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ABSTRACT 
 

MULTIDECADAL VARIABILITY IN CLIMATE MODELS AND OBSERVATIONS 
 

by 
 

Alex Oser 
 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Sergey Kravtsov 

 
 

Climate change attribution and prediction using state-of-the-art models continue to 

garner an ever-growing focus amongst both the scientific community and public alike. 

Recent analyses showing discrepancies in the structure of modeled and observed 

decadal climate variability (DCV), therefore, have engendered efforts to not only diagnose 

the dynamics underpinning observed DCV, but also to characterize the behavior of DCV 

within climate models. In this thesis, we employ Multichannel Singular Spectrum Analysis 

(M-SSA) to show that while the DCV signal in observations is best described as a 

coherent oscillation with complex propagation across the globe, modeled DCV lacks this 

structure altogether. Specifically, the modeled DCV has a considerably smaller magnitude 

than its observed counterpart, and tends to exhibit simpler spatiotemporal behaviors. In 

particular, within the vast majority of models, the DCV structure is best characterized 

either by globally synchronous, quasi-oscillatory patterns lacking propagation, or, secular 

trends punctuated with weak, oscillatory-like signals. Both observed and simulated DCV 

has the largest magnitude in the polar regions. However, the observed anomaly 

propagation suggests Atlantic control, whereas it is the Arctic that appears to be setting 

the tone for globally averaged variability in most model runs. Broadly, these results 

confirm contrasting DCV structure within models and observations, while identifying some 
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qualitative commonalities between the observed and simulated quasi-oscillatory behavior 

within a few model simulations, thus providing important clues for further DCV research. 
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1. Introduction 

We live in a time when there is never a dearth of information regarding our planet’s 

climate available to us, regardless of whether we seek it or not, and perhaps more 

importantly, regardless of its accuracy and scientific acuity. A recent example, which, 

aided by media and social-media sources likely made its way quickly across the globe, 

would be the Intergovernmental Panel on Climate Change’s (IPCC) Special Report 

finalized in October of 2018, stating, “Human activities are estimated to have caused 

approximately 1.0°C of global warming above pre-industrial levels, with a likely range of 

0.8°C to 1.2°C. Global warming is likely to reach 1.5°C between 2030 and 2052 if it 

continues to increase at the current rate. (high confidence)” (IPCC 2018). It is the right of 

each individual who comes in contact with this information to digest it as they see fit, while 

it is a charge to the scientific community, and a source of motivation, to categorize it as 

another piece of evidence in the quest to better understand the behaviors of our climate 

system in both the short and long term. One such effort underway in the climate 

community is the pursuit of knowledge regarding our climate’s variability on time-scales 

from a few decades to approaching one-century (decadal climate variability [DCV]). In 

particular, the predictability of future states of the climate relies on, amongst many other 

things, our understanding and proper adoption of ensemble-climate-models to study DCV 

events (anomalies), including but not limited to their origins, evolution across the globe, 

and interplay with external forcing, whether natural or anthropogenic (Cassou et al. 2018). 

Many strides have been made within the DCV arena, especially when considering 

observed surface temperature variability (both over land and over oceans) and our 

increased understanding of how our planet’s oceans absorb and distribute heat on 
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decadal time-scales in both a regional sense, as well as globally (Yan et al. 2016). These 

large-scale, low-frequency variability phenomena, such as the Atlantic Multi-decadal 

Oscillation (AMO: Buckley & Marshall 2016; Yeager & Robson 2017) and the Pacific 

Decadal Oscillation (PDO: Newman et al. 2016), while sometimes described in regional 

terms, tend to “imprint” themselves on the global-scale through a network of 

teleconnections, representative of either an atmospheric forcing of, or response to, such 

oceanic variability (Cassou et al. 2018). While we continue to advance our understanding 

of the physical mechanisms surrounding oceanic DCV (Danabasoglu et al. 2016; 

Hedemann et al. 2017; Robson et al. 2012; Ruprich-Robert & Cassou 2015; Smith et al. 

2016; Swingedouw et al. 2015; Zhang et al. 2013), one cannot lose sight of the 

importance for our current and yet developed global climate models (GCMs) to also 

accurately display both regional and global DCV patterns. 

Despite a recent surge in the amount of available climatic observations, historical 

records exhibit a relative scarcity temporally, and an overall scarcity spatially, with an 

emphasis over the oceans and especially over the Southern Hemisphere (Deser & 

Phillips 2017). This, as well as the overarching complexities of the climate system, lead 

to shortcomings in our state-of-the-art global-scale climate GCMs, which have to use ad 

hoc approximations for the physical processes they don’t explicitly resolve. Multi-scale 

interactions ultimately responsible for the Earth’s weather and climate lead to unintended, 

and due to current memory and processing inadequacies, unavoidable, model errors, as 

parameterizations of subgrid-scale processes certainly feedback on DCV (Loehle 2018; 

Stevens & Bony 2013; Booth et al. 2012; Evan et al. 2013; Martin et al. 2014, Yuan et al. 

2016; Brown et al. 2016). Cloud processes and their effect on the surface energy budget 
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are one such example where model parameterizations lead to surface variability errors, 

and thus impact the GCM’s ability to accurately capture DCV (Arakawa 2004; Park & 

Bretherton 2009; Zhang & Mcfarlane 1995). Thus, while we must continue to monitor, 

research, and diagnose DCV from observations and their resulting global impacts in the 

near term (see Wang et al. 2012; Schubert et al. 2004; Chylek et al. 2014; van Dijk et al. 

2013), we must not lose sight of the importance of our GCM’s limited ability not only to 

accurately hindcast past DCV events, but also replicate, at least in a loose sense of the 

term, the spatiotemporal structure of DCV, which is evident in observations, and has 

recently been borne out in efforts to characterize observed DCV structure (Kravtsov et al. 

2018).  

The aim of this thesis is to accomplish exactly such a characterization of the 

dominant DCV modes within the Coupled Model Intercomparison Project, Phase 5 

(CMIP5: Taylor et al. 2012). We already know that differences exist within the 

spatiotemporal structure as well as magnitude of observed DCV when compared to 

modeled DCV (Kravtsov & Callicutt 2017; Swanson et al. 2009; Knutson et al. 2016; 

Kravtsov 2017; Qasmi et al. 2017). Therefore, it is imperative we document the precise 

space–time structure of modeled DCV, with a short-term goal of comparing this structure 

to the one characterizing observed DCV, and a long-term goal of spurring the next 

generation of GCM’s to more accurately reflect observed DCV in the past as well as the 

future. 

The remaining contents of the thesis are organized as follows: section 2 provides 

a description of the data sets and outlines the methodologies used to analyze modeled 

DCV therein, as well as synthesizes the data and methods used to obtain observed DCV; 
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a descriptive analysis of DCV within observations and models follows in sections 3 and 

4, respectively; section 5 then concludes the analysis with a discussion regarding the 

similarities and differences between observed and modeled DCV, culminating in 

suggestions for future work. 

 

2. Data sets and methodology 

 

2.1. CMIP5 model simulations and identification of their multidecadal internal 

variability 

Our analysis of modeled DCV used particular model ensembles from the CMIP5 

Project (Table 1), which were previously analyzed in Kravtsov (2017). This dataset is 

comprised of 111 total model runs from seventeen unique GCMs, each with three, five, 

six, or ten independent, “long-term” simulations, containing monthly historical surface 

atmospheric temperature (SAT) data interpolated on a 2.5º by 2.5º grid using cubic 

splines, and spanning the time period from 1880 to 2005. Kravtsov and Callicutt (2017) 

and Kravtsov (2017) showed that the single-model ensemble means for ensembles with 

three or more simulations provide a fairly accurate estimate of the forced signal in these 

ensembles.  

We focus here on multidecadal climate variability, which may contain both forced 

signal and low-frequency internal variability. To isolate the secular variability in SAT, 

Kravtsov et al. (2018) developed an original methodology based on a combination of 

Multichannel Singular Spectrum Analysis (M-SSA; Moron et al. 1998; Ghil et al. 2002) 

and classical optimal (Wiener) filtering, in which the contribution of the high-frequency, 
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internal noise to each M-SSA mode is estimated using multi-scale linear inverse modeling 

(LIM) (Penland 1989; Penland 1996; Penland & Sardeshmukh 1995; Kravtsov et al. 2005; 

Kravtsov et al. 2017; Jeffrey et al. 2013), and then removed. The remaining filtered, low-

frequency (multidecadal) variability within each model run will hereafter be referred to as 

the secular signals of the model. While the methods which undergird these filtering 

procedures are outside the scope of this paper, Kravtsov et al. (2018) showed that these 

secular signals so isolated are statistically robust and can also be estimated with relative 

accuracy using more standard time-filtering methods. 

After the secular signals in each model simulation have been obtained as 

described above, we further computed the estimate of the secular internal variability 

(again, for each model simulation) by forming differences between the secular signals 

from individual models and their corresponding model ensemble-mean secular signal 

(representing an estimate of the forced signal for this model). In the same way, we can 

obtain estimates of the internal variability in observations (Kravtsov et al. 2018) by linearly 

subtracting the secular signals from individual CMIP5 model simulations (which can be 

shown to be dominated by the forced signal) from the observed secular signal. Kravtsov 

et al. (2018) showed that the observed secular internal variability so computed has a 

particular structure suggestive of a global multidecadal oscillation. These authors also 

provided evidence that this structure is absent from the internal variability of CMIP5 model 

simulations. In the present work, we aim to describe in detail the phenomenology of the 

multidecadal internal variability in CMIP5 models and identify their key distinctions from 

the observed variability. 
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2.2. Analysis of space-time structure of internal variability in models and 

observations using M-SSA 

To analyze the space–time structure of the observed and modeled internal secular 

variability, we used M-SSA analysis (Moron et al. 1998; Ghil et al. 2002), which is a 

multivariate extension of the Singular Spectrum Analysis (SSA: Broomhead & King 1986; 

Vautard & Ghil 1989; Vautard et al. 1992), and to a broader extent, that of the more 

standard principal component analysis (PCA) or Empirical Orthogonal Function (EOF) 

analysis (Monahan et al. 2009). In this way, we are able to analyze the underlying 

structure of the secular signals in the available (modeled and observed) climatic time 

series, all of which are relatively short and noisy (Broomhead & King 1986). The M-SSA 

analysis is, in fact, the standard EOF analysis applied to the so-called trajectory matrix 

constructed by appending to the original multivariate time series under consideration (in 

our case, time series of the gridded surface temperature data) time-lagged copies of itself. 

In contrast to the standard EOF analysis, which finds the spatial patterns with pronounced 

variance, the resulting decomposition thus carries the information about the dominant 

modes of variability characterized by pronounced correlations in both space and time, 

which can provide a compact description of the time development associated with such 

variability.  

The Singular Value Decomposition (SVD) of the trajectory matrix yields 

eigenvectors which are analogous to the Empirical Orthogonal Functions (EOFs), but, 

due to the temporal augmentation in the trajectory matrix, are called space-time EOFs 

(ST-EOFs). In a similar sense, space-time PCs (ST-PCs) can then be obtained by 

projecting the trajectory matrix onto ST-EOFs. The variances of the ST-PCs are equal to 
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the M-SSA eigenvalues, and the M-SSA modes are sorted in the order of decreasing 

variance, so that the leading modes describe most of the variance. Finally, the variability 

associated with each M-SSA mode can be reconstructed in the original physical space to 

yield the corresponding Reconstructed Components (RCs). The RCs are narrowband 

filtered versions of the original input time series, with filter weights determined data 

adaptively within the M-SSA procedure. The RCs can be correlated, but the sum of all 

RCs is equal to the original time series in each channel (e.g., for each grid-point time 

series of the input data). 

The number of lagged copies M to be used within M-SSA — the so-called 

embedding dimension — is an adjustable parameter. In the standard M-SSA application 

for identification of the oscillatory signals in climatic time series, M is chosen based on 

the expected range of periodicities to be detected. Each M-SSA mode can be associated 

with its own dominant frequency, determined by best harmonic fit to the corresponding T-

EOF (see below). The pair of M-SSA modes with similar variance and frequency whose 

ST-EOFs and ST-PCs are in quadrature identifies an oscillation. Note, however, that in 

the context of the secular signals which vary, by definition, on a time scale comparable 

with the length of the available time series, the periodic nature of a given signal cannot 

be established in principle, even if it is associated with an M-SSA pair as defined above 

and has oscillatory-looking RCs. Therefore, here, we chose M by requiring the M-SSA 

spectrum to be optimally peaked in the sense that the leading modes would be most 

statistically distinct from the noise background (these modes, when combined, would 

represent our dominant signal) and describe the largest fraction of the total data variance 
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(thus maximizing the signal-to-noise ratio). This leads to the choice of M=65 in the M-SSA 

analysis of the data–model secular differences. 

Prior to the M-SSA analysis, we compressed the original gridded input time series 

using PCA. We found that, in the most extreme case, twenty-two leading PCA-modes 

were needed to account for at least 99% of the variance within the secular signal data. 

As such, we chose to compress the input of our M-SSA to the leading twenty-five PCs, 

which therefore account for nearly 100% of the variance within all of the model runs, and 

act as the twenty-five channels within the M-SSA. We then used the resulting ST-EOFs 

and ST-PCs to obtain the RCs for each realization of the estimated secular variability 

(modeled or observed) and transformed them back into physical space to approximate 

secular signals on the original grid for plotting and analysis. 

To analyze the frequencies which dominated a particular M-SSA mode, we 

regressed the ST-EOFs (representative of each M-SSA mode within a given multi-

channel input time series) onto a set of harmonic predictors (sines and cosines), while 

varying both channel and frequency. The frequency range chosen was 1/500=0.002-yr-1 

through 1/10=0.1-yr-1, representing frequencies in the range of 10 to 500 years, while the 

process of choosing channels proved to be a bit tricky. Ultimately, our choice of which 

channels to consider within the regression process was based off of two measures of the 

signal strength within each channel for a given model. The first was the fraction of the 

variance accounted for by a given RC within each PC channel. These ratios were then 

sorted in decreasing order, as all would be less than one by definition, and the channel 

whose variance most closely matched the original PC variance was considered the 

“strongest” channel. In a similar manner, the variance of each channel within a model’s 
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RCs were normalized by the sum of the variances of all channels within that model’s RCs, 

once again giving us a measure of strength for each particular channel within the set of 

twenty-five channels for a model’s RCs. These were also sorted in decreasing order, and 

the ranks of both strength measures where then summed, with the channel associated 

with the smallest sum then used in the regression process to determine the dominant 

frequency of the M-SSA mode under consideration. In 102/111~92% of the cases (out of 

111 model simulations considered), the first channel was used, in 8/111~7% the second 

channel was used, and in 1/111~1% the third channel was used for that purpose. 

 

3. Observed DCV – The Global Stadium Wave (GSW) 

This section summarizes the results of Kravtsov et al. (2018) analysis of the 

observed and CMIP5 simulated secular variability. We first verified our methodology for 

obtaining the secular SAT variability using Wiener filtering (Section 2.1) using the 

simulations from the Community Earth System Model (CESM) Large Ensemble Project 

(LENS: Kay et al. 2015) (see Figure 1 for an example of M-SSA based Wiener filtering: 

Each non-stationary (secular) SAT signal was defined to be associated with the part of 

the SAT singular spectrum (inferred via M-SSA) that cannot be simulated by stationary 

linear inverse trained on pre-low-pass filtered data. The filter weights were derived via 

computing the signal-to-noise ratio of each M-SSA mode, and the weighted M-SSA 

decomposition is transformed back to physical space to reconstruct the part of variability 

associated with the signal). Forty available simulations of the twentieth century variability 

reflect a common forced signal summed with independent realizations of internal climate 

variability. Each SAT simulation was filtered as described above. We then compared the 
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non-stationary signals to estimated forced signals defined via the ensemble average of 

the surface temperature over all of the 40 simulations. The reconstructed non-stationary 

signal closely resembles the low-frequency forced response of the CESM model but fails 

to capture the short-term temperature response to episodic volcanic eruptions (Figure 2). 

The secular internal variability in LENS simulations is, therefore, relatively small, 

consistent with a recent study (Bellomo et al. 2018). 

In the main part of our analysis, we considered 17 ensembles of the CMIP5 models 

with three or more historical realizations (totaling 111 simulations), as well as the gridded 

surface temperature product from NOAA’s twentieth century reanalysis (20CR; Compo et 

al., 2011) in lieu of the observed SATs. Although the number of realizations in these 

models is much smaller than in the CESM LENS ensemble, for example, it is still sufficient 

to evaluate contributions from forced signal and internal climate fluctuations to these 

models’ secular variability (Kravtsov & Callicutt 2017; Kravtsov 2017; Frankcombe et al. 

2018). Similar to LENS simulations, the non-stationary signals inferred from CMIP5 

models capture the low-frequency forced signal less the effect of volcanic aerosols; 

however, when considered in aggregate, they reflect a larger spread of possible secular 

signals due to incorporation of model uncertainty (see section 4). On the other hand, the 

dynamical structure of the secular signal in observations is richer than that in the models 

in the sense of being represented by a larger number of significant M-SSA modes (see 

section 4). 

Given that our estimated secular signals in CMIP5 simulations primarily reflect the 

forced response of CMIP5 models, it makes sense to linearly subtract them from the 

observed secular signal to study the part of the observed secular variability unaccounted 
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for in CMIP5 simulations (Steinman et al. 2015; Kravtsov & Callicutt 2017; Kravtsov 

2017); this part can be viewed as, and will henceforth be referred to as, an estimate of 

the “observed internal variability.” We can also subtract the individual model ensemble-

mean secular signals from all of this model’s simulations to define the internal component 

of the secular signal within each simulation. The M-SSA analysis of the observed internal 

variability identifies a pronounced pair of M-SSA modes altogether absent from the 

simulated internal variability (Fig. 3, left). The reconstruction of this pair of modes for 

regional climate indices (Fig. 3, right) reveals an oscillatory-like, multidecadal signal 

propagating across the climate index network; a so-called stadium wave (Wyatt et al. 

2012), which we will refer to as the Global Stadium Wave (GSW). The pairs of M-SSA 

eigenmodes with similar magnitudes and time scales may indeed indicate the presence 

of a quasi-oscillatory mode (Ghil et al. 2002) in the data; in the context of the secular 

signals, which have time scales comparable to the length of the data record, the 

periodicity of such a signal cannot be verified, but the propagation of the anomalies in 

space in the course of the oscillation can still be established with statistical significance 

(Kravtsov et al. 2014). 

The order of indices in the sequence of Fig. 3 (except for GMO) is chosen based 

on the visual analysis of the SAT anomaly propagation over a time period between 1921 

and 1963, which roughly spans half of the oscillation period (Fig. 4). In year 1921, the 

oscillation is in its cold phase (Fig. 3, middle), with the exception of four major positive 

SAT anomaly spots: west of the Weddell Sea, in the eastern equatorial Pacific, as well as 

over the central US and Greenland. The development of an oscillation starts with an 

emergence of a positive SST anomaly in the North Atlantic (1921–30), which 
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subsequently expands and grows as positive SST anomalies in the North and Southwest 

Pacific (1933–1942), then the Southern Ocean and Antarctica (1941–1957) and, finally, 

over the Arctic (1960–1963), at which point the oscillation arrives at its positive phase 

throughout the world (less four major negative SAT anomaly regions roughly at the same 

locations as their positive analogs 40 years previous). 

As mentioned above, the phasing of the derived indices in the global stadium wave 

is consistent with the earlier work of Kravtsov (2017), which utilized a limited subset of 

Northern Hemisphere climate indices, including, in addition to surface temperature 

indices, the sea-level pressure based atmospheric indices, in particular, the North Atlantic 

Oscillation (NAO: Hurrell 1995; Hurrell & Deser 2009) index. This study showed that the 

observed NAO variability has a pronounced GSW-related component; by contrast, the 

multidecadal NAO variability in CMIP5 models is an order of magnitude smaller than that 

in observations (Fig. 5) and lacks the observed coherence with oceanic variability (figure 

not shown). We hypothesize that the lack of the atmospheric sensitivity to multidecadal 

climate signals originating in the ocean (of which the results regarding the NAO described 

above are just one example) is one of the main reasons behind the absence of the GSW 

in CMIP5 models, as these atmospheric teleconnections help the GSW signal propagate 

across the globe. 

Despite Wiener filtering methodology applied in M-SSA based space–time phase 

space providing an inherently more accurate identification of secular signals and explicitly 

dealing with the issues associated with observational uncertainties in sparsely sampled 

regions of the globe (by employing space–time covariance based signal detection), the 

key differences between observed and model simulated climates on multidecadal time 
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scales are so pronounced that can be easily detected using traditional time-filtering 

methods (Kravtsov et al. 2018). 

These authors also considered the sensitivity of the GSW to the reanalysis 

uncertainties, by repeating the entire analysis procedure using two versions of the 20CR 

reanalysis, as well as a more recent ERA-20C reanalysis (Poli et al. 2016). The GSW 

reconstructions using different reanalyses show consistent behavior over most of the low- 

and mid-latitude World Ocean. The GSW variability over land is consistent between 

20CRv2 and 20CRv2c reanalyses, but is entirely different in the ERA-20C reanalysis. 

Finally, the details of the GSW in the coastal Southern Ocean and Arctic region are also 

reanalysis dependent. Overall, the GSW space–time development exhibits consistency 

between the two versions of the 20CR reanalysis, except for the behavior over the narrow 

strip in the coastal Southern Ocean and a decadal shift in the Arctic component of the 

GSW. The 20CR and ERA-20C reanalyses are generally consistent over low-to-middle 

latitude oceans, but exhibit much larger differences over land and in polar regions. All 

three reanalyses thus identify the GSW emanating from the North Atlantic region and 

spreading over the globe via a combination of oceanic and atmospheric teleconnections, 

but the response over land is entirely different in ERA-20C. However, either version of 

the GSW is not reproduced in any of the CMIP5 simulations considered. 

 

4. Modeled-vs.-observed DCV 

Using the 111 unique CMIP5 estimates of model secular variability, as well as the 

corresponding estimates of the observed internal variability, we begin to explore DCV in 
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models, and the differences compared to observed DCV, at its roots: within the magnitude 

and within the structure of this variability. 

 

4.1. M-SSA based characteristics 

Both of these properties are already reflected in the M-SSA spectra of the 

observed and model simulated secular signals. The leading M-SSA pair associated with 

the observed secular variability is shown in Fig. 6 in terms of its frequency–variance 

characteristics. It can be considered a pair as both the vertical (variance) and horizontal 

(frequency) error bars overlap (these error bars were computed in terms of the standard 

spread of the corresponding quantities over 111 estimates of the observed internal 

secular variability, each associated with the subtraction of the forced signal estimate from 

available model simulations). Figures 7–9 are analogous to Fig. 6, but show M-SSA 

frequency–variance spectra for the leading 10 M-SSA modes (as opposed to the leading 

two modes alone), for observations (Fig. 7a), and a slightly extended set of leading modes 

for all of the model simulations considered (all other panels — see figure captions and 

legends). The main feature shared by all of the M-SSA spectra is that the leading two M-

SSA modes stand out of the rest of the spectrum in terms of their variance, so that these 

two modes describe the dominant structure in both observations and all model 

simulations, whereas the rest of the M-SSA modes represent the background noise with 

little-to-no discernable structure. This greatly simplifies our analysis by allowing us to 

concentrate on these two modes only to characterize the differences between the 

observed and simulated secular variability. The second important property is that the 

leading two M-SSA modes in the vast majority cases are the lowest-frequency modes 
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with periods exceeding 30 yr. This is perhaps not surprising, since the Wiener pre-filtering 

of secular variability indeed concentrated on the multidecadal time scales. 

To compare and contrast the magnitude of modeled versus observed variability, 

we thus begin by looking no further than the spread of the modeled variances of the first 

two M-SSA modes themselves (for observations and model simulations). Broken down 

into quartiles, we have four variance ranges: (i) low variance: [0,821]; (ii) medium 

variance: [822,1313]; (iii) high variance: [1314,2407]; (iv) very high variance: [2408,+inf). 

When compared to the same values for observations, the analogous quartile ranges are 

given by: (i) [0,8444]; (ii) [8445,10577]; (iii) [10578,13825]; (iv) [13826,+inf). Thus, 

collectively, the first three quartiles of the modeled variances easily fall within the first 

quartile of the observed variance when considering the leading pair only. When 

comparing the spread of the magnitudes of the variance within observations (Figure 7(a)) 

to those within the models (Figures 7(b-f) and 8-9(a-f)), only two models appear to have 

variability within the leading pair that rivals that in observations, and those are CSIRO-

MK3-6-0 (Figure 7(e)), and GFDL-CM3 (Figure 8(a)). This once again quantitatively 

positions modeled variability well outside the norm when compared to observed variability 

and is further evidence that the complexities of said variability are rarely captured by our 

current state-of-the-art GCMs. 

As previously mentioned, each of the 111 modeled leading modes of variability 

was compared to each of 111 observed leading modes of variability (111x111=12321 

total comparisons) and only two models (CSIRO and GFDL-CM3) contained runs with a 

greater magnitude of variability compared to that of individual estimates of observed 

internal variability. More specifically, only three total model runs (CSIRO runs 4 and 5; 
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GFDL-CM3 run 5) showed magnitudes of variance higher than that of observations, with 

a grand total of slightly above 0.3% of all model runs showing higher variability in both of 

the leading modes (CSIRO run 4 > observations in 6 cases; CSIRO run 5 > observations 

in 27 cases; GFDL-CM3 run 5 > observation in 6 cases; 39/12321~0.3%). Thus, while 

these model runs are extreme outliers, we should look to them, as well as other models 

that behave similar to them, to guide our quest to better characterize modeled DCV and 

compare it against the observed DCV. To do so, we will visualize the structure of the 

variability associated with the leading two M-SSA modes, first in the phase space of the 

SAT EOFs (within the 25 channels used as inputs to the M-SSA analysis: section 4.2) 

and then by plotting the associated RCs in the physical space (section 4.3). 

 

4.2. The structure of the observed and modeled variability in EOF phase space 

Figure 10 shows the ensemble average ratios of variance between the 

Reconstructed Components (RCs) of the leading pair of M-SSA modes, and the variance 

of the leading twenty-five pre-filtered PCs used in M-SSA, for both models and 

observations. This can be thought of as a proxy for the structure of the variability, as it 

quantifies how well each channel within the leading M-SSA modes captured the variability 

within the PCs. In a general sense, only the leading channels should be considered, as 

this ratio degrades quickly, with both models and observations explaining less than 20% 

of the variance at or beyond the fifth channel. Focusing on the first two channels, we note 

a few distinctions between models and observations. First, the loss in variability explained 

between channels one and two reduces much more slowly in observations than it does 

in models. In fact, the variability explained by channel-two in the observations is larger 
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than the variability explained by channel-one in the models, and the same can be said 

when comparing channels three and two of the observations and models, respectively. 

This alludes to the space-time structure in observations being more complex than it is in 

models, which we will later show to be the case. Specifically, the complex oscillatory 

patterns and propagations of observations necessitate the use of more channels in order 

to describe the variability within. Models, on the other hand, tend to lack these oscillatory 

and propagational complexities, tending more towards synchronous, low-frequency 

secular trends, mimicking spatial red-noise patterns with space and time memory. 

Second, the spread in variability amongst the first two channels is much less in 

observations compared to models. This further illustrates the complex yet distinct 

structures which must dominate in observations, as both channels one and two not only 

explain a relatively large amount of variability compared to models, but also do so in a 

more consistent fashion, leading to a relatively small amount of spread when compared 

to models.  

 

4.3. The structure of the observed and modeled variability in physical space 

 

4.3.1. Categorization of modeled DCV by frequency 

In this section, we aim to elucidate the salient differences in the structure of the 

observed and model simulated variability. In order to accomplish this task, we divided the 

models into three separate categories based on the range of frequencies within the 

leading two M-SSA modes, while we largely ignored the differences in their variance. 

These groups were:  
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(1) the ultra-low-frequency (ULF) signals, for which at least one of the two leading 

M-SSA modes has a frequency less than 0.008 yr–1; 

(2) the ‘pairs’, for which both leading M-SSA modes have similar frequencies larger 

than 0.008 yr–1; and 

(3) ‘non-pairs’, with different dominant frequencies both larger than 0.008 yr–1. 

 

The observed secular variability belongs to the group (2), which is most likely to 

produce oscillatory-looking signals. On the other hand, the three model runs that have 

most intense secular variability approaching in magnitude to the observed variability fall 

within categories (1) [CSIRO, Runs 4 and 5] or (3) [GFDL CM3, Run 5], and thus, first of 

all, have spatiotemporal structures very different from that of the observed variability (as 

is further illustrated below) and, second, are more likely to be associated with the low-

frequency noise. 

 

4.3.2. Ultra-low-frequency (ULF) signals 

These, once again, include the model runs with the leading two M-SSA modes in 

which at least one of the frequencies (for mode 1, mode 2, or both) is <<0.01. These 

modes are typically a mixture of a secular trend and oscillatory-looking signal. The trend 

and oscillatory-looking signal (not an oscillation, which requires a pair) may have different 

spatial expressions. This group contains 65 out of the 111 CMIP5 simulations (~58.6%), 

and can be further divided into four approximate subgroups: 
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(i) In-sync oscillation-like runs (27 runs): This group contains runs which are 

dominated by a higher-frequency oscillatory-looking signal, and the secular trends within 

are relatively weak (but noticeable) in most of the regions. The amplitude of the oscillation 

may also be modulated in time (e.g., CCSM4, Run 4). Most of the runs from this group 

have in-sync variability in surface temperature all over the globe, with a few possible 

regional exceptions (e.g., CanESM2, Run 5; CNRM, Run 7; IPSL, Run 4). A typical 

feature of these (and many other) runs is that the variability in Arctic air temperature 

dominates (sometimes vastly; e.g. GISS-E2-Rp3, which has a strong trend confined to 

Arctic) compared to variability in other regions. Some of the runs, however, have 

comparable level of variability over Antarctica and, in few cases, other regions (e.g., 

CNRM, Run 4 and 8; CSIRO, Run 5; GISS-E2-Hp3, Run 3). 

(ii) Runs with in-sync non-uniform trends (15 runs): These runs exhibit strong non-

uniform trends, varying nearly in-sync throughout the globe, possibly with different 

regional amplitudes. Arctic or polar dominance are, once again, common, but there are 

runs with uniform amplitudes for different regional indices. A typical example of the run 

from this group is HadCM3 Run 4, whose regional indices from models and observations 

are plotted in Figure 13. 

(iii) Polar dominated (often detached) trends (19 runs): These runs exhibit trends 

dominated by those in Arctic or Antarctic temperatures (or both at the same time). The 

Arctic and Antarctica can be in-phase (GISS-E2-Hp3, Run 1), out-of-phase (CSIRO, Run 

4; GISS-E2-Hp3, Run 2) or phase-shifted/unrelated (GFDL-CM3, Run 3; GISS-E2-Rp3, 

Run 6). The rest of the world can vary in sync with polar indices (CSIRO Run 4) or 

completely independently (GFDL-CM3, Run 3; HadCM3, Run 10; HadGEM2-ES, Run 1). 
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(iv) Other (4 runs): These runs do not show any robust regional relationships with 

a discernable structure and are likely to represent stochastic ULF variability. 

 

To illustrate the typical behavior associated with the ULF variability, we show, in 

Fig. 12, the reconstructions of CSIRO runs 4 (sub-category iii) and 5 (sub-category i) 

averaged regionally in the Arctic (AR) and Antarctic (AA) regions, Northern Hemisphere 

(NMO, <60ºN), Southern Hemisphere (SMO, <60ºS), and globally (GMO). We also show, 

for comparison, the analogous reconstructions for the observed GSW. Recall from 

Section 4.1, we subtract, from observations, the secular signal (presumably externally 

forced) from a CMIP5 model run of interest obtained by our filtering methodology (Section 

2.1). The difference yielded is a distinct estimation of the internal variability within 

observations, of which we produce 111, from the 111 distinct CMIP5 model runs. For this 

analysis, we’ll focus on the regions listed above as they do well to show global variability, 

as opposed to more equatorial and mid-latitude oceanic-regions, which can downplay the 

importance that polar variability has on the global scale. While many of the runs (across 

all categories) show strong arctic (AR) dominance, these runs show a rather comparable 

level of variability between the Arctic and Antarctic (a slight favorability towards the Arctic 

is seen in CSIRO, run 5). In order to obtain a more global perspective, as well as an 

understanding of the structural evolution of variability present within these two runs, 

figures 14 and 15 show “movies” of the global reconstructions nearly spanning the entire 

time period (1888-2000 as opposed to 1880-2005) and showing every eighth time step. 

CSIRO run 4 illustrates a well-defined “see-saw” pattern between the Arctic and Antarctic, 

matching the out-of-phase trends seen in the regional index plot of Figure 12 (top). 
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Furthermore, the amplitude and the geographical extent of these polar anomalies is more 

pronounced in the Atlantic sector as opposed to the Pacific sector. CSIRO run 5 (Figure 

14) on the other hand, is relatively in-phase, with the Arctic slightly lagging the Antarctic, 

and the relative greater extent of the Arctic anomalies seen reinforces the larger 

magnitude of variability evident in the regional index plot of Figure 12 (bottom). As a final 

note, this run also contains a propagation pattern in the Antarctic, as the Atlantic sector 

anomalies in this region tend to propagate westerly into the Pacific sector of the Antarctic 

overtime, hinting at a slightly more complex space-time evolution, such as what is found 

in observations (Fig. 4). 

 

4.3.3. Signals associated with M-SSA pairs 

The vast majority of runs within this group (all but one; IPSL, Run 6) have a typical 

period from between 50-100 years. Again, we use the term “pair” for this group to describe 

a nearly equivalent relationship between the frequency of the two leading modes. In some 

cases, variances error bars overlap, lending credence to the title of “pair,” while in other 

cases they do not (e.g. CSIRO, Run 9). We hypothesize in the cases where variance 

error bars do not overlap, secular variability is present, as it is evident in some 

reconstructions (CNRM, Run 10; CSIRO, Run 7). 34 of the 111 groups fall into this group 

(30.6%), which can be broken into three subgroups: 

 

(i) In-phase runs (21 Runs): Although some runs within this group still contain 

secular-like variability, including trends (see runs mentioned above), they also exhibit 

oscillatory-like patterns in which the NMO and SMO (as well as the AR and AA) are more-
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or-less in phase (CSIRO, Run 9; GFDL-CM2.1, Run 6; HadCM3, Run 3). We also see AR 

dominance in the vast majority of runs once again, with still some runs falling outside this 

characterization (GFDL2.1, Run7; GFDL-CM3, Run 4; HadCM3, Run 3). 

(ii) Phase shifted runs (10 Runs): As the title suggests, these runs generally show 

phase shifts across the hemispheres, varying from a couple of decades, to some runs 

being completely out-of-phase (CanESM2, Run 1; HadCM3, Run 7). SMO and AA 

variability appears to be stronger in these runs when compared to subgroup (i) runs, 

however, AA variability vastly dominates some runs as well (e.g. CNRM-CM5, Run 6; 

MIROC5, Run 4). With the two hemispheres out of phase in general, one would assume 

a proper bellwether for the phase of the GMO would be to match that of the hemisphere 

with stronger variability. Nevertheless, it is AR variability that correlates best with GMO 

variability in most runs, while other runs show the GMO more in-sync with the AA (GFDL-

CM2.1, Run 10), or falling somewhere in-between (HadCM3, Run 7). Lastly, a few runs 

show the interesting behavior of tending towards in-sync oscillations at the beginning of 

the time period, while becoming more pronouncedly out-of-sync during the course of the 

second half of the 20th century (e.g. CanESM2, Run 4). While we cannot rule out end 

effects as being responsible for such a shift in phases over time, the idea of GCMs 

producing such evolution within phase patterns is intriguing. 

(iii) Other (3 Runs): Once again we include this category for completeness, with 

mostly secular signals mixed with quasi-oscillatory modes, but lacking any coherent 

oscillatory structure such as that found in observations. 
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We now turn to HadGEM2-ES, Run 2, as an exemplar for the M-SSA “pairs” group, 

highlighted by Figure 16 showing both the regional index plot for models and for 

observations, and Figure 17 showing this model’s temperature reconstruction “movie.” As 

can be seen in both the regional indices for models and the “movie,” broadly speaking, 

this run is in phase across the globe except for a few isolated, out-of-phase regional-foci. 

The period of oscillation is very close to 60-years, matching the frequency of the leading 

M-SSA pair in Figure 9c, and, like most models, shows a strong Arctic dominance. 

Looking at the regional index plot, one can see that the variability in the SMO is the 

weakest overall, with the smallest regional amplitude. Reconciling this using Figure 17, 

we see that the South Pacific and South Atlantic, which, together, make up a majority of 

the SMO, are examples of the out-of-phase regional foci mentioned above. This shows 

that while broader patterns can dominate the leading modes within models, focused, 

regional variability can be captured as well. 

 

4.3.4. Signals associated with M-SSA non-pairs 

This leaves us with the final, and smallest group (11/111~9.9%; GFDL-CM2.1, Run 

9 contained an error, and was left out of the analysis), which are those signals associated 

with non-pairs. Contrary to the previous group, there is a clear mismatch in the 

frequencies of the leading two M-SSA modes, some of which differ by nearly 50-years 

(GFDL-CM3, Run 5; IPSL-CM5, Run 3), while others only differ by around 20-years 

(GFDL-CM3, Run 2). It should be reiterated here that while runs such as GFDL-CM3, Run 

2 (Figure 7f; orange), exhibit a large mismatch in both frequency and variance of the 

leading pair, we still choose to observe the behavior of the leading pair as it is this pair 
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that is dominant in observations. However, an opportunity to further investigate DCV in 

models exists in analyzing those modes beyond the leading pair, especially potential M-

SSA pairs such as modes three and four of GFDL-CM3, Run 2. 

Six of the members in this group have a similar, and rather distinct behavior, which 

is one of amplitude-modulated oscillation (Figure 18). In the majority of these cases, the 

amplitude is in-phase and decaying in time (CNRM-CM5, Run 1; CSIRO, Run6; GFDL2.1, 

Runs 1 and 2), with one run decaying in time while being out-of-phase (GFDL-CM3, Run 

5), and the last run displaying a mix of amplitude modulation dependent on region (IPSL-

CM5A, Run 3). The remaining five then fit into a broader category of “other,” differentiated 

by a mixture of two-or-more oscillatory signals, trends punctuated with oscillations, or for 

lack of a better term, noise, all of which lead to incoherent signals in regional index plots 

(CanESM2, Run 3; GFDL-CM3, Run 1; Giss-E2-Hp2, Run 6; MIROC5, Runs 1 and 2). It 

can also be seen in Figures 7-9, that the leading few modes of these particular five runs 

have relatively low magnitude variances within their model group, little spread in their 

respective variances, and differing frequencies across modes, all of which likely lead to 

the bizarre regional index structures seen in Figure 19. 

 

5. Conclusion 

Recently, it had been shown that the secular signals detected in observations had 

a coherent and complex structure. Described as the “Stadium Wave,” this structure 

propagated across the globe in time and lead to patterns of variability which differed from 

that of models in both magnitude and structure. The aim of this paper was to further 
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investigate these differences by painting a more precise and coherent picture of DCV 

characteristics in models, as had similarly been done for observations. 

111 long-term simulations from the CMIP5 Project were used as the base set of 

modeled data, which were uniquely high-pass filtered in the same manner as had been 

done previously in the literature, in order to remove the high frequency variability 

inherently present in our GCMs, allowing us to focus on the secular DCV structure of 

interest. Furthermore, ensemble means representing the best-guess-forced-signal within 

a model type were subtracted from each individual model run of that type, thus yielding 

the secular, internal variability within an individual model run. In this same way, we also 

subtracted individual, secular model runs from a set of observations. By doing so, we 

obtained a set of 111 unique estimates of the same internal, secular variability, except 

this time for observation, allowing for comparison amongst the modeled and observed 

DCV structure. 

The analysis was comprised of a combination of Principal Component Analysis for 

data compression, as well as the isolation of the leading modes of variability which were 

used as the channels in the next step of our procedure, Multichannel-Singular Spectrum 

Analysis, wherein we applied an embedding dimension of 65-years. We then used the 

resulting space-time EOF structures obtained from the Reconstructed Components of the 

leading two modes of variability (channels one and two) to analyze the structure of the 

variability in both EOF-space and physical-space, with a primary focus on characterizing 

these space-time structures within the models and a secondary focus of comparing our 

results to the observed structures described in the literature (and recreated within this 

analysis). 
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First, the amplitude and structure of variability within the models is much different 

than that of observations, with multiple modes of variability needed to capture the complex 

oscillatory and propagational behaviors found within observations, and the amplitudes of 

variability lagging far behind their observed counterparts. Models, on the contrary, have 

much of their variability isolated to the first mode alone. The RC-to-PC ratio for the second 

mode in models for example is close to 0.45, while the analogous mode in observations 

is above 0.75, and the even the third mode within observations has a greater RC-to-PC 

ratios (slightly under 0.5). A common theme can be seen in the PCs themselves, as the 

ensemble average of PCs with 1 standard deviation of error shows no overlap in the 

leading pair of PC modes (the leading M-SSA pair), which is a measure of statistical 

significance concerning the uniqueness of the variability each mode explains. Once 

again, the models show the opposite, with an overlap in the error bars across multiple 

leading modes, suggesting a lack of significant variability, and increasing the likelihood 

that models are behaving more stochastically than observations. This issue alone 

presents an opportunity for future work. 

In terms of physical space, while there remain many differences which are 

discussed below, it should be noted from the beginning that there are in fact similarities 

between the temperature reconstructions. While this is a bit puzzling considering the stark 

differences in the variability metrics outlined above, the quasi-oscillatory nature found in 

many of the models is motivating. To begin, we divided the models into three groups 

based mostly on the frequencies found in their leading M-SSA pair, as it is this pair that 

dominates in explaining observed variability. These three groups were (i) Ultra-Low 

Frequency; (ii) M-SSA “Pairs”; (iii) Non-Pairs. The Ultra-Low Frequency group was 
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defined by one or both of the leading modes associated with a frequency <<0.01 (100-yr 

periods within oscillatory-like behavior) and was the largest of the three groups with nearly 

60% of models representing it. Therein, quasi-oscillatory patterns mix with secular trends 

to define the behavior of the bulk of the runs. To reiterate, by definition, these are not 

oscillations according to M-SSA, which requires the leading pair to have (nearly) the same 

frequency, and preferably, the variance bars to overlap. The second group, titled M-SSA 

“Pairs,” required frequencies of the leading pair of modes to “match” (preferably within a 

decade of one another), however, an overlap of variance error bars was not necessary. 

Herein, these “pairs”, while loosely defined as such by our M-SSA, mostly had periods of 

oscillation between 50-100 years. Given our embedding dimension of 65-years, this 

supports the result that, even within “pairs,” the internal variability in models is secular to 

quasi-secular for all runs. Non-pairs make up the final and smallest group with less than 

10% of the runs represented, and commonly had amplitude modulations tending towards 

decay in time. 

Ultimately, common themes were observed across all of the groups, many of which 

encourage opportunities for future work. Mismatches in both frequency and amplitude of 

variance within the leading M-SSA pair are one such commonality already touched on but 

worth mentioning again. Arctic variability, and a tendency towards in-sync oscillations 

when oscillatory behavior was present, are two other examples, the latter of which is 

inconsistent with observations. Global synchronicity, in fact, suggests a need for a more 

focused regional analysis, and one in which future work is underway. For example, 

regional index plots herein focus rather broadly across hemispheres, globally, and in the 

poles. Moving forward, further analysis is planned for the oceanic regions, in particular 
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the North Atlantic and North Pacific. In this same vein, the regional variability within the 

models was all but absent over land, save the Antarctic. All of the above further support 

the need for future research aiming towards improving the feedback between the oceans, 

atmosphere, and land within GCMs, and more accurately producing the past and future 

global variability they aim to explain.  
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Table 1: The seventeen CMIP5 twentieth century simulations and their corresponding 
number of runs (111 model-runs analyzed in total)  
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Figure 1: M-SSA spectra associated with run 4 from the LENS project. The raw spectrum 
of input signal (blue plus signs) matches the rescaled noise spectrum (red dots) very well 
in the tail of the spectrum. Only two leading input modes, however, exceed the 95th 
percentile of the variance associated with the stationary noise model and will be used to 
reconstruct the secular signal in this simulation.  
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Figure 2: (a) Ensemble-mean global-warming pattern (ºC) obtained by regressing the 
secular SAT signals onto centered and normalized time series of their Northern-
Hemisphere mean (black line in (b)). (b) Normalized time series of the Northern 
Hemisphere mean SAT. Individual simulations, thin grey curves; ensemble mean, red 
curve; ensemble mean of secular signals, solid black curve; standard uncertainty of the 
secular signals (over 40 estimates), dashed black curves. (c) and (d) Spatial pattern (ºC) 
and normalized time series of the leading mode of the difference between the estimated 
secular SAT signal and the CESM’s ensemble-mean SAT (‘true’ forced signal). 

 a  b 

 c  d 
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Figure 3: (Left) M-SSA spectra of observed–modeled data secular difference (black); the 
error bars show standard uncertainty computed over 111 estimates. Also shown are M-
SSA spectra of model signals’ deviations from individual model ensemble means (blue), 
and the 99th percentile of variances obtained by projecting the simulated signals onto the 
observed ST-EOFs of M-SSA analysis (red). (Middle) locations of regional SAT indices. 
(Right) Reconstructed time series associated with the leading M-SSA pair in select 
regional indices. GMO (Global Multidecadal Oscillation) time series represents the 
reconstruction of the global-mean temperature. All the time series are dimensionless; the 
actual standard deviations of A and AA indices is around 0.6K; that of all others – 0.1K. 
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Figure 4: A 1921–1963 segment of the global stadium wave; shown are reconstructed 
SAT anomalies raised to the power of 1/7, which alleviates differences between SAT 
anomalies over ocean and over land to concentrate on the anomaly patterns and their 
propagation. Color axis is from –1.5 (saturated blue) to 1.5 (saturated yellow). 
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Figure 5: The standard deviation of the boxcar running-mean filter averaged NAO index, 
as a function of the averaging window in CMIP5 simulations (red – historical, black – 
control, other colors — 20CR and station-based observations). (Left) the results for 
original indices; (Right) the same as in the left, but with the GSW component filtered out 
of the observed NAO. Error bars indicate standard spread across multi-model ensemble 
considered. The difference between observations and model simulations are entirely 
dominated by the presence of the GSW component in the observed NAO data. 
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Figure 6: Variance and frequency across the 111 estimates of observed internal 
variability for the leading observed M-SSA pair (frequency has units: yr-1).  
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Figure 7: (a) is a recreation of figure 6 except this time showing modes one through ten. 
Note that modes one and two are a different color compared to figure 7; (b-f) Frequency 
spectra plots of the leading eighteen modes for each of the first five models listed in Table 
1 (models 1-5), in that order. Each individual run within a model is identified by a different 
color, with frequency along the x-axis and ST-PC variance along the y-axis. 

(a) (b)

(c) (d)

(e) (f)
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Figure 8: (a-f) Analogous to figure 7 except this time for the next six models listed in table 
1 (models 6-11).  

(a) (b)

(c) (d)

(e) (f)
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Figure 9: (a-f) Analogous to figure 7 except this time for the last six models listed in table 
1 (models 12-17).  

(a) (b)

(c) (d)

(e) (f)
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Figure 10: (Top) Ensemble-average variance ratio of Reconstructed components (RCs) 
of the leading M-SSA pair (modes 1 and 2) to original pre-filtered PCs in models (blue ‘x’) 
and observations (orange ‘o’). This plot is a proxy for the “structure” of the variance within 
the two. (Bottom) Ensemble-average PC variances for models (blue ‘x’) and observations 
(orange ‘o’)  
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Figure 11: Frequency–variance M-SSA spectra for CSIRO model run 4 (Top) and run 5 
(Bottom). Both of these model runs fall within category 2 (“secular”).  
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Figure 12: Regional index plots for CSIRO model run 4 (a) and run 5 (b). Both of these 
model runs fall within category 2 (“secular”) and show higher frequency oscillatory-signals 
superimposed on secular trends. The trend is most evident in run 4. The analogous 
figures, except for observations, are shown below them in (c) and (d), respectively. 

(a) (b)

(c) (d)
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Figure 13: Analogous to the columns of Figure 12, except for HadCM3 Run 4. 
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Figure 14: “Movie” of global CSIRO-MK3-6-0 Run 4 anomaly reconstructions from the 
leading M-SSA pair. The time-step between frames is eight years (from 1888 to 2000), 
encompassing the bulk of the 1880 to 2005 data timeframe. In order to accentuate the 
evolution of polar anomalies, all values were raised to the (1/3)-power.  
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Figure 15: Analogous to figure 14 except for CSIRO-MK3-6-0 Run 5.  
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Figure 16: Analogous to Figure 13, except for HadGEM2-ES Run 2.  
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Figure 17: Analogous to figure 14 except for HadGEM2-ES Run 2.  
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Figure 18: Analogous to Figure 12 except for GFDL-CM2.1 run 1 (a) and GFDL-CM2 run 
5 (b). Both of these model runs fall within category 3 (“non-pair”) and show in-phase and 
out-of-phase amplitude modulation in time, respectively. The analogous figures, except 
for observations, are shown below them in (c) and (d), respectively.  

(a) (b)

(c) (d)
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Figure 19: Analogous to Figure 12 except for MIROC5 run 1 (a) and CanESM2 run 3 (b). 
Both of these model runs fall within category 3 (“non-pair”) a linear trend punctuated by 
oscillations and a mixture of two-or-more oscillatory signals, respectively. The analogous 
figures, except for observations, are shown below them in (c) and (d), respectively. 

(a) (b)

(c) (d)
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