
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2018

Heuristic Algorithm to Minimize Total Weighted
Tardiness on the Unrelated Parallel Machine with
Sequence Dependent Setup and Future Ready
Time
Tzu Yi Li
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Li, Tzu Yi, "Heuristic Algorithm to Minimize Total Weighted Tardiness on the Unrelated Parallel Machine with Sequence Dependent
Setup and Future Ready Time" (2018). Theses and Dissertations. 1997.
https://dc.uwm.edu/etd/1997

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=dc.uwm.edu%2Fetd%2F1997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1997?utm_source=dc.uwm.edu%2Fetd%2F1997&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

HEURISTIC ALGORITHM TO MINIMIZE TOTAL WEIGHTED

TARDINESS ON THE UNRELATED PARALLEL MACHINE WITH

SEQUENCE DEPENDENT SETUP AND FUTURE READY TIME

by

Tzu Yi Li

A Dissertation Submitted in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in Engineering

at

The University of Wisconsin-Milwaukee

December 2018

 ii

ABSTRACT

HEURISTIC ALGORITHM TO MINIMIZE TOTAL WEIGHTED TARDINESS ON
THE UNRELATED PARALLEL MACHINE WITH SEQUENCE DEPENDENT

SETUP AND FUTURE READY TIME

by

Tzu Yi Li

The University of Wisconsin-Milwaukee, 2018

Under the Supervision of Professor Jaejin Jang

This study presents a heuristic algorithm to minimize total weighted tardiness on unrelated

parallel machines with sequence-dependent setup time and future ready time. We propose a

new rule based on Apparent Tardiness Cost (ATC). The performance of the rule is evaluated

on unrelated parallel machines. In order to solve a problem, we use a look-ahead method and

a job-swap method. When a machine becomes idle, the heuristic compares the jobs on the

machine and selects the one with the smallest total tardiness value to carry out a process.

The propose heuristic is divided into three stages: The first stage employs the newly

introduced dispatching rule, ATC with continuous setup and ready time for unrelated parallel

machines (ATCSR_UP), along with a look-ahead heuristic to select the initial job for each

machine. The second stage, consisting of several iterations, schedules the rest of the job on the

machine. Each iteration starts by finding the job with the smallest tardiness. The ATCSR_Rm

rule proposed by Lin and Hsieh (2013) concerns the unrelated-parallel-machine scheduling

which this study examines, so we compare our ATC-based rule with their proposed rule.

Although they study a separable setup time in their research, no other paper than Lin and Hsieh

(2003) focus on unrelated parallel machine with future ready times. In their WSPT term, they

 iii

consider the processing time for each job; our own rule considers processing time, setup time,

job ready time, and machine time. We consider the setup time, job ready time, and machine

time because — according to the continuous sequence-dependent setup rule — setup time

should be included in processing time (Yue and Jang 2013). In addition, job ready time and

machine time should also be included in the processing time. Adding setup time ("#,%), job

ready time (&%), and machine time ('() to the formula thus makes the formula more accurate.

Lin and Hsieh (2013) use)*+,&%, '# + "#,%. for the slack term, and they compare the

ready time with the sum of the machine available time ('#) and the setup time ("#,%). However,

in our formula, we consider ready time, machine time, and current time. Current time (') is

used when a job might come at a future time when the machine in question is idle or has

finished the job.

The last term of the propose heuristic is the ready term, which uses both ready time (&%)

and machine time ('(), because it needs to specify whether ready time (&%) or machine time

('() goes first. If a job is ready to be processed but the machine is not ready, the job has to

wait. We use ready time (&%) and machine time ('() because this makes the formula more

suitable for practical, real-world use.

 iv

TABLE OF CONTENTS

ABSTRACT ... II

LIST OF FIGURES ...VI

LIST OF TABLES ... IX

ACKNOWLEDGEMENTS .. XI

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. LITERATURE REVIEW .. 4

2.1 PARALLEL MACHINES ... 4

2.1.1 The scaling parameter k1, k2, k3 .. 4

2.1.2 Objectives of parallel machine scheduling with sequence-dependent setup......... 6

(i) Minimizing total weighted tardiness ..6

(ii) Minimizing completion time.. 10

(iii) Minimize maximum lateness ... 10

(iv) Minimizing number of tardy jobs ... 11

2.2 LOOK-AHEAD METHOD .. 13

CHAPTER 3 THE NEW FORMULA ATCSR_UP .. 18

3.1. PROBLEM DESCRIPTION .. 18

3.2 NEW DISPATCHING RULE: ATCSR_UP ... 19

3.2.1 New terms of ATC-based rule ... 20

3.2.2 Index formula comparison ... 24

3.3 JOB AND MACHINE SELECTION PROCEDURE WITH LOOK-AHEAD METHOD ... 27

3.4 LOCAL IMPROVEMENT PROCEDURE: PAIRWISE ADJACENT JOB EXCHANGE .. 33

 v

Example 7 job 3 machine .. 34

3.5 THE NEW ATC-BASED RULE PROCEDURE .. 39

CHAPTER 4. PERFORMANCE TEST.. 42

4.1 COMPARISON OF TEST CASES ... 42

4.2 THE SELECTION OF ATC SCALE PARAMETERS ... 43

4.3 EFFECT OF PAIRWISE EXCHANGE OF JOBS .. 50

4.4 PERFORMANCE COMPARISON WITH ATCSR_RM ... 54

4.5 PERFORMANCE EVALUATION BY TEST CONDITION ... 71

CHAPTER 5 CONCLUSION AND FUTURE RESEARCH ... 77

REFERENCES .. 79

APPENDICES: PROGRAM CODE FOR THE THESIS ... 89

CURRICULUM VITAE .. 107

 vi

LIST OF FIGURES

Figure 1. Exponent for slack term. ... 21

Figure 2. Different index among different machines. .. 28

Figure 3. Flow chart for the ATCSR_UP .. 40

Figure 4. Comparison for group A vs. B vs. C .. 44

Figure 5. Comparison for group A vs. B vs. C .. 45

Figure 6. Comparison for group A vs. B vs. C .. 46

Figure 7. Comparison among the A vs B vs C .. 49

Figure 8. Tardiness comparison with vs without job swap .. 50

Figure 9. Tardiness comparison with vs without job swap .. 51

Figure 10. Tardiness comparison with vs without job swap .. 52

Figure 11. Average TWT result between with and without Job Swap Method ... 53

Figure 12. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 1)... 54

Figure 13. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 10) ... 55

Figure 14. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 1) ... 55

Figure 15. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 10) ... 56

Figure 16. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10) ... 56

Figure 17. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 10) ... 57

Figure 18. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 1) ... 57

Figure 19. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10) ... 58

Figure 20. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 1) ... 58

Figure 21. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 10) ... 59

Figure 22. Comparison on 20 instance and parameter (2, 0.3, 1 & 1) .. 59

 vii

Figure 23. Comparison on 20 instance and parameter (2, 0.3, 1 & 10) .. 60

Figure 24. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 1) ... 60

Figure 25. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 10) ... 61

Figure 26. Comparison on 20 instance and parameter (2, 0.9, 1 & 1) .. 61

Figure 27. Comparison on 20 instance and parameter (2, 0.9, 1 & 10) .. 62

Figure 28. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 1)... 62

Figure 29. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 10) ... 63

Figure 30. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 1) ... 63

Figure 31. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 10) ... 64

Figure 32. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 1)... 64

Figure 33. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 10) ... 65

Figure 34. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 1) ... 65

Figure 35. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10) ... 66

Figure 36. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 1) ... 66

Figure 37. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 10) ... 67

Figure 38. Comparison on 20 instance and parameter (2, 0.3, 1 & 1) .. 67

Figure 39. Comparison on 20 instance and parameter (2, 0.3, 1 & 10) .. 68

Figure 40. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 1) ... 68

Figure 41. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 10) ... 69

Figure 42. Comparison on 20 instance and parameter (2, 0.9, 1 & 1) .. 69

Figure 43. Comparison on 20 instance and parameter (2, 0.9, 1 & 10) .. 70

Figure 44. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP (34 = 0.2, 38 = 0.1, 39 =

0.001) .. 74

 viii

Figure 45. Overall comparison of 16 factor combination .. 74

Figure 46. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP (34 = 7.2, 38 = 2.1, 39 =

1.2) .. 75

Figure 47. Overall comparison of 16 factor combination .. 75

Figure 48. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP(34 = 0.2, 38 = 0.1, 39 =

0.001 and 34 = 7.2, 38 = 2.1, 39 = 1.2) ... 76

 ix

LIST OF TABLES

Table 1. Grid setting comparison Xi and Jang (2012) .. 6

Table 2. Parallel non-batch machine with sequence-dependent setup time ... 12

Table 3. Comparison of terms ATC-based rule .. 25

Table 4. Job data for Machine 1 (t1 = 0) .. 29

Table 5. Job data for Machine 2 (t2 = 0) .. 30

Table 6. Job Index for Machine 1 ... 30

Table 7. Job Index for Machine 2 ... 30

Table 8. Job Index for Machine 1 (t1 = 0) .. 31

Table 9. Job Index for Machine 2 (t2 = 5) .. 31

Table 10. Job Index for Machine 1 (t1 = 0) .. 31

Table 11. Job Index for Machine 2 (t2 = 8) .. 32

Table 12. Job Index for Machine 1 (t1 = 0) .. 32

Table 13. Job Index for Machine 2 (t2 = 12) .. 32

Table 14. Machine 1 Job input data .. 34

Table 15. Machine 2 Job input data .. 34

Table 16. Machine 3 Job input data .. 35

Table 17. Machine 1 setup time for each job ... 35

Table 18. Machine 2 setup time for each job ... 35

Table 19. Machine 3 setup time for each job ... 36

Table 20. Job index for Machine 1 .. 36

Table 21. Job index for Machine 2 .. 36

Table 22. Job index for Machine 3 .. 36

 x

Table 23. TWT for 3 machines ... 37

Table 24. TWT for 3 machines ... 38

Table 25. Values of factors for experiment.. 43

Table 26.Average TWT of the three groups comparison .. 48

 xi

ACKNOWLEDGEMENTS

 There are several people I would like to acknowledge their contributions toward to this

paper.

 First of all, I would like to thank is my advisor, Dr. Jaejin Jang, of university of Wisconsin-

Milwaukee. The door to Dr. Jang office was always open whenever I ran into a trouble spot or

had a question about my research or writing. Without his passionate participation and input,

the validation survey could not have been successfully conducted.

 Thanks to the committee members Dr. David Yu and Dr. Otieno for their useful advice on

my research. Finally, I must express my very profound gratitude to my parents and my lab

mates for providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

 1

CHAPTER 1. INTRODUCTION

Parallel-machine scheduling (PMS) is commonly encountered in industries involving

machinery, electronics, textiles, transportation, telecommunications, pharmaceuticals,

chemicals, and services (Lu, Lin, & Ying, 2011). Since the publication of the first paper about

parallel-machine scheduling, researched by McNaughton (1959), various PMSs have attracted

great interest among other researchers.

Based on the characteristics of parallel machines, a classical parallel-machine system

(PMS) can be categorized as identical, uniform, or unrelated (Cheng & Sin.C, 1990).

Allahverdi and Mittenthal (1994) group parallel machines into three groups: identical parallel

machines, for which the processing time of a job is the same for all machines; uniform parallel

machines, for which the processing time of a job is determined by the speed factor of the

machine used; and unrelated parallel machines, for which the processing time of a job can vary

in an arbitrary way depending on the machine selected. This paper is concerned with unrelated

parallel machines.

According to Chuang and Chang (2014), it is common for newer machines to have faster

processing speeds in technology manufacturing. Shahid-Zadeh, Tavakkoli-Moghaddam,

Taheri-Moghadam, and Rastgar (2017) and Rasaratnam (2007) consider industrial scheduling

to have benefited greatly from the use of unrelated parallel machines, due to these machines’

ability to perform the same function but with varying capability or capacity.

 2

Most research on parallel-machine scheduling assumes that the setup time of a job can be

either ignored or included in processing time. However, this assumption is appropriate only

when the setup time is independent from the job sequence. According to research by Panwalkar,

Dudek and Smith (1973), Krajewski, King, Ritzman, and Wong (1987), and Black and Kohser

(2017), approximately 70% of schedulers observed that for about 25% of jobs they scheduled,

the setup time could not be ignored. In this sense, setup time can be considered an important

factor for controlling a whole manufacturing system. Sequence-dependent setup, in which the

length of a job’s setup time depends on the immediately preceding job, is common and often

prevalent in manufacturing.

Examples of sequence-dependent setup are found in metallurgical industries; in back-end

semiconductor manufacturing and semiconductor wafer dicing; and at petroleum production

plants, printing plants, car-spraying facilities, and textile-dying plants. (Arroyo et al., 2009;

Kia et al., 2017; Luo et al., 2006; Kim et al., 2002, 2007; Zhang et al., 2007).

Literature on the achievement of parallel-machine scheduling focuses mostly on flow time

or on tardiness – for example, on minimizing the maximum tardiness, total weighted flow time,

and total weighted tardiness (Drieel & Monch, 2011; Kim et al., 2002; Lee & Pinedo, 1997; Xi

& Jang, 2012). Flow time is often closely related to job waiting time for factory processing,

whereas tardiness is often relevant to manufacturing when the deadlines for expected due dates

cannot be adhered to. Such deadlines matter in the real world, since failure to meet them may

lead to the loss of future customers. Therefore, this research is interested in how deadlines can

be met and job tardiness reduced in the context of unrelated parallel machines.

 3

Although many researchers have studied parallel machines scheduling problems, only a

few papers have dealt with scheduling unrelated parallel machines with setup times, ready

times and due date-related measures. In this particular study, we focus on unrelated parallel-

machine scheduling using ATC-based dispatching rule. It is known that ATC (Apparent

Tardiness Cost)- based rules can efficiently reduce tardiness of a schedule. In this research, a

new, efficient ATC-based rule is proposed. All proposed heuristic methods mentioned in this

research are for minimizing total weighted tardiness.

This study is organized as follows: Chapter Two reviews literature related to parallel-

machine scheduling with sequence-dependent setup. In Chapter Three, a new ATC-based rule

is introduced to minimize the total weighted tardiness. Chapter Four is an experimental study

carried out on unrelated parallel machines, and it evaluates the performance of the new ATC-

based rule proposed. Finally, conclusions and future research are discussed in Chapter Five.

 4

CHAPTER 2. LITERATURE REVIEW

2.1 Parallel machines

 This section reviews the studies of parallel machines scheduling both with and without a

sequence-dependent setup. From the literature, research about parallel-machine scheduling can

be grouped by various criteria (Allahverdi, 2015). The first is by machine type, where machines

are sorted into identical, uniform, and unrelated machines. A second division is by setup time

(Slotnick, 2011), where machines-scheduling studies are divided into those without a setup

time, those with a setup time, those with a continuous setup time (setup cannot start before an

operation’s ready time), and those with separable setup times (setup can start before an

operation’s ready time). A further grouping is by objective (Pinedo, 2016), where related papers

are classified such as minimizing the total completion time (Costa, Cappadonna, & Fichera,

2016), and minimizing the total tardiness (Allahverdi & Aydilek, 2015). Finally, papers can be

grouped by approach: for example, metaheuristic, mathematical models, and branch and bound

heuristic. In this study, we focus on non-batch, unrelated parallel machines with continuous

sequence-dependent setup times and a total weighted tardiness objective.

2.1.1 The scaling parameter <=, <>, <?

 The basic format of the ATC-based indexes has four terms. Jobs are scheduled based on

this index value assigned to it.

Index (i, 	j, 	m) =(WSPT) × (Slack) × (Setup	time) × (Ready	time) (1)

STUV+	(', W, X) = Y × V+Z [−]

^_`
a exp [−

cde
^fc̅
a exp	(− h

^ij̅
) (2)

 5

The exponent of terms have scale parameters 34, 38, 39 and job information (processing

time, setup time, due date, job weight and ready time) A is the modified WSPT term, B

represent the numerator of slack term, C represents the denominator of slack and D is the ready-

term numerator. When applying ATC- based rules it is important to determine good scaling

parameters (the k values). The formula for index does not specify how the scaling parameters

are used, therefore, researchers focuses on different methods to determined the suitable scaling

parameters.

In literature, two types of approaches have been used to determine the parameters. Xi and

Jang (2012) report that there are several methods that can be used to estimate good grid of the

parameters: Rachamadugu and Morton (1982) and Vepsalainen and Morton (1987) use the

Empirical Value Method; Lee and Pinedo (1997), Pfund et al. (2008) for the Regression

Method and Kim et al. (1995), Park et al. (2000) for the Artificial Neural Network Method.

Other research, like that of Pfund et al. (2008) and Drieel and Monch (2009, 2011),

investigates the use of many grids and selects the optimal pair of parameters for the grid method.

Xi and Jang (2012) point out that the grid method is not only used to decide final parameters

but also to give information for other methods like the regression method and other heuristics

that get an improved result (Christoph et al., 2007, Drieel and Monch, 2009, 2011)

Lee and Pinedo (1997) present a grid parameter setting:34= (0.2, 0.4, 0.6..., 6.4), and 38

= (0.1, 0.2, 0.3..., 1.6), while later Pfund et al. (2008) propose a wider search range for 34and

38 and further put forward settings for a newly-created parameter 39:

 6

34: 0.2,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.4,2.8,3.2,3.6,4,4.4,4.8,5.2,5.6,6,6.4,6.8,7.2

38: 0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1�

39: 0.001,0.0025,0.004,0.005,0.025,0.04,0.05,0.25,0.4,0.6,0.8,1,1.2

Drieel and Monch (2009) propose a narrower search range k1: [0.2, 6], k2 : [0.1, 1.9] and

k3 : [0.001, 1.2] and consider fewer grids: 7, 4 and 5 grids. In further research, they use k1:

[0.01, 1.5], k2 : [0.1, 1.9] and k3: [0.01,1] as a search set (Drieel & Monch, 2011).

In this study, we employ the parameters set out by Pfund et al. (2008) to evaluate the

proposed ATC-based rule. Table 1. shows the parameters propose by Pfund et al. (2008) and

Drieel and Monch (2011).

Table 1. Grid setting comparison Xi and Jang (2012)

 Pfund et al. (2008) Driessel and Monch (2009) Driessel and Monch (2009)

34 22 values in [0.2, 7.2] 7 values in [0.2, 6] 5 values in[0.01, 1.5]

38 11 values in [0.1, 2.1] 4 values in[0.1, 0.9] 4 values in[0.1, 1.9]

39 12 values in[0.001, 1.2] 5 values in[0.001, 1.2] 4 values in[0.01, 1.0]

2.1.2 Objectives of parallel machine scheduling with sequence-dependent setup

(i) Minimizing total weighted tardiness

Scheduling problems with the objective of total weighted tardiness is NP-hard even for a

single machine environment (Du & Leung, 1990). As the single machine was seen as NP-hard,

the parallel machine problem is also viewed as such. Parallel-machine scheduling with a

tardiness objective has attracted much attention from researchers in recent years.

 7

To minimizing the total weighted tardiness in unrelated parallel machines scheduling, Luh,

Hoitomt, Max, & Pattipati (1990) propose a Lagrangian dual relaxation approach to generate

a listing of jobs followed by a greedy approach to form a feasible schedule for the parallel

machines. Arkin and Roundy (1991) consider that the weight of each job is proportional to its

processing time and developed a pseudo-polynomial time algorithm to minimize total weighted

tardiness.

Lee, Bhaskaran and Pinedo (1996) extend the ATC rule to develop a composite-

dispatching heuristic called the ATCS (Apparent Tardiness Cost with Setup) rule for solving

the sequence-dependent version of the weighted tardiness problem with static job releases and

static machine availability. Lee and Pinedo (1997) use the ATCS dispatching rule, proposed by

Lee et al. (1996), in order to obtain an initial solution for minimizing the total weighted

tardiness on identical machines.

Zhu and Heady (2000) propose a mathematical model for setup times that has to satisfy

the triangular inequality law, with the setup starting before the job arrives. Ecom, Shin, Kwun,

Shim and Kim (2002) put forward a three-phase heuristic for the problem, using a combination

of pre-processing by the first due date, grouping and sequencing jobs according to setup types

(improved by a Tabu search), and allocating jobs to machines.

Kim et al. (2002) propose a simulated annealing-based heuristic for jobs with sequence-

dependent setup times on machines. For the same objective, Kim et al. (2002) extend their

 8

investigation on batch scheduling. Liaw et al. (2003) propose a two-phase heuristic for solving

the job scheduling problem.

Bilge et al. (2004) use a Tabu Search (TS) to schedule uniform parallel machines with

sequence-dependent setups and ready times in order to minimize total tardiness .

Kim et al. (2007) report on Tabu search use and on simulated annealing (SA) algorithms to

minimize total tardiness for uniform parallel machines with sequence-dependent setup times

and ready times . Anghinolfi and Paolucci (2007) present a hybrid metaheuristic

approach which combines several features from a Tabu Search, Simulated Annealing, and a

variable neighborhood search (VNS) for the k|&%, "#%^| ∑n%o% problem. Logendran,

McDonell and Smucker (2007) propose four heuristics for initial solutions and six search

algorithms based on Tabu Search for minimizing total weighted tardiness (TWT) on unrelated

parallel machines with ready times and sequence-dependent setup times (k|&%, "#%^| ∑n%o%).

Gharhgozli et al. (2009) apply a fuzzy-mixed-integer goal programming model to

simultaneously minimize total weighted flow time and TWT. They apply this to parallel

machine scheduling problems with sequence-dependent setup times and release dates.

Drieel and Monch (2011) propose several VNS approaches for scheduling identical

parallel machines with sequence-dependent setup times, precedence constraints and ready

times to minimize TWT (p|&%, "#%| ∑n%o%). They employ a dispatching rule that uses Apparent

Tardiness Cost with setup time and ready time (ATCSR) as an initial solution and then applied

 9

VNS that are fast enough to serve as high-quality sub-problem solution procedures in

decomposition schemes for large-scale job shops.

Xi and Jang (2012) study the ATC-based dispatching rules with future-ready times and

sequence-dependent setup times for minimizing TWT on identical parallel machines

(P|rr, str| ∑wrTr). They show that the both ATCRCS (continuous sequence setup) and ATCRSS

(separable sequence setup) outperform ATCSR (ATC-based rule with sequence setup time and

future ready job).

Lin and Hsieh (2013) study the ATC-based dispatching rule with separable setup and

future ready job for minimzing the TWT on unrelated parallel machines(p(|rr, str| ∑wrTr).

They modify the ATC-based rule (ATCSR_Rm) from ATCSR so it can be use to solve unrelated

parallel machine problems. They show that ATCSR_Rm outperforms ATCSR (ATC-based rule

with sequence setup time and future ready job).

Diana et al. (2018) address the total weighted tardiness minimization problem on

unrelated parallel machines with sequence dependent setup times and job ready times. The

problem consists of scheduling a set of jobs in such a way as to reduce penalty costs caused by

failures to meet the job due dates. In order to resolve this, an ILS-VND hybrid metaheuristic is

proposed: A local search heuristic, Variable Neighborhood Descent (VND), is integrated with

an Iterated Local Search (ILS) metaheuristic with multiple restarts.

 10

(ii) Minimizing completion time

Weng, Lu, and Ren (2001) research minimization of the total weighted completion time

on unrelated parallel machines. Several heuristics are presented. According to their experiment,

the best heuristic assigns one job at a time based on the ratio of a job’s processing time plus

setup time to its weight. Cochran et al. (2003) have published a multi-population genetic

algorithm that minimizes the makespan and TWT for identical parallel machines with release

times and setup times (pv&%, "%^vw)*+,∑n%o%). Using this hybrid approach, the genetic

algorithm assigns jobs to machines; dispatching rules are then used to schedule jobs on each

individual machine.

(iii) Minimize maximum lateness

 Schutten and Leussink (1996) present a branch and bound algorithm (B&B) to solve the

problem of parallel-machine scheduling with release dates and family setup times to minimize

maximum lateness (p|&%, "#|x)*+). Their B&B algorithm can find optimal solutions for up to

three machines and 25 jobs. Later on, Balakrishnan et al. (1999) propose a MIP model for the

problem of early/tardy scheduling with sequence-dependent setups on uniform parallel

machines (Q|rr,"#%^|(V%z% + '%o%)).

Ying and Cheng (2010) apply an iterated greedy (IG) heuristic for minimizing maximum

lateness on identical parallel machines with ready times and sequence-dependent setup times

(p|&%, "#|x)*+). Lee et al. (2010) present a restricted SA for the (P|rr, sr{|Lmax) problem as

well. Moreover, Lin et al. (2011) propose an IG heuristic with a sinking temperature for the

(p|&%, "#|x)*+) problem.

 11

(iv) Minimizing number of tardy jobs

Chen (2012) presents an Integer Hybrid Metaheuristic (IHM) which integrated the

principles of variable-neighborhood descent and TS for unrelated parallel machines problems

with ready times and sequence- and machine-dependent setup times to minimize the weighted

number of tardy jobs (R|rr, str| ∑wrTr).

In Table 2, we list the papers that focus on parallel non-batch machines with sequence-

dependent setup time. We categorize them with six objective functions: total weighted

tardiness, total tardiness, total completion time, total weighted completion time, bi-criteria and

others. We then list the machine type for each paper and the approach the researcher uses to

solve the problem.

 12

Table 2. Parallel non-batch machine with sequence-dependent setup time

Objective function References Machine type Approach

1. Total weighted

tardiness

Lee and Pinedo (1997) Identical parallel machines Dispatching rule

(ATCS)

 Lee and Pinedo (1997) Identical parallel machines Three stages method

 Park et al. (2000) Identical parallel machines Dispatching rule

(ATCS)

 Fowler and Horng (2003) Identical parallel machines Hybrid genetic

algorithm

 Tamimi and Rajan (1997) Uniform parallel machines Genetic Algorithm

 Xi and Jang (2012) Identical parallel machines Dispatching rules

(ATCS)

 Diana et al. (2018) Uniform parallel machines ILS-VND hybrid

metaheuristic

2. Total tardiness Chen (2009) Unrelated parallel machines Hybrid Approach

(ATCS+SA)

 Lee (2017) Identical parallel machines Random iteration greedy

metaheuristic

3. Total completion

time

Felipe (2005) Unrelated parallel machines Constructive method

 Kurt and Askin (2001) Identical parallel machines Integer programming

 Yin et al. (2018) Unrelated parallel machine Greedy heuristic

 Framimam and Paz (2017) Identical parallel machines Constructive method

4. Total weighted

completion time

Weng et al. (2001) Unrelated parallel machine Evaluate several

heuristics

 Fowler and Horng (2003) Identical parallel machines Hybrid genetic

algorithm

5. Bi-Criteria

Sum of weighted

earliness and

weighted tardiness

Balakrishnan et al. (1999) Uniform parallel machine Mixed integer

programming

 Radhakrishnan and

Ventura (2000)

Identical parallel machines Mathematical

programming

 13

 Feng and Lau (2005) Identical parallel machines Meta-heuristic

Sum of earliness

and tardiness

Heady and Zhu(1998) Identical parallel machines Heuristic

6. Others

Weighted number

of jobs that are

completed at theirs

due date

Hirashi et al. (2002) Identical parallel machines

Minimize the

maximum lateness

Kim et al. (2002) Identical parallel machines Restricted Tabu search

Minimize mean

completion time

Michael et al. (2001) Identical parallel machines Hybrid genetic

algorithm

Minimize total

setup time

Anglani et al. (2005) Identical parallel machines Fuzzy programming

2.2 Look-ahead method

 The purpose of the look-ahead method is to control system to “look-ahead” to what is

happening in the future of the schedule generation (Jang et al., 2001). The decision-making

base on this type of information allows the scheduler to make a decision indicating the

particular system. In this section the look-ahead method we list are mainly divide in to two

types. One type can select a part from those waiting for the machine service. Another type of

look-ahead looks ahead to the future states of a production shop and uses the information

obtained by looking a few steps ahead to see the current decision’s effects on the flow time or

other performance evaluation criteria of the parts due to arrive next.

Mao and Kincaid (1994) propose a one-step look-ahead method for machine scheduling

and combine this with ATCS and Simulated Annealing. This approach outperforms other

normal Simulated Annealing heuristics. In their look-ahead method, Mao and Kincaid (1994)

 14

assume the machine is idle at time t and at t the available queue is }4, containing jobs J4 to

J� ;	}8 is the look-ahead queue containing job (ÄÅÇ4). Job (ÄÅÇ4) is the job that will be available

soonest in the future. When there is more than one job due to arrive at , the job with the

shortest processing time will be placed in	}8. When the machine becomes idle,	}4 and	}8 are

checked to decide whether it is best to wait until the job in	}8 arrives, or to schedule the

shortest job in 	}4 . The scheduler always chooses the option that yields a shorter total

completion time based on the assumption that no more jobs will arrive expect the one already

in	}8.

Christos and Milton (1998) reduce interference for one operator of parallel machines. The

look-ahead method they propose is to avoid the simultaneous demands for the server. They

assume i machine with the completion time. When one machine finished current job, a selection

must be made for the next job to process from the jobs in the queue in front of each machine.

The job should be select such that simultaneous demands for the server with the next machine

j to finish processing (i = j) can be avoid. After a job is finished, Christos and Milton’s (1998)

algorithm first records the completion time on other machines, then selects a job with a

processing time satisfying o% + 'É ≥ o[W] + x[W] and o% + 'É + xÉ ≥ o[W + 1]. If there are

more than two jobs, select the one adhering to FIFO rules.

 Jang, Suh, Park, and Liu (2001) suggest a heuristic to minimize flow time and tardiness

on parallel machines. Each job has a different processing time on different machines, and there

is no local buffer. Once a job arrives, a machine is immediately assigned to it. In contrast with

other look-ahead heuristics, the look-ahead heuristic in question considers one part which has

 15

just arrived (part 1) and another part due to arrive next (part 2) with three machine j (A, B, C).

The potential job i (i = 1, 2) is selected from the machine’s perspective, according to the

machine’s preference for a particular job. The routing rule determines the machines on which

the parts will be processed next to reduce the average flow time or average tardiness of the

parts.

Chang, Chou, and Lee (2004) propose a one-step look-ahead heuristic in order to

minimize the total weighted tardiness with sequence-dependent setup and unequal ready times.

They designate a job for the machine using iteration, so that the partial schedule created

produces the smallest total weighted tardiness. Once all jobs are scheduled, reducing the total

weighted tardiness by using the pairwise exchange, Chang et al.’s (2004) heuristic proves to

be an efficient method for dealing with a small problem size. According to the look-ahead

method they propose, when a machine finishes one job, it is kept idle and waiting for the next

job released to arrive, even if there is a queue for the machine. On-hand work-in-process (WIP)

and a newly-arrived job will be put together and resequenced to decide which one gets top

priority (having the smallest total weighted tardiness) to be scheduled next.

For more complicated scheduling environments, such as flow shops and job shops, Smith

and Stecke (1996) investigate the influence of the look-ahead strategy on machine utilization

in a flexible flow shop. The proposed look-ahead strategy ensures that the machine with the

earliest upcoming availability time is used for the next operation. When a job is finished, the

machine is kept idle and waiting for the next job to arrive. The job in the queue and the next

 16

arriving job are compared, and the job with higher priority is scheduled next (the job with a

smaller input buffer).

Ginzburg and Gonik (1997) propose a heuristic that uses the look-ahead concept and

pairwise comparison to assign the next incoming job to an idle machine. Available jobs

compete with each other. The look-ahead is decided by analyzing the processing time; the

upcoming job’s finishing time is estimated, then the available job selected is compared with

the upcoming job, with the winner getting assigned to the idle machine.

Wang and Cheng (2015) study a double identical-parallel-machine scheduling problem in

which one machine is available to process jobs during a limited time interval, while the other

machine is always available over the scheduling horizon. Wang and Cheng (2015) develop a

heuristic to tackle the problem by incorporating the backward-adjusting and two-step look-

ahead strategies into existing heuristics for similar problems without the machine-availability

constraint. The two-step look-ahead strategies take into account two machines and two jobs.

The first step looks ahead to the pair of jobs available for processing on time, and the second

step considers the smallest job index among the job candidates in the first step.

Xi et al. (2015) propose a look-ahead heuristic to minimize the total weighted tardiness

on identical parallel machines. When a machine becomes idle, it selects a job from available

jobs and near-future jobs to process. Unlike other look-ahead heuristics, the proposed look-

ahead heuristic not only looks ahead (considering a limited number of future jobs) but also

looks backwards (therefore, the selected job has a chance to be scheduled before the last job

 17

on each machine). The proposed look-ahead heuristic compares favorably with available look-

ahead heuristics and non-look-ahead heuristics to minimize total weighted tardiness on the

identical parallel machines.

 18

CHAPTER 3 THE NEW FORMULA ATCSR_UP

3.1. Problem description

This paper considers the problem (p(|&%, "#%, áàT|∑n%o%). The problem is stated as

follows: jobs arrive at M unrelated machines at different times. Each job j has a ready time

(rr), a processing time for machine m (pr,â), a due date (dr), and a job weight (wr). Unrelated

parallel machines have different values for pr,â , or processing times, for the same job. For a

given job j the setup time (str) for each pair of jobs,i and j, is sequence dependent and

continuous, which means that the setup time cannot be initiated before the job is ready, con. In

general, str is not equal to srt . We also consider tâ (completion time of the last job on

machine m at the current time). This procedure takes into account both the machine time and

the current time t The objective is to minimize the total weighted tardiness of jobs, ∑ wrTrä
rã4 ,

where o% is the tardiness of job j, max	(0, Cr − dr), and Cr is the completion time of job j.

The problem assumes the following:

l The job attributes (, , , ,) are known in advance.

l The machines are unrelated, meaning that a given job has different processing times on

different machines.

l Each machine can process at most one job at a time

l Job pre-emption is not allowed.

l Production interruptions such as machine breakdown and order cancellation do not

happen.

 19

This section gives detailed information about the ATC-based dispatching rules. The new

formula and the new sequencing procedure for unrelated parallel machines will also be

introduced here.

3.2 New dispatching rule: ATCSR_UP

 Proposing a new ATC-based sequencing rule, this section starts by analyzing the WSPT

term, the slack term, and the ready-time term of existing ATC-based rules. Unlike Yue and

Jang (2013), we discuss unrelated parallel machines: A job has different processing times on

different machines. The basic format of the ATC-based index has four terms:

Index () = (WSPT term) *(Slack term) *(Setup term) *(Ready term) (3)

The index is use to calculate job index for all unscheduled job j and machine m. Relevant

literature mentions that the index of the ATC-based term should have at least two terms (Yue

& Jang, 2013). To select the next job for a machine, ATC-based rules compute the index value

for each unscheduled job and select the job with the biggest value to be processed.

 The formula we propose is

Iéèêëíìî(t, i, j) =

ïñ

óò,ñÇôòñÇâöõ	(úñùûü,†)
exp	(−

max[dj−pj−sij−max,rj,tm,	t.,0a

k1(p°m+s¢m.
)exp(−

sij
k2s¢
)exp(−

max(rj−tm,0.

k3p°m
 (4)

where are scaling parameters, job weight (wr), processing time (pr), setup time (str),

ready time (rr), machine time (tâ), due date (dr), current time (t), average processing time (p¢â),

 20

and average setup time (s̅â). Section 3.2.1 discusses the difference between the new

ATCSR_UP, ATCSR_Rm (Lin and Hsieh, 2013) and other ATC-based rules.

3.2.1 New terms of ATC-based rule

(i)The WPST term

 Yue and Jang (2013) point out that the denominator of the conventional WSPT term is ,

which represents the earliest possible completion time of job j from the current time. If the

setup time is sequence-dependent, and the job is available at time zero, its earliest job

completion time is pr + str. Yue and Jang (2013) propose ïñ

óñ,üÇôòñÇâöõ	(úñù£,†)
 as the WSPT

term.

 For the continuous sequence-dependent setup where a job has a future ready time,

different processing times on different machines, and sequence-dependent setup, the

denominator should be Z%,(+ "#% + max	(&% − '(, 0). In our formula ATCSR_UP, max	(&% −

'(, 0) is the potential machine idle time that influences the earliest completion time for the

potential jobs, and it is reasonable to treat these possible idle times as part of the processing

time. If &% − '(> 0 this means the job is a future ready job; otherwise it’s a current ready job.

Based on the respective analysis, we propose the following formula as the new WSPT term:

ïñ

óñ,üÇôòñÇâöõ	(úñ-ûü,†)
 (5)

(ii)The slack term

 21

 One of the important differences among ATC-based rules is the slack term. Slack time is

extra time – between the earliest possible start time of the job and the job’s due date – allocated

to processing a job.

The important part of the slack term is the time at which the respective job starts.

Therefore, we must calculate how long the slack time will be. The new form we propose to

decide the earliest start time for each job is:

max	(rr, tâ, t) (6)

Using equation (6), we propose a new exponent numerator for the slack term, by

comparing the ready time , machine time , and the current time t (minimum machine

available time).

Figure 1. Exponent for slack term.

The slack term exponent we propose is slightly different from the one proposed by Xi and

Jang (2012). We use not only current time t but also machine available time tâ to calculate

!"

#$ %" &"

'("
Slack

0
)"

Earliest possible
start time

!"

#$
&"

'("
Slack

0)"
Earliest possible
start time

(a) ()" < # < #$) (b) (#$ = # <)")

#

!(',(

!(

%(&"

',(
0

#$

Slack

Earliest possible
start time

(c)	(# <)" < #$)

)"

!"

%" &"

'("

0 #$

Slack

Earliest possible
start time

)"

(d)	(t < #$ <)")

!(',(

%"
!(',(

!"'("
%"

)(

)()(

)(

 22

the slack term . Figure 1(a) shows that when the job ready time (rr) is earlier than the machine

available time (tâ), the job can start whenever the machine is ready; therefore, the earliest

possible start time will be the machine time ('(). Figure 1(b) shows that the machine has

finished a job or has not yet started any jobs and is therefore currently idle. The potential start

time for the machine is whenever a future job arrives at the machine (rr). According to this

concept, the earliest start time is the job ready time (rr). Figure (c) and (d) we have the current

time smaller than both job ready time and machine available time. In this situation, the job will

be regard as a future job. However, we still have to consider wether job ready time is select as

the earliest start time or the machine available will be select as the earliest start time. For figure

(c) the job ready time is smaller than the machine available time, therefore, the job has to wait

for the machine to finish the assign job. in this sense the machine available time will be select

as the earliest start time. For figure (d) the machine available time is samller than the job ready

time. The machine is currently idle, therefore, the job ready time will be the earliest start time.

 After the start time is considered in equation (6), we calculate the completion time for the

job. Completion time () is the length between due date and the job’s start time, calculated by

subtracting from the due date ()the sum of the processing time (), the setup time () and

the start time (max	(&%, '(, ')). The propose denominator for the term is:

max,dr-pr-str-max,rr, tâ, 	t. , 0. (7)

 Equation (7) shows the completion time: due date () minus the sum of processing time

(), setup time () and the earliest start time (max	(rr, tâ, t)).

This new formula includes the sequence-dependent setup time in the formula of ATCSR, the

machine processing time for different jobs, and the times at which the machines become

Cj

 23

available to process the next potential job. The slack time measures the maximum amount of

time by which the start of a job may be postponed after the earliest possible start time,

max	(&%, '(, '), while still adhering to the deadline of its due date.

The new slack term we propose is:

exp	(-
âöõ,¶ñ-óñ,ü-ôòñ-âöõ,úñ,ûü,	û.,†.

{_(ó°üÇô¢ü)
) (8)

(iii) Exponent denominator of the slack term

 For the exponent denominator of the slack term, we take the denominator used by Yue

and Jang (2013), which is the combination of average processing time (Z̅() and average setup

time (s̅â). p¢â is the average processing time for each machine, calculated by taking the total

processing time on each machine and dividing it by the number of jobs on each machine.	s̅â

is the average setup time for each machine, calculated using the average setup time on each

machine divided by the number of jobs on each machine:

34(Z̅(+ "̅() (9)

where 34 is the scaling parameter for the slack term.

(iv) The ready term

 In the ready-term numerator, the existing ATC-based rule uses t to calculate the numerator

of the ready term. In ATCSR_UP, we use machine available time () to calculate the numerator.

Also in the numerator, we use average processing time (p¢â). p¢â is the average processing

time for each machine, calculated using the total processing time on each machine divided by

the number of jobs on each machine. We propose the following denominator for the exponent

tm

 24

ready term:

max	(rr − tâ, 0) (10)

Combining all the above terms, we propose the ATC-based rule formula ATCSR_UP

(continuous sequence-dependent setup), shown in equation (4) and equation (11) below:

IATCSRUP(t, i, j) =
wj

pi,j+sij+max	(rj-tm,0)
exp	(-

max[dj-pj-sij- max,rj,tm,	t.,0a

k1(p¢m+s̅m.
)ex p(-

sij

k2s̅
)ex p(-

ma x(rj-tm,0.

k3p¢m
(11)

3.2.2 Index formula comparison

For the formula we propose, we make comparisons with other papers that use an ATC-

based rule. Table 3 compares the ATC-based formulas.

25

Table 3. Comparison of terms ATC-based rule

Rule WSPT term Slack term Setup term Ready term Equation

I
"#$%&

(t, i, j)

Mason et al. (2002)

w
.

p
0,.

exp	(

−max	(d
.
− p

.
− t, 0)

k
:
p;

) exp	(

−s
0.

k
=
s̅

) (1)

I
"#$%&?@A

(t, i, j)

Pfund et al. (2008)

w
.

p
0,.

exp	(

−max	(d
.
− p

.
+max	(r

.
− t, 0),0)

k
:
p;

) exp	(

−s
0.

k
=
s̅

) (2)

I
#$%&D

(t, i, j)

Pfund et al. (2008)

w
.

p
0,.

exp	(

−max	(d
.
− p

.
+ max	(r

.
, t),0)

k
:
p;

) exp	(

−s
0.

k
=
s̅

) exp	(

−max	(r
.
− t, 0)

k
E
p;

)
(3)

I
#$%D%&

(t, i, j)

Yue and Jang (2011)

w
.

p
.
+ s

.
+max	(r

.
− t, 0)

exp	(

−max	(d
.
− p

.
− s

0.
+ max	(r

.
, t),0)

k
:
p;

) exp	(

−s
0.

k
=
s̅

) exp	(

−max	(r
.
− t, 0)

k
E
p;

)
(4)

I
#$%D&&

(t, i, j)

Yue and Jang (2011)

w
.

p
0,.
+ s

0.
+ max	(r

.
− F, 0)

exp	(

−max	(d
.
− p

.
− t, 0)

k
:
(p; + G̅)

) exp	(

−s
0.

k
=
s̅

) exp	(

−max	(r
.
− t, 0)

k
E
p;

)
(5)

I
#$%&D_DI(?,.,J)

Lin and Hsieh (2013)

w
.

p
?,.

exp	(

−max	(d
.
− p

.,?
− maxKr

.
, t
?
+ s

?,.,J
L , 0)

k
:
p;

) exp	(

−s
?J.

k
=
s̅

) exp	(

−max	(r
.
− t

?
− s

?J.
, 0)

k
E
p;

)
(6)

I
#$%D&_MN(?,0,.)

 Us

w
.

p
.,?
+ s

0.
+ max	(r

.
− t

?
, 0)

exp	(

−maxKd
.
− p

	.,?
− s

0.
− maxKr

.
, t
?
, tL , 0L

k
:
(p;

?
+ s̅

?
)

) exp	(

−s
0.

k
=
s̅

) exp	(

−max	(r
.
− t

?
, 0)

k
E
p;
O

)
(7)

25

 26

In the table, Equations (1) – (4) focus either on a single machine or on identical parallel

machines. Therefore, we focus our comparison on equation (5) (Yue & Jang, 2011) and (6)

(Lin & Hsieh, 2013).

(i) The WSPT term

 Starting with the WSPT term, we compare our own WSPT term with those of Xi and Jang

(2011) and Lin and Hsieh (2013). Unlike Lin and Hsieh (2013), who only use !",$ because

they have the searable setup case, however, we consider continuous sequence-dependent setup

time (%&"), machine ready time ('$), and processing time (!",$). For continuous sequence-

dependent setup, the setup time should be considered with the processing time, and the machine

time should also be calculated, because every machine has its own schedule time. Therefore,

we include the machine time in the processing time and setup time.

Instead of using current decision time t (Xi & Jang, 2011), we use machine time ('$) for

the WSPT term. The max	(r. − t1, 0) is the potential machine idle time that influences the

earliest completion time for the potential jobs, and it is reasonable to treat these possible idle

times as part of the processing time.

(ii) The Slack term

For the slack term, Lin and Hsieh (2013) use job processing time and earliest start time,

max4r., t1 + s1,.,78, to calculate
-1:;	(<=->=,?-1:;4@=,A?BC?,=,D8,E)

FG>H
. If the job ready time (r.) is

larger than machine available time + setup time (t1 + s1,.,7), the earliest start time for a job

will be the job ready time (r.), and if the machine available time + setup time (t1 + s1,.,7) is

larger than job ready time (r.) the machine available time + setup time (t1 + s1,.,7) will be

 27

select as the earliest start time. We consider the sum of processing time, setup time and earliest

start time max4r., t1, t8 to calculate
-1:;4<=->	=,?-CI=-1:;4@=,A?,A8,E8

FG(>H?BCJ?)
 . We use the current time, ,

the minimum machine available time. We compare the earliest start time of a job by using job

ready time, machine available time and current time. The consideration is show in section 3.2.1.

(iii) The Ready term

We lastly compare our own ready term with Lin and Hsieh’s (2013). We consider only

−max	(r. − t1, 0) other than −max	(r. − t1 − s17., 0). The setup time does not feature here,

because the setup time in ATCSR_UP is calculated as part of the machine time () already.

The machine time (), when no jobs have been assigned, the machine time () starts at time

0. However, when the machine has its first job assigned, the machine time () consists of job

, processing time (), setup time (), and max	(rK − t1, 0). Therefore, the setup time (sK.)

is already considered in the machine time ('$).

3.3 Job and machine selection procedure with look-ahead method

 Based on the above analysis, this section introduces the job- and machine-selection

procedure of ATCSR_UP to minimize the total weighted tardiness with sequence-dependent

setup, different processing time and future ready time. In this section, we discuss how a job

and a machine are selected based on the index. In the relevant literature, the look-ahead

heuristic we use in our procedure is referenced from the look-ahead heuristic proposed by Yue

and Jang (2013). In Yue and Jang (2013), the propose look-ahead heuristic not only looks ahead

(considers limited numbers of future jobs) but also looks back (schedules each selected job

t

tm

tm tm

tm

j pj,m sij

 28

before the last job is assigned to each machine). In contrast with Yue and Jang (2013), we look

ahead to the two jobs with the biggest job indexes and assign the jobs to the respective machines

with the smallest tardiness. For traditional ATC-based rule, it selects the job to assign to the

machine by choosing the largest job index. However, this procedure can be a look-ahead

method because we use the concept of the look-ahead method-look-ahead to the near future

states of the production shop and pick one more job to compare the tardiness.

Figure 2. Different index among different machines.

Figure 2 shows that each job has different index values for different machines. In a

previous paper by Yue and Jang (2013), the highest index is chosen and the job is scheduled

on a parallel machine. This procedure is quite straightforward for identical parallel machines

because they have the same processing speed: A higher index gets higher priority for the

process to be carried out on the machine. However, in this study, an identical parallel machine

has been replaced by an unrelated parallel machine, meaning that each job has its own

processing time on each machine. Hence, we consider the different processing times for

!"##

!"$$

 29

different machines in order to schedule the job in question.

The way we choose the job to be processed and the machine to be used involves

calculating all job indexes. For all jobs and all machines, we choose the two biggest indexes

and compare the tardiness (LMN{0, P" − Q"} and P"= !",$+ %&" + max	(S", '$)) when the

jobs are assigned to the machines; the job with a smallest tardiness value is then assigned to

the related machine. We assign all the job with this procedure.

However, there are two situations that needs to be consider. First, if the selected jobs have

the same tardiness, we calculate the machine time for the related two machines and assign the

job to the relate machine with the smallest machine time ('$). Second, if the two biggest job

indexes are the same job on different machine, we pick the largest job index and the second

large job on the other machine and compare the tardiness. The job with the smallest tardiness

will be assign to the relate machine.

We show an example of four jobs and two machines; in this example, the index values are

calculated based on the new formula, equation (11). Input data for machines and jobs are shown

in Tables 4-7.

Table 4. Job data for Machine 1 ('T = 0)

Machine 1

Job 1 2 3 4

Ready time 4 0 5 0

Processing time 3 19 3 19

Due date 10 5 13 12

Weight 4 2 8 3

Setup time 3 2 4 5

 30

Table 5. Job data for Machine 2 ('U = 0)

Machine 2

Job 1 2 3 4

Ready time 4 0 5 0

Processing time 1 2 1 4

Due date 10 5 13 12

Weight 4 2 8 3

Setup time 2 4 3 1

Iteration 1

Table 6. Job Index for Machine 1

Job 1 2 3 4

Index 0 0.000121203 0 7.22219E-09

Table 7. Job Index for Machine 2

Job 1 2 3 4

Index 0 3.75117E-08 0 0.004236

Each machine time starts at time t = 0. We calculate all the job indexes first shown in Tables 6

and 7. We choose Machine 1, Job 2 and Machine 2, Job 4 because they are the two biggest job

indexes among all job indexes. Now we calculate the tardiness max(). For Machine 1

Job 2 the tardiness is max (P"= !",$+ %&" + max	(S", '$) = 19+2+0-5,0) = 16 and the

tardiness for Machine 2 Job 4 is max (4+1+0-12,0) = 0. Machine 2, Job 4 has no tardiness so

we assign Job 4 to Machine 2. The machine time is now ('$ = processing time: 4+ setup

time:1+ready time: 0=5). We delete Job 4 from the table and consider the next job to be assign.

 31

The next job is considered in the same way, but there is a precondition in our procedure. We

compare the two largest job index and choose the machine to assign the job with a smaller

machine time () when the compared two jobs have the same tardiness.

Iteration 2

Table 8. Job Index for Machine 1 ('T = 0)

Job 1 2 3

Index 0 0.000121203 0

Table 9. Job Index for Machine 2 ('U = 5)

Job 1 2 3

Index 0.000176 3.75117E-08 1.912E-06

Now we compare the two biggest index, Machine 1 Job 2 and Machine 2 Job 1. Job 1 will be

assigned to Machine 2, because Job 1 max (5+1+2-10,0) = 0 has the smaller tardiness than Job

2 max (0,19+2+0) = 21. We update the machine time for Machine 2 ('U= Job 4 completion

time: 5+processing time: 1+setup time :2).

Iteration 3

After the jobs are assigned, we calculate the unscheduled jobs index (Job 2 and Job 3).

Table 10. Job Index for Machine 1 ('T = 0)

Job 2 3

Index 0.000121203 0

 32

Table 11. Job Index for Machine 2 ('U = 8)

Job 2 3

Index 3.75117E-08 7.71E-06

Now we compare the jobs index. Machine 1 Job 2 and Machine 2 Job 3 are the two biggest

job indexes. As we mentioned, we assign the job to the machine with the smallest tardiness,

therefore, Job 3 max (0,8+1+3-13) = 0 is assign to Machine 2 due to the smallest tardiness Job

2 max (0,19+2-5) = 16. Now we update the machine time for Machine 2 (Job 4 & Job 1

completion time: 8+processing time: 1+setup time: 3=12)

Table 12. Job Index for Machine 1 ('T = 0)

Job 2

Index 0.00012120

Table 13. Job Index for Machine 2 ('U = 12)

Job 2

Index 0.00064

Last, only Job 2 in unscheduled. We compare the indexes and found that on Machine 2

the index is larger than the job index on Machine 1 and the tardiness is also smaller on Machine

2 ('U:12+processing time: 2+setup time: 2-due date: 5 =9 < processing time: 19+setup time: 2-

due date: 5 = 16). Therefore, we assign Job 2 to Machine 2 and calculate the total weighted

tardiness.

The schedule we have now is Machine 1: no job, Machine 2: Job 4-Job 1- Job 3-Job 2. The

weighted tardiness for Machine 1 is 0 and Machine 2 is max (5-12,0) *3+max (8-10,0) *4+max

 33

(12-13,0) *8 + max (0,13) * 2 =26. Therefore, the total weighted tardiness for the whole

schedule is 26.

Section 4.3.1. gives our data test results.

3.4 Local Improvement Procedure: Pairwise adjacent job exchange

 In order to minimize total weighted tardiness, we apply a job-swap procedure for each

machine after the initial schedule is completed. In the job-swap method, we select the job

schedule that gives the smallest total weighted tardiness on each machine. For example, we

assigned Job 1 and Job 2 to Machine 1, so the initial schedule is Job1–Job2. However, if Job2–

Job1 gives a smaller total weighted tardiness, we swap the jobs.

 In the following procedure for the job-swap method, we show the procedure first and then

provide an example to demonstrate the procedure:

Step 1: Generate initial schedule on each machine by the use of new index formula and job

machine selection.

Step 2: List out the possible combinations of the jobs decided from the initial schedule of each

machine

Step 3: Calculate the tardiness for each combination schedule.

Step 4: Choose the schedule on each machine that has the smallest total weighted tardiness.

Check wether the select schedule can provide better TWT. Go to step 2 if the current schedule

can still provide another schedule, otherwise we go to step 5

Step 5: List the schedule on each machine after the job-swap method has been applied.

 An example comes after the following procedure.

 34

Example 7 job 3 machine

Here we have 7 jobs along with 3 machines to show an example. All machines start at

time t = 0. For the scale parameters for this problem we consider (VT= 0.2, VU= 0.1and VW=

0.001). The input data is from Table 14 to Table 22. Table 14 to 16 is the input data for each

machine (machine 1 to 3). Table 17 to 19 is the setup time for each job on each machine. Table

20 to 22 is the job index for three machines. In order to focus on Job swap method, we run the

ATCSR_UP without job swap first to get the initial schedule.

Table 14. Machine 1 Job input data

Job 1 2 3 4 5 6 7

Ready time 7 1 8 6 5 7 3

Processing time - 38 23 28 - 27 38

Due date 72 65 74 71 72 73 74

Job weight 1 4 4 3 2 3 1

Setup time - 8 14 27 - 15 36

Table 15. Machine 2 Job input data

Job 1 2 3 4 5 6 7

Ready time 7 1 8 6 5 7 3

Processing time 41 - 24 38 25 35 -

Due date 72 65 74 71 72 73 74

Job weight 1 4 4 3 2 3 1

Setup time 36 - 1 31 20 29 -

 35

Table 16. Machine 3 Job input data

Job 1 2 3 4 5 6 7

Ready time 7 1 8 6 5 7 3

Processing time 43 - - 46 30 - 41

Due date 72 65 74 71 72 73 74

Job weight 1 4 4 3 2 3 1

Setup time 7 - - 26 22 - 10

Table 17. Machine 1 setup time for each job

M1 Setup time 1 2 3 4 5 6 7

Initial - 8 14 27 - 15 36

1 - - - - - - -

2 - - 11 11 - 38 26

3 - 9 - 22 - 34 38

4 - 35 �� � - 4 20

5 - - - - - - -

6 - 40 29 18 - - 18

7 - 36 5 38 - 29 -

Table 18. Machine 2 setup time for each job

M2 Setup time 1 2 3 4 5 6 7

Initial 36 - 1 31 20 29 -

1 - - 39 27 5 21 -

2 � - - - - - -

3 27 - - 30 15 1 -

4 20 - �� � 25 3 -

5 34 - 20 17 - 14 -

6 22 - 3 12 34 - -

7 - - - - - - -

 36

Table 19. Machine 3 setup time for each job

M3 Setup time 1 2 3 4 5 6 7

Initial 7 - - 26 22 - 10

1 - - - 40 26 - 1

2 - - - - - - -

3 - - - - - - -

4 8 - � � 18 - 13

5 13 - - 27 - - 10

6 - - - - - - -

7 34 - - 11 32 - -

Table 20. Job index for Machine 1

Job 1 2 3 4 5 6 7

Index - 0.00029 1.22E-90 1.03E-64 - 1.05E-76 1.61E-24

Table 21. Job index for Machine 2

Job 1 2 3 4 5 6 7

Index 2.7E-09 - 0.0298 7.67E-08 8.62E-06 1.94E-07 -

Table 22. Job index for Machine 3

Job 1 2 3 4 5 6 7

Index 6.8E-37 - - 8.79E-31 6.9E-19 - 4.1E-05

This section is an example of how we apply the job swap method. We use the ATCSR_UP

without job swap method to get an initial schedule for the 3 machines 7 jobs problem. Machine

1: J2-J4, Machine 2: J3-J6-J5, Machine 3: J7-J1 is the initial schedule generate from

ATCSR_UP without job swap method.

Step 1. Receive an initial job on each machine

 37

 From ATCSR_UP without job swap method, we get the initial schedule for each machine:

Machine 1: J2-J4, Machine 2: J3-J6-J5, Machine 3: J7-J1 and the TWT for the initial schedule

is 197.

Step 2: List out the all the possible combinations of the jobs from the initial schedule for each

machine

Machine 1: J2-J4 and J4-J2

Machine 2: J3-J6-J5, J3-J5-J6, J6-J3-J5, J5-J6-J3

Machine3: J7-J1 and J1-J7

Step 3. Calculate the TWT for each job schedule.

Now we calculate the tardiness for each machine and swap the jobs.

Table 23. TWT for 3 machines

Machine 1 TWTUZ:48 TWTZU:260

Machine 2 TWTW[\:116 TWTW\[:159

 TWT[W\:186 TWT\[W:216

Machine 3 TWT̂ T:56 TWTT^:18

Step 4. Choose the schedule on each machine that has the smallest total weighted tardiness. If

the new schedule is better than the initial schedule, swap the jobs. Go to step 2 if the current

schedule can still provide another schedule, otherwise we go to step 5.

Machine 1: J2-J4: 48

Machine 2: J3-J6-J5: 116

 38

Machine 3: J1-J7: 18 (Job swap is applied here; the original schedule is J7-J1)

We found that the schedule on Machine 2 can still provide another schedule. Therefore, we go

to Step 2 again.

Step 2: List out the all the possible combination of the jobs decides from the initial schedule

for each machine

Machine 1: J2-J4 and J4-J2

Machine 2: J3-J6-J5, J6-J5-J3, J5-J3-J6

Machine3: J7-J1 and J1-J7

Step 3. Calculate the TWT for each job schedule.

Now we calculate the tardiness for each machine and swap the jobs.

Table 24. TWT for 3 machines

Machine 1 TWTUZ:48 TWTZU:260

Machine 2 TWTW[\:116 TWT[\W:474

 TWT\W[:181

Machine 3 TWT̂ T:56 TWTT^:18

Step 4. Choose the schedule on each machine that has the smallest total weighted tardiness. If

the new schedule is better than the initial schedule, swap the jobs. Go to step 2 if the current

schedule can still provide another schedule, otherwise we go to step 5.

Machine 1: J2-J4: 48

Machine 2: J3-J6-J5: 116

 39

Machine 3: J1-J7: 18 (Job swap is applied here; the original schedule is J7-J1)

Step 5. List the schedule on each machine after the job-swap method has been applied.

Machine 1: J2-J4

Machine 2: J3-J6-J5

Machine 3: J1-J7

The original TWT is 197, and after applying the job swap method the TWT become 182.

3.5 The new ATC-based rule procedure

 In this research, we focus on unrelated parallel machines. In contrast with Yue and Jang’s

(2013) study on identical parallel machines and uniform parallel machines, we cannot simply

choose a job with a larger index, because that might lead to all jobs being scheduled on the

same machine, due to the differences in processing times for individual jobs. We have to

consider the choice of machine and job: In the propose ATC-based rule, we calculate all the

jobs’ indexes first and then decide how to schedule the jobs on the machines.

For the propose rule, we calculate the job indexes and combine with a look-ahead method.

We solve the problem by calculating all the job indexes and picking the two largest indexes

among the different machines; we then compare the two jobs, pick the job with smallest

tardiness, and then schedule the job to the machine.

 Figure 3. shows the procedure according to the propose ATC-based rule works to

determine the schedule for jobs and machines.

 40

Figure 3. Flow chart for the ATCSR_UP

The steps for the proposed procedure for n jobs and m machines are:

Step 1: Calculate all the job indexes.

 41

Step2: Determine the first job, j, to assign. For this look-ahead to the two largest respective

indexes among all machines. If the two jobs are on the same machine, find the next

largest job index on a different machine.

Step 3: Compare the two jobs among the machines, and assign the job to the machine with the

smallest tardiness value. If tardiness is the same in both cases, randomly pick one of

them and assign, minus the job and machine number by 1. Update the machine time

max(r., t1) + p.,1 + s., setup time () and

Step 4: Calculate the unscheduled jobs’ indexes

Step 5: Select the two largest indexes among the unscheduled jobs.

Step 6: Schedule the job to the relate machine with the smallest tardiness. If tardiness is the

same in both cases, pick the job to the relate machine with a smaller completion time

and assign, minors the job and machine number by 1. Update machine time to

max(r., t1) + p.,1 + s..

Step 7: Repeat Step 4 to 6 until all the jobs are scheduled.

Step 8: After the initial schedule is finished, apply a job-swap method.

Step 9: List all possible combinations on each machine

Step 10: Calculate the TWT for each job schedule.

Step 11: Choose the schedule on each machine that has the smallest total weighted tardiness.

If the new schedule is better than the initial schedule, swap the jobs. Go to step 9 if the current

schedule can still provide other schedules, otherwise go to step 12.

Step 12: List the schedule on each machine after the job-swap method has been applied.

 42

CHAPTER 4. PERFORMANCE TEST

This chapter evaluates the performance of the new formula and procedure. In order to

compare our results with the most relevant paper, we compare our data test results with Lin

and Hsieh (2013) who focus on the ATC-based rule and unrelated parallel machines.

4.1 Comparison of test cases

 In this chapter, ATCSR_UP will be tested with the data used by Lin and Hsieh (2013) and

the results will be compared. The procedure is coded on a MacBook pro 2016, Intel Core i5,

memory 8 GB, Python. Testing problem instances were generated in the manner similar to Lin

and Hsieh (2013).

(1) Processing time (p.,1) were generated from uniform distribution [50, 150] randomly.

(2) The weighted w. were chosen from the uniform distribution [1, 10] randomly.

(3) Setup time were generated from uniform distribution [0, 2s̅], where the mean setup time

%̅ was calculated by using the value of setup severity factor. %̅ is calculate by setup

severity factor * average processing time.

(4) Due dates were generated from uniform distribution [(1 − R)dJ, dJ] with probability τ and

distribution [dJ, dJ + (C1:; − dJ)R] with the probability (1- τ). R is the due date range

factor. The makespan was estimated by C1:;= (βs̅ + pJ) where µ was the job machine

factor, which was given by µ = n/m (n is the number of jobs and m is the number of

machines), and β was the coefficient accounting for the increase in makespan due to

setup times, which was given by β	 = 	0.4 + 10/	µU 	− η/7 is the setup severity

factor). The mean due date was calculated using dJ = 	C1:;	(1 − 	τ).

 43

(5) Ready times r. were generated from uniform distribution [max(d.-r. × pJ.,0), d.] where

!̅. = 	pJ/m, j = 1…n

Table 25. Values of factors for experiment.

Factors Low level High level

Setup severity factor η 0.02 2.00

Due date tightness factor τ 0.30 0.90

Due date range factor R 0.25 1.00

Ready time factor r_τ 1.00 10.00

Table 25. shows the factors we use for all the test results. In the figure caption we will

show (LLLL) which represents the value factor levels we use (Low Low Low Low). Setup

severity factor η: low level, Due date tightness factor τ: low level, Due date range factor R:

low level, Ready time factor r_τ: low level and so on.

4.2 The selection of ATC scale parameters

 In this section, we try to find better combination of scale parameters for our ATC-based

rule. The k values are VT: [0.2,7.2], VU: [0.1,2.1], VT: [0.003,1.2]. According to Pfund et al.

(2008) the best scale parameters for their propose research, is when kT = 0.6, kU = 0.3, kW =

0.003 ; therefore, we compare the scale parameters with kT = 0.2, kU = 0.1, kW = 0.001 ,

	kT = 0.6, kU = 0.3, kW = 0.003 and kT = 7.2, kU = 2.1, kW = 1.2 . The reason we chose

kT = 0.2, kU = 0.1, kW = 0.001 is because these three parameters are the first three

parameters among the three k values and kT = 7.2, kU = 2.1, kW = 1.2 are the last three

among the parameters. We compare the three groups of parameters and try to find the best and

 44

worst combinations of the k values. We will compare the worst and the best combinations in

the next section. We name kT = 0.2, kU = 0.1, kW = 0.001 as group A, kT = 0.6, kU =

0.3, kW = 0.003 as group B, and kT = 7.2, kU = 2.1, kW = 1.2 as group C.

From Figure (a) to (p), the y-axis is the total weighted tardiness for the results and the x-

axis is the number of cases we test. The figure caption (LLLL) represents the value factors

(Low Low Low Low). For each combination we test 20 sets of data. The results are shown as

follow:

Figure 4. Comparison for group A vs. B vs. C

 45

Figure 5. Comparison for group A vs. B vs. C

(g) (LHHL) (h) (LHHH)

(i) (HLLL) (j) (HLLH)

(k) (HLHL) (l) (HLHH)

(m) (HHLL) (n) (HHLH)

 46

Figure 6. Comparison for group A vs. B vs. C

 From Figure (a) to (p) we compare the average TWT for the tested 16 value factor

combinations for the three groups. The y-axis is the total weighted tardiness value and the x-

axis is the number of sets. We test 20 cases for each value factor combination and found that

in the tested 320 cases kT = 0.2, kU = 0.1, kW = 0.001 outperform kT = 0.6, kU = 0.3, kW =

0.003 in 205 cases (64%) and outperform kT = 7.2, kU = 2.1, kW = 1.2 in 221 cases (70%).

From Figure (a) to (p), we found that as the value factors gets higher in level the total weighted

tardiness slightly increases and the curve becomes more sensitive. We look into the value

factors to see how the value factors effects the TWT. For the setup time [0,2%̅], it is calculated

by !̅$ ∗ x (average processing time * setup severity facto, therefore, as the factor level goes

higher the interval between [0,2%̅] becomes larger. Since the interval for setup time in low level

is 2% * average processing time and high level is 200% * processing time. This means that

there will be more selection for setup time ([0,2%̅]). When due date tightness factors are low in

level, the due date values become larger, consequently the slack time for each job becomes

longer because the machine will have more time to process the job. This comes with the result

(o) (HHHL) (p) (HHHH)

 47

that the TWT with value factors in lower level is smaller than the TWT with value factors in

high level. This cause the curve to become more sensitive.

 Table 26. shows the average TWT for the three groups with the 16 values factor

combination. In section 4.4 we will compare ATCSR_UP with ATCSR_Rm (best and worst k

values). From Table 26. we conclude that group A (kT = 0.2, kU = 0.1, kW = 0.001) has the

smallest average TWT and group C (kT = 7.2, kU = 2.1, kW = 1.2) has the largest average

TWT among the three-compared group. Therefore, in section 4.4 we will use group A (kT =

0.2, kU = 0.1, kW = 0.001) and group C (kT = 7.2, kU = 2.1, kW = 1.2) to compare with

ATCSR_Rm.

 48

Table 26.Average TWT of the three groups comparison

Group

Value Factors

A B C

Low low low low 9875.05 10007.4 10751.2

Low low low high 8758.25 9321.05 10180.8

Low low high low 14591.55 13658.25 15360.65

Low low high high 8543.85 8964.5 9671.05

Low high low low 12007 11264.6 12969.85

Low high low high 12504.95 12265.4 12754.25

Low high high low 12007 12728.25 12396.6

Low high high high 12504.95 13857.1 13617.1

High low low low 25335.7 25972.7 28127.8

High low low high 20538.55 21192.95 20899.05

High low high low 17898.55 19846.8 20051.2

High low high high 16682.75 19045.55 19486.3

High high low low 25522.05 26106.55 27961.1

High high low high 30414.4 33992.4 32079.55

High high high low 33384.3 33787.9 35314.45

High high high high 32392.9 33665 35039.15

Average TWT 18310.1125 19104.775 19791.25625

 49

Figure 7. Comparison among the A vs B vs C

In Figure 7, we divide group A by group B kT = 0.6, kU = 0.3, kW = 0.003 and C (kT =

7.2, kU = 2.1, kW = 1.2). In the figure, the y-axis represents the fraction between group A and

B and group A and C, and the x-axis is the 16 values factors of combination. Both results show

that group A is smaller than group B and C as the value is less than 1 in average. The worst

case happens when the scaling parameter is kT = 7.2, kU = 2.1, kW = 1.2. As the value factors

are low in levels the curves are more fluctuate and as the value factors gets higher in levels the

curve is more steady. Therefore, we can conclude that the value factors in higher level helps

the test results remain steady. Hence in our next test, we use the best case kT = 0.2, kU =

0.1, kW = 0.001 and worst case kT = 7.2, kU = 2.1, kW = 1.2 as our k values to compare the

test results with Lin and Hsieh (2013).

 50

4.3 Effect of pairwise exchange of jobs

 In this section, we compare our results with and without applying the job swap method.

In many research papers, researchers apply job swap method to get an improvement for

scheduling problems. In order to compare ATCSR_UP with ATCSR_Rm (Lin & Hsieh, 2013)

who also uses job swap method, we apply a comparison to show that the job swap method

improves ATCSR_UP.

In each combination value factors, we test 20 sets of data so 320 cases will be tested. From

Figure (a) to (p) the y-axis represents the TWT and the x-axis is the number sets of data we

tested. The results are shown as follows:

Figure 8. Tardiness comparison with vs without job swap

 51

Figure 9. Tardiness comparison with vs without job swap

 52

Figure 10. Tardiness comparison with vs without job swap

 Figure (a) to (p) shows the overall average TWT for the 16 value factor combinations. We

found out that the value factors effects the test results. The higher level the factors are the

bigger the TWT is. We are interested in how the factors influence our results and how job swap

method help to improve the TWT. In the test 320 cases (each value factor combinations test 20

sets of data) the TWT decreased about 24% in average. When the setup severity factor are in

 53

low level, the average setup time is short (2% of the processing time) the TWT after applying

the job swap method decrease about 20% in average and when setup severity factor are high in

level (200% of the processing time) the TWT after applying the job swap method decrease

about 27% in average. Under this condition, the higher the value factors get the job swap

method provides a better improvement.

Figure 11. Average TWT result between with and without Job Swap Method

Figure 11. generates from the average TWT and the 16 combinations of value factors and

shows the result of ATCSR_UP procedure with and without using the Job swap method. The

y-axis shows the average TWT value of the 20 cases we test and the x-axis is the 16

combinations of value factors. We can conclude from the Figure 11. that the average TWT after

applying the job swap method is better than the average TWT without applying. Furthermore,

as the value factors gets high in level, the job swap method slightly decreases the TWT more.

The job swap method decreases the TWT about 24%. We got this conclusion from dividing

 54

(with	job	swap	method	– 	without	job	swap	method) (without	job	swap	method)⁄ ∗

100% . This proves that the job swap method helps ATCSR_UP getting a better TWT.

Therefore, in the next section, we will compare the results between ATCSR_UP (with the Job

swap method) and ATCSR_Rm (Lin & Hsieh, 2013) after performing the job swap procedure.

4.4 Performance comparison with ATCSR_Rm

 Here we compare the results with 16 combinations of value factors on 20 groups with

scale parameters kT = 0.2, kU = 0.1, kW = 0.001 and kT = 7.2, kU = 2.1, kW = 1.2 with

Lin and Hsieh (2013).

 For the factors of the experiment we show in the figure caption (low low low low)

represents the value factors. In each combination, we test 20 groups of data. We first show the

comparsion using kT = 0.2, kU = 0.1, kW = 0.001 with ATCSR_RM (Lin & Hsieh, 2013).

ATCSR_RM vs. ATCSR_UP (Low Low Low Low)

Figure 12. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 1)

 From left to right is the number of the data tested. Among the 20 results, 75% of the jobs

yielded a better result and 25% a worse result than the ATCSR_Rm algorithm. The mean total

weighted tardiness for our algorithm is 1.322 times better for ATCSR_UP than for ATCSR_Rm

(ie. ATCSR_Rm / ATCSR_UP = 1.322).

0

5500

11000

16500

22000

Job
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 55

ATCSR_RM vs. ATCSR_UP (Low Low Low High)

Figure 13. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 10)

 Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.39 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.39).

ATCSR_RM vs. ATCSR_UP (Low Low High Low)

Figure 14. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 1)

Among the 20 results, 60% of the jobs yielded a better result and 40% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.168 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.168).

0

5000

10000

15000

20000

Job
Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

6500

13000

19500

26000

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 56

ATCSR_RM vs. ATCSR_UP (Low Low High High)

Figure 15. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 10)

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.043 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.043).

ATCSR_RM vs. ATCSR_UP (Low High High High)

Figure 16. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10)

Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.37 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.37).

0

4,000

8,000

12,000

16,000

Job

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

Low high high high

0

6500

13000

19500

26000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 57

ATCSR_RM vs. ATCSR_UP (Low High Low High)

Figure 17. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 10)

Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.585 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.585).

ATCSR_RM vs. ATCSR_UP (Low High High Low)

Figure 18. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 1)

Among the 20 results, 90% of the jobs yielded a better result and 10% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.36 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.36).

Low high low high

0

10000

20000

30000

40000

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

7500

15000

22500

30000

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 58

ATCSR_RM vs. ATCSR_UP (Low High Low Low)

Figure 19. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10)

Among the 20 results, 90% of the jobs yielded a better result and 10% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.71 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.71).

ATCSR_RM vs. ATCSR_UP (High Low Low Low)

Figure 20. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 1)

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.467 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.467).

0

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

15000

30000

45000

60000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 59

ATCSR_RM vs. ATCSR_UP (High Low Low High)

Figure 21. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 10)

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result

than the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.475

times better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.475).

ATCSR_RM vs. ATCSR_UP (High Low High Low)

Figure 22. Comparison on 20 instance and parameter (2, 0.3, 1 & 1)

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.41 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.41).

0

15000

30000

45000

60000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

12500

25000

37500

50000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 60

ATCSR_RM vs. ATCSR_UP (High Low High High)

Figure 23. Comparison on 20 instance and parameter (2, 0.3, 1 & 10)

Among the 20 results, 65% of the jobs yielded a better result and 35% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.32 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.32).

ATCSR_RM vs. ATCSR_UP (High High Low Low)

Figure 24. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 1)

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.19 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.19).

0

10000

20000

30000

40000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

12500

25000

37500

50000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 61

ATCSR_RM vs. ATCSR_UP (High High Low High)

Figure 25. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 10)

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.094 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.094).m

ATCSR_RM vs. ATCSR_UP (High High High Low)

Figure 26. Comparison on 20 instance and parameter (2, 0.9, 1 & 1)

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.02 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.02)

0

12500

25000

37500

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

15000

30000

45000

60000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 62

ATCSR_RM vs. ATCSR_UP (High High High High)

Figure 27. Comparison on 20 instance and parameter (2, 0.9, 1 & 10)

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.07 times

better for ATCSR_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCSR_UP = 1.07).

Now we show the comparison using kT = 7.2, kU = 2.1, kW = 1.2 with ATCSR_Rm

(Lin & Hsieh, 2013).

ATCSR_RM vs. ATCSR_UP (Low Low Low Low)

Figure 28. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 1)

 From left to right is the number of the data tested. Among the 20 results, 55% of the jobs

yielded a better result and 45% a worse result than the ATCSR_Rm algorithm. The mean total

weighted tardiness for our algorithm is 1.11 times better for ATCSR_UP than for ATCSR_Rm

(ie. ATCSR_Rm / ATCSR_UP = 1.11).

0

17500

35000

52500

70000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

5500

11000

16500

22000

Job
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 63

ATCSR_RM vs. ATCSR_UP (Low Low Low High)

Figure 29. Comparison on 20 instance and parameter (0.02, 0.3, 0.25 & 10)

 Among the 20 results, 60% of the jobs yielded a better result and 40% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.24 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.24)

ATCSR_RM vs. ATCSR_UP (Low Low High Low)

Figure 30. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 1)

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.16 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.16)

0

5000

10000

15000

20000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

6500

13000

19500

26000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 64

ATCSR_RM vs. ATCSR_UP (Low Low High High)

Figure 31. Comparison on 20 instance and parameter (0.02, 0.3, 1 & 10)

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.183 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.183)

ATCSR_RM vs. ATCSR_UP (Low High Low Low)

Figure 32. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 1)

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.73 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.73)

0

5000

10000

15000

20000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

10000

20000

30000

40000

Job

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 65

ATCSR_RM vs. ATCSR_UP (Low High Low High)

Figure 33. Comparison on 20 instance and parameter (0.02, 0.9, 0.25 & 10)

Among the 20 results, 75% of the jobs yielded a better result and 25% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.4 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.4)

ATCSR_RM vs. ATCSR_UP (Low High High Low)

Figure 34. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 1)

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.22 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.22)

0

10000

20000

30000

40000

Job

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

7500

15000

22500

30000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 66

ATCSR_RM vs. ATCSR_UP (Low High High High)

Figure 35. Comparison on 20 instance and parameter (0.02, 0.9, 1 & 10)

Among the 20 results, 65% of the jobs yielded a better result and 35% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.31 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.31).

ATCSR_RM vs. ATCSR_UP (High Low Low Low)

Figure 36. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 1)

Among the 20 results, 80% of the jobs yielded a better result and 20% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.37 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.37).

0

6500

13000

19500

26000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

15000

30000

45000

60000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 67

ATCSR_RM vs. ATCSR_UP (High Low Low High)

Figure 37. Comparison on 20 instance and parameter (2, 0.3, 0.25 & 10)

Among the 20 results, 70% of the jobs yielded a better result and 30% a worse result

than the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.46

times better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.46).

ATCSR_RM vs. ATCSR_UP (High Low High Low)

Figure 38. Comparison on 20 instance and parameter (2, 0.3, 1 & 1)

Among the 20 results, 60% of the jobs yielded a better result and 40% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.21 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.21).

0

15000

30000

45000

60000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

12500

25000

37500

50000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 68

ATCSR_RM vs. ATCSR_UP (High Low High High)

Figure 39. Comparison on 20 instance and parameter (2, 0.3, 1 & 10)

Among the 20 results, 50% of the jobs yielded a better result and 50% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.14 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.14).

ATCSR_RM vs. ATCSR_UP (High High Low Low)

Figure 40. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 1)

Among the 20 results, 65% of the jobs yielded a better result and 35% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.16 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.16).

0

10000

20000

30000

40000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

12500

25000

37500

50000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 69

ATCSR_RM vs. ATCSR_UP (High High Low High)

Figure 41. Comparison on 20 instance and parameter (2, 0.9, 0.25 & 10)

Among the 20 results, 50% of the jobs yielded a better result and 50% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.009 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.009).

ATCSR_RM vs. ATCSR_UP (High High High Low)

Figure 42. Comparison on 20 instance and parameter (2, 0.9, 1 & 1)

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.004 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.004).

0

15000

30000

45000

60000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

0

15000

30000

45000

60000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 70

ATCSR_RM vs. ATCSR_UP (High High High High)

Figure 43. Comparison on 20 instance and parameter (2, 0.9, 1 & 10)

Among the 20 results, 55% of the jobs yielded a better result and 45% a worse result than

the ATCSR_Rm algorithm. The mean total weighted tardiness for our algorithm is 1.03 times

better for ATCCS_UP than for ATCSR_Rm (ie. ATCSR_Rm / ATCCS_UP = 1.03).

From Figure 12. to 43. we test 320 cases for each scaling parameter VT = 0.2, VU =

0.1, VW = 0.001 and VT = 7.2, VU = 2.1, VW = 1.2. We are interested in how 16 combinations

of value factor effects the TWT. We found that as the value factors gets higher in level, the

TWT slightly gets higher (we conclude this in section 4.3). In the test of 320 cases, ATCSR_UP

outperform ATCSR_RM in 230 cases (71%) (with the scaling parameters of VT = 0.2, VU =

0.1, VW = 0.001) and outperforms ATCSR_RM in 183 cases (57%) (with the scaling

parameters of VT = 7.2, VU = 2.1, VW = 1.2). From Figure 12. to 43. we found that the two

procedure (ATCSR_Rm and ATCSR_UP) gives similar results as the value factors gets higher

in level. Therefore, we conclude that ATCSR_UP solves the problem better than ATCSR_Rm

in low value factor level but perform about the same at high value factor level. There is no

0

17500

35000

52500

70000

Job

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ATCSR RM ATCSR_UP

 71

discernible pattern of how ATCSR_UP outperforms ATCSR_RM but with the consideration of

the earliest start time max{ r. − t1, 0Ç in the WSPT term, machine time ('$) in the slack term

and ready term, the results are better than ATCSR_RM with considering these variables.

4.5 Performance evaluation by test condition

In Figure 44. We compare the average TWT between ATCSR_Rm and ATCSR_UP (with

VT = 0.2, VU = 0.1, VW = 0.001). The y-axis shows the average TWT value and the x-axis is

the number of sets we tested. We sum up the TWT from each value factor combinations for

ATCSR_Rm, and for ATCSR_UP (best results) and average them to get Figure 44. From Figure

44. We summaries all the cases and find that the ATCSR_UP rule we propose is better than

ATCSR_Rm done by Lin and Hsieh (2013). Average TWT decrease from 22367 to 18426 with

the use of ATCSR_UP rule. The two rules ATCSR_Rm and ATCSR_UP performs resemblance

when all value factors are in high level. However, as the factors are low in level, ATCSR_UP

performs better than ATCSR_Rm. From the first case (low low low low) to (high high high

high), ATCSR_UP is on average 1.21 times (71%) better than ATCSR_Rm. ATCSR_UP

decreases the TWT about 17% more than ATCSR_Rm.

Figure 45. shows that all 16 combinations of value factors ATCSR_UP performs better

than ATCSR_Rm done by Lin and Hsieh (2013). We use ATCSR_Rm divide by ATCSR_UP

to demonastrate Figure 45. Y-axis shows the value of ATCSR_Rm divide by ATCSR_UP and

x-axis is the 16 combinations of the value factors. The best result is achieved when the value

factor is (low high high low) with almost 1.7 times better than ATCSR_Rm, meaning when the

 72

due date tightness factor and the due date range factor are both high, ATCSR_UP performed a

better result compare to ATCSR_Rm than the other set ups. The worst result is achieved when

the value factors is (high high high high) with only 1.02 times better than ATCSR_Rm,

meaning when the value factors are all in high level the two ATC-based rule perform about the

same. We also found that once the setup severity factor in is high level, the fraction value

between ATCSR_Rm and ATCSR_UP slightly decreases. This brings out the conclusion that

ATCSR_UP solves the problem better when the value factors are low in level and performs

about the same with ATCSR_Rm when value factors are high in level.

In Figure 46. We compare the average TWT between ATCSR_Rm and ATCSR_UP (with

VT = 7.2, VU = 2.1, VW = 1.2). The y-axis shows the average TWT value and the x-axis is the

number of example we test. We sum up the TWT from each value factors for ATCSR_Rm and

ATCSR_UP (worst results) and average them to get Figure 46. From Figure 46. We summaries

all the cases and find that the ATCSR_UP rule we propose is better than ATCSR_Rm done by

Lin and Hsieh (2013). Average TWT decrease from 22367 to 19757 with the use of ATCSR_UP

rule. From the first case (low low low low) to (high high high high), ATCSR_UP is on average

1.13 times (57%) better than ATCSR_Rm. ATCSR_UP decreases the TWT about 11% more

than ATCSR_Rm.

Figure 47. shows that all 16 combinations of value factors ATCSR_UP perform better

than ATCSR_Rm done by Lin and Hsieh (2013). We use ATCSR_Rm divide by ATCSR_UP

to get the figure. Y-axis shows the value of ATCSR_Rm divide by ATCSR_UP and x-axis is

the 16 combination of the value factors. The best result is achieved when the value factor is

 73

(low high high low) with almost 1.4 times better than ATCSR_Rm, meaning when the due date

tightness factor and the due date range factor are both high, ATCSR_UP performed a better

compare result to ATCSR_Rm than the other set ups. The worst result is achieved when the

value factors is (high high high high) with only 1.01 times better than ATCSR_Rm, meaning

when the value factors are all in high level the two ATC-based rule perform about the same. In

this comparison, the two ATC-based rule performs about the same when setup severity factor

is in high level and either due date tightness or due date range factor are also in high level. We

also found that once the setup severity factor in is high level, the fraction between ATCSR_Rm

and ATCSR_UP slightly becomes smaller. Therefore, we conclude that the value factors

influence the relations between ATCSR_Rm and ATCSR_UP.

In Figure 48. we compare the average TWT between ATCSR_Rm and ATCSR_UP with

(VT = 0.2, VU = 0.1, VW = 0.001) and (VT = 7.2, VU = 2.1, VW = 1.2). We use the average

TWT of 16 value factor combinations for ATCSR_Rm, ATCSR_UP (best k value) and

ATCSR_UP (worst k value) to demonstrate Figure 48. The y-axis shows the average TWT

value and the x-axis is the factor values we test. We find out that with the use of both scaling

parameter (best and worst), ATCSR_UP outperforms ATCSR_Rm by 71% and 57%.

Furthermore, when we use the best k value to compare the average TWT, the curve tends to be

steadier than the worst k value. With the above revises, we conclude that ATCSR_UP is better

than ATCSR_Rm in minimizing the total weighted tardiness.

 74

Figure 44. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP

(VT = 0.2, VU = 0.1, VW = 0.001)

Figure 45. Overall comparison of 16 factor combination

 75

Figure 46. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP

(VT = 7.2, VU = 2.1, VW = 1.2)

Figure 47. Overall comparison of 16 factor combination

 76

Figure 48. Overall average TWT comparison between ATCSR_Rm and ATCSR_UP

 (VT = 0.2, VU = 0.1, VW = 0.001 and VT = 7.2, VU = 2.1, VW = 1.2)

 77

CHAPTER 5 CONCLUSION AND FUTURE RESEARCH

This research focuses on minimizing the total weighted tardiness on unrelated parallel

machines. For the unrelated parallel machine, we analyze ATC-based rules and propose a new

ATC-based rule, ATCSR_UP. The performance of the new rule is evaluated on unrelated

parallel machines. Experiments show that the new rule outperforms other ATC-based rules in

minimizing the total weighted tardiness in unrelated parallel machine scheduling.

We found out that with the use of both scaling parameter (best and worst), ATCSR_UP

outperforms ATCSR_Rm in 71% and 57% cases. Furthermore, ATCSR_UP (best k value)

decreases the TWT about 17% compare to ATCSR_Rm and ATCSR_UP (worst k value)

decreases the TWT about 11% compare to ATCSR_Rm. The results show that ATCSR_UP

performs better when the value factors are in low level, and performs similar with ATCSR_Rm

when value factors are in high level. With the decrease percentage, we can conclude that

ATCSR_UP perform better than ATCSR_Rm. With the consideration of the earliest start time

max{ r. − t1, 0Ç in the WSPT term, machine time ('$) in the slack term and ready term, the

results are better than ATCSR_RM with considering these variables. No other paper than Lin

and Hsieh (2013) focus on unrelated parallel machine with ATC-based rule. They consider

separable cases, however, even if they consider continuous setup cases, the result would have

been worst. Therefore, we can still conclude that ATCSR_UP outperforms ATCSR_Rm (Lin &

Hsieh, 2013)

 78

 The paper also uses the proposed look-ahead heuristic for the unrelated parallel machines

scheduling with sequence-dependent setup and future ready time. We compare the tardiness

among two jobs with the biggest index, then allocate the job to schedule on the machine. After

all the jobs were scheduled, the job switching heuristic will generate another schedule to find

a better schedule for the jobs and machine. The job swap method we apply for the ATCSR_UP

decrease TWT about 24% than without applying the job swap method, therefore, the job swap

method improves the ATCSR_UP to find a better schedule. For the actual use of this research,

since ATC-based rule works very well on tardiness objectives, the new rule should benefits the

real-world manufacturing, however, this should be tested with the real-world manufacturing

planning programs and datas.

 For the future research, study to find robust scaling parameters for ATCSR_UP procedure

is a good topic since in the research we only consider three groups of scaling parameters.

Besides of that, the proposed look-ahead heuristic may be modified and used in a more complex

production environment such as job shop scheduling. Lastly, consider the actual use of the

ATCSR_UP on manufacturing planning programs in the real-world manufacturing system can

further prove that ATCSR_UP can be use in the real-world situation.

 79

REFERENCES

Allahverdi, A. (2015, 4 4). Third Comprehensive Survey on Scheduling Problems with Setup

Times/Costs. European Journal of Operational Research, 246(2), 345-378.

Allahverdi, A., & Aydilek, H. (2015, 4). The two-stage assembly flowshop scheduling

problem to minimize total tardiness. Journal of Intelligent Manufacturing, 26, 225-237.

Allahverdi, A., Gupta, J., & Aldowaisan, T. (1999). A review of scheduling research

involving setup considerations. OMEGA, 27, 219-239.

Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. (2008, 6 16). A survey of scheduling

problems with setup times or costs. European Journal of Operational Research, 187(3),

985-1032.

Anghinolfi, D., & Paolucci, M. (2007). Parallel Machine Total Tardiness Scheduling with a

New Hybrid Metaheuristic Approach. Computers & Operations Research, 34(11),

3471–3490.

Anglani, A., Grieco, A., Guerriero, E., & Musmanno, R. (2005). Robust scheduling of

parallel machines with sequence-dependent set-up cost. European Journal of

Operational Research, 161, 704-720.

Arkin, M., & Roundy, R. (1991). Weighted-tardiness scheduling on parallel machines with

proportional weights. Operation Research, 39, 64.

Avdeenko, T., & Mesentsev, Y. . (2016). Efficient Approaches to Scheduling for Unrelated

Parallel Machines with Release Dates. IFAC-PapersOnLine, 49(12), 1743-1748.

Balakrishnan, N., Kanet, J., & Sridharan, S. (1999). Early/Tardy Scheduling with Sequence

Dependent Setups on Uniform Parallel Machines. Computers & Operations Research,

26(2), 127-141.

 80

Black, J., & Kohser, R. (2017). DeGarmo's materials and process in manufacturing (12 th

ed.): Wiley.

Chang, T., Chou, F., & Lee, C. (2004). A heuristic algorithm to minimize total weighted

tardiness on a single machine with release dates and sequence-dependent setup times.

Journal of the Chinese Institute of Industrial Engineers, 21, 289-300.

Chen, J. (2009). Scheduling on Unrelated Parallel Machines with Sequence- and Machine-

dependent Setup times and Due-date Constraints. International Journal of Advanced

Manufacturing Technology, 44 (11–12), 1204–1212.

Christoph, H., Lars, M., & Jens, Z. (2007). Planning and scheduling Heuristic for parallel

machines. Proceedings of the 2007 International Engineering Research Conference.

Nashivill, Tenn,, 1545-1550.

Christos, P., & Milton, L. (1998). Look Ahead Scheduling for Minimizing Machine

Interference. INT. J. PROD. RES,, 26(9), 1523-1533.

Chung, T., Xue, Z., Wu, T., & Shih, S. (2018, 7 19). Minimising total completion time on

single-machine scheduling with new integrated maintenance activities. International

Journal of Production Research.

Cochran, J., Horng, S., & Fowler, J. (2003). Minimize the total weighted completion time on

unrelated parallel machines. Computers and Operations Research, 30, 1087–1102.

Costa, A., Cappadonna, F., & Fichera, S. (2016, 1). Minimizing the total completion time on

a parallel machine system with tool changes. Computer and Industrial Engineering, 91,

290-301.

Diana, R., Souza, S., & Filho, M. (2018, 4). A Variable Neighborhood Descent as ILS local

search to the minimization of the total weighted tardiness on unrelated parallel

 81

machines and sequence dependent setup times. Electronic Notes in Discete

Mathematics, 66, 191-198.

Drieel, R., & Monch, L. (2009). Scheduling jobs on parallel machines with sequence

dependent setup times, precedence constraints, and ready times using variable

neighborhood search. IEEE, 273-278.

Du, J., & Leung, J. (1990). Minimizing total tardiness on one machine is NP-Hard.

Mathematics of Operations Research, 15, 483-494.

Ecom, D., Shin, H., Kwun, I., Shim, J., & Kim, S. . (2002). Scheduling jobs on parallel

machines with sequence-dependent family set-up times. The International Journal of

Advanced Manufacturing Technology, 19, 926-932.

Felipe, R. (2005). Look-ahead constructive heuristic for the unrelated parallel machine

problem with sequenced dependent setup time. IIE Annual Conference and Exposition

2005, 1-6.

Feng, G., & Lau, H. (2005, 7 18-21). Efficient algorithm for machine scheduling problems

with earliness and tardiness penalties. Proceedings of the 2nd multidisciplinary

international conference on scheduling: theory and application, 196-211.

Fowler, J., & Horng, S. . (2003). A hybridized genetic algorithm to solve parallel machine

scheduling problem with sequence dependent setup time. International journal of

industrial engineering: theory application and practice, 10, 232-243.

Framimam, J., & Paz, P. (2017, 12). The 2-stage assembly flowshop scheduling problem with

total completion time: Efficient constructive heuristic and metaheuristic. Computer &

Operation Research, 88, 237-246.

 82

Gharhgozli, A., Tavakkoli-Moghaddam, R., & Zaerpour, N. (2009). A Fuzzy-mixed-Integer

Goal Programming Model for a Parallel-machine Scheduling Problem with Sequence-

dependent Setup times and Release Dates. Robotics and Computer-Integrated

Manufacturing, 25, 853-859.

Ginzburg, D., & Gonik, A. . (1997). Using “Look Ahead” Techniques in Job-shop

Scheduling with Random Operations. International. J. Production Economics, 50, 13-

22.

Guinet, A. (1991). Textile production systems : a succession of non-identical parallel

processor shops. Journal of the Operation Research Society, 42, 655-671.

Heady, R., & Zhu, Z. (1998). Minimizing the sum of job earliness and tardiness in a multi-

machines system. Int J Prod Research, 1619-1632.

Hirashi, K., Levner, E., & Vlach, M. (2002). Scheduling of parallel identical machines to

maximize the weighted number of jobs of just-in time jobs. Computers and operation

research, 29, 841-848.

Holthaus, O., & Ziegler, H. (1997). Improving Job shop Performance by Coordinating

Dispatching Rule. INT. J. PPROD. RES, 35(2), 539-549.

Hsieh, J., Chang, P., & Hsu, L. (2003). Scheduling of Drilling Operations in Printed Circuit

Board Factory. Computers and Industrial Engineering, 44, 461-473.

Jang, J., Suh, J., Park, D., & Liu , R. (2001). A Look-Ahead Routing Procedure for Machine

Selection in a Highly Informative Manufacturing System. The International Journal of

Flexible Manufacturing system, 13, 287-308.

Jihene, K., Chirstophe, V., & Noureddine, Z. (2002). Heuristics for Scheduling Maintenance

and Production on a Single Machine. IEEE.

 83

Joo, C., & Kim, B. (2015,7). Hybrid genetic algorithms with dispatching rules for unrelated

parallel machine scheduling with setup time and production availability. Computer &

Industrial Engineering, 85, 102-109.

Kia, H., Ghodsypour, S. H., & Davoudpour, H. (2017,9). New scheduling rules for a dynamic

flexible flow line problem with sequence-dependent setup times. Journal of Industrial

Engineering International, 13, 297-306.

Kim, D., Kin, K., Jang, W., & Chen, F. (2002). Unrelated parallel machine scheduling with

setup times using simulated annealing. Journal of Robotics and Computer Integrated

Manufacturing, 18, 223-231.

Kim, D., Na, D., Chen, F., & Dong, G. (2002). Unrelated parallel machine scheduling with

setup time and a total weighted tardiness objective. Journal of Robostics and Computer

Integrated Manufacturing, 19, 173-181.

Kim, S., Choi, H., & Lee, D. (2007). Scheduling Algorithms for Parallel Machines with

Sequence-dependent Set-up and Distinct Ready times: Minimizing Total Tardiness.

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture, 221, 1087-1096.

Kim, S., Lee, Y., & Agnihotri, D. . (1995). A hybrid approach to sequencing jobs using

heuristic rules and neural network. Production Planning and Control, 6(5), 445-454.

Krajewski, L., King, B., Ritzman, L., & Wong, D. (1987). Kaban, MRP and shaping the

manufacturing environment. . Management Science, 33, 39-57.

Kurt, M., & Askin. (2001). Heuristic scheduling of parallel machines with sequence

dependent set-up times. International Journal of Production Research, 39, 3747-3769.

 84

Lee, C.-H. (2017, 9 13). A dispatching rule and a random iterated greedy metaheuristic for

identical parallel machine scheduling to minimize total tardiness. International Journal

of Production Research, 2292-2308.

Lee, Y., & Pinedo, M. (1997). Scheduling jobs on parallel machines with sequence-

dependent setup times. European Journal of Operational Research, 100, 464-474.

Lee, Y., Bhaskaran, K., & Pinedo, M. (1996). A heursitic to minimize the total weighted

tardiness with sequence-dependent setups. IIE Transactions, 46/47, 119-125.

Lee, Z., Lin, S., & Ying, K. (2010). Scheduling Jobs on Dynamic Parallel Machines with

Sequence-dependent Setup times. International Journal of Advanced Manufacturing

Technology, 47 (5–8), 773–781.

Liaw, C.-F., Lin, Y.-L., & Cheng, M. (2003). Scheduling unrelated parallel machine to

minimze total weighted tardiness. Computers and Operations Research, 30, 1777-

1789.

Lin, S., Lee, Z., Ying, K., & Lu, C. (2011). Minimization of Maximum Lateness on Parallel

Machines with Sequence-dependent Setup times and Job Release Dates. . Computers &

Operations Research, 38 (5), 809-815.

Lin, Y., & Hsieh, F. (2013, 10 18). Unrelated parallel machine scheduling with setup times

and ready times. International Journal of Production Research, 52, 1200-1214.

Logendran, R., McDonell, B., & Smucker, B. (2007). Scheduling unrelated parallel machines

with sequence-dependent setups. Computers & OPeration Research, 34, 3420-3438.

Lu, C., Lin., S., & Ying., K. (2011). Minimization of total tardiness on unrelated parallel

machines with sequence-and machine-dependent setup times under due date

constraints. . INt. J. Adv. Manuf. Technol, 53(4), 353-361.

 85

Luh, P., Hoitomt, D., Max, E., & Pattipati, K. (1990). Schedule generation and

reconfiguration for parallel machines. IEEE Transactions on Robotics and Automation,

6, 687-696.

Mao, W., & Kincaid, R. (1994). A Look-Ahead Heuristic for scheduling Jobs with Release

Date on a Single Machine. Computer Ops Res, 21(10), 1041-1050.

McNaughton., R. (1959). Scheduling with deadlines and loss functions. Manage. Sci, 6(3), 4-

12.

Nailwal, K., Gupta, D., & Sharma, S. (2015, 3 3). Fuzzy bi-criteria scheduling on parallel

machines involving weighted flow time and maximum tardiness. Cogent

Mathematics(2).

Panwalkar, S. S., Dudek, R. D., & Smith, M. L. (1973). Sequencing Research and the

Industrial Scheduling Problem. Symposium on the Theory of Scheduling and Its

Applications, 29-38.

Park, Y., Kim, & Lee, Y. (2000). Scheduling jobs on parallel machines applying neural

network and heuristic rules. Computer & Industrial Engineering, 38, 189-202.

Pfund, M., Folwer, J., Gadkari, A., & Chen, Y. (2008). Scheduling jobs on parallel machines

with setup times and ready time. Computers & Industrial Engineering, 54(4), 764-782.

Pinedo, M. (2016). Scheduling: Theory, Algorithms, and Systems: Springer.

Rachamadugu, R., & Morton, T. (1982). Myopic heuristics for the single machine weighted

tardiness problem. Working Paper, Carnegie Mellon University, Pittsburgh, PA 30, 82-

86.

 86

Radhakrishnan, V. (2000). Simulated annealing for parallel machine scheduling with

earliness-tardiness penalties and sequence-dependent set-up times. International

Journal of Production Research, 38, 2233-2252.

Raman N, R. R. (1989). Real time scheduling of an automated manufacturing center. Eur J

Oper Res, 40, 222-242.

Rasaratnam, L., Brent, M., & Byran, S. (2007). Scheduling unrelated parallel machines with

sequence-dependent setups. Computers & Operations Research, 34, 3420-3438.

Schutten, J., & Leussink, R. (1996). Parallel Machine Scheduling with Release Dates, Due

Dates and Family Setup times. International Journal of Production Economics, 46-47,

119-125.

Shahid-Zadeh, B., Tavakkoli-Moghaddam, R., Taheri-Moghadam, A., & Rastgar, I. (2017,

12). Solving a bi-objective unrelated parallel batch processing machines scheduling

problem: A comparison study. Computers and Operations Research, 88, 71-90.

Silva, C., & Magalhaes, J. (2006). Heuristic Lot Size Scheduling on Unrelated Parallel

Machines with Applications in the Textile Industry. Computers & Industrial

Engineering, 50, 76-89.

Slotnick, S. (2011). Order Acceptance and Scheduling: A Taxonomy and Review. European

Journal of Operational Research, 212, 1-11.

Smith, F., & Stecke, K. (1996). On the Robustness of using Balanced Part Mixed Ratios to

Determine Cyclic Part input Sequences into Flexible Flow Systems. INT. J. PROD,

34(10), 2925-2941.

 87

Tamimi, S., & Rajan, V. (1997). Reduction of total weighted tardiness on uniform machines

with sequence dependent setups. Industrial engineering research-conference

procedding, 181-185.

Tunali, S. (1997). A Simulation Study Evaluating the Performance of a Look-ahead FMS

Machine Scheduling Algorithm. Microcomputer Application, 16(3).

Vepsalainen, A., & Morton, T. (1987). Priority rules for job shops with weighted tardiness

costs. Management Science, 33, 1035-1047.

Wang, X., & Cheng, T. (2015, 12 6). A heuristic for scheduling jobs on two identical parallel

machines with a machine availability constraint. Int. J. Production Economics, 161, 74-

82.

Weng, M., Lu, J., & Ren, H. (2001). Unrelated parallel machine scheduling with setup

consideration and a totl weighted completion time objective. International Journal of

Production Economics, 70, 215-226.

Xi, Y., & Jang, J. (2011). Minimizing total weighted tardiness on a single machine with

sequence-dependent setup and future ready time. Int J Adv Manuf Technol.

Xi, Y., Jang, J., Friedman, D., & Hou, W. . (2015, 7). A tardiness-concerned constructive

method for the identical parallel machine scheduling. The International Journal of

Advanced Manufacturing Technology, 79, 851-862.

Xu, L., Wang, Q., & Huang, S. (2015). Dynamic order acceptance and scheduling problem

with sequence-dependent setup time. International Journal of Production Research,

53(19), 5797-5808.

 88

Yin, Y., Chen, Y., Qin, K., & Wang, D. (2018, 8 20). Two-agent scheduling on unrelated

parallel machines with total completion time and weighted number of tardy jobs

criteria. journal of scheduling, 1-19.

Ying, K., & Cheng, H. (2010). Dynamic Parallel Machine Scheduling with Sequence-

dependent Setup times Using an Iterated Greedy Heuristic. Expert Systems with

Applications, 37 (4), 2848–2852.

Yue, X., & Jang, J. (2013, 2 5). Minimizing total weighted tardiness on a single machine with

sequence-dependent setup and future ready time. The International Journal of

Advanced Manufacturing Technology, 281–294.

Zhang, R., & Chiong, R. (2016, 1 20). Solving the energy-efficient job shop scheduling

problem: a multi-objective genetic algorithm with enhanced local search for minimizing

the total weighted tardiness and total energy consumption. Journal of Cleaner

Production, 112, 3361-3375.

Zhang, Z., Zheng, L., & Weng, M. (2007). Dynamic Parallel Machine Scheduling with Mean

Weighted Tardiness Objective by Q-Learning. International Journal of Advanced

Manufacturing Technology, 34.

 89

APPENDICES: PROGRAM CODE FOR THE THESIS

The code was coded on MacBook pro, Intel Core i5, memory 8 GB, Python.

from tkinter import *

from tkinter import messagebox as tkMessageBox

from tkinter import filedialog as tkFiledialog

from tkinter.filedialog import askopenfilename

import copy

import csv

import math

import os

import fnmatch �

filenames = ""

text_k1 = ""

text_k2 = ""

text_k3 = ""

#define the swap method

def swap(a,b):

 temp=a

 a=b

 b=temp

 return a,b

#define the index calculation formula

def inintal_acc_index

(weight,ready,due_date,machine_time,process,setup,average_processing_time,average_setup_time,m1,k1,k2,k3

):

 index_value = ((weight/(max(ready-machine_time,0)+process+setup))

 *math.exp((-1*max((due_date-max(ready,machine_time)-process-

setup),0))/((k1)*(average_processing_time+average_setup_time)))

 math.exp(-1(m1/((k2)*average_setup_time)))

 math.exp((-1(max((ready-machine_time),0)))/((k3)*average_processing_time))

)

 return index_value

 90

#define the calculation for updating machine time

def update_machine_time (ready,machine_time,process,setup):

 update_machine_time_value =(max(ready-machine_time,0))+process+setup

 return update_machine_time_value

#define the use of k value for calculating the index formula

def search():

 root.text_k1 = entry_1.get() # �� #get k value from user input

 root.text_k2 = entry_2.get() # �� #get k value from user input

 root.text_k3 = entry_3.get() # �� #get k value from user input

 if root.text_k1=="" and root.text_k2=="" and root.text_k3=="":

 tkMessageBox.showinfo('Error','enter k value�')

 return

 root.filenames = askopenfilename(filetypes=[("CSV Files", ".csv")]) #

 print (root.filenames)

#define job input for the calculation

def acc_job():

 if root.text_k1 == "" and root.text_k2 == "" and root.text_k3 == "":

 tkMessageBox.showinfo('Error', 'enter k value�')

 return

 print("filenames")

 print(root.filenames)

 if not root.filenames:

 tkMessageBox.showinfo('Error','no file chosen�')

 return

 total_job = 0; #total job starts from 0

 total_machine = 0; #total machine starts from 0

 machine_read_cout = 1; #read total machine number

 machine_read_row_cout = 0;

 k1 = float(root.text_k1); #define k value

 k2 = float(root.text_k2); #define k value

 k3 = float(root.text_k3); #define k value

 ready_cout = 0; #ready time starts from 0

 process_cout = 0; #processing time starts from 0

 91

 due_date_cout = 0; #due date starts from 0

 weight_cout = 0; #weight starts from 0

 setup_cout = 0; #setup time starts from 0

 machine_time_cout = 0 #machine time starts from 0

 job_queue = 0; #job queue starts from 0

 cout = 0

 ##READ

FILE###

 with open(root.filenames, newline='') as csvfile: #open csv file

 rows = csv.reader(csvfile) #read data from file row

 for row in rows:

 if row[0] == 'total job': #read "total job" row to get total jobs

 total_job = row[1]

 print(total_job)

 if row[0] == 'total machine': #read "total machine" row to get total machine

 total_machine = row[1]

 print(total_machine)

 machine_job_step_array = [[[[] for x in range(int(total_job))] for y in range(int(total_job) + 1)] for z in

 range(int(total_machine))] #read input data and set up the total job for total machine

 ready_row = [[] for x in range(int(total_machine))] #read ready row for total machine

 process_row = [[] for x in range(int(total_machine))] #read process row for total machine

 due_date_row = [[] for x in range(int(total_machine))] #read due date row for total machine

 weight_row = [[] for x in range(int(total_machine))] #read weight row for total machine

 setup_row = [[] for x in range(int(total_machine))] #read setup row for total machine

 #inintal_setup_row= [[] for x in range(int(total_machine))]

 machine_time_row = [[0 for y in range(int(total_job))] for z in range(int(total_machine))]

 #inintal_machine_time_row = [[0 for y in range(int(total_job))] for z in range(int(total_machine))]

 average_processing_time = [0 for z in range(int(total_machine))] #define average processing time for

each machine

 average_setup_time = [0 for z in range(int(total_machine))] #define average processing time for

each machine

 with open(root.filenames, newline='') as csvfile: #open csv file to start calculate

 rows = csv.reader(csvfile) #get input data from csv file rows

 92

 for row in rows:

 print(row[0])

 if row[0] == 'ready':#read first ready row, for the next job ready time, use total job + 1, stop when no

job can be read in the csv file

 for num in range(1, int(total_job) + 1):

 ready_row[ready_cout].append(int(row[num]))

 ready_cout = ready_cout + 1

 job_queue = job_queue + 1

 if row[0] == 'process':#read first process row, for the next job process time, use total job + 1, stop

when no job can be read in the csv file

 for num in range(1, int(total_job) + 1):

 process_row[process_cout].append(int(row[num]))

 process_cout = process_cout + 1

 if row[0] == 'due date':#read first due date row, for the next job due date time, use total job + 1, stop

when no job can be read in the csv file

 for num in range(1, int(total_job) + 1):

 due_date_row[due_date_cout].append(int(row[num]))

 due_date_cout = due_date_cout + 1

 if row[0] == 'weight':#read first weight row, for the next job weight time, use total job + 1, stop when

no job can be read in the csv file

 for num in range(1, int(total_job) + 1):

 weight_row[weight_cout].append(int(row[num]))

 weight_cout = weight_cout + 1

 if row[0] == 'setup':#read setup ready row, for the next job setup time, use total job + 1, stop when

no job can be read in the csv file

 for num in range(1, int(total_job) + 1):

 setup_row[setup_cout].append(int(row[num]))

 setup_cout = setup_cout + 1

 if row[0] == 'machine time':#set a row to store machine time

 for num in range(1, int(total_job) + 1):

 machine_time_row[machine_time_cout].append(int(row[num]))

 machine_time_cout = machine_time_cout + 1

 if row[0] == 'm' + str(machine_read_cout) + ' setup time': #read the machine setup time from file

 # print(row)

 93

 for num in range(1, int(total_job) + 1):

 ttt = int(row[num])

 machine_job_step_array[machine_read_cout - 1][machine_read_row_cout][num - 1] = ttt

#check every job setup time is read

 machine_read_row_cout = machine_read_row_cout + 1

 if row[0] == '' and machine_read_row_cout >= 1 and machine_read_row_cout <= int(total_job):

#check every job setup time is read

 # print(row)

 for num in range(1, int(total_job) + 1):

 machine_job_step_array[machine_read_cout - 1][machine_read_row_cout][num - 1] =

int(row[num])

 machine_read_row_cout = machine_read_row_cout + 1

 if machine_read_row_cout > int(total_job):

 print('YES')

 machine_read_cout = machine_read_cout + 1

 machine_read_row_cout = 0

 ###READ

FILE##

 index_row = [[0 for x in range(int(total_job))] for y in range(int(total_machine))] #set up index row for total

jo and toatl machine

 completion_time = [[0 for y in range(int(total_job))] for z in range(int(total_machine))] #set up completion

time row for total jo and toatl machine

 tardiness = [[0 for y in range(int(total_job))] for z in range(int(total_machine))] #set up tardiness row for

total jo and toatl machine

 #tardiness_buffer = [[0 for y in range(int(total_job))] for z in range(int(total_machine))]

 job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in range(int(total_machine))]

#set up job schedule row for total jo and toatl machine

 machine_time_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))]

 t_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for tardiness row for each job

 m_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for machine time row for each job

 94

 r_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for ready time row for each job

 p_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for processing time row for each job

 s_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for setup time row for each job

 d_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for due date row for each job

 step_stage_machine_time = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define each machine step

 t_job_schedule_trans = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))]

 w_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for job weight row for each job

 final_job_schedule = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

range(int(total_machine))] #define row for final job row for each machine

 final_job_schedule_t_value = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

 range(int(total_machine))]

 final_job_schedule_weight_value = [[0 for x in range(int(int(total_job) / int(total_machine)))] for y in

 range(int(total_machine))]

 job_schedule_cout = [0 for y in range(int(total_machine))] #define job schedule row

 ready_job = [1 for y in range(int(total_job))] #define ready job schedule

 # machine_available = [[1 for y in range(int(total_machine))] for z in range(int(job_queue))]

 machine_available_cout = [int(total_machine)] #read total machine number

 compare1 = 0 #compare selected job

 compare2 = 0 #compare selected job

 big_value_temp = [0 for x in range(int(total_job) * int(total_machine))] #set up row for bigger value for

comparison

 big_value = [0 for x in range(2)]

 big_value_flag_row = [0 for x in range(2)]

 big_value_flag_colum = [0 for x in range(2)]

 machine_available_cout_using = int(total_machine)

 machine_available = [1 for y in range(int(total_machine))]

 print("ready_row")

 95

 print(ready_row)

 print("machine_job_step_array")

 for i in range(0, int(total_machine)):

 print(machine_job_step_array[i]) #print machine job schedule

 for i in range(0, int(total_machine)):

 for j in range(0, int(total_job)):

 average_processing_time[i] = average_processing_time[i] + process_row[i][j] #calculate average

processing time

 average_setup_time[i] = average_setup_time[i] + setup_row[i][j] #calculate average setup time

 if sum(average_processing_time)>0:

 average_processing_time[i] = average_processing_time[i] / int(total_job) #calculate average

processing time

 if sum(average_setup_time) > 0:

 average_setup_time[i] = average_setup_time[i] / int(total_job) #calculate average setup time

 print(" ")

 print("average_processing_time")

 print(average_processing_time)

 print("average_setup_time")

 print(average_setup_time)

 print("ready_row")

 print(ready_row)

 print("index_row ")

 print("job_schedule ")

 print(job_schedule)

 # for i in range(0, int(total_machine)-1):

 print("")

 print(index_row)

 run = 0

 inintal_setup_row = copy.deepcopy(setup_row) #initial setup row

 machine_job_step_array_flag = 0 #define machine job step array

 while run < int(total_job):

 print("##start")

 #print("machine_job_step_array_flag")

 #print(machine_job_step_array_flag)

 96

 run = run + 1

 #print("01 machine_available ")

 #print(machine_available)

 # while machine_available_cout_using >=0:

 ##index value

 for j in range(0, int(total_machine)): #calculate job index

 for k in range(0, int(total_job)):

 if ready_job[k] == 1:

 index_row[j][k] = inintal_acc_index(weight_row[j][k],

ready_row[j][k],due_date_row[j][k],machine_time_row[j][k], process_row[j][k], setup_row[j][k],

average_processing_time[j],

average_setup_time[j],machine_job_step_array[j][machine_job_step_array_flag+1][k], k1,

k2, k3) #calculate job index from job input

completion_time[j][k] = max(ready_row[j][k],ready_row[j][k]-machine_time_row[j][k])+process_row[j][k] +

setup_row[j][k] #define completion time

 tardiness[j][k] = due_date_row[j][k] - completion_time[j][k] - machine_time_row[j][k]

#define tardiness

 elif ready_job[k] == 0:

 index_row[j][k] = -2147483648 #set smallest index as -2147483648

 tardiness[j][k] = -2147483648 #set smallest tardiness as -2147483648

 #for i in range(0, int(total_machine)):

 #print(index_row[i])

 ##

######################################

 ## Find the two biggest ones from the index

##################################

 for j in range(0, int(total_machine)):

 for k in range(0, int(total_job)):

 if (machine_available[j] == 1):

 big_value_temp[(j * int(total_job)) + k] = index_row[j][k] #calculate index

 elif (machine_available[j] == 0):

 big_value_temp[(j * int(total_job)) + k] = -2147483648

 #print(" big_value_temp")

 97

 #print(big_value_temp)

 big_value[0] = max(big_value_temp)

 big_value_flag_row[0] = big_value_temp.index(max(big_value_temp)) #set row for first big value

big_1 = big_value_temp.index(max(big_value_temp))

big_value_temp[big_1] =-2147483648 #set big_value_temp[big_1] smallest at -2147483648

 big_value[1] = max(big_value_temp)

 big_value_flag_row[1] = big_value_temp.index(max(big_value_temp)) #set row for second big value

 big_2 = big_value_temp.index(max(big_value_temp))

 big_value_temp[big_2] = -2147483648 #set big_value_temp[big_1] smallest at -2147483648

 #print("big_value_flag")

 #(big_value_flag_row)

 #print(" ")

 ##Find the smallest

tardiness################################

 compare1 = tardiness[int(big_1 / int(total_job))][big_1 % int(total_job)] #define compare1, and

calculate the value

 compare2 = tardiness[int(big_2 / int(total_job))][big_2 % int(total_job)] #define compare1, and

calculate the value

 # print("machine_available ")

 print("compare Machine "+str(int(big_1 / int(total_job)))+" job "+ str(int(big_1 % int(total_job))+1)+"

tardiness") #print compare1 Machine job and tardiness

 print(compare1)

 print("compare Machine " + str(int(big_2 / int(total_job)))+" job "+str(int(big_2 % int(total_job))+1)+ "

tardiness") #print compare1 Machine job and tardiness

 print(compare2)

 if compare1 <= compare2: #compare1 and compare2

 print("Yes compare Machine " + str(int(big_2 / int(total_job))) + " job " + str(

 int(big_2 % int(total_job)) + 1) + " tardiness is big") #print yes compare Machine job tardiness is

big

 machine_job_step_array_flag = int(big_2 % int(total_job))

 machine_available[int(big_2 / int(total_job))] = 0 #define machine available row

 # print(job_schedule_cout[int(big_2/int(total_job))])

 job_schedule[int(big_2 / int(total_job))][job_schedule_cout[int(big_2 / int(total_job))]] = big_2 %

int(total_job) #define job schedule

 98

 ready_job[job_schedule[int(big_2 / int(total_job))][job_schedule_cout[int(big_2 / int(total_job))]]] =

0 #define ready job schedule

 step_stage_machine_time[int(big_2 / int(total_job))][job_schedule_cout[int(big_2 / int(total_job))]]

= \

 machine_time_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))]#define machine time

schedule

 job_schedule_cout[int(big_2 / int(total_job))] = job_schedule_cout[int(big_2 / int(total_job))] + 1

 ##update_machine_time_value##############

###################

 for k in range(0, int(total_job)):

 if ready_job[k] == 1:

 machine_time_row[int(big_2 / int(total_job))][k] = update_machine_time(

 ready_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))],

 machine_time_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))],

 process_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))],

 setup_row[int(big_2 / int(total_job))][int(big_2 % int(total_job))]) #update machine

time for big 2

 #machine_time_row[int(big_2 / int(total_job))][k] = update_machine_time(

 # ready_row[int(big_2 / int(total_job))][k],

 # machine_time_row[int(big_2 / int(total_job))][k],

 # process_row[int(big_2 / int(total_job))][k],

 # setup_row[int(big_2 / int(total_job))][k])

 #machine_time_row[int(big_2 / int(total_job))][big_2 % int(total_job)] = update_machine_time(

 # ready_row[int(big_2 / int(total_job))][big_2 % int(total_job)],

 # machine_time_row[int(big_2 / int(total_job))][big_2 % int(total_job)],

 # process_row[int(big_2 / int(total_job))][big_2 % int(total_job)],

 # setup_row[int(big_2 / int(total_job))][big_2 % int(total_job)])

 ##update_steup_time_value################

#################

 for j in range(0, int(total_machine)):

 for k in range(0, int(total_job)):

 if ready_job[k] == 1:

 99

 setup_row[i][k] = machine_job_step_array[int(big_2 / int(total_job))][(big_2 %

int(total_job)) + 1][k] #update_steup_time_value

 #setup_row[int(big_2 / int(total_job))] = machine_job_step_array[int(big_2 / int(total_job))][

 # (big_2 % int(total_job)) + 1]

 #for j in range(0, int(total_machine)):

 # for k in range(0, int(total_job)):

 # completion_time[j][k] = process_row[j][k] + setup_row[j][k]

 # tardiness[j][k] = due_date_row[j][k] - completion_time[j][k] - machine_time_row[j][k]

 elif compare1 > compare2: #compare1 and compare2

 print("Yes compare Machine " + str(int(big_1 / int(total_job))) + " job " + str(

 int(big_1 % int(total_job)) + 1) + " tardiness is big") #print yes compare Machine job tardiness

is big

 machine_available[int(big_1 / int(total_job))] = 0

 machine_job_step_array_flag = int(big_1 % int(total_job))

 print(big_1)

 print(job_schedule_cout[int(big_1 / int(total_job))])

 job_schedule[int(big_1 / int(total_job))][job_schedule_cout[int(big_1 / int(total_job))]] = big_1 %

int(total_job) #define job schedule

 ready_job[job_schedule[int(big_1 / int(total_job))][job_schedule_cout[int(big_1 / int(total_job))]]] =

0 #define ready job schedule

 step_stage_machine_time[int(big_1 / int(total_job))][job_schedule_cout[int(big_1 / int(total_job))]]

= machine_time_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))]#define machine time schedule

 job_schedule_cout[int(big_1 / int(total_job))] = job_schedule_cout[int(big_1 / int(total_job))] + 1

 ##update_machine_time_value##############

###################

 for k in range(0, int(total_job)): #update_machine_time_value

 if ready_job[k] == 1:

 machine_time_row[int(big_1 / int(total_job))][k] = update_machine_time(

 ready_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))],

 machine_time_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))],

 process_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))],

 setup_row[int(big_1 / int(total_job))][int(big_1 % int(total_job))]) #update machine

time for big 1

 100

 #machine_time_row[int(big_1 / int(total_job))][k] = update_machine_time(

 # ready_row[int(big_1 / int(total_job))][k],

 # machine_time_row[int(big_1 / int(total_job))][k],

 # process_row[int(big_1 / int(total_job))][k],

 # setup_row[int(big_1 / int(total_job))][k])

 #machine_time_row[int(big_1 / int(total_job))][big_1 % int(total_job)] = update_machine_time(

 # ready_row[int(big_1 / int(total_job))][big_1 % int(total_job)],

 # machine_time_row[int(big_1 / int(total_job))][big_1 % int(total_job)],

 # process_row[int(big_1 / int(total_job))][big_1 % int(total_job)],

 # setup_row[int(big_1 / int(total_job))][big_1 % int(total_job)])

 ##update_steup_time_value################

#################

 for j in range(0, int(total_machine)): #update_steup_time_value for big 1

 for k in range(0, int(total_job)):

 if ready_job[k] == 1:

 setup_row[i][k] = machine_job_step_array[int(big_1 / int(total_job))][(big_1 %

int(total_job)) + 1][k]

 #setup_row[int(big_1 / int(total_job))] = machine_job_step_array[int(big_1 / int(total_job))][

 # (big_1 % int(total_job)) + 1]

 #for j in range(0, int(total_machine)):

 # for k in range(0, int(total_job)):

 # completion_time[j][k] = process_row[j][k] + setup_row[j][k]

 # tardiness[j][k] = due_date_row[j][k]-completion_time[j][k]- machine_time_row[j][k]

 #print("new job"+str())

 #print(tardiness[j][k])

 print("02 machine_available ")

 print(machine_available)

 if (sum(machine_available) == 0):

 machine_available = [1 for y in range(int(total_machine))] #define total available machine

 print("step_stage_machine_time ")

 print(step_stage_machine_time)

 print("job_schedule ")

 print(job_schedule)

 print("ready_job ")

 print(ready_job)

 101

 print("machine_time_row ")

 print(machine_time_row)

 #print("inintal_machine_time_row ")

 #print(inintal_machine_time_row)

 print("##end")

 final_job_schedule = copy.deepcopy(job_schedule)

 t_job_schedule_copy= copy.deepcopy(t_job_schedule)

 # for i in range(0, int(total_machine)):

 # for j in range(0, int(total_job)):

 # machine_time_row[i][j] = update_machine_time(ready_row[i][j]

 # ,machine_time_row[i][j],process_row[i][j],setup_row[i][j])

 ##

 inintal_machine_time_row = copy.deepcopy(machine_time_row)

 for i in range(0, int(total_machine)):

 for j in range(0, int(total_job)):

 completion_time[i][j] = max(ready_row[i][j], ready_row[i][j] - machine_time_row[i][j]) +

process_row[i][j] + setup_row[i][j] #define completion time

 tardiness[i][j] = due_date_row[i][j] - completion_time[i][j] - machine_time_row[i][j] #define

tardiness

 for i in range(0, int(total_machine)):

 for j in range(0, int(int(total_job) / int(total_machine))):

 t_job_schedule[i][j] = tardiness[i][int(job_schedule[i][j]%int(total_job))] #define tardiness schedule

from job schedule and total job

 w_job_schedule[i][j] = weight_row[i][int(job_schedule[i][j]%int(total_job))] #define job weight

schedule from job schedule and total job

 m_job_schedule[i][j] = machine_time_row[i][int(job_schedule[i][j]%int(total_job))] #define

machine time schedule from job schedule and total job

 d_job_schedule[i][j] = due_date_row[i][int(job_schedule[i][j]%int(total_job))] #define due date

schedule from job schedule and total job

 p_job_schedule[i][j] = process_row[i][int(job_schedule[i][j]%int(total_job))] #define processing

time schedule from job schedule and total job

 r_job_schedule[i][j] = ready_row[i][int(job_schedule[i][j]%int(total_job))] #define ready time

schedule from job schedule and total job

 102

 s_job_schedule[i][j] = inintal_setup_row[i][int(job_schedule[i][j]%int(total_job))] #define setup time

schedule job schedule and total job

 print("inintal_setup_row ")

 print(inintal_setup_row)

 print("t_job_schedule ")

 print(t_job_schedule)

 print("m_job_schedule ")

 print(m_job_schedule)

 print("s_job_schedule")

 print(s_job_schedule)

 #apply tardiness buffer value for applying swap method

 for i in range(0, int(total_machine)):

 for j in range(0, int(int(total_job) / int(total_machine))):

 for k in range(j, int(int(total_job) / int(total_machine))):

 print("Machine "+ str(i)+" Check job " + str(j) + " and job " + str(k))

 buffer_value_completion = max(r_job_schedule[i][k]

 , r_job_schedule[i][k]

 - m_job_schedule[i][j]) \

 + p_job_schedule[i][k] \

 +s_job_schedule[i][k]

 tardiness_buffer = d_job_schedule[i][k] \

 - buffer_value_completion- m_job_schedule[i][j]

 print(str(tardiness_buffer) + " = " + str(d_job_schedule[i][k]) + " - max(" + str(

 r_job_schedule[i][k]) + " , " + str(r_job_schedule[i][k]) + " - " + str(

 m_job_schedule[i][j]) + ") + " + str(p_job_schedule[i][k]) + " + " + str(

 s_job_schedule[i][k]) + " + " + str(m_job_schedule[i][j]))

 #apply job swap method

 print(t_job_schedule[i][j])

 print(tardiness_buffer)

 if t_job_schedule[i][j]<tardiness_buffer: #assign a tardiness buffer and compare if tardiness

buffer bigger than tardiness schedule swap

 final_job_schedule[i][j],final_job_schedule[i][k]=swap(final_job_schedule[i][j],final_job_sc

hedule[i][k])

 103

 w_job_schedule[i][j],w_job_schedule[i][k]=swap(w_job_schedule[i][j],w_job_schedule[i][k]

)

 t_job_schedule[i][j]=tardiness_buffer

 print("Machine "+ str(i)+" Check job " + str(j) + " and job " + str(k) + " compare sucess")

 m_job_schedule[i][k] = m_job_schedule[i][j]#swap the two seleced job

 r_job_schedule[i][j], r_job_schedule[i][k] = swap(r_job_schedule[i][j],

 r_job_schedule[i][k])#swap ready time

 d_job_schedule[i][j], d_job_schedule[i][k] = swap(d_job_schedule[i][j],

 d_job_schedule[i][k])#swap due date

 #m_job_schedule[i][j], m_job_schedule[i][k] = swap(m_job_schedule[i][j],

 # m_job_schedule[i][k])

 p_job_schedule[i][j], p_job_schedule[i][k] = swap(p_job_schedule[i][j],

 p_job_schedule[i][k])#swap processing time

 #s_job_schedule[i][j]=s_job_schedule[i][k]

 s_job_schedule[i][j], s_job_schedule[i][k] = swap(s_job_schedule[i][j],

 s_job_schedule[i][k])#swap setup time

 for t in range(j+1 , int(int(total_job) / int(total_machine))):#update the machine time after job swap

 m_job_schedule[i][t] = update_machine_time(

 r_job_schedule[i][j],

 m_job_schedule[i][j],

 p_job_schedule[i][j],

 s_job_schedule[i][j])

 for t in range(j+1 , int(int(total_job) / int(total_machine))):

 s_job_schedule[i][t] = machine_job_step_array[i][1+(int(final_job_schedule[i][j] %

int(total_job)))][int(final_job_schedule[i][t] % int(total_job))]

 for t in range(j + 1, int(int(total_job) / int(total_machine))):

 buffer_value_completion = max(r_job_schedule[i][t]

 , r_job_schedule[i][t]

 - m_job_schedule[i][t]) \

 + p_job_schedule[i][t] \

 + s_job_schedule[i][t]

 tardiness_buffer = d_job_schedule[i][t] \

 - buffer_value_completion - m_job_schedule[i][t]

 t_job_schedule[i][t] = tardiness_buffer

 104

 ##update_machine_time_value###########

######################

 #else:

 # for t in range(j+1, int(int(total_job) / int(total_machine))):

 # #if not (k==t):

 # m_job_schedule[i][t] = update_machine_time(

 # r_job_schedule[i][j],

 # m_job_schedule[i][j],

 # p_job_schedule[i][j],

 # s_job_schedule[i][j])

 # for t in range(j+1 , int(int(total_job) / int(total_machine))):

 # s_job_schedule[i][t] = machine_job_step_array[i][1+(int(final_job_schedule[i][j] %

int(total_job)))][int(final_job_schedule[i][t] % int(total_job))]

 #for t in range(j + 1, int(int(total_job) / int(total_machine))):

 # s_job_schedule[i][t] = machine_job_step_array[i][int(job_schedule[i][j] %

int(total_job)) + 1][

 # int(job_schedule[i][t] % int(total_job))]

 ##update_steup_time_value#############

####################

 print("final_job_schedule")

 print(final_job_schedule)

 print("m_job_schedule")

 print(m_job_schedule)

 print("s_job_schedule")

 print(s_job_schedule)

 print("final_job_schedule")

 print(final_job_schedule)

 print("t_job_schedule")

 print(t_job_schedule)

 print("s_job_schedule")

 print(s_job_schedule)

 string_temp = ""

 string_temp_2 = ""

 105

 string_temp_3 = ""

 array_temp = [0 for y in range(int(int(total_job) / int(total_machine)))] #define available machine

 array_temp_2 = [0 for y in range(int(int(total_job) / int(total_machine)))] #define available machine

 array_temp_3 = [0 for y in range(int(total_machine))]

 array_temp_4 = [0 for y in range(int(int(total_job) / int(total_machine)))] #define available machine

 for i in range(0, int(total_machine)):

 print("Machine " + str(i + 1) + " Job schedule")

 for j in range(0, int(int(total_job) / int(total_machine))):

 string_temp = string_temp + str(final_job_schedule[i][j] + 1) + " " #define final job schedule

 string_temp_2 = string_temp_2 +str(t_job_schedule[i][j]) + " " #define tardiness job schedule

 string_temp_3 = string_temp_3 + str(w_job_schedule[i][j]) + " " #define job weight schedule

 print(string_temp)

 print(string_temp_2)

 print(string_temp_3)

 string_temp = ""

 string_temp_2 = " "

 string_temp_3 = " "

 cout_temp=0

 with open('output.csv', 'w', newline='') as csvfile:

 writer = csv.writer(csvfile)

 for i in range(0, int(total_machine)):

 string_temp="Machine " + str(i + 1) + " Job schedule"

 writer.writerows([[string_temp]])

 string_temp=""

 string_temp_2 = " "

 string_temp_3 = " "

 for j in range(0, int(int(total_job) / int(total_machine))):

 string_temp = string_temp + str(final_job_schedule[i][j] + 1) + " "

 string_temp_2 = string_temp_2 + str(t_job_schedule[i][j]) + " "

 string_temp_3 = string_temp_3 + str(w_job_schedule[i][j]) + " "

 array_temp [j] =final_job_schedule[i][j] + 1

 array_temp_2 [j] =t_job_schedule[i][j]

 array_temp_4[j] = w_job_schedule[i][j]

 if t_job_schedule[i][j]<0:

 cout_temp=cout_temp+((t_job_schedule[i][j])*(w_job_schedule[i][j]))

 106

 array_temp_3[i]=array_temp_3[i]+cout_temp

 cout_temp=0

 writer.writerows([array_temp])

 writer.writerows([array_temp_2])

 writer.writerows([array_temp_4])

 string_temp = "Machine " + str(i + 1)+" Total Weigth"

 writer.writerows([[string_temp]])

 writer.writerows([[array_temp_3[i]]])

 string_temp = "All Machine Total Weigth"

 writer.writerows([[string_temp]])

 writer.writerows([[sum(array_temp_3)]])

#set up the enter windows for k value

root = Tk()

root.title('Job scheduling Ver0.15')

#root.geometry('300x200+1000+200') 	��
���
�����������

root.geometry()

Label(root, text = 'k1�').grid()

entry_1 = Entry(root)

entry_1.grid(row=0, column =1)

Label(root, text = 'k2�').grid(row = 1, column = 0)

entry_2 = Entry(root)

entry_2.grid(row = 1, column = 1)

Label(root, text = 'k3�').grid(row = 2, column = 0)

entry_3 = Entry(root)

entry_3.grid(row = 2, column = 1)

button = Button(root, text = 'Choose CSV file', command=search)

button.grid(row = 0, column = 4)

button = Button(root, text = 'Start scheduling',command=acc_job)

button.grid(row = 1, column = 4)

#listbox = Listbox(root, width = 80)

#listbox.bind('<Double-Button-1>',click)

#listbox.grid(row = 3, column = 0, columnspan = 5)

 107

CURRICULUM VITAE �

Name: Li Tzu Yi

Education:

 B.A., Chung Yuan University, June 2015

 Major: Industril and System Engineering

 M.S., Chung Yuan University, June 2017

 Major: Industril and System Engineering

 M.S., University of Wisconcin-Milwuakee, December 2018

 Major: Industril Manufacturing Engineering

Dissertation Title: Heuristic Algorithm to Minimize Total Weighted Tardiness on the

Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time

Teaching & Research Experience:�

Teaching assistant, Chung Yuan University, Sep 2015-June 2017

	University of Wisconsin Milwaukee
	UWM Digital Commons
	December 2018

	Heuristic Algorithm to Minimize Total Weighted Tardiness on the Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time
	Tzu Yi Li
	Recommended Citation

	Microsoft Word - Heuristic Algorithm to Minimize Total Weighted Tardiness on the Unrelated Parallel Machine with Sequence Dependent Setup and Future Ready Time .docx

