, 

although closer inspection of these papers indicate only four studies attempting to confirm p-type 

conductivity [37], [39], [42], [51], with only one study making a compelling case that it was achieved 

[51]. 

In Project G’s effort to replicate the Touam findings, dopant concentrations of 1, 2, 3, and 4 

atomic percent silver to zinc were attempted.  As shown in Figure 2-7, samples doped with 2 at% 

silver showed highest peak intensity and (002)-ratio.  This finding conflicts with Touam’s observation 

that, “peak intensities of the Ag-doped ZnO thin films increase when silver content were increased 

from 1 to 5 at%.” Since Touam’s actual XRD values are not available, a simplified peak height 

comparison was performed by approximating baselines for each XRD signal, then measuring peak 

height (in pixels) for (002) and (102) peaks, as shown in Figure 2-13.  These peak intensities are 

tabulated and compared in Table 2-6, and degree of preferred orientation calculated per the Lotgering 

method [57]. Essentially, the proportion by which the (002) peak intensity is greater than the sum of 

all crystalline peaks (in this case, only (002) and (102), as the (100) cannot be discerned,) are compared 
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to the “Pure ZnO” intensities.  This method of quantification paints a very different picture than 

Touam’s explanation, indicating 2at% silver doping offers the greatest improvement in crystallinity 

and preferred orientation, and in agreement with our findings. 

  

Figure 2-13.  Simplified XRD peak intensity of Touam's findings.  Yellow baselines were drawn and arrows marked “002 
intensity measurements” were drawn from (002) peak to baseline for each XRD spectra shown.  (102)-peaks were 
measured similarly and evaluated in Table 2-6. 

  
102 peak 
intensity 
(pixels) 

102 peak 
%relative 
intensity 

002 peak 
intensity 
(pixels) 

002 peak 
%relative 
intensity 

Proportion 
002 

intensity 

Degree of 
002 

orientation 

Pure ZnO 
(standard) 

124 100% 324 100% 0.723214 0% 

1% Ag 147 119% 558 172% 0.791489 25% 

2% Ag 146 118% 578 178% 0.798343 27% 

3% Ag 154 124% 529 163% 0.774524 19% 

4% Ag 142 115% 423 131% 0.748673 9% 

5% Ag 165 133% 612 189% 0.787645 23% 

Table 2-6.  Touam's peak intensity ratios calculated by intensity rather than area under curve, but otherwise following the 
formula laid out in Section 3.3.1. 
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During the experimental period of this phase of the project, attention was placed on rapid 

development of our SOP, utilizing the quick and simple process of XRD evaluation to make decisions 

on how to proceed – all with the assumption that more rigorous characterization procedures would 

be developed as the project progressed.  Those more advanced characterizations have indeed taken 

place as we’ve moved to the later phase (Chapter 3), but given the advances made in the later stage, 

we have not considered it necessary to go back and characterize early doping attempts further.  Given 

the relative ease with which silver was added to sols, and our process’s conformation to literature on 

the subject, we consider the procedure discussed in Section 2.2.2 to be successful in its doping 

endeavor.  Chapter 3 further addresses p-type conductivity, so that aspect is considered beyond the 

scope of this optimization effort. 

Concentration 

Concentration of the precursor salt in the sol is suggested by the Znaidi review to be highly 

influential on the degree of c-axis orientation, although values reported in it range from 0.02 – ~2 

mol/L; most literature report using 0.75M.  While the review generally shows concentrations between 

0.3 – 0.6M to cause preferential c-axis orientation and higher (~1.3M) concentrations to yield a-axis 

(100) orientations, these reports are significantly confounded by solution aging variables [16]. 

Experiments performed after A/B stabilizer trials and baseline doping (expt. D) were all set to 

0.75M precursor salt concentration, allowing the majority of experiments in this chapter to be 

compared to one-another, independent of the concentration variable.  Later-stage literature review 

ultimately drove us to modifying the SOP toward lower starting concentrations[58], also discussed in 

Chapter 3. 
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Aging 

Among all of the experimental variables examined, solution aging parameters were the most 

difficult to individuate from other parameters or determine as concrete causal factors in film quality 

and are also the least understood in literature.  For better or worse, solution aging was considered as 

a factor in many of our studies, although this is partially a matter of logistics: there is a limit to the 

number of samples that can be deposited and treated in one day, so many of our studies took place 

over more than one day.  In these cases, solution aging time was considered not so much as a causal 

factor, but a relevant changed variable to be considered. 

The Znaidi review identifies a number of studies in which conflicting information is reported on 

the effects of aging on the preferential axis of deposited films, although in some cases these conflicting 

findings come from studies using significantly different chemical systems than the 

ZnAc/MEA/Ethanol system we prefer.  In Znaidi’s own studies, preferential c-axis orientation was 

observed in most concentrated and dilute systems, but when dilute (0.05M) solutions reached 72-hour 

age, (100)-peak reflection took over and individual square crystals were observed on the surface of 

films [15], [21].   

The two primary experiments we conducted that focus on solution age as a significant factor in 

film quality are A/B (Section 2.2.1,) in which aging is contrasted with stabilizer identity, and 

experiment F (2.2.3,) in which aging is considered alongside heat-processing parameters, discussed 

below.  Diffractograms from experiment A/B are compared by aging time in Appendix B-2AB, pages 

4-6.  Comparison of these graphs show (002)-preferred growth at 18-hours, followed by less intense, 

but still generally improved (002) ratio at 24 hours.  The solutions aged 42 hours seem to revert to 

peak ratios more closely matching PDF values, while solutions aged 48 hours and more then display 

(002)-preferential peaks and greater intensity.  The discrepancy in the 42-hour sample may be related 
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to systemic experimental error at that stage of the experiment, or it may speak to reaction kinetics in 

the sol aging process.  Further comparison of 24- to 48-hour aged solutions can be seen in Appendix 

B-2F, page 1, where all heat treatment variables are compared on separate graphs.  Since successful c-

axis oriented films have been repeatedly produced using solutions aged from 24-72 hours in these and 

other experiments, and literature does not seem to definitively indicate aging being of greater 

importance than stabilizer and solvent concentration, no further attention shall be paid to this factor, 

other than to include in the SOP that solutions be aged at least 24 hours prior to deposition, and be 

used no later than 72 hours after. 

Other 

Finally, the only other solution-related variables that were considered in this phase of the project 

were viscosity and mass loss in Project A/B.  Given the low viscosity of organic solvents and our 

knowledge at the time of the gelation mechanism of the sol-gel, it seemed intuitive that the change in 

viscosity of the sol during the aging process may be a factor in its ability to adhere to the substrate, 

ultimately effecting the quality of the films.  With no easy way of measuring the viscosity of a solution 

before deposition, we recorded the change in mass of covered and uncovered solutions in order to 

track evaporation of solvent.  Analysis of the XRD spectra from this experiment (Appendix B-2AB) 

does not reveal correlation between covered and uncovered solutions, and preferential orientation or 

film quality: in some cases, uncovered solutions seem to have improved certain samples, while other 

cases seem to cause deleterious effects in XRD peaks (e.g. 24-hour aged Uncovered DEA treatment).  

Later attempts to thicken sols with viscous but presumably miscible alcohols such as ethylene glycol 

resulted in poorly-formed films, and this line of inquiry was terminated.  SOP has since been to keep 

solution flasks covered while storing and aging. 
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2.3.2. Processing Parameters 

Spin-coating 

Spin-coating of material precursor onto substrate media is a simple and easy deposition method 

used ubiquitously in thin films fabrication.  While other processes such as dip-coating and spray 

methods are also used, they tend to be more effective in scaled application and industrial use, where 

spin-coating allows rapid application and process progression.  The two major variables in spin-coat 

processing are RPM of the spinning chuck, and duration of the spin process.  While manipulation of 

these variables was attempted in early trials, continued literature review indicated that spin conditions 

of 3000 RPM and 30s spin times were nearly universal in ZnO sol-gel processing.  The only pertinent 

factor in modification of spin parameters is the relation between film thickness (t) and the angular 

momentum (ω) of the spinning substrate, 𝑡 ∝ (√𝜔)−1 [59].  We concluded that our SOP would use 

the parameters above in all trials and experiments unless film thickness was to be modified. 

Slide Cleaning 

While not the subject of a specific experiment, slide cleaning procedure developed as the project 

progressed, from simple soap and water cleaning to acid bath and various drying techniques.  One 

significant discovery was that slides physically scrubbed with just gloved fingers in Alconox soap-

water prior to acid wash and drying delivered significantly improved film clarity and overall quality.  

Additionally, slides dried at around 200°C either in an oven or on a hot-plate, and then coated 

immediately at this elevated temperature also tended to result in improved film quality. 

Pre-Heat Treatment 

As discussed in Section 2.2.3, heat processing steps were initially a source of great confusion, given 

the wide temperature ranges reported.  Znaidi points out a fundamental maxim that pre-heat (drying) 
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temperatures need to be above the BP of the solvent, and suggests that pre-heat treatment at 300°C 

is appropriate for 2-methoxyethanol (BP: 124°C) solutions [16].  In a set of experiments with 

isopropanol as a solvent (BP: 82.6°C), Raoufi and Raoufi point out that the thermal decomposition 

of ZnAc occurs at 240°C, and therefore use 250°C as their pre-heat temperature [60]. Similarly, Kim 

et al. showed optimum (002) ratio at 275°C pre-heating with 650°C post-heat conditions [61]. Ethanol 

has a significantly lower BP (78.37°C), indicating that temperatures above 100°C but below 300°C 

may be appropriate. 

The technical deficiencies of experiment F was discussed in Section 2.2.3, and while not all of the 

experiment’s results are useful, examination of the samples pre-treated at 280°C generally show greater 

peak intensity and better (002)-ratio than those treated at 220°C (Appendix B-2F, page 2).  No 

significant differences in film quality can be seen between the samples treated for 90 minutes versus 

30 minutes (Appendix B-2F, page 3,) which makes sense when considering that the pre-heat treatment 

is intended to remove by evaporation or decomposition, solvents and organics in the deposited layer: 

glass substrates and thin films will reach equilibrium temperature with the oven or heat plate within 

minutes of exposure to the heat source, and additional time at this comparatively low temperature will 

not result in any further improvement.  While higher pre-heat temperatures may be advisable, a 200°C 

hot plate was found to be sufficient to evaporate solvent in the majority of our experiments and 

continued to yield high-quality samples in later-stage experimentation. 

Post-Heat Treatment (Annealing) 

Continuing on the analysis of Experiment F, we find that the limitation of our furnace at that time 

essentially renders experimental findings on this subject useless.  Literature review and subsequent 

experiment has revealed that higher-temperature processing steps are almost always preferable.  (N.b. 

sintering, annealing and carburizing, are terms sometimes used interchangeably in the context of sol-gel 
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post-heat processing, although other sources identify them as distinct and separate processes [34].)  

The majority of studies cited as most similar to our process reported optimized (002)-orientation at 

500°C, including the Raoufi study that showed film quality declining at 600°C and above [32], [34], 

[60], [62]–[64].  In subsequent experiments, certain substrates were found to deform at temperatures 

above 550°C, so the SOP generally calls for post-heat treatment between 500-550°C.  
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2.3.3. Conductivity and Surface Morphology 

Throughout this phase of the project, our ultimate goal was to synthesize conductive ZnO thin 

films, and to achieve p-type conductivity in doped samples. While some electron microscopy was 

carried out in the course of this part of the project, examination of films’ surface features and 

morphology was not yet part of the research paradigm, and only surfaced as a topic of interest as 

conductivity was explored.  Beyond what is published herein, many months’ work of characterization 

efforts and subsequent experimental trials were devoted to film conductivity, including informal 

multimeter probing, 4-point probe testing, and modification inclusion of conductive elements into 

film fabrication techniques.  None of these efforts achieved their purpose in confirming p-type 

character, or in showing our films to be conductive at all. 

Our primary method of testing films was with a 4-point probe (Figure 2-14,) in which two outer 

electrodes apply a voltage between them, causing a current to flow within the sheet surface.  The two 

inner probes measure voltage being passed between them, by which sheet resistivity is calculated as a 

function of these voltage and current measurements between electrodes [65].   

 
Figure 2-14.  Sheet resistivity measurement by four-point probe.  As described above, potential is measured across a line 
between which current is already being passed (a), a more compact apparatus is shown (b). Source: Hasegawa [66] 

 
While 4-point measurement is generally considered a sound method for quantifying sheet 

resistivity, it measures current laterally across the film.  As discussed in Section 1.4, conduction in 

ZnO occurs through the c-axis, which is oriented perpendicular to the substrate plane.  It may be that 
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surface conductivity is simply the wrong method for quantifying the conductivity of c-axis oriented 

ZnO thin films.  Additionally, ZnO is an intrinsic wide-gap semiconductor: its native character should 

more closely resemble an insulator, and theoretically, it would not be conductive unless assembled 

into a p-n junction.  Despite these considerations, Touam’s study – one we repeatedly sought to 

replicate – reported successfully 4-point measurements below 0.05 Ω·cm on doped and undoped ZnO 

thin films. 

With our inexperience in electronic characterization techniques and only superficial input from 

electrical engineers during this project, it is possible or even likely that our failure to confirm 

conductivity in our samples was due to a trivial but fundamental error in our characterization efforts.  

Indeed, with so many other indications that our synthesis technique was working, it seems unlikely 

that we were somehow able to fabricate films that have all of the characteristics of ample ZnO thin 

films in literature, with our films’ lack of conductivity being the only nonconforming property.   

These failures led us to investigate other potential sources causing the films to be non-conducting, 

and ultimately to our observation of cracking, peeling, and other surface features revealed by SEM 

analysis.  Remediation of these surface features became the main impetus behind the processes and 

breakthroughs of Chapter 3. 
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2.3.4. Final SOP 

The SOP was developed as an ongoing process through all the experiments and analyses discussed 

in this chapter and was, therefore, a ‘living document’ through much of the process.  The following 

represents the version of the SOP at the time of this final analysis, so subsequent chapters may not 

have followed this procedure exactly.  This final procedure combines confirmed findings from the 

analysis of experiments carried out in Chapter 2, from literature review, and from learned best 

practices.  While this particular SOP is scaled toward small-volume (5-10mL) solutions, it is easily 

scaled with simple stoichiometry and larger glassware.  For example, larger solutions would be 

necessary to accurately measure silver nitrate for exact dopant concentrations, as single miligram 

portions are difficult to work with. 

Solution: All lab glassware is cleaned with Alconox, rinsed with DI water, and dried with 

acetone.  Generally, 25-mL Erlenmyer flasks are used as the reaction vessels, to which 5mL 200-proof 

ethanol is added volumetrically.  To this, 0.823g zinc acetate dihydrate is added to a concentration of 

0.75M*.  Reaction flask is placed on balance and tared, then MEA is added dropwise to appx 0.45g, 

(r-ratio ≈ 1.5).  A magnetic spinvane is added, and if solution is to be doped, appx 0.001g silver nitrate 

is added (appx 1.5at% silver:zinc), then flask wrapped in foil to prevent light exposure.  Flask is capped 

and placed on 60°C heatplate for 1 hour under magnetic stirring.  Solution is transferred to a room-

temperature lab drawer for aging at least 24 hours.   

Substrate: Soda-lime glass slides (or other substrate) are cut, engraved, washed and scrubbed by 

hand with Alconox solution, rinsed with DI water, then placed in appx 3M nitric acid bath overnight.  

Slides are carefully removed from acid bath and rinsed in DI water with gloved fingers.  Slides are 

then picked up with tweezers and rinsed first with cleaning-grade ethanol or isopropanol, then acetone.  

Slides are arranged deposition side up on a freshly foil-covered hot plate at 200°C for 15 minutes. 
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Spin-coating: Slide is carefully placed on spin-coater with clean tweezers and vacuum turned on.  

Spin coater is started at 3000rpm for 35 seconds, and no more than 1-2 drops are dropped appx 2cm 

above spinning substrate at t=5s.  Slide is carefully removed and immediately returned to hot plate, at 

which point additional samples may be run.  After at least 10 minutes have passed since first slide was 

returned to hot plate, deposition process is repeated to 6 total coats (or as determined by experiment). 

Post-heat Treatment: Upon completion of appropriate number of coats, slides are transferred 

from aluminum foil boat to furnace-safe ceramic plate and placed in 500°C furnace for 2 hours or as 

long as prescribed by experiment.  At the end of annealing time, furnace is switched off and allowed 

to cool to ambient temperature with slides inside. 

* Subsequent literature review [58] has led us to favor 0.25M concentration for optimal (002)-

orientation.  
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2.4. Conclusion 

Through meticulous experimentation, trial-and-error, and extensive literature review, best 

practices and optimized Standard Operating Procedure for sol-gel synthesis of ZnO thin films were 

established, and fine-tuned for use in doping experimentation.  While many experiments were flawed, 

and some altogether unsuccessful, the process of working through them and analyzing their results 

was ultimately instructive in familiarizing our group with procedural practices and pitfalls.   

While silver doping was achieved and confirmed, p-type character and film conductivity were 

never successfully confirmed and remain a point of continued interest.  Analysis and manipulation of 

films’ unusual surface features are proposed for future study. 

Although no fundamentally new or novel findings were documented, confirmation and findings 

contrary to other researchers’ conclusions may be helpful and worthwhile in academic interest. 
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3.1. Introduction 

An optimized methodology for synthesis of silver-doped ZnO thin films through sol-gel 

processing has been established in Chapter 2.  However, in comparison to undoped control samples, 

doped films produced by this process developed unexpected morphological features believed to 

contribute to unexpectedly high sheet resistivity.  In addition to exploring the role of substrate identity 

in preferential crystal formation, improvised fabrication techniques were developed in efforts to 

improve preferred c-axis orientation of doped and undoped ZnO films.  Heretofore unexplored 

surface wetting and layering techniques – and the incorporation of silver nanoparticles (AgNP) in 

these layering processes – were attempted, resulting in extraordinary improvement in the preferred 

(002) crystal orientation to expected polycrystalline peak ratios. 

As progress was made in the optimization of doped and undoped film fabrication methods 

discussed in Chapter 2, results became more standard and repeated.  Two major trends in surface 

morphology were observed from electron micrographs: ripples (Figure 3-1, Left), and ‘cracking’ 

discontinuities (Figure 3-1, Right).  These aberrant features were observed in both doped and undoped 

samples but seemed to be more prevalent in doped samples.  Concurrently, samples’ XRD spectra 

continued to return relatively short, broad peaks, indicating less-than-ideal crystallinity, and extempore 

4-point tests suggested much higher sheet resistivity than expected.  It was hypothesized that these 

unexpected morphologies may have been contributing to the unsatisfactory characterization results, 

and efforts were undertaken to mitigate their occurrence. 
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Figure 3-1.  Aberrant surface morphology of Ag-doped ZnO thin films.  (Left) Electron micrograph of continuous 
‘rippling’ throughout sample at 250X and 1500X (inset). (Right) Discontinuous rippling, areas of smooth continuous 
surface, and visible cracks seen in certain areas (1000X) of other films. 

 

 As these morphologies were investigated both experimentally and in literature review, improved 

understanding of the causes of these surface features was revealed, including the revelation that the 

‘rippling’ shown above is a common occurrence, sometimes cited as being beneficial to film 

conductivity, but also disruptive to semiconductor properties as discussed in Section 3.3.3. 

These efforts to reduce cracking and discontinuities resulted in the development of new and 

heretofore unreported surface wetting techniques that have made dramatic improvements in film 

crystallinity and c-axis preferential orientation. 
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3.2.  Experimental Narrative: Process, Methods, and Immediate Results 

In following with the previous phase of this project outlined in Chapter 2, each major experiment 

was assigned a letter to distinguish its process and results from other experiments.  This system was 

reset at “A,” and each iteration is generally now referred to as an “Experiment” rather than “Project” 

for this second phase of the project. 

The cracked and rippled appearance of these unexpected surface features evokes images of dried 

riverbeds and the concept of rapid or uneven drying: the unequal contraction of one surface over 

another.  In earlier experiments, exhaustive attention had been given to drying and cooling variables, 

taking into consideration times, temperature ramps, atmosphere, and various other factors that 

ultimately failed to show any significance in the quality of films produced.  A factor that had not been 

considered was the thermal expansion differential between the ZnO film and substrate material.  

Although the Znaidi review indicated some variation in substrate identity from one study to another, 

the primary property addressed was crystallinity of the substrate itself, leading to epitaxial growth in 

films.  Therefore, little attention had been paid to the substrate’s Coefficient of Thermal Expansion 

(CTE) in literature, and we felt this warranted study. 

Visible cracks on the film are obvious impediments to electron mobility, and the ripples, we 

supposed, might also serve to interrupt, or at least extend the electron free path, leading to increased 

resistivity.  As another possible mitigation measure, we devised to incorporate silver nanoparticles 

(AgNP) within the sol, expecting that particles of an appropriate size to fill the ‘gaps’ between cracks 

or ripples may serve to improve electrical conductivity of the films.  The Experiment A, examining 

use of mica substrate and investigating proof of concept for the incorporation of AgNP into thin films 

is described in Section 3.2.1. 
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Following the apparent success of the AgNP ‘layered’ deposition process between ZnAc coats 

and observation of significant changes in morphology on differing substrates, further experimentation 

was required to confirm these findings.  Additional substrate media, including low-CTE Borosilicate 

glass were acquired to more thoroughly investigate the effects of substrate identity on surface 

morphology.  Given the purpose of this Experiment B in confirming previous findings, and in an 

effort to curb confounding externalities, the fabrication SOP was modified to more stringent 

processing parameters, including processing in a glovebox under inert atmosphere, along with a 

greater number of deposition coats with a lower-concentration of precursor solution, detailed in 

Section 3.2.2. 

Having shown that application of AgNP dispersion between ZnAc precursor sol coats had a 

beneficial effect on both preferential orientation and sheet resistivity – as well as reducing cracking 

and rippling surface features – it was necessary to determine whether the presence of inter-layer 

nanoparticles was the causal determinant in improvement, or if the ethanol-diluted dispersion was 

merely acting as a wetting agent, ‘smoothing’ each coat between sol layers.  Experiment C in Section 

3.2.3 describes a protocol comparing controlled deposition of doped and undoped sol in untreated 

coats versus inter-layer deposition of both dilute NP dispersion and plain ethanol between coats. 

In yet another effort to confirm layering and wetting process findings, an additional experiment 

was devised to examine the effects of inter-layer wetting by solvents of varying viscosities and 

polarities.  Given these solvents’ differing properties, additional post-heating trials were introduced to 

observe the effects, if any, of high-temperature annealing between deposited layers.  Experiment D, 

explained in Section 3.2.4, once again confirmed the positive effect of AgNP deposited between 

precursor coats, and offers further insight into the dynamics of wetting, drying, and annealing in ZnO 

sol-gel synthesis. 
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Finally, Experiment E was envisioned late in the writing stages of this project to investigate one 

further solvent, and to use factorial analysis to confirm the effects of the novel wetting method, 

described in Section 3.2.5. 

Unless otherwise indicated, all samples were characterized by X-Ray Diffraction (XRD) using a 

Bruker D-8 Discovery instrument, using a CuKα1 source at 40kV and 40mA, with a wavelength of 

λ=1.54nm, scanning between 30 - 40° 2θ to examine primary ZnO (100), (002), and (101) orientation 

peaks, as defined by Powder Diffraction File (PDF) 00-003-0888, and generally included in 

diffractograms. Electron microscopy was carried out with JEOL JSM-6460 LV scanning electron 

microscope, and UV-Visual Spectroscopy was performed with OceanOptics SD2000 spectrometer, 

and Spectragryph software[67]. 
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3.2.1. (Experiment A) – Incorporation of Silver Nanoparticles and Use of Mica 

Substrate 

The goals of the initial experiment were to determine whether the coefficient of thermal expansion 

(CTE) of the substrate affected surface features of the final film, as well as to incorporate silver 

nanoparticles into the sol-gel matrix and determine what, if any effect this would have on surface 

morphology.  As control substrate, soda-lime glass was used, and experimental substrates were silicon 

metal wafer and mica slide.  Mica is a glassy silicate mineral with a linear CTE of appx. 3 × 106 

m/(m·K)[68], which is relatively close to that of ZnO (4.3 – 5.6 × 106 m/(m·K) [69]. 

While five different sol-gel treatments were devised for each substrate, only four were used, as 

shown in Table 3-1 below: undoped ZnAc solution as control group; silver-doped ZnAc solution; 

undoped ZnAc solution mixed with silver nanoparticles; alternately-layered undoped ZnAc solution 

and diluted nanoparticle dispersion. 

Experimental: 

Experiment A: 
Treatments: 

Solution / Treatment Description (per coat): 
Substrates 
(each treatment) 

1 – Control Undoped [0.75]ZnO solution 
Soda-lime glass; 

 
Mica; 

 
Si-wafer (2 replicates) 

2 – Silver-doped 2at%Ag-doped [0.75]ZnO solution 

4 – Zn-AgNP 
Undoped [0.75]ZnO mixed with AgNP, added to 
0.0032 mg/mL NP concentration 

5 - Layered 
Undoped [0.75]ZnO deposition, followed by 
0.004mg/mL AgNP deposition 

Table 3-1.  Experiment A processing parameters matrix.  Four treatments (first column) are implemented on three 
substrate media.   

 
Undoped control solution (1) was prepared per established optimized SOP.  Zinc Acetate 

Dihydrate (Zn(CH3COO)2·2H2O; Sigma-Aldrich) was dissolved in 200-proof anhydrous ethanol 

(C2H5OH; Sigma-Aldrich) to a concentration of [0.75M].  MEA (Sigma-Aldrich) was added dropwise 

gravimetrically to achieve a ratio of 2:1 MEA:ZnAc.  The solution was covered and stirred magnetically 

at 60°C for one hour, then returned to the drawer to rest for 24 hours.  Silver-doped solution (2) was 
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made identically but for the addition of silver nitrate (AgNO3; Sigma-Aldrich) to ZnAc salt at an 

atomic ratio of 0.02Ag : 1Zn.  Aliquots of 5mL undoped solution (1) were separated and 1.25mL silver 

nanoparticle solution (60nm particle size dispersion, 0.02mg/mL; Sigma-Aldrich) was added to 

solution (4), yielding a AgNP concentration of 0.0032 mg/mL. 

Given the probationary nature of this experiment and considering the expense of the new 

substrates, sample slides were cut into smaller sizes than usual (1-inch square and circular slides split 

in four to yield appx 0.5 sq. inch glass and mica slides, and similarly small quarter-circle mica slides). 

Five slides each of soda-lime glass, mica, and silicon wafer, were etched on reverse to identify, then 

left in ~3M nitric acid solution overnight.  Slides were removed from acid bath and rinsed with DI 

water and ethanol, then dried in ~170°C oven on aluminum boat for appx. 10 minutes.  Boat was 

removed and allowed to cool to ambient temperature. 

Precursor solutions were deposited onto substrates by spin-coating (4-5 drops, 3000 rpm, 35s), 

and placed in 170°C oven for 10 minutes to dry between coats.  Spin-coating / drying process was 

repeated for total of five coats per sample. “Layered” samples were prepared by spin-coat deposition 

of undoped (0) solution and drying as described above, followed by spin-coat addition of ethanol-

diluted (1:4) AgNP dispersion (final AgNP concentration: 0.004 mg/mL,) and dried between ZnAc 

coats (treatment “5”).  All samples were then post-heat treated in 400°C furnace for 1 hour, then 

allowed to cool in furnace at a rate of -1°C/min. 

Initial Results: 

Annealed samples generally showed splotchy, irregular formation of translucent white ZnO layer 

on transparent (glass, mica) slides, appearing whitish and iridescent on mica slides (Figure 3-2, left).  

Microscopic evaluation showed continued presence of problematic morphological features, including 

cracks and rippling, bubbles and holes in film surface (Figure 3-2).   
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Figure 3-2.  Electron micrographs of Expt A surface features.  Surface features include cracks and bubbles (silver-
doped, mica substrate, left) as well as aggregated 2D nanostructures (undoped, glass substrate, right). 

 
While XRD spectra for glass and silicon substrates delivered results useful for analysis, output 

from mica slides showed such peak splitting and shifting as to render these spectra inconclusive for 

ZnO crystallites. This finding did serve to confirm that substrate material does influence crystal 

formation, although background signal from the substrate itself could not be ruled out as a 

confounding factor.  Examining the useful glass and silicon XRD output, samples treated with AgNP 

(both mixed with precursor solution and layered between precursor layers) showed significantly 

increased peak intensity and (002) preferential orientation compared to doped and undoped samples 

not treated with NP (Figure 3-3). 

Anecdotal sheet resistivity measurements also indicated significant improvement in conductivity 

for NP-treated films, but given the inconsistent surface morphology, no formal analyses of electrical 

properties were conducted.  With evidence to suggest positive effects of nanoparticle treatment on 

ZnO thin films, an expanded and more meticulous analysis was warranted. 
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Figure 3-3.  XRD Spectra for Expt. A on glass and Si-wafer substrates (upper, lower, respectively). Samples treated with 
AgNP show significantly improved intensity and preferred orientation. 
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3.2.2.  (Experiment B) – Layering and Substrate Parameter Analysis under Inert 

Atmosphere 

Following promising findings in exploratory attempts to incorporate AgNP into ZnO films, a 

more deliberate and rigorous parameter analysis was devised to confirm previous findings, expand 

understanding of the effect substrate has on morphology of films, and to further refine the SOP for 

successful film fabrication.  In this experiment, substrates were expanded to include quartz and 

borosilicate glass in addition to silicon, mica, and sodalime glass utilized in previous trials.   

A number of minor alterations to existing SOP were made based upon ongoing literature review 

of successful ZnO sol-gel fabrication techniques.  Findings showing that lower precursor 

concentration resulted in greater preferential crystal orientation [58], led us to increase the number of 

coats applied per sample while reducing the solution concentration.  In an effort to reduce surface 

feature interruptions caused by dust and other foreign inclusions, this set of experiments was 

performed within a glovebox under inert gas (nitrogen) pressure.  Zinc to stabilizer (r-ratio) was set 

to 1 and slide cleaning procedure was modified slightly to align with procedures followed by Tseng et 

al. [34] in their aluminum-doping attempts. 

Experimental: 

Experiment B: 
Treatments: 

Solution / Treatment Description (per coat): 
Substrate IDs: 
(each treatment) 

0 – Control Undoped [0.25]ZnO solution 0 – Glass 
1 – Mica 

2 – Borosilicate glass 
3 – Si-wafer 
4 – Quartz 

1 – Silver-doped 1.5at%Ag-doped [0.25]ZnO solution 

2 - Layered 
Undoped [0.25]ZnO deposition, followed by 
0.004mg/mL AgNP deposition 

Table 3-2.  Experiment B parameters matrix.  Three treatment methods (first column) are perfomed on five substrates. 

 
Both doped and undoped precursor solutions were made following established SOP with 

alterations as mentioned above.  Zinc Acetate Dihydrate and MEA were mixed at a 1:1 molar ratio 

into absolute ethanol at a concentration of 0.25mol salt to L solvent.  For the doped solution, AgNO3 
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was dissolved with ZnAc, resulting in a dopant concentration of 1.5at%.  Precursor solutions were 

stirred at 60˚C for one hour, then covered and placed in cabinet at room temperature, aging 48 hours. 

Silver nanoparticle dispersion was diluted in ethanol at a ratio of 4:1, yielding final concentration of 

0.004 mg/mL. 

Sample slides were cut to 1x1 inch squares (1-in circular disk for Si wafers), notched in corners to 

identify, washed with Alconox and rinsed in DI water, then left in ~3M Nitric acid bath overnight.  

Within the glove box, slides were removed from acid, rinsed in acetone and isopropanol, then dried 

on a 200˚C heat plate for 10 minutes before spin coating.  Doped and undoped solutions were samples 

were placed on spin-coater and spun at 3000 rpm for 35 seconds, with 1-2 drops deposited per coat.  

After each coat, slides were returned to heat plate to dry.  This process was repeated to 10 total coats 

per sample.  For ‘layered’ samples, dried substrate slide was placed on spin coater and 1-2 drops 

undoped solution deposited at 3000rpm, spun for 30 seconds.  Substrates were placed back on heat 

plate to dry for 10-20 then returned to spin-coater and nanoparticle dispersion was dropped (1-2 

drops) at same speed and time settings, then returned to hot plate.  This procedure was repeated to 

10 coats of nanoparticles between 10 coats of precursor solution.  All samples were then transferred 

to room temperature furnace, which was ramped to 500˚C over two hours, maintained at 500˚C for 

four hours, then furnace was shut off and samples cooled to room temperature in furnace. 

Initial Results: 

See Appendix C-3B: Appearance of films was generally improved from past trials.  Surface defects 

such as spots and spreading lines were most visible on mica and silicon slides, and doped samples 

tended to display more cloudiness and discoloration.  Glass and quartz samples showed the best 

transparency, while borosilicate glass was generally cloudier, but appeared smooth with fewer 
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noticeable abrupt defects. In most cases, spreading lines were most visible toward the outside edges 

of the slides. 

XRD Spectra were processed with Bruker DIFFRAC.EVA v3.0 software for more thorough 

analysis than in previous experiments, in preparation for quantitative analysis per section 3.3.1 below.  

Software automatically removed background, and smoothened spectra with a 0.614 smooth factor, 

using default (non-Gaussian) algorithm.   

In general, XRD spectra for this experiment has shown taller, narrower peaks than in any previous 

trials, indicating changes in SOP processing parameters were likely beneficial.   Comparison of XRD 

charts stacked by precursor/treatment shows crystal orientation at ratios similar to theoretical 

standards for non-NP treated doped and undoped (Figure 3-4, top) samples, while NP-layered 

samples (Figure 3-5, bottom) show significantly improved (002) preferential orientation. 

Silicon samples tend to dominate peak intensity comparisons for all treatments, but comparative 

intensities of other substrates vary from one treatment to the other. In all trials, mica samples once 

again returned shifted and split peaks, resulting in inconclusive findings with regard to ZnO 

crystallinity, and mica spectra were removed from subsequent analyses. 

Once again, samples treated with silver nanoparticles displayed significant improvement in both 

intensity and preferential peak ratio, adding confirmation to previous findings. 
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Figure 3-4.  XRD Spectra from experiment B: Undoped (top) vs. layered process (bottom).  Layered samples show 
staggeringly improved intensity and 002-peak ratio preference. 
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3.2.3.  (Experiment C) – Initial Wetting and Layering 

Previous findings indicated that a layering process, by which silver nanoparticles dispersed in an 

aqueous/alcohol medium were deposited between dried layers of ZnO precursor solution resulted in 

significant improvement in both ZnO crystallinity by peak intensity, and preferential crystallinity about 

the (002) orientation.  Given the dramatic ‘smoothening’ effect this layering process seemed to have 

on film surfaces by microscopic evaluation, and the relatively low concentration of nanoparticles in 

the dispersion (4ppm), it was necessary to determine whether the improved surface morphology was 

caused by the presence of silver nanoparticles, or if the improvement was due to a wetting process 

between each layer. 

In this iteration of the study, both doped and undoped precursor solutions would be tested with 

no treatment (control), as well as layered with nanoparticle dispersion and pure ethanol between each 

coat.  This experiment utilized only borosilicate glass as substrate per last experiment’s findings. 

Experimental: 

Experiment C: 
Treatments: 

Treatment Description (repeated x10): Solutions/Treatments 

D – Dry Control 
Simple deposition of solution, no wetting or 
layering between coats. 

0 - Undoped [0.25]ZnO 
 

1 - 1.5at%Ag-doped 
[0.25]ZnO solution 
 

2 – Undoped, no pre-
heat treatment 

E – Ethanol 
Solution deposited, dried, wetted with ethanol, 
dried, repeat. 

S – Sandwiched 
NP layer 

Solution deposition, dried, treated with NP 
dispersion, dried, repeat. 

Table 3-3.  Experiment C parametric matrix.  Three treatments (first column) are made using doped and undoped 
solutions. 

 
Undoped & doped precursor solutions, ethanol-diluted silver dispersion were prepared 

identically to the previous experiment (Section 3.2.2).  Borosilicate slides prepared, cleaned and dried 

identically.  Control group slides were placed on spin coater and spun for 35 seconds at 3000RPM, 

applying 1-2 drops undoped or doped precursor (respectively) to either slide, then returned to 200°C 

hot plate for at least 10 minutes between coats, repeated to 10 coats.  Ethanol-layered samples were 
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likewise deposited with precursor solutions, dried, then returned to spin-coater and 1-2 drops ethanol 

applied to dried surface between each coat and dried again on hot plate.  This deposition of precursor, 

drying, ethanol, drying, was repeated 10 times.  Similarly, the AgNP samples were treated with 

undoped and doped precursor solutions respectively, dried, and then treated with diluted silver 

dispersion (1-2 drops) between each coat for a total of 10 applications of precursors and 10 

applications of nanoparticles per slide.  Finally, a third batch of undoped dry, ethanol, and NP-layered 

samples were fabricated as described above, but without any pre-heat annealing, they simply air-dried 

at 25°C before post-heat treatment, which was carried out on all nine samples by placing them in a 

cold furnace, temperature-ramped furnace to 500°C as described in Section 3.4, above. 

Initial Results: 

A complete collection of recorded images for this experiment may be found in Appendix C-3C.  

For undoped films, surface feature ripples and cracking were once again observed in the untreated 

control sample (Figure 3-5, left), though not to the extent as had previously been recorded.  These 

surface features seemed to be diminished in ethanol-layered sample (Figure 3-5, mid), resulting in 

generally smooth film.  The AgNP-treated sample showed severe cracking and tearing unlike we had 

ever seen before (Figure 3-5, right), and it is supposed that this occurred as the result of some 

anomalous error, although no replicates were fabricated in this experiment that could verify this 

assumption. 
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Figure 3-5.  Optical micrographs of undoped experiment ‘C’ sample.  20X magnification for untreated (left), ethanol-
wetted (middle,) and NP-layered (right) samples. 

 
Contrary to expectations, doped samples showed far fewer surface imperfections in all treatments 

(Figure 3-6), and significant discontinuities were not observed in the control or ethanol-treated 

samples until a zoom factor of 10,000.  At this level of magnification, the SEM was unable to focus 

on the NP-treated sample. 

 
Figure 3-6.  Electron micrographs of Expt. C, doped samples at 100X magnification.  Dry control (left,) ethanol-wetted 
(middle,) and NP-layered (right) samples shown. 

 
XRD spectra also demonstrated significantly different findings between undoped and doped 

samples.  In undoped samples, the ethanol-treated film showed significantly higher intensity and 002-

peak preference (figure 3-7, top).  However, in doped samples, the ethanol- and nanoparticle-treated 

samples showed much higher peak intensity and preferential orientation compared to the untreated 

sample (figure 3-7, bottom).  The three samples that were not pre-heat treated showed very low 

intensity, but the NP-layered sample had better 002-orientation than other treatments.  See Appendix 

B-3C. 
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Figure 3-7.  XRD Spectra from Experiment C: undoped (top,) and silver-doped (bottom.) 
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3.2.4.  (Experiment D) – Wetting and Layering 

Although the results from section 3.2.3 continue to show improvement in crystallinity, preferred 

orientation, and conductivity of doped films, the underlying question concerning whether the cause 

of improvement lies in the presence of nanoparticles or the wetting process in layering, was not 

conclusively answered.  This experiment also seeks to further investigate the relationship between 

nanoparticle interaction and surface wetting by introducing additional solvents of varying polarites 

and viscosities (Table 3-4,) as wetting agents to determine what, if any relationship exists between 

surface wetting and film morphology.  Additionally, all replicates of the doped and undoped samples 

were exposed to post-heat annealing temperatures between each coating, in an attempt to validate the 

theory initially investigated in Chapter 2’s Experiment H. 

 

Common 
Name 

Abbr. Structure 
IUPAC Name, 

formula 
Relevant 

Properties 
Viscosity 
(mPa*s) 

Dielectric 
Constant 

Acetone Acetone 

 

Propanone, 
(CH3)2CO 

Polar, aprotic solvent 0.295 20.7 

Chloroform CHCl3 

 

Trichloromethane 
CHCl3 

Slightly polar, aprotic 
solvent 

0.563 4.8 

Ethyl 
Alcohol 

EtOH 
 

Ethanol 
CH3CH2OH 

Primary alcohol 1.2 24.3 

Ethylene 
Glycol 

EG 
 

Ethane-1,2-diol 
(CH2OH)2 

Polar, protic Ether, 
Primary alcohol, 

16.1 37 

DI Water H2O 
 

Water 
H2O 

Deionized water 
suitable for solutions 

chemistry 
0.89 29.3 

Silver 
Dispersion 

AgNP 

 

Silver 
Nanoparticle 
dispersion in 

aqueous buffer 

Diluted with absolute 
ethanol to 

0.004mg/mL 
~1 unk. 

Table 3-4.  Names and properties of solvents used in experiment D  Viscosity and dielectric constant are among 
properties that may contribute to a solvent’s wetting efficacy. 
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Experimental: 

Experiment D: 
Treatments: Treatment Description (repeated x5): Wetting Solvents: 

0 - Undoped 
[0.25] ZnO Undoped solution, wetted and dried 
but not annealed between coats 

A – Acetone 

C – Chloroform 

D – Dry (not wetted) 

E – Ethanol 

G – Ethylene Glycol 

H – DI Water 

N – AgNP dispersion 

 

1 – Silver-doped 
3at%Ag-doped [0.25]ZnO solution, wetted and 
dried but not annealed between coats 

D – Doped, 
annealed 

3at%Ag-doped [0.25]ZnO solution, wetted, 
dried, and thermally annealed between layers  

U – Undoped, 
annealed 

[0.25] ZnO Undoped solution, wetted, dried, 
and thermally annealed between coats 

Table 3-5.  Experiment D parametric matrix  Treatment solutions (first column,) are implemented with various wetting 
solvents.  

 
Undoped and Doped solutions were made according to existing SOP at precursor 

concentration of [0.25M] and r-value of 1.  Doped solution was formulated to 3at% silver.  Solutions 

were covered, mixed for 1 hour at 60°C and aged for 48 hours.  Borosilicate slides were cleaned and 

dried identical to prior procedure. 

Trial 0 (undoped) and 1 (doped) samples were treated identically, with a layer of precursor sol 

deposited by spin coating 3 drops at 3000rpm for 35 seconds, then returning sample to 200°C 

heatplate.  After at least 10 minutes of drying, samples were returned to the spin coater one at a time 

and each treated with one of the solvents listed in table 3-1, above.  Additionally, one ‘dry’ control 

sample from each trial was not treated with any solvent.  The process was repeated for 5 coats each 

of precursor and solvent treatment.  Trials D (doped, annealed between layers) and U (undoped, 

annealed between layers) were treated identically to 0 and 1 above, but were placed in 500°C furnace 

for appx 20 minutes after each solvent coat.  These trials were also subjected to 5 coats each of 

precursor and solvent treatment.  All samples were then transferred to 600°C furnace for 4 hours, 

then furnace shut off and allowed to cool with samples inside. 
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Initial Results: 

To the naked eye, samples appeared to be generally more transparent than past experiments’ 

samples, with fewer signs of spreading lines and discontinuities, but closer inspection did reveal 

cracking and rippling features on some samples, as shown in Appendix C-3D and discussed in 

subsequent chapter sections.   

Once again, XRD results in general showed significantly more intense peaks than in previous 

experiments, especially for samples treated with nanoparticles.  Silver-doped samples, annealed 

between each layer show greatest intensity and preferential orientation (Figure 3-8). In general, 

samples treated with silver nanoparticles showed most desirable peak intensity and orientation. 

 
Figure 3-8.  XRD Spectra for Experiment D, Silver-doped, annealed samples.  Yellow line shows solution with 
nanoparticle dispersion. 
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3.2.5. (Experiment E) – Final Improvements through Modification of Solvent and 

Wetting 

Through the process of compiling the acquired knowledge and experience, and composing the 

narrative of this two-year project, additional loose-ends were identified, and confirmations were 

desired in the explanation of some of the determined conclusions.  This final experiment represents 

the capstone of the project, testing one final synthesis and processing solvent, and verifying the results 

of the newfound layering and wetting process in thin film synthesis. 

Common  
Name 

Methanol 
Methyl Alcohol 

Ethanol 
Ethyl Alcohol 

Ethylene Glycol 
Monomethyl Ether 

(EGME) 
2-methoxyethanol 

Propylene Glycol 
Monomethyl 

Ether (PGME) 
1-methoxy-2-

propanol 

Structure: 

 
  

 
(Dielectric 
Constant @ 20 °C) 
 / (BP (°C)) 

32.35 / 64.7 25.0 / 78.3 16.93 / 124.6 12.3 / 120 

Toxicity: Moderately toxic Low toxicity Toxic, carcinogenic Low toxicity 

Table 3-6.  Comparison of common sol-gel solvents. Solvents with relatively high dielectric constants and short carbon 
chains are better at dissolving salts.  

 
A review of literature pertaining to ZnO sol-gel doping processing brought back to our attention 

the work of Tseng et al [34] and their group’s use of propylene glycol monoethyl ether (PGME) as an 

effective solvent in sol-gel processing.  While the Tseng group’s purpose in utilizing PGME was 

primarily as a safer substitute to its significantly hazardous and less-stable cousin, 2-methoxyethanol, 

they also reported improved quality of thin films, owing to the solvent’s physical attributes.  A 

comparison of EGME vs PGME is shown in Table 3-6 above, and comparison with other solvents 

is found in Appendix F.  Although our group had before considered the properties of viscosity and 

surface tension as potential factors in sol deposition, we had theretofore been unable to identify 

enough suitable viscous solvents nor confirmational data to warrant an experimental iteration.  The 
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Tseng paper provided both the identity of a proven solvent and evidence of successful use in sol-gel 

processing to warrant additional study.  Given our breakthroughs in wetting and layering processes, 

PGME was a perfect candidate solvent both to investigate in its own right, and to use as an unknown 

new material with which to put our processing techniques to the test. 

Experimental: 

Starting solutions 0-3 were prepared identically with the exception of the identity of their solvent 

(Ethanol for 0, 1; PGME for 2, 3) according to our most recent SOP: ZnAc salt and MEA stabilizer 

were measured gravimetrically and mixed with 5 mL solvent to a final Zn concentration of 0.25M; r-

ratio of 1.  For doped solutions, AgNO3 was added gravimetrically to Ag:Zn ratio of 1.5at%.  These 

solutions were covered and magnetically stirred on a 100°C hotplate for 1 hour, then transferred to 

cabinet to age 48 hours.  Additional NP solutions were made by combining 1 mL AgNP dispersion 

(0.02 mg/mL) with 4mL PGME or Ethanol to final NP concentration of 0.004 mg/mL. 

 

Experiment E: 
Solutions: 

Solution Description: Wetting Solvents: 

0 – Undoped Ethanol 
[0.25] ZnO Undoped EtOH-solution, 
wetted and dried between coats D – Dry (untreated) 

E - Ethanol 

G – PGME 

O – Ethanol/AgNP 

P – PGME/AgNP 

1 – Silver-doped Ethanol 
1.5at%Ag-doped [0.25]ZnO EtOH-
solution, wetted and dried between coats 

2 – Undoped PGME 
[0.25] ZnO Undoped PGME-solution, 
wetted and dried between coats 

3 – Silver-doped PGME 
1.5at%Ag-doped [0.25]ZnO PGME-
solution, wetted and dried between layers 

Table 3-7.  Experiment E parametric matrix  Four solutions from two different solvents (first column) were used to 
factorially examine wetting treatments by PGME and Ethanol, as well as NP treatment. 

 
Soda lime glass slides were etched, washed with Alconox soap and DI water, then left in a dilute 

(~3M) Nitric Acid bath overnight.  Slides were removed, rinsed with acetone then ethanol, and placed 

on 200°C hotplate for at least 15 minutes before coating. 
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Samples were first coated with respective solutions 0-3 above, via spin-coating at 3000RPM for 

35s, then returned to hotplate.  Samples were then subsequently treated with respective wetting solvent 

per Table 3-6 above by identical spin-coating process and returned to hotplate.  This process was 

repeated for 6 coats of both precursor sol and wetting solvents. 

Samples were then thermally annealed at 500°C for two hours, then furnace turned off, and 

samples allowed to return to ambient temperature as furnace cooled. 

Initial Results: 

Annealed slides were among the clearest to date, and while silver discoloration was apparent, it 

was not as prominent as observed in previous trials.  While certain zones of “streaking” could be 

observed, fewer surface discontinuities were apparent than ever previously.  All samples were 

inspected by optical and electron microscopy (Appendix C-3E). 

While XRD Spectra do indicate that PGME is an effective starting solvent, the most intense 002 

peaks and ratios came from doped and undoped ethanol precursor solutions that were subsequently 

treated with NP-containing solutions (Figure 3-9). 

Indeed, the XRD peaks for ethanol- and PGME-based NP dispersions are nearly identical on 

undoped ethanol samples, although PGME-based NP dispersion is superior in doped ethanol samples, 

as shown in Appendix B-3E and discussed later in this chapter.  In general, samples wetted with 

PGME/AgNP solutions showed drastically improved intensity and (002)-peak ratio. 
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Figure 3-9.  XRD Spectra of Experiment E: undoped ethanol samples with various wetting treatments. Samples treated 
with AgNP dispersion showed significantly enhanced (002) peaks. 
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3.3. Analysis and Discussion 

Speaking broadly, the second phase of this project represented more deliberate, logically-planned 

and organized experimental procedure, given our significant experiential advancements in Chapter 2.  

Perhaps not-unrelatedly, this phase was endowed with unexplained luck, unexpectedly extraordinary 

success in experimental attempts, and breakthroughs of significance to the sol-gel film processing 

community of research and industry. 

The experimental process in this phase understandably took a slower pace given that personnel 

resources were reduced to half that of early-phase (Chapter 2) rapid trial-and-error processing.  This 

more planned and deliberate pace allowed for more appropriate pre-trial literature review and incisive 

experimental design, yielding significantly improved results. 

Given the respective successes of this phase, more rigorous and intentional, publication-worthy 

data analysis processes and methods were required.  Spontaneous and subjective XRD comparisons 

were supplanted with quantitative methodologies; uniform and consistent imaging processes and 

surface-texture analysis methods were (gradually) implemented; difficulties with electronic 

characterization (i.e. conductivity measurement problems,) were addressed with alternative and 

literature-endorsed optical band-gap analyses. 

3.3.1. Degree of Preferential Orientation 

Over the course of this project, (e.g. throughout Chapter 2,) qualitative comparison of XRD 

spectra was used as the primary guide in determining relative success or failure of given samples and 

trials, and in the decision-making process for further experimental design.  However, in final analysis, 

a more quantified method was required to compare relative success and failure from one experiment 

to the next.  A method for calculating the degree of preferential orientation (also referred to as texture 

coefficient) was adapted from methods used by Znaidi [62] and Chakrabarti [70], (referencing Barrett 
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[71] and Lotgering [57] respectively), in which measured intensity of preferential peak over theoretical 

intensity (from powder diffraction file) is divided by theoretical proportion of preferential peak 

intensity to sum of all peak intensities, yielding a decimal between -1 to 1 representing the degree of 

preferential orientation calculated.   

Calculation Method: 

These methods are adapted to compare integrated areas under peaks rather than mere peak 

intensity, and to utilize our own standard as theoretical sample, rather than powder diffraction file.  

Our calculation of preferred (002) orientation, f(002), is described as: 

𝑓𝑛(002) =
𝑃n−𝑃0

1−𝑃0
 (1)  where: 

𝑃002 = 𝐴𝑛(002)
∑ 𝐴𝑛(ℎ𝑘𝑙)

  (2) and: 

𝑃𝑆 = 𝐴0(002)
∑ 𝐴0(ℎ𝑘𝑙)

  (3), 

in which 𝐴𝑛(002) is the integrated area under the (002) peak of the sample, ∑ 𝐴𝑛 (ℎ𝑘𝑙) are the sum 

of areas under the (100), (002), and (101) peaks between 30 - 40° 2θ of the sample; and 𝐴0(002) is 

the area under the (002) peak of our standard, with ∑ 𝐴0 (ℎ𝑘𝑙) the sum of areas under the (100), (002), 

and (101) peaks between 30 - 40° 2θ of our standard. 

The standard was fabricated using our established SOP, at a precursor concentration of [0.75M] 

and r-ratio of approximately 1.  After mixing and aging for 24 hours, sol was deposited via spin-coat 

(5-drops per coat) on borosilicate glass slide then dried on 200°C hot plate for ten minutes between 

coats, for a total of eight coats, then annealed for 100 hours at 650°C. 

As elaborated in Section 1.4 and detailed throughout Section 2.3, X-Ray Diffraction was relied-

upon as the first and primary means of characterization of films.  This new Degree of Preferential 
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Orientation methodology was used to quantitatively analyze XRD findings from each this chapter’s 

experiments, the plots presented in Appendix D as matrices of bar graphs based on the factorial 

analysis parameters of each experiment. 

Results: 

Results concerning substrate identity, Experiments A & B, are confounded by the interference of 

mica on XRD spectra, rendering the negative calculated crystallinity of mica samples to likely be 

incorrect.  However, given the improvements in crystallinity through the use of AgNP dispersion in 

treating samples from both experiments A & B, the investigation into substrate identity was mostly 

abandoned in favor of exploring wetting processes. 

Although the ‘no pre-heat,’ ambient-temperature dried samples in Experiment C do show greater 

degree of (002) orientation, the samples themselves were highly clouded and had so many defects 

observable to the naked eye, they were discarded from further analysis. 

This degree of preferential orientation calculation proved most useful in comparing the films 

produced by Experiments D & E.  They indicate that our processing parameters for these experiments 

universally create better-oriented films than the process used for fabricating the standard (in these 

experiments, the common significant modified variable was the lower concentration of starting 

solutions,) and also suggest that nearly all solvents used in intra-layer wetting were beneficial to 

preferential orientation.  Chloroform and Acetone are notably the least effective wetting solvents, 

while ethanol and even simple deionized water showed significant improvement, and the silver 

nanoparticle dispersion created films with nearly 100% improved preferential orientation across both 

experiments. 
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3.3.2. Band Gap Analysis 

As we know from basic physics, wavelength and energy are related by the Planck-Einstein relation, 

𝐸 =
ℎ𝑐

𝜆
↔ 𝜆 =

ℎ𝑐

𝐸
.  Thus, shifts of the optical band edge toward longer wavelengths (right, or red-

shifts,) result in shifts of the associated energy to the left (lower energy).  The optical band edge can 

be used to calculate band gap, as explained by Wang et al., “…a sharp absorption edge is generally 

observed in the transmittance spectra of direct band gap semiconductor films… (this) edge in the 

transmittance spectra may result in a sharp peak in the plot of dT/dλ vs. λ….” [72]. 

The final experiments with publishable results (D & E,) were characterized with Ocean Optics 

SD200 Ultraviolet/Visible (UV-Vis) Spectrometer in the interest of analyzing optical properties such 

as total and average optical transmission, absorption edge, and optical band gap.  In following with 

the Touam experimental process, in which several other papers [72]–[74] are referenced using the first 

derivative of the transmission spectra noted above, with wavelength converted to energy, we 

calculated these band gaps using Spectragryph optical spectroscopy software [67].  These optical 

spectra, derivative plots, and graphs comparing calculated band gaps are recorded in Appendix E. 

Faÿ and Shah suggest that doped ZnO films tend to exhibit the Burstein-Moss effect, in which 

the band gap is widened due to excess free electrons filling energies above the conduction band, but 

note that this effect occurs to a critical limit, at which point band gap narrowing is observed as free 

electrons begin to cause the donor and conduction bands to merge [75].  Given that explanation of 

band gap variance, it is important to note that Touam’s paper also cites conflicting sources on whether 

silver doping of ZnO causes band gap widening or narrowing.  Touam’s own experimental findings 

suggest band widening up to 4at% silver doping through sol-gel wet processing, which tends to match 

the findings of Xue et al [43], who synthesized their films with magnetron sputtering.  Another 

interesting observation of ours was that a paper often-cited for reporting decreased band-gap with 
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increasing silver concentration, in fact mistakenly referred to red-shifted absorption peaks as 

narrowing band gap, when they likely meant to suggest the opposite [45].  

Despite the sometimes-conflicting experimental findings on the effect of silver doping on band 

gap, the calculated values of our experiments’ band gap values between 3.2-3.3eV (Figure 3-10) aligns 

with Touam and many other similar studies [41], [43], [76]–[79].  Furthermore, comparison of ΔEg 

(see bottom pages of Appendix E,) within our experiments suggests that silver doping with intra-layer 

annealing (Experiment D), as well as solutions treated with intralayer PGME wetting (Experiment E), 

both result in relative increase in band gap for all test conditions.   

 
Figure 3-10.  Calculated Optical Band Gap (Eg) for Experiment D.   
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3.3.3.  Correlation of Crystallinity and Surface Morphology 

Throughout our examination, much emphasis has been placed on the crystallinity of fabricated 

films, their preferential orientation, and surface features and morphology.  While we were unable to 

successfully carry out direct performance characterization such as conductivity/resistivity testing (see 

Section 2.3.3), we are able to correlate many of our observed property enhancement to performance 

metrics. 

For example, an article we only recently became aware of in Nature Communications [80] brings 

together many aspects of our own study in its report on the effects of EGME and MEA as interfacial 

layers on ZnO layers actually incorporated into inverted polymer LEDs (iPLEDs).  In this case, the 

rippled nanostructures we observed early in our work are reported to improve efficiency of iPLED 

devices by improving electron-hole recombination.  Given that OPV cells are essentially the exact 

inverse of LED devices, and recombination is what we try to prevent in solar cells, we can infer from 

Lee’s findings that reduction in rippling surface features may lead to diminished recombination, and 

more efficient photocells.  The same authors further showed that the surface treatment with EGME 

and MEA leads to dipolar polarization, improving electron transport mobility and recombination in 

polymer solar cells [81].  Our own processing using superior solvents has shown to improve 

smoothness and crystallinity, suggesting application in real devices may surpass the improvements 

shown by Lee et al.  

Another study by Duta et al. specifically examined the effect of surfactant addition on the rippling 

and “2D coherent structures” and dendritic morphology of ZnO films produced through spray 

pyrolysis [82].  The surface features shown and described by Duta are remarkably similar to many such 

features observed throughout our analyses, and their analysis further related lower frequency and stark 

contrast of these features with reduced surface roughness and increased surface energy.  Furthermore, 
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their comparison of crystallite sizes suggests that lower crystallinity results in higher disorder and 

greater microstrain on the surface. 

3.3.4. Wetting Processes in ZnO Film Fabrication 

The processing parameters developed in this study, specifically in later-stage experiments 

involving wetting solvents and nanoparticle inclusion have shown significant improvement in 002-

preferential orientation and in the smoothness of surfaces observed in microscopy.  To further validate 

our processes’ effectiveness, a few samples showing the best improvement in crystallinity were 

analyzed by Atomic Force Microscopy (AFM) with an Agiliant Technologies model 5420 instrument 

to obtain RMS surface roughness measurements, as shown in figures 3-10 through 3-12, below.  

 
Figure 3-11.  AFM 3D Overlay of PGME/AgNP-treated undoped ethanol-based film.  RMS roughness (Sq): 10.45nm.  

 
. 
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Figure 3-12.  AFM 3D Overlay of PGME/AgNP-treated silver-doped ethanol-based film.  RMS roughness (Sq): 
10.81nm.  

 

 
Figure 3-13.  AFM 3D Overlay dry (untreated) undoped ethanol-based film.  RMS roughness (Sq): 13.54nm.  

 
 

As seen in these images, both PGME/AgNP-treated, doped and undoped samples show reduced 

roughness and finer crystallite size compared to the untreated undoped sample. 
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Use of AgNP, PGME & MEA 

Although our study did not utilize EGME as described in Section 3.2.5, we did find some 

improvement in using PGME as a starting solvent, but more importantly, as the alcohol mixed with 

the AgNP dispersion during wetting coats.  Indeed, PGME/AgNP solution used as a wetting layer 

between ethanol-based precursor solution performed better than PGME-based precursor solutions, 

or Ethanol/AgNP wetting solutions, although all wetting treatments containing silver nanoparticles 

showed significant improvement in 002-crystallinity.  While it is well-documented that silver doping 

of ZnO generally leads to improvement in 002-orientation ratio [32], [36], [41], the mechanism 

explaining this improvement often deals with silver atoms interstitially replacing zinc, so this 

explanation is not adequate to explain why larger nanoparticles would also improve crystallinity.  The 

use of AgNP in ZnO thin films to improve conductivity and other parameters has been reported [53], 

[55], [56], but again, there is little to explain the improvement shown by our particular combination of 

solvents and treatments. 

Nonetheless, the improvements to surface roughness, crystallinity, and c-axis orientation through 

our wetting and NP processing parameters result in improved surface morphology that we believe will 

ultimately lead to improved performance in optoelectronic applications. 
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4. Conclusions and Future Work 
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4.1. Major Findings 

A simple, repeatable SOP was established for use in experimental trials of doping and processing 

treatments of ZnO thin films.  This procedure was then utilized to systematically investigate different 

processing parameters, ultimately leading to breakthroughs in the use of wetting solvents and 

nanoparticles in thin film fabrication. 

We have shown that intra-layer surface wetting of the ZnO film after pre-heat treatment, with 

nearly any solvent, leads to improved surface features, crystallinity, and smoothness.  We further 

confirm the viability of using PGME rather than EGME as a precursor solvent, that it performs 

generally as well as ethanol in this regard, and in most cases is superior in silver-doped samples. 

Finally, we have demonstrated that the incorporation of silver nanoparticles into surface wetting 

treatments further improves the film quality by significant margins. 

4.2. Additional Findings and Future Work: 

While the wetting and nanoparticle processing techniques are the most exciting findings of this 

project, a few other parameters were investigated throughout Chapter 3 that are worth discussion and 

follow-up 

Substrate Identity 

As mentioned, investigation into the use of mica as a substrate due to its similar CTE to ZnO was 

investigated, but the interference on XRD interference was too great to be useful, and other techniques 

were showing progress.  That said, Experiment B did suggest that borosilicate glass acted as a much 

better substrate than soda-lime glass for our NP-layered applications, and it was used through 

Experiment D, although the only slides that could be sourced were extremely thin (less than 1mm) 

and tended to warp during annealing.  Ample literature exists on epitaxial ZnO growth on various 
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substrate media, so no further investigation was made on this subject at the time, although additional 

review of existing literature may suggest further study is warranted. 

Intra-layer annealing, temperature 

In addition to Chapter 2’s poorly-documented Project H, intra-layer annealing was reexamined in 

this stage, Experiment D.  No clear trend was observable in XRD preferential crystallinity analysis, as 

certain samples showed improvement and others detriment to intra-layer annealing, but microscopy 

seems to indicate smoother films rendered by annealing between each layer.  A more detailed 

experimental analysis, removing some of the confounding parameters present in our experiment, 

might yield additional findings on this subject, as such a practice is rarely indicated in literature. 

Atmosphere and Cleaning Procedures 

Experiments B & C sought to eliminate certain externalities from the experimental procedure by 

implementing more rigorous slide-cleaning procedures and performing deposition and pre-heat 

treatment under a nitrogen atmosphere.  While these procedural improvements did generally seem to 

improve quality of films, the burden of working in the confines of a glove box proved too much to 

be worth what little improvement in film quality could be observed. 

Given that traditional doping practices involve pressurized gaseous diffusion, investigation into 

high-pressure sol gel fabrication techniques might be warranted.  More thorough understanding of 

doping methods would be beneficial to such investigations. 
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4.3. Final Thoughts 

Given that one of the primary improvements revolved around the use of PGME over EGME as 

prescribed by another study, a side-by-side comparison of the two solvents in similar experimental 

paradigm is certainly warranted.  As well, the comparative use of amine bases including ethylene 

diamine, following the Lee findings can be carried out immediately. 

While these breakthrough findings are impressive and exciting in their own regard, and attempts 

have been made to explain the relationships between structure, properties, and performance of these 

new processing methods, more rigorous theoretical models need to be developed before additional 

long-term experimentation.  For example, the quantum size effects of material interactions within a 

solar device should be well-understood and mapped-out in future iterations of this project. 

As well, more reliable and quantifiable performance-based characterization methods such as 

photo- and cathodo-luminescence characterization, and proper, verifiable electrical resistivity 

measurements are needed to verify assumptions about material properties and performance. 

Finally, incorporation of these experimental process findings into real prototypical devices will be 

required to fully verify these findings. 
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Appendix A: Table of chemical systems reviewed by Znaidi in ZnO Sol-gel Review: 
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Source: L. Znaidi, “Sol–gel-deposited ZnO thin films: A review,” Materials Science and Engineering: 
B, vol. 174, no. 1–3, pp. 18–30, Oct. 2010. 
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Appendix B: X-Ray Diffractograms 

Appendix B-2AB: Chapter 2, Experiments A/B(p. 1/6) 
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Appendix B-2AB: Chapter 2, Experiments A/B (p. 2/6) 
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Appendix B-2AB: Chapter 2, Experiments A/B (3/6) 
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Appendix B: Chapter 2, Experiments A/B (4/6) 
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Appendix B: Chapter 2, Experiments A/B (5/6)
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Appendix B: Chapter 2, Experiments A/B (6/6)
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Appendix B-2DG: Chapter 2, Experiments D/G (page 1/3) 

 

 



124 
 

Appendix B: Chapter 2, Experiments D/G, (page 2/3) 
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Appendix B: Chapter 2, Experiments D/G, (page 3/3) 

 

 



126 
 

Appendix B-2F: Chapter 2, Experiment F (page 1/4) 
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Appendix B-2F: Chapter 2, Experiments F (page 2/4) 
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Appendix B-2F: Chapter 2, Experiment F (page 3/4) 
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Appendix B-2F: Chapter 2, Experiment F (page 4/4) 
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Appendix B-2JH: Chapter 2, Experiment J/H (page 1/5) 
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Appendix B-2JH: Chapter 2, Experiment J/H (page 2/5)
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Appendix B-2JH: Chapter 2, Experiment J/H (page 3/5)
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Appendix B-2JH: Chapter 2, Experiment J/H (page 4/5)
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Appendix B-2JH: Chapter 2, Experiment J/H (page 5/5)
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Appendix B-3A: Chapter 3, Experiment A (page 1/4) 
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Appendix B-3A: Chapter 3, Experiment A (page 2/4) 
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Appendix B-3A: Chapter 3, Experiment A (page 3/4) 
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Appendix B-3A: Chapter 3, Experiment A (page 4/4) 
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Appendix B-3B: Chapter 3, Experiment B (page 1/4) 
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Appendix B-3B: Chapter 3, Experiment B (page 2/4) 
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Appendix B-3B: Chapter 3, Experiment B (page 3/4) 
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Appendix B-3B: Chapter 3, Experiment B (page 4/4) 
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Appendix B-3C: Chapter 3, Experiment C (page 1/3) 
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Appendix B-3C: Chapter 3, Experiment C (page 2/3) 
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Appendix B-3C: Chapter 3, Experiment C (page 3/3) 
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Appendix B-3D: Chapter 3, Experiment D (page 1/6) 
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Appendix B-3D: Chapter 3, Experiment D (page 2/6) 
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Appendix B-3D: Chapter 3, Experiment D (page 3/6) 
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Appendix B-3D: Chapter 3, Experiment D (page 4/6) 
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Appendix B-3D: Chapter 3, Experiment D (page 5/6) 
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Appendix B-3D: Chapter 3, Experiment D (page 6/6) 
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Appendix B-3E: Chapter 3, Experiment E (page 1/5) 
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Appendix B-3E: Chapter 3, Experiment E (page 2/5) 
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Appendix B-3E: Chapter 3, Experiment E (page 3/5) 
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Appendix B-3E: Chapter 3, Experiment E (page 4/5) 
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Appendix B-3E: Chapter 3, Experiment E (page 5/5) 
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Appendix C: Microscopy 

Appendix C-2DG: Experiment 2-DG 
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Appendix C-3A: Experiment 3-A 
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Appendix C-3B: Experiment 3-B 
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Expt B Control Doped NP-layered 
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Expt B Control Doped NP-layered 
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Appendix C-3C: Experiment 3-C 

Expt 3-C Control Ethanol NP-layered 
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Appendix C-3D: Experiment 3-D 
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Appendix C-3E: Experiment 3-E 
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Appendix D: Degree of Preferential Orientation Calculation 

Calculation: 

Sample A100 A002 A101 AS P002 f002 

Standard 0.4522 0.7058 0.8326  0.354566  
A.1.G 0.7275 3.457 1.673 0.354566 0.590184 0.365052 

A.2.G 1.203 2.398 2.004 0.354566 0.427832 0.113514 

A.4.G 1.201 4.332 1.215 0.354566 0.641968 0.445284 

A.5.G 1.999 5.751 3.046 0.354566 0.532697 0.275986 

A.1.M 20.26 25.34 716.9 0.354566 0.033233 -0.49786 

A.2.M 2.043 10.63 221.6 0.354566 0.045374 -0.47905 

A.4.M 70.5 56.67 594.6 0.354566 0.078515 -0.4277 

A.5.M 55.57 44.74 552.8 0.354566 0.068503 -0.44321 

A.1.S1 1.407 3.154 2.396 0.354566 0.453356 0.15306 

A.1.S2 1.929 4.046 3.183 0.354566 0.4418 0.135154 

A.2.S2 1.174 3.197 2.213 0.354566 0.485571 0.202972 

A.2.S1 1.401 3.361 2.369 0.354566 0.471322 0.180895 

A.4.S 1.289 8.344 1.862 0.354566 0.725881 0.575294 

A.5.S 1.31 10.35 2.699 0.354566 0.720802 0.567426 

B.0.M 17.99 13.21 323.5 0.354566 0.037243 -0.49164 

B.1.M 36.44 26.76 169 0.354566 0.115245 -0.37079 

B.2.M 34.97 49.82 687.5 0.354566 0.064509 -0.4494 

B.0.B 0.1017 0.2386 0.2256 0.354566 0.421629 0.103903 

B.0.G 0.1782 0.2386 0.2256 0.354566 0.37142 0.026111 

B.0.Q 0.1892 0.1711 0.3164 0.354566 0.252845 -0.1576 

B.0.S 0.3405 0.1879 0.4514 0.354566 0.191774 -0.25222 

B.1.B 0.5825 0.4458 0.9008 0.354566 0.231092 -0.1913 

B.1.Q 0.1142 0.1588 0.2315 0.354566 0.314767 -0.06166 

B.1.G 0.194 0.1636 0.1832 0.354566 0.302515 -0.08065 

B.1.S 1.137 1.269 1.814 0.354566 0.300711 -0.08344 

B.2.B 0.09155 6.369 0.2127 0.354566 0.954408 0.929361 

B.2.G 0.2166 0.5083 0.2578 0.354566 0.517248 0.252051 

B.2.Q 0.353 0.5052 0.4409 0.354566 0.388885 0.053171 

B.2.S 0.06055 11.07 0.1584 0.354566 0.980605 0.96995 

C.0.E 2.359 21.18 3.979 0.354566 0.769678 0.643152 

C.0.D 2.202 5.891 4.284 0.354566 0.475963 0.188086 

C.0.S 1.494 4.646 2.59 0.354566 0.532188 0.275197 

C.1.D 0.1387 0.1472 0.1205 0.354566 0.362205 0.011834 

C.1.E 0.9779 2.57 2.033 0.354566 0.460499 0.164126 

C.1.S 0.7455 2.185 1.673 0.354566 0.474639 0.186034 

C.2.E 0.08498 0.6517 0.2769 0.354566 0.642968 0.446835 

C.2.S 0.4152 1.477 0.5779 0.354566 0.597951 0.377088 
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Sample A100 A002 A101 AS P002 f002 

C.2.D 0.03942 1.03 0.1865 0.354566 0.820116 0.721297 

D.0.A 0.1213 0.264 0.2268 0.354566 0.431302 0.11889 

D.0.C 0.2533 1.255 0.3794 0.354566 0.66483 0.480706 

D.0.D 0.5101 1.867 1.27 0.354566 0.511914 0.243785 

D.0.E 0.4071 3.21 0.9191 0.354566 0.707641 0.547034 

D.0.G 0.6265 18.29 1.236 0.354566 0.90758 0.856809 

D.0.H 0.2241 1.703 0.3169 0.354566 0.758913 0.626472 

D.0.N -0.08536 29.23 -0.09177 0.354566 1.006097 1.009446 

D.1.A 0.2203 0.1868 0.1775 0.354566 0.319535 -0.05428 

D.1.C 0.3714 1.069 0.6131 0.354566 0.520575 0.257204 

D.1.D 0.5434 2.197 1.2 0.354566 0.557558 0.314504 

D.1.E 0.3722 5.158 0.7485 0.354566 0.821508 0.723454 

D.1.G 0.3802 8.165 0.9464 0.354566 0.860234 0.783455 

D.1.H 0.1514 1.726 0.1526 0.354566 0.850246 0.76798 

D.1.N 0.04504 31.7 -0.02049 0.354566 0.999226 0.998801 

D.D.A 0.1659 3.386 0.4934 0.354566 0.837021 0.747489 

D.D.C 0.5 2.317 0.8529 0.354566 0.631352 0.428837 

D.D.D 0.5102 1.882 0.8907 0.354566 0.573274 0.338853 

D.D.E 0.2124 2.8 0.6281 0.354566 0.769125 0.642295 

D.D.G 0.4966 1.675 1.034 0.354566 0.522523 0.260223 

D.D.H 0.1256 8.816 0.175 0.354566 0.967027 0.948914 

D.D.N 0.01321 39.31 0.08638 0.354566 0.997473 0.996085 

D.U.A 0.1885 4.018 0.4454 0.354566 0.863733 0.788875 

D.U.C 0.6452 1.26 1.244 0.354566 0.400102 0.07055 

D.U.D 0.52 1.23 1.223 0.354566 0.413724 0.091655 

D.U.E 0.4273 4.348 0.9849 0.354566 0.754835 0.620154 

D.U.G 0.7592 1.824 1.361 0.354566 0.462451 0.167151 

D.U.H -0.07685 31.68 -0.00316 0.354566 1.002532 1.003923 

D.U.N -0.05697 32.22 0.04455 0.354566 1.000386 1.000597 

ED0 0.4964 9.013 0.7663 0.354566 0.877118 0.809613 

EE0 0.213 2.278 0.3632 0.354566 0.798122 0.687221 

EG0 0.1763 1.963 0.2171 0.354566 0.83305 0.741337 

EO0 0.1719 37.14 0.3395 0.354566 0.986418 0.978956 

EP0 0.1337 36.72 0.1597 0.354566 0.992073 0.987719 

ED1 0.4227 5.348 0.474 0.354566 0.856406 0.777524 

EE1 0.25 3.899 0.474 0.354566 0.843392 0.75736 

EG1 0.4249 6.725 0.941 0.354566 0.831181 0.73844 

EO1 0.3175 21.93 0.6883 0.354566 0.956147 0.932057 

EP1 0.2057 34.25 0.3108 0.354566 0.985144 0.976983 

ED2 1.448 2.995 2.527 0.354566 0.429699 0.116406 

EE2 0.506 8.572 0.9744 0.354566 0.852732 0.77183 
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Sample A100 A002 A101 AS P002 f002 

EG2 0.6748 5.932 1.53 0.354566 0.729034 0.580179 

EO2 0.1713 18.95 0.3292 0.354566 0.974268 0.960132 

EP2 0.0597 24.55 0.1997 0.354566 0.989544 0.9838 

ED3 0.9286 8.349 2.176 0.354566 0.728941 0.580036 

EE3 0.2765 7.392 0.4636 0.354566 0.90899 0.858994 

EG3 0.1685 6.321 0.1147 0.354566 0.957118 0.933561 

EO3 0.2364 18.04 0.3076 0.354566 0.970728 0.954647 

EP3 0.09017 22.66 0.1694 0.354566 0.988675 0.982453 
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Appendix E: UV-Visual Spectroscopy 

Experiment D: Undoped Spectra 

 

Experiment D: Undoped dT/dE: 
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Experiment D: Ag-Doped 
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Experiment D: Doped, Annealed: 
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Experiment D: Undoped, Annealed 
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Experiment E: Undoped, Ethanol-based 
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Experiment E: Doped, Ethanol-based 
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Experiment E: Undoped, PGME based: 
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Experiment E: Doped, PGME-based 
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Experiment D: Calculated Band Gap by Solution and Treatment: 

 

Experiment D: Change in Band Gap (compared to Untreated) by solution: 
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Experiment D: Absolute ZnO Band Gap Calculation
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Experiment E: Calculated Band Gap by Solution and Treatment: 

 

 

Experiment E: Change in Band Gap (compared to Untreated) by solution: 
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Appendix F: Chemicals Utilized 

A variety of chemical compounds are utilized in the sol-gel synthesis process, including 

metallic precursor salts and various organic solvents.  Shorthand abbreviations are used extensively 

throughout this work, and it is instructive that the reader be aware of the chemical structure and 

properties of these compounds.  This table provides a key to the abbreviations used, their common 

names, organic “stick” structure, official IUPAC nomenclature and chemical formula, and a brief list 

of chemical properties of interest to this study. 

Common Name 
Abbreviation 
Used Herein 

Structure IUPAC Name, formula 
Relevant 

Properties/Descr
iption 

Ethanol EtOH 
 

Ethanol 
CH3CH2OH 

Primary alcohol 

Zinc Acetate 
Dihydrate 

ZnAc 

 

Zinc Acetate Dihydrate 
Zn(CH3CO2)2·2H2O 

Organometallic 
salt 

Silver Nitrate AgNO3 

 

Silver(I) nitrate Soluble silver salt 

DI Water H2O 
 

Water 
H2O 

Deionized water 
suitable for 
solutions 
chemistry 

Dimethyl Sulfoxide DMSO 

 

Dimethyl sulfoxide 
(CH3)2SO 

Polar, aprotic, 
highly miscible 

solvent 

Chloroform CHCl3 

 

Trichloromethane 
CHCl3 

Slightly polar, 
aprotic solvent 

Propylene glycol 
methyl ether 

PGME 

 

1-Methoxypropan-2-ol 
C4H10O2 

Polar, protic ether, 
secondary alcohol 

Ethylene glycol 
methyl ether 

EGME 
(also, 2-ME)  

2-Methoxyethanol 
C3H8O2 

Polar, protic 
Ether, Primary 

alcohol, 

Ethanolamine, 
Monoethanolamine 

EA,  
MEA 

 

2-Aminoethan-1-ol 
C2H7NO 

Primary amine, 
primary alcohol, 

weak base 

Diethanolamine DEA 
 

2,2’-Iminodiethanol 
C4H11NO2 

diol, secondary 
amine, weak base 
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