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ABSTRACT 

HEURISTIC ALGORITHM TO MINIMIZE TOTAL WEIGHTED TARDINESS ON 
THE UNRELATED PARALLEL MACHINE WITH SEQUENCE DEPENDENT 

SETUP AND FUTURE READY TIME 

by 

Tzu Yi Li 

The University of Wisconsin-Milwaukee, 2018  

Under the Supervision of Professor Jaejin Jang 

 

This study presents a heuristic algorithm to minimize total weighted tardiness on unrelated 

parallel machines with sequence-dependent setup time and future ready time. We propose a 

new rule based on Apparent Tardiness Cost (ATC). The performance of the rule is evaluated 

on unrelated parallel machines. In order to solve a problem, we use a look-ahead method and 

a job-swap method. When a machine becomes idle, the heuristic compares the jobs on the 

machine and selects the one with the smallest total tardiness value to carry out a process. 

The propose heuristic is divided into three stages: The first stage employs the newly 

introduced dispatching rule, ATC with continuous setup and ready time for unrelated parallel 

machines (ATCSR_UP), along with a look-ahead heuristic to select the initial job for each 

machine. The second stage, consisting of several iterations, schedules the rest of the job on the 

machine. Each iteration starts by finding the job with the smallest tardiness. The ATCSR_Rm 

rule proposed by Lin and Hsieh (2013) concerns the unrelated-parallel-machine scheduling 

which this study examines, so we compare our ATC-based rule with their proposed rule. 

Although they study a separable setup time in their research, no other paper than Lin and Hsieh 

(2003) focus on unrelated parallel machine with future ready times. In their WSPT term, they 
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consider the processing time for each job; our own rule considers processing time, setup time, 

job ready time, and machine time. We consider the setup time, job ready time, and machine 

time because — according to the continuous sequence-dependent setup rule — setup time 

should be included in processing time (Yue and Jang 2013). In addition, job ready time and 

machine time should also be included in the processing time. Adding setup time ("#,%), job 

ready time (&%), and machine time ('() to the formula thus makes the formula more accurate.  

Lin and Hsieh (2013) use )*+,&%, '# + "#,%. for the slack term, and they compare the 

ready time with the sum of the machine available time ('#) and the setup time ("#,%). However, 

in our formula, we consider ready time, machine time, and current time. Current time (') is 

used when a job might come at a future time when the machine in question is idle or has 

finished the job. 

The last term of the propose heuristic is the ready term, which uses both ready time (&%) 

and machine time ('(), because it needs to specify whether ready time (&%) or machine time 

('() goes first. If a job is ready to be processed but the machine is not ready, the job has to 

wait. We use ready time (&%) and machine time ('() because this makes the formula more 

suitable for practical, real-world use. 
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CHAPTER 1. INTRODUCTION  

Parallel-machine scheduling (PMS) is commonly encountered in industries involving 

machinery, electronics, textiles, transportation, telecommunications, pharmaceuticals, 

chemicals, and services (Lu, Lin, & Ying, 2011). Since the publication of the first paper about 

parallel-machine scheduling, researched by McNaughton (1959), various PMSs have attracted 

great interest among other researchers.  

 

Based on the characteristics of parallel machines, a classical parallel-machine system 

(PMS) can be categorized as identical, uniform, or unrelated (Cheng & Sin.C, 1990). 

Allahverdi and Mittenthal (1994) group parallel machines into three groups: identical parallel 

machines, for which the processing time of a job is the same for all machines; uniform parallel 

machines, for which the processing time of a job is determined by the speed factor of the 

machine used; and unrelated parallel machines, for which the processing time of a job can vary 

in an arbitrary way depending on the machine selected. This paper is concerned with unrelated 

parallel machines. 

 

According to Chuang and Chang (2014), it is common for newer machines to have faster 

processing speeds in technology manufacturing. Shahid-Zadeh, Tavakkoli-Moghaddam, 

Taheri-Moghadam, and Rastgar (2017) and Rasaratnam (2007) consider industrial scheduling 

to have benefited greatly from the use of unrelated parallel machines, due to these machines’ 

ability to perform the same function but with varying capability or capacity. 
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Most research on parallel-machine scheduling assumes that the setup time of a job can be 

either ignored or included in processing time. However, this assumption is appropriate only 

when the setup time is independent from the job sequence. According to research by Panwalkar, 

Dudek and Smith (1973), Krajewski, King, Ritzman, and Wong (1987), and Black and Kohser 

(2017), approximately 70% of schedulers observed that for about 25% of jobs they scheduled, 

the setup time could not be ignored. In this sense, setup time can be considered an important 

factor for controlling a whole manufacturing system. Sequence-dependent setup, in which the 

length of a job’s setup time depends on the immediately preceding job, is common and often 

prevalent in manufacturing.  

 

Examples of sequence-dependent setup are found in metallurgical industries; in back-end 

semiconductor manufacturing and semiconductor wafer dicing; and at petroleum production 

plants, printing plants, car-spraying facilities, and textile-dying plants. (Arroyo et al., 2009; 

Kia et al., 2017; Luo et al., 2006; Kim et al., 2002, 2007; Zhang et al., 2007).  

 

Literature on the achievement of parallel-machine scheduling focuses mostly on flow time 

or on tardiness – for example, on minimizing the maximum tardiness, total weighted flow time, 

and total weighted tardiness (Drieel & Monch, 2011; Kim et al., 2002; Lee & Pinedo, 1997; Xi 

& Jang, 2012). Flow time is often closely related to job waiting time for factory processing, 

whereas tardiness is often relevant to manufacturing when the deadlines for expected due dates 

cannot be adhered to. Such deadlines matter in the real world, since failure to meet them may 

lead to the loss of future customers. Therefore, this research is interested in how deadlines can 

be met and job tardiness reduced in the context of unrelated parallel machines. 
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Although many researchers have studied parallel machines scheduling problems, only a 

few papers have dealt with scheduling unrelated parallel machines with setup times, ready 

times and due date-related measures. In this particular study, we focus on unrelated parallel-

machine scheduling using ATC-based dispatching rule. It is known that ATC (Apparent 

Tardiness Cost)- based rules can efficiently reduce tardiness of a schedule. In this research, a 

new, efficient ATC-based rule is proposed. All proposed heuristic methods mentioned in this 

research are for minimizing total weighted tardiness.  

 

This study is organized as follows: Chapter Two reviews literature related to parallel-

machine scheduling with sequence-dependent setup. In Chapter Three, a new ATC-based rule 

is introduced to minimize the total weighted tardiness. Chapter Four is an experimental study 

carried out on unrelated parallel machines, and it evaluates the performance of the new ATC-

based rule proposed. Finally, conclusions and future research are discussed in Chapter Five. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Parallel machines 

    This section reviews the studies of parallel machines scheduling both with and without a 

sequence-dependent setup. From the literature, research about parallel-machine scheduling can 

be grouped by various criteria (Allahverdi, 2015). The first is by machine type, where machines 

are sorted into identical, uniform, and unrelated machines. A second division is by setup time 

(Slotnick, 2011), where machines-scheduling studies are divided into those without a setup 

time, those with a setup time, those with a continuous setup time (setup cannot start before an 

operation’s ready time), and those with separable setup times (setup can start before an 

operation’s ready time). A further grouping is by objective (Pinedo, 2016), where related papers 

are classified such as minimizing the total completion time (Costa, Cappadonna, & Fichera, 

2016), and minimizing the total tardiness (Allahverdi & Aydilek, 2015). Finally, papers can be 

grouped by approach: for example, metaheuristic, mathematical models, and branch and bound 

heuristic. In this study, we focus on non-batch, unrelated parallel machines with continuous 

sequence-dependent setup times and a total weighted tardiness objective. 

 

2.1.1 The scaling parameter <=, <>, <? 

    The basic format of the ATC-based indexes has four terms. Jobs are scheduled based on 

this index value assigned to it. 

Index (i, 	j, 	m) =(WSPT) × (Slack	) × (Setup	time	) × (Ready	time)  ( 1 ) 

STUV+	(', W, X) = Y × V+Z [− ]

^_`
a exp [−

cde
^fc̅
a exp	(− h

^ij̅
)                   ( 2 ) 
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The exponent of terms have scale parameters 34, 38, 39 and job information (processing 

time, setup time, due date, job weight and ready time) A is the modified WSPT term, B 

represent the numerator of slack term, C represents the denominator of slack and D is the ready-

term numerator. When applying ATC- based rules it is important to determine good scaling 

parameters (the k values). The formula for index does not specify how the scaling parameters 

are used, therefore, researchers focuses on different methods to determined the suitable scaling 

parameters. 

 

In literature, two types of approaches have been used to determine the parameters. Xi and 

Jang (2012) report that there are several methods that can be used to estimate good grid of the 

parameters: Rachamadugu and Morton (1982) and Vepsalainen and Morton (1987) use the 

Empirical Value Method; Lee and Pinedo (1997), Pfund et al. (2008) for the Regression 

Method and Kim et al. (1995), Park et al. (2000) for the Artificial Neural Network Method.  

 

Other research, like that of Pfund et al. (2008) and Drieel and Monch (2009, 2011), 

investigates the use of many grids and selects the optimal pair of parameters for the grid method. 

Xi and Jang (2012) point out that the grid method is not only used to decide final parameters 

but also to give information for other methods like the regression method and other heuristics 

that get an improved result (Christoph et al., 2007, Drieel and Monch, 2009, 2011) 

 

Lee and Pinedo (1997) present a grid parameter setting:34= (0.2, 0.4, 0.6..., 6.4), and 38 

= (0.1, 0.2, 0.3..., 1.6), while later Pfund et al. (2008) propose a wider search range for 34and 

38 and further put forward settings for a newly-created parameter 39:  
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34: 0.2,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.4,2.8,3.2,3.6,4,4.4,4.8,5.2,5.6,6,6.4,6.8,7.2  

38: 0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1� 

39: 0.001,0.0025,0.004,0.005,0.025,0.04,0.05,0.25,0.4,0.6,0.8,1,1.2  

Drieel and Monch (2009) propose a narrower search range k1: [0.2, 6], k2 : [0.1, 1.9] and 

k3 : [0.001, 1.2] and consider fewer grids: 7, 4 and 5 grids. In further research, they use k1: 

[0.01, 1.5], k2 : [0.1, 1.9] and k3: [0.01,1] as a search set (Drieel & Monch, 2011).  

In this study, we employ the parameters set out by Pfund et al. (2008) to evaluate the 

proposed ATC-based rule. Table 1. shows the parameters propose by Pfund et al. (2008) and 

Drieel and Monch (2011). 

 

Table 1. Grid setting comparison Xi and Jang (2012) 

 Pfund et al. (2008) Driessel and Monch (2009) Driessel and Monch (2009) 

34 22 values in [0.2, 7.2] 7 values in [0.2, 6] 5 values in[0.01, 1.5] 

38 11 values in [0.1, 2.1] 4 values in[0.1, 0.9] 4 values in[0.1, 1.9] 

39 12 values in[0.001, 1.2] 5 values in[0.001, 1.2] 4 values in[0.01, 1.0] 

 

2.1.2 Objectives of parallel machine scheduling with sequence-dependent setup  

(i) Minimizing total weighted tardiness 

Scheduling problems with the objective of total weighted tardiness is NP-hard even for a 

single machine environment (Du & Leung, 1990). As the single machine was seen as NP-hard, 

the parallel machine problem is also viewed as such. Parallel-machine scheduling with a 

tardiness objective has attracted much attention from researchers in recent years.  
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To minimizing the total weighted tardiness in unrelated parallel machines scheduling, Luh, 

Hoitomt, Max, & Pattipati (1990) propose a Lagrangian dual relaxation approach to generate 

a listing of jobs followed by a greedy approach to form a feasible schedule for the parallel 

machines. Arkin and Roundy (1991) consider that the weight of each job is proportional to its 

processing time and developed a pseudo-polynomial time algorithm to minimize total weighted 

tardiness. 

 

Lee, Bhaskaran and Pinedo (1996) extend the ATC rule to develop a composite-

dispatching heuristic called the ATCS (Apparent Tardiness Cost with Setup) rule for solving 

the sequence-dependent version of the weighted tardiness problem with static job releases and 

static machine availability. Lee and Pinedo (1997) use the ATCS dispatching rule, proposed by 

Lee et al. (1996), in order to obtain an initial solution for minimizing the total weighted 

tardiness on identical machines.  

 

Zhu and Heady (2000) propose a mathematical model for setup times that has to satisfy 

the triangular inequality law, with the setup starting before the job arrives. Ecom, Shin, Kwun, 

Shim and Kim (2002) put forward a three-phase heuristic for the problem, using a combination 

of pre-processing by the first due date, grouping and sequencing jobs according to setup types 

(improved by a Tabu search), and allocating jobs to machines.  

 

Kim et al. (2002) propose a simulated annealing-based heuristic for jobs with sequence-

dependent setup times on machines. For the same objective, Kim et al. (2002) extend their 
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investigation on batch scheduling. Liaw et al. (2003) propose a two-phase heuristic for solving 

the job scheduling problem. 

 

Bilge et al. (2004) use a Tabu Search (TS) to schedule uniform parallel machines with 

sequence-dependent setups and ready times in order to minimize total tardiness . 

Kim et al. (2007) report on Tabu search use and on simulated annealing (SA) algorithms to 

minimize total tardiness for uniform parallel machines with sequence-dependent setup times 

and ready times . Anghinolfi and Paolucci (2007) present a hybrid metaheuristic 

approach which combines several features from a Tabu Search, Simulated Annealing, and a 

variable neighborhood search (VNS) for the k|&%, "#%^| ∑n%o%  problem. Logendran, 

McDonell and Smucker (2007) propose four heuristics for initial solutions and six search 

algorithms based on Tabu Search for minimizing total weighted tardiness (TWT) on unrelated 

parallel machines with ready times and sequence-dependent setup times (k|&%, "#%^| ∑n%o%). 

 

Gharhgozli et al. (2009) apply a fuzzy-mixed-integer goal programming model to 

simultaneously minimize total weighted flow time and TWT. They apply this to parallel 

machine scheduling problems with sequence-dependent setup times and release dates. 

 

Drieel and Monch (2011) propose several VNS approaches for scheduling identical 

parallel machines with sequence-dependent setup times, precedence constraints and ready 

times to minimize TWT (p|&%, "#%| ∑n%o%). They employ a dispatching rule that uses Apparent 

Tardiness Cost with setup time and ready time (ATCSR) as an initial solution and then applied 
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VNS that are fast enough to serve as high-quality sub-problem solution procedures in 

decomposition schemes for large-scale job shops. 

 

Xi and Jang (2012) study the ATC-based dispatching rules with future-ready times and 

sequence-dependent setup times for minimizing TWT on identical parallel machines 

(P|rr, str| ∑wrTr). They show that the both ATCRCS (continuous sequence setup) and ATCRSS 

(separable sequence setup) outperform ATCSR (ATC-based rule with sequence setup time and 

future ready job). 

 

Lin and Hsieh (2013) study the ATC-based dispatching rule with separable setup and 

future ready job for minimzing the TWT on unrelated parallel machines(	p(|rr, str| ∑wrTr). 

They modify the ATC-based rule (ATCSR_Rm) from ATCSR so it can be use to solve unrelated 

parallel machine problems. They show that ATCSR_Rm outperforms ATCSR (ATC-based rule 

with sequence setup time and future ready job). 

 

Diana et al. (2018) address the total weighted tardiness minimization problem on 

unrelated parallel machines with sequence dependent setup times and job ready times. The 

problem consists of scheduling a set of jobs in such a way as to reduce penalty costs caused by 

failures to meet the job due dates. In order to resolve this, an ILS-VND hybrid metaheuristic is 

proposed: A local search heuristic, Variable Neighborhood Descent (VND), is integrated with 

an Iterated Local Search (ILS) metaheuristic with multiple restarts. 
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(ii) Minimizing completion time 

Weng, Lu, and Ren (2001) research minimization of the total weighted completion time 

on unrelated parallel machines. Several heuristics are presented. According to their experiment, 

the best heuristic assigns one job at a time based on the ratio of a job’s processing time plus 

setup time to its weight. Cochran et al. (2003) have published a multi-population genetic 

algorithm that minimizes the makespan and TWT for identical parallel machines with release 

times and setup times (pv&%, "%^vw)*+,∑n%o% ). Using this hybrid approach, the genetic 

algorithm assigns jobs to machines; dispatching rules are then used to schedule jobs on each 

individual machine. 

 

(iii) Minimize maximum lateness  

    Schutten and Leussink (1996) present a branch and bound algorithm (B&B) to solve the 

problem of parallel-machine scheduling with release dates and family setup times to minimize 

maximum lateness (p|&%, "#|x)*+). Their B&B algorithm can find optimal solutions for up to 

three machines and 25 jobs. Later on, Balakrishnan et al. (1999) propose a MIP model for the 

problem of early/tardy scheduling with sequence-dependent setups on uniform parallel 

machines (Q|rr,"#%^|(V%z% + '%o%)).  

 

Ying and Cheng (2010) apply an iterated greedy (IG) heuristic for minimizing maximum 

lateness on identical parallel machines with ready times and sequence-dependent setup times 

(p|&%, "#|x)*+). Lee et al. (2010) present a restricted SA for the (P|rr, sr{|Lmax) problem as 

well. Moreover, Lin et al. (2011) propose an IG heuristic with a sinking temperature for the 

(p|&%, "#|x)*+) problem. 
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(iv) Minimizing number of tardy jobs 

Chen (2012) presents an Integer Hybrid Metaheuristic (IHM) which integrated the 

principles of variable-neighborhood descent and TS for unrelated parallel machines problems 

with ready times and sequence- and machine-dependent setup times to minimize the weighted 

number of tardy jobs (R|rr, str| ∑wrTr). 

In Table 2, we list the papers that focus on parallel non-batch machines with sequence-

dependent setup time. We categorize them with six objective functions: total weighted 

tardiness, total tardiness, total completion time, total weighted completion time, bi-criteria and 

others. We then list the machine type for each paper and the approach the researcher uses to 

solve the problem.  
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Table 2. Parallel non-batch machine with sequence-dependent setup time

Objective function References Machine type Approach 

1. Total weighted 

tardiness 

Lee and Pinedo (1997) Identical parallel machines Dispatching rule 

(ATCS) 

 Lee and Pinedo (1997) Identical parallel machines Three stages method 

 Park et al. (2000) Identical parallel machines Dispatching rule 

(ATCS) 

 Fowler and Horng (2003) Identical parallel machines Hybrid genetic 

algorithm 

 Tamimi and Rajan (1997) Uniform parallel machines Genetic Algorithm 

 Xi and Jang (2012) Identical parallel machines Dispatching rules 

(ATCS) 

 Diana et al. (2018) Uniform parallel machines ILS-VND hybrid 

metaheuristic 

2. Total tardiness Chen (2009) Unrelated parallel machines Hybrid Approach 

(ATCS+SA) 

 Lee (2017) Identical parallel machines Random iteration greedy 

metaheuristic 

3. Total completion 

time 

Felipe (2005) Unrelated parallel machines Constructive method 

 Kurt and Askin (2001) Identical parallel machines Integer programming 

 Yin et al. (2018) Unrelated parallel machine Greedy heuristic 

 Framimam and Paz (2017) Identical parallel machines Constructive method 

4. Total weighted 

completion time 

Weng et al. (2001) Unrelated parallel machine Evaluate several 

heuristics 

 Fowler and Horng (2003) Identical parallel machines Hybrid genetic 

algorithm 

5. Bi-Criteria    

Sum of weighted 

earliness and 

weighted tardiness 

Balakrishnan et al. (1999) Uniform parallel machine Mixed integer 

programming 

 Radhakrishnan and 

Ventura (2000) 

Identical parallel machines Mathematical 

programming 
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 Feng and Lau (2005) Identical parallel machines Meta-heuristic 

Sum of earliness 

and tardiness 

Heady and Zhu(1998) Identical parallel machines Heuristic  

6. Others     

Weighted number 

of jobs that are 

completed at theirs 

due date 

Hirashi et al. (2002) Identical parallel machines  

Minimize the 

maximum lateness 

Kim et al. (2002) Identical parallel machines Restricted Tabu search 

Minimize mean 

completion time 

Michael et al. (2001)  Identical parallel machines Hybrid genetic 

algorithm 

Minimize total 

setup time 

Anglani et al. (2005) Identical parallel machines Fuzzy programming 

 

2.2 Look-ahead method 

    The purpose of the look-ahead method is to control system to “look-ahead” to what is 

happening in the future of the schedule generation (Jang et al., 2001). The decision-making 

base on this type of information allows the scheduler to make a decision indicating the 

particular system. In this section the look-ahead method we list are mainly divide in to two 

types. One type can select a part from those waiting for the machine service. Another type of 

look-ahead looks ahead to the future states of a production shop and uses the information 

obtained by looking a few steps ahead to see the current decision’s effects on the flow time or 

other performance evaluation criteria of the parts due to arrive next.  

 

Mao and Kincaid (1994) propose a one-step look-ahead method for machine scheduling 

and combine this with ATCS and Simulated Annealing. This approach outperforms other 

normal Simulated Annealing heuristics. In their look-ahead method, Mao and Kincaid (1994) 
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assume the machine is idle at time t and at t the available queue is }4, containing jobs J4 to 

J� ;	}8 is the look-ahead queue containing job (ÄÅÇ4). Job (ÄÅÇ4) is the job that will be available 

soonest in the future. When there is more than one job due to arrive at , the job with the 

shortest processing time will be placed in	}8. When the machine becomes idle,	}4 and	}8 are 

checked to decide whether it is best to wait until the job in	}8 arrives, or to schedule the 

shortest job in 	}4 . The scheduler always chooses the option that yields a shorter total 

completion time based on the assumption that no more jobs will arrive expect the one already 

in	}8. 

 

Christos and Milton (1998) reduce interference for one operator of parallel machines. The 

look-ahead method they propose is to avoid the simultaneous demands for the server. They 

assume i machine with the completion time. When one machine finished current job, a selection 

must be made for the next job to process from the jobs in the queue in front of each machine. 

The job should be select such that simultaneous demands for the server with the next machine 

j to finish processing (i = j) can be avoid. After a job is finished, Christos and Milton’s (1998) 

algorithm first records the completion time on other machines, then selects a job with a 

processing time satisfying o% + 'É ≥ o[W] + x[W] and o% + 'É + xÉ ≥ o[W + 1]. If there are 

more than two jobs, select the one adhering to FIFO rules. 

 

 Jang, Suh, Park, and Liu (2001) suggest a heuristic to minimize flow time and tardiness 

on parallel machines. Each job has a different processing time on different machines, and there 

is no local buffer. Once a job arrives, a machine is immediately assigned to it. In contrast with 

other look-ahead heuristics, the look-ahead heuristic in question considers one part which has 
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just arrived (part 1) and another part due to arrive next (part 2) with three machine j (A, B, C). 

The potential job i (i = 1, 2) is selected from the machine’s perspective, according to the 

machine’s preference for a particular job. The routing rule determines the machines on which 

the parts will be processed next to reduce the average flow time or average tardiness of the 

parts. 

     

Chang, Chou, and Lee (2004) propose a one-step look-ahead heuristic in order to 

minimize the total weighted tardiness with sequence-dependent setup and unequal ready times. 

They designate a job for the machine using iteration, so that the partial schedule created 

produces the smallest total weighted tardiness. Once all jobs are scheduled, reducing the total 

weighted tardiness by using the pairwise exchange, Chang et al.’s (2004) heuristic proves to 

be an efficient method for dealing with a small problem size. According to the look-ahead 

method they propose, when a machine finishes one job, it is kept idle and waiting for the next 

job released to arrive, even if there is a queue for the machine. On-hand work-in-process (WIP) 

and a newly-arrived job will be put together and resequenced to decide which one gets top 

priority (having the smallest total weighted tardiness) to be scheduled next. 

 

For more complicated scheduling environments, such as flow shops and job shops, Smith 

and Stecke (1996) investigate the influence of the look-ahead strategy on machine utilization 

in a flexible flow shop. The proposed look-ahead strategy ensures that the machine with the 

earliest upcoming availability time is used for the next operation. When a job is finished, the 

machine is kept idle and waiting for the next job to arrive. The job in the queue and the next 
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arriving job are compared, and the job with higher priority is scheduled next (the job with a 

smaller input buffer).  

 

Ginzburg and Gonik (1997) propose a heuristic that uses the look-ahead concept and 

pairwise comparison to assign the next incoming job to an idle machine. Available jobs 

compete with each other. The look-ahead is decided by analyzing the processing time; the 

upcoming job’s finishing time is estimated, then the available job selected is compared with 

the upcoming job, with the winner getting assigned to the idle machine.   

 

Wang and Cheng (2015) study a double identical-parallel-machine scheduling problem in 

which one machine is available to process jobs during a limited time interval, while the other 

machine is always available over the scheduling horizon. Wang and Cheng (2015) develop a 

heuristic to tackle the problem by incorporating the backward-adjusting and two-step look-

ahead strategies into existing heuristics for similar problems without the machine-availability 

constraint. The two-step look-ahead strategies take into account two machines and two jobs. 

The first step looks ahead to the pair of jobs available for processing on time, and the second 

step considers the smallest job index among the job candidates in the first step.   

 

Xi et al. (2015) propose a look-ahead heuristic to minimize the total weighted tardiness 

on identical parallel machines. When a machine becomes idle, it selects a job from available 

jobs and near-future jobs to process. Unlike other look-ahead heuristics, the proposed look-

ahead heuristic not only looks ahead (considering a limited number of future jobs) but also 

looks backwards (therefore, the selected job has a chance to be scheduled before the last job 
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on each machine). The proposed look-ahead heuristic compares favorably with available look-

ahead heuristics and non-look-ahead heuristics to minimize total weighted tardiness on the 

identical parallel machines. 
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CHAPTER 3 THE NEW FORMULA ATCSR_UP 

3.1. Problem description 

This paper considers the problem (p(|&%, "#%, áàT|∑n%o% ). The problem is stated as 

follows:  jobs arrive at M unrelated machines at different times. Each job j has a ready time 

(rr), a processing time for machine m (pr,â), a due date (dr), and a job weight (wr). Unrelated 

parallel machines have different values for pr,â , or processing times, for the same job. For a 

given job j the setup time (str ) for each pair of jobs,i and j, is sequence dependent and 

continuous, which means that the setup time cannot be initiated before the job is ready, con. In 

general, str  is not equal to srt . We also consider tâ  (completion time of the last job on 

machine m at the current time). This procedure takes into account both the machine time and 

the current time t The objective is to minimize the total weighted tardiness of jobs, ∑ wrTrä
rã4  , 

where o% is the tardiness of job j, max	(0, Cr − dr), and Cr is the completion time of job j. 

 

The problem assumes the following: 

l The job attributes ( , , , , ) are known in advance. 

l The machines are unrelated, meaning that a given job has different processing times on 

different machines. 

l Each machine can process at most one job at a time 

l Job pre-emption is not allowed. 

l Production interruptions such as machine breakdown and order cancellation do not 

happen. 
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This section gives detailed information about the ATC-based dispatching rules. The new 

formula and the new sequencing procedure for unrelated parallel machines will also be 

introduced here. 

 

3.2 New dispatching rule: ATCSR_UP 

    Proposing a new ATC-based sequencing rule, this section starts by analyzing the WSPT 

term, the slack term, and the ready-time term of existing ATC-based rules. Unlike Yue and 

Jang (2013), we discuss unrelated parallel machines: A job has different processing times on 

different machines. The basic format of the ATC-based index has four terms: 

Index ( ) = (WSPT term) *(Slack term) *(Setup term) *(Ready term)  ( 3 ) 

The index is use to calculate job index for all unscheduled job j and machine m. Relevant 

literature mentions that the index of the ATC-based term should have at least two terms (Yue 

& Jang, 2013). To select the next job for a machine, ATC-based rules compute the index value 

for each unscheduled job and select the job with the biggest value to be processed.  

    The formula we propose is  

Iéèêëíìî(t, i, j) = 

ïñ

óò,ñÇôòñÇâöõ	(úñùûü,†)
exp	(−

max[dj−pj−sij−max,rj,tm,	t.,0a

k1(p°m+s¢m.
)exp( −

sij
k2s¢
)exp( −

max(rj−tm,0.

k3p°m
 ( 4 ) 

 

where  are scaling parameters, job weight (wr), processing time (pr), setup time (str), 

ready time (rr), machine time (tâ), due date (dr), current time (t), average processing time (p¢â), 
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and average setup time ( s̅â ). Section 3.2.1 discusses the difference between the new 

ATCSR_UP, ATCSR_Rm (Lin and Hsieh, 2013) and other ATC-based rules. 

 

3.2.1 New terms of ATC-based rule 

(i)The WPST term  

    Yue and Jang (2013) point out that the denominator of the conventional WSPT term is , 

which represents the earliest possible completion time of job j from the current time. If the 

setup time is sequence-dependent, and the job is available at time zero, its earliest job 

completion time is pr + str. Yue and Jang (2013) propose ïñ

óñ,üÇôòñÇâöõ	(úñù£,†)
  as the WSPT 

term. 

 

    For the continuous sequence-dependent setup where a job has a future ready time, 

different processing times on different machines, and sequence-dependent setup, the 

denominator should be Z%,( + "#% + max	(&% − '(, 0). In our formula ATCSR_UP, max	(&% −

'(, 0) is the potential machine idle time that influences the earliest completion time for the 

potential jobs, and it is reasonable to treat these possible idle times as part of the processing 

time. If &% − '( > 0 this means the job is a future ready job; otherwise it’s a current ready job. 

Based on the respective analysis, we propose the following formula as the new WSPT term: 

 

ïñ

óñ,üÇôòñÇâöõ	(úñ-ûü,†)
  ( 5 ) 

 

(ii)The slack term 
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 One of the important differences among ATC-based rules is the slack term. Slack time is 

extra time – between the earliest possible start time of the job and the job’s due date – allocated 

to processing a job.  

The important part of the slack term is the time at which the respective job starts. 

Therefore, we must calculate how long the slack time will be. The new form we propose to 

decide the earliest start time for each job is:   

max	(rr, tâ, t)  ( 6 ) 

Using equation (6), we propose a new exponent numerator for the slack term, by 

comparing the ready time , machine time  , and the current time t (minimum machine 

available time). 

 

Figure  1. Exponent for slack term.  

The slack term exponent we propose is slightly different from the one proposed by Xi and 

Jang (2012). We use not only current time t but also machine available time tâ to calculate 
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the slack term . Figure 1(a) shows that when the job ready time (rr) is earlier than the machine 

available time (tâ), the job can start whenever the machine is ready; therefore, the earliest 

possible start time will be the machine time ('(). Figure 1(b) shows that the machine has 

finished a job or has not yet started any jobs and is therefore currently idle. The potential start 

time for the machine is whenever a future job arrives at the machine (rr). According to this 

concept, the earliest start time is the job ready time (rr). Figure (c) and (d) we have the current 

time smaller than both job ready time and machine available time. In this situation, the job will 

be regard as a future job. However, we still have to consider wether job ready time is select as 

the earliest start time or the machine available will be select as the earliest start time. For figure 

(c) the job ready time is smaller than the machine available time, therefore, the job has to wait 

for the machine to finish the assign job. in this sense the machine available time will be select 

as the earliest start time. For figure (d) the machine available time is samller than the job ready 

time. The machine is currently idle, therefore, the job ready time will be the earliest start time. 

    After the start time is considered in equation (6), we calculate the completion time for the 

job. Completion time ( ) is the length between due date and the job’s start time, calculated by 

subtracting from the due date ( )the sum of the processing time ( ), the setup time ( ) and 

the start time (max	(&%, '(, ')). The propose denominator for the term is: 

max,dr-pr-str-max,rr, tâ, 	t. , 0. ( 7 )  

    Equation (7) shows the completion time: due date ( ) minus the sum of processing time 

( ), setup time ( ) and the earliest start time (max	(rr, tâ, t)).  

This new formula includes the sequence-dependent setup time in the formula of ATCSR, the 

machine processing time for different jobs, and the times at which the machines become 

Cj
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available to process the next potential job. The slack time measures the maximum amount of 

time by which the start of a job may be postponed after the earliest possible start time, 

max	(&%, '(, '), while still adhering to the deadline of its due date. 

The new slack term we propose is: 

exp	(-
âöõ,¶ñ-óñ,ü-ôòñ-âöõ,úñ,ûü,	û.,†.

{_(ó°üÇô¢ü)
) ( 8 ) 

 

(iii) Exponent denominator of the slack term         

    For the exponent denominator of the slack term, we take the denominator used by Yue 

and Jang (2013), which is the combination of average processing time (Z̅() and average setup 

time (s̅â). p¢â is the average processing time for each machine, calculated by taking the total 

processing time on each machine and dividing it by the number of jobs on each machine.	s̅â 

is the average setup time for each machine, calculated using the average setup time on each 

machine divided by the number of jobs on each machine: 

34(Z̅( + "̅() ( 9 ) 

where 34 is the scaling parameter for the slack term. 

 

(iv) The ready term  

    In the ready-term numerator, the existing ATC-based rule uses t to calculate the numerator 

of the ready term. In ATCSR_UP, we use machine available time ( ) to calculate the numerator. 

Also in the numerator, we use average processing time (p¢â). p¢â is the average processing 

time for each machine, calculated using the total processing time on each machine divided by 

the number of jobs on each machine. We propose the following denominator for the exponent 

tm
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ready term: 

max	(rr − tâ, 0) ( 10 ) 

     

Combining all the above terms, we propose the ATC-based rule formula ATCSR_UP 

(continuous sequence-dependent setup), shown in equation (4) and equation (11) below: 

 

IATCSRUP(t, i, j) =
wj

pi,j+sij+max	(rj-tm,0)
exp	(-

max[dj-pj-sij- max,rj,tm,	t.,0a

k1(p¢m+s̅m.
)ex p( -

sij

k2s̅
)ex p( -

ma x(rj-tm,0.

k3p¢m
( 11 ) 

 

3.2.2 Index formula comparison  

For the formula we propose, we make comparisons with other papers that use an ATC-

based rule. Table 3 compares the ATC-based formulas. 
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Table 3. Comparison of terms ATC-based rule 

Rule  WSPT term Slack term Setup term Ready term Equation 
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In the table, Equations (1) – (4) focus either on a single machine or on identical parallel 

machines. Therefore, we focus our comparison on equation (5) (Yue & Jang, 2011) and (6) 

(Lin & Hsieh, 2013). 

 

(i) The WSPT term  

   Starting with the WSPT term, we compare our own WSPT term with those of Xi and Jang 

(2011) and Lin and Hsieh (2013). Unlike Lin and Hsieh (2013), who only use !",$ because 

they have the searable setup case, however, we consider continuous sequence-dependent setup 

time (%&"), machine ready time ('$), and processing time (!",$). For continuous sequence-

dependent setup, the setup time should be considered with the processing time, and the machine 

time should also be calculated, because every machine has its own schedule time. Therefore, 

we include the machine time in the processing time and setup time.  

Instead of using current decision time t (Xi & Jang, 2011), we use machine time ('$) for 

the WSPT term. The max	(r. − t1, 0) is the potential machine idle time that influences the 

earliest completion time for the potential jobs, and it is reasonable to treat these possible idle 

times as part of the processing time.  

 

(ii) The Slack term  

For the slack term, Lin and Hsieh (2013) use job processing time and earliest start time, 

max4r., t1 + s1,.,78, to calculate 
-1:;	(<=->=,?-1:;4@=,A?BC?,=,D8,E)

FG>H
. If the job ready time (r.) is 

larger than machine available time + setup time (t1 + s1,.,7), the earliest start time for a job 

will be the job ready time (r.), and if the machine available time + setup time (t1 + s1,.,7) is 

larger than job ready time (r.) the machine available time + setup time (t1 + s1,.,7) will be 
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select as the earliest start time. We consider the sum of processing time, setup time and earliest 

start time max4r., t1, t8 to calculate 
-1:;4<=->	=,?-CI=-1:;4@=,A?,A8,E8

FG(>H?BCJ?)
 . We use the current time, , 

the minimum machine available time. We compare the earliest start time of a job by using job 

ready time, machine available time and current time. The consideration is show in section 3.2.1. 

 

(iii) The Ready term 

We lastly compare our own ready term with Lin and Hsieh’s (2013). We consider only 

−max	(r. − t1, 0) other than −max	(r. − t1 − s17., 0). The setup time does not feature here, 

because the setup time in ATCSR_UP is calculated as part of the machine time ( ) already. 

The machine time ( ), when no jobs have been assigned, the machine time ( ) starts at time 

0. However, when the machine has its first job assigned, the machine time ( ) consists of job 

, processing time ( ), setup time ( ), and max	(rK − t1, 0). Therefore, the setup time (sK.) 

is already considered in the machine time ('$). 

 

3.3 Job and machine selection procedure with look-ahead method 

    Based on the above analysis, this section introduces the job- and machine-selection 

procedure of ATCSR_UP to minimize the total weighted tardiness with sequence-dependent 

setup, different processing time and future ready time. In this section, we discuss how a job 

and a machine are selected based on the index. In the relevant literature, the look-ahead 

heuristic we use in our procedure is referenced from the look-ahead heuristic proposed by Yue 

and Jang (2013). In Yue and Jang (2013), the propose look-ahead heuristic not only looks ahead 

(considers limited numbers of future jobs) but also looks back (schedules each selected job 

t

tm

tm tm

tm

j pj,m sij
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before the last job is assigned to each machine). In contrast with Yue and Jang (2013), we look 

ahead to the two jobs with the biggest job indexes and assign the jobs to the respective machines 

with the smallest tardiness. For traditional ATC-based rule, it selects the job to assign to the 

machine by choosing the largest job index. However, this procedure can be a look-ahead 

method because we use the concept of the look-ahead method-look-ahead to the near future 

states of the production shop and pick one more job to compare the tardiness. 

 

Figure  2.  Different index among different machines. 

Figure 2 shows that each job has different index values for different machines. In a 

previous paper by Yue and Jang (2013), the highest index is chosen and the job is scheduled 

on a parallel machine. This procedure is quite straightforward for identical parallel machines 

because they have the same processing speed: A higher index gets higher priority for the 

process to be carried out on the machine. However, in this study, an identical parallel machine 

has been replaced by an unrelated parallel machine, meaning that each job has its own 

processing time on each machine. Hence, we consider the different processing times for 

!"##

!"$$
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different machines in order to schedule the job in question. 

The way we choose the job to be processed and the machine to be used involves 

calculating all job indexes. For all jobs and all machines, we choose the two biggest indexes 

and compare the tardiness (LMN{0, P" − Q"} and P"= !",$+ %&"  + max	(S", '$)) when the 

jobs are assigned to the machines; the job with a smallest tardiness value is then assigned to 

the related machine. We assign all the job with this procedure.  

However, there are two situations that needs to be consider. First, if the selected jobs have 

the same tardiness, we calculate the machine time for the related two machines and assign the 

job to the relate machine with the smallest machine time ('$). Second, if the two biggest job 

indexes are the same job on different machine, we pick the largest job index and the second 

large job on the other machine and compare the tardiness. The job with the smallest tardiness 

will be assign to the relate machine. 

We show an example of four jobs and two machines; in this example, the index values are 

calculated based on the new formula, equation (11). Input data for machines and jobs are shown 

in Tables 4-7. 

 

Table 4. Job data for Machine 1 ('T = 0) 

Machine 1     

Job  1 2 3 4 

Ready time 4 0 5 0 

Processing time 3 19 3 19 

Due date 10 5 13 12 

Weight  4 2 8 3 

Setup time 3 2 4 5 
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Table 5. Job data for Machine 2 ('U = 0) 

Machine 2     

Job  1 2 3 4 

Ready time 4 0 5 0 

Processing time 1 2 1 4 

Due date 10 5 13 12 

Weight  4 2 8 3 

Setup time 2 4 3 1 

 

Iteration 1  

 

Table 6. Job Index for Machine 1 

Job  1 2 3 4 

Index 0 0.000121203 0 7.22219E-09 

 

Table 7. Job Index for Machine 2 

Job 1 2 3 4 

Index 0 3.75117E-08 0 0.004236 

     

Each machine time starts at time t = 0. We calculate all the job indexes first shown in Tables 6 

and 7. We choose Machine 1, Job 2 and Machine 2, Job 4 because they are the two biggest job 

indexes among all job indexes. Now we calculate the tardiness max( ). For Machine 1 

Job 2 the tardiness is max (P"= !",$+ %&"  + max	(S", '$) = 19+2+0-5,0) = 16 and the 

tardiness for Machine 2 Job 4 is max (4+1+0-12,0) = 0. Machine 2, Job 4 has no tardiness so 

we assign Job 4 to Machine 2. The machine time is now ('$ = processing time: 4+ setup 

time:1+ready time: 0=5). We delete Job 4 from the table and consider the next job to be assign. 
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The next job is considered in the same way, but there is a precondition in our procedure. We 

compare the two largest job index and choose the machine to assign the job with a smaller 

machine time ( ) when the compared two jobs have the same tardiness.  

 

Iteration 2 

 

Table 8. Job Index for Machine 1 ('T = 0) 

Job  1 2 3 

Index 0 0.000121203 0 

 

Table 9. Job Index for Machine 2 ('U = 5) 

Job 1 2 3 

Index 0.000176 3.75117E-08 1.912E-06 

     

Now we compare the two biggest index, Machine 1 Job 2 and Machine 2 Job 1. Job 1 will be 

assigned to Machine 2, because Job 1 max (5+1+2-10,0) = 0 has the smaller tardiness than Job 

2 max (0,19+2+0) = 21. We update the machine time for Machine 2 ('U= Job 4 completion 

time: 5+processing time: 1+setup time :2).  

 

Iteration 3  

After the jobs are assigned, we calculate the unscheduled jobs index (Job 2 and Job 3).  

 

Table 10. Job Index for Machine 1 ('T = 0) 

Job  2 3 

Index 0.000121203 0 
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Table 11. Job Index for Machine 2 ('U = 8) 

Job 2 3 

Index 3.75117E-08 7.71E-06 

     

Now we compare the jobs index. Machine 1 Job 2 and Machine 2 Job 3 are the two biggest 

job indexes. As we mentioned, we assign the job to the machine with the smallest tardiness, 

therefore, Job 3 max (0,8+1+3-13) = 0 is assign to Machine 2 due to the smallest tardiness Job 

2 max (0,19+2-5) = 16. Now we update the machine time for Machine 2 (Job 4 & Job 1 

completion time: 8+processing time: 1+setup time: 3=12) 

 

Table 12. Job Index for Machine 1 ('T = 0) 

Job  2 

Index 0.00012120 

 

Table 13. Job Index for Machine 2 ('U = 12) 

Job  2 

Index 0.00064 

     

Last, only Job 2 in unscheduled. We compare the indexes and found that on Machine 2 

the index is larger than the job index on Machine 1 and the tardiness is also smaller on Machine 

2 ('U:12+processing time: 2+setup time: 2-due date: 5 =9 < processing time: 19+setup time: 2-

due date: 5 = 16). Therefore, we assign Job 2 to Machine 2 and calculate the total weighted 

tardiness.  

The schedule we have now is Machine 1: no job, Machine 2: Job 4-Job 1- Job 3-Job 2. The 

weighted tardiness for Machine 1 is 0 and Machine 2 is max (5-12,0) *3+max (8-10,0) *4+max 
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(12-13,0) *8 + max (0,13) * 2 =26. Therefore, the total weighted tardiness for the whole 

schedule is 26. 

Section 4.3.1. gives our data test results.  

 

3.4 Local Improvement Procedure: Pairwise adjacent job exchange 

    In order to minimize total weighted tardiness, we apply a job-swap procedure for each 

machine after the initial schedule is completed. In the job-swap method, we select the job 

schedule that gives the smallest total weighted tardiness on each machine. For example, we 

assigned Job 1 and Job 2 to Machine 1, so the initial schedule is Job1–Job2. However, if Job2–

Job1 gives a smaller total weighted tardiness, we swap the jobs. 

    In the following procedure for the job-swap method, we show the procedure first and then 

provide an example to demonstrate the procedure: 

Step 1: Generate initial schedule on each machine by the use of new index formula and job 

machine selection. 

Step 2: List out the possible combinations of the jobs decided from the initial schedule of each 

machine  

Step 3: Calculate the tardiness for each combination schedule. 

Step 4: Choose the schedule on each machine that has the smallest total weighted tardiness. 

Check wether the select schedule can provide better TWT. Go to step 2 if the current schedule 

can still provide another schedule, otherwise we go to step 5  

Step 5: List the schedule on each machine after the job-swap method has been applied. 

 An example comes after the following procedure. 
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Example 7 job 3 machine 

Here we have 7 jobs along with 3 machines to show an example. All machines start at 

time t = 0. For the scale parameters for this problem we consider (VT= 0.2, VU= 0.1and VW= 

0.001). The input data is from Table 14 to Table 22. Table 14 to 16 is the input data for each 

machine (machine 1 to 3). Table 17 to 19 is the setup time for each job on each machine. Table 

20 to 22 is the job index for three machines. In order to focus on Job swap method, we run the 

ATCSR_UP without job swap first to get the initial schedule.  

 

Table 14. Machine 1 Job input data 

Job 1 2 3 4 5 6 7 

Ready time 7 1 8 6 5 7 3 

Processing time - 38 23 28 - 27 38 

Due date 72 65 74 71 72 73 74 

Job weight 1 4 4 3 2 3 1 

Setup time - 8 14 27 - 15 36 

 

Table 15. Machine 2 Job input data 

Job 1 2 3 4 5 6 7 

Ready time 7 1 8 6 5 7 3 

Processing time 41 - 24 38 25 35 - 

Due date 72 65 74 71 72 73 74 

Job weight 1 4 4 3 2 3 1 

Setup time 36 - 1 31 20 29 - 
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Table 16. Machine 3 Job input data 

Job 1 2 3 4 5 6 7 

Ready time 7 1 8 6 5 7 3 

Processing time 43 - - 46 30 - 41 

Due date 72 65 74 71 72 73 74 

Job weight 1 4 4 3 2 3 1 

Setup time 7 - - 26 22 - 10 

 

Table 17. Machine 1 setup time for each job 

M1 Setup time 1 2 3 4 5 6 7 

Initial - 8 14 27 - 15 36 

1 - - - - - - - 

2 - - 11 11 - 38 26 

3 - 9 - 22 - 34 38 

4 - 35 �� � - 4 20 

5 - - - - - - - 

6 - 40 29 18 - - 18 

7 - 36 5 38 - 29 - 

 

Table 18. Machine 2 setup time for each job 

M2 Setup time 1 2 3 4 5 6 7 

Initial 36 - 1 31 20 29 - 

1 - - 39 27 5 21 - 

2 � - - - - - - 

3 27 - - 30 15 1 - 

4 20 - �� � 25 3 - 

5 34 - 20 17 - 14 - 

6 22 - 3 12 34 - - 

7 - - - - - - - 
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Table 19. Machine 3 setup time for each job 

M3 Setup time 1 2 3 4 5 6 7 

Initial 7 - - 26 22 - 10 

1 - - - 40 26 - 1 

2 - - - - - - - 

3 - - - - - - - 

4 8 - � � 18 - 13 

5 13 - - 27 - - 10 

6 - - - - - - - 

7 34 - - 11 32 - - 

 

Table 20. Job index for Machine 1 

Job  1 2 3 4 5 6 7 

Index  - 0.00029 1.22E-90 1.03E-64 - 1.05E-76 1.61E-24 
 

Table 21. Job index for Machine 2 

Job  1 2 3 4 5 6 7 

Index  2.7E-09 - 0.0298 7.67E-08 8.62E-06 1.94E-07 - 

 

Table 22. Job index for Machine 3 

Job  1 2 3 4 5 6 7 

Index  6.8E-37 - - 8.79E-31 6.9E-19 - 4.1E-05 

     

This section is an example of how we apply the job swap method. We use the ATCSR_UP 

without job swap method to get an initial schedule for the 3 machines 7 jobs problem. Machine 

1: J2-J4, Machine 2: J3-J6-J5, Machine 3: J7-J1 is the initial schedule generate from 

ATCSR_UP without job swap method.  

 

Step 1. Receive an initial job on each machine 
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    From ATCSR_UP without job swap method, we get the initial schedule for each machine: 

Machine 1: J2-J4, Machine 2: J3-J6-J5, Machine 3: J7-J1 and the TWT for the initial schedule 

is 197. 

 

Step 2: List out the all the possible combinations of the jobs from the initial schedule for each 

machine 

Machine 1: J2-J4 and J4-J2 

Machine 2: J3-J6-J5, J3-J5-J6, J6-J3-J5, J5-J6-J3 

Machine3: J7-J1 and J1-J7 

 

Step 3. Calculate the TWT for each job schedule. 

Now we calculate the tardiness for each machine and swap the jobs. 

 

Table 23. TWT for 3 machines 

Machine 1  TWTUZ:48 TWTZU:260 

Machine 2  TWTW[\:116 TWTW\[:159 

 TWT[W\:186 TWT\[W:216 

Machine 3 TWT̂ T:56 TWTT^:18 

 

Step 4. Choose the schedule on each machine that has the smallest total weighted tardiness. If 

the new schedule is better than the initial schedule, swap the jobs. Go to step 2 if the current 

schedule can still provide another schedule, otherwise we go to step 5.  

 

Machine 1: J2-J4: 48 

Machine 2: J3-J6-J5: 116 
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Machine 3: J1-J7: 18 (Job swap is applied here; the original schedule is J7-J1) 

We found that the schedule on Machine 2 can still provide another schedule. Therefore, we go 

to Step 2 again. 

 

Step 2: List out the all the possible combination of the jobs decides from the initial schedule 

for each machine 

Machine 1: J2-J4 and J4-J2 

Machine 2: J3-J6-J5, J6-J5-J3, J5-J3-J6 

Machine3: J7-J1 and J1-J7 

 

Step 3. Calculate the TWT for each job schedule. 

Now we calculate the tardiness for each machine and swap the jobs. 

 

Table 24. TWT for 3 machines 

Machine 1  TWTUZ:48 TWTZU:260 

Machine 2  TWTW[\:116 TWT[\W:474 

 TWT\W[:181  

Machine 3 TWT̂ T:56 TWTT^:18 

 

Step 4. Choose the schedule on each machine that has the smallest total weighted tardiness. If 

the new schedule is better than the initial schedule, swap the jobs. Go to step 2 if the current 

schedule can still provide another schedule, otherwise we go to step 5. 

 

Machine 1: J2-J4: 48 

Machine 2: J3-J6-J5: 116 
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Machine 3: J1-J7: 18 (Job swap is applied here; the original schedule is J7-J1) 

 

Step 5. List the schedule on each machine after the job-swap method has been applied. 

Machine 1: J2-J4 

Machine 2: J3-J6-J5 

Machine 3: J1-J7 

The original TWT is 197, and after applying the job swap method the TWT become 182. 

 

3.5 The new ATC-based rule procedure  

    In this research, we focus on unrelated parallel machines. In contrast with Yue and Jang’s 

(2013) study on identical parallel machines and uniform parallel machines, we cannot simply 

choose a job with a larger index, because that might lead to all jobs being scheduled on the 

same machine, due to the differences in processing times for individual jobs. We have to 

consider the choice of machine and job: In the propose ATC-based rule, we calculate all the 

jobs’ indexes first and then decide how to schedule the jobs on the machines.  

For the propose rule, we calculate the job indexes and combine with a look-ahead method. 

We solve the problem by calculating all the job indexes and picking the two largest indexes 

among the different machines; we then compare the two jobs, pick the job with smallest 

tardiness, and then schedule the job to the machine.  

    Figure 3. shows the procedure according to the propose ATC-based rule works to 

determine the schedule for jobs and machines.   
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Figure  3.  Flow chart for the ATCSR_UP 

The steps for the proposed procedure for n jobs and m machines are: 

Step 1: Calculate all the job indexes. 
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Step2: Determine the first job, j, to assign. For this look-ahead to the two largest respective 

indexes among all machines. If the two jobs are on the same machine, find the next 

largest job index on a different machine.  

Step 3: Compare the two jobs among the machines, and assign the job to the machine with the 

smallest tardiness value. If tardiness is the same in both cases, randomly pick one of 

them and assign, minus the job and machine number by 1. Update the machine time 

max(r., t1) + p.,1 + s., setup time ( ) and  

Step 4: Calculate the unscheduled jobs’ indexes 

Step 5: Select the two largest indexes among the unscheduled jobs. 

Step 6: Schedule the job to the relate machine with the smallest tardiness. If tardiness is the 

same in both cases, pick the job to the relate machine with a smaller completion time 

and assign, minors the job and machine number by 1. Update machine time to 

max(r., t1) + p.,1 + s.. 

Step 7: Repeat Step 4 to 6 until all the jobs are scheduled. 

Step 8: After the initial schedule is finished, apply a job-swap method.  

Step 9: List all possible combinations on each machine 

Step 10: Calculate the TWT for each job schedule. 

Step 11: Choose the schedule on each machine that has the smallest total weighted tardiness. 

If the new schedule is better than the initial schedule, swap the jobs. Go to step 9 if the current 

schedule can still provide other schedules, otherwise go to step 12. 

Step 12: List the schedule on each machine after the job-swap method has been applied.  
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CHAPTER 4. PERFORMANCE TEST 

This chapter evaluates the performance of the new formula and procedure. In order to 

compare our results with the most relevant paper, we compare our data test results with Lin 

and Hsieh (2013) who focus on the ATC-based rule and unrelated parallel machines.  

4.1 Comparison of test cases 

    In this chapter, ATCSR_UP will be tested with the data used by Lin and Hsieh (2013) and 

the results will be compared. The procedure is coded on a MacBook pro 2016, Intel Core i5, 

memory 8 GB, Python. Testing problem instances were generated in the manner similar to Lin 

and Hsieh (2013).  

(1) Processing time (p.,1) were generated from uniform distribution [50, 150] randomly. 

(2) The weighted w. were chosen from the uniform distribution [1, 10] randomly. 

(3) Setup time were generated from uniform distribution [0, 2s̅], where the mean setup time 

%̅ was calculated by using the value of setup severity factor. %̅ is calculate by setup 

severity factor * average processing time. 

(4) Due dates were generated from uniform distribution [(1 − R)dJ, dJ] with probability τ and 

distribution [dJ, dJ + (C1:; − dJ)R] with the probability (1- τ). R is the due date range 

factor. The makespan was estimated by C1:;= (βs̅ + pJ) where µ was the job machine 

factor, which was given by µ = n/m (n is the number of jobs and m is the number of 

machines), and β was the coefficient accounting for the increase in makespan due to 

setup times, which was given by β	 = 	0.4 + 10/	µU 	− η/7  is the setup severity 

factor). The mean due date was calculated using dJ = 	C1:;	(1 − 	τ). 
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(5) Ready times r. were generated from uniform distribution [max(d.-r. × pJ.,0), d.] where 

!̅. = 	pJ/m, j = 1…n  

 

Table 25. Values of factors for experiment. 

Factors Low level High level 

Setup severity factor η 0.02 2.00 

Due date tightness factor τ 0.30 0.90 

Due date range factor R 0.25 1.00 

Ready time factor r_τ 1.00 10.00 

 

Table 25. shows the factors we use for all the test results. In the figure caption we will 

show (LLLL) which represents the value factor levels we use (Low Low Low Low). Setup 

severity factor η: low level, Due date tightness factor τ: low level, Due date range factor R: 

low level, Ready time factor r_τ: low level and so on.  

 

4.2 The selection of ATC scale parameters 

    In this section, we try to find better combination of scale parameters for our ATC-based 

rule. The k values are VT: [0.2,7.2], VU: [0.1,2.1], VT: [0.003,1.2]. According to Pfund et al. 

(2008) the best scale parameters for their propose research, is when kT = 0.6, kU = 0.3, kW =

0.003 ; therefore, we compare the scale parameters with kT = 0.2, kU = 0.1, kW = 0.001 , 

	kT = 0.6, kU = 0.3, kW = 0.003  and kT = 7.2, kU = 2.1, kW = 1.2 . The reason we chose 

kT = 0.2, kU = 0.1, kW = 0.001  is because these three parameters are the first three 

parameters among the three k values and kT = 7.2, kU = 2.1, kW = 1.2  are the last three 

among the parameters. We compare the three groups of parameters and try to find the best and 



 

 44 

worst combinations of the k values. We will compare the worst and the best combinations in 

the next section. We name kT = 0.2, kU = 0.1, kW = 0.001  as group A, kT = 0.6, kU =

0.3, kW = 0.003 as group B, and kT = 7.2, kU = 2.1, kW = 1.2 as group C.   

From Figure (a) to (p), the y-axis is the total weighted tardiness for the results and the x-

axis is the number of cases we test. The figure caption (LLLL) represents the value factors 

(Low Low Low Low). For each combination we test 20 sets of data. The results are shown as 

follow: 

 

Figure  4. Comparison for group A vs. B vs. C 
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Figure  5. Comparison for group A vs. B vs. C 

(g) (LHHL) (h) (LHHH)

(i) (HLLL) (j) (HLLH)

(k) (HLHL) (l) (HLHH)

(m) (HHLL) (n) (HHLH)
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Figure  6. Comparison for group A vs. B vs. C 

    From Figure (a) to (p) we compare the average TWT for the tested 16 value factor 

combinations for the three groups. The y-axis is the total weighted tardiness value and the x-

axis is the number of sets. We test 20 cases for each value factor combination and found that 

in the tested 320 cases kT = 0.2, kU = 0.1, kW = 0.001 outperform kT = 0.6, kU = 0.3, kW =

0.003 in 205 cases (64%) and outperform kT = 7.2, kU = 2.1, kW = 1.2 in 221 cases (70%). 

From Figure (a) to (p), we found that as the value factors gets higher in level the total weighted 

tardiness slightly increases and the curve becomes more sensitive. We look into the value 

factors to see how the value factors effects the TWT. For the setup time [0,2%̅], it is calculated 

by !̅$ ∗ x (average processing time * setup severity facto, therefore, as the factor level goes 

higher the interval between [0,2%̅] becomes larger. Since the interval for setup time in low level 

is 2% * average processing time and high level is 200% * processing time. This means that 

there will be more selection for setup time ([0,2%̅]). When due date tightness factors are low in 

level, the due date values become larger, consequently the slack time for each job becomes 

longer because the machine will have more time to process the job. This comes with the result 

(o) (HHHL) (p) (HHHH)
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that the TWT with value factors in lower level is smaller than the TWT with value factors in 

high level. This cause the curve to become more sensitive. 

 

    Table 26. shows the average TWT for the three groups with the 16 values factor 

combination. In section 4.4 we will compare ATCSR_UP with ATCSR_Rm (best and worst k 

values). From Table 26. we conclude that group A (kT = 0.2, kU = 0.1, kW = 0.001) has the 

smallest average TWT and group C (kT = 7.2, kU = 2.1, kW = 1.2) has the largest average 

TWT among the three-compared group. Therefore, in section 4.4 we will use group A (kT =

0.2, kU = 0.1, kW = 0.001 ) and group C (kT = 7.2, kU = 2.1, kW = 1.2 ) to compare with 

ATCSR_Rm.  
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Table 26.Average TWT of the three groups comparison 

Group 

 

Value Factors 

A B C 

Low low low low 9875.05 10007.4 10751.2 

Low low low high 8758.25 9321.05 10180.8 

Low low high low 14591.55 13658.25 15360.65 

Low low high high 8543.85 8964.5 9671.05 

Low high low low 12007 11264.6 12969.85 

Low high low high 12504.95 12265.4 12754.25 

Low high high low 12007 12728.25 12396.6 

Low high high high 12504.95 13857.1 13617.1 

High low low low 25335.7 25972.7 28127.8 

High low low high 20538.55 21192.95 20899.05 

High low high low 17898.55 19846.8 20051.2 

High low high high 16682.75 19045.55 19486.3 

High high low low 25522.05 26106.55 27961.1 

High high low high 30414.4 33992.4 32079.55 

High high high low 33384.3 33787.9 35314.45 

High high high high 32392.9 33665 35039.15 

Average TWT 18310.1125 19104.775 19791.25625 
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Figure  7. Comparison among the A vs B vs C 

In Figure 7, we divide group A by group B kT = 0.6, kU = 0.3, kW = 0.003 and C (kT =

7.2, kU = 2.1, kW = 1.2). In the figure, the y-axis represents the fraction between group A and 

B and group A and C, and the x-axis is the 16 values factors of combination. Both results show 

that group A is smaller than group B and C as the value is less than 1 in average. The worst 

case happens when the scaling parameter is kT = 7.2, kU = 2.1, kW = 1.2. As the value factors 

are low in levels the curves are more fluctuate and as the value factors gets higher in levels the 

curve is more steady. Therefore, we can conclude that the value factors in higher level helps 

the test results remain steady. Hence in our next test, we use the best case kT = 0.2, kU =

0.1, kW = 0.001 and worst case kT = 7.2, kU = 2.1, kW = 1.2 as our k values to compare the 

test results with Lin and Hsieh (2013).  
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4.3 Effect of pairwise exchange of jobs 

    In this section, we compare our results with and without applying the job swap method. 

In many research papers, researchers apply job swap method to get an improvement for 

scheduling problems. In order to compare ATCSR_UP with ATCSR_Rm (Lin & Hsieh, 2013) 

who also uses job swap method, we apply a comparison to show that the job swap method 

improves ATCSR_UP.  

In each combination value factors, we test 20 sets of data so 320 cases will be tested. From 

Figure (a) to (p) the y-axis represents the TWT and the x-axis is the number sets of data we 

tested. The results are shown as follows: 

 

Figure  8. Tardiness comparison with vs without job swap 
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Figure  9. Tardiness comparison with vs without job swap   
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Figure  10. Tardiness comparison with vs without job swap 

    Figure (a) to (p) shows the overall average TWT for the 16 value factor combinations. We 

found out that the value factors effects the test results. The higher level the factors are the 

bigger the TWT is. We are interested in how the factors influence our results and how job swap 

method help to improve the TWT. In the test 320 cases (each value factor combinations test 20 

sets of data) the TWT decreased about 24% in average. When the setup severity factor are in 
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low level, the average setup time is short (2% of the processing time) the TWT after applying 

the job swap method decrease about 20% in average and when setup severity factor are high in 

level (200% of the processing time) the TWT after applying the job swap method decrease 

about 27% in average. Under this condition, the higher the value factors get the job swap 

method provides a better improvement. 

 

Figure  11. Average TWT result between with and without Job Swap Method 

Figure 11. generates from the average TWT and the 16 combinations of value factors and 

shows the result of ATCSR_UP procedure with and without using the Job swap method. The 

y-axis shows the average TWT value of the 20 cases we test and the x-axis is the 16 

combinations of value factors. We can conclude from the Figure 11. that the average TWT after 

applying the job swap method is better than the average TWT without applying. Furthermore, 

as the value factors gets high in level, the job swap method slightly decreases the TWT more. 

The job swap method decreases the TWT about 24%. We got this conclusion from dividing 
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(with	job	swap	method	– 	without	job	swap	method) (without	job	swap	method)⁄ ∗

100% . This proves that the job swap method helps ATCSR_UP getting a better TWT. 

Therefore, in the next section, we will compare the results between ATCSR_UP (with the Job 

swap method) and ATCSR_Rm (Lin & Hsieh, 2013) after performing the job swap procedure. 

 

4.4 Performance comparison with ATCSR_Rm 

    Here we compare the results with 16 combinations of value factors on 20 groups with 

scale parameters kT = 0.2, kU = 0.1, kW = 0.001  and kT = 7.2, kU = 2.1, kW = 1.2  with 

Lin and Hsieh (2013).  

    For the factors of the experiment we show in the figure caption (low low low low) 

represents the value factors. In each combination, we test 20 groups of data. We first show the 

comparsion using kT = 0.2, kU = 0.1, kW = 0.001 with ATCSR_RM (Lin & Hsieh, 2013). 

 
ATCSR_RM vs. ATCSR_UP (Low Low Low Low) 

Figure  12. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 1) 

    From left to right is the number of the data tested. Among the 20 results, 75% of the jobs 

yielded a better result and 25% a worse result than the ATCSR_Rm algorithm. The mean total 

weighted tardiness for our algorithm is 1.322 times better for ATCSR_UP than for ATCSR_Rm 

(ie. ATCSR_Rm / ATCSR_UP = 1.322).  
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ATCSR_RM vs. ATCSR_UP (Low Low Low High) 

Figure  13. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 10) 

    Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.39 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.39). 

 

ATCSR_RM vs. ATCSR_UP (Low Low High Low) 

Figure  14. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 1) 

Among the 20 results, 60% of the jobs yielded a better result and 40% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.168 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.168). 
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ATCSR_RM vs. ATCSR_UP (Low Low High High) 

Figure  15. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 10) 

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.043 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.043). 

 

ATCSR_RM vs. ATCSR_UP (Low High High High ) 

Figure  16. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10) 

Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.37 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.37). 
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ATCSR_RM vs. ATCSR_UP (Low High Low High) 

Figure  17. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 10) 

Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.585 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.585). 

 

ATCSR_RM vs. ATCSR_UP (Low High High Low) 

Figure  18. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 1) 

Among the 20 results, 90% of the jobs yielded a better result and 10% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.36 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.36). 
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ATCSR_RM vs. ATCSR_UP (Low High Low Low) 

Figure  19. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10) 

Among the 20 results, 90% of the jobs yielded a better result and 10% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.71 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.71). 

 

ATCSR_RM vs. ATCSR_UP (High Low Low Low) 

Figure  20. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 1) 

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.467 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.467). 
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ATCSR_RM vs. ATCSR_UP (High Low Low High) 

Figure  21. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 10) 

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result 

than the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.475 

times better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.475). 

 

ATCSR_RM vs. ATCSR_UP (High Low High Low) 

Figure  22. Comparison on 20 instance and parameter (2, 0.3, 1 & 1) 

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.41 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.41). 
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ATCSR_RM vs. ATCSR_UP (High Low High High) 

Figure  23. Comparison on 20 instance and parameter (2, 0.3, 1 & 10) 

Among the 20 results, 65% of the jobs yielded a better result and 35% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.32 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.32). 

 

ATCSR_RM vs. ATCSR_UP (High High Low Low) 

Figure  24. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 1) 

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.19 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.19). 
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ATCSR_RM vs. ATCSR_UP (High High Low High) 

Figure  25. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 10) 

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.094 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.094).m 

 

ATCSR_RM vs. ATCSR_UP (High High High Low) 

Figure  26. Comparison on 20 instance and parameter (2, 0.9, 1 & 1) 

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.02 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.02) 
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ATCSR_RM vs. ATCSR_UP (High High High High) 

Figure  27. Comparison on 20 instance and parameter (2, 0.9, 1 & 10) 

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.07 times 

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.07). 

Now we show the comparison using kT = 7.2, kU = 2.1, kW = 1.2  with ATCSR_Rm 

(Lin & Hsieh, 2013). 

 
ATCSR_RM vs. ATCSR_UP (Low Low Low Low) 

Figure  28. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 1) 

 From left to right is the number of the data tested. Among the 20 results, 55% of the jobs 

yielded a better result and 45% a worse result than the ATCSR_Rm algorithm. The mean total 

weighted tardiness for our algorithm is 1.11 times better for ATCSR_UP than for ATCSR_Rm 

(ie. ATCSR_Rm / ATCSR_UP = 1.11). 
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ATCSR_RM vs. ATCSR_UP (Low Low Low High) 

Figure  29. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 10) 

    Among the 20 results, 60% of the jobs yielded a better result and 40% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.24 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.24) 

 

ATCSR_RM vs. ATCSR_UP (Low Low High Low) 

Figure  30. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 1) 

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.16 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.16) 
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ATCSR_RM vs. ATCSR_UP (Low Low High High) 

Figure  31. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 10) 

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.183 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.183) 

 

ATCSR_RM vs. ATCSR_UP (Low High Low Low) 

Figure  32. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 1) 

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.73 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.73) 
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ATCSR_RM vs. ATCSR_UP (Low High Low High) 

Figure  33. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 10) 

Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.4 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.4) 

 

ATCSR_RM vs. ATCSR_UP (Low High High Low) 

Figure  34. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 1) 

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.22 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.22) 
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ATCSR_RM vs. ATCSR_UP (Low High High High ) 

Figure  35. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10) 

Among the 20 results, 65% of the jobs yielded a better result and 35% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.31 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.31). 

 

ATCSR_RM vs. ATCSR_UP (High Low Low Low) 

Figure  36. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 1) 

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.37 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.37). 
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ATCSR_RM vs. ATCSR_UP (High Low Low High) 

Figure  37. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 10) 

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result 

than the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.46 

times better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.46). 

 

ATCSR_RM vs. ATCSR_UP (High Low High Low) 

Figure  38. Comparison on 20 instance and parameter (2, 0.3, 1 & 1) 

Among the 20 results, 60% of the jobs yielded a better result and 40% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.21 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.21). 
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ATCSR_RM vs. ATCSR_UP (High Low High High) 

Figure  39. Comparison on 20 instance and parameter (2, 0.3, 1 & 10) 

Among the 20 results, 50% of the jobs yielded a better result and 50% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.14 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.14). 

 

ATCSR_RM vs. ATCSR_UP (High High Low Low) 

Figure  40. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 1) 

Among the 20 results, 65% of the jobs yielded a better result and 35% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.16 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.16). 
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ATCSR_RM vs. ATCSR_UP (High High Low High) 

Figure  41. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 10) 

Among the 20 results, 50% of the jobs yielded a better result and 50% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.009 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.009). 

 

ATCSR_RM vs. ATCSR_UP (High High High Low) 

Figure  42. Comparison on 20 instance and parameter (2, 0.9, 1 & 1) 

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.004 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.004). 
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ATCSR_RM vs. ATCSR_UP (High High High High) 

Figure  43. Comparison on 20 instance and parameter (2, 0.9, 1 & 10) 

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than 

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.03 times 

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.03). 

 

From Figure 12. to 43. we test 320 cases for each scaling parameter VT = 0.2, VU =

0.1, VW = 0.001 and VT = 7.2, VU = 2.1, VW = 1.2. We are interested in how 16 combinations 

of value factor effects the TWT. We found that as the value factors gets higher in level, the 

TWT slightly gets higher (we conclude this in section 4.3). In the test of 320 cases, ATCSR_UP 

outperform ATCSR_RM in 230 cases (71%) (with the scaling parameters of VT = 0.2, VU =

0.1, VW = 0.001 ) and outperforms ATCSR_RM in 183 cases (57%) (with the scaling 

parameters of VT = 7.2, VU = 2.1, VW = 1.2). From Figure 12. to 43. we found that the two 

procedure (ATCSR_Rm and ATCSR_UP) gives similar results as the value factors gets higher 

in level. Therefore, we conclude that ATCSR_UP solves the problem better than ATCSR_Rm 

in low value factor level but perform about the same at high value factor level. There is no 
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discernible pattern of how ATCSR_UP outperforms ATCSR_RM but with the consideration of 

the earliest start time max{ r. − t1, 0Ç in the WSPT term, machine time ('$) in the slack term 

and ready term, the results are better than ATCSR_RM with considering these variables. 

 

4.5 Performance evaluation by test condition 

In Figure 44. We compare the average TWT between ATCSR_Rm and ATCSR_UP (with 

VT = 0.2, VU = 0.1, VW = 0.001). The y-axis shows the average TWT value and the x-axis is 

the number of sets we tested. We sum up the TWT from each value factor combinations for 

ATCSR_Rm, and for ATCSR_UP (best results) and average them to get Figure 44. From Figure 

44. We summaries all the cases and find that the ATCSR_UP rule we propose is better than 

ATCSR_Rm done by Lin and Hsieh (2013). Average TWT decrease from 22367 to 18426 with 

the use of ATCSR_UP rule. The two rules ATCSR_Rm and ATCSR_UP performs resemblance 

when all value factors are in high level. However, as the factors are low in level, ATCSR_UP 

performs better than ATCSR_Rm. From the first case (low low low low) to (high high high 

high), ATCSR_UP is on average 1.21 times (71%) better than ATCSR_Rm. ATCSR_UP 

decreases the TWT about 17% more than ATCSR_Rm. 

 

Figure 45. shows that all 16 combinations of value factors ATCSR_UP performs better 

than ATCSR_Rm done by Lin and Hsieh (2013). We use ATCSR_Rm divide by ATCSR_UP 

to demonastrate Figure 45. Y-axis shows the value of ATCSR_Rm divide by ATCSR_UP and 

x-axis is the 16 combinations of the value factors. The best result is achieved when the value 

factor is (low high high low) with almost 1.7 times better than ATCSR_Rm, meaning when the 
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due date tightness factor and the due date range factor are both high, ATCSR_UP performed a 

better result compare to ATCSR_Rm than the other set ups. The worst result is achieved when 

the value factors is (high high high high) with only 1.02 times better than ATCSR_Rm, 

meaning when the value factors are all in high level the two ATC-based rule perform about the 

same. We also found that once the setup severity factor in is high level, the fraction value 

between ATCSR_Rm and ATCSR_UP slightly decreases. This brings out the conclusion that 

ATCSR_UP solves the problem better when the value factors are low in level and performs 

about the same with ATCSR_Rm when value factors are high in level. 

 

In Figure 46. We compare the average TWT between ATCSR_Rm and ATCSR_UP (with 

VT = 7.2, VU = 2.1, VW = 1.2). The y-axis shows the average TWT value and the x-axis is the 

number of example we test. We sum up the TWT from each value factors for ATCSR_Rm and 

ATCSR_UP (worst results) and average them to get Figure 46. From Figure 46. We summaries 

all the cases and find that the ATCSR_UP rule we propose is better than ATCSR_Rm done by 

Lin and Hsieh (2013). Average TWT decrease from 22367 to 19757 with the use of ATCSR_UP 

rule. From the first case (low low low low) to (high high high high), ATCSR_UP is on average 

1.13 times (57%) better than ATCSR_Rm. ATCSR_UP decreases the TWT about 11% more 

than ATCSR_Rm. 

 

Figure 47. shows that all 16 combinations of value factors ATCSR_UP perform better 

than ATCSR_Rm done by Lin and Hsieh (2013). We use ATCSR_Rm divide by ATCSR_UP 

to get the figure. Y-axis shows the value of ATCSR_Rm divide by ATCSR_UP and x-axis is 

the 16 combination of the value factors. The best result is achieved when the value factor is 
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(low high high low) with almost 1.4 times better than ATCSR_Rm, meaning when the due date 

tightness factor and the due date range factor are both high, ATCSR_UP performed a better 

compare result to ATCSR_Rm than the other set ups. The worst result is achieved when the 

value factors is (high high high high) with only 1.01 times better than ATCSR_Rm, meaning 

when the value factors are all in high level the two ATC-based rule perform about the same. In 

this comparison, the two ATC-based rule performs about the same when setup severity factor 

is in high level and either due date tightness or due date range factor are also in high level. We 

also found that once the setup severity factor in is high level, the fraction between ATCSR_Rm 

and ATCSR_UP slightly becomes smaller. Therefore, we conclude that the value factors 

influence the relations between ATCSR_Rm and ATCSR_UP. 

 

In Figure 48. we compare the average TWT between ATCSR_Rm and ATCSR_UP with 

(VT = 0.2, VU = 0.1, VW = 0.001 ) and (VT = 7.2, VU = 2.1, VW = 1.2 ). We use the average 

TWT of 16 value factor combinations for ATCSR_Rm, ATCSR_UP (best k value) and 

ATCSR_UP (worst k value) to demonstrate Figure 48. The y-axis shows the average TWT 

value and the x-axis is the factor values we test. We find out that with the use of both scaling 

parameter (best and worst), ATCSR_UP outperforms ATCSR_Rm by 71% and 57%. 

Furthermore, when we use the best k value to compare the average TWT, the curve tends to be 

steadier than the worst k value. With the above revises, we conclude that ATCSR_UP is better 

than ATCSR_Rm in minimizing the total weighted tardiness. 
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Figure  44. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP  

(VT = 0.2, VU = 0.1, VW = 0.001) 

 

Figure  45. Overall comparison of 16 factor combination 
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Figure  46. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP  

(VT = 7.2, VU = 2.1, VW = 1.2) 

 

Figure  47. Overall comparison of 16 factor combination 
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Figure  48. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP 

 (VT = 0.2, VU = 0.1, VW = 0.001 and VT = 7.2, VU = 2.1, VW = 1.2) 
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CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 

This research focuses on minimizing the total weighted tardiness on unrelated parallel 

machines. For the unrelated parallel machine, we analyze ATC-based rules and propose a new 

ATC-based rule, ATCSR_UP. The performance of the new rule is evaluated on unrelated 

parallel machines. Experiments show that the new rule outperforms other ATC-based rules in 

minimizing the total weighted tardiness in unrelated parallel machine scheduling.  

 

We found out that with the use of both scaling parameter (best and worst), ATCSR_UP 

outperforms ATCSR_Rm in 71% and 57% cases. Furthermore, ATCSR_UP (best k value) 

decreases the TWT about 17% compare to ATCSR_Rm and ATCSR_UP (worst k value) 

decreases the TWT about 11% compare to ATCSR_Rm. The results show that ATCSR_UP 

performs better when the value factors are in low level, and performs similar with ATCSR_Rm 

when value factors are in high level. With the decrease percentage, we can conclude that 

ATCSR_UP perform better than ATCSR_Rm. With the consideration of the earliest start time 

max{ r. − t1, 0Ç in the WSPT term, machine time ('$) in the slack term and ready term, the 

results are better than ATCSR_RM with considering these variables. No other paper than Lin 

and Hsieh (2013) focus on unrelated parallel machine with ATC-based rule. They consider 

separable cases, however, even if they consider continuous setup cases, the result would have 

been worst. Therefore, we can still conclude that ATCSR_UP outperforms ATCSR_Rm (Lin & 

Hsieh, 2013) 
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    The paper also uses the proposed look-ahead heuristic for the unrelated parallel machines 

scheduling with sequence-dependent setup and future ready time. We compare the tardiness 

among two jobs with the biggest index, then allocate the job to schedule on the machine. After 

all the jobs were scheduled, the job switching heuristic will generate another schedule to find 

a better schedule for the jobs and machine. The job swap method we apply for the ATCSR_UP 

decrease TWT about 24% than without applying the job swap method, therefore, the job swap 

method improves the ATCSR_UP to find a better schedule. For the actual use of this research, 

since ATC-based rule works very well on tardiness objectives, the new rule should benefits the 

real-world manufacturing, however, this should be tested with the real-world manufacturing 

planning programs and datas. 

 

    For the future research, study to find robust scaling parameters for ATCSR_UP procedure 

is a good topic since in the research we only consider three groups of scaling parameters. 

Besides of that, the proposed look-ahead heuristic may be modified and used in a more complex 

production environment such as job shop scheduling. Lastly, consider the actual use of the 

ATCSR_UP on manufacturing planning programs in the real-world manufacturing system can 

further prove that ATCSR_UP can be use in the real-world situation.  
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APPENDICES: PROGRAM CODE FOR THE THESIS 

The code was coded on MacBook pro, Intel Core i5, memory 8 GB, Python. 

 

from tkinter import * 

from tkinter import messagebox as tkMessageBox 

from tkinter import filedialog as tkFiledialog 

from tkinter.filedialog import askopenfilename 

import copy 

import csv 

import math 

import os 

import fnmatch � 

filenames = "" 

text_k1 = "" 

text_k2 = "" 

text_k3 = "" 

#define the swap method 

def swap(a,b): 

    temp=a 

    a=b 

    b=temp 

    return a,b 

#define the index calculation formula 

def inintal_acc_index 

(weight,ready,due_date,machine_time,process,setup,average_processing_time,average_setup_time,m1,k1,k2,k3

): 

    index_value = ((weight/(max(ready-machine_time,0)+process+setup)) 

    *math.exp((-1*max((due_date-max(ready,machine_time)-process-

setup),0))/((k1)*(average_processing_time+average_setup_time))) 

    *math.exp(-1*(m1/((k2)*average_setup_time))) 

    *math.exp((-1*(max((ready-machine_time),0)))/((k3)*average_processing_time)) 

    ) 

    return index_value 
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#define the calculation for updating machine time 

def update_machine_time (ready,machine_time,process,setup): 

 

    update_machine_time_value =(max(ready-machine_time,0))+process+setup 

 

    return update_machine_time_value 

#define the use of k value for calculating the index formula 

def search(): 

    root.text_k1 = entry_1.get()  # �� #get k value from user input 

    root.text_k2 = entry_2.get()  # �� #get k value from user input 

    root.text_k3 = entry_3.get()  # �� #get k value from user input 

    if  root.text_k1=="" and  root.text_k2=="" and  root.text_k3=="": 

        tkMessageBox.showinfo('Error','enter k value�') 

        return 

    root.filenames = askopenfilename(filetypes=[("CSV Files", ".csv")]) # 

    print (root.filenames) 

#define job input for the calculation 

def acc_job(): 

    if  root.text_k1 == "" and  root.text_k2 == "" and  root.text_k3 == "": 

        tkMessageBox.showinfo('Error', 'enter k value�') 

        return 

    print("filenames") 

    print(root.filenames) 

    if not root.filenames: 

        tkMessageBox.showinfo('Error','no file chosen�') 

        return 

    total_job = 0;   #total job starts from 0 

    total_machine = 0; #total machine starts from 0 

    machine_read_cout = 1; #read total machine number 

    machine_read_row_cout = 0; 

    k1 = float(root.text_k1); #define k value 

    k2 = float(root.text_k2); #define k value 

    k3 = float(root.text_k3); #define k value 

    ready_cout = 0; #ready time starts from 0 

    process_cout = 0; #processing time starts from 0 
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    due_date_cout = 0; #due date starts from 0 

    weight_cout = 0; #weight starts from 0 

    setup_cout = 0; #setup time starts from 0 

    machine_time_cout = 0 #machine time starts from 0 

    job_queue = 0; #job queue starts from 0 

    cout = 0 

    ##################################################READ 

FILE############################################################# 

    with open(root.filenames, newline='') as csvfile: #open csv file 

        rows = csv.reader(csvfile) #read data from file row 

        for row in rows: 

            if row[0] == 'total job': #read "total job" row to get total jobs 

                total_job = row[1] 

                print(total_job) 

            if row[0] == 'total machine': #read "total machine" row to get total machine 

                total_machine = row[1] 

                print(total_machine) 

    machine_job_step_array = [[[[] for x in range(int(total_job))] for y in range(int(total_job) + 1)] for z in 

                              range(int(total_machine))] #read input data and set up the total job for total machine 

 

    ready_row = [[] for x in range(int(total_machine))] #read ready row for total machine 

    process_row = [[] for x in range(int(total_machine))] #read process row for total machine 

    due_date_row = [[] for x in range(int(total_machine))] #read due date row for total machine 

    weight_row = [[] for x in range(int(total_machine))] #read weight row for total machine 

    setup_row = [[] for x in range(int(total_machine))] #read setup row for total machine 

    #inintal_setup_row= [[] for x in range(int(total_machine))] 

    machine_time_row = [[0 for y in range(int(total_job))] for z in range(int(total_machine))] 

    #inintal_machine_time_row = [[0 for y in range(int(total_job))] for z in range(int(total_machine))] 

    average_processing_time = [0 for z in range(int(total_machine))] #define average processing time for 

each  machine 

    average_setup_time = [0 for z in range(int(total_machine))] #define average processing time for 

each  machine 

 

    with open(root.filenames, newline='') as csvfile: #open csv file to start calculate 

        rows = csv.reader(csvfile) #get input data from csv file rows 
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        for row in rows: 

            print(row[0]) 

            if row[0] == 'ready':#read first ready row, for the next job ready time, use total job + 1, stop when no 

job can be read in the csv file 

                for num in range(1, int(total_job) + 1): 

                    ready_row[ready_cout].append(int(row[num])) 

                ready_cout = ready_cout + 1 

                job_queue = job_queue + 1 

            if row[0] == 'process':#read first process row, for the next job process time, use total job + 1, stop 

when no job can be read in the csv file 

                for num in range(1, int(total_job) + 1): 

                    process_row[process_cout].append(int(row[num])) 

                process_cout = process_cout + 1 

            if row[0] == 'due date':#read first due date row, for the next job due date time, use total job + 1, stop 

when no job can be read in the csv file 

                for num in range(1, int(total_job) + 1): 

                    due_date_row[due_date_cout].append(int(row[num])) 

                due_date_cout = due_date_cout + 1 

            if row[0] == 'weight':#read first weight row, for the next job weight time, use total job + 1, stop when 

no job can be read in the csv file 

                for num in range(1, int(total_job) + 1): 

                    weight_row[weight_cout].append(int(row[num])) 

                weight_cout = weight_cout + 1 

            if row[0] == 'setup':#read setup ready row, for the next job setup time, use total job + 1, stop when 

no job can be read in the csv file 

                for num in range(1, int(total_job) + 1): 

                    setup_row[setup_cout].append(int(row[num])) 

                setup_cout = setup_cout + 1 

            if row[0] == 'machine time':#set a row to store machine time 

                for num in range(1, int(total_job) + 1): 

                    machine_time_row[machine_time_cout].append(int(row[num])) 

                machine_time_cout = machine_time_cout + 1 

            if row[0] == 'm' + str(machine_read_cout) + ' setup time': #read the machine setup time from file 

                # print(row) 
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                for num in range(1, int(total_job) + 1): 

                    ttt = int(row[num]) 

                    machine_job_step_array[machine_read_cout - 1][machine_read_row_cout][num - 1] = ttt 

#check every job setup time is read 

                machine_read_row_cout = machine_read_row_cout + 1 

            if row[0] == '' and machine_read_row_cout >= 1 and machine_read_row_cout <= int(total_job): 

#check every job setup time is read 

                # print(row) 

                for num in range(1, int(total_job) + 1): 

                    machine_job_step_array[machine_read_cout - 1][machine_read_row_cout][num - 1] = 

int(row[num]) 

                machine_read_row_cout = machine_read_row_cout + 1 

                if machine_read_row_cout > int(total_job): 

                    print('YES') 

                    machine_read_cout = machine_read_cout + 1 

                    machine_read_row_cout = 0 

 

    #######################################################READ 

FILE############################################################ 

    index_row = [[0 for x in range(int(total_job))] for y in range(int(total_machine))] #set up index row for total 

jo and toatl machine 

    completion_time = [[0 for y in range(int(total_job))] for z in range(int(total_machine))] #set up completion 

time row for total jo and toatl machine 

    tardiness = [[0 for y in range(int(total_job))] for z in range(int(total_machine))] #set up tardiness row for 

total jo and toatl machine 

    #tardiness_buffer = [[0 for y in range(int(total_job))] for z in range(int(total_machine))] 

    job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in range(int(total_machine))] 

#set up job schedule row for total jo and toatl machine 

    machine_time_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] 

    t_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for tardiness row for each job 

    m_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for machine time row for each job 
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    r_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for ready time row for each job 

    p_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for processing time row for each job 

    s_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for setup time row for each job 

    d_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for due date row for each job 

    step_stage_machine_time = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define each machine step 

    t_job_schedule_trans = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] 

    w_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for job weight row for each job 

    final_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

range(int(total_machine))] #define row for final job row for each machine 

    final_job_schedule_t_value = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

                          range(int(total_machine))] 

    final_job_schedule_weight_value = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in 

                                  range(int(total_machine))] 

    job_schedule_cout = [0 for y in range(int(total_machine))] #define job schedule row 

    ready_job = [1 for y in range(int(total_job))] #define ready job schedule 

 

    # machine_available = [[1 for y in range(int(total_machine))] for z in range(int(job_queue))] 

    machine_available_cout = [int(total_machine)] #read total machine number 

    compare1 = 0 #compare selected job 

    compare2 = 0 #compare selected job 

    big_value_temp = [0 for x in range(int(total_job) * int(total_machine))] #set up row for bigger value for 

comparison 

    big_value = [0 for x in range(2)] 

    big_value_flag_row = [0 for x in range(2)] 

    big_value_flag_colum = [0 for x in range(2)] 

    machine_available_cout_using = int(total_machine) 

    machine_available = [1 for y in range(int(total_machine))] 

    print("ready_row") 
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    print(ready_row) 

    print("machine_job_step_array") 

    for i in range(0, int(total_machine)): 

        print(machine_job_step_array[i]) #print machine job schedule 

    for i in range(0, int(total_machine)): 

        for j in range(0, int(total_job)): 

            average_processing_time[i] = average_processing_time[i] + process_row[i][j] #calculate average 

processing time 

            average_setup_time[i] = average_setup_time[i] + setup_row[i][j] #calculate average setup time 

        if sum(average_processing_time)>0: 

            average_processing_time[i] = average_processing_time[i] / int(total_job) #calculate average 

processing time 

        if sum(average_setup_time) > 0: 

            average_setup_time[i] = average_setup_time[i] / int(total_job) #calculate average setup time 

    print(" ") 

    print("average_processing_time") 

    print(average_processing_time) 

    print("average_setup_time") 

    print(average_setup_time) 

    print("ready_row") 

    print(ready_row) 

    print("index_row ") 

    print("job_schedule ") 

    print(job_schedule) 

    # for i in range(0, int(total_machine)-1): 

    print("") 

    print(index_row) 

    run = 0 

    inintal_setup_row = copy.deepcopy(setup_row) #initial setup row 

    machine_job_step_array_flag = 0 #define machine job step array 

    while run < int(total_job): 

 

        print("##################################################start") 

        #print("machine_job_step_array_flag") 

        #print(machine_job_step_array_flag) 
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        run = run + 1 

        #print("01 machine_available ") 

        #print(machine_available) 

        # while  machine_available_cout_using >=0: 

        ################################################index value 

############################################################## 

        for j in range(0, int(total_machine)): #calculate job index 

            for k in range(0, int(total_job)): 

                if ready_job[k] == 1: 

                    index_row[j][k] = inintal_acc_index(weight_row[j][k], 

ready_row[j][k],due_date_row[j][k],machine_time_row[j][k], process_row[j][k], setup_row[j][k], 

average_processing_time[j], 

average_setup_time[j],machine_job_step_array[j][machine_job_step_array_flag+1][k], k1, 

k2, k3) #calculate job index from job input 

completion_time[j][k] = max(ready_row[j][k],ready_row[j][k]-machine_time_row[j][k])+process_row[j][k] + 

setup_row[j][k] #define completion time 

                    tardiness[j][k] = due_date_row[j][k] - completion_time[j][k] - machine_time_row[j][k] 

#define tardiness 

                elif ready_job[k] == 0: 

                    index_row[j][k] = -2147483648 #set smallest index as -2147483648 

                    tardiness[j][k] = -2147483648 #set smallest tardiness as -2147483648 

        #for i in range(0, int(total_machine)): 

            #print(index_row[i]) 

 

        ####################################################################################

###################################### 

        ############################################## Find the two biggest ones from the index 

################################## 

        for j in range(0, int(total_machine)): 

            for k in range(0, int(total_job)): 

                if (machine_available[j] == 1): 

                    big_value_temp[(j * int(total_job)) + k] = index_row[j][k] #calculate index 

                elif (machine_available[j] == 0): 

                    big_value_temp[(j * int(total_job)) + k] = -2147483648 

        #print(" big_value_temp") 
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        #print(big_value_temp) 

        big_value[0] = max(big_value_temp) 

        big_value_flag_row[0] = big_value_temp.index(max(big_value_temp)) #set row for first big value 

big_1 = big_value_temp.index(max(big_value_temp)) 

big_value_temp[big_1] =-2147483648           #set big_value_temp[big_1] smallest at -2147483648  

 big_value[1] = max(big_value_temp) 

  big_value_flag_row[1] = big_value_temp.index(max(big_value_temp)) #set row for second big value 

  big_2 = big_value_temp.index(max(big_value_temp)) 

 big_value_temp[big_2] = -2147483648          #set big_value_temp[big_1] smallest at -2147483648 

  #print("big_value_flag") 

     #(big_value_flag_row) 

    #print("  ") 

  ##########################################Find the smallest 

tardiness################################ 

        compare1 = tardiness[int(big_1 / int(total_job))][big_1 % int(total_job)]   #define compare1, and 

calculate the value 

        compare2 = tardiness[int(big_2 / int(total_job))][big_2 % int(total_job)]   #define compare1, and 

calculate the value 

        # print("machine_available ") 

        print("compare Machine "+str(int(big_1 / int(total_job)))+" job "+ str(int(big_1 % int(total_job))+1)+" 

tardiness") #print compare1 Machine job and tardiness 

        print(compare1) 

        print("compare Machine " + str(int(big_2 / int(total_job)))+" job "+str(int(big_2 % int(total_job))+1)+ " 

tardiness") #print compare1 Machine job and tardiness 

        print(compare2) 

        if compare1 <= compare2: #compare1 and compare2 

            print("Yes compare Machine " + str(int(big_2 / int(total_job))) + " job " + str( 

                int(big_2 % int(total_job)) + 1) + " tardiness is big") #print yes compare Machine job tardiness is 

big 

            machine_job_step_array_flag = int(big_2 % int(total_job)) 

            machine_available[int(big_2 / int(total_job))] = 0 #define machine available row 

            # print(job_schedule_cout[int(big_2/int(total_job))]) 

            job_schedule[int(big_2 / int(total_job))][job_schedule_cout[int(big_2 / int(total_job))]] = big_2 % 

int(total_job) #define job schedule 
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            ready_job[job_schedule[int(big_2 / int(total_job))][job_schedule_cout[int(big_2 / int(total_job))]]] = 

0           #define ready job schedule 

            step_stage_machine_time[int(big_2 / int(total_job))][job_schedule_cout[int(big_2 / int(total_job))]] 

= \ 

            machine_time_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))]#define machine time 

schedule 

            job_schedule_cout[int(big_2 / int(total_job))] = job_schedule_cout[int(big_2 / int(total_job))] + 1 

            ############################################update_machine_time_value##############

################### 

            for k in range(0, int(total_job)): 

                if ready_job[k] == 1: 

                    machine_time_row[int(big_2 / int(total_job))][k] = update_machine_time( 

                            ready_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))], 

                            machine_time_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))], 

                            process_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))], 

                            setup_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))]) #update machine 

time for big 2 

 

                    #machine_time_row[int(big_2 / int(total_job))][k] = update_machine_time( 

                    #    ready_row[int(big_2 / int(total_job))][k], 

                    #    machine_time_row[int(big_2 / int(total_job))][k], 

                    #    process_row[int(big_2 / int(total_job))][k], 

                    #    setup_row[int(big_2 / int(total_job))][k]) 

            #machine_time_row[int(big_2 / int(total_job))][big_2 % int(total_job)] = update_machine_time( 

            #    ready_row[int(big_2 / int(total_job))][big_2 % int(total_job)], 

            #    machine_time_row[int(big_2 / int(total_job))][big_2 % int(total_job)], 

            #    process_row[int(big_2 / int(total_job))][big_2 % int(total_job)], 

            #    setup_row[int(big_2 / int(total_job))][big_2 % int(total_job)]) 

 

            ############################################update_steup_time_value################

################# 

            for j in range(0, int(total_machine)): 

                for k in range(0, int(total_job)): 

                    if ready_job[k] == 1: 
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                        setup_row[i][k] = machine_job_step_array[int(big_2 / int(total_job))][(big_2 % 

int(total_job)) + 1][k]  #update_steup_time_value 

            #setup_row[int(big_2 / int(total_job))] = machine_job_step_array[int(big_2 / int(total_job))][ 

            #    (big_2 % int(total_job)) + 1] 

            #for j in range(0, int(total_machine)): 

            #    for k in range(0, int(total_job)): 

            #        completion_time[j][k] = process_row[j][k] + setup_row[j][k] 

            #        tardiness[j][k] = due_date_row[j][k] - completion_time[j][k] - machine_time_row[j][k] 

        elif compare1 > compare2: #compare1 and compare2 

            print("Yes compare Machine " + str(int(big_1 / int(total_job))) + " job " + str( 

                int(big_1 % int(total_job)) + 1) + " tardiness is big")  #print yes compare Machine job tardiness 

is big 

            machine_available[int(big_1 / int(total_job))] = 0 

            machine_job_step_array_flag = int(big_1 % int(total_job)) 

            print(big_1) 

            print(job_schedule_cout[int(big_1 / int(total_job))]) 

            job_schedule[int(big_1 / int(total_job))][job_schedule_cout[int(big_1 / int(total_job))]] = big_1 % 

int(total_job)  #define job schedule 

            ready_job[job_schedule[int(big_1 / int(total_job))][job_schedule_cout[int(big_1 / int(total_job))]]] = 

0    #define ready job schedule 

            step_stage_machine_time[int(big_1 / int(total_job))][job_schedule_cout[int(big_1 / int(total_job))]] 

= machine_time_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))]#define machine time schedule 

            job_schedule_cout[int(big_1 / int(total_job))] = job_schedule_cout[int(big_1 / int(total_job))] + 1 

 

            ############################################update_machine_time_value##############

################### 

            for k in range(0, int(total_job)):   #update_machine_time_value 

                if ready_job[k] == 1: 

                    machine_time_row[int(big_1 / int(total_job))][k] = update_machine_time( 

                            ready_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))], 

                            machine_time_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))], 

                            process_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))], 

                            setup_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))]) #update machine 

time for big 1 
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                    #machine_time_row[int(big_1 / int(total_job))][k] = update_machine_time( 

                    #    ready_row[int(big_1 / int(total_job))][k], 

                    #    machine_time_row[int(big_1 / int(total_job))][k], 

                    #    process_row[int(big_1 / int(total_job))][k], 

                    #    setup_row[int(big_1 / int(total_job))][k]) 

            #machine_time_row[int(big_1 / int(total_job))][big_1 % int(total_job)] = update_machine_time( 

            #    ready_row[int(big_1 / int(total_job))][big_1 % int(total_job)], 

            #    machine_time_row[int(big_1 / int(total_job))][big_1 % int(total_job)], 

            #    process_row[int(big_1 / int(total_job))][big_1 % int(total_job)], 

            #    setup_row[int(big_1 / int(total_job))][big_1 % int(total_job)]) 

            ############################################update_steup_time_value################

################# 

            for j in range(0, int(total_machine)): #update_steup_time_value for big 1 

                for k in range(0, int(total_job)): 

                    if ready_job[k] == 1: 

                        setup_row[i][k] = machine_job_step_array[int(big_1 / int(total_job))][(big_1 % 

int(total_job)) + 1][k] 

            #setup_row[int(big_1 / int(total_job))] = machine_job_step_array[int(big_1 / int(total_job))][ 

            #    (big_1 % int(total_job)) + 1] 

            #for j in range(0, int(total_machine)): 

            #    for k in range(0, int(total_job)): 

            #        completion_time[j][k] = process_row[j][k] + setup_row[j][k] 

            #        tardiness[j][k] = due_date_row[j][k]-completion_time[j][k]- machine_time_row[j][k] 

            #print("new job"+str()) 

            #print(tardiness[j][k]) 

        print("02 machine_available ") 

        print(machine_available) 

        if (sum(machine_available) == 0): 

            machine_available = [1 for y in range(int(total_machine))] #define total available machine 

        print("step_stage_machine_time ") 

        print(step_stage_machine_time) 

        print("job_schedule ") 

        print(job_schedule) 

        print("ready_job ") 

        print(ready_job) 
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        print("machine_time_row ") 

        print(machine_time_row) 

        #print("inintal_machine_time_row ") 

        #print(inintal_machine_time_row) 

        print("##################################################end") 

        final_job_schedule = copy.deepcopy(job_schedule) 

        t_job_schedule_copy= copy.deepcopy(t_job_schedule) 

        # for i in range(0, int(total_machine)): 

        #    for j in range(0, int(total_job)): 

        #        machine_time_row[i][j] = update_machine_time(ready_row[i][j] 

        #        ,machine_time_row[i][j],process_row[i][j],setup_row[i][j] ) 

    ########################################## 

    inintal_machine_time_row = copy.deepcopy(machine_time_row) 

 

    for i in range(0, int(total_machine)): 

        for j in range(0, int(total_job)): 

            completion_time[i][j] = max(ready_row[i][j], ready_row[i][j] - machine_time_row[i][j]) + 

process_row[i][j] + setup_row[i][j] #define completion time 

            tardiness[i][j] = due_date_row[i][j] - completion_time[i][j] - machine_time_row[i][j]  #define 

tardiness 

 

    for i in range(0, int(total_machine)): 

        for j in range(0, int(int(total_job) / int(total_machine))): 

            t_job_schedule[i][j] = tardiness[i][int(job_schedule[i][j]%int(total_job))] #define tardiness schedule 

from job schedule and total job 

            w_job_schedule[i][j] = weight_row[i][int(job_schedule[i][j]%int(total_job))] #define job weight 

schedule from job schedule and total job 

            m_job_schedule[i][j] = machine_time_row[i][int(job_schedule[i][j]%int(total_job))] #define 

machine time schedule from job schedule and total job 

            d_job_schedule[i][j] = due_date_row[i][int(job_schedule[i][j]%int(total_job))] #define due date 

schedule from job schedule and total job 

            p_job_schedule[i][j] = process_row[i][int(job_schedule[i][j]%int(total_job))] #define processing 

time schedule from job schedule and total job 

            r_job_schedule[i][j] = ready_row[i][int(job_schedule[i][j]%int(total_job))] #define ready time 

schedule from job schedule and total job 
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            s_job_schedule[i][j] = inintal_setup_row[i][int(job_schedule[i][j]%int(total_job))] #define setup time 

schedule job schedule and total job 

    print("inintal_setup_row ") 

    print(inintal_setup_row) 

    print("t_job_schedule ") 

    print(t_job_schedule) 

    print("m_job_schedule ") 

    print(m_job_schedule) 

    print("s_job_schedule") 

    print(s_job_schedule) 

    #apply tardiness buffer value for applying swap method 

    for i in range(0, int(total_machine)): 

        for j in range(0, int(int(total_job) / int(total_machine))): 

            for k in range(j, int(int(total_job) / int(total_machine))): 

                print("Machine "+ str(i)+" Check job " + str(j) + " and job " + str(k)) 

                buffer_value_completion = max(r_job_schedule[i][k] 

                                              , r_job_schedule[i][k] 

                                              - m_job_schedule[i][j]) \ 

                                          + p_job_schedule[i][k] \ 

                                          +s_job_schedule[i][k] 

 

                tardiness_buffer = d_job_schedule[i][k] \ 

                                   - buffer_value_completion- m_job_schedule[i][j] 

                print(str(tardiness_buffer) + " = " + str(d_job_schedule[i][k]) + " - max( " + str( 

                    r_job_schedule[i][k]) + " , " + str(r_job_schedule[i][k]) + " - " + str( 

                    m_job_schedule[i][j]) + ") + " + str(p_job_schedule[i][k]) + " + " + str( 

                    s_job_schedule[i][k]) + " + " + str(m_job_schedule[i][j])) 

                #apply job swap method 

                print(t_job_schedule[i][j]) 

                print(tardiness_buffer) 

                if t_job_schedule[i][j]<tardiness_buffer: #assign a tardiness buffer and compare if tardiness 

buffer bigger than tardiness schedule swap 

                    final_job_schedule[i][j],final_job_schedule[i][k]=swap(final_job_schedule[i][j],final_job_sc

hedule[i][k]) 
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                    w_job_schedule[i][j],w_job_schedule[i][k]=swap(w_job_schedule[i][j],w_job_schedule[i][k]

) 

                    t_job_schedule[i][j]=tardiness_buffer 

                    print("Machine "+ str(i)+" Check job " + str(j) + " and job " + str(k) + " compare sucess") 

                    m_job_schedule[i][k] = m_job_schedule[i][j]#swap the two seleced job 

                    r_job_schedule[i][j], r_job_schedule[i][k] = swap(r_job_schedule[i][j], 

                                                                      r_job_schedule[i][k])#swap ready time 

                    d_job_schedule[i][j], d_job_schedule[i][k] = swap(d_job_schedule[i][j], 

                                                                      d_job_schedule[i][k])#swap due date 

                    #m_job_schedule[i][j], m_job_schedule[i][k] = swap(m_job_schedule[i][j], 

                    #                                                  m_job_schedule[i][k]) 

                    p_job_schedule[i][j], p_job_schedule[i][k] = swap(p_job_schedule[i][j], 

                                                                      p_job_schedule[i][k])#swap processing time 

                    #s_job_schedule[i][j]=s_job_schedule[i][k] 

                    s_job_schedule[i][j], s_job_schedule[i][k] = swap(s_job_schedule[i][j], 

                                                                      s_job_schedule[i][k])#swap setup time 

 

            for t in range(j+1 , int(int(total_job) / int(total_machine))):#update the machine time after job swap 

                m_job_schedule[i][t] = update_machine_time( 

                    r_job_schedule[i][j], 

                    m_job_schedule[i][j], 

                    p_job_schedule[i][j], 

                    s_job_schedule[i][j]) 

            for t in range(j+1 , int(int(total_job) / int(total_machine))): 

                s_job_schedule[i][t] = machine_job_step_array[i][1+(int(final_job_schedule[i][j] % 

int(total_job))) ][int(final_job_schedule[i][t] % int(total_job))] 

            for t in range(j + 1, int(int(total_job) / int(total_machine))): 

                buffer_value_completion = max(r_job_schedule[i][t] 

                                                      , r_job_schedule[i][t] 

                                                      - m_job_schedule[i][t]) \ 

                                                  + p_job_schedule[i][t] \ 

                                                  + s_job_schedule[i][t] 

                tardiness_buffer = d_job_schedule[i][t] \ 

                                           - buffer_value_completion - m_job_schedule[i][t] 

                t_job_schedule[i][t] = tardiness_buffer 
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                ############################################update_machine_time_value###########

###################### 

                #else: 

                #    for t in range(j+1, int(int(total_job) / int(total_machine))): 

                #        #if not (k==t): 

                #        m_job_schedule[i][t] = update_machine_time( 

                #        r_job_schedule[i][j], 

                #        m_job_schedule[i][j], 

                #        p_job_schedule[i][j], 

                #        s_job_schedule[i][j]) 

                #    for t in range(j+1 , int(int(total_job) / int(total_machine))): 

                #        s_job_schedule[i][t] = machine_job_step_array[i][1+(int(final_job_schedule[i][j] % 

int(total_job))) ][int(final_job_schedule[i][t] % int(total_job))] 

 

                    #for t in range(j + 1, int(int(total_job) / int(total_machine))): 

                    #    s_job_schedule[i][t] = machine_job_step_array[i][int(job_schedule[i][j] % 

int(total_job)) + 1][ 

                    #        int(job_schedule[i][t] % int(total_job))] 

                ############################################update_steup_time_value#############

#################### 

            print("final_job_schedule") 

            print(final_job_schedule) 

            print("m_job_schedule") 

            print(m_job_schedule) 

            print("s_job_schedule") 

            print(s_job_schedule) 

    print("final_job_schedule") 

    print(final_job_schedule) 

    print("t_job_schedule") 

    print(t_job_schedule) 

    print("s_job_schedule") 

    print(s_job_schedule) 

    string_temp = "" 

    string_temp_2 = "" 
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    string_temp_3 = "" 

    array_temp = [0 for y in range(int(int(total_job) / int(total_machine)))] #define available machine 

    array_temp_2 = [0 for y in range(int(int(total_job) / int(total_machine)))] #define available machine 

    array_temp_3 = [0 for y in range(int(total_machine))] 

    array_temp_4 = [0 for y in range(int(int(total_job) / int(total_machine)))] #define available machine 

    for i in range(0, int(total_machine)): 

        print("Machine " + str(i + 1) + " Job schedule") 

        for j in range(0, int(int(total_job) / int(total_machine))): 

            string_temp = string_temp + str(final_job_schedule[i][j] + 1) + " " #define final job schedule 

            string_temp_2 = string_temp_2 +str(t_job_schedule[i][j]) + " "      #define tardiness job schedule 

            string_temp_3 = string_temp_3 + str(w_job_schedule[i][j]) + " "     #define job weight schedule 

        print(string_temp) 

        print(string_temp_2) 

        print(string_temp_3) 

        string_temp = "" 

        string_temp_2 = " " 

        string_temp_3 = " " 

    cout_temp=0 

    with open('output.csv', 'w', newline='') as csvfile: 

        writer = csv.writer(csvfile) 

        for i in range(0, int(total_machine)): 

            string_temp="Machine " + str(i + 1) + " Job schedule" 

            writer.writerows([[string_temp]]) 

            string_temp="" 

            string_temp_2 = " " 

            string_temp_3 = " " 

            for j in range(0, int(int(total_job) / int(total_machine))): 

                string_temp = string_temp + str(final_job_schedule[i][j] + 1) + " " 

                string_temp_2 = string_temp_2 +  str(t_job_schedule[i][j] ) + " " 

                string_temp_3 = string_temp_3 + str(w_job_schedule[i][j]) + " " 

                array_temp [j] =final_job_schedule[i][j] + 1 

                array_temp_2 [j] =t_job_schedule[i][j] 

                array_temp_4[j] = w_job_schedule[i][j] 

                if t_job_schedule[i][j]<0: 

                    cout_temp=cout_temp+((t_job_schedule[i][j])*(w_job_schedule[i][j])) 
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            array_temp_3[i]=array_temp_3[i]+cout_temp 

            cout_temp=0 

            writer.writerows([array_temp]) 

            writer.writerows([array_temp_2]) 

            writer.writerows([array_temp_4]) 

            string_temp = "Machine " + str(i + 1)+" Total Weigth" 

            writer.writerows([[string_temp]]) 

            writer.writerows([[array_temp_3[i]]]) 

        string_temp = "All Machine Total Weigth" 

        writer.writerows([[string_temp]]) 

        writer.writerows([[sum(array_temp_3)]]) 

 

 

 

#set up the enter windows for k value 

root = Tk() 

root.title('Job scheduling Ver0.15') 

#root.geometry('300x200+1000+200') 	��
���
����������� 

root.geometry() 

Label(root, text = 'k1�').grid() 

entry_1 = Entry(root) 

entry_1.grid(row=0, column =1) 

Label(root, text = 'k2�').grid(row = 1, column = 0) 

entry_2 = Entry(root) 

entry_2.grid(row = 1, column = 1) 

Label(root, text = 'k3�').grid(row = 2, column = 0) 

entry_3 = Entry(root) 

entry_3.grid(row = 2, column = 1) 

button = Button(root, text = 'Choose CSV file', command=search) 

button.grid(row = 0, column = 4) 

button = Button(root, text = 'Start scheduling',command=acc_job) 

button.grid(row = 1, column = 4) 

#listbox = Listbox(root, width = 80) 

#listbox.bind('<Double-Button-1>',click) 

#listbox.grid(row = 3, column = 0, columnspan = 5) 



 

 107 

CURRICULUM VITAE �

Name: Li Tzu Yi 

Education: 

    B.A., Chung Yuan University, June 2015 

    Major: Industril and System Engineering 

 

    M.S., Chung Yuan University, June 2017 

    Major: Industril and System Engineering 

 

    M.S., University of Wisconcin-Milwuakee, December 2018 

    Major: Industril Manufacturing Engineering 

 

Dissertation Title: Heuristic Algorithm to Minimize Total Weighted Tardiness on the 

Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time 

 

Teaching & Research Experience:�

Teaching assistant, Chung Yuan University, Sep 2015-June 2017 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	December 2018

	Heuristic Algorithm to Minimize Total Weighted Tardiness on the Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time
	Tzu Yi Li
	Recommended Citation


	Microsoft Word -  Heuristic Algorithm to Minimize Total Weighted Tardiness on the Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time .docx

