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Abstract

In silico analysis of advanced processing methods for light-weight alloys
powders

by
Marjan Nezafati

The University of Wisconsin–Milwaukee, 2018
Under the Supervision of Doctor Benjamin Church

Light-weight Al and Mg-based metal-matrix nanocomposites (MMNCs) are lauded as one of the

most promising structural materials for vehicle, military, and construction applications. These

MMNCs are often synthesized using the powder metallurgy (PM) process under liquid nitrogen

cryogenic environments to control the grain sizes. It is believed that proper incorporation of the

nitrogen species into the bulk lattice during processing could strongly enhance the mechanical

properties of MMNCs by forming N-rich dispersoids. In this work, using the density-functional

theory (DFT), the adsorption, absorption and diffusion behavior of nitrogen molecule/atoms have

been studied and related to t Al and Mg MMNC PM processing. The study includes the impacts

of binding sites, alloying elements (Al, Zn, and Y in Mg and Mg, Mn and Fe for Al), and surface

crystallographic planes on the nitrogen molecule adsorption energies. The transition state (TS)

behaviors for the bond breaking and lattice diffusion of nitrogen were examined. The results show

that in presence of Mg (0001) or Al (111) surfaces, dissociation of N2 to N atoms requires 1/9 to

1/5 of the isolated state energy , respectively.

As a critical issue limiting the application of Mg-based MMNCs, the degradation (corrosion) of

Mg alloys in aqueous media was modeled in this work. It is known that both the internal crystal

structures and the impurity compositions/contents in the Mg alloys can affect the degradation

rates. Density-functional theory (DFT) computation was utilized to understand the surface

degradation behaviors with different crystallographic orientations and impurity elements from an

atomistic standpoint. The adsorption response of the Mg alloy surface to the water molecule and

the dissolution of surface atoms were studied to describe the degradation behavior of Mg and Mg
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alloys. The tendency for water molecule adsorption was quantified for Mg-based slab systems with

low-index surface planes and various alloying elements including Al, Zn, Ca, and Y. The trends for

surface degradation from these systems were examined using surface energy analysis and electrode

potential shift analysis. The results showed that adding Ca and/or Y increases the propensity to

attract a water molecule to the alloy surface. Also, it was generally found that the relative

electrode potential shift of Mg-Y alloys is positive while those of all other alloys are negative.

After having a comprehensive understanding about the atomistic behavior of metal powder in

contact with the cryomilling media, the consolidation process was analyzed, including the melting

and resolidification of powder through selective laser melting. At this stage of the work the

concerns were to achieve the maximum connectivity between the powder layers after

resolidification and to avoid extreme superheat. Since the efficiency of the MMNCs strongly relies

on homogeneous distribution of reinforcement particles the SLM process was optimized to avoid

any clustering of the reinforcement particles.

Focusing on consolidation of MMNCS, Al10SiMg/AlN with weight ratio of 99:1 was chosen.

AlSi10Mg with 10% Si and 0.5% Mg is one the most convenient compositions among the light

weight alloys for laser melting processes, due to its narrow solidification range, that provides

sufficient fluidity to produce sound products. Also, as the powder had been prepared via

cryomilling process, the presence of AlN particles was proven based on the DFT calculations and

experimental evidence described earlier. The laser power, scanning velocity and initial

temperature of the powder were selected as the most important factors affecting the melting and

solidification of the alloy powder. Finite volume analysis and experimental design were applied to

optimize the SLM processing condition. Finite volume method was used to estimate the melt pool

geometry, temperature profile of the part and velocity of solidification front. This information is

necessary to produce strong parts with homogeneous properties all over the specimen, minimize

energy consumption and avoid formation of defects in the sample. It was confirmed that even in

the most extreme conditions the maximum temperature during the process would not exceed

1710K, which is roughly 460K below the melting temperature of the AlN reinforcement particles.

The laser speed and power have significant effect on the melt pool geometry and maximum

temperature of melt pool while the effect of initial powder temperature was insignificant for both

of the response values. The AlN reinforcement particles are expected to have a homogeneous
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distribution since the velocity of the solidification front is higher than the critical calculated value

of 5900 µ m/s. Results also showed that the solidification front velocity depends on the laser

speed and the effects of laser power and initial temperature are insignificant.

This work provides a comprehensive multiscale computational model tracking the Al and Mg

based light-weight alloys from powder preparation stage to shaping the final product that

considers potential gaps with focus on solidification process. These findings are particularly

important to eliminate the extra processing steps to save time, energy and material maintaining

the high quality of the final product.
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Chapter 1

Scope and future plan

1.1 Motivation

Nanocrystalline alloys have always been the center of attention for their intensified mechanical

strength. In light weight alloys such as Al and Mg based alloys, the strength is combined with light

weight and enhances the energy consumption, specifically in aerospace and automobile industries.

Although high strength to weight ratio of Al and Mg alloys makes them great competent for the

traditional structural materials such as stainless steel and titanium alloys, there are some properties

that limit the application of these materials in some industries. For instance, the plasticity of Mg

metal with Hexagonal Closed Packed (HCP) structure is influenced by the small c/a ratio. The

ideal value for c/a ratio in closed pack structures is 1.632. Considering the lattice constants of Mg

crystal where a=0.3202nm and c=0.5199nm, the Mg unit cell is relatively compressed along the

c axis with the c/a ratio equal to 1.624. This compression in the lattice causes poor ductility in

the metal. Moreover, the tensile strength of pure Mg is insufficient for many applications, which

needs enhancement by applying reinforcement agents, varying the composition or modifying the

processing method. As a further matter in some applications that corrosive media or humidity are

involved Mg suffers from fast corrosion rate.

Although Al has reasonable strength for most of the applications, and only changing the com-

position and addition of alloying elements can enhance the mechanical properties of pure Al, Al

based nano composites provide comparable mechanical behavior to those of stainless steel, with

much lower processing temperatures and considerably lower density.
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In polycrystalline alloys, the strength depends directly to the motion of dislocations through

the material. Adding microstructural obstacles to the alloy, limits the movement of dislocations

and improves the strength of the alloy. Solid solution strengthening, precipitation hardening, and

grain refinement are some methods to tailor the mechanical properties of the alloy. To elevate the

mechanical strength of the alloy through the processing stage and with minimum cost it is essential

to choose the convenient strengthening mechanism through the appropriate processing method and

track all the interactions during each of the processing steps.

1.2 Research Problems and Suggested Plans

As it was discussed earlier, producing light weight alloys with desired properties has always been

an ultimate objective in transportation industry. While maintaining the safety and performance,

it is ideal to reduce the weight of vehicles, to minimize fuel consumption.

Considering the weight reduction without sacrifying the performance as the main target, we

first focused on the effect of composition and processing, considering cryomilling as the processing

method to reach the desired grain structure. Due to the cryogenic environment it also provides

some protection for the alloy powder against oxidation, this can be beneficial specifically for Mg

based powders. Also providing liquid nitrogen to the powder brings the idea of nitride formation

to the mind. If the nitrogen molecules find a chance to penetrate to the metal structure and form

some nitrogen-rich particles, depending on the distribution of these particles, there is a chance for

activating Orowan strengthening mechanism in the alloy. Although experimental efforts have been

made to detect the presence of nitrogen and nitrogen-rich particles in bulk alloy, it is really difficult

to explain the adsorption, absorption and diffusion mechanisms without having an atomistic model

of the system. To have a better understanding of the metal-nitrogen interactions, both on the

surface and inside the bulk, we have provided some atomistic models, simulating the behavior

of Al and Mg based powders in contact with liquid nitrogen in this work. Surface interactions

including adsorption and absorption were carefully analyzed. The energy barriers for surface and

bulk diffusion were compared at different circumstances, including composition and crystallographic

orientation of the surface in contact with the cryogenic atmosphere.

Another critical challenge when dealing with Mg-based alloys, is the reactivity of Mg and
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high tendency for corrosion in aqueous or even humid atmospheres. It is known that both the

internal crystal structures and the impurity compositions/contents in the Mg alloys can affect the

degradation rates. In spite of experiments that have attempted to test the corrosion behavior of

Mg alloys, a comprehensive atomistic model that simulates the behavior of Mg alloys in corrosive

media has always been missing. Such model not only has a closer look at the process, but also

reduces the financial cost and environmental pollution.

After having an understanding about the atomistic behavior of metal powder in contact with

the processing media, we attempted to analyze the consolidation process, including the melting

and resolidification of powder through selective laser melting as well. At this stage of the work

our concerns were the connectivity of the powder layers after resolidification, and to avoid extrem

superheat that casues melting or decomposition of the reinforcement particles along with prohibiting

particle pushing by the solidification front and agglomeration of the reinforcement agents to ensure

that the distribution of the particles is homogeneous in the system.

Al10SiMg/AlN composite with a weight ratio of 99:1 was studied as the most convenient com-

position among the light weight alloys. AlSi10Mg is a close to eutectic composition and due to its

narrow solidification range provides sensible fluidity to produce sound products. Considering the

laser power and scanning velocity and initial temperature as the parameters influencing the melting

and solidification of the alloy powder. In this work we applied finite volume method (FVM) to

choose the appropriate processing condition. FVM was used to predict the melt pool geometry,

thermal gradient and solidification front velocity in producing parts through SLM process. This in-

formation is necessary to produce strong parts with homogeneous properties all over the specimen,

minimize the energy consumption and avoid defects formation in the sample.

1.3 Scope of this Work

In chapter 2 we discussed some introduction on possible processing techniques and literature review

related to the research background. This chapter covers 1) nano powder processing methods 2)mi-

crostructure of nanocrystalline alloys 3)mechanical properties of nanocrystalline alloys 4)corrosion

behavior of Mg alloys.

Chapter 3 covers a brief introduction on DFT theory and the computational methods used in
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this study. In this chapter we explain some essential terminology required for this work and discuss

the detailed computational parameters used in our calculations.

Considering the corrent state of knowledge and the shortcomings in the existing research steams,

chapter 4 has been organized in aim of presenting the atomistic modeling and specifically ab initio

calculations, focuses on the interaction of the metal powder with the processing environment. Pos-

sibility of nitride formation has been studied in this chapter and as a limiting factor for application

of Mg alloys their corrosion resistance in aqueous media has been analyzed. This chapter also

analyzes the selective laser melting of AlSi10Mg/AlN composite and targets optimizing the process

to obtain the final product with improved properties and free of defects.

In chapter 5 we summerized all the results from chapter 4.
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Chapter 2

Introduction

Nanocrystalline metals that have grain sizes less than 100nm demonstrate a considerably higher

strength compared to those of coarse-grained structures with similar compositions or even alloyed

ones [15]. These structural nanomaterials, specially with light metal bases, such as aluminum

(Al) and magnesium (Mg) are finding applications in bulk materials, films and composites. In the

past few years Al and Mg based nano alloys have found their path to a wide range of structural

applications. The progress of nanomaterials field relies on developing new synthesis methods and

processing techniques, as well as, fundamental understanding of the powder behavior in contact with

processing atmosphere and consolidation product properties. To enhance the mechanical behavior

of the final product, it is crucial to keep track of all the interactions between the powder and envi-

ronment from the early stages of powder preparation to sintering and consolidation. Considering

the importance of these interactions, this work has been organized in following sections:

• Motivations, objective and current status of this work (Chapter 1).

• A brief introduction and literature review on: Al and Mg based nanoalloys and metal matrix

nanocomposites, nanopowders processing methods, the consequential microstructures and

mechanical behaviors (Chapter 2).

• Research methods, consisting of computational modeling details and a brief explanation on

terminology used in this work (Chapter 3).

• Results on powder-environment interaction, reinforcement particle formation and selective
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laser melting (Chapter 4).

• Summary and conclusions (Chapters 5)

2.1 Processing: powder metallurgy (PM) technique for the syn-

thesis of nanocrystalline alloys

Powder metallurgy (PM) as a common synthesizing method for near net component can compete

with the traditional casting and forming methods. PM which covers a wide range of processing

methods consists of three principal steps including powder preparation, compression and sintering.

The structure and the particle size in the final product can be influenced by each of these steps but

is mostly controlled during powder preparation and sintering processes.

2.1.1 Synthesis

There are two main approaches for synthesizing the nanocrystalline materials, bottom-up and top-

down methods. The bottom-up methods include methods that arrange the nanostructure atom

by atom and layer by layer. On the contrary side top-down methods start with the bulk material

and break down the microstructure into a nanosized structure. Some of the common synthesizing

methods for preparing nano powder for powder metallurgy process include [16]

• gas condensation

• vacuum deposition and vaporization

• chemical vapor deposition (CVD) and chemical vapor condensation (CVC)

• mechanical attrition

– attrition ball mill

– planetary ball mill

– vibrating ball mill

– low energy tumbling mill

– high energy tumbling mill
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• chemical precipitation

• sol-gel techniques

– hydrolysis

– condensation

– growth of particles

– agglomeration of particles

• electrodeposition

Each of these methods provide advantages and disadvantages for nano size particle preparation.

For instance, the gas condensation method suffers from extreme slow rate, a source-precursor

incompatibility, temperature ranges and dissimilar evaporation rates in an alloy. The vacuum

deposition processes have the advantage of high deposition rates and low cost but deposition of a

large number of compounds is difficult. Mechanical attrition produces the nanostructures not by

cluster assembly (as most of the mentioned methods do) but by the structural decomposition of

coarser grained structure due to plastic deformation. Some of the most common methods will be

discussed in this section.

Inert gas condensation

Condensation of the evaporated metal in an inert gas atmosphere was a method developed by

Gleiter [17]. The process takes place inside a evacuated chamber to a very high vacuum of about

10−7 Torr and then backfilled with a low pressure inert gas such as helium. In this process the

metal vapor collides with the inert gas atoms inside the chamber and condense to small sized

particles as a result of losing their kinetic energy. There are wide range of methods to prepare

the metal powder including resistive heating, radio-frequency, sputtering, electron beam heating

and laser/plasma heating). The collector device stores the condensed fine powders transferred to

it through liquid-nitrogen filled collection device. The powder is scraped off into the compaction

device which compacts the powders in two steps (1) low pressure compacted pellet and (2) high

pressure vacuum compaction and under ultrahigh vacuum conditions to avoid chemical reactions
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on the powder surface and minimize the amount of the trapped gas in the powder. In spite of

equiaxed powder shape and the narrow range of size distribution this method has some drawbacks

including possibility of imperfect bonding between particles and also contamination of powders and

porosity due to insufficient consolidation [18, 19].

Figure 2.1: Schematic of inert gas condensation method

Nanocrystalline powders by chemical reactions

Taking advantage of chemical reactions for synthesizing nanopowders provides a homogeneous

chemical composition for the produced powder resulting in some improved mechanical properties

for the final product. This method can be scaled up for bulk production of nanoparticle sized

metals, oxides, intermetallics, semiconductors and glasses [18, 20]. As an example, nanocrystals of

Mo can be produced from reduction of MoCl3 using toluene as an organic solution and NaBEt3H

as reducing agent at room temperature.

MoCl3 + 3NaBEt3H −→Mo+ 3NaCl + 3BEt3 + (3/2)H2 (2.1)
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aluminum nanoparticles can be also produced by the similar method, that decomposesMe2EtNAlH3

where Me stands for methyl or CH3, the decomposition process takes place in toluene heated to

110◦C for 2 hours. The challenges associated with the chemical fabrication of nanostructures

include contamination and severe agglomeration in the chemical baths which causes trouble in

consolidating the nanoparticles in fully dense components. Two common methods of chemical syn-

thesis of nanopowders are (1) sol-gel and (2) microemulsion. Both of these methods are colloidal

methods which are well stablished wet chemistry precipitation with solution of different ions under

controlled temperature and pressure to form insoluble precipitates.

Sol-gel technique consists of two main parts, the sol is the colloidal solution made of solid

particles which are few hundreds in diameter and suspended in a liquid phase. The gel is a solid

macromolecule immersed in a solvent. The basic steps of the sol-gel method are shown in Figure

2.2. These two steps are also referred to as hydrolysis and condensation of alkoxide-based precursors

like tetraethyl orthosilicate (Si(OEt)4) as well.

Figure 2.2: Schematic sequences of the Sol-gel process

The sol-gel process in general includes the formation of stable solutions of the alkoxide or sol-
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vated metal precursor (the sol), gelation due to formation of oxide- or alcohol- bridged network

(the gel) (at this step viscosity increases considerably), aging of the gel which consists of polycon-

densation reactions resulting in a solid mass, drying of the gel by removing water or any other

volatile liquid from the gel network, dehydration or removing of the surface- bond M-OH groups to

avoid rehydration and densification and decomposition of the gel at high temperature (more than

800◦C).

An example of the hydrolysis and condensation of metal alkoxides M(OR)z can be described

as:

MOR+H2O −→MOH +ROH(hydrolysis) (2.2)

MOH +ROM −→M −O −M +ROH(condensation) (2.3)

In microemulsion method [21, 22] uses isotropic, macroscopically homogeneous, and thermody-

namically stable solutions of a polar phase (usually water), a nonpolar phase (usually oil) and a

surfactant (molecules to form an interfacial film separating the polar and the non-polar phases)

to synthesis nanoparticles. The interfacial layer produced due to the interaction of these three

phases can take the form of different microstructures from droplets of oil dispersed in a contin-

uous water phase known as O/W-microemulsion to water droplets dispersed in a continuous oil

phase known as W/O-microemulsion. The intermediate state is a bi-continuous sponge phase. The

proportion of various components and the hydrophilic-lipophilic balance of the surfactant present

in the microemulsion the microdroplet shape switches from oil-swollen micelles dispersed in water

as oil-in-water (O/W) microemulsion or water swollen micelle dispersed in oil as for water-in-oil

(W/O) microemulsion, also known as reverse microemulsion. Either of these nanodroplets can

function as nanoreactors for the chemical reactions to produce nanoparticles.

Mechanical attrition methods

Ball milling of powders or mechanical attrition usually is applied in two main categories of nanopow-

der processing. (1) the milling of elemental or compound powders known as mechanical milling

with the purpose of producing finer powder size or even nanostructured materials. Cryomilling will
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be discussed as an example of these processes in the following section. (2) This method which is

known as mechanical alloying takes advantage of milling process to produce new alloys by mixing

dissimilar powders.

Cryomilling

Among all the powder preparation techniques cryomilling has been chosen to be studied in this

work as a convenient production method specifically for more reactive alloys such as Al and Mg

based alloys with high tendency for oxidation. Cryomilling as a mechanical attrition method in

which powders are milled in a slurry formed with milling balls and cryogenic liquid, usually liquid

nitrogen, provides a suitable atmosphere for obtaining nano sized grain structure [23]. Use of liquid

nitrogen in mechanical alloying took place at Exxon Research and Engineering for the first time and

resulted in the shorter milling time for achieving fine particle size and smaller recrystallized grain

sizes when compared to mechanical alloying performed in air or in Ar [24]. The first cryomilling

research focused on Al − Al2O3 composite and aimed to understand the dispersion-strengthening

mechanism [25]. Although the initial goal was to enhance the strength and creep resistance of

Al composites by dispersion and only for a specific temperature range more recent researches

concentrate on the nanostructure character of cryomilled bulk Al alloys for grain size refinement

and strengthening [26].

Despite of the wide range of attempts to enhance the mechanical properties of Al alloys the

strengthening behavior of such alloys seems to be complicated. Maung et al. [8] showed that the

strength of the reinforced Al samples is consistently lower than that of cryomilled samples with no

diamantine reinforcements. On the other hand, the ductility of the reinforced sample is three to

fourfold higher than that of the non-reinforced sample. The reason for such behavior is that, when

the grain size of some nano crystalline materials falls below a critical value in the nanoscale range,

nanoscale softening or inverse Hall-Petch effect occurs. They mentioned that multiple processes

including Coble creep. The absence of dislocation pile-up, the operation of Coble creep and a

threshold stress, the operation of a stress-assisted thermally activated process in the boundary and

the application of a composite model are responsible for the inverse Hall-Petch operate to cause

nanoscale softening. A steeper slope for conventional Hall-Petch equation for Al compared to Ni

and also the smaller activation energy for grain boundary diffusion of Al versus Ni are known to
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be responsible for the larger critical grain size of Al than that of Ni (110nm for Al versus 15nm for

Ni).

Figure 2.3: Schematic representation of grain refinement mechanism during ball milling.

Sever plastic deformation during the cryomilling process introduces strain energy to the bulk

material as a result of dislocation generation. The deformation also causes grain structure modifi-

cation as demonstrated schematically in Figure 2.3. The sever plastic deformation and the strain

introduced due to milling process generates a high density of dislocations, these dislocations rear-

range themselves into cells, subgrains and eventually ultrafine and nanosized grains [27]. The grain

boundary energy increases as a result of powder grain refinement. When the powder is subjected

to intense dynamic collisions between balls and the powder, the strain energy which is stored in the

form of crystalline defects such as dislocations and other types of defects is released and because

of the energy conservation the grain boundary energy increases.

It has been suggested that the interaction of the nitrogen from the cryomiling media with

the metal powder forms metal nitride nanoparticles to activate Orowan strengthening mechanism

[13, 28]. The activation energy required for diffusion of nitrogen to the metal powder and formation

of nitride nano particles can be provided from the strain energy introduced to the powder. Lin et

al. [28] suggested a mathematical model to estimate the strain energy during the milling process.

Several processing parameters such as friction coefficient between the milling balls and powder,

uniaxial tensile yield stress of powder, the geometry and the dimensional change of entrapped

powder and shear work hardening factor and index.
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Ui = ft (uE,σz + uEmσr + uS) /m (2.4)

Where f , t, uE,σz , uE,σr , uS and m are the frequency of collision, milling time, the normal stress

component along the height direction, the normal stress component along the radial direction, the

shear stress component and the mass of powder respectively.
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Where Y is the uniaxial tensile yield stress of the powder, µ in the coefficient of friction between

powder and balls. h and rE are the height and radius of the cylindrical shape trapped powders.

us = KVE

(∫ γzx

0
γnzxdγzx

∫ γzy

0
γnzydγzy

)
(2.7)

Where K and n are the shear work-hardening factor and index respectively,γzx and γzy are the

shear strains and VE is the entrapped powder aggregates volume.

Table 2.1 presents all the cryomilling parameters associated with the milling media and the Mg

powder for calculating the introduced strain energy for the specified milling time. In this study we

considered two types of stainless steel ball materials one made of SS 316 and the other one made

from SS 440C. The rest of parameters other than the milling ball materials properties remained

the same for both of the calculations.

2.1.2 Consolidation (compaction and sintering)

For the nanostructured powders to be applicable to construct actual products a density close to

the theoretical density and a minimum mechanical strength depending on the product function

are required. Consolidation typically combines pressure and temperature to form strong atomic

bonding between the particles to reach high compactness and a density close to the theoretical

density and without significant coarsening and agglomeration of the reinforcement particles.[18].
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Table 2.1: Cryomilling parameters associated with the introduced strain energy.

Parameters Mg/SS316 Mg/SS 440C

Media F Impeller’s rotational frequency (1/s) 3-4 3-4
R Attritor radius (m) 0.15 0.15
ρB Ball density (kg/m3) 8000 7667
EB Balls Young’s modulus (Pa) 2.1× 1011 2.03× 1011
rB Ball radius (m) 0.003 0.003
M Total ball mass (kg) 40 40
Vm Milling volume (m3) 0.1037 0.1037
H Height of ball milling space (m) 0.206375 0.206375

Powder ρP POwder density (kg/m3) 1740 1740
Y Uniaxial tensile yield strength (Pa) 20,000,000 20,000,000
m Mass 1 1
K Work hardening factor 534,000,000 534,000,000
n Work hardening index 0.4573 0.4573

Media and powder C Ball/powder mass ratio 40 40
µ Ball/powder friction ratio 0.4 0.4

The driving force for the densification of the nano-sized particles can be high because of the high

surface energy resulted from larger surface area of these powders compared to equal volume of the

same powder with conventional size. This results in sintering of such powder in lower temperatures

compared to the conventional particle sizes. The enhanced kinetics of sintering for nano-sized

powder causes the sintering process start at 0.2− 0.4Tm compared to 0.5− 0.8Tm for particles with

larger sizes (micron or larger).

Figure 2.4: Laser Based powder consolidation mechanisms[1].
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In traditional consolidation methods the first step before sintering the powder is the compaction

which is initially applied to the powder at room temperature to obtain a sample with green density.

The work part after compaction is called green compact and the word green means that the part is

not yet fully processed (the part is unfired and only pressed). The green density of the part is higher

than the initial density due to pressure during compaction but not uniform in the green compact.

In this step the goal is to obtain green compact with enough stability to tolerate further handling

to the next step [18]. Then it requires to be sintered. Sintering is a thermal treatment for bonding

particles into a coherent, predominantly solid structure via mass transports in atomic scale resulting

in a improved strength and a lower system energy [29]. Such process requires enormous compressing

machines and high temperature furnaces. Powder bed consolidation techniques were introduced

in late 80’s to overcome the complications of powder processing and facilitate the powder based

production process. The importance of these technologies is confirmed by recent study of NACFAM

(NationalConcilforAdvancedManufacturing, USA). That has identified Rapid Manufacturing

as the most innovative and potentially disputed manufacturing technology to emerge within next

few years [1, 30].

Powder Bed Fusion (PBF) defined in ASTM F2792 [? ] applies thermal energy to selectively

fuse areas of layer of powder using a heat source such as laser or electron beam. Different branches of

PBF has been introduced to produce polymer, metal or composite parts. Figure 2.4 shows different

categories of powder based consolidation mechanism in detail. Lower power lasers bind the particles

surfaces by surface melting and producing green parts that require further post-processing to make

them fully dense. Using higher power for the laser beam fully melts the particles which causes them

to fuse together and bind with the previous layer as it solidifies. The later method is of primary

interest of this study as it does not require additional steps for producing the final part [31].

Figure 2.5 demonstrates the schematic view of Selective Laser Melting (SLM). The laser beam

which is considered to be a Gaussian heat source irradiates the top surface of the powder bed, a

fraction of the energy from the heat source is reflected, and the remaining energy is absorbed. The

high energy density applied to the surface results in formation of a small-sized melt pool. Beside

conduction and radiation convection is also responsible for heat transfer, energy loss and phase

changes in SLM process.

The special and temporal distribution of the transient temperature fields of complex three
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Figure 2.5: Schematic of selective laser melting process

dimensional structure of domain D can be expressed as equation 2.8 [32, 33]. Prediction of in-

stantaneous temperature field results in better understanding of the details of the SLM process,

minimizes defects in the final product and provides a guide for optimizing the processing parame-

ters. Here ρ is density, c is the specific heat capacity, T is the temperature of the system, t is the

time, k is the thermal conductivity and Q is the generated heat per volume within the component.

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+Q (2.8)

For SLM processing of the powder there are several parameters responsible for defining the

condition of the system. Laser power (P), scanning velocity (V), laser spot diameter (d), scanning

pattern, scanning hatch distance (b), powder layer thickness (a). Considering a fix size for the laser

spot the input energy density is defined as E = P
V×b×a and the geometry of the melt pool, heat

affected area, quality of fusion, cooling and solidification rate, etc. can be calculated based on the

input energy density.

The temperature distribution in the powder bed at the initial time in domain is considered to

be T0 the heat transfer on the surface of system where the heat flux (q) is presented can be defined

as equation 2.9 [34]:

k
∂T

∂n
− q + qc + qr = 0 (2.9)

qc the convection and qr radiation heat in quation 2.9 can be described as:

16



qc = h(T − T0) (2.10)

qr = σε(T 4 − T 4
0 ) (2.11)

Where h is the coefficient of heat convection, σ is the Stefan-Boltzmann constant and ε is the

emissivity. The mathematical expression of the input heat flux with Gaussian distribution is defined

as equation 2.12 [35].

q =
2AP

πω2
exp

(
2r2

ω2

)
(2.12)

Where A is laser absorption of powder and ω represents the radius of the Gaussian laser beam,

defined as the distance from the center of laser beam to the point where heat flow density mitigates

to 1
e2

times of that at the center of the laser beam, r represents the distance of a point on the

surface of powder bed measured from the laser beam center at time t. If |x| and |y| are the distance

along X- and Y- axis.

r2 = (|x| − |V.t|)2 + |y|2 (2.13)

Various mathematical, numerical, finite volume and finite element analysis have attempted to

describe the heat transfer mechanisms in the porous media undergoing phase changes during SLM

process [33, 34, 35, 3, 2, 11, 36, 37, 38]for different alloys and metal matrix composites. An early

study by Jeager [39] provides a mathematical model to describe the motion of moving heat source

on the medium. Later JunChang et al. [40] simulate the heat transfer by using a semi-analytical

way to evaluate the temperature distribution for pulsed laser treatments. The finite element model

by Matsumoto [41] was one of the earliest computational approaches that analyzed the temperature

development during SLM process in powder bed for metallic powders in 2-D. Tolochko et al. [42]

investigated the laser sintering mechanism involving partial melting of the powder. Another model

developed by Cervera [43] demonstrates that thermal properties are changed by porosity. Yang et

al. [44] provided a 3-D finite element model for direct laser fabrication considering temperature-

dependent materials properties. In their model Nisar et al. [45] considered the phase changes with
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respect to the moving heat source. The 3-D finite element model by Roberts et al. [46] considered

the powder bed with multilayer sintering mechanism, phase change, porosity and temperature-

dependent material properties. In addition to the early attempts to describe the behavior of metal

powders several more recent studies have focused on more challenging materials such as light weight

alloys and composites. The study by Li and Gu [2] studies the geometry of the melt pool for the

AlSi10Mg alloy considering a transient thermal behavior for a porous powder media and the porosity

to be calculate as:

φ =
ρs − ρp
ρs

(2.14)

Where ρs is the density of the solid material with 100% density and ρp is the density of the

powder. The prosity in most of the studies varies from φ = 0.4 for powder to φ = 0 for dense

solid. In the contour map of Figure 2.6 they demonstrate the contour map for the temperature

profile for the laser scanning of AlSi10Mg with 250W power and 200 mm/s laser scanning velocity.

They showed that with this energy input the depth of the melt pool will be 61.7 µm and the

highest temperature achieve as demonstrated in Figure 2.7 shows that as the laser power increases

the maximum temperature also increases and at a constant scanning velocity of 200mm/s the

maximum temperature of the system increases from 875 K to 1750 K when the laser power changes

from 150 W to 300 W.

Figure 2.6: Melt pool geometry and temeprature distribution during SLM process where
P=250W and V=200 mm/s. (a)top view (b) side view of the cross section of the melt pool [2]

In another work Dai and Gu [3] demonstrated the liquid metal turbulence and Marangoni effect
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Figure 2.7: Temperature variation over the time for a portion of scanning time at the center point
of the surface where P=150W, 200W, 250W and 300W and V=200 mm/s. [2]

during SLM process, resulting in motion of gas bubbles in the melt pool. Figure 2.8 shows how

thermo-capillary flow (Marangoni convection) induced by surface tension affects the behavior of

the gas bubbles. Since the intensity of the fluid flow increases with the enhancement of input linear

energy density some vortex is observed in the melt pool with respect to the energy input. This

vortex results in scaping of the bubbles from the melt pool by increasing the energy input. However

at very high linear energy densities although the bubbles have the capability to scape from the pool

the rotational pattern of the flow entraps the bubbles at the bottom of melt pool.

Forouzmehr et al. [36] considered the optical penetration depth of the laser to account to

estimate the geometry of melt pool with respect to the experimental shape. Yan et al. [4] studied

the SLM process in multi-physics scheme and focused on the particle melting as the laser heats

up the surface. Figure 2.9 shows the particle melting process in during the laser scanning process.

Wu et al. [37] considered the random distribution of powdered particles and their effect on the

melt pool behavior. In their model Liu et al. [47] considered the effect of thermal analysis during

SLM for their columnar to equiaxed transition (CET) model and developed a solidification model

to study the microstructure of AlSi10Mg alloy during laser scanning path.
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Figure 2.8: The schematics of gaseous bubbles movement in the melt pool on increasing linear
energy denisty (LEDs): (a) LED = 15 kJ/m, (b) LED = 17.5 kJ/m, (c) LED = 20 kJ/m, and (d)

LED = 22.5 kJ/m. [3]

2.2 Microstructures of PM nanocrystalline alloys

There are two main difference between the microstructure of nanocrystalline alloys processed

through powder metallurgy compared to traditional ingot metallurgy [48, 49]. The first notice-

able difference is that the alloys processed by powder metallurgy typically contain a significant

volume fraction of second phase particles formed during the processing and in addition to the in-

tentionally added reinforcements or the particles formed due to the alloy chemistry. For instance,

Al2O3 particles are regularly present in the Al based alloys as a result of oxidation of powder sur-

face. This thin oxide layer breaks up during the processing and distributes evenly in the structure.
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Figure 2.9: Simulation results of formation process of nonuniform single track (cross section
view). The black dashed curve represents the bottom boundary of melted region in the substrate.

The arrows are velocity vectors. [4]

The higher amount of secondary phases particularly Al2O3 and AlN in Al alloys and Mg3N2 in Mg

alloys seems to have constructive effects on the mechanical properties of the alloy. The strengthen-

ing mechanisms and the contribution of the secondary phases will be discussed in more details in

the next section. The second difference is the presence of a large fraction of low angle boundaries

in the as-processed and annealed condition which can vary depending on the thermomechanical

processing. Unlike the secondary phases, the existence of low angled grain boundaries is not advan-

tageous for enhanced mechanical properties. The reason for this negative effect is that the plastic

deformation is controlled by the sliding and the low angle boundaries are not amenable to sliding.

In the case that the as-processed and annealed material contains a significant large fraction of low

angle grain boundaries a conversion to high angle grain boundaries is required. This is due to

predominant quantity of low angle grain boundaries, the deformation is limited to the intergran-

ular dislocation generation and motion, by applying strain to the alloy, the low angle boundaries

transfer to high angle boundaries and grain boundary sliding becomes the dominant deformation

mechanism.

The formation of the secondary phases sometimes is activated due to the mechanical milling of

the powder. Tavoosi et al. [5] demonstrated that milling a mixture of Al and ZnO powder for 60
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hours results in a replacement reaction with the formation of Al2O3 and Al and Zn solid solution.

Figure 2.10 shows the morphology of the Al-Zn alloy including nanosized Al2O3 powder in part

(a) and Al-Zn alloy powder in part (b). They also showed that at the beginning of the milling the

solubility of Zn in Al is higher than the equilibrium state which is accompanied by a decrease in

lattice parameter of the Al matrix. At the later stages of milling times, Al-Zn supersaturated solid

solution decomposes and the lattice parameter of Al increases resulting in a decrease in hardness

value of as-milled powder [50].

Figure 2.10: Morphology of powder particles after 60h ball milling (a) Al-Zn alloy with Al2O3

nanopowder (b) Al-Zn powder [5].

In another study on the Al-based nano-powders Al-Aqeeli et al. [6] described the strengthening

mechanism responsible for increased hardness of Al-Mg-Zr elemental powder mixture by increasing

the Zr content. When the amount of Zr element increases in the composition of the alloy a nanocom-

posite formed from the Al(Zr,Mg) solid solution and an intermetallic. At this point considerable

enhancement in structural stability and hardness of the alloy was observed. The X-ray diffrac-

tion patterns reported in Figure 2.11 confirm the formation of Al3Zr and Al3Zr4 intermetallics

and ZrO2 oxide during the milling process of Al-Mg-Zr powder mixture. Also Figure 2.12 shows

the formation of Al12Mg17 by increase in the amount of Mg content in a Al-Mg binary alloys [7].

Experiments show that the Zr-rich intermetallics do not find a chance to form during the milling

process if the amount of Mg is higher than 10%. Annealing the alloy may assist the formation of

intermetallics such as Al9.83Zr0.17 for ternary alloys containing 40− 55% Mg and 5% Zr.

Al-Aqeeli et al. [6] developed a new Al-Mg-Zr nanocomposite combining nanosized particles

distributed in an amorphous structure to enhance the mechanical properties. This idea was first

proposed by Kim et al. [51] to produce ultrahigh strength in Al88Y2Ni9M1(M=Mn or Fe). Some

22



Figure 2.11: X-ray diffraction patterns of as-milled (a)10Mg-90Al, (b) 10Mg-85Al-5Zr, (c)
10Mg-70Al-20Zr and (d) 10Mg-55Al-35Zr [6].

Figure 2.12: X-ray diffraction patterns of as-milled (a)10Mg-90Al, (b) 40Mg-60Al, (c) 60Mg-40Al
and (d) 90Mg-10Al)[7].

finely dispersed FCC-Al particles in the amorphous matrix. High resolution transmission electron

microscopic (HRTEM) image of the Al-10Mg-20Zr alloy showing the coexistence of nanocrystalites

and amorphous phase is presented in Figure 2.13.

2.3 Mechanical properties of PM nanocrystalline alloys

2.3.1 Grain refinement and Hall-Petch effect

Considerable enhancement has been observed in the mechanical properties of Mg based alloys

based on the Hall-Petch relationship. An important factor that makes grain refinement one of the

most effective methods for improving the mechanical properties in Mg alloys is their high K value
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Figure 2.13: HRTEM image of Al-10Mg-10Zr alloy highliting the region containing both
amorphous and nanocrystaline structures [6].

[51, 52]. As the Hall-Petch relation states the Yield strength of polycrystalline materials is directly

influenced by the grain size [53, 54]

σy = sigma0 +
ky√
D

(2.15)

Where σy is the Yield strength, σ0 is the starting stress for dislocation movement. This is the

Yield stress of a single crystal in the absence of any strengthening mechanism other than solid

solution.ky is the strengthening coefficient (constant for each material) and D is the average grain

size. In the cases where the presence of external particles results in grain refinement and metal

matrix nano composites form the equation can be modified, to incorporate the grain refinement

effect in MMNCs, as

∆σGR = ky

(
1√

DMMNC
− 1√

D0

)
(2.16)

DMMNC and D0 are the average grain sizes of polycrystalline matrix in MMNC and the unrein-

forced material, respectively. For this equation to be valid, only the grain structure can change due

to grain refinement and all the other factors such as precipitation condition or texturing resulting
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from mechanical post-processing [55]. In general, it is suggested that the second-phase particles in

polycrystalline materials pin the grain boundaries and limit the grain growth [8]. Accumulation of

incoherent second phases at the boundaries decreases the energy of the system due to reduction in

their areas. These secondary phases also inhibit the boundary movements and because these bound-

ary motions require generation of more boundaries in the spots that particles previously resided,

this will result in an energy increase. Zener and Smith [56] explained that the corresponding force

between a single particle and a boundary could be calculated from

F = πγ(r) (2.17)

where γ is the grain boundary energy and r is the particle average radius. This equation can

be modified for multiple particles interacting with the boundary.

F = (3/2)γ(f/r) (2.18)

In this equation f is the volume fraction of pining particles, and the particle spacing λ =
√
lt/f.l

and t are the length and thickness of the particle. The grain boundary, secondary phase interaction

concept has been developed over the time to comprehend the effect of particle-grain boundary

interaction geometry, the interaction of coherent particles with boundaries, a random and non-

random particle distribution and particle shape [57, 58, 59, 60, 61]. Although a several forms of

Zener equitation have been proposed considering different parameters, all these equations keep the

original equation form and among the parameters controlling the pinning force, the particle size

(r) and the particle spacing (l) have the critical rolls in eliminating the grain growth. It worth

mentioning that the contribution of the nano particles in a metal matrix material is only grain

refinement and restricting the size of the grains in the MMNCs rather than assisting new grain

nucleation. The Zener equation then can be formulated to

Dm =
4αdp
3Vp

(2.19)

During the grain refinement and grain boundary pinning through the nanoparticle addition

during the processing and post-processing. Where α is a proportionality constant, Dm is the
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smallest grain size of the matrix, dp is the reinforcement particle diameter, and Vp is the volume

fraction of particles [56]. For MMNCs it is recommended that the equation without explicit effect

of particle size be used and instead the grain size effect be considered. D0 here is the grain size

that results from processing conditions when the alloy contains no reinforcement particles and p is

the proportionality constant that describes the refining power of the reinforcement, which can be

empirically determined.

Dm =
D0

(1 + pVp)
1
3

(2.20)

Although grain refinement and the Hall-Petch effect are known as common strengthening mecha-

nisms in alloys, it has been demonstrated that in some nanocrystalline materials when the grain size

falls below a critical value the strength may decrease due to an effect known as inverse Hall-Petch

behavior. Several factors affect the inverse Hall-Petch behavior including Coble creep, the absence of

dislocation pile-ups at the ultrafine grain sizes, the Coble creep operation with a threshold stress and

the process of a stress assisted thermally activated process in the boundary [62, 63, 64, 65, 66, 67].

Most of the models predicting the nanoscale softening usually predict unrealistic values for the

grain size corresponding to the transition from hardening to nanoscale softening. They also have

predictions which are not entirely consistent with several deformation characteristics reported for

nano-crystalline materials that include high and variable stress exponent, activation volume with

the range 10b3−40b3, an activation energy close to that of boundary diffusion and limited ductility.

On the other hand, it has been suggested by Mohamed et al. [68] that while the Hall-Petch be-

havior controls the strength of larger grains a new deformation process based on dislocation sliding

containing boundary sliding for smaller grains is activated. In this way the nanoscale softening can

be quantitatively predicted. Figure 2.14 plots the applied shear stress against 1√
d
, the straight line

is the Hall-Petch equation and the curve represents the dislocation accommodated boundary slid-

ing. For the grain size larger than the dc conventional Hall-Petch behavior is dominant and as the

grain size becomes smaller than dc strength is determined by dislocation-accommodated boundary

sliding.

γ̇ = 9

(
b

d

)3(Dgm0

b2

)
exp

(
−Qgb
RT

)[
exp

(
2vb3

kT

)
− 1

]
(2.21)

26



Where b is the Burgers vector, d is the grain size, Dgbo stands for the frequency factor for grain

boundary diffusion, R is the gas constant, Qgb, τ , T , k and v are the grain boundary diffusion

activation energy, applied shear stress, the absolute temperature, Boltzamanns constant and the

activation volume, respectively. This equation can be presented in another way as

1√
d

=


(
γ̇
9

(
exp

(−Qgb
RT

)
bDgb0

))
(
exp

(
vτ
kT

)
− 1
)


1
6

(2.22)

To plot the applied shear stress vs. 1√
d

for Al as demonstrated in Figure 2.14, the activation

volume is considered as 10b3, Qgb and Dgb0 are equal to 85kJ mole−1or 0.6Q, where Q is the

activation energy for lattice diffusion and 1.86cm2s−1, respectively. Shear strain rate is 10−3s−1, T

=300K and b is equal to 0.289nm. The data in this figure are superimposed, to show the transition

from conventional Hall-Petch to inverse Hall-Petch behavior [69, 70].

Figure 2.14: The critical grain size is calculated as the intersection of the equation of Hall-Petch
behavior with the equation corresponding to the dislocation-accommodated grain boundary

sliding [8].
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2.3.2 Orowan strengthening

Presence of secondary phases in the nano-crystalline alloys can activate another mechanism, known

as Orowan strengthening mechanism. The Orowan strengthening model corresponds to the me-

chanical behavior enhancement as a result of small hard particles resisting against the motion of

dislocations. In the interaction of dislocations and hard nano particles, the hard phase functions as

obstacles and results in bowing of the dislocations followed by reconnection and finally formation

of loops around the particles. Formation of the dislocation loops, leads to high work hardening in

the alloy [71, 72, 73, 74, 75]. A schematic demonstration of this process is demonstrated in Figure

2.15.

Figure 2.15: Schematic demonstration of dislocation, secondary phase interaction during the
Orowan strengthening process.

2.3.3 Enhancing the ductility in nano-crystalline alloys

Application of nanostructured metals and alloys in the bulk form requires them to combine tensile

strength with ductility. Improving the ductility of PM nano-crystalline alloys in some cases is a

challenge since the brittleness can be too high to affect the practical use of such materials in spite

of their high strength [76]. Here some strategies will be proposed to enhance the tensile ductility of

such alloys simultaneously keeping the majority of the strength resulted from Hall-Petch effect and

nano-sized grains. Depending on the application, the type of acceptable deformation before failure

varies. For most of applications a significant uniform elongation is required under tensile stress,

but in most of the cases nanocrystalline alloys gain their strength at the expense of ductility [77].

The first suggestion is to mix up the length scales, specifically by creating a bimodal or even
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multi-modal grain size distribution, which can result in high yield strength combined with fairly

large uniform elongation. It worth mentioning that a functionally gradient material with a com-

bination of good strength and ductility is beneficial for fatigue performance. Although there is

a small trade-off to lose some strength, but the gained uniform strain is considerable compared

to the small loss of strength in nano-micro-scale bimodal structures. Such grain structure can be

achieved either from mixing powders with different grain sizes [9] or by rolling the metal at liquid

nitrogen temperature and then applying annealing heat treatment techniques [15]. In the latter

method the resulting material has a typical heavily deformed microstructure with high density of

dislocations in a nanoscaled network. The low temperature of liquid nitrogen delays the dynamic

recovery and allows the dislocation density reaches a higher steady-state level than that achievable

at room temperature. The former method on the other hand blends specified volume fraction of

micron-sized powders with the same compositions with the cryomilled powder of nano grain size.

This mixture is then extruded to form the bimodal alloy. Formation of Lüders bands during the

tensile testing of these alloys was reported and caused enhancement elongation compared to purely

nanostructured alloy. Han et al. [9] reported that they did not observe obvious necking during

the plastic deformation of 5083 Al bimodal alloys, but confirmed the formation of Lüders bands,

as demonstrated in Figure 2.16. The Lüders bands are reported to form immediately after the

maximum load and was accompanied by a stress-drop period. During subsequence deformation,

intense plastic deformation is reported to be localized in the vicinity of the Lüders bands.

Figure 2.16: A failed tensile specimen of the bimodal 5083 Al alloy containing 30V ol% coarse
grains [9].

The second approach to reach high strength and ductility in the materials is using a mixture of

two or multiple phases with different sizes and properties or in other words using composites instead
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of alloys. A combination of ductile particles in strong but brittle matrix may result in high ductility

without considerable loss of strength. Such system may benefit from large number of interfaces

formed as a result of solidification, a high strain hardening rate because of dislocation accumulation

in the micro-sized dendrites, and finally large plastic strains resulted from the large number of slip

bands and profuse dislocation activities [78, 79]. The next method takes advantage of formation

of nanoscale growth twins instead of the nano sized grains for strengthening. It is suggested by Lu

and Ma [10, 80] that a high density of coherent twin boundaries promotes high yield strength while

preserving the capacity for effective dislocation storage. This effect results in high strain hardening

rates at high flow stresses, stabilizing uniform tensile deformation to large plastic strains which

combines ultrahigh tensile strength with a considerably large elongation to failure. A transition-

electron microscopy (TEM) of such system verifies the gathering of dislocations in regions where

the twin spacing is large. The thin twin ribbons are cut by dislocations and dislocations sources are

produced from accumulation of dislocations in twin boundaries and low defect content regions with

coherent and low energy twin boundaries save room for dislocation storage upon tensile straining.

Figure 2.17 illustrates and example of a strained sample with nanoscale twins after tensile test.

Figure 2.17: (A) TEM image of strained sample after tensile test showing nano sized twins and
dislocation storage. (B) closer view of twin boundaries and dislocations. (C) TEM image of twin

boundary with Frank dislocation and Burgers vector of b = 1/3[1̄11] [10].

The next approach to enhance the ductility of nanostructured alloys focuses on activating

Orowan strengthening method by dispersing nano-pricipitates in the alloy. Precipitation hardening

is known as the most effective method for some alloys [76]. In nano crystalline alloys, hard precipi-

tates reduce the dynamic recovery by dislocation generation, dragging or pinning. Due to decrease

30



in the amount of dynamic recovery, a considerable amount of dislocations is stored, increasing

the strain-hardening rate and resulting in a larger uniform strains simultaneously enhancing the

strength [81]. The final approach considers the role of flaws such as porosity on reducing the

ductility. Nano crystalline materials produced through consolidation suffer from lower strength if

the porosity formation is not controlled in them. They also may initiate shear localization and

consequently high propensity for shear banding in irradiated alloys or consolidated nano-crystalline

metals. To prevent materials failure and ductility enhancement in consolidated materials it is re-

quired to obtain flaw free materials and consolidate the powder to full density with nano-sized

grains and a narrow grain size distribution [82, 83, 84].

2.4 Corrosion behavior of Mg alloys

In spite of great potential of Mg and Mg alloys in wide range of applications, relying mostly

on the high strength to weight ratio of these alloys, combined high resistance to heat/creeping,

high elongation before fracture, these metals suffer from high (degradation) corrosion rates in

oxygen atmospheres. Devices fabricated from Mg based metals require a diverse range of corrosion

resistances depending on the sites and types of applications, however, the degradation rates of

Mg/Mg alloys are generally much higher than required and practical implantation of Mg-based

devices could present a formidable difficulty. There have been considerable research efforts focused

on improving the corrosion resistance of Mg/Mg alloys [85, 86, 87, 88, 89, 90, 91, 92]. In general,

controlling the types and contents of the alloying elements is the first and easiest way to improve

the degradation/corrosion properties of metals. In case of Mg, it is experimentally validated that

incorporating alloying compositions enhances the corrosion resistant properties of Mg to a certain

degree. For example, it has been reported that a Mg alloy with containing up to 4% Al has a

corrosion rate 4 − 9% lower than pure Mg [93, 94, 95]. Ca and Zn are also of commonly included

alloying elements in Mg-based materials [96, 97, 98]. Zn is often included to improve the mechanical

properties of Mg alloys, even though research has shown that the corrosion resistance of alloys

containing Zn could be slightly decreased [99]. Other studies have demonstrated that adding

rare-earth elements (REs) such as Ce, La, Nd, and Y can improve the corrosion resistance of Mg-

based alloys [83,90]. Among these studies of RE elements, Y has received the most attention, as
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the standard electrochemical potential of Mg (-2.372 V) and Y (-2.372 V) are identical, which

prohibits the formation of micro-galvanic cells in the alloy that can significantly lower the chance

of local degradation [100]. Microstructural features also influence the degradation behavior of

Mg/Mg alloys. The crystallographic orientation of a surface plane in contact with corrosive media

can be a factor in determining the degradation rates of Mg/Mg alloys. For example, Song et

al. [79] and Xin et al. [87] showed that loosely packed crystallographic planes of AZ31 alloy have

greater tendency to corrode. Furthermore, they revealed that the basal plane has the lowest surface

energy and slowest corrosion rate compared to other high-energy planes. Other efforts to enhance

the resistance to degradation of Mg alloys include post-processing treatments such as coating,

anodizing, and heat treatments [88, 101, 102, 103]. The micro-galvanic corrosion and hydrolysis

are the main mechanisms that explain the degradation of Mg/Mg alloys. For the micro-galvanic

degradation mechanism, the segregation of impurity elements with low hydrogen overvoltage (e.g.,

Ni, Fe, Cu) in the structure of Mg alloys lead to the development of intermetallic components that

can serve as efficient cathodic sites [101, 104, 105, 106, 107]. Hydrolysis, on the other hand, is the

reaction of the substrate with water and is not only restricted to the local electrochemical potential

differences due to the compositional variations in the substrate. Here in the present work, as a

primary analysis for the degradation process, we do not consider any segregation in the substrate,

and we focus on the hydrolytic degradation and the surface dissolution of Mg/Mg alloys, placing

an emphasis on solid solution effects. The interaction between a water molecule/water clusters and

other transition metal surfaces has been widely studied using the density-functional theory (DFT)

computation technique. Schnur and Gro [108] applied ab initio molecular dynamics (AIMD) to

show that, although the ice-like hexagonal water bilayers could be polarized on strongly interacting

transition metals surfaces, the electronic structure of the metal surface is weakly affected by the

interaction with the water layer. Carrasco et al. [109] and Chen et al. [110] used DFT calculations

to simulate the water cluster structure and they found that a strong adsorption of the water

molecule on the metal surface leads to a hydrogen bonding among the water molecules. Kolb et al.

[101,102] and Calle-vallejo et al. [111] also applied DFT calculations on stepped platinum surfaces

and showed that surfaces with lower coordination number exhibit a higher tendency to adsorb water

molecule. Peköz et al. [112] observed a similar adsorption behavior for water clusters on both flat

and stepped transition metal surfaces. Greeley and Norskov [105] and Strasser et al. [113] studied
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the thermodynamics trends of dissolution in the alloy surfaces of transition metals based on periodic

DFT calculations. However, despite a rich history of experimental efforts to improve the corrosion

resistance of Mg alloys introduced in the preceding paragraph, only a few attempts have been

made to theoretically understand the corrosion mechanisms at the atomistic level. Velikokhatnyi

et al. [114] showed that alloying Mg with Ca and Y may improve the corrosion properties by

forming more stable protective passivation layers. Liu et al. [115] combined their experiments

with the density-functional theory (DFT) calculations of the surface energy by Vitos et al. [116]

to explain the dependence of corrosion behavior for pure Mg on crystallographic orientations. In

this study, using the DFT computation technique, we attempt to explain the interaction between

a water molecule and metallic surfaces, then we concentrate on the dissolution of Mg atoms from

the surface of Mg/Mg alloys to describe the combined effects of surface orientations and types of

alloying elements. Since the initiation of corrosion will occur through the hydrolysis mechanism

involving the interactions between water molecules and metallic surfaces, quantifying the degree of

these interactions will be useful for understanding the degradation behavior of Mg alloys. Further,

because adding one impurity element can change the tolerance limits of other impurities, it is not

a trivial task to understand the surface degradation of Mg alloys using experimental approaches.

With this in mind, in the current work, we used the electrode potential shift calculations to explain

the general dissolution behavior of Mg atoms from the surface of Mg alloys. In the following section,

we introduce descriptions for DFT computational methodology along with calculation parameters.

In Chapter 3, we provide detailed computational results and discussion on the adsorption of water

molecule on Mg-based surfaces and electrode potential differences of these surfaces. In Chapter 4,

we summarize these results and provide important remarks for the present study.
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Chapter 3

Research methods

3.1 Density-functional theory (DFT) calculation

Density functional theory (DFT) also known as ab initio principle is one of the modeling approaches

in this work. DFT based calculations have become a common method for many-body problems

in solid state applications. As an initial step they deal with the total energy of the system and

address methods to find the ground state energy of a many electron system [117]. This approach

is capable of calculations from surface interactions to bulk material properties such as diffusion

energy barriers and formation energies. Some fundamental aspects of DFT are reviewed in this

part to build the foundation for the theoretical discussions on DFT based results. Concepts such

as Schrödinger equation, molecular Hamilton operator, electronic wave function and the resulting

Fermi correlations have been reviewed in this chapter.

3.1.1 Fundamental aspects in DFT

Schrödinger equation

In quantum mechanics the wave function (Ψ(x, t)) of a particle gives the probability of finding that

particle at a certain position and the Schrdinger equation is used to find the allowed energy levels

of quantum mechanical systems. The general form of Schrdinger equation for the time-dependent

can be presented as
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i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ (3.1)

Where ~ = h
2π=1.054573× 10−34Js, m is the particle mass, V is the potential energy and as it

was mentioned earlier Ψ(x, t) is the corresponding wave function. The charge density, energy of the

many-body and non-interacting system can be calculated accurately if the functional is known [118].

However, the exact functional is not known but it is universal and does not depend on the material.

The Schrödinger equation thus can be solved exactly, in principle, for any system and allows

excellent approximations to the functional to be developed and used in unbiased and predictive

studies for different materials consequently these approximations are referred to as ab initio or

first principles methods.

Self-consistent-field (SCF)

Hartree-Fock or self-consisting-field method of the atom suggests that the motion of a single electron

in the effective field of the other N-1 electron is governed by a one particle Schrödinger equation.

Hartree equations for N one-particle wave-functions (atomic orbitals) are sets of coupled integrod-

ifferential equations and the result of self-consistency of the electronic charge distribution with its

own electrostatic field. The Hartree equations were shown to be the conditions for optimization

of an approximate wavefunction consisting of atomic orbitals [119]. The Hartree equation for an

N-electron atom where each electron moves in the potential field of the nucleus in addition to the

N-1 other electrons is equal to

Heff
i ψi(r) = εiψi(r)i = 1...N, (3.2)

where Heff
i

Heff
i ψi(r) = − ~2

2m
∇2 + Vi(ψ1ψ2...ψN ) (3.3)

and

Vi(ψ1ψ2...ψN ) = −Ze
2

r
+
∑
j

6= ie2

∫
dr′
|ψi(r′)|
|r − r′|

(3.4)
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The potential V depends on the charge distribution of the electron (ψi) , the eigenvalues (εi)

represents the total one-electron energies in the self-consistent field. In SCF approach the first step

is to write the Hamiltonian operator for the N-electron atom. Which in a simplified form gives

H =
i=1∑
N

{− ~2

2m
∇2 − Ze2

ri
}+

∑
J>i

N∑
i=1

e2

rij
(3.5)

Based on the suggested system of atomic units by Hartree:

~ = |e| = m = 1 (3.6)

The atomic unit for length is equal to the first Bohr radius (a0 = ~2

me2
= 0.529 × 10( − 8)cm),

the atomic unit of energy equals to 1Hartree(Ha) = e2

a0
= 27.2 eV and the Hamiltonian is written

as

H =

i=1∑
N

−1

2
∇2 − Z

ri
+
∑
J>i

i=1∑
N

1

rij
(3.7)

And the Schrödinger equation of an N-electron system is written as

HΨ(r1...rN ) = EΨ(r1...rN ) (3.8)

E here is the total energy of the atom known as the energy required to dissociate a N + 1

particle system. Also the exchange phenomena proofs that the probability of finding two electrons

of parallel spin at the same point in space is exactly zero. Exchange forces or exclusion forces reduce

the repulsive energy of the electrons of the same spin by keeping them apart. These forces result

in formation of Fermi hole, the region around each electron effectively excludes to the electrons of

the same spin which is a property of Fermi-Dirac particles.

f(E) =
1

e(E−EF )/kT + 1
(3.9)

In Fermi-Dirac distribution function for a system of identical fermions with thermodynamic

equilibrium, E is the energy, Ef is the Fermi energy, k is the Boltzman constant and T is the

absolute temperature []. Hartree-Fock scheme provides a subset of the equation consisting of an
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approximation of the N-electron wave function by an antisymmetrized product of N one-electron

wave functions, where the one-electron functions ψi(r) are known as Orbitals with spin functions

α or β . The composite spin-orbital functions may be defined as

and the simplest totally antisymmetric N-particle function is the determinantal form

Although Hartre-Fock approximation does not give the exact solution of the N-electron Schrdinger

equation, it gives the best solution to the determinal form of it.

The energy functional

The energy functional in Schrödinger equation can be defined as

E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ] (3.10)

where T is the kinetic energy, Vext the interaction with the external potential and Vee is the

electron-electron interaction.

Vext[ρ] =

∫
ˆVextρ(r)dr (3.11)

As Kohn and Sham [120] suggested the kinetic energy can be calculated from equation and it

is known exactly from the orbitals. Such a fictitious system of N non-interacting electrons can be

described by a single determinant wavefunction in N orbitals φi . Here ρ(r) is the electron density.

Ts[rho] = −1

2

N∑
i

〈φi|∇2|φi〉 (3.12)

ρ(r) =
N∑
i

|φ|2 (3.13)

simplifying the electron-electron interaction to classical Coulomb interaction or Hartree energy

can be written in terms of the density as

VH [rho] =
1

2

∫
ρ(r1)rho(r2)

|r1 − r2|
dr1dr2 (3.14)

Then the energy functional will be
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E[rho] = TS [ρ] + Vext[ρ] + VH [ρ] + Exc[ρ] (3.15)

Where Exc[rho] is the sum of the errors from applying non-interactive kinetic energy and the

error due to treating the electron-electron interaction classically.

Exc[ρ] = (T [ρ]− TS [ρ]) + (Vext[ρ]− VH [ρ]) (3.16)

Finding a functional Exc[ρ] that embodies the required information is done using very simple

minded approximations. The most widely used approximations are the local-density approximation

(LDA) introduced by Kohn and Sham [120] and generalized-gradient approximation (GGA) [121]

The principle assumption of LDA is that for each infinitesimal element of density ρ(r)dr the

exchange-correlation density is that of a uniform electron gas of density ρ = ρ(r)= n ↑ +n ↓

(density of electrons with upward spin, n ↑, plus the density of the electrons with downward spin

n ↓ ). Here can be presented as

ELDAXC =

∫
d3rρ(r)εxc(ρ(r)) (3.17)

Where εxc is the exchange-correlation energy per electron in a uniform gas of density ρ. While

LDA is clearly wrong because the charge density is highly non-uniform around atoms, the uniform

electron gas is the only system for which can be calculated from which εxc (ρ(r)) can be constructed

[122]. Although LDA has shown accurate calculations in many cases for some systems including

the cases where the electron density changes rapidly, it does a poor approximation due to ignoring

spatial variations in the density. Generalized-gradient approximations (GGA) which have been

developed to overcome this deficiency, include the dependence of the approximation on the gradient

of the density. Using GGA the binding prediction and the dissociation energies specifically for

hydrogen containing systems [123], improves. The GGA approximation can be presented as

EGGAXC [n ↑, n ↓] =

∫
d3rεxc(n ↑, n ↓, ~∇n ↑, ~∇n ↓)ρ(~r) (3.18)

In general, it is suggested that GGA can improve the computational accuracies for total en-

ergies, atomization energies, structural energy differences and energy barrier compared to LDA,
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because the GGA functional depends on electron density and its gradient and it provides a better

solution for the inhomogeneous electron densities. In spite of wide range of use of LDA and GGA

functionals they are still far from the ideal calculation and Finding an accurate and universally ap-

plicable remains a great challenge in DFT [124]. Some modifications have been suggested for more

complicated molecules and materials to improve the GGA calculations. Perdew and Wang [114]

suggested to keep the positive features of local spin density while applying some inhomogeneity

effects to generate PW91 functional. The limitation of the PW91 functional is the complications

in the mathematical details which need to be defined carefully and the unclear relationship be-

tween the parameters. Perdew, Burke, and Ernzerhof provided the (PBE) functional [111] which

is known to be efficient and accurate for structural properties but less accurate for estimating the

other properties [125, 111, 115]. B3LYP, meta-GGA and B2PLYP are some other modifications

for the DFT functionals. B3LYP is a hybrid DFT functional and is developed from combining

GGA and HF. Meta-GGA is a more advanced version of GGA which contains higher derivatives.

Grimme et al. [116, 126] proposed B2PLYP functional as the most advanced functional which has

not been employed in any commercialized DFT package yet and can improve the energetic and

spectroscopic properties.

k-points

Based on Blochs theorem the work function of the electrons in aperiodic system can be presented

as

Ψkn = Uknexp(ik.r) (3.19)

Where Ukn is a periodic function and k is the k-point referring to all the values in the first

Brillouin zone. Where the first Brillouin zone is the primitive cell in the reciprocal space and the

reciprocal space in solidstate physics is the array of the reciprocal lattices. This theorem helps

to simplify the Kohn-Sham theory for ground state calculation. Some of the most important of

these simplifications include the electron-electron interactions mapping to non-interacting electron

system, or considering periodicity for an infinite solid bulk system. The idea is to choose an

appropriate supercell so that the Blochs theory can be applied even to aperiodic structures such
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as surfaces. In DFT a supercell can be defined with vectors to show the required crystal structure

and the atom positions in the cell [127]. The reciprocal space unit vectors are

~b1 = 2π
a2 × a3

a1.(a2 × a3)
(3.20)

~b2 = 2π
a2 × a1

a2.(a3 × a1)
(3.21)

~b3 = 2π
a1 × a2

a3.(a1 × a2)
(3.22)

Here a1, a2, a3 are the vectors are the real space unit vectors. The real space lattice vector ~R

and reciprocal lattice vector ~k can be presented as

~R = n1a1 + n2a2 + n3a3 (3.23)

~k = x1b1 + x2b2 + x3b3 (3.24)

In DFT calculations it is suggested that increasing the number of k-point, improves the accuracy

of the computation but the drawback is that the computational time raises as well. When comparing

the stability of several systems based on their energy state it is important to notice that consistent

k-point values and similar lattice parameters are used [128].

Pseudo-potentials

In DFT for reducing the calculation expenses it is suggested to use pseudo-potential for the system

which assumes that the change in the surrounding atoms only affects the valence electrons and does

not have any effects on the nuclei and the core electrons. Eliminating the interactions other than the

valence electrons in the bonding does not give the exact results compared to the Coulomb potential

but it is generally accepted that the plane wave basis set can represent both the pseudo-potentials

and pseudo-wave function. Also simplifying the solid-state calculations is another advantage of

pseudo-potential calculations [129, 130].
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Geometry optimizaion

The ground state energy of the system requires finding the equilibrium configuration of the atoms by

geometry optimizing the structure. In geometry optimization the most stable state of the system

is found and the corresponding total energy is used for other energy state calculations such as

transition state (TS), formation energy and the reaction energy. One of the most common methods

to represent the equilibrium state of the system with respect to the geometry optimization is the

potential energy surfaces (PES). PES calculation is based on Born-Oppenheimer approximation

which separates the motion of electrons and the nuclei and assumes a fixed position for the nuclei

and finds the PES by solving the electronic structure of the system. In a PES graph the vertical axis

is usually the energy of the system and the other axis represent different aspects of geometry like

angles and distances between different parts of the system. PES can be used to calculate reaction

energy barrier, formation energy and transition state [131]

3.1.2 Computational Methods

DFT calculations were performed to estiate the energy of the system in the most stable state using

the DMol3 module in Materials Studio package (version 7.0, Accelrys Inc.) [132, 133]. Adsorption

behavior of molecular nitrogen (N2) and bulk interaction (structural stability) of both atomic and

molecular nitrogen (N and N2) on a Mg 4×4×2 supercell with 30 Å vacuum space and coverage of

0.0625 monolayer (ML) were studied by treating exchange-corelation energy with PW91 functional

in the GGA scheme. Impacts of different crystallographic surface structures were compared using

the Mg systems with basal (0001), prism (1010), and pyramidal (1011) surface planes. Figure ??

presents the DFT slab models with periodic boundary conditions containing (a)basal, (b)prism,

(c)pyramidal surfaces, and (d)the schematic illustration for the positions of these planes in a hcp

crystal structure. The double-numeric quality basis set plus polarization with all electron core

treatment was utilize in our model. In all the computations, the Fermi smearing value of 0.007

Ha (1Ha=27.2114eV) and a real-space cutoff of 4.9 Å were used to improve the computational

performance, and the self-consistent iteration tolerance of 10−6 was applied. The charge and spin

was chosen to be 0.05 for density of mixing and the dipole slab correction was applied to accelerate

the convergence. To represent the surface and bulk component of crystals, one bottom layer was
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fixed and the rest of the layers were free to relax in all the geometry optimization computations. For

the convergence condition in geometry optimizations, the tolerances were considered to be 10−5 Ha

for energy, 2×10−3 Ha/Å for force gradient, and 5×10−3Å for displacement. A (2×2×1) k-point set

was used and the adsorption energy (Ead) was calculated from the difference between the energies

of the combined structure of Mg/N2 molecule and the seperate structures of isolated adsorbent

and adsorbate. In studying the adsorption behaviro of N2 on different sites over the Mg surface,

the vibrational frequencies for the surface-N2 (νN−S) and the intermolecular N-N stretching modes

(νN−N ) were computed using a finite-difference method. During the vibrational computations, the

Mg substarate was frozen while the N2 molecule was free to vibrate in any direction. In addition

to the adsorption behavior of liquid nitrogen onto the Mg alloy surfaces, the structural stability of

Mg was evaluated by calculating the energy of the system with N2 molecule or N element absorbed

in the bulk material. The structural stability was studied by comparing the energies of the system

for separate parted and the final combined configuration. The energy of N atom was treated as

half of the total energy of N2 molecule [134, 135].

The bulk diffusion of elemental N and molecular N2 was studied by performing DFT compu-

tation using pure Mg and Mg alloy system containg Al. The initial 4 × 4 × 2 supercell structures

comprised of 64 atoms (pure Mg or Mg alloy with one Al atom in a substitutional position) were

geometry optimized to start with respective equilibrium structures. The k-point for these calcula-

tions was set to (2× 2× 2). The k-point mesh testing was conducted using various mesh sizes with

the unit cell of Mg crystal for all the calculations and confirmed the consistancy in the results for

energy within a tolerance of ∼ 0.002eV .

Transition of nitrogen between two closest equivalent octahedral, tetrahedral, or substitutional

neighboring positions requires overcoming the diffusion energy barrier. This energy barrier was

estimated by calculating the transition state (TS) for the displacement of nitrogen between two

neighboring equivalent positions. The starting and ending configurations of the atomistic structures

containing nitrogen atoms/molecules have been geometry optimized with prescribed computation

conditions seeking local energy minima. To improve the TS search procedure, a complete linear

synchronous transit (LST)/quadratic synchronous transit (QST) calculation was performed. This

method combines a linear or quadratic synchronous transit approach for the initial steps of opti-

mzation with a quasi-Newtonian or eigenvector-following method for rapid convergence toward the
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Figure 3.1: DFT slab models with periodic boundary conditions containing (a)(0001) basal,
(b)(1010) prism, and (c) (1011) pyramidal surfaces, and (d) the schematic illustrations for the

positions of these planes in a hpc crystal struucture.

end of the optimzation. The LST calculation estimates the TS by finding the highest point along

the shortest line connecting two minim, while QST extends LST by subrsequently searching for

the minimum along a line perpedicular to the previous one. Therefore, in QST, the parabolic path

connecting the minima in conjunction with the found point may then be searched for a maximum

43



[136, 137, 138]. The LST/QST calculation was followed by nudged elastic band (NEB) method to

find the minimum energy path (MEP) to confirm the TS calculations [139]. Since QST provides

a relatively accurate guess for the MEP and enables the analysis of more complex path reactions,

the QST results were used to find the TS and the MEP for the diffusion process. Nucleation of

Mg nitrides (i.e.,Mg3N2) inside the lattice was simulated by implanting N atoms in the octahedral

sites in the bulk lattice assuming a coherent interface for the early stages of nitride formation.

The energies of pure Mg and optimized anti-C-type Mg3N2 with Ia3 space group (i.e.,antibixbyite

structure) were then compared. Since the atmospheric pressure in the cryomilling prcess would be

in the order of approximately ∼ 1MPa and would not go beyond 20.6 GPa (the critical pressure

for the transformation to anti-B-type structure), this antibixbyite structure is thought to present

the stable structure for Mg3N2 during the cryomilling process [140].

Due to sensivity of the Mg to corrosion, attempts were made to study the corrosion behavior

of pure Mg metal and Mg surface alloyed with Al, Ca, Zn or Y. Corrosion studies in this work

were performed under two main categories:a) water adsorption on the metal surface b)dissolution

behavior of the metal surfaces. Effects of crystallographic orientation and composition on the

water molecule adsorption and the dissolution were studied by optimizing the slab surface cleaved

to basal, prism and pyramidal planes. The electrode dissolution potential of the Mg/Mg alloys

were quantifies by calculating the electrochemical potential difference between the alloy and pure

Mg systems. The electrod potential difference was predicted based on the calculation of chemical

potentials from the perfect Mg/Mg alloy surfaces and the surfaces with one or two point defects

(i.e,vacancies). The detailed procedures applied to obtain the electrode potential difference are

further described in the ’Result and Discussion’ section.

The DFT calculations for Al-based systems were performed using same methods and software

as Mg-based system were used. Since corrosion is not a critical issue with Al alloys this study does

not cover the corrosion study caluculations and focuses on the interactions taking place in cryogenic

atmosphere.

For the surface calculations including the adsorption energy and the dissociation energy evalu-

ations, a 2×2×2 Al(FCC) suppercell was cleaved to (100), (110) or (111) surface orientations, and

they were doubled in their thicknesses to contain a total number of 64 atoms in the slab systems.

To avoid undesired interactions due to periodic boundary conditions, a vacuum space of 30Å was
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added along the slab height direction. For the diffusion energy barrier calculations, 2 × 3 × 3 su-

percells with 72 atoms were built to study the N2/N transport between two sequential octahedral

sites. We tested the stability of Al lattice structures including N2/N in other potential interstitial

locations such as tetrahedral sites. The diffusion of nitrogen species through adjacent octahedral

sites were studied in this work, as these sites were identified as the most stable positions containing

N2 or N. The k-point meshed test confirmed that a k-point mesh of 2×2×4 provides stable results

for all the Al-based systems calculations. In addition to the pure Al system, to examine the impacts

of common impurities in Al alloys, one atom of Mg, Mn, or Fe was placed at a substitutional site on

the Al surface and in the Al bulk, for the adsorption and the diffusion energy barrier calculations,

respectively. The positions of nitrogen species for both the surface and bulk calculations in the

alloyed systems have been carefully chosen nearby the alloying elements intended to attain the hiest

contribution from the impurity metal-nitrogen interactions.

3.2 Finite Elements Analysis

3.2.1 Computational Methods

A three-dimensional finite volume method was developed using ANSYS Fluent software. Figure

3.2 demonstrate the schematic diagram of SLM process involving melting and resolidification of the

powder, considering the phase change phenomena due to heat exchange between the powder, laser

and solid base. Thermal conduction is detected to be responsible for most of the heat transfer in the

system, however the influence of convection and radiation cannot be ignored in the calculations. A

0.2 mm layer of powder is evenly distributed over a 0.5 mm thick slab. The whole system including

powder and base plate consist of a 1mm×5mm×0.7mm block in X, Y and Z directions respectively.

The laser scans the top XY surface as demonstrated in Figure 3.2 (a) and moves in positive Y

direction. The calculations are carried out with a uniform structured mesh composed of 64000

hexahedral cells, with 15.625 × 10−6mm3 sizes, which are optimized for obtaining a compromise

of computation time and accuracy as demonstrated in Figure 3.2 (b). The powder material is

considered to be AlSi10Mg/AlN composite and the base solid is considered to be AlSi10Mg with

composition and materials properties detailed in tables 3.1 and 3.2 and Figure 3.3.
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Table 3.1: AlSi10Mg chemical composition in wt% [11]

Si Mg Fe Mn Ti Zn Ni Cu Pb Sn Others Al

9-11 0.2-0.45 <0.55 <0.45 <0.15 <0.1 <0.05 <0.05 <0.05 <0.05 Others balance

Figure 3.2: Demosntration of the geometry and mesh for the studied SLM process

Governing Equations and boundary conditions

During the SLM process a laser beam provides the heat to system causing the fusion in powder

and base material if the input energy is adequate. A Gaussian distribution is considered for the

heat source with the mathematical formula as equation 3.25 [146]:

q =
2AP

πR2
exp

(
−2r2

R2

)
(3.25)

Where A is the laser energy absorbance of the powder, P is the laser power, R is the effective
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Table 3.2: Materials properties and theoretical parameters for selective laser melting

Parameter Value Reference

Initial temperature, T0 298, 373, 473 K
Laser power, P 100, 150, 200 W
Scan speed, V 100, 150, 200 mm/s
Radius of laser beam, ω 35 µ m
Powder porosity 0.4
Powder layer thickness, tlayer 0.2 mm
Laser absorptivity of AlSi10Mg powder, 0.09 N/m [141]
Solidus temperature, Ts 830 K [142]
Liquidus temperature, Tl 867 K [142]
Latent heat of fusion of AlSi10Mg, H 389 kJ/kg [143]
Density of AlSi10Mg powder, ρ 2650 kg/m3 [144]
Viscosity 1.3 × 10−3 Pa.s [145]

laser beam radius at which the energy density reduces to 1
e2

at the center of the laser spot, and

r is the radial distance from a point on the powder bed surface to the center of the laser spot.

A Volume of Fluid (VOF) model was combined with solidification and melting model to consider

detailed phase change from porous powder to liquid and eventually to solid. To define the latent heat

required for solidification and melting exchange enthalpy was described as a function of temperature

as in equation 3.26. Where ρ is the density, c represents the specific heat capacity and T is the

temperature.

H =

∫
ρcdT (3.26)

As the laser beam irradiates the top surface of the powder a fraction of the energy is reflected

and the rest is absorbed causing temperature raise in the powder bed and eventually melting of

the powder and depending to the density of input energy, melting of the base solid.

The spatial and temporal distribution of the temperature field is expressed with equation 3.27

in 3D:

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+Q (3.27)

Where k is the thermal conductivity and Q is heat generated per volume. Equation 3.28 can

specifically define the initial condition for the temperature distribution in the powder bed at time
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Figure 3.3: AlSi10Mg/AlN composite materials properties (a) thermal conductivity and specifica
heat at constant pressure for AlSi10Mg alloys (b) thermal conductivity and specifica heat at

constant pressure for AlN particles [11, 12]

t=0.

T (x, y, z, t)|(t = 0) = T0(x, y, z) ∈ D (3.28)
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Where T0 is the initial temperature and varies from 298 K to 373 and 473 K. And the natural

boundary condition on the surface (S) with normal n, where the heat flux is imposed, is defined as

equation 3.29.

k
∂T

∂n
− q + qc + qr = 0(x, y, z) ∈ S (3.29)

In this equation q is the input heat flux with the Gaussian distribution as defined earlier. qc is

the heat convection and qr is the heat radiation.

qc = h(T − T0) (3.30)

qr = σε(T 4 − T 4
0 ) (3.31)

h is the coefficient of heat convection and σ is the Stefan-Boltzman constant and ε is the

emissivity. In this model during the melting process thermal properties of the powder and base

solid such as thermal conductivity and specific heat capacity are temperature dependent.

3.2.2 Design of Experiment

Design of experiment (DOE) approach was utilized to explain the variation of sintering quality

during the selective laser melting process and identify the key parameters and interdependencies

with a minimal amount of data. Various experimental process parameters affect the quality of

final product, among which the most important ones are laser scanning speed, powder bed initial

temperature and laser power. Taguchi methods [147] were devoted for experimental design in this

work. In Taguchi Design of Experiments all experiments are planned a priori and the results are

analyzed after completing all the experiments. The experiments in this research have been designed

using an L9 orthogonal array (OA), conducted in an ordered manner and then the outcome results

were analyzed statistically using ANOVA to find the best combination of parameter levels. Table 3.3

lists all the runs performed for the L9 orthogonal array. Three different levels have been considered

for each independent variable (i.e. laser scanning speed 100, 150 and 200 mm/s, laser power with

100, 150 and 200 W and initial powder bed temperature equal to 298, 373 and 473 K.
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Table 3.3: Taguchi design of experiment. L9 orthogonal array.

Run No. Speed (mm/s) Laser power (W) Powder bed temperature (K)

1 100 100 298
2 100 150 373
3 100 200 473
4 150 100 373
5 150 150 473
6 150 200 298
7 200 100 473
8 200 150 298
9 200 200 373

Maximum temperature and geometry of the melt pool, and velocity of the solidification front

were recognized as the response values identifying the quality of the final product. The signal to

noise ratio and other parameters used in ANOVA are calculated by the following equations [148]:

S

Ni
= −10log

(
1

n
Σn
i=1

1

y2
i

)
(3.32)

Sm =

(
Σ9
i=1ηi

)2
9

(3.33)

SA =

(
Σ3
i=1ηAi

)2
N

Sm (3.34)

ST = Σ9
i=1η

2
i Sm (3.35)

SE = STΣSA (3.36)

Where the various kinds of A (control factor) are laser scanning speed, laser powder and initial

temperature of the powder and n is degree of freedom and is equal to 2 in this work. yi is the

measured characteristic, maximum melt pool temperature and geometry, and solidification front

velocity, Sm is the average of the squares of the sums, SA is the sum of squares correlated to the

control factor A, ST sum of squares of the variance and SE is sum of squares of the errors correlated

to all controlled factors.
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After collecting the response values based on the control factors, a main factor effect plot is

concluded. The slope of the plot reveals if the control factor has significant effect on the response

value. A horizontal line is interpreted to no main effect, while as the slope is steeper the main effect

present has a greater magnitude.
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Chapter 4

Result and discussion

4.1 Mg cryomilling

Developing advanced alloy systems with high strength-to weight ratios is the center of attention

especially for structural material sectors including automotive, aerospace, and military applica-

tions. Mg nanocrystalline alloys with low density and good machinability have claimed to provide

much improved mechanical properties in presence of alloying elements such as Al, Zn, Si, Mn,

and Y in their composition. More recent researches revealed that the addition of discontinuous

particles in the form of nanosized reinforcement particles has a high potential to enhance the me-

chanical properties by improving the modulus, the strength, and the ductility of materials. In these

metal-matrix nano composites (MMNCs), the volume fraction, the shape, the size, and the orienta-

tion of the reinforcement particles can strongly affect the strengthening improvement of materials.

Cryomilling, particularly under liquid nitrogen environments, is often employed in PM synthesis

because it has a high potential to produce finer grain sizes compared with conventional ball milling.

The liquid nitrogen atmosphere is intended (1) to decrease the milling time needed to achieve the

desired fine particle size while minimizing powder agglomeration and welding to the milling media,

(2) to minimize the oxidation reaction during the process, and (3) to prevent dynamic recovery

and recrystallization [149]. In addition to these benefits, the cryomilling process can introduce

nitrogen-based impurities to the matrix, which can act to stabilize the microstructure of the mate-

rial by pinning dislocations and by activating Orowan strengthening mechanisms [55, 150, 151, 152].

The Orowan strengthening mechanism is activated when these secondary precipitates are homoge-
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neously dispersed inside the grains and are sufficiently small [75]. Although it is known that the

nitrogen molecule has a considerable reactivity with Mg powder [153] and that the free energy of

formation of Mg nitride (Mg3N2) is negative (-400.83 kJ/mol) [154], the presence of Mg nitride in

the Mg nanocrystalline materials synthesized via cryomilling processing has not yet been clearly

confirmed and the atomistic interaction between nitrogen species and bulk Mg lattices has not been

systematically explored [155, 156, 157]. The low temperature of the cryomilling process decreases

the reactivity between liquid nitrogen and Mg powder, unless the mechanical forces from milling

break the triple bonding of N2 and result in nitride formation. On the other hand, the diffusion

of the nitrogen into the bulk will increase the possibility of nitride formation by increasing the

contact between the nitrogen and the metal atoms. It is expected that nitride formation would be

achieved on the surface of grains and that the formed nitrides would be mechanically forced inside

the bulk lattice of Mg/Mg alloys [155, 150, 158, 127]. It is, therefore, pivotal to understand the

interactions between nitrogen species and lattice atoms below the surface, because the formation

and dense segregation of nitride particles along the grain boundaries/surfaces of the synthesized

Mg/Mg alloys are generally believed to deteriorate the mechanical properties. With this, in the

present study, we attempted to address the following questions; (1) what is the mechanism and

what are the activation energy barriers of nitrogen diffusion in the Mg matrix during the cryomilling

process?, and (2) what is the formation energy and the type of N-rich dispersoids?

To answer these, we majorly focused on the quantification of nitrogen molecule adsorption and

absorption on the Mg-based surfaces, bulk diffusion energy barriers of various diffusion routes in

pure Mg and Mg alloy lattices using density-functional theory (DFT) computational technique.

4.1.1 Nitrogen adsorption on Mg surface

The reported experimental value of N2 dissociation energy is 942 kJ/mol[159]. Because this disso-

ciation energy of triple-bonded N2 molecule is very high, nitrogen is more likely to be adsorbed in

the molecular form rather than the elemental form. To confirm the experimental finding of the N2

dissociation energy and to validate the computation in the present study, we have performed the

simple DFT calculation to estimate the dissociation energy of N2 molecule. The dissociation energy

(D◦) for AB −→ A+B reaction can be calculated from D◦ = ∆Hf◦0 (A)+∆Hf◦0 (B)−∆Hf◦0 (AB),

where ∆Hf◦0 (X) represents the formation enthalpy of ”X” compound or element. Our calculation
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based on the single isolated N2 molecule with the computational parameters given above predicted

that the dissociation energy is D◦ = 995 kJ/mol, which only shows about ∼ 5(%) difference with

the reported experimental value [159].

Given the high dissociation energy required for bond breaking of N2 molecules, we first focused

on the adsorption phenomena of N2 molecule over the Mg/Mg alloy surface. Computation of

the binding energy (i.e., adsorption energy, Ead) is the most widely used scheme to quantify the

tendency of adsorption in many systems. The binding energy can be obtained by,

Ead = Ef − Eslab − EN2 (4.1)

Where Ead is the adsorption energy, Ef is the total energy of the Mg/Mg alloy systems con-

taining an N2 molecule, EN2 is the total energy of Mg/Mg alloy slab systems without N2 molecule,

and EN2 is the energy of an isolated nitrogen molecule, respectively. For our computation, first,

the vertical position (i.e., z-coordinate) of an N2 molecule was adjusted to obtain the preferred ad-

sorption site by geometry optimization. After the preferred vertical position of a nitrogen molecule

was identified for each system, the vertical position of the N2 molecule was fixed and all other

coordinates were relaxed. Starting from the preferred vertical site, an N2 molecule was located on

top of the pure Mg or Mg alloy surface. We used (4× 4× 2) super-cell structures for all of nitrogen

molecule adsorption simulations, and one center Mg atom on the surface was replaced by one of

the three alloying elements for Mg alloys. The initial in-plane sites (i.e., x- and y-coordinates) of

the nitrogen molecule were varied to explore the minimum energy status of the slab systems. For

studying the effects of alloying elements, alloying atoms with the coverage of 0.0625 ML have been

doped on the top surface layer, as shown in Figure 4.1(a). Figure 4.1(a) illustrates a top-view

example of the DFT slab model with an Al impurity element containing nitrogen molecules over

the basal plane of Mg-Al alloy. Here, the N, Mg, and Al atoms are colored as blue, green, and

magenta spheres, respectively. The shaded spheres (dark green spheres) in Figure 4.1(a) are the

Mg atoms positioned in the 2nd layer from the surface.

For the adsorption sites of the N2 molecule on the pure Mg surface, four representative high-

symmetric positions including the ”atop” (on top of an Mg atom), the ”bridge” (on the middle

point of two neighboring Mg atoms), and the ”hollow 1” and the ”hollow 2” (on the center of three
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Figure 4.1: (a)The four representative adsorption sites on the Mg surface, and the geometry
optimized structures of (b) the atop and (c) the bridge sites in the pure Mg materials with basal

surface plane

triangular Mg atoms) sites have been considered. The hollow 1 site differs from the hollow 2 site by

the existence of the Mg atoms (i.e., the ”B” atoms in the ABABAB hcp stacking sequence) in the 2nd

layer from the surface. These four representative binding sites are also illustrated in Figure 4.1 (a).

As shown in Figure 4.1 (b), the geometry optimization of the systems for all of the positions except

the bridge site generated the stable N2 molecule with the vertical orientation (vertical alignment).

The vertical distance (dN−S) from the Mg surface atom to the nitrogen molecule in the most stable

condition was 2.288 A◦ when the nitrogen molecule is located on top of surface Mg atom (i.e., ”atop”

position). The N2 molecule in the bridge site, on the other hand, shows the highest stability of the

configuration with a tilted alignment of the N2 triple bond with reference to the Mg metal surface

as presented in Figure 4.1 (c). This is presumably derived from the attractive interaction between

the nitrogen element and the Mg atom in the 2nd layer from the surface; as depicted in Figure 4.1

(a), the bridge site is asymmetrically positioned above the 2nd layer (shaded green atoms) along the

unit cell lattice line. Figure 4.2 shows the relative total energy differences in the system during the

configuration changes of N2 molecule when the computation was performed with the atop site. The
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orientation of N2 bonding has been altered from the horizontal alignment to the vertical alignment

with the transition state (TS) coordinate in Figure 4.2. Assuming that the liquid N2 molecules

can have random orientation over the Mg surface, initial configuration of horizontal orientation

was selected to estimate the maximum energy barrier for molecular rotation over the atop site.

The transition state coordinate is arbitrarily chosen (i.e., no units). The triple-bond alignment

angles with reference to the surface plane are also given in the Figure. These calculation results

imply that when the N2 triple-bonding orientation is changed from the horizontal to the vertical

configurations, the highest system energy is observed at the system with ∼ 18◦ alignment angle,

and ∼ 0.02 eV of transition energy barrier must be overcome.

Figure 4.2: Relative total energy difference of pure Mg system containing a N2 molecule in the
atop site with various triple-bond alignment configurations

The electronic spectrum of N2 with occupation of the bonding 3σ orbital by paired electrons

results in a diamagnetic molecule. It was found that the diamagnetic N2 molecule has a weak

attraction to the non-magnetic Mg surface based on the current DFT calculation of the adsorption

energies for different positions, alloying elements, and crystallographic orientation. This weak

attraction even varies with the adsorption site locations. Table 4.1 summarizes the calculated

adsorption energy, N-N triple-bond length, N2 surface bond length and the vibrational frequencies

of N-N bond (νN−N) and N2-surface (νN−S) of N2 molecule on Mg surface. In the contour map

of Figure 4.3, we present the calculation results of the in-plane binding energy of N2 with various

adsorption sites on the pure Mg. In the figure, the closed and dashed circles respectively denote the
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positions of Mg atoms on the outermost surface and the next layer. From these table and figure,

it is clearly seen that the atop site (=-0.0886 eV) is the most preferential position for the N2 with

the lowest binding energy followed by the bridge (Ead = −0.0547eV ), hollow 1 (Ead = −0.0459eV )

and hollow 2 (Ead = −0.0434eV ) sites. Note that the minimum binding energy of pure Mg surface

(atopposition,Ead = −0.0886eV ) is lower than the calculated binding energy of the pure Al system

(Ead = −0.038eV on(111)surfaceofpureAl), which indicates that pure Mg can attract the liquid

N2 molecule more easily in a thermodynamic sense than pure Al. The binding energy onto (111)

Al surface was calculated using the identical procedures and computation parameters except the

k-point set ((6 × 6 × 1) for Al) provided in the 2. Computational Methods section. Because

the diffusion path of atop-bridge-atop would require only 0.034 eV, it is expected that the N2

adsorption can be achieved by this path. It should be mentioned that the vertical distance between

the metal surface and the molecule (dN−S) increases from atop position to the bridge site and then

the hollow sites due to the steric and bond-order conservation arguments which explains that the

distance between the metal and the nitrogen would increase with the possible number of adsorbate-

substrate bonds. The triple-bond lengths (dN−N ) between two N atoms for all cases are greater

than the bond length of isolated N2 (1.107A◦). dN−N becomes relatively larger for the atop site

due to the strong interaction of the molecule with the surface. Comparing νN−N values for the N2

for different adsorption sites clarifies that atop position not only has the lowest adsorption energy

and the distance with the N2 molecule, but also the lowest vibrational frequency and longest triple

bonding length, which would lead to the consequent highest stability among the studied binding

sites. As it is expected that, by increasing the distance between two N atoms the corresponding

vibrational frequency decreases, the lowest νN−N with bond length of 1.122A◦ for the atop position

was predicted. In addition, it is seen that dN−N slightly increases and νN−N decreases when the

N2 molecule moves from the bridge to hollow sites, respectively. The experimental bond length

and stretching frequency for the free N2 are 1.098A◦ and 2331cm−1 respectively [139]. In our

calculation, the corresponding values from DFT are 1.107A◦ and 2369.4cm−1, respectively, which

demonstrate the rigor and the reliability of our calculations. Here, the frequency is given by the

energy of photons absorbed to cause molecular vibrations in a wavelength unit. From Table 4.1,

calculated νN−N results of N2 molecules on Mg surface show that the frequency decreases by

adsorption to the metal surface compared to the free nitrogen with no interaction to the surface
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(νN−N = 2369.4cm−1).

Table 4.1: Calculated binding energies (Ead), surface-nitrogen distance (dN−S), nitrogen bond
length (dN−N ), vibrational frequencies of N2 triple bonding (νN−N ) and the surface-nitrogen

atoms (νN−S) for an N2 molecule at different sites over the basal surface plane of Mg

Surface planes Alloying elements position of N2 Ead (eV) dN−S (Å) dN−N (Å) νN−N (cm−1) νN−S (cm−1)

Basal None Atop −0.0886 2.288 1.122 2128.5 231.1
Bridge −0.0547 3.651 1.109 2298.9 218.3
Hollow 1 −0.0459 3.755 1.110 2287.9 269.4
Hollow 2 −0.0434 3.789 1.111 2273.0 270.2

Figure 4.3: Contour map of the adsorption energy for N2 molecule on the basal plane of pure Mg.
Closed circle and dashed circle denote the position of Mg atoms on the outermost surface and the

next layer (i.e., 2nd layer) from the surface, respectively

4.1.2 From absorption to bulk interaction of nitrogen in Mg lattice

Finding the minimum energy path of a reaction is an important approach for studying the reactivity

of the process. In this work, we have applied the nudged elastic band (NEB) method to find the

minimum energy path for the process and to define the N2 dissociation path and transport barriers

[139]. To perform an NEB calculation for the interaction of the nitrogen with the pure Mg, an

N2 molecule was equilibrated on the atop position of pure Mg surface as the initial structure (i.e.,

reactant). For the final structure (i.e., product), two separated nitrogen atoms that had diffused

inside the Mg bulk after the geometry optimization were used. Considering these two structures as

58



the reactant and the product of the reaction, a global TS search based on the linear synchronous

transit/quadratic synchronous transit(LST/QST) calculation was performed starting with pairing

the equivalent atoms in two structures. To assure that the calculated transition state (TS) connects

the reactant and product, the NEB calculation using TS confirmation was applied to the system.

In the current work, at least five energy path estimates for the TS were tested and the minimum

energy path was selected. Figure 4.4 shows the calculated relative total energy change from the

geometry optimized state of N2 molecule in the atop site to a final imaginary state of two elemental

N atoms underneath the surface. The final state was obtained by performing geometry optimization

computation of two isolated N atoms underneath the Mg surface. This TS calculation was intended

to predict the energy barrier of N2 molecule dissociation over the Mg surface that will be diffused

into the bulk region during the cryomilling process. In the figure, the total energy of the initial

state was set to 0 and the relative energy changes are plotted along an arbitrary transition state

coordinate. The vertical distance from the surface to the N2 molecule (dN−S) was calculated from

the difference between the z-coordinate values of the surface Mg atom and the lower N atom. dN-S

decreases from the equilibrium value of 2.288A◦ to −1.049A◦ , where the negative sign of dN−S

indicates that the N atoms are positioned inside the bulk Mg region. These transition state (TS)

calculations predict that the energy barrier for the dissociation of N2 molecule and diffusion into

the bulk Mg requires 1.13 eV (i.e., ∼ 110 kJ/mol), which is about 9 times lower than the triple-

bond breaking energy of a single N2 molecule. However, if Boltzmann distribution (probability

∝ e
−DeltaE
kBT , where ∆E, kB, and T are the energy difference, Boltzmann constant, and absolute

temperature, respectively) for this phenomenon of bond breaking and diffusion into the bulk is

considered, the probability is still nearly 0 (i.e., ∼ 10− 64 at 90 K). It is, therefore, likely that the

N2 liquid would remain in their molecular form unless a very high external energy is provided during

the milling process. Currently, it is our understanding that there are no available experimental or

theoretical data about the kinetic energies for Mg materials. Despite this energy barrier, the total

energy of a system with separated N atoms showed a lower value, which implies that the isolated

N atoms are more stable inside the bulk region of Mg once the N2 bond is broken up. If there are

N atoms in the Mg lattice, they have been likely broken up near the Mg surface as the dissociation

energy of free N2 molecules is much higher (i.e., 995 kJ/mol by our calculation).

Table 4.2 summarizes the results of calculated binding energies (Ead), surface-nitrogen distance
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Figure 4.4: Relative total energy difference of pure Mg system containing a N2 molecule in the
atop site with various triple-bond alignment configurations

Table 4.2: Calculated binding energies Ead, surface-nitrogen distance (dN−S), and nitrogen bond
length (dN−N ) for Mg systems with different surface planes, alloying elements, and N2 positions.

Surface planes Alloying elements position of N2 Ead (eV) dN−S (Å) dN−N (Å)

Basal None On top of Mg −0.0886 2.288 1.122
Al On top of Mg −0.0893 2.292 1.122
Zn On top of Mg −0.0906 2.286 1.122
Y On top of Mg −0.0563 2.322 1.120
Al On top of Al −0.0245 4.178 1.107
Zn On top of Zn −0.0441 3.947 1.108
Y On top of Y −0.6200 2.434 1.126

Prism None On top of Mg −0.1453 1.123 2.245
Pyramidal None On top of Mg −0.1953 1.127 2.203

(dN−S), and nitrogen bond length (dN−N ) for Mg systems with different surface planes, alloying

elements, and N2 positions. As explained before, addition of common Al, Zn, and Y elements on

the substitutional surface position was considered in this work. The atop site of N2 adsorption

was selected for all of the calculations as it showed the lowest energy of the pure Mg system.

From the table, it was found that incorporation of Al and Zn shows similar effect on the N2

binding energies of the system. When Al or Zn atoms are present on the surface of Mg alloys,

the adsorption of liquid nitrogen will occur through the atop site over the Mg surface atom with

relatively same binding energy with that of pure Mg system. Adsorption on the Al or Zn will be

less likely to occur as the binding energy is much larger, which implied that addition of Al or Zn
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would reduce the N2 adsorption tendency of the Mg alloys during the cryomilling process. When

Y atom is doped on the surface, on the other hand, the binding strength of N2 molecule can be

substantially increased through the adsorption over the Y surface atoms; for the atop configuration

over Y atom is equivalent to -0.6200 eV that is about 7 times lower than the binding energy for the

same configuration of pure Mg (Ead = −0.0886eV ). Thus, it is expected that the liquid nitrogen

adsorption would be strongly enhanced by the surface alloying of Y. Therefore, as long as the

surface energies of alloying Y is not high and there are Y impurities on the Mg surface, compared

with other types of Mg alloys, Mg alloys containing Y (such as WE43) would show much stronger

tendency to capture the N2 molecules. The surface orientation also impacts the binding tendency of

N2 molecules. Although the grain boundary and interface character distributions of nano Mg/Mg

alloys synthesized from PM are not known, considering the surface energies of different orientations,

it is expected that relatively much higher population would be observed. The calculated results in

Table 4.2 clearly show that, values associated with the prism (101̄0) and pyramidal (1̄011̄) surface

planes are considerably lower than the binding energy from the basal surface, which indicates that

attracting N2 molecules could be facilitated by forming the less popular high energy surfaces.

Stability of nitrogen in Mg/Mg alloy

Next, we have examined the absorption behavior of N2 molecule or N atom into the bulk lattice

of pure Mg. Although we have shown that it would require a very high energy to break the triple-

bond of an N2 and to diffuse them into the lattice, the adsorption behaviors of both the N2 and N

absorbate types are studied for some special cases of interest. In Table 4.3, the results of absorption

energies for the situations studied in the present work are summarized. We first have considered

the stability of the N2 and N absorbate in the vacancy lattice of Mg atom, because it was previously

reported that the existence of vacancy sites is important in the lattice absorption and diffusion of

nitrogen species in Al/Al2O3 nanocomposites [160]. When a vacancy site of Mg atom was occupied

by an N2 molecule or an N atom, these absorbates showed instability such that they would diffuse

out of the original location and move to an interstitial position or they would move out of the

bulk lattice (N2 in the vacancy site on the surface), as summarized in Table 4.3. These instability

phenomena happened regardless of the vacancy positions (in the surface or in the 2nd layer from

the surface).
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Table 4.3: Calculated absorption energies (eV) of N and N2 in the Mg system with and without a
vacancy site.

Absorbate type Existence of vacancy Absorption site Absorption energy (eV)

N2 Yes Mg vacancy on the surface Unstable, moves out of surface
Yes Mg vacancy in the 2nd layer Unstable, moves to interstitial position
No Tetrahedral site between the surface and the 2nd layer −0.2269
No Tetrahedral site between the 2nd and 3rd layer −0.2767

N Yes Mg vacancy on the surface Unstable, diffuses into the lattice
Yes Mg vacancy in the 2nd layer Unstable, diffuses into the lattice
No Tetrahedral site between the surface and the 2nd layer −6.2182
No Tetrahedral site between the 2nd and the 3rd layer −6.3673

We then studied the lattice diffusion of the absorbates through the interstitial sites. The N2/N

absorption energies of the tetrahedral sites of hcp Mg crystals are shown in Table 4.3. In contrast

to the cases in which the absorbates were occupied in the vacancy sites, when the absorbates are

positioned in one of the interstitial sites, the systems showed much higher stability. For example,

the absorption energies are calculated as -0.2262 and -6.2182 eV for N2 molecule and N atom,

respectively, when the tetrahedral sites between the surface and the 2nd layer from the surface are

occupied. The absorption energies of tetrahedral sites between the 2nd and the 3rd layers from the

surface showed similar but slightly lower values compared with the energies from the tetrahedral

sites between the surface and the 2nd layer. These two tetrahedral sites and the probable diffusion

route are illustrated in Figure 4.5(a). Here, ”A” and ”B” positions denote the tetrahedral sites

in the surface/2nd layer and the 2nd/3rd layer, respectively. Using these ”A” and ”B” positions of

N2/N as the initial and final configurations, respectively, the transition state (TS) search and the

corresponding total energy calculation were conducted, and the relative total energy changes are

shown in Figure 4.5 (b). Several test trial calculations were conducted to find the minimum energy

paths displayed in Figure 4.5(b). It is seen from these results that the energy barriers for N2 and N

through the tetrahedral sites are ∼ 1.705 and ∼ 1.128eV , respectively, which implies that, even for

the N case, the lattice diffusion into the bulk Mg from the 2nd layer to the 3rd layer is as difficult

as the N2 dissociation over the Mg surface. To activate the solution strengthening and/or Orowan

strengthening mechanism based on the N2/N particles/dispersoids, therefore, these energies will

be required to overcome the energy barrier when it is assumed that the N-rich dispersoids are

formed near the surface of Mg matrix grains because it is expected that the N2/N species collected

in the Mg bulk during the milling process would be accumulated near the grain boundary area
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of the synthesized nano alloys. Note that, other than the tetrahedral sites (T-sites), the stability

in the octahedral site (O-sites) occupancy was also tested for N2 and N. It was predicted that,

however, these octahedral cases are not as stable as the tetrahedral cases (data not shown). From

these results, it is expected that the N atom would display a higher stability than N2 molecules in

the Mg lattice near surface once it is formed during the PM process, although it is currently not

experimentally clearly observed that individual N atoms exist in the Mg bulk lattice [160].

Figure 4.5: (a)Schematic illustration of the two tetrahedral sites for N2/N lattice diffusion and
(b)the relative total energy calculations to show the diffusion energy barrier between the two

tetrahedral sites near the grain surface region.

To compare the diffusion energy barrier of N in the bulk region without the free surface of Mg

matrix, total energy calculations based on geometry optimizations were performed using a pure

bulk supercell structures containing 4×4×4 atoms without vacuum surface. Two distinct diffusion

paths, i.e., T-sites and O-sites in the bulk Mg, have been tested to compare the energy barriers for

these two diffusion mechanisms. The relative total energy calculation results are plotted in Figure

4.6, demonstrating that the diffusion through T-sites is much easier than that through O-sites in the

bulk Mg; the diffusion energy barriers for these are ∼ 0.645 and ∼ 1.632 eV, respectively. Therefore,

the diffusion of N will be facilitated through the T-sites in the pure bulk lattice of Mg, if it occurs.

Further, it is found that the diffusion energy barriers of N in the pure bulk and the bulk regions

near the surface are different, which implies that incorporation of N into the subsurface of matrix

grains is more difficult than the diffusion in the pure Mg matrix. As a final remark, although the

results in the current work do not directly address the formation mechanisms of Mg3N2 near the

grain surface, it should be mentioned that the present work can provide a useful insight about the
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dissociation and the diffusion energies that must be kinetically provided to incorporate the nitrogen

species into the Mg nano alloys during cryogenic PM process, which can lead to much enhanced

mechanical properties by forming N-rich dispersoids near the grain surfaces and activating the

Orowan strengthening mechanism by mechanical penetration of these dispersoids.

Figure 4.6: Relative total energy calculations to show the diffusion energy barrier of N between
two tetrahedral sites and octahedral sites in the bulk region.

4.1.3 Diffusion of nitrogen in Mg lattice

Because it is not currently known whether the molecular or the elemental nitrogen (i.e., N2 or N,

respectively) would be predominantly present in the bulk Mg lattice during cryomilling, we modeled

the MEP for the diffusion of both N2 and N travelling between two sequential sites. Figure 4.7

depicts the schematic illustration of cryomilling attritor. Figure 4.7 also shows the initial and final

Mg alloy model configurations containing one Al atom (i.e., Mg-Al alloy). In the figure, the dark

blue, green, and magenta spheres represent N, Mg, and Al atoms, respectively. The same color

notations for Mg, Al, and N atoms are used throughout the figures in the entire manuscript. For

pure Mg systems, the Al alloying atom was replaced by the original Mg atom. The numbers in

the figure indicates the relative atomistic z-positions in the unit cell. Here, the initial and final

structures are superimposed to simply illustrate the interstitial diffusion paths through the (a)

octahedral and (b) tetrahedral sites. For the substitutional diffusion case shown in Figure 4.7(c),

rather than considering the two vacancy sites, switching the lattice positions between nitrogen
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species at z = 1/2 and the center Mg atom at z=0 position was modeled. Prior to the diffusion

calculation, we tested the input parameters of the DFT computation by calculating the formation

energy of a vacancy (Ef,v) in the bulk Mg matrix using the following approach [161].

Figure 4.7: Schematic illustration to show the cryomilling attritor and the initial/final positions of
N diffusing through the (a) octahedral (interstitial), (b) tetrahedral (interstitial), and (c)

substitutional sites. The numbers indicate the relative atomistic z-positions in the unit cell.

Ef,v = E

(
n− 1, 1;

(n− 1)

n
Ω

)
−
[

(n− 1)

n

]
E(n, 0; Ω) (4.2)

Where E(n,m; Ω) is the total energy of the computational system of volume Ω with n atoms

and m vacancies. Ef,v in the Mg matrix was calculated as ∼ 0.86eV , which shows a consistent pre-

diction with previously reported values [162, 163]. After confirmation of the reliability on the input

parameters, each of these initial and final configurations shown in Figure 4.7 has been geometry

optimized to find the most stable coordinate for either N or N2. Because the critical radius of an

interstitial atom located in a tetrahedral site is ∼ 0.54 times smaller than that in the octahedral

site of a typical HCP crystal, it is likely that there is relatively much smaller space for the diffu-

sion of N2 molecule through the tetrahedral sites. With this, N2 diffusion through the successive

tetrahedral sites was excluded in the current computational sets.
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Table 4.4: Formaion energy for the initial configurations considered in the present DFT study

Position Nitrogen type Formation energy in pure Mg (eV/unit) Formation energy in Mg-Al alloy (eV/unit)

Tetrahedral N2 - -
N −7.844 −7.832

Octahedral N2 −6.821 −7.011
N −8.249 −8.153

Substitutional N2 −6.504 −6.515
N −4.201 −7.213

Table 4.4 shows the calculated formation energies (EF ) of the structural configurations consid-

ered in the current work. (EF ) for each structure was obtained by subtracting the total energy

of the completely separated objects from the total energy of the system combining the Mg/Mg-Al

matrix and N/N2 as given by,

EF = ET − Emetal − EN/N2
(4.3)

Where ET is the total energy of the combined system including both Mg/Mg-Al and nitrogen,

Emetal is the total energy of either Mg or Mg-Al alloy, and EN/N2
is the total energy of isolated N or

N2. As presented in Table 4.4, all of the structural configurations manifest a strong thermodynamic

stability with EF ranges of -4.201 to -8.249 eV/unit. Therefore, these structures for bulk diffusion

would be deemed reasonable as the initial configurations.

As described in the Computational methods section, before conducting the MEP computations

to estimate the energy barrier for diffusion, the initial and final configurations have been geometry

optimized starting from the regular structures containing a nitrogen species at the exact octahedral,

tetrahedral, and/or substitutional sites. For systems with an N2 molecule, the center of mass of the

N2 molecule was initially positioned at these interstitial lattice sites. Figure 4.8 shows the examples

of energy variations with geometry optimization steps for the (a) pure Mg and (b) Mg-Al systems

including an N2 molecule at the octahedral site. The small red dots in the initial structural images

of the figure indicate the center of mass of the N2 molecule. After geometry optimization, one

can easily notice that the center of the corresponding N2 molecule is not positioned at the exact

octahedral site locations any longer due to anisotropic interactions between the N2 molecule and
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Figure 4.8: Examples of energy minimization before he minimum energy path (MEP) calculations
for he (a)pure Mg and (b)Mg-Al systems including an N2 molecule at the octahedral site.

the surrounding lattice atoms. These local energy minima states have been set up as the initial

structures for further MEP computations. For each computation set, a final configuration of the

atomic structure for diffusion with local energy minima has also been identified using the same

geometry optimization approach.

In Figure 4.9, we first show the relative total energy changes (∆E) in the octahedral and the

substitutional cases using the scale in the left-hand side y-axis based on the calculated MEPs for

N2 molecule. In the path coordinate, the initial and final configurations are indicated as 0 and 1

(arbitrary units), respectively. The energy level of initial configuration was set to 0 for a relative

comparison. To correlate the ∆E values, the N-N bond length of N2 molecule (dN−N ) during the
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Figure 4.9: Calculated minimum energy path (MEP)and the N-N bond length (dN−N ) for a N2

molecule in the pure Mg and Mg-Al alloy diffusing through the (a) octahedral and (b)
substitutional sites.

diffusion process was also displayed using the scale in the right-hand-side y-axis. For diffusion of

N2 between two sequential octahedral sites in pure Mg system (blue symbols), the initial change

of dN−N occurs by a small stretching of the N-N bond, and it increases as the diffusion proceeds.

As the N2 molecule rotates and finds a more relaxed site until the molecule is horizontally oriented

as presented in image (i) of Figure 4.9(a), ∆E decreases slightly, however, then for the nitrogen to
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pass through the Mg plane and diffuse to the next octahedral site, a significant amount of energy is

required. At this stage, one N atom distorts the regular structure of the dense Mg plane as shown

in the structural image (ii) of Figure 4.9(a), which is not favorable for the Mg structure, therefore,

the energy of the system increases. At this point, dN−N increases resulting in complete dissociation,

because is considerably larger than the nominal range of the nitrogen bonding (1.098− 1.454A◦ for

the triple and single bonding, respectively) [164, 165]. In this work, a 10% tolerance from the ideal

bond length was considered for the bond breaking criterion. The ideal bond was defined as the

sum of covalent radii of two atoms forming the bond. This tolerance limit was used based on the

energy calculation with regards to the isolated N2 molecule bond length. From this, it is predicted

that not only the triple bonding of N2 breaks, but also there is no probability for the formation

of single N-N bond during this diffusion process. In the proceeding computational frames after

N2 dissociation, dN−N continues to increase, and the molecular diffusion changes to the atomic

diffusion, which results in decreasing the energy level of the system. The decrease in ∆E continues

until one of the N atoms is located in the initial z = 3
4 octahedral site while the other one occupies

the final z = 1
4 octahedral site as shown in the structural image (iv) of Figure 4.9(a). The negative

relative energy for the final state implies that the N2 molecule is not able to diffuse to the bulk

of the Mg matrix through the interstitial sites, the existence of N2 molecule is relatively unstable

inside a perfect Mg crystal lattice, and the dissociation of N2 molecule would take place to minimize

the energy of the system when sufficient energy is supplied.

In Figure 4.9 (a), a similar behavior is observed for the Mg-Al alloy system (red symbols).

Again, it was found that the highest energy level of the system corresponds to the state where

one N atom is located in the passing (0001) atomic plane of matrix. However, the maximum ∆E

for the transition is much less than in pure Mg, presumably due to the smaller size of the Al

atom. The lowest energy level of the system is obtained when the complete dissociation of N2

takes place and each of the N atoms is positioned in the sequential interstitial site as shown in

the snapshot (iii) of Figure 4.9(a). In both pure and alloy compositions after N2 dissociation, the

moving N atom interacts with their closest neighbors to create weak bonding. The calculation

shows that the average bond lengths for Mg-N are ∼ 1.922A◦ and ∼ 2.117A◦ for the pure Mg and

alloy systems, respectively, and the Al-N bond length is equal to 1.879A◦. The higher tendency for

bond formation could be the reason for the smaller energy barrier in the alloy system. However,
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as these interactions are weak, the N atom can continuously move through the Mg lattice to lower

the energy of the system once the energy barriers are overcome as shown in Figure 4.9 (a).

Figure 4.9(b) shows and of the N2 molecular diffusion when a vacant site is accessible near

the diffusion path. Considering in Figure 4.9 (b) (open symbols), bond breaking would not be

expected either in pure Mg or in Mg alloy systems; the variations in are relatively small, which

will not result in molecular dissociation of N2 during diffusion. When the substitutional diffusion

is modeled taking into account of the switching event of simultaneous N2 and Mg lattice diffusion,

the changes in the energy of the systems are much more significant for N2 diffusion compared with

the octahedral diffusion case. As seen in the calculation results, the system needs to overcome an

energy barrier of ∼ 4.7 eV for pure Mg (blue solid symbols) and ∼ 2.3 eV for Mg-Al alloy (red solid

symbols) systems, respectively. The maximum in pure Mg is realized when the switching Mg atom

approaches the initial vacancy site while one of the N atoms of N2 is still located in the same plane

as shown in the structural image (i) of Figure 4.9 (b). As the Mg atom moves closer to the plane, the

energy of the system decreases until it fills the vacant site and N2 occupies an interstitial site that

is close to the newly formed vacancy (see the image (ii) of Figure 4.9 (b)). The calculation showed

that this state exhibits an energy level that is comparable or slightly lower than the initial and

final configurations. For further diffusion, a secondary energy barrier of ∼ 1eV exists. Similarly,

for Mg-Al alloy, the peak position of is observed when one of the N atoms passes through the next

(0001) lattice plane, and the energy barrier is estimated as ∼ 2.3 eV that is nearly half of the value

of the pure condition. In the alloy system, the N2 molecule has higher probability for diffusion in

the metal, although the energy barrier is still high. Unlike the pure case, the intermediate minima

is less stable than the initial and final states, but again the system will experience a secondary

transition state with energy barrier of ∼ 0.4eV .

It was reported that the bond breaking energy of the N2 triple bond over the pure Mg surface

(∼ 1.13eV ) is 1
9 of the dissociation energy of an isolated N2 molecule (∼ 9.7eV ) [136]. Although this

bond breaking energy over the Mg surface is much lower than the dissociation energy of a single N2

molecule, 1.13 eV is still a very high barrier for N2 molecules to break into the elemental form. It is

currently uncertain if elemental N is present in the Mg bulk lattice during the cryomilling process of

nanocrystalline Mg alloys/composites. If elemental N atoms are available in the bulk Mg lattice, it

is likely that a high external mechanical energy was provided to the liquid N2 molecule during the
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Figure 4.10: Calculated minimum energy path (MEP) for N atom in pure Mg and Mg-Al alloy
diffusing through the (a) tetrahedral, (b) octahedral, and (c)substitutional sites.
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cryomilling process. Also, there might be other mechanisms of N2 dissociation with a much lower

bond breaking energy barrier. Irrespective of the high dissociation energy barrier, the bulk Mg

system containing separated/dissociated N atoms showed a more stable configuration [127]. With

the possibility of the presence of elemental N, in Figure 4.10, we show the total energy changes

(∆E) of the Mg materials based on the MEP calculations for the N atoms travelling between the

sequential (a) tetrahedral and (b) octahedral sites. Interstitialcy diffusion through the tetrahedral

sites was considered for elemental N diffusion, as the atomistic volume of N atom is sufficiently

small to be retained in the tetrahedral sites.

For elemental N diffusion through the tetrahedral path inside the bulk of pure Mg (blue symbols

in Figure 4.10(a)), the lattice distortion of surrounding Mg atoms due to the N diffusion was

symmetric, therefore, the consequent ∆E through the diffusion path is also symmetric. The initial

and final geometries showed the highest stability, and a local minimum is observed indicating that

there is a relatively stable position between the two sequential tetrahedral sites at the half way point

of diffusion, as shown in the structural image (i) of Figure 4.10(a). When an N atom is travelling in

Mg-Al system (red symbols in Figure 4.10(b)), the ∆E variation is not symmetric anymore in the

travelling path due to the anisotropic interaction of N atom and the surrounding matrix atoms. The

maximum is observed when the moving N atom is located slightly above the (0001) matrix plane

(see the structural image (ii) of Figure 4.10(a)). In the final stage after geometry optimization, the

N atom is positioned in line with the (0001) matrix plane, off from the regular tetrahedral site in the

HCP crystal, as seen in the snapshot (iii) of Figure 4.10(a). Here, the forces from all neighboring

atoms would be balanced to establish the minimum energy state. Note that the diffusion energy

barrier of N atom in Mg-Al alloy system is much lower than that in pure Mg materials. Although a

higher attraction is expected from Mg atoms for the moving N due to the higher electronegativity

differences between Mg and N than between Al and N, there is a ∼ 16.6% decrease in the atomic

radius when an Mg lattice atom is substituted with an Al atom. This would provide more space for

the travelling N atom, thereby lowering the energy of the system in the final state. It is thought that

the energy barriers of the N atoms through the tetrahedral path are still too large to be overcome

by Boltzmann statistics, but they are much smaller than the barriers for the diffusion through

the octahedral sites reported in Figure 4.10(b). The energy barriers for the transition between

octahedral sites are 1.63 eV and 1.22 eV for pure Mg and the alloyed systems, respectively. This
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means that the octahedral site provides a much more stable site for the N atom compared with the

other surrounding sites in both pure and alloyed systems. Monitoring the trajectory files for this

process reveals that the highest for both pure and alloyed systems correspond to the configurations

when the N atom is passing through the compact (0001) matrix plane (see the structural image

(ii) of Figure 4.10(b)). The predicted MEPs are symmetric for both pure and alloy materials, and

less lattice distortion is observed compared with the tetrahedral diffusion case as shown in the

structural images (i) and (iii) of Figure 4.10(b). This can be explained by a higher stability of the

N atom in the initial and final octahedral sites after geometry optimization.

In addition to the N diffusion through the tetrahedral and octahedral sites, the substitutional

diffusion of N is modeled with switching the (vacancy + N) and Mg atom positions, and it was iden-

tified that the energy barriers for the pure and alloy systems are 0.58 eV and 2.17 eV, respectively.

Figure 4.10(c) presents the calculated profiles for these substitutional scenarios. After geometry

optimization of the initial structures, the N atom is pushed away from the original substitutional

position in searching for the local minima in the Mg-Al alloy case, most likely due to the anisotropic

interactions between the N and Mg-Al lattices as shown in the structure image (i) of Figure 4.10(c).

In contrast, we observe that when all of the surrounding matrix atoms are identical, the forces ap-

plied to the N atom can be balanced off with each other, which leads to the N atom residing in

the vacant site until diffusion starts (see the structure image of (ii) of Figure 4.10 (c)). This state

is considered as a very shallow local minimum state; as the N atom diffuses inside the bulk and

exchanges its position with one of the Mg atoms, the energy of the system decreases because the

small N atom prefers the interstitial sites in the diffusion path rather than the original vacancy site.

In this substitutional situation, the minimum energy state in the diffusion pathway corresponds

to the intermediate transition state (image (iii) of Figure 4.10(c)), not the initial or final states.

Therefore, it would be more relevant to estimate based on this minimum energy configuration, and

for such diffusion is now 0.58 eV. On the other hand, when one of the matrix atoms is replaced

by Al, the diffusing N atom is subject to a relatively high MEP, as shown in the structure image

(iv) of Figure 4.10(c) until it reaches a local minimum (image (v) of Figure 4.10(c)) upon passing

(0001) matrix plane. At this local minimum, the vacancy remains unchanged, and once the N

atom starts to diffuse to the next layer, the vacancy moves to the plane close to the N atom where

the second peak in the energy plot is observed. In the final state, the N atom is located in the
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interstitial site (i.e., near the octahedral site) away from the Al impurity as shown in the image

(vi) of Figure 4.10(c). From these results, it is expected that, as long as the N2 molecules are

dissociated to two N atoms, the existence of vacancy sites strongly reduces the energy barrier in

pure Mg. Table 4.5 summarizes the energy barriers through the different diffusion paths of N and

N2 in the pure and alloy Mg systems considered in the current work. The units of energy barrier

were converted to [kJ/mol] from [eV/structural unit]. As seen in the octahedral diffusion case,

when molecular dissociation is accompanied, the diffusion energy barrier includes the atomistic

diffusion energy barrier in addition to the energy required for dissociation. When a vacant site is

available near the diffusion path of an N2 molecule, the current DFT calculation showed similar

results to the work by Ma et al. [160]; they showed that molecular diffusion is much preferred when

a vacancy is located closer than 7.4A◦ to the N2 molecule in the Al/Al2O3 system. From Table

4.5, it is clear that the existence of Al impurities can promote the diffusion kinetics for both N

atoms and N2 molecules. However, when a lattice vacancy exists near the N atom, the optimized

structures and the diffusion path could be strongly influenced by the presence of alloying elements

and that the switching phenomena through the substitutional diffusion in the pure Mg materials

would be essentially achieved by the interstitial mechanism. It must be noted that, the diffusion

energy barriers listed in Table 4.5 are based on the probable diffusion projectiles considered in this

work. It is perceived that there might be other diffusion mechanisms/paths than the cases listed

in Table 4.5. However, it would be reasonable to set the energy barrier ranges of N and N2 bulk

diffusion to be ∼ 100 to ∼ 160 kJ/mol and ∼ 200 to ∼ 450 kJ/mol, respectively. These energy

barriers can be lowered to ∼ 40 to ∼ 200 kJ/mol and ∼ 40 to ∼ 220 kJ/mol for N and N2 diffusion,

respectively, when Al is incorporated as an alloying element. In conjunction with Table 4.5, in

Figure 4.11, we also show the entire total energy changes including the formation energies (Ef in

Eq. ??). In the figure, the y-axis positions of horizontal bars represent the relative total energy

changes of the initial (before diffusion) and final (after diffusion) structures with regards to the

energy of the completely separated (i.e., Mg/Mg-Al matrix and N/N2 atom/molecule) systems.

Note that, in Figure 4.11, the relative energies of the initial and the final states of the substi-

tutional N diffusion for pure Mg were adjusted to the energies of local minima (see the structural

snapshot (iii) of Figure 4.10(c)) in the diffusion pathways so as to represent the energy barrier of

0.58 eV. For pure Mg, it is thought that the interstitial tetrahedral and the substitutional switch-
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Table 4.5: Summary of the diffusion energy barriers calculated in the present DFT study

Position Nitrogen type Energy barrier Energy barrier Comment
in pure Mg in Mg-Al alloy
(kJ/mol) (kJ/mol)

Tetrahedral N2 - - -
N 92.336 40.771 -

Octahedral N2 202.563 38.941 N2 dissociates
N 157.485 117.691 -

Substitutional N2 451.12 217.067 N2 does not dissociate
but diffuses with high
energy barrier

N 56.032 209.707 -

Figure 4.11: Summary of formation energies and total energy changes of the structural
cinfigurations including diffusion energy barriers (EB) for the pure Mg and Mg-Al systems

considered in the present DFT calculations.

ing mechanisms would be the easiest routes for N atom diffusion and that interstitial octahedral

mechanism involving the N2 dissociation would also be favorable, although there is a fairly high

diffusion energy barrier (∼ 2.10eV ). When Al is included in the Mg matrix, the formation energies

are comparable to those of pure Mg, but the total energy of the Mg-Al system with a vacancy/N

atom pair is much lower than that of the pure Mg system. For this alloy system, the interstitial

tetrahedral diffusion of N and substitutional/dissociation of N2 mechanism would be the easiest
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paths out of the scenarios tested in this work For both systems, the dissociation of the N2 molecule

into N atoms is expected in the octahedral diffusion case (i.e., red dashed curves in Figure 4.11).

From Figure 4.11, one can readily find that the relative total energy of Mg/Mg-Al lattices (-6.82

and -7.01 eV for pure Mg and Mg-Al, respectively) containing an N2 molecule at octahedral site is

higher than those of Mg systems with a single N atom either at octahedral or tetrahedral sites that

are given by the initial and final energy states with dashed (octahedral) and dotted (tetrahedral)

curves. After N2 dissociation in this octahedral diffusion, however, the relative total energy of

lattices including two N atoms at octahedral sites becomes much lower (-9.65 and -9.51 eV for pure

Mg and Mg-Al, respectively) than the energies of those lattices with a single N atom at interstitial

positions. Therefore, it is thought that when N2 molecule is introduced in the Mg/Mg-Al matrices,

the dissociation of N2 molecule is energetically feasible through the octahedral diffusion process if

the corresponding energy barrier can be overcome.

4.1.4 Formation of Mg nitride

As alluded to earlier, nitrides formed during the cryomilling process have been credited as a source

of Orowan strengthening and as a mechanism to pin the grain boundaries serving to help retain the

nanocrystalline structure [55, 150, 151, 166]. Therefore, as the next computation set, the formation

energy of N-rich dispersoids was calculated. Here, we assume that the N-rich dispersoids would

take the crystal structure of Mg3N2 (anti-C-type, antibixbyite structure) [140]. The antibixbyite

structure can be constructed starting from the Fluorite structure (i.e., CaF2 structure); CaF2

structure was used for Mg2N and an idealized antibixbyite structure was obtained by removing

1
4 of Mg atoms from a 2 × 2 × 2 supercell [167]. The final structure was set in a way that each

nitrogen atom to have six nearest neighbor Mg atoms. Considering that the nucleation of such

second phase starts with forming a coherent interface, we calculated the formation energy of an

Mg3N2 nuclei containing several formula units of Mg3N2. To create such a coherent interface, it

was assumed that an Mg3N2 nucleus with coherent interface would be initiated by the nominal

HCP Mg structure containing N atoms in the octahedral site because of the high stability of N

atoms positioned in the HCP octahedral sites and the high structural similarity between the cubic

anti-C-type Mg3N2 and HCP Mg containing N atoms in the octahedral sites. Figue 4.12(a) and (b)

show the atomistic structures of Mg3N2 dispersoids, (a) before and (b) after geometry optimization.
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The calculated formation energy for this nitride was -457.86 kJ/mol that is comparable with the

experimental value of -460.66 kJ/mol at room temperature [168]. These results further confirm that

the antibixbyite nitride structure could be thermodynamically stable in the cryomilling condition

when a sufficient number of nitrogen atoms is available. In Figure 4.12(c), the formation energy

variations Mg3N2 nuclei with various numbers of Mg3N2 units near the basal (0001) surface region

and in the bulk are shown. Calculated results showed negative formation energy values for both of

the structures implying the thermodynamic possibility of the formation of this Mg3N2 nuclei-like

structure when sufficient N atoms are available at these sites. The predicted formation energy

for the structures in the (0001) surface is higher than that in the bulk region, however, note that

the initiation and subsequent growth rate of Mg3N2 precipitates would be limited by the contents

and the diffusion rates of available nitrogen atoms. Also, although the formation energy of this

nuclei-like structure in the bulk region is lower than that in the surface region, the results predict

that there is a higher chance for observing this component near the surface layer because unless

sufficient energy is provided before the formation of such N-rich dispersoids near the surface/grain

boundary of Mg grains, the diffusion energy barrier in the bulk Mg lattice is very high for the most

of the situations considered in this study.

Mg3N2 was identified experimentally in a cryomilled Mg WE43 powder [13]. In Figure 4.13

(a), a dispersoid (indicated by the white arrow in Figure 4.13) of about 100 nm in diameter was

observed using high angle annular dark field (HAADF) STEM at a camera length of 80 mm. EELS

was used to detect the presence of nitrogen and oxygen in the dispersoid. Figure 4.13(b) shows

the presence of the both the nitrogen and oxygen k-edges present in the EELS spectrum. Utilizing

these types of spectra, EELS was used to map the spatial distribution of oxygen and nitrogen in and

around the dispersoid observed. In Figure 4.13(a), we also show the elemental maps obtained by

subtracting a power-law background from the spectra at each pixel and integrating the remaining

signal in the nitrogen and oxygen k-edges, respectively. In these elemental maps (middle column

of Figure 4.13(a)), the brightness of each pixel is indicative of the relative concentration of the

respective element. We also provided the elemental map using a color scheme for visualization.

From these figures, it was identified that oxygen was distributed evenly throughout the region

examined (see the middle bottom or right-hand side images of Figure 4.13(a)) and nitrogen was

strongly concentrated in the dispersoid (see the middle top or right-hand side images of Figure
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Figure 4.12: Summary of formation energies and total energy changes of the structural
Antibixbyite crystal structure of Mg3N2, (a) before and (b) after the geometry optimization, and
(c) formation energy changes with various numbers of Mg3N2 nuclei units in the bulk Mg and Mg

basal (0001) surfaces.

4.13(a)), which confirms that this dispersoid is a nitride. According to the Mg-N phase diagram,

Mg3N2 forms from the reaction of Mg with N [169]. The nitrides of Y and Nd are both 50:50

compounds with N, forming YN and NdN, respectively [169, 170]. To verify the identity of the

nitride, EDS was used to investigate the dispersoids composition. Observing the elemental values

(Mg 95.9wt%, Y 2.3wt%, and Nd 1.8wt%), the dispersoid rare earth chemistry is very similar to

that of the bulk alloy and therefore is likely to be Mg nitride. Oxygen and nitrogen signals were also

detected with EDS, however, the quantitative values are known to be unreliable on the older-model

Si(Li) detectors with polymer windows such as the one utilized in this investigation.
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Figure 4.13: (a) HAADF micrograph of the Mg powder with EELS elemental maps to show the
concentration of nitrogen and oxygen around the dispersoid and (b)EELS spectrum of the

dispersoid with N and O K edges [13].

4.2 Al cryomilling

With their potential superior mechanical properties, the nanocrystalline Al alloys/composites syn-

thesized under cryogenic environments using the cryomilling process have received widespread at-

tention [23, 171, 172, 173] in recent years. These nanocrystalline materials are typically subject to

a sequence of fabrication processes including cryomilling, degassing, hot isostatic pressing (HIP),

extrusion, etc. In the cryomilling process, the powdered Al materials are routinely exposed to liquid

nitrogen atmosphere to minimize the milling time, to obtain ultrafine grain sizes, and to prevent
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the undesired oxidation reactions. The synthesized microstructure using this technique generally

features grain sizes under 100 nm and presence of dispersoids with various sizes and compositions

[174, 175]. The types, sizes, and distributions of such dispersoids embedded in the Al metal-

matrix can greatly influence the mechanical properties of synthesized products. The formation of

nitrogen-rich dispersoids (most likely AlN) during fabrication is very important, because these dis-

persoids are claimed to possibly activate the Orowan strengthening mechanism [127, 160, 174, 152].

Activation of the Orowan strengthening mechanism is strongly desired as it does not necessarily

decrease the ductility while increasing the strength of materials [55]. Despite a variety of pre-

vious reports showing the nanocrystalline Al alloys/composites with improved strength, most of

the examples exhibited relatively poor ductility when they were prepared from the cryomilling

process [176, 177, 178, 179, 180]. Further, the distribution and the diffusion of nitrogen species

introduced from the cryomilling atmosphere in Al matrix are also important because they strongly

influence the grain size and the nitrogen-rich dispersoids formation, which can greatly impact the

mechanical performance of samples [8]. It is, therefore, a vital importance to understand the inter-

action between the nitrogen species and the metal-matrix upon cryomilling process [13]. However,

experimental measurements of such interaction during cryogenic cryomilling process can present

a formidable challenge, therefore, the quantitative description for these liquid nitrogen adsorp-

tion, absorption, and diffusion in the Al lattice has been highly limited in the previous literatures.

With this, in the present work, we systematically performed atomistic computations employing

the density-functional theory (DFT) technique to examine the interaction between liquid nitrogen

species and Al metal-matrix. During the cryomilling process, the liquid nitrogen molecules (N2) in

the milling tank are adsorbed onto the Al powder surface and those molecules might be dissociated

into elemental nitrogen atoms (N). To systematically study such interactions, a comprehensive set

of atomistic level calculations was conducted quantifying the (i) adsorption energy of liquid N2, (ii)

dissociation energy of N2 into N atoms, and (iii) diffusion energy barrier for N and N2.

4.2.1 Adsorption of N2

Depending on the morphology and the composition of the adsorbent surface, the adsorption behav-

ior of N2 molecule can be varied. It is expected that a surface with wider hollow sites would provide

favorable condition for N2 dissociation. Because a surface with lower atomic density typically ex-
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hibit a higher tendency for N2 molecule adsorption and such stronger metal-nitrogen interaction

results in a weaker nitrogen-nitrogen interaction, the dissociation of N2 into N atoms is relatively

easier over a loosely packed surface. The adsorption energy (Ead) of liquid nitrogen on Al-based

surfaces (pure or alloy Al systems) can be estimated based on the energy state differences between

the separated and the combined structures of adsorbate (i.e., nitrogen molecule) and adsorbent

(i.e., Al surface), as given by Ead = 1
n [Etotal−Eslab−nEN2 ], where Etotal is the total energy of the

system, Eslab is the total energy of clean Al slab without N2, is the number of N2 molecules, and is

the total energy of single N2 molecule, respectively. Because very high energy is generally required

for N2 molecule dissociation, it is likely that the liquid nitrogen is adsorbed onto the Al surface

in its molecular form (i.e., N2) during cryomilling. Applying the computation parameters given

above, the DFT calculation results showed that the N2 dissociation energy is 998 kJ/mol, close to

the experimentally measured value of 942 kJ/mol [181]. We also calculated the formation energy

(Ef,AlN ) of N-rich dispersoids (i.e., AlN). Assuming that the N-rich dispersoids would take an ideal

wurtzite structure, the lattice parameter and Ef,AlN were computed as a=3.134 A◦, c/a=1.597,

and = -294.32 kJ/mol, which are consistent with experimentally measured values of a=3.111 A◦,

c/a=1.601, and = -303.16 kJ/mol [? ]. In Figure 4.14, we show the geometry optimized AlN

structure.

Figure 4.14: Crystal structure of AlN (wurtzite) after geometry optimization.

For the adsorption and the dissociation of N2 molecule in contact with the Al surface, as shown

in Figure 4.15(a), one N2 molecule was positioned at the atop position with a vertical distance of∼ 2

A◦ from the surface, which was the lowest energy state containing one N2 molecule with upright
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configuration. The adsorption of molecular species on FCC (111) surface is generally achieved

through four probable adsorption sites, i.e., atop, bridge, hollow1 (HCP hollow), hollow2 (FCC

hollow) sites [182, 183]. In Figure 4.15(b), we display the contour map of the calculated over the

(111) plane of pure Al surface. The calculated Ead values onto the atop, bridge, hollow 1, and hollow

2 sites were -0.142, -0.136, -0.138, and -0.134 eV, respectively, which implies that the adsorption of

N2 onto the pure Al surface is thermodynamically favorable through all four adsorption sites and

that the atop site is the best location for adsorption. Note that, although the adsorptions through

all four probable sites are thermodynamically favorable with negative adsorption energies, these Ead

values correspond to physisorption (Ead < 0.2 eV, van der Waals interactions) without forming a

strong chemical bonding (i.e., chemisorption). In fact, the symmetry of the N2 molecule can reduce

the overlapping of the N2 lowest unoccupied molecular orbital (LUMO) with the electron states of

substrate Al metals, which will prohibit forming a strong chemical bonding between N2 and the

metal surface. Even with highly conductive free-electron-like metals such as Al, the interaction

with N2 molecule is predicted to be fairly weak [184]. This finding is in good agreement with the

experiments by Jacobi et al. [185] and other previous DFT calculations that reported no chemical

bonding would form between the N2 molecule and pure Al (111) surface [184, 186].

We then tested the N2 adsorption tendency at the atop site for various Al systems with different

surface orientations. In Figure 4.15(c), we summarize the calculated Ead values onto the atop

position of pure Al, Al-Mg, Al-Mn, and Al-Fe alloy systems with (100), (110), and (111) surface

planes. From the results shown in Figure 4.15(c), Ead for alloyed systems all exhibited lower values

compared with pure Al. It was proposed that the molecule-surface attraction could hypothetically

form extra overlap between the LUMO of N2 and some substrate electron states, which would

downshift the LUMO resonance further. Downshift of LUMO will cause the molecular orbital cross

the Fermi level. When combined with the d orbital in the transition-metals, these changes in the

orbital states of N2 will exhibit marginal effects for sticking, molecular adsorption, and molecule

dissociation [184]. When one Al atom is substituted with an Mg atom, a stronger bonding between

Mg atom and N2 molecule is expected, because the 3s2 orbital of Mg has a slightly greater electron

donation propensity to the N2 1pi∗ antibonding orbital. Also, the presence of larger transition

metals (Mn or Fe) on the Al surface can strongly increase the thermodynamic tendency for N2

attraction. The stronger interaction of N2 to the surfaces alloyed with Fe and Mn can be described
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Figure 4.15: (a) Adsorption of N2 molecule onto the (111) surface of Al, (b) contour map of
calculated over the (111) surface of Al, and (c) calculated Ead onto the atop position of various

Al-based systems with (111), (110), or (100) surface orientations.

by the d-band center model by Hammer and Nrskov [187]. When an N2 molecule is adsorbed

onto metallic surfaces, the adsorption occurs in a two-step sequence. The initial step takes place by

coupling between the adsorbate orbital levels and the itinerant sp electrons of the metals, which will

result in new adsorbate levels that are broadened into resonances and are renormalized toward lower

energies by the surface potential in non-transition metals. Presence of the d orbital of transition

metals and noble metals, on the other hand, leads to an extra splitting of the renormalized adsorbate

levels into bonding and antibonding levels. The position of the d-band center with respect to the

Fermi level defines the strength of the interaction between adsorbent and adsorbate. A downshift

of the d-band center of the metal results in a less adsorption of the molecule by the surface, while

a shift-up of d-band center implies a more reactive surface and higher adsorption propensity [188].

For an N2 molecule, HOMO (the highest occupied molecular orbital) and LUMO are 3σg and 1π∗g ,
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respectively. In the second step, the 1π∗g LUMO of N2 that was initially unoccupied then couples

with the d orbital of transition metals, and this gives rise to a downshift of the mostly filled d

orbital states and a similar upshift of the empty 1π∗g LUMO. Based on the partial density of states

(PDOS) distributions shown in Figure ??(a), we evaluated the d-band center for the various Al

systems with (111) surfaces and found that the d-band center shifts up from 2.04 for pure Al to

2.19, 2.56 and 2.49 eV for the surfaces alloyed with Mg, Mn, and Fe, respectively, which again

confirms the results shown in Figure 4.15(c). When the d-band center shifts up in energy as in the

Mn- and Fe-doped Al alloy cases, the number of anti-bonding states above the Fermi level increases,

which results in less-filled anti-bonding states and subsequent stronger bonding.

Figure 4.15(c) also presents the calculated impacts of surface orientations on Ead . The tendency

of the surface atom i to attract a molecule can be correlated with the general coordinate number

(CN), CN(i)=
∑ni

j=1 cn(j)nj/cnmax, where cn(j) is the coordination number of the neighbor atom

j, n(j) is the number of nearest neighbor atoms, and cnmax is the maximum coordination number

for the atoms in the bulk, respectively [111, 189]. A surface with lower CN is typically less stable,

and lack of coordination atoms in such an unstable surface may result in a bond formation between

the adsorbate and the metallic surface. For FCC crystals, cnmax is 12, and CN for the atop site in

(111) plane is estimated as 7.5. On the other hand, the CN values for the atop site on (110) and

(100) planes can be computed as 5.17 and 6.67, respectively. These results for CN are consistent

with the Ead calculations in Fig 4.15(c); the (111) surface is the most stable orientation and the N2

molecule adsorption onto the (111) surface is less likely. Although the effects of crystallographic

orientation are not discernable for pure Al and Al-Mg materials, our calculations clearly show that

the (110) plane alloyed with either Mn or Fe will strongly attract N2.

The PDOS distributions for N2 adsorption over the (111), (110) and (100) surface planes for

pure and alloyed Al systems are shown in Figure 4.16. It was shown that, because of a large HOMO-

LUMO gap and a high bond order of N2, slight change in the electronic structure is expected in N2

when N2 molecule is adsorbed to the metal surface [184]. Therefore, we expect that the changes in

the electronic structure is mostly affected by the characteristics of the surface including the surface

orientations and surface compositions. It was observed that when pure Al surface is cleaved to

(111), (100), and (110) planes, 2, 5, and 16% of height contractions in the surface layers occur,

respectively [190, 191, 192]. When a bulk metallic crystal is cut to form surfaces, the electrons near
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surface atoms rearrange to mitigate the charge-density corrugation and the electrons kinetic energy,

and they move toward the bulk, leaving positive ions behind. If the negative charge is concentrated

85



Figure 4.16: PDOS profiles over the (a) (111), (b) (110), and (c) (100) surface planes of pure Al
and Al alloys with N2 adsorption.

in the bulk, the positive ions generated in the initial stage will be attracted toward the bulk atoms

due to the Coulombic electrostatic forces. Because of the relatively flat nature of the electronic

corrugations for close-packed surfaces, the contraction in the height for these close-packed planes

is generally smaller than those for other less compact surfaces. It is clearly seen in Figure 4.16 that

the total PDOS distributions for (111) surface show less wrinkles compared with the other two less

compact surfaces [193]. Also, the PDOS calculations for Al-N2 systems including alloying elements

show that the presence of Mg, Mn, and Fe does not strongly perturb the electronic structures of

the systems.

4.2.2 Absorption and dissociation of N2

Once the liquid N2 molecules are physically adsorbed onto the Al surface, they may have a chance to

dissociate into their atomic elements and to penetrate into the bulk lattice of Al materials [174, 28].

Such dissociation and/or absorption can happen depending on the degree of mechanical milling

energies that will be provided from the milling balls during cryomilling, however, the mechanisms
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and required energies for these dissociation and/or absorption phenomena are not well known.

Thus, it is crucial to reveal the mechanisms and to assess the amount of energy required for

a transformation comprised of N2 dissociation and absorption inside the Al lattice. Here, we

conducted DFT calculations to evaluate the energy barriers for surface penetration and eventually

bulk diffusion of nitrogen species. Note that there must be many possibilities for the minimum

energy paths (MEP) associated with N2 absorption into the Al lattices. From the previous results

for N2 adsorption, it was predicted that the N2 molecule will not dissociate at the adsorption stage.

With this, we limit the absorption scenarios to two extreme cases, i) the N2 molecule dissociates

and simultaneously diffuse into the lattice (i.e., N absorption) and ii) the N2 molecule does not

dissociate into its elemental atoms and simply transports inside the Al lattice (i.e., N2 absorption).

Figure 4.17: Minimum energy path (MEP) profiles upon bulk absorption of N2 molecule and N
atoms through the (111) surface of Al.

Figure 4.17 presents the calculated minimum energy path (MEP) profiles for the absorption of

N2 molecule and two separate N atoms through the (111) surface of pure Al. To set the initial

configuration, an N2 molecule was placed at the atop position. At the adsorption stage (Figure 4.17

(i)), the liquid nitrogen-metal interaction is relatively weak because the adsorption is accomplished

by overlapping the N2 3σg bonding orbital and the bands of metal surface. After adsorption,

donation from N2 1πu bonding orbital of N2 to the surface and subsequent back-donation from the

surface to the 1π∗g orbital occurs. Since the interactions through the π orbitals are more compelling,
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the N2-Al surface interaction becomes stronger while N-N bond becomes substantially weakened,

which eventually leads to the dissociation of N2. The dissociation energy of N2 over (111) surface of

pure Al was calculated as 1.94 eV, which is much smaller than that of isolated state (9.76 eV) [181].

In our study, two distinct representative final configurations were considered for the possibilities of

N2 molecule dissociation upon absorption through the Al lattice. The first configuration consists of

N2 molecule centered in an octahedral site in the first layer under the surface (Figure 4.17 (v)). In

Figure 4.17, the MEP profile for this situation is provided using green triangle symbols with detailed

atomistic structural images (see Figure 4.17 (ii)-(v)). The second configuration considered two N

atoms centered in two neighboring octahedral sites under the (111) surface (Figure 4.17 (ix)), and

the MEP profiles are plotted using brown square symbols along with intermediate structural images

(see Figure 4.17 (vi)-(ix)). Note that these two final configurations correspond to the representative

N2 and N absorptions on the (111) surface, respectively, in the current study. From the calculated

results, we see that molecular N2 absorption needs to overcome an energy barrier of 2.68 eV while

atomistic N absorption requires only 1.94 eV energy by the N2 dissociation.

Figure 4.18: Minimum energy path (MEP) profiles upon bulk absorption of N2 molecule and N
atoms through the (110) surface of Al.

When nitrogen species are absorbed through less compact (110) or (100) planes, the dissociation

and absorption energy barriers for N atoms were predicted to be much larger than that for (111)
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Figure 4.19: Minimum energy path (MEP) profiles upon bulk absorption of N2 molecule and N
atoms through the (100) surface of Al.

plane. Details for the MEP profiles and the atomistic structural configurations starting from

physical adsorption of the N2 molecule over the (110) and (100) surface planes of pure Al materials

have been provided in Figure 4.18 and 4.19, respectively. The same symbol types and colors in

Figure 4.17 have been used to indicate the N2 and N absorptions in these figures. From the data

presented in Figure 4.18, it was predicted that the molecular absorption of nitrogen over the (110)

surface would have an energy barrier of 3.23 eV. On the other hand, the diffusion energy barrier

for the dissociative absorption over the (110) surface was equivalent to 6.52 eV, which implies

that the dissociation of N2 would be practically not feasible. Comparable results are identified

for the nitrogen absorption through the (100) surface of pure Al, as shown in Figure4.19. The

energy barriers for these loosely packed surfaces were similar, and the energy required for molecular

absorption through the (100) surface of pure Al was estimated to be about half of the equivalent

energy for dissociative absorption with numerical values of 3.13 eV and 6.46 eV, respectively. These

results could be originated from the less likelihood of the strong interaction between nitrogen and Al

surface atoms upon the dissociation procedure due to the smaller atomic density on the Al surface.

From Figure 4.17-4.19, it is seen that the N2 molecule approaches with its vertical configuration

if the dissociation of N2 is not assumed (i.e., N2 absorption in the bulk octahedral site) regardless
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of the surface orientations. On the other hand, when considering the dissociation of N2 (i.e., N

absorption), the N2 molecule horizontally approaches to the Al surface. One can readily notice that

a horizontal adsorption of N2 to a relatively compact surface such as (111) results in the dissociation

of N2 prior to the surface penetration. However, when the absorbing surfaces are (110) and (100),

the dissociation of N2 takes place below the surface, which can render the dissociation energy

barrier much larger than those of the (111) system and other (110) and (100) systems without N2

dissociation. The MEP profiles in Figure 4.17-4.19 generally exhibit two peaks. The first peak

in the absorption process is associated with the energy barrier for the N2 molecule access to the

metal surface. The energy of the system becomes lower in the intermediate state by forming a

thermodynamically stable adsorbate-surface combination, except one case where a bond formation

was detected between the absorbing N and surface atoms (see Figure 4.18, N absorption over the

(110) surface). In this case of dissociative absorption, the N2 debonding (i.e., breaking of triple N2

bonding) occurs at this stage, too, which can explain the high energy barrier without a local energy

minimum as shown in Figure 4.18. The second peak is related to the penetration of N/N2 to the

bulk in searching for stable octahedral sites. With these, it is predicted that the N2 dissociation

and subsequent absorption over (110) or (100) planes is much less likely.

Also, one can readily find that the final energy states of N2 absorption are higher than the initial

energy states for all cases if no N2 dissociation is assumed. On the contrary, as shown in Figure

4.17-4.19, after dissociative absorption, the relative total energies of the final system with respect

to the total energies of initial configuration all decrease, which manifests the higher stability of the

Al lattice containing dissociated N atoms. These results can imply that the nitrogen embedded

in the Al metal-matrix is likely to take the atomic form and these can happen with relatively low

energy barrier through the absorption/dissociation of N2 over (111) plane of pure Al, which cannot

be easily revealed by experimental characterization tools; although there are many previous reports

regarding the nitrogen contents in nanocrystalline Al alloys/composites, however, it is still not clear

whether the nitrogen contained in the bulk materials is N2 or N.

4.2.3 Diffusion of N2 and N in the bulk alloy

Although the absorption energy barrier for non-dissociative nitrogen is relatively high on the Al-

based surfaces, it is thought that there still are chances for the presence of either atomistic or molec-
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ular nitrogen inside the Al crystals, because the mechanical forces from milling during cryomilling

will assist the absorption of nitrogen species. Also, note that we tested the nitrogen absorption

only over the major (111), (110), and (100) surfaces, and there might be other pathways, although

they are not likely to possess high probabilities. Therefore, we assumed that, depending on the

adsorption surface types, both atomic and molecular nitrogen could be present in the bulk Al lat-

tice. Considering that these two probable scenarios, we provide the calculation results regarding

the diffusion energy barrier and the corresponding MEP profiles for both N and N2 in the bulk

lattices of pure and alloyed Al systems.

Figure 4.20 shows the calculated MEP profiles for (a) N atom and (b) N2 molecule between

adjacent octahedral sites along with detailed atomistic structural snapshots in various Al systems.

As previously addressed, the diffusion through the octahedral sites was tested in this work because

the octahedral site is the largest interstitial site in the FCC crystal with the highest stability

containing interstitial nitrogen species. When travelling through sequential octahedral sites, the

nitrogen (N or N2) would take a longer but lower energy barrier path by passing through the

intermediate tetrahedral site in the crystal [127]. In this case, the degree of lattice distortion is

much smaller compared with the distortion resulting from the shorter path linearly linking the

initial and final octahedral positions. From Figure 4.20(a), it is shown that the MEP profiles of

the N atom projectiles exhibit nearly symmetric curves. The diffusion energy barrier of N atoms

in pure Al was calculated as 0.71 eV, which is higher than the barrier of smaller atoms such as H

(0.16 eV) [194]. In the figure, the diffusion energy barrier of N atoms in pure Al (0.71 eV) is lower

than those in the alloyed systems. This can be explained by the lattice distortion induced by the

presence of alloying elements; because the size of the N atom is relatively small, the transport of

nitrogen species is feasible through larger interstitial sites. On the other hand, as Figure 4.20(a)

presents, by increasing the size of alloying element from Fe and Mn to Mg, a greater distortion

in the lattice results in less likelihood of diffusion with higher energy barriers. In contrast to the

N case, the MEP profiles of N2 through sequential octahedral sites showed double local maxima

with a barrier height of 1.25 eV. The structural images provided in Figure 4.20(b) show large

distortions in the Al lattice during diffusion. In these cases, such extra distortion in the lattice

prior to diffusion opens the path for the relatively large N2 molecules that can facilitate the N2

transport. As shown in Figure 4.20(b), pure Al exhibits the highest energy barrier for diffusion,
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Figure 4.20: Minimum energy path (MEP) profiles for (a) N atom and (b) N2 molecule through
the octahedral sites in various Al systems.

and as the size of alloying element increases from Fe and Mn to Mg, the diffusion energy barrier

consecutively decreases due to the larger lattice distortion. When the N2 molecule starts to diffuse

from one octahedral site to the adjacent octahedral site, the N atoms in N2 can form some meta-

stable bindings with the Al lattice atoms, and as the molecule diffuses, the old meta-stable bonds

are disconnected and newer meta-stable bonds can form. This can explain the double local maxima

with two peaks in the MEP profiles shown in Figure 4.20; the two peaks are associated with the
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breaking of the meta-stable bonds. Because the bonding strengths of these two meta-stable bonds

are similar in pure Al, the two MEP profile peaks in pure Al display similar heights. Note that the

intermediate minima correspond to the state that the two N atoms of N2 are bonded to a shared

middle atom. In the alloyed systems, this shared atom is modelled as the alloying element, and

breaking of the two N bonds (i.e., 2nd peaks for alloyed systems in Figure 4.20(b)) with the alloying

element is more difficult compared with breaking of the N bonds (i.e., 1st peaks for alloyed systems

in Figure4.20(b)) with Al atoms. Therefore, the MEP profile heights for the 2nd peaks are larger

than those for the 1st peaks in the alloyed systems. Although a local minimum is observed in the

N2 MEP profile, it is predicted that a relatively higher amount of energy is required compared

with N diffusion, therefore, molecular diffusion of N2 is less likely to occur and the dissociation

of N2 may be accompanied for the diffusion process of nitrogen in Al lattice. It must be again

noted that the general consideration for the diffusion of nitrogen species in this work is based on

the octahedral interstitial configurations with higher energetic stability of Al lattices. Although it

is highly unlikely due to relatively high energies of other structures, there might be other avenues

for the transport of N/N2 in the Al crystals.

4.3 Mg corrosion behavior

4.3.1 Surface energies

The surface energies of Mg/Mg alloys were first calculated to examine the impacts of surface crystal

orientation and the impurity elements. The surface energy, γ, for pure Mg materials can be typically

calculated by the following equation,

γpure =
Eslab,relaxedMg − 0.5nMgE

bulk
Mg − 0.5Eslab,unrelaxedMg

A
(4.4)

Where Eslab,relaxedMg is the total energy of the vacuum slab after the geometry optimization, EbulkMg

is the total energy of bulk Mg unit cell, nMg is the ratio of the number of atoms in the slab to the Mg

unit cell, Eslab,unrelaxedMg is the total energy of the vacuum slab without geometry optimization (i.e.,

all atomistic positions are fixed), and A is the surface area in the slab, respectively. Note that Eq.

is used to calculate γ of relaxed surface only, while γpure =
Eslab,relaxedMg −nMgE

bulk
Mg

2A is typically used
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to calculate the average γ of unrelaxed and relaxed surfaces. For the surface energy computations

including an impurity element (e.g., Al, Zn, or Y) on the surface, one middle Mg atom on the surface

was replaced by one of the three alloying elements. When an alloying element is incorporated onto

the Mg surface, the expression for the surface energy, γ, of the alloyed surface must be modified

and is expressed in Eq. 4.5,

γpure =
Eslab,relaxedMg−alloy − 0.5nMgE

bulk
Mg − 0.5nalloyE

bulk
alloy − 0.5Eslab,unrelaxedMg−alloy

A
(4.5)

Where Eslab,relaxedMg−alloy is the total energy of the vacuum slab including an alloying element after

the geometry optimization, EbulkMg is the total energy of bulk Mg unit cell, nMg is the ratio of

the number of atoms in the slab to the unit cell, Ebulkalloy is the total energy of bulk unit cell of

alloying element, nalloy is the ratio of the number of atoms in the slab to the unit cell of alloying

element, Eslab,unrelaxedMg−alloy is the total energy of the vacuum slab including an alloying element without

geometry optimization (i.e., all atomistic positions are fixed), and A is the surface area in the slab,

respectively.

Table 4.6: Calculated surface energies (kJ/mol) of Mg systems with different surface planes and
alloying elements.

Surface planes Alloying elements Surface energies (kJ/mol)

Basal None 33.02
Al 31.07
Zn 31.46
Y 31.51

Prism None 102.14
Al 100.48
Zn 100.71
Y 100.57

Pyramidal None 124.11
Al 120.39
Zn 120.65
Y 122.63

The calculated surface energies (in kJ/mol) of the pure Mg and Mg alloys using Eq. 4.5 is

provided in Table 4.6. The calculated surface energy of the pure Mg system with basal surface

plane orientation was 33.02 J/mol and this can be converted into 0.62 J/m2, which shows a good

agreement with the previously calculated value (0.64 J/m2) based on a pseudopotential approach
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[195]. It is in-between other two previously reported surface energies of Mg basal plane, i.e., 0.29

J/m2 based on the valence electron structure by empirical electron theory (EET) [128] and 0.76

J/m2 from experimental measurements [196]. As discussed in [128], the result from EET calculation

requires some modifications for the additional value of the free energy with forming of new surface.

As shown in Table 4.6, the calculated surface energies exhibit a reverse relationship with the atomic

density of the surface plane; the atomic densities of basal, prism, and pyramidal surface planes of

Mg are 0.041, 0.060, 0.112 atoms/A◦2, respectively. It was also found that all of the alloying

elements lower the surface energies, which implies that addition of the alloying elements of Al, Zn,

and Y would result in more stable surfaces. However, given the scales of the calculated surface

energies, the crystallographic surface orientation is the most influential factor in determining the

surface energy values of the Mg/Mg alloy systems.

4.3.2 Water adsorption on Mg/Mg alloys surfaces

The degree to which the water molecule gets adsobed to the metal surface signifies the vulnerability

of metal for corrosion and it is the starting point of the degradation/corrosion process in an aqueous

environment. Knowledge on the interaction of water molecule with the surface, thus, would be

essential to understand the hydrolysis process of metals. Although the bulk formation energy of

hydroxide films is an important factor in determining the degradation rates of Mg/Mg alloys and

the quantitative relationship between the water molecule adsorption and metal surface degradation

is not firmly established, the extent of attraction or repulsion of a water molecule to the surface is

also one of the important factors to elucidate how much the surface could be passivated against the

water molecule interactions. As the first effort, to study the hydrolysis behavior of the Mg/Mg alloy,

we analyzed the respond of metal surface to the approach of water molecule. With this concern

we tested the stability of a water molecule for various molecular configurations and orientations.

Figure 4.21 shows two examples of unstable water molecule over the ’atop’ position of the (0001)

Mg surface. In the figure, the green, red, and white spheres represent Mg, O, and H atoms,

respectively. Note that the same color notation is used through the structural images contained in

the entire manuscript. In the figure, the initial water molecule contains an O-H bond in parallel to

the Mg surface and another O-H bond tilted either away from or towards the Mg surface. After

geometry optimization, these water configurations are changed to the upright or the downward
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orientations, respectively, indicating that the initial configurations are unstable. Based on various

initial configuration tests, it was found that the upright orientation is one of the most stable water

molecule configurations; e.g., the total energy of upright configuration was much lower than that

of downward configuration. Figure 4.22 (a) presents such upright configuration of a water molecule

adsorbing to the atop position of the (0001) Mg surface. The average equilibrium distance from

the surface for this upright configuration over atop position was 2.00 Å, which could be varied

depending on either the types of the alloying elements on Mg surface or the sites of adsorption.

Figure 4.22 (b) is the schematic illustration of the side view of adsorption, where α is the tilting

angle between the Mg surface plane and the molecular dipole moment plane (i.e., the plane consists

of two H atoms and one O atom). It is crucial for the water molecule to appraoch the metal surface

with certain orientation, because this orientaion will affect the response of water molecule to an

applied electrochemical field, metal dissolution, and molecular dissociation of adsorbent. These

water molecule configurations with simultaneous tilted O-H bonds were also found to be stable.

Calculations reported in Figure 4.22 (c) show the dependence of the adsorption energy on the tilting

angle (α). In this calculation, when the dipole moment plane of the water molecule is parallel to

the Mg surface, the tilting angle was set as α = 90◦ (see Figure 4.22 (b)). The upright configuration

with the O atom pointing to the surface is therefore defined as α = 0◦ . The following Eq. 4.6

quantifies the adsorption tendency of the surface for a water molecule.

Ead = Ef − Eslab − Ewater (4.6)

Where Ead is the adsorption energy, Ef is the total energy of the Mg/Mg alloy systems contain-

ing a water molecule, Eslab is the total energy of Mg/Mg alloy slab system without a water molecule,

and Ewater is the energy of an isolated water molecule. The alignment of the water molecule over

the atop position was geometry optimized and a tilting anlge of ∼ 10◦ was calculated for the con-

figuration with the highest stability. It was found that the adsorption energy variations for the

tilting angles between 10-47◦ ranges are very small but Ead increases as α increases to 90◦ after

∼ 47◦. The water molecule mixes with the Mg surface through its higher energy occupied molecular

orbitals, 3a1 and 1b1, which are the molecular orbital (MO) from mixing the O 2pz atomic orbital

(AO) and the H σ MO, and the nonbonding MO from oxygen 2px AO, respectively. Comparing the
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electron density for the equilibrium configurations with 10◦ tilt angle and the upright (α = 90◦) in

Figure4.22 (d) reveals that the upright water molecule will favor the interaction through the 3a1

orbital because it is in the C2v symmetry plane of the molecule, while the 1b1 orbital, which is

orthogonal to this and antisymmetric about a mirror plane in the molecule, is the preferred orbital

for flat adsorption of the water molecule. Also, it is seen that the partial density of states (PDOS)

of the electrons for the upright configuration varies through a wider range of energies compared to

that of the 10◦ tilting angle configuration. From these results, it is likely that a water molecule

would have a tilted (10−47◦) configuration when it is adsorbed onto the atop position of the (0001)

Mg surface.

Figure 4.21: Examples of unstable configurations of a water molecule over the atop site of Mg
surface

After analyzing the adsorption behvaior on the atop posirion, we tested the adsorption energies

over different sites (i.e., bridge, hollow 1, and hollow 2 positions) of the basal Mg surface with

various water molecule tilting angles. These low-index high-symmetric positions are defined using

Figure4.23(a). The hollow 1 site differs from the hollow 2 site by having an underlying Mg atom

of the 2nd layer from the surface. Although the adsorption of a water molecule with a tilting

angle of 10 − 47◦ was thermodynamically preferred over the atop site, the geometry optimization

of a water molecule with tilting angles less than 90◦ over the bridge, hollow 1, and hollow 2 sites

of the Mg surface showed high instability. Therefore, for in-plane tracking of a water molecule

over the Mg surface, we considered the vertical orientation (i.e., upright configuration) of a water

molecule for direct comparison. Upon adsorption, the water molecule acts as an electron donor
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Figure 4.22: Schematics of (a) water molecule adsorption over the atop position of pure Mg
surface and (b) the side view to illustrate the tilting angle (α) between water molecule and pure

Mg surface, (c) calculated adsorption energies with various tilting angles (α), and (d) partial
density of states (PDOS) for p orbital of water molecule with upright and 10 tilted configurations.

and the substrate serves as an electron acceptor; the Mulliken population analysis confirms that a

water molecule provides 0.1e− to the metal. The potential energy surface is relatively smooth for

adsorption energy of a water molecule on the basal plane of pure Mg; transferring between the bridge

site and both of the hollow sites requires small activation energies. The energy barrier considerably

increases only when a water molecule travels from any of these three sites to the atop position. The

energy barrier for such transformation was approximately ∼ 0.14 eV. For the more stable system

with a water molecule with a tilting angle of 10−47◦, the adsorption energy difference between the

atop site and the other sites is ∼ 0.25 eV. The data presented in Table 1 and the contour map of

Figure 3(b) show the adsorption energy changes with the upright water molecule configuration in

different adsorption sites of the Mg surface, implying that the atop position is the most preferred

site and the bridge site exhibits a similar level of energy with the hollow sites. These results are in

agreement with previous studies that reported favoring adsorption of a water molecule on the atop

position of close-packed surfaces of HCP and FCC metals (i.e., Au, Ag, Cu and Ru) [197, 126]. We

also observe that the geometry of the water molecule changes upon adsorption; the intramolecular
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H-O-H angle (θ) increases from 104.4 before adsorption to ∼ 109◦ for the atop site and to ∼ 107◦

for the rest of the adsorption sites. In addition, it was found that the O-H bond length does not

noticeably elongate for the molecule adsorbed to the surface compared to the water molecule in the

gas phase (i.e., isolated molecule).

Figure 4.23: (a) High-symmetric adsorption sites on the basal (0001) surface of Mg and (b)
in-plane contour map to show the adsorption energy on the basal (0001) surface of Mg.

Table 4.7: Calculated adsorption energies (Ead), surface-oxygen distances (dO−S), O-H bond
distances (dO−H), and H-O-H angles (θH−O−H) for a water molecule adsorbing onto the basal

plane of pure Mg system.

Mg surface plane Alloying elements Adsorption sites Ead(eV ) dO−S(Å) dO−H(Å) θH−O−H(◦)
Basal None Atop −0.5629 2.189 0.976 109.045
(0001) Bridge −0.4265 1.97 0.985 107.914

Hollow 1 (hcp hollow) −4177 2.157 0.983 107.128
Hollow 2 (fcc hollow) −0.4229 2.0881 0.985 107.321

The calculated partial density of states (PDOS) of the adsorbing water molecule for these

adsorption sites over the (0001) surface are reported in Figure 4.24. In this figure, the curves

correspond to the PDOS projected onto the p orbitals of the water molecule. The adsorption of

a water molecule with upright configuration involves the 3a1 orbital of which energies are located

at about -6 eV. The density of electron states for this energy varies depending on the in-plane

position of the O atom. The corresponding peaks in Figure 4.24 approach -6 eV for the atop case

and shift toward more negative energy levels for the bridge site (-7 eV), indicating a more stable

configuration of electron states in the atop position with more compact distribution of PDOS. The

density of electron states does not change significantly from the bridge site to the hollow sites.
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Figure 4.24: Partial density of states (PDOS) for the water molecule adsorbing on different sites
of pure Mg (0001) basal plane. The curves correspond to PDOS of the p orbitals. Ef indicates

the Fermi energy level.

The water/metal adsorption energy for pure Mg and Mg alloys with Al, Zn, Ca, and Y with

different surface crystallographic orientations were calculated as the next step. In this set of com-

putations for alloyed systems, we replaced one of the surface atoms with an alloying element and

observed the adsorption behavior based on the energy changes from the interaction of the alloying

atom and the water molecule. To better examine the interaction between the alloying elements

and a water molecule, the upright configuration was chosen for the water molecule to minimize the

direct influence of Mg atoms. These initial configurations were geometry optimized without any

constraints for the water molecule to find local energy minima.

In Figure 4.25, we show the calculated adsorption energies for the systems with various alloying

elements and surface plane orientations. For the Mg surface orientations, the same three low-index

planes of the basal , prism , and pyramidal surfaces were considered. From the figure, it is clearly

seen that the adsorption energies are higher in the systems with a more compact basal orientation

surface and the adsorption energies in the prism and pyramidal surface systems are nearly similar

for most of the cases except the Mg-Zn alloy. In the Mg-Zn alloy, the adsorption energy in the less

compact pyramidal surface was lower than that in the prism surface. For all the compositions of

the Mg/Mg alloys, the basal plane would weakly attract the water molecule, and the other planes

with lower atomic density interact with the water molecule more significantly. This tendency is in
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Figure 4.25: Calculated adsorption energies of water molecule on Mg-based surfaces with various
alloying compositions and crystallographic surface orientations.

line with the experimental observations for the texture effect on the corrosion behavior of AZ31

Mg alloys [87]. Furthermore, the trend of this adsorption energy could be highly correlated with

the general coordination number (CN(i) of the basal(0001), prism (101̄0), and pyramidal (1̄011̄)

surfaces. Lower CN surface is typically less stable, which attracts the adsorbent more strongly.

CN of surface atom i (i.e., CN(i)) can be quantified by the following Eq. (2) [111].

CN(i) =

nj∑
j=1

cn(j)nj
cnmax

(4.7)

Where cn(j) is the coordination number for the neighbor atom j, nj is the number of nearest

neighbor atoms, and cnmax is the highest coordination number of the system for the atoms in the

bulk, respectively. The CN values for (0001), (101̄0), and (1̄011̄) surfaces are calculated as 7.5,

5.33, and 5.3, respectively, which clearly manifests that the adsorption energy for more compact

(0001) surface with higher CN is much higher than those for other low-index surfaces.

The composition of Mg surface also influences the degree of attraction to the Mg-based substrate.

As the data summarized in Figure 4.25 portrays, Al and Zn increase the resistance of the alloy in
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adsorbing the water molecule, while other elements including Ca and Y bring the adsorption energy

down to more negative values in comparison to the pure Mg system, which can render the alloy

relatively vulnerable to degradation in water environments. Also, from Figure 4.25, it could be

inferred that, qualitatively, the variations in the degree of water attraction from systems with

different low-index surface planes are comparable to those from the systems with different alloying

elements. Table 4.8 summarizes the calculated adsorption energies (Ead), surface-oxygen distances

(dO−S), O-H bond distances (dO−H), and H-O-H angles (θH−O−H) for a water molecule adsorbing

onto the atop position of various low-index planes in pure Mg and Mg alloy systems. The water

molecule orientations mostly maintained the upright configuration except the pyramidal plane cases

doped with Zn and Y. From the table, one can easily find that dO−S decreases as Ead decreases

with a stronger interaction between the water molecule and the surface.

Table 4.8: Calculated adsorption energies (Ead), surface-oxygen distances (dO−S), O-H bond
distances (dO−H), and H-O-H angles (θH−O−H) for a water molecule adsorbing onto various

low-index planes of pure Mg and Mg alloy systems.

Mg surface plane Alloying elements Ead(eV ) dO−S(Å) dO−H(Å) θH−O−H(◦)

Basal None -0.5629 2.189 0.976 109.045
(0001) Al -0.1443 3.972 0.972 103.942

Zn -0.2207 3.249 0.971 105.1
Ca -0.8304 2.373 0.974 107.145
Y -0.8985 2.422 0.972 108.34

Prism None -0.8683 2.186 0.975 108.511
(1010) Al -0.4752 3.422 0.971 105.79

Zn -0.5043 4.069 0.97 104.864
Ca -1.1383 2.381 0.974 107.37
Y -1.2214 2.422 0.972 108.561

Pyramidal None -0.8623 2.202 0.975 107.729
(1011) Al -0.4748 2.389 0.974 107.904

Zn -0.6771 2.725 0.974 103.67
Ca -1.1088 2.395 0.974 106.561
Y -1.2753 1.539 0.979 107.756

A polar water molecule has a dipole moment in which there exist partial negative charges on

its O side and partial positive charges on the H atoms. Calculating the Coulombic forces between

the alloying elements and the O side of the water molecule can qualitatively dictate the relative
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attraction force between the adsorbing water molecule and the alloyed surface. The Coulombic

attraction force between Al atom and the water molecule is weaker than the attraction force in

pure Mg. This force even becomes repulsive in the case of containing Zn as an alloying element.

Although the Zn atom on the Mg surface possess partial negative charges that can cause repulsion

of the adsorbing water molecule, it was calculated that the adsorption to the Mg surface is still

favorable, as the adsorption energy is negative (as shown in Figure 4.25). The Coulombic forces

between alloying elements and the water molecule are either stronger or similar to the pure Mg case

when Ca or Y were employed as alloying atoms, which may result in higher attraction of the water

molecule toward the Mg surface. It was found that the partial charges for Mg, Al, Zn, Ca, and Y are

0.13, 0.08, -0.16, 0.35, and 0.14 eV, respectively, at the equilibrium state of water adsorption over

the atop site. The partial charge of corresponding O atoms was in the range of -0.90 to -0.94 eV.

As Figure 4.25 presents, all of the studied compositions demonstrate negative adsorption energies.

Therefore, attraction of a water molecule to the Mg surface is thermodynamically favorable. The

binding energies to the water molecule are in the range of -0.14 eV and -1.24 eV. Since the hydrogen

bonding energy between two or more water molecules is in the upper band of this range (about -0.25

eV [110]), the water-substrate interactions could be energetically competitive with the water-water

bonding especially when the adsorption energy is relatively small (such as adsorption in the Mg-Al

or Mg-Zn systems). With highly negative adsorption energies, on the other hand, it is likely that

the water-substrate interactions would be dominant and adsorption would not be strongly affected

by the hydrogen bonding among multiple water molecules.

In Figure 4.26, we show the calculated distributions of partial density of states (PDOS) of

the adsorbing water molecule onto the basal plane of the Mg surface containing various alloying

elements. The blue, red, and green colors represent PDOS of s, p, and d orbitals, respectively.

The results in Figure 4.26 can explain the reason for a higher adsorption propensity of the water

molecule onto the Mg-Ca and Mg-Y surfaces. The PDOS profiles from s orbitals in the figure show

nearly similar distributions for all of the systems. However, it is seen that the differences in the

adsorption behavior of the alloys primarily arise from the changes in the PDOS of p orbitals. In

this figure, the systems including a water molecule adsorbing to Mg-Al and Mg-Zn surfaces exhibit

relatively prominent peaks of p orbitals at around -5 eV, which is related to the energy state of 1b1

orbital. Further, both Mg-Ca and Mg-Y alloys in contact with the water molecule show sharper
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Figure 4.26: Partial density of states (PDOS) for the water molecule adsorbing on the atop sites
of Mg/Mg alloy basal plane. The blue, red, and green curves correspond to PDOS of the s, p, and

d orbitals. Ef indicates the Fermi energy level.

peaks at around -23∼24 eV, which is the energy state associated with the 2a1 orbital (MO from

mixing of the oxygen 2s AO and the hydrogen σ MO). In addition, adsorption of a water molecule

to the Mg-Al and Mg-Zn surfaces shifts the position of the PDOS peak at -10 eV toward more

negative energy states, which is the typical characteristics of the 1b2 orbital (MO from mixing the

oxygen 2py AO and the hydrogen σ∗ MO).

4.3.3 Surface energy and electrode potential shift of Mg/Mg alloys

Depending on the stability and response of the surface to the attraction forces, when the metal

surface interacts with a water molecule, the hydrolysis behavior of the alloy could be varied. Other

than these water molecule adsorption perspectives, the degradation rates of Mg surface can be

correlated with the surface energy [87, 115]. The calculated surface energies with various alloying

elements and surface planes are listed in Table 4.9. Due to a higher stability of the surfaces with

higher packing densities, the activation energy for dissolution in close-packed surfaces is higher and

removing metallic ions from these surfaces is more difficult. The table also contains the calculated

relative ∆d12 (i.e., the relative difference in the 1st and 2nd layers of a surface plane with respect

to the pure Mg system) values. The trends in ∆d12 for the low-index surface planes with various
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alloying elements are in general correlated to the corresponding surface energies; when the surface

energy of an alloy is lower, then the calculated relative ∆d12 is mostly negative, which supports a

higher stability of the corresponding surface.

Table 4.9: Calculated surface energies (kJ/mol) and relative ∆d12 (%) of Mg systems with
different surface planes and alloying elements.

Surface planes Alloying elements Surface energies (kJ/mol) [127] Relative ∆d12%

Basal None 33.02 0
(0001) Al 31.07 -0.034

Zn 31.46 -1.48
Ca 34.05 0.09
Y 31.51 0

Prism None 102.14 0
(1010) Al 100.48 -8.93

Zn 100.71 -8.37
Ca 109.12 15.42
Y 100.57 1.80

Pyramidal None 124.11 0
(1011) Al 120.39 0.57

Zn 120.65 -1.85
Ca 127.16 11.31
Y 122.63 -6.05

The electrochemical dissolution rate (I) of metallic materials is often estimated by the Tafel-type

expression as given by Eq. 4.3.3 [86, 198].

I = k exp

(
Q

RT

)
= k exp

(
βγ

RT

)
(4.8)

where I is the dissolution rate, k is the reaction constant, Q is the activation energy to remove

a metallic ion from the lattice and to dissolve it in the solution, R is the gas constant, T is the

prescribed absolute temperature, β is the proportionality coefficient when the surface energy, γ, is

used as the activation energy for dissolution. Assuming that the reaction constant k is same for the

Mg systems with different surface planes in contact with corrosive media, it is feasible to evaluate

the ratios of degradation rates for two different surfaces using
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IMg alloy

Iref
= exp

(
β (γMg alloy − γref)

RT

)
(4.9)

that can in principle provide an estimation of the effect of an arbitrary (hkil) plane of Mg/Mg

alloy on the dissolution rate with reference to the rate from the basal plane of pure Mg. Here,

IMg alloy, Iref , γMg alloy, and γref are the dissolution rate of Mg alloy, the dissolution rate of

reference (i.e., pure Mg with identical orientation as Mg alloy) system, the surface energy of Mg

alloy, and the surface energy of reference system, respectively. These dissolution rate analyses

have been previously implemented in many metallic systems to describe the corrosion behaviors

[128, 130]. In the above expression, the proportionality coefficient,β, was set to 0.5 [85]. Note

that this calculation is based on the assumption that the surface energy primarily determines the

electrochemical dissolution rate ignoring the interaction between the aqueous environment and the

metallic surface, and the proportionality coefficient, , is a constant irrespective of the surface plane

orientations. Song et al. [86] used this approach to show that the dissolution rate of the prism

plane is 20 times faster than that of the basal plane for pure Mg. Considering this calculation

for the pure case, we estimated the effect of alloying elements as presented in Table 4. It is

noticeable in Table 4.10 that the relative dissolution rate ratios of the alloyed surfaces are less

than one except the Mg-Ca system. When the relative effects of surface orientations and surface

alloying compositions on the corrosion rates are compared using the same Tefal-type approach, it

was calculated that the crystallographic surface types have a more critical effect since the surface

energies with different surface orientations are crucially different as summarized in 4.9. It should

be emphasized that these calculations solely rely on the consideration of the influence of surface

energy on the dissolution rates of surface using the Tefal-type expression. However, the surface

energy is only one of the parameters influencing the dissolution behavior of the metal. For a

more comprehensive understanding, other factors including oxide film formation, charge transfer,

precipitation formation, etc. must be considered as well. Because of this, the estimation of the

degradation of metals based on the surface energies is limited, and it often overestimates the

overall degradation rates that are experimentally measured by hydrogen evolution or Nyquist-type

dynamic polarization analyses. Earlier in this study we demonstrated that the adsorption energy

of the water on Mg-based surfaces is influenced by the composition, and adding Ca or Y to the
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Mg system would potentially increase the degradation rates. However, unlike the surface energy,

when the dissolution rates are estimated solely by the surface energies, only Ca would promote the

surface degradation.

Table 4.10: Estimated relative hydrolysis rate ratios using Tafel-type expression for the systems
with various alloying elements and surface orientations.

Surface planes

Basal Prism Pyramidal
Alloying elements (0001) (1010) (1011)

None 1 1 1
Al 0.67 0.72 0.47
Zn 0.73 0.75 0.5
Ca 1.23 4.09 1.85
Y 0.74 0.73 0.74

4.3.4 Dissolution potential difference

Electrode potential difference could be an indicator of dissolution tendency that can be calculated

from the difference in the rate of detachment of atoms. The trends of electrode potentials in

different alloy systems can be highly correlated to their surface degradation behavior. Taking

into consideration of the definition of free energy changes (i.e., chemical potential, µ =
(
∂G
∂n

)
T,P

,

where G, n, T , and P denote the free energy, the number of atoms in the system, and prescribed

temperature and pressure, respectively) in a thermodynamic system, the chemical potential (µ)

can be obtained by Refs. [199, 200, 131],

µ ≈
Eslab − Evslab

∆n
(4.10)

Where Evslab, Eslab, and ∆n represent the total energies of Mg/Mg alloy slab with missing Mg

atom (i.e., slab with vacancy) and the slab without missing Mg atom (i.e., perfect crystal), and

the number difference of Mg atoms between these two systems, respectively. The relative electrode

potential differences of Mg in an alloy (∆U) with respect to the clean Mg can then be expressed

by,
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∆U = Ualloy − Upure =
µpure − µalloy

2e
(4.11)

In Equation (5)Ualloy, Upure, µalloy, and µpure stand for the electrochemical potentials and free

energy changes (i.e., chemical potentials) of alloyed and pure Mg materials, respectively. Note that

the electrode potentials (Ualloy and Upure ) given in Eq. 4.3.4 take the form of including the anodic

electrode reaction, i.e., Mg = Mg2+ + 2e−, with the units of [V]. The sign of ∆U can dictate the

extent of propensity for losing Mg atoms. It is interpreted that, when ∆U is negative, the Mg-based

alloy system is more likely to lose an Mg atom compared with pure Mg materials, whereas positive

implies that the Mg-based alloy system is less likely to lose an Mg atom with reference to pure Mg.

Figure 4.27 shows examples of vacancy formation energy (Ef,v) changes for (a) pure Mg and (b)

Mg-Al systems with different dissolution sequence on the basal (0001) surface. A higher formation

energy represents a lower tendency for formation of vacancy. The expression reported in Gao et

al.s work [201] was used for calculating the vacancy formation energy of Mg surface.

Ef,v =
(
EN − EN0

)
−
(
NMg −N0

Mg

)
εMg (4.12)

Where EN and EN
0

are the total energies of the defective and perfect systems,N0
Mg and NMg

are the numbers of Mg atoms before and after vacancy formation, respectively, and εMg is the

energy per atom in pure Mg. It was calculated that Ef,v of pure Mg surface is 0.49 eV, which is

smaller than of pure bulk Mg lattice (0.86 eV) [13]. Such difference clearly presents that formation

of vacancy on the surface is much easier compared with the bulk lattice of pure Mg metal. In the

figure, as the dissolution process takes place (i.e., removal of surface atom), the vacancy formation

energy level of a system is qualitatively indicated using a horizontal bar with the corresponding

surface structural image. The purple sphere in Figure 4.27(b) represents Al atom. From Figure

4.27(a), it is seen that the energy state of the perfect surface (i.e., no vacancy, the far-left side image

of Figure 4.27(a)) is the lowest because forming a vacancy site is thermodynamically unfavorable on

the Mg surface; after dissolution of one Mg atom, the energy state and the stability of the system

increases and decreases, respectively (middle image of Figure 4.27(a)). Removal of the second atom
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Figure 4.27: Vacancy formation energy changes for (a) pure Mg and (b) Mg-Al systems with
different dissolution sequences on the basal surface.

increases the energy level to higher values (far-right side image of Figure 4.27(a)). A similar trend

was found for the Mg surface alloyed with Al, as shown in Figure 4.27(b). To examine the impact

of Al, the 1st nearest neighbor Mg from the Al site was removed first (middle image of Figure

4.27(b)). Next, one of the two candidate Mg atoms on the surface, the 1st or 2nd nearest neighbors

from the Al site, were considered for dissolution of the 2nd Mg atom (far-right image of Figure

4.27(b)). The results show that the energy state is slightly higher when the 2nd nearest neighbor

of the Al atom is dissolved compared with the dissolution of the 1st nearest neighbor of Al. In

Figure 4.27 (b), we also show that the dissolution of Al impurity by forming a vacancy site at the

Al position on the Mg surface. As seen in the results, it is less likely that the dissolution of Al
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impurity would take place because Ef,v (0.61 eV) for Al impurity is much higher than (0.46 eV)

for nominal Mg atoms on the Mg-Al surface.

Table 4.11: Total energies and electrode potentials for the Mg alloy systems with different surface
planes and alloying elements.

Surface planes Alloying element Eslab,alloy (eV) Eνslab,alloy (eV) Upure (eV) Ualloy (eV)

1stMg Basal (0001) Al -349659.90 -344201.26 -5445.82 -5458.64
Zn -391490.01 -386029.89 -5460.12
Ca -361501.12 -356042.18 -5458.93
Y -433785.18 -428323.38 -5461.81

Prism (1010) Al -349654.15 -344195.75 -5445.58 -5458.40
Zn -391484.26 -386024.36 -5459.90
Ca -361495.41 -356036.59 -5458.83
Y -433779.52 -428317.89 -5461.63

Pyramidal (1011) Al -349650.19 -344191.60 -5445.82 -5445.75
Zn -391480.30 -386020.25 -5460.08
Ca -361496.64 -356032.65 -5458.99
Y -433775.24 -428313.54 -5461.70

2ndMg (1stNN) Basal (0001) Al -344213.91 -338755.64 -5445.61 -5458.28
Zn -386044.08 -380584.39 -5459.69
Ca -356055.27 -350596.61 -5458.66
Y -428339.12 -422877.61 -5461.51

2ndMg (2ndNN) Basal (0001) Al -344213.91 -338755.59 -5445.61 -5458.32
Zn -386044.08 -380584.24 -5459.84
Ca -356055.27 -350596.55 -5458.72
Y -428339.12 -422877.70 -5461.42

We carried out similar DFT calculations for the rest of Mg surface orientations with different

alloying elements. For the 2nd Mg atom removal, we only considered the systems with the basal

surface orientation. Table 4.11 provides the details of the calculated total energies and electrode

potentials for the Mg alloy systems with different surface planes and alloying elements. Using this

data,∆U calculation results with reference to the pure Mg for different Mg alloys are presented

in Figure 4.28. All of the solid symbols in the electrode potential difference plot in Figure 4.28

corresponds to the ∆U for the 1st Mg atom dissolution. From this electrode potential difference

point of view, it was predicted that addition of Al, Zn, and Ca will initially decrease the electrode

potential difference with reference to the pure Mg and that the surface would show higher tendency

to lose one of the Mg surface atoms. On the other hand, as Y has an electrochemical reduction

110



Figure 4.28: Relative electrode potential differences (shifts) with reference to the pure Mg system
with various surface orientations.

potential value close to that of Mg, existence of Y on the surface reduces the dissolution tendency

of the pure Mg; Y would improve the initial dissolution resistance of the Mg alloy as the electrode

potential difference for all of the model systems including Y is positive. When the electrode potential

shifts of the 2nd dissolved Mg atoms are taken into consideration, these initial results from different

alloyed systems are mitigated. The calculated results are shown in Figure 4.28 using the open and

hatched symbols. Here, the open and hatched symbols represent the results of removing the 1st

and 2nd nearest-neighbors from the alloy element site, respectively. It was generally found that

the electrode potential difference for the removal of the 1st nearest-neighbor Mg atom (i.e., solid

symbols in Figure 4.28) follows a similar trend to of the first Mg atom, but they show a higher

potential difference values. This difference is slightly positive for the Mg-Al system, which will

render the dissolution more difficult compared to dissolution of the 1st Mg atom. In the Zn and

Ca cases, on the other hand, the dissolution potential differences are still negative. The electrode

potential shift is all positive and it reaches as high as 80 mV for the Mg-Y system, which indicates

that presence of Y on the surface may contribute to a stronger interaction between the surface

and sublayer atoms. The types of alloying elements affect the tendency of the surface to lose the

2nd neighbor Mg atom (i.e., hatched symbols in Figure 4.28), and all of the calculated values are
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positive with relatively narrow variations. Therefore, it is likely that, once the first Mg atom is

removed from the surface, removing the second one becomes more challenging if it is not the 1st

nearest-neighbor of the impurity elements (Al, Zn, or Ca). However, for Mg-Y system, expulsion of

the 1st nearest-neighbor of the alloying site is the most difficult compared to the equivalent atom

on the pure Mg surface.

It must be noted that the electrode potential shifts are influenced by the contents and segregation

of alloying elements, therefore, the trend of the Mg dissolution in Mg alloy surfaces could be varied.

Also, the actual degradation behavior of surface will be affected by the interaction between the

surface and the media. Here, we considered the degradation of Mg surface ignoring the impacts of

the degrading media. However, it is likely that addition of Y in the Mg alloys would not generate

the negative shift in the electrode potential difference from the general surface stability aspect, thus,

as long as any deleterious intermetallic phases such as Mg24Y5 are formed, the corrosion resistance

of Mg-Y alloy would not be decreased. These results are consistent with previous experimental

observations [100]. On the other hand, although the tendency is decreased as the dissolution of

Mg proceeds, including other elements (Al, Zn, and Ca) even without formation of intermetallic

phases can shift the anodic electrode potential to a lower value, which would polarize the electrode

potentials more, thereby promoting the dissolution of Mg from the alloyed surface. For Mg-Al alloy

case, therefore, the improvement in corrosion resistance is majorly resulted from the formation of β-

phase as a degradation barrier, not from the solid solution effect on the surface. It has been reported

that adding Ca affects the solubility chemistries that reduces the fraction of other intermetallic

compounds in Mg alloys, which will retard the corrosion from micro-galvanic mechanism [98].

Formation of Mg2Ca compounds is also known to increase the corrosion resistance of Mg-Ca

alloys. However, from an atomistic perspective, it is predicted that presence of Ca on the Mg

surface would increase the degree of interaction with a water molecule and decrease the electrode

potential. Finally, it is mentionable that, the application of current model is limited because the

adsorption energies have been described based on a water molecule rather than water frameworks

comprised of multiple water molecules. Also, the current model does not consider the probable

oxidized states of the Mg surfaces. However, although the analyses presented here focuses on the

dissolution-type surface degradation mechanism without consideration of the formation of various

hydroxide layers, it is thought that they can provide important insights for the dissolution behaviors
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of Mg-based alloy systems from the atomistic surface degradation point of view understanding the

solid solution effects.

4.4 Selective laser melting

Distribution of particles in metal matrix composites has a crucial effect on the efficiency of the

mechanical reinforcing process. Re-melting and solidification of the matrix due to laser energy

input during selective laser melting increases the probability of the secondary phase agglomeration.

Reinforcement particles reallocate locally based on the velocity of the solidification front moving

forward through formation of the melt pool. Adequate energy input and especially optimized scan-

ning speed is required, not only to assure consolidation of the product, but also to control the melt

pool geometry and solidification rate and consequently avoid particle pushing and clustering. A

finite volume model is developed to exhibit the interaction of aluminum nitride particles with the

AlSi10Mg melt pool with respect to the solidification front. The model shows that the critical solid-

ification conditions define whether particle engulfing or particle pushing take place; as an essential

consideration when manufacturing metal matrix composites through selective laser melting.

Melting and re-solidification of the powder via moving laser heat source may push the rein-

forcement particles causing uneven distribution and decreasing the reinforcement efficiency. This

study analyzes the behavior of melt pool in the AlSi10Mg/AlN composite to provide comprehensive

understanding of the particle matrix interaction during the SLM process of the composite.

Geometry of melt pool and the shape of proceeding fluid are the starting points to check the

quality of the SLM process. For this purpose the top view of all the 9 studied cases are compared

in Figure 4.29. The melt pool in all the SLM processes is expected to be an elongated oval shape

with wider tip and sharper tail. The shape of the melt pool and the heat effected area around it

are clearly influenced by the input energy parameters. It is observed that a sharper end is more

common when the scanning speed is high and as the speed decreases the tail is smoother and less

sharp. As it was mentioned earlier the laser input energy density has direct dependency on the

power and reverse relationship with the laser scan velocity. Since the scanning hatch distance and

the powder thickness are constant during the SLM process in this study the case with 200 W power

and velocity equal to 100 mm/s has the highest energy input density followed by 150 W power and
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100 mm/s velocity and then 200 W power and 150 mm/s laser scanning velocity. Comparing the

shape of melt pool highlights that the melt pool and the heat effected zone are larger when the

density of the input energy is higher. Also it is noticed that the shape of the heat effected zone and

the melt pool are less elongated and closer to circular shape when the energy input density is higher

and as it decreases, the heat effected zone area and the melt pool shrink and become narrower.

To obtain a sound final product it is essential to assure continuity in the structure and therefore

overlapping between sequential layers and tracks during laser scanning. Optimizing the depth of the

melt pool results in the connection between previously processed layers and newly formed layers.

Also the hatch distance can be adjusted to minimize the used energy and guarantee connection

between tracks by varying the width of the melt pool. A longer melt pool tail corresponds to

relatively slower solidification speed which affects the microstructure and mechanical properties of

the final product. Figure 4.30 compares the dimensions of the melt pool in different laser scanning

conditions. Results show that the length of the melt pool is directly influenced by the laser power.

For a constant scanning speed as the laser power increases from 100 W to 150 W and then 200

W the length of the melt pool increases. However the effect of scanning speed for constant laser

power is reverse and also causes less changes in length of the melt pool. An increase in the length

of the melt pool due to increasing the laser power can be as high as 0.24mm, while increasing the

scanning speed from 100 mm/s to 200 mm/s has its maximum effect when the laser power is higher

and is about 0.10 mm. On the other hand the trend for depth and width of the melt pool can be

explained more specifically by the energy input or the P/V ratio than the individual parameters.

When the P/V ratio for input energy density is higher than one the melt pool width reaches its

maximum which is equal to 0.15 mm and the width decreases to 0.1 mm, if the P/V value is equal

or lower than one. The same pattern is observed for the melt pool depth and the depth of the

formed melt pool is deepest and equal to 0.075 mm and when the ratio is equal to or below one

the melt pool penetrates to 0.05 mm deep in powder with one exception when the P/V ratio is

reduced to 1/2 at the scanning speed of 200 mm/s and laser power equal to 100 W the depth of

the melt pool is minimum and equal to 0.02 mm. Considering the geometry of the melt pool in

order to have a sound final product it is necessary to design the processing procedure in a way that

the thickness of the deposited powder is less than the minimum melt pool depth which is 0.02 mm

or 20 µm and to assure that the laser is scanning the surface with hatching distance smaller than
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Figure 4.29: Top view of the temperature profile during laser scanning a)100 W power, 100mm/s
speed and initial temeprature 298K , b)150 W power, 100 mm/s speed and initial temeprature

373K c)200 W power, 100 mm/s speed and initial temeprature 473K d) 100 W power, 150 mm/s
speed and initial temeprature 373K e) 150 W power, 150 mm/s speed and initial temeprature

473K, f) 200 W power, 150 mm/s speed and initial temeprature 298K g)100 W power, 200 mm/s
speed and initial temeprature 473K h) 150 W power, 200mm/s speed and initial temeprature

298K i) 200 W power, 200mm/s power and initial temeprature 373K.
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0.1 mm or 100 µm or the minimum width of the melt pool. Preheating the surface prior to laser

scanning does not show any specific effect on the geometry of the melt pool as far as the results

of this work show. Laser input energy density with ratio of the power over scanning speed and

also each of the laser power and speed individually seem to have more recognizable effect on the

geometry of the melt pool than preheating up to 473K.

Figure 4.30: Dimensions of the melt pool during the SLM processing of AlSi10Mg/AlN composite.

As it was mentioned earlier, distribution and size of the reinforcement particles are significantly

important to guarantee the efficiency of the metal matrix composites. When melting the powder for

SLM process it must be checked that only the metal powder melts and the reinforcement particles,

AlN in this case, do not change phase or interact with the matrix alloy or AlSi10Mg. To make sure

that the temperature does not exceed the melting temperature of AlN, the maximum temperature

reached under each condition is investigated. Figure 4.31 reports the maximum temperature in

the SLM process in all the different studied conditions in this work. Knowing that the melting

temperature of AlN is equal to 2473 K [202] and comparing the results in Figure 4.31 it can be

confirmed that the AlN powder will melt in none of the tested conditions, as the highest temperature

reached in all the simulations is 1710 K. Since the AlSi10Mg powder in all the cases passes its melting
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temperature, it is granteed that the final product is continuous. The maximum temperature of the

melt pool is also influnced by laser power and the scanning speed. As the laser power increases at a

constant scanning speed the maximum temperature also increases as it is expected due to increase

in the input energy density. However the preheating temperature overwrites the slower motion of

the scan and the temperature is higher in the cases that have been preheated to 473 K.

Figure 4.31: Maximum temperature of the part during the scanning process.

Figure 4.32 shows the temperature profile along the scanning path for a frame captured after

15 ms of scanning. All the 9 profiles have a step at the melting range of the AlSi10Mg alloy.

This range is between 830 K to 867 K where the mushy zone is formed. The length of this step

varies in different cases and it seems to have direct relationship with the input energy density. In

other words by increasing the laser power at a constant scanning speed length of the region which

is under transition expands. It should be noticed that this length is the region that contains a

mixture of solid and liquid and should be differentiated from the melt pool which is fully liquid

phase containing only reinforcement particles as the solid phase. The peak in this plot indicates

the position of the laser tip where the laser beam is focused and results in the highest temeprature.

Preheating the powder prior to the SLM process increases the length of the mushy zone as the
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results show.

Figure 4.32: Temperature profile on the top surface along the scanning path after 15 ms of
scanning.

As the scanning heat source moves along the length of the surface it is essential to track and

observe the temperature and phase changes occurring in the system. To fulfill this purpose, the

center point on the top surface of X-Y plane with coordinates, x=0.5 mm, y=2.5 mm and z=0.7

mm, is chosen as the representative of the points on the surface that experience the heat absorption

from the source. This point is selected on the top most surface because it is believed that the highest

concentration of energy from the heat source is placed on this plane and it provides an understanding

of an extreme situation in the system. Figure 4.33 shows the temperature variation with time at

the center of the top most layer on X-Y plane during the SLM of AlSi10Mg/AlN powder. Initially

the temperature of center point is constant and equal to the preheating temperature. The moment

that the laser beam passes over the center point a sharp peak is observed, and as the laser passes,

the mushy zone forms behind the melt pool. The mushy zone will be stable for a period of time

after the beam leaves the center point. The stability of the mushy zone depends strongly to the

energy input density and is independent of the preheating temperature. The solid/liquid region is

stable for the longest period of time when the P/V ratio is equal to 2 and it decreases as the ratio
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decreases.

Figure 4.33: Temperature profile during the scanning period at the center point of the powder
surface x=0.5 mm, y=2.5 mm and z=0.7 mm.

4.4.1 Particle Pushing

Melting and re-solidification of the composite increases the risk for agglomeration and segregation of

the reinforcement particles. The theory suggests that as the melt pool advances the reinforcement

particles in the melt are pushed forward, if the solidification front moves in a slow rate. A critical

value has been suggested by previous scientist for velocity of the solid/liquid interface below which

the particle will be pushed. At advancing rates higher than this critical value the particle will be

trapped and encaptured by the solidifying front. Table 4.12 summarizes the most popular analytical

models for prediction of the critical velocity of the solid/liquid interface.

Considering an ideal spherical geometry for the AlN reinforcement particle and a planar in-

terface between solid and liquid, Figure 4.34 schematically presents the interaction between the

solidification front and the particle based on the model suggested by Rohatgi and Kim [207]. The

solidification front advances with a velocity equal to V and the thermal gradient in solid/liquid

interface far from the particle is denoted as G. Their analytical model suggests that, if the solidifi-
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Table 4.12: Predictive equations for calculated critical velocity of solidification front based on
previous studies

Model Formula Reference

Uhlmann Vcr = (n+1)
2

(
La0V0D1
KTR2

)
[203]

Chernov Vcr = 0.14B3
ηR

(
σsl
B3
R
)(1/3)

λ2

l > R [204]

Vcr = 0.15B3
ηRl λ2 < R [204]

Shangguan Vcr = ∆σa0
3(n−1)ηαR

(
n−1
n

)n
[205]

Stefanescu Vcr = a0∆σ
6ηR(n−1)

(
2− Kp

Kl

)
[206]

Kim & Rohatgi Vc = ∆σa0(kR1+1)
18ηR1

[207]

Kaptay Vcr = 0.157
η ∆σ

2/3
cls σSL( aR)4/3 [208]

Mao Vcr
2
9η
a2(ρp−ρ)g

λG
2∆T ′ [1−tan(θ/2)]

(
1+ftanθ
tanθ−f +tanθ

)
−1

[209]

Tao ρsLλ9/4G1/4

6ηT
1/4
mp R

[210]

cation front moves at velocities higher than the critical value of Vcr the particle will be encaptured,

otherwise pushed and agglomeration of reinforcement particles is expected due to the particle push-

ing effect.

Vcr =
∆σa0(kR1 + 1)

18ηR1
(4.13)

Here ∆σ is the interfacial energy difference, a0 is particle/interface separation behind the par-

ticle, k, R1 and η are the curvature of solid/liquid interface behind the particle, particle radius and

liquid viscosity respectively. The curvature is defined as:

k =
Ga

Γ
(
α− 1

3
) (4.14)

α is the ratio of thermal conductivity of particle to liquid metal and is estimated from averaging

the thermal conductivities in plots in Figure 3.3 over the processing temperature range. As ex-
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Figure 4.34: Schematic of particle interacting with solidification front

pressed below Γ depends on the solid/liquid surface tension σSL, melting temperature Tm, density

ρ and heat of fusion H. Table 4.13 reports numerical values of the parameters used in the model.

Table 4.13: Materials properties and theoretical parameters for particle pushing process

Parameter Value Reference

Particle radius, R1, 10× 10−6 m
Particle/interface separation behind particle, a0 3 m × 10−10 m
Surface energy of the interface, σSL, 0.09 N/m [145]
Interfacial energy differences, ∆σ , 4.56 N/m [211]
Viscosity, η 1.3 × 10−3 Pa.s [145]
Temperature gradient, G, 3.8× 103 K/m , [143]

α =
Kp

Kl
(4.15)

Γ =
σSLTm
ρH

(4.16)

Comparing the solidification front velocity from the FVM model presented in table 4.14 with

the analytical calculations based on previous models (5900 µm), reveals that the velocity of the

solidification interface is much higher than the calculated critical value, suggesting that the par-

ticles present in the melt pool will be engulfed by the solidifying front. Homogenous distribution
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Table 4.14: Taguchi design of experiment. L9 orthogonal array.

Run No. Speed (mm/s) Laser power (W) Powder bed S/L interface

temperature (K) velocity (mm/s)

1 100 100 298 97
2 100 150 373 97
3 100 200 473 97
4 150 100 373 148
5 150 150 473 148
6 150 200 298 148
7 200 100 473 196
8 200 150 298 196
9 200 200 373 196

of the AlN particles in the AlSi10Mg is expected and the SEM image of the microstructure of

AlSi10Mg/AlN composite produced through SLM process with energy input density with P/V ra-

tio less than one illustrated in Figure 4.35 confirms that the reinforcement particles will not be

pushed by the advancing solidification front. In Figure 4.35 the particles have an average size of

0.45 µm and homogeneous distribution of particles in the AlSi10Mg matrix is demonstrated with

white arrows. As the theoretical model suggests the critical velocity is a function of particle size.

Further calculations for the critical particle size shows that reinforcement particles smaller than

0.29 µm will be pushed by the solidification front and agglomerate. Also, estimations show that

the velocity of solidification front requires to be about 50m/s to engulf the particle with 1 nm

size, emphasizing that the size of reinforcement particles is a crucial parameter for a homogeneous

microstructure in the final product.

Figure 4.35: SEM image showing typical distribution of the AlN particles in AlSi10Mg matrix
where P=180 W and V=400mm/s [14]
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4.4.2 S/N Analysis

Table 4.15 illustrates the S/N results of the 9 modeled conditions after measuring the geometry of

melt pool. According to range analysis from S/N, the influence of each factor on the geometry of

the melt pool is Laser power>Scanning speed>initial temperature.

Figure 4.36 shows the change curve of the orthogonal experiment average value, and the change

trend geometry with various factors and S/N. With increasing the laser power the size of melt pool

increases in all directions while the effect of laser speed is reverse as the slope of the plot is negative

and the initial temperature does not demonstrate any effect on the melt pool geometry as the

main effect line is almost horizontal. Also to confirm this statement the analysis of the variables

is summarized in table 4.15. Considering a confidence level with α = 0.01 the F(2,6) = 10.93

meaning that, the F value from a factor needs to be higher than this value for the factor to be

significant. Results show that the laser scanning speed and laser power show significance while the

initial temperature has insignificant effect which explains the horizontal angle of main effect plot.

Table 4.15: Analysis of the variance for geometry of the melt pool

Factor Sum of squares Degree of freedom Mean square F value

Laser speed 26.11 2 13.05 13.43 significant
Laser power 28.05 2 14.02 14.43 significant
Initial temperature 5.83 2 2.91 3.00 insignificant
Error 1.94 2 0.97
Total 61.93 8

Figure 4.37 shows that based on Taguchi analysis the laser power and laser speed have significant

effect on the maximum temperature of melt pool while the initial temperature does not show a

significant effect on the melt pool maximum temperature. These factors have effect on the maximum

temperature of the melt pool with the order Laser power>Scanning speed>initial temperature.

Figure 4.38 demonstrate that the laser power and preheating are not main factors when it comes

to the velocity of the solidification front and the laser moving speed is the only main effect. This

statement is aligned with the previous experiments analyzing the solidification fo SLM process

[142].
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Figure 4.36: Main effect plot for the geometry of melt pool during the SLM process

Figure 4.37: Main effect plot for the maximum temperature of melt pool during the SLM process
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Figure 4.38: Main effect plot for the velocity of solidification front considering the effect of laser
speed, laser power and initial temperature
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Chapter 5

Summary and conclusion

The computational and analytical results in this work are organized in two major parts. In the first

part focusing on the preparation of the initial powder for manufacturing products made of Al and

Mg based metal matrix composites and nano composites a closer look is taken to the interaction

of metal powder with the highly abundant molecules in the process. Cryomilling is selected as the

powder preparation technique and interactions of N and N2 as the most abundant species in the

processing media are analyzed with the base metals. Then, as one of the most important concerns,

corrosion behavior of Mg matrix is inspected through observing the interaction of water molecule

with the Mg metal surface. In the second part of the study shaping the powder into a sound final

product is the main objective. In this part a finite volume model analyzes the AlSi10Mg/AlN

composite while being processed via selective laser melting. The major findings obtained in this

work are summarized as following.

• The DFT calculation revealed that addition of 0.0625 alloying element to the Mg surface does

not significantly change the surface energies.

• The structural configurations of pure Mg and Mg-Al systems containing an N atom or an N2

molecule show high thermodynamic stability.

• The binding strength of N2 molecule over different crystallographic surface planes (basal <

prism < pyramidal) exhibits a positive relation to the value of surface energies of the corre-

sponding planes.
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• Incorporation of an Al impurity in the Mg matrix will reduce the diffusion energy barriers of

N atoms and N2 molecules by furnishing more spaces in the diffusion pathway.

• If dissociated N atoms are available near the surface/grain boundary area, they can easily

form the N-rich dispersoids underneath the Mg surface.

• A 100 nm dispersoid was found in cryomilled Mg powders, EELS confirmed the dispersoid is

a nitride, and EDS determined the nitrides identity to be Mg3N2.

• If dissociated N atoms are activated for further diffusion into the inner bulk lattice without

forming the nucleus of N-rich dispersoids, the diffusion would be achieved by the interstitial

mechanism through the tetrahedral sites with diffusion energy barriers of ∼ 0.96 and ∼ 0.42

eV for pure Mg and Mg-Al materials.

• For the pure Mg system, the substitutional diffusion mechanism of an N atom is probable,

because the energy barrier is only ∼ 0.58 eV, and as long as vacancy sites are readily available

near the travelling N atoms.

• Because the strain energy estimation during milling process shows a wide range of variations,

it is currently uncertain that such high energy in the form of introduced and/or stored strain

energies (Ui and/or Us) could be provided during conventional, low energy cryomilling.

• If the molecular N2 species are pushed into the Mg lattice during milling, it is likely that

the bulk diffusion would occur by the interstitial octahedral mechanism with energy barriers

of ∼ 2.10 and ∼ 0.40 eV for pure and Mg-Al materials, respectively. However, it is again

dubious that this energy level could be delivered during these conventional milling processes

to avoid a high concentration of N-rich precipitates near the powder surface/ grain boundary.

• the adsorption of liquid N2 is thermodynamically favorable onto the surface of Al powders

with Eads values of in the range of -0.134 to -0.142 eV/molecule.

• The tendency for N2 adsorption can be strongly increased by adding transition metallic

elements such as Mn or Fe.

• The dissociation of N2 molecule over the Al surface will necessitate overcoming at least

1.93 eV/molecule when it is absorbed into the octahedral sites under the Al surface. Such

127



dissociation energy may be provided in the form of mechanical energy during the cryomilling

process.

• After absorption of N/N2, it was predicted that the diffusion energy barriers between the

adjacent octahedral sites in pure Al for N and N2 are 0.71 eV and 1.25 eV, respectively, and

that presence of impurity elements (Mg, Mn, and Fe) will increase and decrease the diffusion

energy barriers for the N and N2 transport in the Al bulk lattice, respectively.

• The binding of a water molecule over atop position shows the highest strength on the basal

(0001) Mg surface. The adsorption energy difference between the atop and other sites was

calculated as ∼ 0.14 eV for upright configuration and ∼ 0.25 eV for tilted configuration.

• The basal (0001) plane exhibits a much lower propensity to attract a water molecule compared

with other high-symmetric surface planes for a fixed composition, which is in consistent with

the experimental observations for increased degradation resistance in the Mg systems with a

(0001) surface orientation. On average, the adsorption energy of basal surface was ∼ 0.3 eV

lower than those of prism and pyramidal surfaces.

• Al increases the adsorption energy of a water molecule on the surface and slightly decreases

the electrode potential difference with respect to the clean Mg surface. Therefore, adding Al

on a Mg surface will reduce the degree of interaction between water molecules and the Mg

surface, but it will slightly increase the dissolution tendency of Mg atoms from the surface.

From this, it is inferred that the formation of a corrosion resistant β-phase would be primarily

responsible for the enhanced corrosion properties of Mg-Al.

• Zn increases the adsorption energy of a water molecule on the surface and decreases the

electrode potential difference with respect to the clean Mg surface. Adding Zn on a Mg

surface could be beneficial as it will reduce the degree of interaction between water molecules

and the surface, but it will increase the dissolution tendency of Mg atom from the surface.

These results are in agreement with the previous knowledge that incorporating Zn could

worsen the corrosion resistance of Mg alloys.

• Ca decreases the adsorption energy of a water molecule on the surface and decreases the

electrode potential difference with respect to the clean Mg surface. Adding Ca imposes

128



negative effects on both the water adsorption and the electrochemical surface degradation.

Corrosion improvement in Mg-Ca alloys could be, thus, attributed to the changes in the

chemistries in the Mg alloys due to the existence of Ca, which may reduce the degree of the

formation of other highly corrosive intermetallic compounds.

• Y decreases the adsorption energy of a water molecule on the surface and increases the

electrode potential difference with respect to the clean Mg surface. Therefore, adding Y on

Mg surface will enhance the degree of interaction between water molecules and the surface,

but it will decrease the dissolution tendency of Mg atoms from the surface. With this, it is

predicted that Y on the surface of Mg generally would not harm the corrosion properties,

which is again in line with the experimental finding that Mg-Y alloy typically exhibit an

improved corrosion resistance by forming well-defined passivation layers.

• During the SLM process a tear shape melt pool with wider tip and narrower tail forms as the

result of particle melting. The shape and geometry of this melt pool changes depending on

the laser input energy.

• A longer melt pool tail corresponds to a relatively slower solidification rate which is the result

of slower laser source motion and higher laser power.

• The maximum temperature in the melt pool caused by highest laser power equals 1710K and

is still very lower than the melting temperature of AlN suggesting that the reinforcement

particles will not melt during the SLM Process

• The model shows that the solidification front advances with a velocity 17 to 34 times faster

than the critical rate, which means that particles will encaptured by the solid/liquid interface

resulting in a homogeneous distribution on the AlN particles in the matrix. This result is in

agreement with the experimental results showing and even distribution of AlN particles in

AlSi10Mg matrix processed with SLM technique.

• Taguchi analysis for the main factor effect shows that the laser power and speed have main

effects on the geometry of melt pool while the initial temperature does not show a significant

effect.
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• For the maximum temperature of the melt pool only the laser power has a main effect and

for velocity of the solidification front the laser velocity seems to be the only factor that has

a main effect on the results.
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