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ABSTRACT 

 

THE IMPACT OF RESEARCH DATA SHARING AND REUSE ON DATA 

CITATION IN STEM FIELDS 

 

by 

Hyoungjoo Park 

 

The University of Wisconsin Milwaukee, 2018 

Under the Supervision of Dr. Dietmar Wolfram 

 

 Despite the open science movement and mandates for the sharing of research 

data by major funding agencies and influential journals, the citation of data sharing 

and reuse has not become standard practice in the various science, technology, 

engineering and mathematics (STEM) fields. Advances in technology have lowered 

some barriers to data sharing, but it is a socio-technical phenomenon and the impact 

of the ongoing evolution in scholarly communication practices has yet to be 

quantified. Furthermore, there is need for a deeper and more nuanced understanding 

of author self-citation and recitation, the most often cited types of data, disciplinary 

differences regarding data citation and the extent of interdisciplinarity in data 

citation. 
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 This study employed a mixed methods approach that combined coding with 

semi-automatic text-searching techniques in order to assess the impact of data 

sharing and reuse on data citation in STEM fields. The research considered over 

500,000 open research data entities, such as datasets, software and data studies, from 

over 350 repositories worldwide. I also examined 705 bibliographic publications 

with a total of 15,261 instances of data sharing, reuse, and citation the data, article, 

discipline and interdisciplinary levels. More specifically, I measured the 

phenomenon of data sharing in terms of formal data citation, frequently cited data 

types, and author self-citation, and I explored recitation at the levels of both data- 

and bibliography-level, and data reuse practices in bibliographies, associations of 

disciplines, and interdisciplinary contexts. 

The results of this research revealed, to begin with, disciplinary differences 

with regard to the impact of data sharing and reuse on data citation in STEM fields. 

This research also yielded the following additional findings regarding the citation of 

data by STEM researchers; 1) data sharing practices were diverse across disciplines; 

2) data sharing has been increasing in recent years; 3) each discipline made use of 

major digital repositories; 4) these repositories took various forms depending on the 

discipline; 5) certain data types were more often cited in each discipline, so that the 

frequency distribution of the data types was highly skewed; 6)  author self-citation 

and recitation followed similar trends at the data and bibliographic levels, but 



iv 

specific practices varied within each discipline; 7) associations between and across 

data and author self-citation and recitation at the bibliographic level were observed, 

with the self-citation rate differing significantly among disciplines;8) data reuse in 

bibliographies was rare yet diverse; 9) informal citation of data sharing and reuse at 

the bibliographic level was more common in certain fields, with astronomy/physics 

showing the highest amount (98%) and technology the lowest (69%); 10) within 

bibliographic publications, the documentation of data sharing and reuse occurred 

mainly in the main text; 11) publications in certain disciplines, such as chemistry, 

computing and engineering, did not attract citations from more than one field (i.e., 

showed no diversity); and, on the other hand,12) publications in other fields attracted 

a wide range of interdisciplinary data citations.  

 This dissertation, then, contributes to the understanding of two key areas 

aspects of the current citation systems. First, the findings have practical implications 

for individual researchers, decision makers, funding agencies and publishers with 

regard to giving due credits to those who share their data. Second, this research has 

methodological implications in terms of reducing the labor required to analyze the 

full text of associated articles in order to identify evidence of data citation. 
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Chapter 1 INTRODUCTION 

 

1.1. Research Problem and Motivation 

Open science is an umbrella term for an approach based on greater access to public research 

that can affect the entire research cycle and its stakeholders and can be enhanced by information 

and communication technology (ICT) tools, platforms, networked collaboration, and participation, 

all of which promote the diffusion of research results. The open science movement supports reuse, 

reproducibility, and transparency. Open data—data that are freely and openly available to the 

general public—are widely used in scholarly communication, governmental, and industrial sectors. 

Aspects of open science that are publicly visible and/or citable include open research data, Open 

Access (OA) journals (e.g., Public Library of Science ONE or PLOS ONE) that may also employ 

open peer review (e.g., F1000Research), publicly accessible repositories (e.g., Harvard Dataverse), 

open source software (e.g., Apache OpenOffice), and various other open scholarship practices. 

The OA option is associated with higher citation rates in comparison with non-OA articles 

published in the same journals: OA articles twice as likely to be cited within 4 to 10 months and 

three times more likely after 10 to 16 months (Eysenbach, 2006) and are more often downloaded 

from publishers’ websites than closed access articles (Davis, 2010). Open science with shared data 

can have a relatively greater impact (Piwowar, Day, & Fridsma, 2007), increasing reproducibility 

through data reuse and repurposing research questions and fostering transparency through the 

validation of research findings. The sustainability of open science is dependent on maximizing 

data reuse rather than the mere sharing of data in repositories (Curty, 2015) because data reuse 

promotes data sharing (Niu, 2009). Open science, which includes open access to research data, can 

help researchers to succeed in these respects. 
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In this era of big data, open science, and open research data, it is becoming increasingly 

important to measure the scholarly impact of data sharing on research data citation. This is 

especially true in regard to shared research data that are bi-directionally linked to published outputs 

in articles, data repositories, and datasets. The explosion in the amount of data produced, combined 

with advances in data science, present enormous opportunities for big science. Heavily data-

intensive, computational, and collaborative research forms the basis of open science across diverse 

disciplines, countries, and technologies. In this context, the use of industrial-level equipment is 

increasingly prevalent as part of the effort to introduce more sophisticated analyses into large-scale 

research and to maintain transparency and public trust in science by validating original research 

findings.  

In a manner consistent with the open science movement, open access to research data are 

mandated by the major funding agencies (e.g., the National Science Foundation and National 

Institutes of Health), high profile journals (e.g., Nature) and data journals (e.g., the PLoS family 

of publications or Scientific Data). While the possibility of data scooping, theft (Borgman, 2007), 

or manipulation remains, research data are increasingly shared and made available to the public 

for reuse. In order to be in compliance with data sharing requirements, researchers are required to 

submit data such as computer codes and datasets as supplementary information. There are, 

however, barriers to open science in scholarly communication owing to the incomplete 

development of a culture of sharing and reuse when it comes to publishing and repositories. From 

a technical perspective, the federation of emerging data infrastructures for open science, such as 

common interfaces and data standards, with continuous maintenance and interoperability 

alignment and best practices for data are insufficient. From the perspective of data sharers, on the 

other hand, data scooping and planarization (Borgman, 2007) or loss of publication opportunities 
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(Reidpath & Allotey, 2001; Stanley & Stanley, 1988) may be real concerns. Researchers’ 

individual perceptions that current rewards systems do not guarantee credit that translates into 

tenure, successful grant applications, and promotions may also be a source of reluctance to share 

data. For potential data reusers, collecting data themselves may prove more attractive than the 

reuse of shared data owing to the time and effort (Kim & Stanton, 2015) that may be necessary to 

subject others’ published data to further analysis and to adjust preexisting frameworks.  

Previous studies have not developed an integrated view of the various factors that influence 

data sharing and reuse, which can be categorized as institutional, individual, and those relating to 

information technology (IT) resources (Kim & Stanton, 2015). Kim and Stanton found that both 

institutional pressures and individual motivations play significant roles in data sharing behaviors 

across diverse scientific disciplines. Thus, the data sharing behaviors of STEM researchers can be 

facilitated by attitudinal, normative, and resource-related considerations. Factors associated with 

shared gene expression microarray data, for example, which relates to one of the STEM fields, 

pertain to authorship, publication, funding, and institution and domain environments (Piwowar, 

2010). In the social sciences, factors influencing data reuse include the processing of trust 

judgments with various types and levels of trust interaction (Yoon, 2015) and the perceptions and 

practice of data reuse differ between novice scientists and experts (Faniel, Kriesberg, & Yakel, 

2012).  

The sharing of detailed descriptions of research data is associated with a 69% increase in 

citation rates (Piwowar, Day, & Fridsma, 2007). Data citation serves, among other things, to 

identify, authenticate, locate, access, and interpret published data as well as to give credit and to 

establish provenance (CODATA-ICSTI Task Group on Data Citation Practices, 2013). Common 

practices in research data citation have not yet, however, been broadly implemented that would 
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accurately apportion credit, incentives, recognition, and rewards by means of bibliographic 

references to published research data; published research data are, as noted, regarded as part of the 

supplementary materials (CODATA-ICSTI Task Group on Data Citation Practices, 2013). In the 

open science movement, therefore, researchers may wish to increase the impact of their scholarship 

in terms of recognition and rewards that may accrue after their data have been shared (i.e., through 

data publication) and reused. Researchers receive more credit when researchers share their 

research data (Piwowar & Vision, 2013) and researchers are more inclined to share their research 

data if researchers receive more credit (Borgman, 2012). It is not, however, easy to measure the 

impact of data citation automatically owing to the lack of standards or guidelines for article citation 

that are universally accepted among publishers, journal editors, and funding agencies. The absence 

of uniquely identifiable research resources represents another limitation. Although principles of 

data citation have been articulated (Data Citation Synthesis Working Group, 2014), researchers 

remain hesitant, owing to the lack of clear standards, guidelines, or mechanisms in the peer review 

process (for both regular journals and data journals), to share their data with the public. Further, a 

recent study has reported the persistence of data citation of the self-cited variety (Park & Wolfram, 

2017; Robinson-García, Jiménez-Contreras, & Torres-Salinas, 2016), a situation that may hinder 

the potential for the future reuse of shared research data. It is also the case that the methodology 

for research data citation is still in its infancy; previous work has consisted of exploratory studies 

without any guiding methodological or theoretical framework or any proposals regarding the 

varying degree to which different factors impact data citation. The goal of this study is, accordingly, 

to identify and evaluate a reliable way of measuring the scholarly impact of the citation of open 

research data and a methodological framework for approaching questions relating to data sharing 

and reuse. 
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1.2. Significance of the Research 

This dissertation makes several contributions to the existing nascent methodological and 

practical framework for research data citation. To begin with, the quantitative methods used here 

are intended to help explain the phenomenon of research data citation across diverse disciplines in 

broadly applicable terms. More specifically, the aim is to expand the understanding of data citation 

in the context of open science through exploratory research. Although previous work has assessed 

the impact of data reuse and sharing in the social sciences—based on the Inter-University 

Consortium for Political and Social Research (ICPSR) repository (Fear, 2013)—and in biomedical 

research (Piwowar, 2010), less attention has been directed to the actual extent and impact of data 

citation. Moreover, disagreement persists as to the meaning of data citation across scientific 

disciplines in scholarly communication, possibly owing to the complexity of the concept. For this 

reason, the exploration of the role of data citation in scholarly communication, especially in the 

context of the STEM fields, offered here is another potentially valuable contribution to the existing 

literature.  

Similarly, valuable, from a methodological perspective, is the elaboration here of a framework 

for the study of data citation (i.e., in the context of data sharing and data reuse). The absence of 

such a framework is due to the fact that data citation, especially in data journals, is a relatively new 

phenomenon. Methodologies developed to study similar phenomena may prove applicable or may 

at least point the way to avenues for further research.  

In more practical terms, findings presented here can provide insight into the impact of data 

citation by scientists, especially as it relates to the field of scientometrics in scholarly 

communication. A better grasp of the factors that impact data citation can in turn enhance the 

understanding of factors that determine the efficacy of scholarly communication, which are of 
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concern for individual scientists and scientific institutions alike. At the same time, this research 

may prove useful in the development of guidelines, standards, and recommendations for improving 

current citation activities in the data management life cycle as well as of policies governing data 

citation for journal publishers, institutions of higher education, and funding agencies. 

 

1.3. Research Questions and Purpose 

In light of the impact of data citation, and in the context of the open science movement, the 

main purpose of this dissertation is to improve the manner and the extent to which the sharing and 

reuse of research data affect their citation in the STEM fields. Multiple disciplines have been 

selected because, in the era of big data and open science, in which large-scale research across 

diverse disciplines using industry-level equipment is commonplace, the impact of scientific data 

citation in general cannot be studied without considering specific disciplinary factors. Moreover, 

as discussed, the impact of data citation across disciplines, as revealed by scholarly databases, data 

repositories, and data journals, remains relatively unexplored from the perspectives of data sharing 

and reuse. Accordingly, the specific research questions addressed here are:  

• RQ1: How prevalent is data sharing in different disciplines as measured by formal data 

citation in STEM fields? 

• RQ2: What types of STEM research data are formally cited most often? 

• RQ3: How do author self-citation/recitation practices differ across STEM disciplines?)? 

• RQ4. How do data reuse practices differ across STEM disciplines? 

• RQ5: To what extent do STEM disciplines support interdisciplinary data citation? 
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The first research question is intended to identify and map factors at various levels that 

influence the impact of the sharing and reuse of research data in the STEM fields generally. The 

second research question evaluates the impact of each factor identified in answering the first 

question on data citation, again in general. The first and second research questions are 

interconnected and expected to provide an integrated and refined view of the significance of data 

citation across STEM disciplines. The third research question seeks to identify factors associated 

with author self-citation or recitation. It is important to examine these phenomena as well as 

disciplinary factors (i.e., across disciplines) because they are fairly prevalent in research data 

citation (Park & Wolfram, 2017), while each discipline displays distinctive citation behavior 

(Helbig, Hausstein, & Toepfer, 2015; Torres-Salinas, Jiménez-Contreras, & Robinson-García, 

2014). The fourth research question concerns data reuse practices and the fifth interdisciplinary 

data citation, again in the STEM fields. 

The frequency of data sharing also varies within scientific communities (Tenopir et al., 2011). 

Thus, regarding self-citation, some authors tend to use the same shared research data repeatedly 

(Robinson-García, Jiménez-Contreras, & Torres-Salinas, 2016), and author self-citation is 

likewise prevalent in research data citation in genetics and heredity (Park & Wolfram, 2017). 

 

1.4. Scope 

The analysis presented here does not extend to the social sciences and humanities. STEM 

fields have been early adopters of open science initiatives in comparison to social sciences and 

humanities and have more broadly adopted data sharing (Park & Wolfram, 2017). Further, this 

study does not include altmetrics derived from Google Scholar or such social network platforms 

as YouTube, Twitter, Facebook, or Google+ because “research data are either rarely published or 
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not findable on social media platforms” (Peters, Kraker, Lex, Gumpenberger, & Gorraiz, 2016, p. 

741) and because altmetrics scores for research data are very low (Peters, Kraker, Lex, 

Gumpenberger & Gorraiz, 2015). Altmetrics is a non-traditional and fairly new (first appearing in 

2010) form of informetrics. Thus, the data are limited to records indexed in Clavariate Analytics’ 

Web of Science and, in particular, the Data Citation Index (DCI). 

 

1.5. Definition of Terms 

Data citation. Data citation is the key practice that provides a reference to research data for its 

recognition as primary research results. Data citation broadly speaking involves credit, attribution, 

and discovery of data (Borgman, 2016). A reference to other publications such as journal articles 

or books to author’s own primary data can also be regarded as a data citation. 

Data publishing. Data publishing is the release of data in published formats for public use or reuse. 

The basic classes of data publication are journal-driven archival data, appendix data, standalone 

data publications, publication by proxy, and overlay publication (Lawrence, Jones, Mattews, 

Pepler, & Callaghan, 2011). 

Data sharing. Data sharing refers to the “release of research data for use by others” (Borgman, 

2012, p. 3) or the release of the raw/pre-processed or primary research data by researchers or 

institutions, whether voluntarily or in accordance with institutional norms (Curty , 2015). Data 

sharing is affected by the predilections of individuals and institutions (Kim & Stanton, 2015), or 

“a voluntary provision of information from one individual or institution to another for purposes of 

legitimate scientific research” (Borouch, 1985, p. 89), through central or local data repositories or 

personal communication methods (e.g., exchanges of data among acquaintances). 
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Data reuse. Data reuse is the use of existing data by scientists to replicate or reproduce outcomes 

of a previous study by combining with it other existing or newly collected data (King, 1995) 

obtained from repositories or through personal communication channels (e.g., acquaintances). 

Data reuse includes any secondary deployment of original or existing research data in order to 

study new problems; it generally represents different dimensions of, and cases described as, the 

secondary analysis of existing data (Curty, 2015). 

Formal data citation. Formal data citation refers to instances in which data sharing and reuse are 

cited or described in the references section in addition to the main text of a paper in such a manner 

that the sharers of the data may receive due scholarly credit. 

Informal data citation. Informal data citation refers to the sharing and reuse of data in contexts 

other than the formal references section and in such a manner that they cannot be readily indexed 

by a citation indexing service. Such citations may be located in the main text or the 

acknowledgments section of a paper and positioned such that, again, the sharers of the data are not 

likely to receive formal scholarly credit. 

Research data. Research data include any form of data obtained by researchers that is accepted or 

retained in scholarly communication in order to produce original research outcomes or to validate 

research findings. These data include such information as research techniques and materials 

(Blumenthal et al., 2006); their types include raw or analyzed, observational, experimental, 

simulation, derived or compiled, and reference or canonical. 
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1.6. Dissertation Structure  

This dissertation consists of six chapters. Chapter 1 explains the open science movement in 

scholarly communication from the discussion on data sharing and reuse on data citation. Chapter 

2 surveys relevant findings and methods from previous studies and made clear the lack of 

comprehensive research on data citation, a gap that this research aims to fill. Chapter 3 describes 

and justifies the methodological approaches employed in this dissertation. Because this was 

relatively new ground, exploratory mixed methods were used in order to understand the factors 

that influence the impact of data citation on scientists in terms of data sharing and reuse. A set of 

factors found to affect or be affected by scientists’ decisions regarding data citation that were based 

on its sharing and reuse were elaborated. Chapter 4 reports the research findings that emerged from 

the data analysis as well as the pilot study to identify additional indicating terms for data citation. 

Chapter 5 discusses important points that emerged from the research results and explains the 

limitations and implications of this study. Chapter 6 concludes the dissertation with a summary of 

the research findings and directions for future studies.   
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Chapter 2 LITERATURE REVIEW 

   

2.1. Introduction 

This chapter reviewed research on relevant aspects of scientific communication and 

informetrics, and in particular citation analysis in scholarly communication and the literature on 

data citation, sharing and reuse by researchers. Scientific communication represents a subset of the 

larger field of scholarly communication. Traditionally, scientists have shared scholarly knowledge 

with each other through two basic channels, informal and formal. Acquaintances share new 

knowledge through such informal channels as email messages, conferences, and personal letters. 

Formal channels, on the other hand, include invisible colleges and formal scholarly publications, 

such as journal articles, monographs, and conference proceedings. An invisible college is “an elite 

of mutually interacting and productive scientists within a research area” (Crane, 1972, p. 34) that 

may not involve a permanent record. In order to examine the impact of data citation, this 

dissertation reviewed informetrics in scholarly communication and the open science movement as 

well as data citation/reuse. These findings were then synthesized, and the chapter concluded with 

a discussion of the limitations of previous research in relation to the research problems. 

 

2.2. Metric Studies of Scientific Communication 

2.2.1. Scientometrics 

Informetrics is the quantitative investigation of forms of information production and their 

usage in recorded discourse (Tague-Sutchliffe, 1992), or “the structural relationships within the 

literature itself” (Wilson, 1999, p. 109). As a sub-domain of information science, it “covers and 
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replaces the field of bibliometrics, including citation analysis, and includes some recent subfields 

such as Webometrics” (Wilson, 1999, p. 115). The production and use of knowledge are studied 

from scholarly and professional perspectives, both quantitatively and qualitatively, in order to 

examine the process of knowledge creation, dissemination, and implementation. Quantitative 

artifact approaches include informetrics and forms of social network representation. Qualitative 

and interpersonal approaches, such as the peer-review process, may incorporate social network 

analysis. Among the areas of study in informetrics are author productivity, journal productivity, 

citation and co-citation analysis, recorded language, the growth and obsolescence of literature, and 

the use of resources. 

Allied “metric” areas of informetrics include bibliometrics, scientometrics, webometrics, 

cybermetrics, and altmetrics. Egghe (2005, p. 1311) defines informetrics as “the broad term 

comprising all the metrics studies related to information science, including bibliometrics 

(bibliographies, libraries . . .), scientometrics (science policy, citation analysis, research 

evaluation . . .), and webometrics (metrics of the web, the Internet or other social network such as 

citation or collaboration network).” Bibliometrics (Pritchard, 1969), the quantitative study of 

recorded discourse, represents the formalization of statistical bibliography. Webometrics qualifies 

as a subset of informetrics because, in the study of web phenomena (Björneborn & Ingwersen, 

2004), hyperlinks are treated as citations; thus, link analysis is treated as citation analysis and co-

link analysis is treated as co-citation analysis in the web environment. Webometrics and 

cybermetrics are often used synonymously, though Björneborn and Ingwersen consider the former 

to be a subfield of the latter. Altmetrics (alternate or alternative citation metrics) involves the 

analysis of data from social media, such as blogs, microblogs (e.g., Twitter), social bookmarking 

data, and other alternative electronic sources, in order to assess impact; it provides new ways to 



13 

track author influence on the social and scholarly web (Priem & Costello, 2010) through such 

platforms as Mendeley or CiteULike. 

With the advent of the former Institute for Scientific Information (ISI) citation indexes, the 

analysis of reasonably sized literatures without laborious data collection became possible (Wilson, 

1999). Thus, rather than relying only on surrogates or bibliographic representation, further 

statistical analysis could now be performed on the articles themselves using information in digital 

form and access to the full text. Academic databases that provide citation index services include 

the Clarivate Analytics Web of Science (WoS; https://webofknowledge.com), Elsevier’s SciVerse 

Scopus (https://www.scopus.com), and Google Scholar (http://scholar.google.com), the Korea 

Citation Index (KCI) of the National Research Foundation of Korea (NRF) (https://www.kci.go.kr/) 

and the Chinese Science Citation Database (CSCD) of the Chinese Academy of Sciences. These 

citation databases are key sources of data for citation analysis that help in the understanding of 

scholarly communication, the intellectual structure of disciplines, and the impact of research. 

Traditionally, informetric analyses have been used for the development of scientific indicators, 

library collection management, the development of science policy, and the design and evaluation 

of information systems. The areas of greatest relevance to the current research are scientometrics 

and citation analysis.  

Scientometrics refers to “the quantitative study of science and technology” (Wilson, 1999, p. 

110) and involves the empirical analysis and measurement of text or documents in the fields of 

science and technology in order to examine the patterns, structures, and behaviors of science and 

technology. Both quantitative and qualitative methods are necessary for scientometric analysis, 

with the emphasis on the former. 

 

https://webofknowledge.com/
https://www.scopus.com/
http://scholar.google.com/
https://www.kci.go.kr/
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2.2.2. Citation Analysis 

Citation analysis represents a core area of investigation in informetrics and scholarly 

communication. It deals with the relationships between a part or the whole of a cited work and a 

part or the whole of a citing work, including articles, authors, journals, or groups. Research 

findings from citation analysis can help to increase the understanding of scholarly communication 

and disciplinary relationships. Although the idea of citations goes back further, modern citation 

analysis traces back to the pioneering work of Eugene Garfield (1955), who initiated the 

development of the Science Citation Index (SCI). The concept of citation analysis formed the basis 

of informetrics, bibliometrics, scientometrics, and webometrics. Citation analysis is usually 

directional. Börner, Chen, & Boyak  (2003) have added definitions as follows: 

A “citation” is the referencing of a document by a more recently published 

document. The document making the citation is the “citing” document, and the one 

receiving the citation is the “cited” document. Citations may be counted and used 

as a threshold (e.g., only keep the documents that have been cited more than five 

times) in a mapping exercises. Other terms used to describe citing and cited 

numbers are “in-degree,” or the number of times cited, and “out-degree,”, or the 

number of items in a document’s reference list. 

Smith (1981) discussed the use of citation analysis to describe patterns of citation, evaluate 

influences and productivities, and facilitate document search and retrieval. Using citation, credit 

for multiple-authored works (e.g., equal count, first author count, fractional count, and 

proportional count) and self-citations can be addressed. Measurements of citation include citation 

count, adjusted citation count, citations per publication, and adjusted citations per publication. 

Citation data are often used to analyze the obsolescence of scholarly literature. The assumptions 
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underlying citation analysis are that (a) the citation of a document implies its use by the citing 

author; (b) citation implies that a document has such merits as quality, significance, and impact; 

(c) citations are made to the best possible works; (d) a cited work is related in content to the citing 

work; and (e) all citations are equal. Citations are essential in scientific communication.  

Self-citation is the cited references of an author name that matches the name of the author of 

a citing article. Examples of self-citation are direct self-citation, author self-citation, and journal 

self-citation. Direct self-citation happens when the author cites his/her previous works 

subsequently in scholarly works. Author self-citation (i.e., direct self-citations for the co-author(s)) 

happens if one or more co-author(s) of researcher A publish another work without researcher A 

and that other work (i.e., paper) cites their work (Glänzel & Thijs, 2004). Although self-citations 

do not only explain higher impact of collaborative papers (Van Raan, 1998), in big science, the 

possibilities of author self-citation arise due to the large numbers of co-authors in each publication 

(e.g., journal) where large densely connected collaborative research teams across multiple 

disciplines. Journal self-citations represent how often a journal (i.e., a work) is cited by its own 

publications (i.e., journal) (Leydesdorff, 2008). Journal self-citations can manipulate the journal 

impact factor (Krauss, 2007) from the Journal Citation Reports (JCR). The JCR, provided in 

conjunction with the WoS since 1975, is a source of information about the impact and influences 

of scholarly works. The idea of a journal impact factor is discussed in (Section 2.2.8).  

Citations can provide appropriate acknowledgement, rewards, and justification for researchers’ 

findings (Latour, 1987). Researchers in scholarly communication obtain recognition by publishing 

research and being cited in other research, because, as Borgman (2007) mentions, the rewards 

system approaches the research publication as a scholarly communication practice. 
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2.2.3. Citation Counts 

Merton (1968), in observing that scientists use citations in order to give due credit to each 

other, described what is often referred to as the normative theory of citation. The contrasting 

constructivist approach proposes that citations serve other purposes, including advancing scientists’ 

interests and defending their claims, persuading other people, and establishing a position in a 

scientific discussion (Brooks, 1986; Gilbert, 2015; Moed, Glänzel, & Schmoch, 2004). Observing 

this debate, Lawani and Bayer (1983) have suggested that, despite ambiguities in citation practices, 

considerable evidence has accumulated to suggest that citations provide an objective measure of 

what may be termed scientists’ “productivity,” “significance,” “quality,” “utility,” “influence,” 

“impact,” or “effectiveness.” In any case, the debate continues despite attempts to get beyond it 

(Cronin, 1984, p. 103; Cronin, 2014, pp. 3-21; Moed, 2005, p. 346; Wouters, 1999). 

For the purposes of this study, citation count can be expressed as 

C = {𝐶1, 𝐶2, 𝐶3 … , 𝐶𝑝} 

𝐶1  ≥   𝐶2 ≥  𝐶3 … ≥ 𝐶𝑃 ^ ∑ 𝐶𝑖
𝑃
𝑖=1  = 𝐶𝑇  ^  𝐶1 = 𝑚𝑎𝑥𝑖(𝐶𝑖)  

Citation count, or the total number of citations, is 𝐶𝑇; P is the number of papers of an author, 

C is the set of the citations received by the P ordered papers. Citation sequence or citation profile 

{𝐶1, 𝐶2, 𝐶3 … , 𝐶𝑝} can be used to characterize an author. 𝐶1 is the number of citations received by 

the most cited research output. 

The most common measure, for both the productivity and the impact of the performance of 

an author (journal, group of authors, institution or country), may thus be the total number of 

citations of all papers published.  
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2.2.4. Direct Citation 

Direct citation, sometimes referred to as cross citation, can serve as a measure of the 

relatedness between cited and citing works. It is defined as “the citing of an earlier document by a 

new document” (Small, 1973, p. 265), meaning that author A directly cites author B. Direct citation 

has not been studied actively so far, though it is now beginning to receive some attention (Boyack 

& Klavans, 2010) through the comparison of direct citation with other forms of citation-based 

measures such as co-citations and bibliographic coupling. Boyack and Klavans have revealed that 

direct citations are less accurate than co-citations and bibliographic coupling slightly outperforms 

co-citation analysis. Direct citations are not actively used for visualizations, but rather indicate 

more direct publication relations.  

The uniform direct citation of data curated in persistent data repositories has received attention 

because “a foundational element of reproducibility and reusability is the open and persistently 

available presentation of research data” (Starr et al., 2015). Assigning a permanent and persistent 

data identifier, such as a Digital Object Identifier (DOI), at the time of data publication may be 

important for direct citation and ease of accessibility in data citation because a DOI is machine-

readable and therefore provides access to cited data and its associated metadata (Borgman, 2016). 

However, current practices are such that data citation possesses a low percentage of persistent 

identifiers (e.g., DOI, Open Researcher and Contributor IDentifier; ORCID) compared with 

regular citation. Access to data repositories (e.g., open access data repositories), whether 

unrestricted, limited, or restricted, needs to be studied in the context of the sharing and potential 

reuse of data. 

With regard to mapping scholarly literature, direct citation relations among publications have 

less often served as a tool for visualization than co-citation, possibly because direct citation often 
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leads to networks with only a small number of edges (van Eck & Waltman, 2014). Direct citation 

played an important role in Eugene Garfield’s work on algorithmic historiography, and the 

publication citation networks of direct citations can be mapped using his HistCite tool 

(http://interest.science.thomsonreuters.com/forms/HistCite/) which takes WoS output file formats 

as input that is visualized as a historiograph. CitNetExplore (http://www.citnetexplorer.nl) is a 

similar tool that can be used to map more extensive analyses, while CiteSpace 

(http://cluster.cis.drexel.edu/~cchen/citespace) is a tool for visualizing patterns and trends in 

scientific literature. As Cobo, Lopez-Herrera, Herrera-Viedma and Herrerea (2011) observe, a 

relationship between units can be established using direct linkages. Examples include a document-

document, author-author, or journal-journal citation network. 

 

2.2.5. Co-citation and Literature Mapping 

Co-citation, usually in the form of bidirectional citation analysis, is a measure of the common 

occurrence of two entities of interest (e.g., publications, authors, or journals) in the reference list 

of a third document. It determines the semantic similarity among documents regarding citation 

relationships based on the frequency of co-citations and can thus be described as “an interpretation 

of the significance of strong co-citation links [that] must rely both on the notion of subject 

similarity and on the association or co-occurrence of ideas” (Small, 1973). White and McCain 

(1997, p. 103) have defined measures of co-citation as follows: 

Co-citation occurs when any two works appear in the references of a third work. The 

authors of the two co-cited works are co-cited authors. If the co-cited works appeared 

in two different journals, the latter are co-cited journals. Co-words are words that 

appear together in some piece of natural language, such as a title or abstract. 

http://interest.science.thomsonreuters.com/forms/HistCite/
http://www.citnetexplorer.nl/
http://cluster.cis.drexel.edu/~cchen/citespace
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Co-citation is a generally accepted way to obtain relational information about documents 

within a domain (Moya-Anegon et al., 2004). Co-occurrences of citations (authors and papers) 

reveal relationships in “bibliographic coupling” and co-citation analysis (author, journal, and 

publication). In order to study co-citation, cluster analysis, multi-dimensional scaling (MDS), 

factor analysis and social network analysis may be applied. Among the limitations of co-citation 

are (a) possible omission of authors other than the first for a given work, (b) author ambiguity, and 

(c) sources with large numbers of references that may co-cite a great many documents. Co-citation 

is thus the opposite of bibliographic coupling. Citer-based analysis represents an alternative way 

to transcend some of the limitations of co-citation analysis (see below for further discussion). 

Scientific domains have been studied using co-citation analysis, which was introduced by 

Small (1973) and Marshakova (1973) as a means to measure relatedness between pairs of 

documents or authors cited together. Co-citation of thematic or schematic representations of 

classifications (classes and categories) has been studied, and the mapping of large scientific 

domains has been identified as a significant method in this regard (Moya-Anegon et al., 2004). 

Co-citation networks in information science have also been studied using visualizations of the 

distance between two nodes, where relatedness is inversely proportional to the distance between 

them (White & McCain, 1998). Author co-citation analysis (ACA) (White & Griffith, 1980) has 

been applied to information retrieval (IR) and various other domains.  

Document co-citation is used as a variable in order to build domain maps by analyzing 

citations of scientific production (Small, 1973). Domain analysis from the perspective of society, 

rather than that of pure abstract research, was introduced as a new method (Hjørland & Albrechtsen, 

1995). A domain analytic technique was applied by White and McCain (1998) to visualize a 

discipline using co-citation in the field of information science. Co-citation is discussed as a method 
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or tool for representing schematically domains that provide different viewpoints with respect to 

existing relationships among variables (e.g., authors, documents, journals, and words) (Moya-

Anegon et al., 2004). Domain analysis is “the activity, or the methodology, by which the 

conceptual content and natural or heuristic ordering can be discovered and mapped in discrete 

knowledge domains” (Smiraglia, 2014, p. 85). Smiraglia (2002) used meta-analysis as a tool for 

knowledge organization. Smiraglia (2012) also used domain analysis as a tool to extract ontology 

for knowledge organization systems and to provide interoperability across diverse domains. 

Boyak, Klavans and Börner (2005) note that Pearson correlation analysis has been used to 

analyze co-citation counts within articles about MDS in order to study a single discipline. The 

correlation is determined based on mapping citations within published journals. Moya-Anegon, et 

al. (2004) have employed co-cited ISI category assignments to create category maps as an 

alternative to using journals to map the structure of science. Boyak, Klavans and Börner have 

charted the whole of science by mapping over 7,000 journals from both the SCI and the Social 

Science Citation Index (SSCI) based on the notion that journal sets are associated with disciplines; 

similarity measures were based on journal inter-citation and co-citation frequencies. These 

researchers did not use data from the JCR because, while it contains inter-citation frequencies, 

“co-citation frequencies based on paper-level co-occurrences of references cannot be derived from 

anything but the original reference lists. (p.355)” 

 

2.2.6. Bibliographic Coupling 

Bibliographic coupling, proposed over half a century ago by Kessler (1963), occurs when two 

documents reference a common third document in their bibliographies, thus suggesting that they 

deal with similar subject matter. The degree of bibliographic coupling between citing documents 
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is determined based on the percentage of total citations in common. It is mostly studied in the 

context of coupling analysis in informetrics and can be viewed as the inverse of the co-citation 

link because “bibliographic coupling is a technique for clustering (citing) documents according to 

their number of shared references. Co-citation analysis, on the other hand, is a technique for 

clustering (cited) documents according to their number of co-occurrences in subsequent documents’ 

reference lists” (Wilson, 1999, p. 148). 

Author bibliographic coupling analysis (ABCA) extends bibliographic coupling to an author-

aggregated approach on the document level (Zhao & Strotmann, 2008). Other types of author 

coupling, in addition to author bibliographic coupling, include author journal coupling, author 

keyword coupling, and author title-word coupling. In order to develop a technique for scientific 

mapping, bibliographic coupling can be used in combination with cluster analysis in cases in which 

bibliographic coupling and document co-citations are compared for the purpose of literature 

mapping (Jarneving, 2005; Jarneving, 2007). 

 

2.2.7. Scholarly Impact Assessment 

The impact factor (IF), so designated by Garfield and Sher (1963), is a measure that evaluates 

journals in combination with other measures and evaluations. The impact factor has been used to 

assess scholarly contributions, especially in the context of the WoS citation indexes (Wilson, 1999). 

Producers of scholarly contributions include individuals, departments, institutions, disciplines, and 

countries. Scholarly impact assessment is vital from the academic’s perspective, for, as assessed 

based on publications, presentations, and grants, it plays a significant role in the advancement and 

maintenance of careers. Traditional individual and institutional assessment measures include 

publication and citation counts and grant-seeking success. 
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Challenges to assessing scholarly impact assessment may include counting publications, the 

use of citations as a measurement unit, dissemination outlets, the Matthew effect (Merton, 1968; 

1988), and the Podunk effect (Gaston, 1978). Counting publications may prove problematic owing 

to increasing levels of collaboration in scientific communications in the era of multi-authored 

works, big data, and open science. Another concern is exactly which publications are to be counted. 

The use of citations as a measurement unit is complicated when the number of publications from 

a single research project proliferates owing to the circulation of multiple versions of evolving 

research. Thus, for instance, a single research project may be represented variously by a work in 

progress poster, conference proceedings, and expanded articles in a refereed journal. When it 

comes to dissemination outlets, considerations include peer-reviewed versus non-peer-reviewed 

works and the treatment of OA journals, institutional repositories, project websites, and academic 

blogs. Lastly, the Matthew (Merton, 1968; 1988) and Podunk effects (Gaston, 1978) describe how 

authors may receive more or less credit than they deserve on account of their reputations or 

geographical locations, respectively; both effects are difficult to assess.  

Impact factors have long invited debate, and they have been criticized on the grounds that 

“evaluations cannot be made with numbers in isolation if the basis (or unit) of comparison is 

uncertain” (Wilson, 1999, p. 131). Specific criticisms include the need to aggregate a set of 

documents (Egghe & Rousseau, 1996; Seglen, 1992; 1994), variation in citedness within a journal 

(Harter & Nisonger, 1997; Moed, Van Leeuwen, & Reedijk, 1999; Schwartz, 1997), appreciable 

differences in citedness among different disciplines for the same document type (Schubert & Braun, 

1993; Schwartz, 1997), and the comparability of different units regarding the number of citations 

received (Moed, Van Leeuwen, & Reedijk, 1999).   
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Taking these criticisms in turn, with regard to the aggregation of a set of documents, the 

difficulty involves the highly skewed distribution of citations across articles, journals, and 

databases. The issue of variation in citedness within a journal arises owing to the inclusion of 

various document types with differing capacities to attract citations (Wilson, 1999). As Moed, Van, 

Leeuwen and Reedijk (1999) have noted, impact factors differ in biomedical areas depending on 

the document type. Thus, for example, articles, reviews, and notes were found to have higher 

impact values than editorials and letters. These researchers noted that, when the latter types of 

documents are included, journal impact factors may be 10 to 40% lower. Schwartz’s (1997) 

analysis of different levels of citedness in different document types in the WoS databases revealed 

that 47% were uncited in the physical sciences, while the figure was 22% when conference 

abstracts, editorials, reviews and letters were excluded. Schwartz’s findings are also relevant 

regarding appreciable differences in citedness among disciplines for the same document type 

(Wilson, 1999).   

 

2.2.8. Journal Impact Factor  

The journal impact factor (JIF), or simply impact factor (IF), has become the most popular 

and discussed approach to assessing the visibility and diffusion of journals in the period since it 

was first used in 1963 in the SCI (Garfield & Sher, 1963), during which it was reconstructed by 

Garfield (2006) and Archambault and Lariviere (2009). Gross and Gross (1927) initiated the use 

of references to assess scientific journals, while Eugene Garfield (1955) suggested that journal 

impact can be assessed based on counting references to journals.  

Clarivate Analytics’ JCR publishes the JIFs for thousands of journals annually, which is based 

on the journal citation itself. The JIF is based on publications and citations and can be used to 
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compare the importance of sources based on citations received. The JIF is also called the two-year 

impact factor. Mathematically, it can be expressed as  

𝐼𝐹𝑗.𝑦
(2)

 = 
∑ 𝐶𝑗 (𝑦,𝑦−𝑖)2

𝑖=1

∑ 𝑃𝑗 (𝑦−1)2
𝑖=1

 

Where 𝐼𝐹2 is the two-year impact factor, 𝐶𝑗(𝑦, 𝑦 − 1) is the number of citations received in the 

year y by articles published in journal j in the year (y-1), and 𝑃𝑗(𝑦 − 1) is the number of articles 

published in journal j in the year (y-1).  

Tools for assessing journals include Journal Citation Reports, Eigenfactor, and the SCImago 

Journal Rank. Journal Citation Reports are based on the Clarivate Analytics WoS; Eigenfactor 

makes comparative measurements based on article influence and cost effectiveness; and the 

SCImago Journal Rank is based on Elsevier’s Scopus data.  

 

2.2.9. Co-word Analysis 

Co-word analysis (Callon, Courtial, & Laville, 1991), also known as semantic mapping, uses 

language modeling and text mining approaches and the most important words or keywords of 

documents in order to study the conceptual structure of a domain. Co-word analysis accounts for 

(a) words/terms that occur with one another as a way to identify synonyms, (b) the relatedness that 

can be directly interpreted based on document contents, and (c) the frequency distribution of co-

occurring words that, when tallied, follow a pattern similar to such other informetric regularities 

as long-tail distribution. The feasibility of co-word analysis as a method has also been studied 

(Ding, Chowdhury, & Foo, 2001). Co-word and co-citation analysis are similar in that both are 
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used to determine the strength of relationships among textual containers and to identify similarities 

among the techniques used, such as cluster analyses and MDS methods. 

The co-occurrences of keywords in articles have been used as an indication of associated 

strengths in order to map keyword relatedness. The benefit of co-word analysis is that a direct 

interpretation of relatedness is available based on document content. Weaknesses of co-word 

analysis include the fact that the meanings of words change over time and depending on context 

both within and among texts (Leydesdorff, 1997) as well as the indexer effect (Law & Whittaker, 

1992), which results in delayed changes, the creation of bias, and the introduction of subjectivity 

into the index terms. In the words of Bhattacharya and Basu (1998), co-word structure can stand 

for research activities within scientific research and this approach has accordingly been applied to 

mapping scholarly literatures within a given research area at the micro-level.  

 

2.2.10. Citer-based Analysis 

The definition of self-citation has been “extended to include citations originating from 

publications authored by one of the coauthors of the cited publication of interest, or coauthor self-

citations,” in the words of Ajiferuke, Lu, and Wolfram (2010, p. 3). These researchers have 

discussed how citation counts largely include recitations (i.e., repeated citations by an author of 

the same work over time), for which reason they suggest using the citer (i.e., the origin of citation) 

as the unit of measure. Author-level recitation can be measured using the “analyze results” feature 

of the WoS, which provides lists of reciting authors and their frequencies. These researchers also 

mention as citer-based measures: citer count, citers per publication, and the ch-index. Citer count 

refers to the number of authors who have cited a publication by given author; citers per publication 

refers to the number of citers by the number of publications by an author; and the ch-index 
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corresponds to x publications with at least y citers. Limitations of citer-based analysis include the 

fact that (a) most citer data are not easily extracted through current end-user interfaces and will 

not be so until and unless more raw data or more sophisticated queries become available, and that 

(b) this form of analysis is still based on the citation for measurements.  

The consideration of hyperauthorship (Cronin, 1984) is necessary in studying self-citation 

because with hyper-authored works, the likelihood of self-citation increases due to there being 

more co-authors who are in a position to self-cite. Hyperauthorship is the practice of publishing 

papers with large numbers of co-authors, potentially hundreds. In interdisciplinary research for big 

sciences, hyperauthorship is common in some areas such as the hard sciences. For instance, the 

total number of authors in a given publication in high-energy physics can occasionally exceed 100 

authors (Tarnow, 2002). By using citer-based analysis, Park and Wolfram (2017) found that author 

self-citation or recitation is prevalent for research data citation in genetics and heredity, meaning 

a small number of highly cited authors may be increasingly influential in data citation and an 

increase in citations does not necessarily indicate unique and new citers. The rates of self-citation 

were very low (1.2%) for traditional citation-based self-citation (i.e., bibliographic self-citation) 

but was higher (8%) in data citation.  

 

2.3. Open Science 

The open science movement works as the ground movement for data sharing and reuse by 

more concrete actions such as infrastructure and policies. Examples of necessary infrastructure 

include sustainable preservation and access to research data. Examples of policies include major 

funding agencies’ or high impact journals’ data sharing requirements. Borgman (2007) mentions 

that the combination of the open science initiatives and technological capabilities reconstructs 
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scholarly communication in the digital age. Open science can be divided into three interdependent 

elements: open access, open data, open software (Peters & Roberts, 2012; Willinsky, 2005), open 

peer review and open notes. Transparency is important in scientific research because methods and 

results of a published study need to be accessible for detailed scrutiny. 

There is both international and national support for the open access system. An example at the 

international level is the European Commission’s Open Data for Europe, which states that open 

data are useful for funding agencies and patent services in an open access environment (European 

Commission, 2011). An example at the national level is the Royal Society in the United Kingdom, 

which promotes openness and transparency and infrastructures that meet standards of accessibility 

and intelligibility (Boulton et al., 2012). 

 

2.3.1. Open Access 

Open access is a communication channel in scholarly communication through which content 

can be accessed on their web site by the general public without financial or legal barriers for 

research purposes for any users to read, copy, download and use. It is this concept of free-of-charge 

access for the public that distinguishes OA journals from non-OA journals (i.e., traditional 

subscription-based journals). The difference extends to the financial infrastructure. Under a 

subscription-based infrastructure, authors and institutions are asked to pay the cost of the 

dissemination and use of scholarly knowledge.  
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2.3.2. Open Access Journals 

OA journals are peer reviewed publications of scholarly communication that are freely 

available through the Internet and that generally allow authors to retain copyright. OA journals 

usually waive access fees, such as charging authors when a manuscript is accepted for publication; 

fees are usually waived or paid by author-sponsors rather than by the authors themselves. 

Regarding the cost of peer review and dissemination, OA journals have lower barriers to access 

compared with subscription-based journals (i.e., non-OA journals), the latter having no 

disciplinary repositories or data repositories and no peer-review process because of pre-prints and 

or post-prints. Authors hold copyright on these materials and their permission is required, whether 

for dissertations, course materials, or any other kinds of digital files. The Directory of Open Access 

Journals (DOAJ) indexes 12,134 OA journals from 123 countries as of September 2018 

(Infrastructure Service for Open Access, 2018). 

OA journals with shared data increase citation rate of articles. For instance, previous studies 

report that OA journals with their research data available have shown greater citation impact (Craig, 

Plume, McVeigh, Pingle, & Amin, 2007; Eysenbach, 2006; Norris, Oppenheim, & Rowland, 2008) 

Advantages of OA journals include increased citation rates compared with traditional 

subscription-based journals (Harnad & Brody, 2004), opportunities to accelerate the review and 

publication process, and increased accessibility. Previous studies have compared the impact of OA 

and non-OA articles and found that the former have a considerably higher impact, at least in the 

context of citation counts in physics (Harnad & Brody, 2004). OA articles are more often cited 

than non-OA articles published in Proceedings of the National Academy of Sciences (PNAS), with 

the effect becoming more pronounced over time (Eysenbach, 2006). Other researchers have found 
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the opposite, however, namely that the advantage of early access (i.e. early access effect) 

diminishes over time (Brody, Harnad, & Carr, 2006).. 

Disadvantages of OA journals include the fact that they are not free of charge to the general 

public, the ultimate end-users of research output, and that most are held in rather low regard in 

scholarly communication. And while the cost of OA journals may be lower than that of non-OA 

journals, there are still significant expenses involved with the peer-review process and the 

production of a publication (Suber, 2002). Owing to the relatively low standing of OA journals, 

relatively little weight may be given to publications in OA journals with regard to a scholar’s career 

advancement.  

 

2.3.3. Open Peer Review 

Open peer review (OPR), though it has yet to be widely adopted, is an emerging approach to 

peer review in scholarly communication in the context of the open science movement. Wang et al. 

(2016) noted that the process of OPR involves the evaluation of research by peer reviewers in order 

to identify flaws in research and to determine whether it meets established standards. OPR makes 

scientific discoveries open and transparent, meaning that the content of peer review is publicly 

available for scientific communication. Examples of OPR are Faculty of 1000 (F1000; 

www.f1000research.com/) and PeerJ (https://peerj.com/). F1000 is an example that adopted full 

OPR for open publication and open evaluation (OE) for life scientists and clinical researchers. 

PeerJ is an example that adopted an optional OPR, meaning a blind review process followed by 

optional publication of review history. With the analysis of one optional OPR Journal, PeerJ, Wang, 

You, Rath and Wolfram (2016) found that authors are still reluctant to make their reviews publicly 

available and for reviewers to identify themselves.  

http://www.f1000research.com/
https://peerj.com/


30 

2.3.4. Open Data  

The term “open data” is widely used in the scientific, governmental, and industry sectors. In 

this study, open data are data utilized in a scientific context to which scientists have access for 

reuse, including secondary analysis. To be considered open, data should be free of charge and 

freely available to the general public. For instance, Google announced Google Dataset Search to 

support and promote the sharing of open data across the Web by using a simple keyword search 

(Google, 2018). Data repositories and data centers thus represent core infrastructure when it comes 

to increasing access to research data. Open data in scholarly communication may include such 

research outputs as datasets of various sizes and formats, software codes, analysis code, and any 

technical environments needed to process the data.   

Mauthner (2012) states that the 1950s represented the beginning of open data in the sciences 

with the early World Data Centers for geophysical sciences, followed by databases to archive 

Deoxyribonucleic Acid (DNA) sequences in the 1980s, the treatment of research data as public 

and sharable data in the Natural Sciences in the 1990s and more concrete regulations for open 

government data in the early 2010s. 

Open data mandates from the open science movement that have been established by a number 

of countries, journals, and major funding agencies demand that research data be made available to 

the general public for use by other researchers. These mandates have accelerated the free exchange 

of research data in open science. Examples include the U.S. government policy on open data, the 

National Science Foundation (NSF) data management plan, and the data sharing policy of the 

National Institutes of Health (NIH). Thus the U.S. government policy (Executive Office of the 

President, 2013) has made open government data available to the general public to access and 

reuse, and the NIH’s data sharing policy has, since 2003, made final research data as widely and 
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freely available as possible for research purposes while protecting confidential and proprietary 

data and safeguarding the privacy of participants (National Institutes of Health, 2003). Likewise, 

the NSF has since 2011 mandated the inclusion of a supplementary document containing a data 

management plan for the dissemination and sharing research results to the public (National Science 

Foundation, 2011). Other countries such as the United Kingdom require a data management plan 

for data sharing for the grantees of the Economic and Social Research Council (Economic and 

Social Research Council, 2015) and the European Commission has its data management plan by 

linking dataset, research publications, and author information (European Commission, 2016). 

Some journals, such as data journals (e.g., Data Science Journal), mandate that authors share their 

research data. Authors can choose whether their data will be made publicly available at the time 

of publication or instead after an embargo period. However, some scientists may not follow data 

sharing mandates because of the lack of enforcement mechanisms (Piwowar, 2010). Journal policy 

for research data has been announced in 2014 by PLoS ONE (Silva, 2014) and in 2017 by Nature 

Publishing group (2017), Science (2017) and Elsevier (2017).  

The benefits of data sharing in an open science paradigm may include increasing data 

discoverability and accessibility, facilitating interdisciplinary research in scholarly communication, 

and providing greater transparency and openness in science. Defining such intellectual property 

issues as copyright, ownership, authorship, and responsibilities is an important part of formal data 

sharing when it comes to controlling ethical violations and scientific misconduct (Wallis & 

Borgman, 2011). Borgman (2012) has detailed beneficial aspects of data sharing in terms of four 

rationales: to reproduce or verify, to make the outcomes of publicly funded research open to the 

general public, to ask new research questions using existent data, and to advance the state of 

research. As open data increase the rate of bibliographic citation (Piwowar, Day, & Fridsman, 
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2007), open data also makes datasets citable and data citation possible. The detailed description of 

research data is associated with increased bibliographic citation rate (Piwowar, 2010) with citation 

benefits from open data (Piwowar & Vision, 2013). This indicates when the detailed description 

of open data is provided, the datasets are citable by making data citation possible. 

 

2.4. Data Sharing, Reuse and Citation 

2.4.1. Data Sharing 

Major funding agencies now require a data sharing policy; the NIH since 2003 and the NSF 

since 2011. High profile journals such as Nature Physics require permission for authors to share 

their research data, whether public sharing at the time of publication or after embargoed period. In 

aligning with these requirements, researchers need to submit their research data in the form of 

datasets or software. 

Data sharing can help more researchers receive rewards from researchers’ shared data. 

Previous studies found that researchers withhold their research data rather than sharing in journals 

(Campbell & Bendavid, 2003; Cohen, 1995; Piwowar, 2011). Researchers tend not to share their 

data if low or no rewards are perceived for data sharers (Sterlling & Weinkam, 1990) although 

researchers’ perceptions and rewards enhance data sharing behaviors (Kling & Spector, 2003). 

Researchers in scholarly communications perceive that current reward systems do not provide 

sufficient rewards or credits toward promotion, social recognition, successful grant applications 

and tenure (Kim, 2013). In STEM, researchers are reluctant for data sharing because of the 

concerns for lack of rewards and credits, data misuse or misinterpretation and too much effort with 

very few perceived returns (Kim & Stanton, 2015; Tenopir et al., 2011). In social science, 
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researchers confront high ethical standards by social science communities (Israel & Hay, 2006) 

and data sharing and reuse in social sciences are often regarded as too complex due to the high 

probabilities of using qualitative data (Yoon, 2014). A previous study examined social scientists’ 

data sharing behaviors (Kim & Adler, 2015). Although this study examined the pressures from 

funding agencies and journal publishers would influence social scientists’ data sharing behaviors, 

no statistical evidences are found. 

Two types of data sharing practices, formal data sharing and informal data sharing, were 

classified by Clubb and colleagues (1985) in the mid-1980s. Formal data sharing occurs in a 

structured way that involves intermediary channels that function as local or central repositories 

and dissemination services such as academic institutions. Informal data sharing occurs among the 

same area or discipline members usually in the form of copies of datasets or upon individual 

request, or more ad hoc ways. Regarding formal data sharing, Clubb and colleagues mentioned the 

advantages as broad data accessibility, which facilitates the interdisciplinary research because data 

are formally shared by repositories such as academic institutions. Regarding informal data sharing, 

advantages include (1) the high trust and low risk perception among involved individuals and (2) 

low immediate cost due to the absence of intermediaries. 

In STEM fields, until recently, data sharing has been studied at the individual discipline level. 

However, in a modern science where collaborations across labs, department, colleges or even 

countries are commonplace, without considering disciplinary differences, data sharing in scientific 

disciplines in general cannot be studied. For that reason, Kim (2013) examined scientists’ data 

sharing behaviors in multiple scientific disciplines, with the examination of institutional and 

individual influences. 
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In the social sciences, data sharing is not new. Social science data are context-based and 

involves direct or indirect interactions with human subject. Social scientists used others’ shared 

data for the original study verification or for the reanalysis and producing new research in the 

1970s and early 1980s (Feinberg, Martin, & Straf, 1985). Social scientists tend to more concerned 

about data misuse by others than STEM disciplines (Tenopir et al., 2011). For instance, Tenopir 

found that 23% of researchers (47 out of 204 surveys) agreed or somewhat agreed to easy access 

of their research data. In contrast, 49% of researchers in biology agreed and somewhat agreed to 

data sharing, which is almost two times higher in biology than the social sciences. However, in 

interdisciplinary domains, social scientists showed positive attitudes regarding interdisciplinary 

data sharing, such as anthropology combining with the earth and environment by using time-series 

remote sensing research data (White, 1991).  

Qualitative research data sharing and archiving are increasing (Rasmussen, 2011). Qualitative 

data sharing is regarded as more complex than quantitative data sharing (Bishop, 2009) and often 

regarded as too complex for data sharing and reuse (Yoon, 2014). Direct and indirect interactions 

with human involvement can bring ethical concerns, especially for qualitative data. Ethical 

concerns such as sensitive personal information (e.g., protecting participants’ identity before 

preserved in digital repositories) make qualitative data sharing complicated. Due to these reasons, 

there is persistent skepticism by today’s researchers for qualitative data sharing and reuse (Mason, 

2007; Mauthner & Parry, 2009; Slavnic, 2011; Yoon, 2014). In qualitative data sharing, challenges 

usually center on the methodology, due to the subjectivity in qualitative methodology (Bishop,  

2005; Mauthner & Parry, 2009; Parry & Mauthner, 2004). The benefits of qualitative data sharing 

include reanalysis and reinterpretation.  
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2.4.2. Data Reuse 

Different quantitative and qualitative methods have been used to study data reuse. These are 

summarized in Table 1. Researchers applied survey, statistical analysis or citation analysis for 

quantitative study. Researchers applied interview, content analysis, case study or ethnography for 

qualitative methods. Regarding qualitative study, Daniels (2014) applied comparative case study 

methods to exploratory study using semi-structured interviews and non-participant observation 

with purposive sampling. In this study, data were collected by using semi-structured interviews, 

nonparticipant observation, and research with historical records. Depending on the participants, 

the various data collection methods included: (1) interview, concurrent; (2) interview, 

retrospective; and (3) observation and interview, concurrent. Daniels employed for data analysis 

(1) iterative thematic coding of interview transcripts and (2) observation notes using the qualitative 

coding software NVivo. 

Relatively recently, researchers used mixed methods for data reuse. One such example is 

Curty (2015), who has employed a mixed-method approach that combines a quantitative survey 

instrument and a qualitative interview instrument in order to identify factors that influence data 

reuse among social scientists. Likewise, Tenopir et al. (2015) used both quantitative survey 

methods with close-ended questions and qualitative ethnography methods in order to study 

changes and differences in practices and perceptions of data sharing and data reuse (1) among 

research scientists world-wide and (2) across geographic regions, age groups and subject 

disciplines. These researchers employed snowball and volunteer sampling methods in order to 

recruit participants. Park and Wolfram (2017) used both quantitative citation analysis and 

qualitative content analysis to examine the practices of data reuse and sharing on data citation in 

Genetics and Heredity. Park, You and Wolfram (2018) used both quantitative descriptive analysis 
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and qualitative content analysis to examine the current practices of data reuse and sharing on data 

citation in biomedical fields. 

As seen in Table 1, exploratory methods are actively used in data reuse (Curty, 2015; Daniels, 

2014; Park & Wolfram, 2017; Park, You, & Wolfram, 2018). Thus, Curty has employed the 

exploratory sequential approach among her mixed methods by using interviews as a qualitative 

instrument and an online survey as a quantitative instrument. Her qualitative data collection and 

analysis process involves (1) a small-scale study; (2) interviews; (3) complementing cutting-edge 

academic literature; (4) exploring the research phenomenon; and (5) grounding preliminary 

findings in a research framework. In terms of quantitative data collection and analysis, Curty uses 

(1) a survey study with a larger group of social scientists and (2) testing of the research model and 

hypothesis.  

Table 1 Methods used for the study of data reuse 

type quantitative methods qualitative methods source 

data reuse 

survey - 

(Curty, Crowston, Specht, 

Grant, & Dalton, 2017; 

Joo, Kim, & Kim, 2017; 

Joo & Kim, 2017; Kim & 

Yoon, 2017) 

survey interview (Curty, 2015) 

- case study, interviews (Daniels, 2014) 
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- interview 

(Curty, 2016; Faniel, 

Kriesberg, & Yakel, 2012; 

Faniel & Jacobsen, 2010; 

Rolland & Lee, 2013) 

data reuse 

/sharing 

survey ethnography (Tenopir et al., 2015) 

- interview 

(Dallmeier-Tiessen et al., 

2014; Zimmerman, 2008) 

- interview, ethnography 

(Wallis, Rolando, & 

Borgman, 2013) 

data reuse/ 

curation 

- interview (Yoon, 2015; 2017) 

data reuse/ 

citation 

citation analysis - (He & Nahar, 2016) 

data reuse 

/sharing 

/citation 

statistical analysis - 

(Piwowar & Vision, 

2013) 

citation analysis, citer-

based analysis, 

descriptive analysis 

content analysis (Park & Wolfram, 2017) 

descriptive analysis content analysis 

(Park, You, & Wolfram, 

2018) 
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Data reuse across multiple scholarly communities has not yet been widely studied as a domain, 

though the social sciences have been actively approached from this perspective, using mainly 

interviews as the instrument (Curty, 2015; Daniels, 2014; Yoon, 2015). Examples include studies 

of social scientists’ trust judgments regarding data reuse (Yoon, 2015), impact measurements of 

data reuse in social science (Fear, 2013), factors influencing research data reuse in social science 

(Curty, 2015), and data reuse in the context of museums (Daniels, 2014). 

Data reuse across multiple communities in STEM fields is important because interdisciplinary 

research is necessary to address today’s complex research problems. Thus, for example, as Jirotka 

and colleagues (2005) have discussed, a national database of mammogram images can be useful 

to epidemiologists exploring factors that contribute to breast cancer. However, disparities across 

disciplines create difficulties, particularly in regard to terminology (Pierce, 1999). Moreover, it is 

not clear that scientists (e.g., those in the STEM fields) are interested in reusing data collected by 

non-scientists (e.g., humanities).  

Qualitative data reuse is important to consider. Hinds, Vogel, and Clarke-Steffen (1997) have 

identified both data-specific and general methodological challenges that must be overcome for the 

reuse of qualitative datasets. The latter includes “the degree to which the data generated by 

individual qualitative methods are amenable to a secondary analysis and the extent to which the 

research purpose of the secondary analysis can differ from that of the primary study without 

invalidating the effort and the findings” (Hinds, Vogel, & Clarke-Steffen, 1997, p. 411). Among 

the challenges specific to data sets are obtaining informed consent from participants in primary 

studies for data reuse and assessing the nature and quality of a qualitative dataset from original 

studies (Hinds, Vogel, & Clarke-Steffen, 1997). Especially for the qualitative data reuse among 



39 

social scientists, trust judgment issues and validity of data are important for data reusers (Yoon, 

2015). 

 

2.4.3. Data Citation 

The reward system in scholarly communication is traditionally based on the research impact 

in part. The research impact is based on the publications in peer-reviewed journals and the impact 

of those published journal articles. The establishment of formal data citation practices is needed to 

create new incentives as a parallel to current reward systems. Data citation is expected to create 

data stewardship and enhance data sharing as well as make research data more accessible and 

exploitable. Although data citation practices are not (yet) widely implemented due to missing 

incentives for data authors to prepare datasets and software code, data citation is expected to 

facilitate rewarding data sharers, provide detailed attribution and enhance collaboration in 

scholarly communication. 

White (1982) called for the needs of citing datasets in the social science context from the early 

1980s. The citation analytic approach is important for data citation. Citation merits study because 

it represents one of the major rewards and opportunities for formal recognition for authors (e.g., 

data sharers) within the scholarly community. Data citation involves reference to the data 

themselves (rather than to publications that share data) in order to give attribution, to facilitate 

access (CODATA-ICSTI Task Group on Data Citation Practices, 2013), and to promote direct and 

unambiguous reference to datasets in a study. The availability of datasets may be reported in data 

journals such as Nature’s Scientific Data. 



40 

Data citation has been more actively studied in the realm of data sharing than that of data 

reuse, perhaps owing to the labor-intensive processes involved. Thus, for example, data collection 

processes include the manual review of full texts, references, and supplementary datasets 

(necessitating, e.g., the opening of supplementary datasets in a file format such as .pdf or .doc). 

Moreover, in the absence of sufficient domain knowledge, data collection for reuse has a high 

potential for inaccuracy, since the hard sciences and/or engineering demand expert domain 

knowledge in order to identify reused data residing within the full text of an article. 

A persistent identifier should be assigned at the time of data publication, and the low frequency 

with which such identifiers as a DOI or researcher ID (e.g., an ORCID ID) actually are assigned 

creates significant challenges in the identification of significant factors relating to data citation 

practices.  

Previous literature has explored such topics as data citation principles, standardization, peer 

review for data publication, practices, infrastructure, metadata elements associated with a dataset 

(rather than embedded within it; e.g., provenance metadata rather than descriptive metadata), DOIs 

(digital object identifiers, both unique and persistent, that include a time-stamp and version history), 

technical infrastructure, flexibility for interoperability across communities, policies regarding 

repositories and data journals, data management practices best suited to research, the high 

incidence of self-citation, citation protocols, altmetrics, and linked data (CODATA-ICSTI Task 

Group on Data Citation Practices, 2013; Lawrence, Jones, Mattews, Pepler, & Callaghan, 2011). 

These previous studies of data citation, while having their limitations, provide valuable 

insights. All the same, the primary focus has been on individual disciplines rather than on the 

impact of data citation across such disciplines as science, technology, and engineering. Data 

sharing varies within each discipline (Tenopir et al., 2011), which means that the impact of data 
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citation on data sharing cannot be fully appreciated without considering disciplinary factors. A gap 

thus remains in the literature with regard to the impact of data citation within and across the diverse 

science, technology, and engineering disciplines.  

Previous studies, then, have used descriptive statistics (e.g., distributions) regarding the 

history of citation, but analysis has not actively been studied for data citation. Also, previous 

literature has focused on the practices of data citation from the DCI or on a single data repository 

(e.g., CIPSR or Dryad) or has used the history of citation. Examples of areas that have been studied 

include (a) journal policies regarding metadata (e.g., data descriptors regarding dataset stories of 

high-profile journals), (b) citation practices within full texts (e.g., accession numbers provided in 

the full text of articles), and (c) manual review by looking into practices regarding references, full 

texts, and rewards and acknowledgements among journals. For datasets in data citation, research 

has focused on (a) the type of datasets/data study, (b) practices of the DCI, and (c) restrictions (e.g., 

restricted/limited/unrestricted datasets stored in data repositories).    

Data journals can impact data citation; for a data journal article is not a traditional paper. 

Rather, data journals provide quality data (e.g., peer-reviewed research data) that may be used by 

or of interest to others and that includes the main metadata elements that map to the concept of 

citation (CODATA-ICSTI Task Group on Data Citation Practices, 2013). In current practice, data 

journals do not (yet) require peer-reviewed data as a journal policy. Data journals have emerged 

as an alternative to the direct data citation (Belter, 2014). Examples of data journals include 

Scientific Data, PLoS, Data Science Journal, BMC Research Notes, Journal of Open Archaeology 

Data and Biomedical Data Journal. Data journals may promote data citation through their policies, 

for example by requiring that datasets be included in the reference list of a paper or that DataCite 

recommendations be followed. A few studies have dealt with data journals. Using a survey method, 
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Candela, Castelli, Manghi, and Tani (2015) have looked into 100 existing data journals in terms 

of dataset description, availability, citation, quality, and open access in order to identify ways to 

expand and strengthen the data journal approach that will increase access to and exploitation of 

datasets. Thus, “first principles” for data citation have been identified by CODATA-ICSTI Task 

Group on Data Citation Practices (2013, p. CIDCR6): 

• Status of data: Data citation should be accorded the same importance in the scholarly 

record as the citation of other objects. 

• Attribution: Citations should facilitate giving scholarly credit and legal attribution to 

all parties responsible for the data. 

• Persistence: Citations should be as durable as the cited objects. 

• Access: Citations should facilitate access both to the data themselves and to such 

associated metadata and documentation as are necessary for both humans and machines 

to make informed use of the referenced data. 

• Discovery: Citations should support the discovery of data and their documentation. 

• Provenance: Citations should facilitate establishment of the provenance of data. 

• Granularity: Citations should support the finest-grained description necessary to 

identify the data. 

• Verifiability: Citations should contain information sufficient to identify the data 

unambiguously. 

• Metadata standards: Citations should employ widely accepted metadata standards. 

• Flexibility: Citation methods should be sufficiently flexible to accommodate variant 

practices among communities but should not differ so much that they compromise 

interoperability of data across communities. 
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Current practices in data citation do not give due credit by linking bibliographic references to 

published research data because published research data tend to be regarded as supplementary 

material (CODATA-ICSTI Task Group on Data Citation Practices, 2013; Park & Wolfram, 2017). 

It is argued, however, that data citation should accompany such published works as articles in a 

references section in order to give due credit to data sharers (e.g., data authors). Tenopir and 

colleagues (2011) found that 91.7% of them somewhat agreed with the importance of their shared 

data being cited if their shared data are reused by other researchers. Data sharing and reuse across 

multiple disciplines thus remains relatively unexplored from the perspective of data citation from 

scholarly databases, data journals, or data repositories. In practice, data citation is (still) far from 

common (Robinson-García, Jiménez-Contreras, & Torres-Salinas, 2016). Data citation should be 

formally cited in bibliographic references section to give due credit to data sharers as noted by 

Park and Wolfram. The practices in biomedical fields show that informal data citation, in which 

data citation is mentioned in passing in the main texts or out of references is more commonly found 

than formal data citation, in which data citation is in the references section (Park, You, & Wolfram, 

2017)  

The DCI, which was launched in 2012 by Thomson Reuters and was sold in 2016 to Clarivate 

Analytics, currently provides data citation indexing as a subscription-based service. The DCI 

provides a single access point to over 350 data repositories worldwide and thus to over 7.4 million 

records across multiple disciplines (Clarivate Analytics, 2018). The DCI divided its records into 4 

major categories. Major 4 categories are dataset, software, data study and repository. The records 

by the DCI treats datasets in a similar way as journal articles or other document types such as 

conference proceedings or books in the bibliographic WoS databases. The citation records of the 

DCI are connected to related literature indexed in the WoS database. An advantage of the DCI is 
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that indexers of the Clarivate Analytics WoS, and even Elsevier’s Scopus, can detect and track 

data citation. The DCI has been used to examine why research data are cited in genetics and 

heredity (Park & Wolfram, 2017), in biomedical fields (Park, You, & Wolfram, 2018) and in the 

humanities (Robinson-García, Jiménez-Contreras, & Torres-Salinas, 2016). 

The uniform direct citation of data curated in persistent data repositories has been emphasized 

with regard to the reproducibility and reusability of research outcomes because “a foundational 

element of reproducibility and reusability is the open and persistently available presentation of 

research data” (Starr et al., 2015). As discussed above, a permanent and persistent data identifier 

(e.g., a DOI) at the time of data publication may be important for direct citation and ease of 

accessibility in data citation because a DOI is machine-readable and therefore provides access to 

cited data and its associated metadata. However, current practices are such that data citation 

includes only a low percentage of persistent identifiers (e.g., DOI or ORCID) compared with 

regular citation. Access to data repositories (i.e., open access data repositories), whether 

unrestricted, limited, or restricted, thus needs to be studied in the context of data sharing and the 

potential future reuse of data. 

Direct citer-based analysis has been conducted in data citation research with the comparison 

of research data citation and citing articles in Genetics and Heredity in order to identify self-

citation and recitation (Park & Wolfram, 2017). Applying direct citer-based analysis across 

multiple disciplines (i.e., interdisciplinarity) remains a promising avenue to be explored as a means 

to measure author research impact in the context of high rates of self-citation (i.e., of authors citing 

themselves). The same authors tend to use the same shared research data repeatedly, potentially 

indicating a high rate of self-citation. Relatively greater numbers of publications cited by a citing 

author indicate relatively greater influence of the cited author on the citing author. Direct citer-
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based analysis has been discussed recently (Ajiferuke, Lu, & Wolfram, 2010), though citer-based 

analysis from a more general perspective has been the subject of ongoing study.  

The citation rate is associated with research data sharing because it provides a detailed 

description of data (Piwowar & Chapman, 2010; Piwowar, Day, & Fridsma, 2007). Data sharing 

and future data reuse may be increased in the case of secondary analysis. Piwowar and Chapman 

studied 397 gene expression microarray datasets published in 2007 in 20 different journals and 

report that investigators are more likely to share their raw datasets publicly on the Internet when 

their research are published in high-profile journals and when the first and last authors have had 

high-impact careers. Publishers of lower-impact journals do not enforce their data-sharing policies 

rigorously. Piwowar, Day and Fridsma determined that 69% more citations occurred between 

microarray clinical publications and their associated data sharing when data were publicly 

available. Their examination of citation history used multivariate linear regression to reveal that 

public data sharing is significantly associated with increased citation rates, independent of the 

journal impact factor, publication date, and author’s country of origin. 

The major institutional bases of disciplines at the levels of college/school, department, and lab 

need to be identified based on author affiliation. Author affiliation data can be found in the headers 

of an article and in the acknowledgements. The presentation of supplementary material in the 

relevant location may facilitate automatic or machine-actionable data citation with bidirectional 

links between articles (e.g., in the case of a data journal), associated datasets, and data repositories. 

Examples include (a) supplementary material inserted at the point of reference/citation, (b) placing 

the material in the proper context, (c) making supplementary material easier for readers to find, 

and (d) locating supplementary material initially in a closed text-box. 
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Metadata plays an essential role to trace, access and effectively use research data. Research 

data must be accompanied by basic descriptive metadata. The Dublin Core (DC) is closely aligned 

with the mandatory fields in the DCI because the parts of 15 elements of the DCI metadata such 

as creator, title, publication year and identifiers are widely used as mandatory fields to data 

preservation. Although this alignment to the DC allows interoperability across different platforms, 

ambiguity also increases for the detailed study of data metrics for research evaluation. Including 

rich metadata such as provenance metadata, rights metadata (e.g., license information) and 

technical metadata (e.g., file size) would facilitate to actual access to shared research data and 

allow for the description of discipline specific research data as well. Adequate information of 

metadata for data reuse demands researchers to fill out the form of fields to characterize shared 

data. Data Documentation Initiative (DDI) provides extensive guidelines of metadata for many 

forms of human subject research by developing a data model for qualitative data. The major 

challenges of having comprehensive metadata in order to provide adequate information for data 

reuse are how to explain the particularities of specific portions of research data.  

Metadata formats for data citation are emphasized in earlier literature (Borgman, 2012). 

However, metadata in data citation is inconsistent at present. The literature has noted that the 

consistency, quality and sustainability of metadata in research data need to be studied (CODATA-

ICSTI Task Group on Data Citation Practices, 2013; Helbig, Hausstein, & Toepfer, 2015; Starr et 

al., 2015). Quality control is mainly mentioned for reliable data reuse for reproducibility. In 

maintaining metadata, sustainability is another concern (Helbig, Hausstein, & Toepfer, 2015). For 

research data, the Dublin Core Metadata Element Set has been widely used in order to develop 

application profile in a given context, for instance, Dryad Application Profile (Ball, 2009; 

Diamantopoulos, Sgouropoulou, Kastrantas, & Manouselis, 2011). However, due to the DC’s 
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relatively flat structure, the complex relationships of software or research datasets confronted 

challenges (Lagoze, 2000). The DataCite Metadata Schema is one of the approaches to overcome 

these challenges because the DataCite Metadata Schema can describe the relationships between 

two datasets (DataCite Metadata Working Group, 2016; Star & Gastl, 2011). The DataCite 

Metadata Working Group (2015) released the DataCite Metadata Schema as the core metadata 

properties to consistently identify a resource for data citation and retrieval with the recommended 

instructions. Metadata in data citation needs to be taken into account for the administrative or 

methodological metadata rather than descriptive metadata (Star & Gastl, 2011). For instance, Chao 

(2015) examined methods metadata in soil science such as common methods-related elements of 

articles. A previous study (Canham & Ohmann, 2016) examined metadata scheme in clinical 

research and proposed elements for metadata scheme in clinical research data into three: 

mandatory, recommended and optional. Mandatory elements in clinical research include source 

study title, DOI, title, creators, creation year, resource type in general, publisher, access type, 

access details, access contact and resources. Recommended elements in clinical research include 

study identifier, study topics, version, resource type, description, language and other hosting 

institutions. Optional elements in clinical research include object other identifiers, object 

additional titles, contributors, dates, subjects and rights.  

Disciplinary metadata standards (Digital Curation Center, 2018) are in practice because each 

discipline will process their research data differently and will use different vocabularies to describe 

research data. Examples are Darwin Core, Ecological Metadata Language (EMI) and Genome 

Metadata in biology. In earth sciences, examples of disciplinary metadata in use are Astronomy 

Visualization Metadata (AVM), Climate and Forecast (CF) Metadata Conventions and Federal 

Geographic Data Committee Content Standard for Digital Geospatial Metadata (FGDC/CSDGM). 
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General metadata for research data are also in use that includes DataCite Metadata Schema, Data 

Catalog Vocabulary (DCAT), DC and Repository-Developed Metadata Schemas. 

In order to identify relevant research methods in data citation, Table 2 provides a comparison 

of various methodologies that have been used to study data citation.  Some of these works have 

used mixed methods approaches, although relatively few studies have been conducted on the 

citation of peer-reviewed data. For example, Fear (2013) has combined quantitative methods, 

including logic regression and bivariate analysis, with such qualitative methods as content analysis 

and interviews. Park and Wolfram (2017) combined quantitative methods, including citer-based 

analysis and citation-based analysis, with such qualitative methods as content analysis (e.g., 

manual assessment). Domains that have been studied with regard to data citation include genetics 

and heredity (Park & Wolfram, 2017), and the social sciences (Fear, 2013). 

As seen in Table 2, these methods, rather than being specific to data citation, are associated 

with data sharing and reuse. To be specific, previous studies have mainly relied on: (1) quantitative 

methods involving (i) surveys with closed-ended questions and (ii) regression for quantitative 

analysis; (2) qualitative content analysis; and (3) mixed methods combining (i) surveys with 

closed-ended questions and (ii) qualitative content analysis in the case of mixed methods 

approaches. Informetrics approaches have been studied only relatively recently (Fear, 2013; Peters, 

Kraker, Lex, Gumpenberger, & Gorraiz, 2016; Park & Wolfram, 2017; Piwowar & Chapman, 

2010). 

Regarding qualitative methods, content analysis and interviews have been the main 

instruments used in the study of data citation. Thus, to return to a previous example, Fear (2013) 

has employed both approaches in order to explore significant factors that improve data reuse 

associated with ICPSR repository in the social sciences. Park and Wolfram (2017) employed 
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content analysis with the manual assessment of references, main text, acknowledgemenet, funding 

information, supplementary information, and author information to examine hidden or embedded 

data citations regarding data sharing and reuse in Genetics and Heredity.  

Informetrics-based methods provide promising approaches to the study of data citation. 

Previous researchers have explored quantitatively phenomena such as: (1) citation analysis based 

on citation history including direct citation and co-citation (Piwowar, 2010), and self-citation (He 

& Nahar, 2016); (2) allied analysis, including co-authorship analysis (Fear, 2013) with the aim 

being to examine collaboration and natural language processing (NLP) (Piwowar, 2010) or co-

word analysis in studying text and language; and (3) the use of citer-based analysis to identify self-

citation (Park & Wolfram, 2017). In the case of collaboration, citer-based analysis may represent 

a remedy for self-citation (Ajiferuke, Lu, & Wolfram, 2010; Lu, Ajiferuke, & Wolfram, 2014), 

and communication detection using map equations may be approached based on information flow 

(Bohlin, Edler, Lancichinetti, & Rosvall, 2014) in order to identify dynamic areas. Quantitative 

surveys have been used to explore significant factors affecting data citation in the sciences 

(Candela, Castelli, Manghi, & Tani, 2015; Swauger & Vision, 2015), naturally making greater use 

of closed- rather than open-ended questions (Curty, 2015; Swauger & Vision, 2015). 

Table 2 Summary of prior studies on methodologies used to study data citation 

type quantitative methods qualitative methods sources 

data 

citation 

survey - 

(Candela, Castelli, Manghi, 

& Tani, 2015) 

- literature review 

(CODATA-ICSTI Task 

Group on Data Citation 
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Practices, 2013; Silvello, 

2018) 

citation analysis, 

descriptive analysis 

- 

(Peters, Kraker, Lex, 

Gumpenberger, & Gorraiz, 

2016) 

data 

citation

/ 

sharing 

survey content analysis (Swauger & Vision, 2015) 

citation analysis, 

regression, exploratory 

factor analysis, 

univariate/multivariate 

- (Piwowar, 2010) 

multivariate logic 

regression analysis 

- 

(Piwowar & Chapman, 

2010) 

multivariate linear 

regressions, correlation 

manual review (of 

citation context) 

(Piwowar & Vision, 2013) 

data 

citation

/ reuse 

citation analysis - (He & Nahar, 2016) 

bibliometric analysis 

logistic regression, 

bivariate analysis 

content analysis, 

interview 

(Fear, 2013) 

data 

citation

citation analysis, citer-

based analysis, 

descriptive analysis 

content analysis (Park & Wolfram, 2017) 
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/ reuse/ 

sharing 

descriptive analysis content analysis 

(Park, You, & Wolfram, 

2018) 

 

Previous literature has addressed a variety of related topics, including data citation principles, 

standardization, peer review for data publication, practices, infrastructure, metadata elements 

associated with a dataset rather than embedded within it (e.g., provenance metadata rather than 

descriptive metadata), DOIs (digital object identifiers, both unique and persistent, which include a 

time-stamp and version history), technical infrastructure, quality control in data reuse, flexibility 

for interoperability across communities, policies regarding repositories and data journals, the best 

data management practices for research, the high incidence of self-citation, citation protocols, 

altmetrics, and linked data (CODATA-ICSTI Task Group on Data Citation Practices, 2013; 

Lawrence, Jones, Mattews, Pepler, & Callaghan, 2011).  

Persistent identifiers are important for data citation because data citation needs a unique and 

persistent identifier for reusers to obtain the latest available version and format of the resource. “A 

persistent identifier enables unambiguous referencing, cross-referencing, authentication and 

validation… provides a basis for practices such as citation counting in career merit reviews” 

(CODATA-ICSTI Task Group on Data Citation Practices, 2013, p. 15). As discussed above, a 

persistent identifier should be assigned at the time of data publication, and the low frequency with 

which such identifiers as a DOI or researcher ID (e.g., an ORCID) actually are assigned creates 

significant challenges in the identification of factors that are important for data citation practices.  
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2.4.3.1.Data Repository Impact 

Data repositories are storage and publication platforms where research data are disseminated 

as research output. The advantage of sharing research data in repositories includes an easier and 

more standardized data transfer between journals and data repositories. Types of repositories 

include general-purpose repositories, discipline-specific repositories and institutional repositories. 

Examples of repositories include Zenodo (https://zenodo.org/), figshare (https://figshare.com/), 

GenBank (https://www.ncbi.nlm.nih.gov/genbank/), PANGAEA (https://www.pangaea.de/), 

Harvard Dataverse (https://dataverse.harvard.edu/) and UniProtKB (https://www.uniprot.org/). 

Repositories such as Dryad and Harvard Dataverse generate a data citation directly.  

Data repositories are important for providing the raw data used by DCI meaning repositories 

play an essential role in data citation for scientific knowledge dissemination by providing metadata, 

persistent access (e.g., DOI), stewardship and data discovery to find research data. In 2010, the 

announcement of the Journal of Neuroscience stopped publishing supplementary materials and 

promoted disciplinary repositories (Maunsell, 2010), indicating journal publishers’ recognition of 

the importance of data repositories. Journal publishers suggest or recommend data citation in a 

domain-specific list of acceptable repositories. For instance, Nature publishing group (2018) 

provides the recommended data repositories by each discipline for the data journal called Scientific 

Data.  

To measure data repository impact, data repositories need to provide research data in forms to 

be citable and descriptions to be understandable for data sharers and reusers. However, the citations 

of data repositories are not common. For instance, 43 repositories in the DCI did not receive any 

citations (Robinson-García, Jiménez-Contreras, & Torres-Salinas, 2016).  
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Although there has been a focus on the general-purpose or discipline-specific repositories, 

institutional repositories also have been examined. Fan (2015) examined 19 institutional 

repositories affiliated with the Chinese Academy of Sciences with the webometric indicators of 

their home institutions, especially for the citation rate of papers in home institutions. Fan found 

that institutional repositories can improve the visibility of their home institutions and the web 

presence. Also, if the institutional repositories are open access, their home institutions received 

more web visibility and presences.  

 

2.4.3.2.Data Citation Impact 

Data citation is important for data sharing. As just noted, there is a 69% increase in the citation 

rate of published research when detailed information is provided for shared data (Piwowar, Day, 

& Fridsma, 2007; Piwowar, 2010) and “independently of journal impact factor, date of publication, 

and author country of origin using linear regression” (Piwowar., 2010, p. 14). According to one 

estimate, however, 43% of repositories received no citations (Robinson-García, Jiménez-Contreras, 

& Torres-Salinas, 2016) and 61% of datasets stored in the ICPSR repositories did not provide any 

type of citation to datasets (Mooney, 2011). In a recent survey, 91.7% of researchers somewhat 

agreed that data citation is important when their data are reused (Tenopir et al., 2011), and 95% 

agreed that it is “fair to use other people’s data if there is formal citation of the data providers 

and/or funding agencies in all disseminated work making use of the data” (Tenopir et al., 2011, p. 

10). The mechanism of data citation and publication, involving citable, easily discoverable, and 

reusable research output, provides an incentive for researchers to document and archive data 

appropriately (Callaghan et al., 2012). 
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In the social sciences, data citation is not new. In the late 1970s, recommendations to reference 

machine-readable data files (MRDF) were published by Dodd (1979). Dodd suggested guidelines 

for the data citation in social science regarding the format of references to MRDFs. White (1982) 

mentioned the importance of formal citation apart from main text in social sciences. White 

mentioned that “[a]n argument by no means new is that social scientists who work with machine-

readable data files (MRDF) should cite them in their writings, with formal references set apart 

from main text, just as they now do books, papers and reports (p. 467)”. White found that data 

citation is highly incomplete and inconsistent and demands considerably further studies with the 

examination of three sets of data files in the WoS’s SSCI. In the ICPSR, one of the largest data 

repositories in social science, 61% of articles among 49 journal articles did not formally cite 

articles (Mooney, 2011). However, the form of informal data citation, which was mentioned in 

passing by the dataset title, was widely found in social science (Mooney & Newton, 2012). Also, 

confidentiality and anonymity are crucial requirements for qualitative data sharing. Protecting 

confidentiality and data with sensitive information are the most frequently mentioned barriers for 

the qualitative data sharing and preservation by researchers (Cliggett, 2013).  

Sustainable persistent methods for data identifications such as DOIs are needed for data 

citation. Examples of existing global identifiers are the DOI, ORCID, Uniform Resource Name 

(URN), the Life-Science Identifier (LSID) and Research Resource Identifier (RRID). However, in 

astronomy, over 40% of data linked via URLs in the astronomical literature are broken in a decade 

of publication. DOI can minimize this problem because when the associated Uniform Resource 

Locator (URL) change, the registration agency can update the DOIs via an Application 

programming interface (API; Pepe, Goodman, Muench, Crosas, & Erdmann, 2014). The persistent 
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and sustainable identifier of the research data resolves to a correct landing page must support 

multiple levels of granularity.  

 

2.4.3.3.Data Sharing Impact 

The impact of data sharing has been studied from the perspective of a single rather than 

multiple disciplines. For example, Piwowar (2010) studied data citation of the data sharing in 

biomedicine. The impact of data sharing impact has revealed that the sharing of data publicly 

increases the citation rate of publications (Piwowar, Day, & Fridsma, 2007; Piwowar & Vision, 

2013). Researchers are more inclined to share their research data if researchers receive credit 

(Borgman, 2012). 

Research data are usually considered as the primary data source in conducting scholarly 

research. Scientists’ data sharing behaviors (Kim & Stanton, 2015), perceptions (Tenopir et al., 

2011), and cultures have been actively studied, with a focus on the barriers to data sharing in public 

repositories. Relatively recently, data repositories themselves have begun to be studied. A review 

of previous literature reveals that data journals are not yet the focus of active research. The benefits 

of sharing research data include the validation of findings and the potential future reuse of shared 

data. 

Domains studied with regard to data sharing impact have been actively studied in the field of 

biomedical fields. For instance, the data sharing impact has been examined in such fields as 

biomedical microarray (Piwowar & Chapman, 2010) genetics and heredity (Park & Wolfram, 2017) 

and biomedical fields (Park, You, & Wolfram, 2018). Again, individual domains, rather than 

multiple disciplines, have been actively studied regarding data sharing impact (Park & Wolfram, 
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2017; Park, You, & Wolfram, 2018; Piwowar, Day, & Fridsma, 2007; Piwowar & Chapman, 2010), 

at least until recently. 

Factors influencing data sharing and withholding can be usefully categorized into three groups: 

institutional factors (e.g., a funding agency’s policy, journal requirements, and contracts with 

industry sponsors), resource factors (i.e., metadata and data repositories), and individual factors 

(e.g., personal characteristics, perceived benefit, perceived effort, and perceived risk). Other 

organizational and environmental factors have also been identified as significantly influencing 

scientists’ data sharing and withholding (Kim, 2013). Journals’ data-sharing policies do not 

necessarily induce authors to make their research datasets accessible to independent investigators 

(Savage & Vickers, 2009). 

 

2.4.3.4.Data Reuse Impact 

Data reuse impact has not been actively studied. A challenge impeding the study of data reuse 

is that researchers mainly need to use manual methods by scanning research literature in order to 

identify reused data in scientific publications. Several studies have proposed methods for 

streamlining the data reuse impact. Abstracts rather than full-text in biomedical fields by using 

NLP techniques have been applied due to the free and standard format of abstracts (Lin, 2009) 

although more information is contained in the full-text of literature. By using indicating terms of 

data sharing and reuse (Park & Wolfram 2017), data reuse impact has been examined with semi-

automatic ways by using automatic text searching techniques and manual human judgments in 

biomedical fields (Park, You, Wolfram, 2018). Main-text (i.e., full text) of high-profile articles 

mainly contains research data reuse (Park & Wolfram, 2017), which prevents the automatic 
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indexing of data citation. Currently, there does not seem to be appropriate tools to measure data 

reuse automatically. 

The impact of data reuse has not been actively studied in the context of multiple disciplines 

and multiple data repositories. Fear’s (2013) study looks at the social sciences by analyzing only 

a single data repository, the ICPSR, using a mixed-methods approach. Multiple data repositories 

in the DCI (i.e. over 350 repositories) in a single discipline are examined from the informetrics 

approaches (Park & Wolfram, 2017). A data paper as an incentive mechanism has the potential to 

advance data publishing to the level of scholarly publishing and to lead to a significant increase in 

efficiency, at least in the field of biodiversity science (Vishwas & Lyubomir, 2011). Data peer 

review has been shown to improve data quality, though there is no formally established or 

recognized process (Parsons, Ruth, & Minster, 2010). 

 

2.5. Software Sharing, Reuse and Citation 

2.5.1. Software Sharing 

Studies of scholarly communication have also investigated software sharing. This is a 

continuous process that merely begins with the initial sharing, for software can be updated as new 

versions (e.g., Version 1, Version 1.1 or Version 2, and so on) are disseminated in order to correct 

bugs or in response to users’ requests for more advanced functions. Software can be shared in a 

variety of ways, such as among local teams (e.g., code shared through a laboratory research team’s 

local server), by means of personal websites, or through repositories used in scholarly 

communication, such as the Comprehensive R Archive Network (CRAN) or Zenodo. Software 

sharing faces numerous impediments, though; thus, for example, Howison and Herbsleb (2011) 
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found it to be costlier and more complicated than the sharing of data or the circulation of traditional 

publications. 

Software is frequently mentioned in scholarly communication involving scientific 

publications, as Li and Yan (2018) found with respect to R packages being referred to widely 

across PLoS papers. Especially significant for the present study, Pan, Yan, & Hua (2016) reported 

that open software was mentioned more often than proprietary software in the full texts of PLoS 

ONE articles published in 2014. Findings such as these indicate, then, that open software sharing 

increases the attribution of scholarly credit for those who share software. 

 

2.5.2. Software Reuse 

The reuse of software, which was first discussed half a century ago by McIlroy (1968), 

remains a major concern for the software engineering community. Reuse can minimize the time 

required to create software, contribute to the stability of systems thanks to reliance on previously 

tested and created components (Krueger, 1992), and improve the overall quality of software. 

Software, source code, and online programming resources are widely accessible in the context of 

open source projects. Not surprisingly, the increased accessibility of software for reuse is changing 

the ways in which programmers write their program languages, as they often opt to copy and paste 

existent program code from various sources. So, it is that, according to one estimate, fully half of 

the code being created for production reuses code from previous programs (Mockus, 2007). This 

situation creates challenges for programmers, who spend considerable time searching for 

appropriate pieces of existing software when specific needs arise. Software reuse can thus be 

considered one form of data reuse and can usefully be distinguished as either architecture, design, 

or program reuse (Aziz & North, 2007). 
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Various factors determine the success of software reuse, which can be defined as “the 

systematic practice of developing software from a stock of building blocks, so that similarities in 

requirements and/or architecture between applications can be exploited to achieve substantial 

benefits in productivity, quality, and business performance” (Morisio, Ezran, & Tully, 2002, p. 

341). Larger-scale reuse, then, is supported by smaller scale reuse (Henry & Faller, 1995). The 

success of large-grained software reuse within an organization depends on such factors as trust 

and organizational culture (Witman, 2007). There are also a number of barriers to higher-level 

software reuse, whether conceptual (e.g., failure to understand the basic elements of reuse), 

technological (e.g., lack of common standards across or within organizations; poor practices with 

regard to software metrics), infrastructural (e.g., obsolete supporting infrastructure), managerial 

(e.g., lack of consensus regarding common standards across diverse projects), or cultural (e.g., 

disincentives to efficient reuse within large development teams) (Bassett, 1997). 

 

2.5.3. Software Citation 

The importance of software in scientific research can hardly be overstated; thus, according to 

a recent report by the National Postdoc Association, 95% of postdoctoral researchers use software, 

and 63% could not do their work without it (Nangia & Katz, 2017). Nevertheless, it is only recently 

that research software citation has been actively studied from the perspectives of software sharing 

and reuse (Hong, Hole, & Moore, 2013; Li, Yan, & Feng, 2017; Pan, Yan, Cui, & Hua, 2018). 

Technically, software is a form of data (Marcus & Menzies, 2010) and, if curated in data, it can be 

given due scholarly credit (Lynch, 2014). Software is, of course, different from data, in particular 

because it is executable as a creative work (Katz et al., 2016). On the other hand, like data, it has 

not traditionally been included in journal publications. 
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Previous studies observed inconsistent software citation (Howison & Bullard, 2016; Katz & 

Smith, 2015; Li, Yan, & Feng, 2017). Howison and Bullard found that many software entities do 

not provide consistent information regarding the form of citation. Li, Yan and Feng found that R 

packages in published articles showed inconsistent practices from formal citation to informal 

citation. In biology, a random sample of 90 articles showed several different ways of software 

mentioning such as main text, URLs in footnotes, different kinds of mentions in the references 

section (Howison & Bullard, 2016), brining difficulties of formal software citation. Due to these 

inconsistencies, the development of proper software citation entities in published research outputs 

has been recognized by the FORCE 11 Software Citation Working Group (Katz & Smith, 2015). 

The software citation principles include importance, credit and attribution, unique identification, 

persistence, accessibility and specificity (Smith, Katz, Niemeyer & FORCE11 Software Citation 

Working Group, 2016). More specifically,  

• Importance: Software should be regarded as a citable product of research with the same 

importance such as journal publications in scholarly communication. 

• Credit and attribution: Software citation should facilitate giving rewards to all 

contributors of the software in scholarly communication. 

• Unique identification: Software citation should have a machine actionable, unique and 

interoperable identification. 

• Persistence: Unique identification and metadata of software and its disposition should 

be persistent. 

• Accessibility: Software citation should facilitate software accessibility by making the 

information to the referenced software usage. 
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• Specificity: Software citation should facilitate the identification, access and version 

specification of software with specific identification needed such as version number and 

revision numbers. 

Informal software citation has been more common than formal software citation, at least until 

recently. Its prevalence prevents software sharers from receiving due scholarly credit for 

publishing in highly-impact journals (Poist, 2015). The fact that 97.7% of BMC Bioinformatics 

papers mention software and databases in passing is indicative of the high rate of informal software 

citation. Howison and Bullard (2016), based on the aforementioned survey of 90 biology articles, 

reported that 31% of informal software citation took the form of passing mentions in the text, while 

44% provided formal citation. Likewise, only 13% of some 1,000 publications analyzed in another 

study specifically mentioned the software used in generating the research outcomes, and only 50% 

of the publications acknowledged individuals personally, which is another type of informal 

software citation (Weber & Thomer, 2014). A more recent study found formal citations to be 

common in PLoS journals when official citation instructions are provided (Li, Yan, & Feng, 2017). 

Formal citation is clearly important for sharers of research software, and journals indexed by 

such scholarly databases as WoS and Scopus provide a venue for it. Although researchers’ sharing 

of code with the public at no cost is motivated by the desire to enhance their own academic 

reputations and to receive credit for their work (Poist, 2015), formal software citation remains 

relatively rare, as is the case, for instance, in the geosciences (Reichman, Jones, & Schildhauer, 

2011). The form that formal software citation takes can also have a significant impact on its 

pervasiveness, as demonstrated by the Text Retrieval Conferences (Rowe, Wood, Link, & Simoni, 

2010). 
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Software journals can provide a venue for formal indexing by scholarly databases, such as 

WoS and Scopus, and thereby for formal software citation, as well as for publication of the 

software itself. These journals publish articles focused entirely on research software and attribute 

formal scholarly credit. According to Soito and Hwang (2016), papers that describe software 

compel researchers to identify the specific code used. Examples of software journals include the 

Journal of Open Source Software and Journal of Open Research Software. Domain-specific 

software journals, such as Computer Science Communication and Bioinformatics, have 

traditionally accepted research software submission from authors. 

Software measurement ontology and elaboration of a multi-level metadata framework are two 

recent initiatives addressing software citation. The former involves efforts by researchers to 

approach citation from the perspective of software development (García et al., 2006). As for the 

multi-level metadata framework, it has been developed as a means to describe the reusability of 

software by developers (Hong, 2014). Li, Lin, and Greenberg (2016) analyzed current practices 

relating to inconsistent descriptive metadata elements and the types of software reuse in 400 papers 

in the field of material sciences, looking specifically at a popular piece of simulation software, 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and concluded that 

inconsistent metadata associated with research software could limit accessibility to it and thus, 

ultimately, citation of it. Not surprisingly, available software metadata for content specifications 

vary across communities. Ontosoft (Gilbert, 2015), for instance, is a community software 

commonly used in the geosciences. Existing software metadata can be language-specific, examples 

being R package descriptions (Bechhofer et al., 2013) and Python packages (Ward & Baxter, 2016). 

Terms and classes are also defined at schema.org (https://schema.org/SoftwareApplication). 

 

https://schema.org/SoftwareApplication
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2.6. Summary 

 This chapter has reviewed the relevant literature regarding informetrics and the current 

state of data citation in scholarly communication and in the process has outlined the overall 

environment and context of scholarly measurement. Research data citation is, then, attracting 

increasing attention, but relatively little work has been done on the topic. As has been seen, the 

research that has been conducted suffers from certain limitations regarding generalizability and 

the lack of a methodological framework. The present study was designed to help fill in some of 

these gaps. The various types of metric studies of scientific communication were reviewed 

(Section 2.2) because of their applicability to the study of data citation, as was the concept of open 

science as it relates to data sharing (Section 2.3), discussion of which included a comprehensive 

review of concepts and research relating to data and software citation. Next, research on the 

measurement of scholarly impact was surveyed with a focus on data sharing and reuse (Section 

2.4). Lastly, work on research software citation was approached from the perspectives of software 

sharing and reuse (Section 2.5).  
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Chapter 3 METHODOLOGY 

This chapter outlines methodological frameworks for the study of data citation in the context 

of data sharing and data reuse. This discussion is important because a framework for useful 

information relating to data citation has not yet been developed because it is a relatively new 

phenomenon and the study of data journals and citation is in its infancy. This being the case, 

informetric methods and text searching provide useful analytical tools for exploring data citation. 

The mixed methods approach employed here combined quantitative informetrics and qualitative 

semi-automatic content assessment. One contribution of this dissertation is thus the establishment 

of a methodological framework, specifically a refined research model that takes into account key 

previous studies of data citation, sharing, and reuse, in particular those that have identified groups 

of factors relating to these activities. The data analysis methods used in this study were primarily 

quantitative, but a qualitative component was included in the evaluation of data reuse. 

 

3.1. Introduction 

The combination or mixing of quantitative and qualitative approaches can provide 

comprehensive perspectives for the study of complex social phenomena (Creswell & Clark, 2011). 

Quantitative methods have the capacity to yield generalizable results when representative samples 

are used. Qualitative methods, on the other hand, are called for when addressing complex questions 

that cannot be answered with quantitative methods and can serve to provide a comprehensive and 

in-depth examination of phenomena. In my research, a mixed method approach allowed me to 

answer my research questions to more clearly examine and understand the phenomenon of research 

data citation based on sharing and reuse in STEM fields. Quantitative approaches are used to 
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capture the phenomenon of data citation effectively. Qualitative approaches, based on the manual 

assessment of data reuse, provided a rich context for identifying data citation. 

Table 3 summarizes the primary concepts that, according to prior studies, may be associated 

with research data citation in scholarly communication. Specifically, the following concepts that 

were associated with data citation were conceptualized based on data sharing, data type, self-

citation and discipline. Taking each of these concepts in turn, sharing makes research data citable 

and reusable (Helbig, Hausstein, & Toepfer, 2015) and increases the citation rate for articles 

(Dranchen, Ellegaard, Larsen, & Dorch, 2016; Gordon et al., 2016; Helbig, Hausstein, & Toepfer, 

2015; Piwowar & Vision, 2013; Piwowar, Day, & Fridsma, 2007). Regarding types of data, certain 

sources, such as surveys, aggregated data, and sequence data are more often cited than others 

(Peters, Kraker, Lex, Gumpenberger, & Gorraiz, 2015). Regarding disciplines, each has its own 

distinct data sharing practices owing to its unique citation behavior (Helbig, Hausstein, & Toepfer, 

2015; Torres-Salinas, Jiménez-Contreras, & Robinson-García, 2014); the actual rate of data 

sharing also varies within scientific communities (Tenopir et al., 2011). Lastly, regarding self-

citation, the same authors tend to use the same shared research data (Robinson-García, Jiménez-

Contreras, & Torres-Salinas, 2016), and self-citation and author self-citation are prevalent in 

research data citation (Park & Wolfram, 2017). 
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Table 3 Concepts that are associated with data citation 

concepts justification sources 

data 

sharing 

Researchers are more inclined to share their 

research data when they receive credit and the 

lack of a reward system discourages researchers’ 

data sharing. 

(Borgman, 2012; Costas, 

Meijer, Zahedi, & Wouters, 

2013) 

Sharing makes research data citable and 

reusable for secondary research. 

(Helbig, Hausstein, & 

Toepfer, 2015) 

Articles with shared research data have higher 

citation rates than those without, and therefore 

greater impact. 

(Dranchen, Ellegaard, Larsen, 

& Dorch, 2016; Gordon et al., 

2016; Helbig, Hausstein, & 

Toepfer, 2015; Piwowar & 

Vision, 2013; Piwowar, Day, 

& Fridsma, 2007) 

data type 

Qualitative data tend to be rarely shared for 

reuse 

(Faniel & Jacobsen, 2010; 

Wallis, Rolando, & Borgman, 

2013; Yoon, 2014) 

The experimental data are mostly reused by 

researchers. 

(He & Nahar, 2016; Zhao, 

Yan, & Li, 2018) 
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Certain types of data, such as surveys and 

aggregated and sequence data, are more often 

cited and receive higher altmetrics scores. 

(Belter, 2014; Peters, Kraker, 

Lex, Gumpenberger, & 

Gorraiz, 2015) 

self-

citation 

84 percent of scientific data citations are self-

citing in Dryad repository. 

(He & Nahar, 2016) 

Self-citation and author self-citation are 

prevalent in research data citation.  

(Park & Wolfram, 2017) 

The same authors tend to use the same shared 

data. 

(Robinson-García, Jiménez-

Contreras, & Torres-Salinas, 

2016) 

discipline 

Each discipline has its own distinct data sharing 

practices. 

(Helbig, Hausstein, & 

Toepfer, 2015; Torres-

Salinas, Jiménez-Contreras, 

& Robinson-García, 2014) 

Depending on the subject category in the DCI, 

data sharing practices are very diverse. 

(Park & Wolfram, 2017) 

Within scientific communities, the actual rate of 

data sharing varies from discipline to discipline 

(Tenopir et al., 2011) 

3.2. Data Collection 

This research used Clarivate Analytics’ Web of Science (WoS) as a data source rather than 

Elsevier’s Scopus because the recorded citations in the former cover a longer period than the latter 
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by an average of 30%, though the historical record varies somewhat across disciplines 

(Leydesdorff, de Moya-Anegón, & Guerrero-Bote, 2010). Scopus does include more journals in 

the social sciences and the humanities fields than WoS, but this advantage was not relevant to the 

present study given the focus on the STEM fields. 

Data were collected using multiple methods, beginning with the WoS, in order to obtain the 

citation history and full-text content of articles. Specifically, the DCI of the WoS served as a 

starting point for gathering records of cited research data providing a single access point to over 

350 data repositories worldwide that house over 7.4 million records and 6.5 million citations 

(Clarivate Analytics, 2018). The DCI links datasets and published research articles and tracks the 

citation of data while also encouraging its bibliographic citation. 

This study used the DCI as evidence of data sharing because it tracks published quality 

research data (i.e., recording of citation history) across multiple disciplines around the world, 

thereby allowing easy access to influential data repositories, data sets, data studies, and software. 

Thanks to these features, I was able to search the DCI directly in order to obtain published quality 

research data regarding the citation history of data repositories, datasets, data studies, and software 

worldwide, again from a single access point. In this way it was possible to view and access journal 

literature, conference proceedings, and books as well as datasets, data studies, and software. A 

dataset citation includes such components as author, title, year of publication, publisher, edition or 

version, citation history, and access information (e.g., a URL or other persistent identifier such as 

a DOI). Within the DCI, I selected higher-level categories (i.e., WoS research areas) rather than 

lower-level ones (i.e., WoS subject categories) because the DCI’s approximately 150 research 

areas contain more datasets than its 250 or so subject categories. 
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With regard to data reuse, I obtained the full text of publications (e.g., articles and conference 

proceedings) online, either directly or through major databases accessible from the University of 

Wisconsin Milwaukee Libraries website (http://uwm.edu/libraries). When any portions of these 

publications were unavailable electronically, I obtained print versions from a library, either 

directly or through inter-library loan. I excluded any documents for which the full text could not 

be obtained by any of these means. The citation history for each citing article was collected through 

WoS. All types of documents, including journal articles, conference proceedings, and books, were 

considered. I used the WoS journal classifications in preference to other classification schemes 

because “The ISI journal classification system, while it does have its critics, is based on expert 

judgment and is widely used” (Boyak, Klavans, & Börner, 2005, p. 360). Further descriptions of 

the documents can be found in the description of the sampling strategy below.  

Table 4 summarizes the data collection methods employed in this research at the data, article, 

discipline and interdisciplinary levels. At the data-level, the information collected was used to 

study the sharing of published quality research data in the DCI database. Article-level data were 

reused for the analysis of citing articles. Discipline-level data were used to study both data sharing 

and reuse. Lastly, interdisciplinary-level data were used to study citation interactions across STEM 

fields. A detailed description of the research areas at the discipline-level can be found in Table 5. 

Table 4 Summary of data collection methods 

data collection description collection method 

data-level published data in the DCI (i.e., data sharing) DCI 

http://uwm.edu/libraries
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article-level 

published citing articles in the WoS All 

collections (i.e., data reuse) 

DCI, WoS All collections 

discipline-level the prevalence of data sharing and reuse 

Research Areas both in 

the DCI and the WoS All 

collections (Table 5) 

interdisciplinary-

level 

the citation interactions of STEM fields in 

the WoS All collections 

DCI, WoS All collections 

 

3.3. Sampling Strategy 

The research population ranged from citing articles in the WoS to highly cited datasets in the 

DCI, the focus was on STEM fields where research data are shared and reused.  In this study, all 

of the records were collected from eight different disciplines representing STEM fields; these 

disciplines thus define the scope within which the findings regarding scholarly communication are 

reported. 

In order to identify the disciplines to be studied within the STEM fields, I compared the major 

NSF discipline codes (National Science Foundation, 2010), the Research Areas of the WoS All 

Collections (Clarivate Analytics, 2012), and the research areas of the DCI (Clarivate Analytics, 

2016), as can be seen in Table 5. Based on the comparisons (also in Table 5), this study used those 

WoS research areas for sampling. The eight disciplines were astronomy/physics, biological 

sciences, chemistry, computing, earth sciences, engineering, mathematical sciences, and 

technology. Technology was included despite the fact that the NSF major discipline code does not 

include it as a discipline because STEM by definition includes it. Further, astronomy and physics 
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were merged although the NSF major discipline code separates them because they are combined 

in the same college/department in many universities. Regarding WoS Research Areas, 

interdisciplinary areas were not included because their breadth made it difficult to assign them to 

any one of the identified disciplines. Further, some research areas were not included owing to the 

selected cut-off point. At a given cut-off point, the total number of records in the DCI for each 

research area decreased from 4,000 records to 2,000 records (i.e., there were only 2,000 total 

records or fewer in the DCI for each of these research areas). 

Table 5 Comparisons between the NSF major discipline and research areas of the WoS (both 

WoS All Collections and the DCI) 

NSF  

- major discipline 

WoS All Collections DCI 

astronomy 

Astronomy & Astrophysics, Physics, Spectroscopy 

physics 

biological sciences 

Genetics and Heredity, Biochemistry & Molecular Biology, 

Biotechnology & Applied Microbiology, Cell Biology, 

Developmental Biology, Evolutionary Biology, Marine & 

Freshwater Biology, Mathematical & Computational Biology, 

Microbiology, Plant Sciences, Reproductive Biology, 

Environmental Sciences & Ecology, Biodiversity & 

Conservation, Research & Experimental Medicine 

chemistry Chemistry, Crystallography 
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computing Computer Science 

earth sciences 

Geology, Oceanography, Geochemistry & Geophysics, 

Meteorology & Atmospheric Sciences, Water Resources 

engineering Engineering 

mathematical sciences Mathematics  

- Technology 

 

I used the DCI database to identify the authors (individuals) who have been most active in 

publishing their data in the DCI. To be more specific, the 30 most productive authors of published 

documents (datasets, data studies, repositories and software) in each research area were selected. 

The same process was conducted across diverse research areas. There is no general agreement 

regarding the appropriate sample size, that is, the appropriate number of groups and of members 

within each group suitable for multilevel analysis (Raudenbush & Bryk, 2002). 

In order to identify citers, I used citing articles to highly cited datasets in the DCI. Influential 

authors were identified as the first authors of the most highly cited published documents (e.g., 

datasets, data study, software and repository) in the DCI. The first author was assumed to be the 

one who made the most significant contribution and the last author was the senior researcher with 

the most prestigious reputation (Wren et al., 2007). Wren noted that the last author may be the 

senior researcher with the most prestigious reputation, but this is not always the case, so the first 

author was selected. For cases in which there was more than one highly cited dataset by the same 

first author, then the next dataset on the list was selected. 
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The identification of citers was important because citer-based measures can provide 

complementary means to citation-based measures to assess higher levels, such as the institution or 

research group (Ajiferuke, Lu, & Wolfram, 2010). The disciplines of this study (i.e., STEM) were 

ones in which researchers in the same institutional and research groups can exert an influence 

through hyperauthorship that extends across multiple disciplines (i.e., is interdisciplinarity) rather 

than being discipline-specific for big science. As Ajiferuke, Lu and Wolfram have found, there are 

significant differences between citer- and citation-based results, and “citation measures may not 

adequately address the influence, or reach, of an author because citations usually do not address 

the origin of the citation beyond self-citation” (Ajiferuke, Lu, & Wolfram, 2010, p. 2086). These 

differences were given careful consideration in answering RQ3. 

 

3.4. Data Analysis 

An exploratory approach was appropriate for this research to understand and answer the 

research questions of this study because the phenomenon of research data sharing and reuse on 

data citation was a relatively new area and is in its infancy. Due to the relative reflection of data 

sharing and reuse on data citation, which itself was not as well documented as formal bibliographic 

citations, semi-automatic examination of content analysis was appropriate for this exploratory 

research. As Thelwall (2014, p. 65) noted, “Content analysis involves manually assorting a sample 

of comments into researcher-defined categories. It is most suitable for exploratory investigations 

into new phenomena or context”. 

Employing the methods used by Park, You and Wolfram (2018), a semi-automated method 

using text searching was applied in order to identify candidate examples of data reuse in 

publications. Automatic detection of terms/phrases associated with data reuse (Table 10 ) was used 
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by manual verification. Strictly manual methods to identify candidate occurrences of data reuse 

would be labor intensive for the corpus of publications to be analyzed. Once candidate instances 

of data reuse had been identified automatically, I manually examined each identified article for 

evidence of formal (i.e., cited) and informal (i.e., mentioned in passing or implied) data reuse and 

sharing, whether in the references, main text, acknowledgements, supplementary information, or 

author information section.  

As shown in Table 11, in order to verify the reliability of my data analysis during the content 

analysis, I used another PhD degree holder in social sciences to assess inter-coder agreement. Since 

it was impractical and far more time-consuming to repeat the full coding of the citing articles that 

I judged, (i.e., over 15,000 instances of data sharing and reuse from published articles), 10% of the 

citing articles were assessed by the second coder. When conducting content analysis, the validity 

of the human judgments was an important issue to make the identification of data sharing and 

reuse. In order to ensure the validity of the human judgments, an expert who possesses an 

understanding of the scientific articles in an academic context (i.e., PhD degree holder) was used. 

This step helped me establish a level of consistency throughout the research. 

 

3.4.1. Data sharing (RQ1: How prevalent is data sharing in different disciplines as measured by 

formal data citation in STEM fields?)  

In answering RQ1, regarding the prevalence of data sharing in various STEM disciplines as 

measured by formal data citation, descriptive data analysis served as a means to examine data 

sharing practices across multiple disciplines, each of which has its own data sharing practices 

(Helbig, Hausstein, & Toepfer, 2015; Torres-Salinas, Jiménez-Contreras, & Robinson-García, 

2014) and is therefore deserving of separate study. The total numbers for the shared research data 
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in a range of research areas in the DCI were displayed in a graphic format. I used the “advanced 

search” feature of the WoS and then such Booleans as “AND” and “OR” to limit each STEM 

discipline to several research areas. I then recorded the number of times each piece of research 

data was shared in the DCI. The same procedures were conducted for all of the selected STEM 

disciplines. 

 

3.4.2. Data types (RQ2: What types of STEM research data are formally cited most often?)  

In order to answer RQ2, I applied descriptive analysis to examine what types of STEM 

research data were more often cited. To be specific, I downloaded 100,000 records from the DCI. 

As mentioned above, 100,000 records were the maximum number that the DCI allows users to 

download per discipline, which was the same feature as WoS. The cut-off year was 2003 since 

2003 was the earliest year when data sharing was required by a federal funding agency in the 

United States (e.g., NIH since 2003, NSF since 2011) or launched (in 2013 in the United States, 

2015 in the United Kingdom, and 2016 in the European Commission). The same procedures were 

conducted for all STEM disciplines and then saved in a tabular form. Only records with more than 

one citation count were sorted to identify data types that was most highly cited. I then used 

Microsoft Excel by using the Pivot Table feature. In each discipline, the top 10 most highly cited 

data types were identified.  
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3.4.3. Author self-citation and recitation (RQ3: How do author self-citation/recitation practices 

differ across STEM disciplines?)  

To answer RQ3, I applied citer-based analysis as discussed previously. Citer-based analysis 

was appropriate for examining the various manifestations of self-citation, including author self-

citation and recitation. This aspect of the study was important because, while most research data 

citations continue to be of the self-cited variety (Park & Wolfram, 2017; Robinson-García, 

Jiménez-Contreras, & Torres-Salinas, 2016), bibliographic reference analysis usually did not 

address the phenomenon (i.e., the origin of a citation of co-authors’ work or recitation in the data 

citation environment). Moreover, generally speaking, the influence of a work is directly 

proportional to the number of people who have cited it. 

The definition of self-citation has been extended “to include citations originating from 

publications authored by one of the coauthors of the cited publication of interest, or coauthor self-

citations” (Ajiferuke, Lu, & Wolfram, 2010, p. 3). Nevertheless, citations usually do not address 

their origin beyond self-citation. Also, the DCI did not report the number of self-citations. As the 

scholars just cited  noted, citer-based analysis, which is a form of author research impact analysis, 

provided the number of unique authors (i.e., individuals) who have cited a given author.  

In order to address the issues of self-citation, author self-citation and recitation, this study 

applied citer-based analysis similar to the method used by Lu, Ajiferuke and Wolfram (2014). This 

approach measures the impact of an author’s research, whereas traditional (e.g., bibliographic) 

citation-based analysis may not measure author self-citation and recitation in data citation 

environments. Citer analysis involved measuring author impact based on the number of citers, as 

opposed to the number of citations (Ajiferuke, Lu, & Wolfram, 2010). Park and Wolfram (2017) 

found, using citer-based analysis, that self-citation, including author self-citation, was prevalent in 



77 

data citation in genetics and heredity. The unique publications that cited a publication of interest 

were represented by the number of citations for each publication. Functions for both the DCI and 

All Collections of the regular WoS databases were used for data analysis, which followed methods 

used by Ajiferuke, Lu and Wolfram. All publications by each author were identified using an 

author search of the WoS. The data for each author’s publications were then tabulated and stored.  

In order to omit self-citations, the “create citation report” feature provided by both the DCI 

and All Collections of the regular WoS was analyzed by collecting the bibliographic references 

for the citing articles for each publication. I used the “analyze results” feature provided by the two 

databases of the regular WoS in order to identify the citers for each publication. All of the retrieved 

results (i.e., all of the citing articles) of the sampled authors who had been identified in the DCI as 

the most-cited in each research area were saved in tabular form, and the average citations “with 

self-citation” and “without self-citation” were analyzed comparatively.  

To examine the associations between and across shared research data and the author self-

citation or recitation in the 8 STEM fields, a Kruskal-Wallis test was conducted. A one-way 

ANOVA test was not suitable for comparing the groups because of the violation of the ANOVA 

assumptions related to unequal standard deviations. 

 

3.4.4. Data reuse (RQ4: How do data reuse practices differ across STEM disciplines?) 

In answering RQ4, in order to identify articles (i.e., citing articles at the article level) in the 

WoS database, systematic random sampling was conducted. Systematic random sampling is a 

random sampling technique where the first item in a list is randomly selected from the first n items 

on the list and every nth observation thereafter is selected in the dataset. In this study, systematic 
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random sampling was preferred to simple random sampling because systematic random sampling 

“ensures a high degree of representativeness” (Gravetter & Forzano, 2012, p. 147). Although 

simple random sampling removes bias from the selection procedure, “in the short run, however, 

there are no guarantees” (Gravetter & Forzano, 2012, p. 146). As Gravetter and Forzano stated, if 

I select 11th observation, the bias is against choosing observation 12th, 13th, and 14th, which is 

skewed and distorted sample regarding simple random sampling. The advantage was simplicity of 

implementation; the drawback was failure to account for possible clumping characteristics within 

a population. In informetrics, it is necessary to consider whether sampling is performed at the item 

level or at the informetrics source level, since the former may “not provide a complete portion of 

any single source if straight count sampling is used, whereas sampling at the source level reduces 

the number of sources included in the study set” (Wolfram, 2003, p. 73). 

In order to track citations, I sorted all records by date in the All Collections of the WoS. This 

study applied 2003 as a cut-off point for the reason cited in Section 3.4.2 above. All of the retrieved 

results (i.e., all of the citing articles) of the 30 authors in each research area were saved in tabular 

form and subjected to systematic random sampling of every 10th citing article (e.g., from the 1st, 

11th, 21st, 31st, and so on up to the 91st) of the 30 authors. These citing articles were collected 

from the “All Collections of the WoS”. When the citing articles could not be obtained, the next 

citing article record from the list was selected (e.g., 1st, 11th, and 22nd for a situation in which the 

21st article in the series could not be obtained from the WoS). Using both the DCI and “All 

Collections of the WoS,” the citing articles for each publication (constituting the data) were 

collected by means of the “create citation report” feature provided by the WoS. Next, the “analyze 

results” function for these citing articles was used to identify the citers for each publication. 

Disambiguation of the authors’ names was based on the output for the citer data produced by the 
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WoS (Lu, Ajiferuke, & Wolfram, 2014) because only slight differences, of a few percent or less, 

were found (Smalheiser & Torvik, 2009).  

In order to identify and collect instances of data reuse that were embedded within publications 

that were not formally included as citations, this study applied text searching based on the 

appearance of the selected words and phrases. This method was precise, allowing identification of 

only those information resources that was relevant to my information needs by removing resources 

that may not include data reuse, such as documents (i.e., articles) without indicating terms/phrases. 

The potential for larger samples being captured using text searching techniques, as opposed to 

strictly manual searching, ensured that the data citation research would be representative and 

diverse. 

The publications collected from the University of Wisconsin Milwaukee libraries 

(http://www.uwm.edu/libaries) included substrings of terms/phrases indicating the possibility of 

data reuse, such as “acquaintances,” “donated from/by,” and “repositories.” Thus, for instance, the 

indicating term/phrase “repositories” along with its substrings (e.g., “repository,” “repository 

numbers”) were searched and collected automatically. Table 6 lists the terms/phrases used for the 

search strings. I analyzed another research area, physics, in order to confirm whether currently 

identified terms/phrases can be applied in other research areas. Terms/phrases indicating data reuse 

and sharing in the field of genetics and heredity (Park & Wolfram, 2017) were listed in Table 6.  

Except for “NIH” (National Institutes of Health), terms can be regarded as generally applicable to 

other research areas. Another seven disciplines (Table 5) were analyzed to identify indicating 

terms/phrases that could be applied other disciplines. Five sample documents published in these 

seven disciplines were analyzed in order to identify terms/phrases indicating data reuse in these 

fields (Section 4.1). 

http://www.uwm.edu/libaries
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Table 6 Terms/phrases indicating data reuse and sharing in the field of genetics and heredity 

(Park, & Wolfram, 2017) 

indicating terms/phrases of data reuse indicating terms/phrases of data sharing 

“commercial,” “Corp.,” “database,” “donated 

from/by,” “gift,” “.gov,” “Inc.,” “indebted,” 

“lab/laboratories,” “Ltd.,” “obtained from,” 

“purchased from,” “repository,” “repository 

numbers,” “samples,” “sample sets,” “survey”  

 “accession #,” “deposited,” “National 

Institutes of Health,” “NIH,” “project website,” 

“publicly available,” “repository,” “stored,” 

“suppl,” “supplemental,” “supplemental 

material” 

 

Table 7 displays the summary of articles associated with research data in each discipline and 

their total instances of citation, thereby capturing the phenomenon of data citation based on the 

modified terms/phrases that indicate data sharing and reuse. This step was conducted based on the 

findings from a pilot study (Section 4.1). In STEM, the total instances extracted by using indicating 

terms for data sharing and reuse included 15,263 unique instances from 705 articles. Total numbers 

of citing articles and total instances varied depending on disciplines. This step was conducted to 

examine the phenomenon of research data and their associated scientific publications. The instance 

disparities in each discipline in terms of data sharing and reuse may affect the analysis. When 

looking at the number of associated articles versus their associated research data sharing and reuse, 

the large number of instances skews the results. For instance, the skewed instances in biological 

sciences (44.35% of all STEM) affect the result. This could mean that more researchers in 

biological sciences were sharing and reusing for crediting data sharers, or it could mean that the 

policies of publishers and funding agencies for data sharing were stricter in biological sciences. 
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Data sharing is seldom inspired by the data sharing mandates of funders (Couture, Blake, 

McDonald, & Ward, 2018). The NIH’s relatively early data sharing mandates which date back to 

2003 (compared to 2011 for NSF), more instances in biological sciences can be explained. Yet this 

may not be true, journals in biological sciences mandate more to submit research data to 

repositories than other disciplines can be another reason. Disciplinary differences for journal 

policies, repositories and normative pressure had significant positive effect on data sharing in 

scientific disciplines (Kim & Stanton, 2015). Strong journal policies for data sharing are associated 

with increased data sharing for all first and last authors for high-impact journals in biomedical 

microarray studies (Piwowar & Chapman, 2010). The genomics community mandates depositing 

dataset in repositories (Costa, Qin, & Bratt, 2016). Adopting different pace of data sharing and 

reuse practices can be another reason. The early expansion of these practices observed in the 

genomics and astronomy communities (Borgman, 2012) is paralleled, in the biological sciences as 

well as in astronomy/physics. 

Table 7 Total associated articles and their total instances 

discipline total numbers of associated articles total instances 

astronomy/physics 78 1,935 

biological sciences 235 6,768 

chemistry 119 1,083 

computing 14 499 

earth sciences 121 1,796 
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engineering 56 885 

mathematical sciences 38 1,153 

technology 44 1,142 

grand total 705 15,261 

 

3.4.5. Interdisciplinarity (RQ5: To what extent do STEM disciplines support interdisciplinary 

data citation?) 

Answering RQ5, regarding the extent to which the various STEM disciplines support 

interdisciplinary data citation, served as a general glimpse of the interdisciplinary impact of 

citations. Answering it involved analyzing interdisciplinary interactions among diverse disciplines 

in the time since the advent of open science. Citation has been used to monitor the evolution of 

interdisciplinarity because citation networks at the level of published articles across disciplines 

reflect the flow of knowledge. Interdisciplinary knowledge is transferred through cross citations 

as well as papers that appear frequently in diverse disciplines.  

In this study, I used the term ‘interdisciplinary’ rather than multidisciplinary or 

transdisciplinary. The reason is that the term interdisciplinary is widely and ambiguously used for 

research across various areas such as scholarly communications, industrial sectors and 

technological fields although the terms inter-, multi- and trans-disciplinary is between, beyond or 

across disciplines (Rafols & Meyer, 2010). The terms, multidisciplinary, interdisciplinary and 

transdisciplinary, have been initially introduced by Thomlinson (1983). ‘Multidisciplinary’ which 

indicates works with several disciplines (Whitfield & Reid, 2004), is a process that provides a 

juxtaposition of disciplines as additive not integrative (Klein, 1990). ‘Interdisciplinary’ works 
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between several disciplines (Whitfield & Reid, 2004) and builds a new level of discourse and 

integrates knowledge (Klein, 1990). ‘Transdisciplinary’ works beyond (Nicolescu, 1998) and 

across (Whitfield & Reid, 2004) several disciplines and examines the dynamics of whole systems 

and is a holistic scheme of subordinate disciplines (Klein, 1990). Aboelela, et al. (2007) further 

compared multidisciplinary, transdisciplinary and interdisciplinary. A multidisciplinary team 

includes researchers from two or more disciplines and work on the same questions without much 

interaction although separate publications by researchers from each discipline may be produced. 

Transdisciplinary includes two or more distinct academic fields with shared publications to solve 

complex problems, probably using some new languages developed to translate across traditional 

lines. Interdisciplinary includes two or more distinct academic fields, with shared publications by 

using language intelligible to all involved fields. 

In order to measure the interdisciplinarity of data citation received for each discipline, the 

citation of a paper in each field (i.e., citing articles with at least one citation) had been used. This 

study applied journal citations for the following reasons. Citation analysis was widely used for 

measuring the interdisciplinarity of research output since citation data can reveal to us past, present 

and future activities in science (Garfield, Malin, & Small, 1978). Citation analysis allowed how 

one research field borrowed the knowledge from another field. Journal analysis reveals the 

integration of different research fields because those fields share publication outlets (i.e., journals). 

The hypothesis was that being cited with multiple fields can be an evidence of the interdisciplinary 

nature of publications than those being cited with single field.  

Clarivate Analytics (2018) assigns the 11,700 journals that it indexes to one or more Subject 

Areas, Research Areas, and Essential Science Indicators (ESIs). These assignments can be applied 

to the journals in which the citing articles appear, thereby providing an indication of the 
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interdisciplinary impact of citable datasets. The 2018 ESI categorizations of citing articles for the 

journals were used instead of the Subject Areas and Research Areas because Clarivate Analytics 

assigns each journal in the ESI database to one, and only one, of 22 ESI research fields, thereby 

avoiding ambiguity. The smaller number of categories also allowed for a more manageable subject 

categorization of citing articles. The ESI data for the citing articles and their associated journals 

were entered into a relational database management system, Microsoft Access, for matching 

purposes. The relatively recent time-frame of the study—again, beginning in 2003—for 

publications indexed by scholarly databases (i.e., the WoS) can itself mitigate challenges 

associated with studying a scholarly database because significant time may pass from the 

publication of an article to the appearance of the data referenced therein in a scholarly database 

(Bollen et al., 2009). Another concern was the continuous updating of subject classifications of 

journals as a means to “overcome the birth of new journals and to identify the emergence of new 

disciplines” (Gómez, Bordons, Fernández, & Méndez, 1996, p. 227), for disciplines and journals 

alike have been subject to rapid change. Use of the 2018 ESI categorization, the most recent 

version available, however, can mitigate this concern as well. 

The assumption was that the ESI research disciplines were well organized and did not 

introduce any significant changes into the overall analysis. I assumed that research data citation or 

bibliographic citation indicates scholarly influence or knowledge transfer in scholarly 

communication. Under these circumstances, richer information regarding authors’ publishing 

articles in the journals of other fields can be obtained for interdisciplinary disciplines by examining 

(1) individual field of a journal and (2) field of journals that frequently cite it. Thus, for instance, 

a journal in the subject category of physics contributes to astronomy/physics and is likely to be 
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cited by journals classified the subject assignments physics and astronomy. In other words, 

publications in a given field can be considered indicators of the diffusion of particular discipline. 

Three aspects of diversity in interdisciplinarity have been identified, namely variety, balance, 

and disparity (Leinster & Cobbold, 2012; Stirling, 2007; Zhang, Rousseau & Glänzel, 2016). 

Variety refers to the number of disciplines to which references made in a paper can be assigned, 

balance to the evenness of the distribution of the discipline classification, and disparity is measured 

as the distance between the disciplines to which the references are assigned.  

In order to measure interdisciplinary data citation using a single formula, I applied 

Leydesdorff’s (2018) interdisciplinarity calculation along with the Gini-index and the number of 

ESI categories represented in the citing articles for each discipline. This combination made it 

possible to measure diversity while distinguishing variety, balance, and disparity. The Gini-index 

alone was insufficient because, while it indicates balance (Nijssen, Rousseau, & van Hecke, 1998), 

it does not indicate variety (Leydesdorff, 2018). 

The following formula measures the three aspects of diversity such as variety, balance and 

disparity (Leydesdorff , 2018). The raw matrix was used to create a relative frequency asymmetric 

matrix for each STEM discipline and ESI field. 

𝐷𝑖𝑣𝑐 = 
𝑛𝑐

𝑁
 ∗ 𝐺𝑖𝑛𝑖𝑐 ∗ [

∑ 𝑑𝑖𝑗
𝑖=𝑛𝑐,𝑗=𝑛𝑐
𝑖=1,𝑗 =1,𝑖≠𝑢

{(𝑛𝑐 (𝑛𝑐−1))}
] 

The three parts are used to calculate Leydesdorff’s formula.  

In the first of the three parts, the number of represented fields was divided by the number of 

2018 ESI fields, which was 22. In the second, the Gini-index was calculated using the simplified 

formula to measure the inequality of the distribution as an indicator of balance. The relative 



86 

frequency was 
𝑛𝑐

𝑁
 . The variables i and j represented each observation in the cells along the vector. 

These i and j permutations of the cells excluded the main diagonal. To compute the Gini coefficient, 

I used Leydesdorff’s (2018) simplified calculation where n was the number of elements observed, 

i was the rank of values in ascending order and 𝑥𝑖 was the number of citations of element i in the 

ranking. Each of the three components of the formula varied between 0 and 1. For example, a Gini-

index of 0 indicates the citations are equally distributed over the papers and a Gini-index of 1 

indicates a single paper receives all citations. 

To be specific, for each observation in a given field, ascending order was applied, thus, for 

instance, the areas that contribute 0 went first and contributed nothing. All of these numbers were 

then summed up for the numerator total. The denominator was always 22 (i.e., the number of 2018 

ESI fields) because the total probabilities always total 1 multiplied by n, which is 22.  

𝐺𝑖𝑛𝑖 =  
∑ (2𝑖−𝑛=1)𝑛

𝑖=1 𝑥𝑖

𝑛 ∑ 𝑥𝑖
𝑛
𝑖=1

   

In the third part, a normalization factor, was applied. In order to warrant the disparity as 

weightings between 0 and 1, 1 minus the cosine similarity between data elements was used for 

normalization.  

Similarity = cos(Ɵ) = 
A⋅B

‖𝐴‖‖B‖
 = 

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

 

A cosine calculator (https://calculator.vhex.net/calculator/distance/cosine-distance) was 

employed to compare vectors. Each vector consisted of the relative frequencies of the 22 ESI 

categories in the citing articles for each discipline. A pairwise comparison of the relative 

frequencies across the non-zero ESI categories resulted in the creation of an 𝑛𝑐  x  𝑛𝑐 matrix. The 

𝑛𝑐   was the non-zero ESI categories. The resulting value (i.e., 1 minus the cosine value) was placed 

https://calculator.vhex.net/calculator/distance/cosine-distance
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in the corresponding cell for each pair. As a symmetric matrix, each pair was compared once and 

the corresponding value was entered in the mirror cell. The resulting matrix (i.e., 𝑛𝑐   x  𝑛𝑐) was 

used for the normalization factor calculation. To be specific, the values for each cell calculation 

were summed up by taking the distance value in the cell and dividing it by 𝑛𝑐   x (𝑛𝑐  − 1). Thus, 

for instance, the denominator for the astronomy/physics discipline was 42 (i.e., 7 x 6) since the 

value 7 was 𝑛𝑐 and 6 was (𝑛𝑐 -1). 

Finally, the resulting diversity value for each of the fields was multiplied.  

 

3.5. Summary of the Research Design 

3.5.1. Data Analysis Strategies 

Table 8 summarizes the research questions, data collections and the data analysis strategies 

used. Again, the purpose of this study is to improve the associations among the data, article, 

discipline and interdisciplinarity-levels of research data citation. Multiple data analysis techniques 

were employed in order to answer the research questions.  

Table 8 Research questions and data analysis 

category & 

research question 

data collection data analysis 

data sharing 

RQ1 

Published data in the DCI  descriptive analysis 
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data type 

RQ2 

Published data in the DCI  descriptive analysis 

self-citation 

RQ3 

Published citing articles in the WoS All 

Collections 

citer-based analysis, 

Kruskal-Wallis 

data reuse 

RQ4 

Published articles in the WoS All Collections content analysis 

interdisciplinarity 

RQ5 

Published articles in the WoS All Collections 

Gini-index, 

Leydesdoff’s 

interdisciplinarity 

calculation 

 

3.5.2. Validity 

There is rich body of literature discussing the validity of using citations to measure research 

impact, and “The standard test of the validity of evaluative citation counting is comparison with 

peer evaluation, including the evaluations made in awarding of prizes and grants” (Lercher, 2013, 

p. 455). Correlations between citation counts and other measurements of influence, such as peer 

reviews and rewards, have thus been actively studied. Clark (1954), for example, found that 

citation counts correlate strongly with the assessments of the most influential researchers in the 

field of psychology. 

Validity may be compromised when the peer-review process for evaluating both quality 

research datasets (e.g., those in the DCI database) and articles (e.g., those in the regular WoS 
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database) is limited to subsets of the entire research output. The validity of a measurement 

procedure refers to “whether the procedure actually measures the variable that it claims to measure 

and threats to validity include “any component of a research study that introduces questions or 

raises doubts about the quality of the research process or the accuracy of the research results” 

(Gravetter & Forzano, 2012, p. 167). The validity of the various journal similarity measures and 

the corresponding maps is generally approached using the WoS journal classifications for the 

validation of science maps because “The ISI journal classification system, while it does have its 

critics, is based on expert judgment and is widely used” (Boyak, Klavans, & Börner, 2005, p. 360).  

 

External Validity 

External validity is related to generalizability; it refers to “the extent to which we can 

generalize the results of a research study to people, settings, times, measures, and characteristics 

other than those used in that study” (Gravetter & Forzano, 2012, p. 168). In this study, the research 

data and articles were collected from the STEM research areas, including science, technology, and 

engineering and mathematics, which represent different disciplines. Therefore, the outcome of this 

research can reveal these disciplines in scholarly communication. Also, the datasets used in 

informetrics, the datasets used are assumed to represent either a random sample of the overall 

population under study or the population itself (Wolfram, 2003).  

 

Internal Validity 

Any factors that allow for alternative explanations for the results as a study proceeds represent 

a threat to its internal validity, which relates to factors that raise questions or doubts regarding the 
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interpretation of the results (Gravetter & Forzano, 2012, p. 170) and is thus a quantity related to 

the logic and coherency of cause-and-effect explanations. As a measure of internal consistency, 

this research used Cohen’s (1960) kappa coefficient to ensure inter-rater agreement for qualitative 

items because k considers the possibility of the agreement occurred by chance. 

 

3.6. Strengths and Limitations 

Strengths 

In regard to the strengths of the proposed approaches, to begin with, citer-based analysis may 

overcome the limitations of more traditional co-citation approaches, including the subjectivity of 

citers that is inherent in citation-based data (Lu & Wolfram, 2012). A second strength is that 

prolific authors and co-authors, as well as the coupling frequency, can be identified. Third, the 

mapping of scholarly communication allowed for the visual interpretation of complex 

interconnections based on citations and links. The application of informetrics may help in the 

development of scientific indicators and in evaluating the impact of the scholarly communication 

process and interdisciplinary relationships. Fourth, informetrics and NLP attributes facilitated the 

examination of a very large set of research and attributes in the context of data reuse. Finally, the 

trust and reliability of research data quality was an important consideration for data reusers. 

Considering this study analyzed quality research data from the DCI, the outcomes of this study 

may confirm other findings meaningful for data reusers.   
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Limitations  

Works in which data were associated with journals and indeed, over 90 percent of works with 

associated data were journal articles (Park & Wolfram, 2017) may hinder inquiries into phenomena 

in rapidly advancing areas, such as in the hard sciences or computer engineering. In such areas, in 

contrast with the situation in the humanities or social sciences, conference proceedings are 

considered of greater importance than journal articles or books. This was in large part because the 

review process for articles or books may take more than a year, depending on the journal or 

publisher, which in turn may be due to the policies of high-profile journals that include strict data 

sharing requirements, while conference proceedings do not currently have strict data sharing 

policies, though the same is true of books. As Callaghan and colleges (2012) noted, further research 

should be conducted regarding the scientific validity of the datasets because those datasets cannot 

be claimed as equivalent as an already established peer-review process for traditional academic 

publishing (i.e., the scientific quality of the datasets), because creating a mechanism for the full 

peer review of the scientific publication of datasets are still in the early stages.    

This study focused on data citation characteristics found in papers that cite prolific authors in 

the identified fields. Citations to less influential authors, whose work presumably receives fewer 

citations, were not investigated. 

This study also may have underestimated the total amount of data sharing in all forms because 

it did not include laboratory or personal websites or direct sharing, such as between personal 

acquaintances (i.e., peer-to-peer data sharing) or within a collaboration network. Furthermore, the 

reliance on indicator terms to identify potential examples of informal and formal data citation may 

not reveal all occurrences of data citation.  
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3.7. Summary 

The data collection methods and research design outlined in this chapter formed the basis for 

a wide-ranging investigation of data sharing, reuse and citation phenomena in STEM disciplines, 

as documented by the DCI.  
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Chapter 4 RESULTS 

This chapter outlines the findings of the study. Informetric methods and text searching 

provided useful analytical tools for exploring data citation. This mixed method study was 

approached by combining quantitative approaches used in informetrics and qualitative semi-

automatic content assessment. One contribution of this dissertation, thus, was to establish a 

methodological framework. Specifically, a refined research model was developed with reference 

to key previous works on data citation, data sharing, and data reuse, in particular those that identify 

groups of factors. The data analysis methods to be used were primarily quantitative; however, there 

is a qualitative component in the evaluation of data reuse.  

 

4.1. Pilot Study 

I conducted a pilot study of eight STEM in 8 disciplines (Table 5) because the terms currently 

identified were drawn from previous studies that focused on the biomedical fields (Park & 

Wolfram, 2017). This step was conducted in order to identify any missing or new terms not 

included in previous research and to generalize various terms and phrases. For each of the eight 

disciplines, 5 articles were examined, totaling for a total of 40 published articles. in STEM (8 

disciplines × 5 articles each).  
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Table 9 Identifying new indicating terms of data sharing and reuse in STEM fields. 

disciplines examples 

previously 

identified 

terms 

newly 

identified 

terms 

astronomy & 

physics 

• This research has benefited from the SpeX 

Prism Spectral Libraries, maintained by 

Adam Burgasser at 

http://www.browndwarfs.org/spexprism. 

benefited, 

http:// 

benefited, 

http://, .org 

biological 

sciences 

• Data availability. The data sets generated 

during the current study are available at the 

database of Genotypes and Phenotypes 

(dbGaP) under accession phs001273.v1.p1. 

accession, 

available, 

data 

availability, 

database, 

data sets 

availability, 

data, data 

sets 

chemistry 

• Supporting Information Available: Optimized 

coordinates and theoretical IR spectra. This 

material is available free of 

• charge via the Internet at http://pubs.acs.org. 

available, 

http:// 

.org 

computing 

•  PI-PLC was purchased from Sigma 

• Chromosome coordinates for most of the 

human genome elements analyzed here were 

obtained from the UCSC Table Browser 

browser, 

http://, 

obtained 

from, 

browser, .ed

u 
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(http://genome.ucsc.edu/cgi-

bin/hgTables?hgsid=357122457). 

purchased, 

purchased 

from 

earth 

sciences 

• At the NEEM site both 10Be and NO3 − data 

are available, although derived from two 

separate neighboring cores with relative age 

uncertainties of the order of a few years. 

• Sea-ice concentration data are the NASA 

Bootstrap SMMR-SSM/I combined dataset 

from the US National Snow and Ice Data 

Centre {http://nsidc.org; Comiso, 1999}. 

• Long-term atmospheric CO2 concentrations 

were provided by the National Oceanic and 

Atmospheric Administration’s (NOAA) Earth 

System Research Laboratory 

(http://www.esrl.noaa.gov) 

data, 

available, 

data center, 

http://, 

NOAA, 

provided by 

data, data 

center, .gov, 

NOAA, .org, 

provided by 

Engineering 

• Five adult Eigenmannia virescens (length 12–

15 cm) were obtained from a commercial 

vendor and housed according to published 

guidelines [28]. 

commercial

, obtained 

from  

- 

mathematica

l sciences 

• The counties are taken from an ESRI Shape le 

downloaded from the US Census. 

downloade

d 

- 
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technology 

• Data Availability Statement: All relevant 

data are available on Open Science 

Framework: https://osf.io/cs9c2/. The data 

from the experiment and modeling is part of 

an R-package, which can be accessed here: 

https://cran.r-

project.org/package=AcousticNDLCodeR. 

The corpus GECO 1.0 used in this study is 

available from the IMS UniversitaÈt 

Stuttgart: http://www.ims.uni-

stuttgart.de/forschung/ressourcen/korpora/IM

S-GECO.en.html 

access, 

available, 

data, data 

availability, 

http://, 

https:// 

data, 

https://, .org 

 

Modifications of terms and phrases 

Table 10 displays 39 modified terms and phrases indicating potential data sharing and reuse 

that were found through the addition of more STEM disciplines. I used these additional terms and 

phrases to identify potential data sharing and reuse efficiently measuring data citation. The pilot 

study, then, confirmed that the key terms and phrases indicating data sharing and reuse for data 

citation were diverse across disciplines, and it accordingly informed the design of the main study 

with regard to the assessment of differences in research data practices across and within disciplines. 

http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/IMS-GECO.en.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/IMS-GECO.en.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/IMS-GECO.en.html
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Table 10 Modified terms/phrases indicating data sharing and reuse for data citation in STEM 

.com data sets obtained from 

.edu database project website 

.gov dataset provided by 

.org deposited publicly available 

accession donated by purchased from 

acquire donated from repository 

available downloaded repository numbers 

benefited ftp:// samples 

browser gift stored 

commercial Inc. Suppl 

Corp. National Institutes of Health Supplemental 

data availability NIH supplemental material 

data center NOAA survey 

 

I employed a text-searching technique because of the labor-intensive nature and smaller scale 

of manual methods. In order to detect data citation for data sharing and reuse, I used the 39 

modified terms and phrases as described in Table 11 derived from the full text STEM documents. 

Prior to the actual data analysis, data cleaning was necessary to avoid any problems and ensure 

the validity of the data. In this process, outliers—unusual values for variables with the potential to 

distort the statistics (Tabachnick & Fidell, 2000)—were identified and excluded. Thus, for 

example, I removed an author with the last name of Lee, as discussed above, because this is a very 



98 

common name in East Asian countries, making it an outlier in the context of this study. The effect 

of outliers was in any case marginal because the data analysis involved a large sample. 

 

Reliability assessment 

I created a draft-coding scheme based on my research goals. This step served to reveal 

valuable patterns that had heretofore gone unnoticed and to avoid introducing personal bias into 

the identification of data sharing and reuse or into the scale assessment, which could comprise the 

reliability and validity of the data. Using this draft-coding scheme, as described above, an assistant 

with a Ph.D. in social science and experience with coding coded 10% of the total instances, which 

amounted to 1,528 records. 

Also, as mentioned earlier, I used Cohen’s kappa coefficient to estimate the internal 

consistency between the two coders (the assistant and myself). As seen in Table 11, I achieved an 

interrater reliability of 0.814 from the 1,528 records just mentioned. This result indicated sufficient 

reliability for me to code all 705 of the papers, for a total of 15,261 instances. For the content 

analysis, I read all of the texts and assigned codes to any that were related to data sharing, reuse, 

or citation. 

Table 11 Reliability test using Cohen's kappa coefficient 

Symmetric Measures 

 Value 

Asymptotic 

Standard Errora Approximate Tb 

Approximate 

Significance 

Measure of Agreement Kappa .814 .017 40.268 .000 

N of Valid Cases 1528    

a. Not assuming the null hypothesis. 

b. Using the asymptotic standard error assuming the null hypothesis. 
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For the content analysis, I read all of the texts and assigned codes to those related to data 

sharing, reuse and citation. A coding scheme was created to analyze data usage – in which -DS = 

data sharing, DR = data reuse and /R = repeatedly described for already cited data) and location in 

the document (A = acknowledgements, AB = abstract, M = main text, R = references and S = 

supplementary information.  

 

4.2. RESULTS 

4.2.1. RQ1: How prevalent is data sharing in different disciplines as measured by formal data 

citation in STEM fields? 

RQ1 was addressed using population data preserved in the DCI; its objective was as follows. 

• Objective: To identify and map various levels of factors that influence data sharing in 

STEM fields as measured by formal data citation in general. 

RQ1 examined disciplinary differences in the STEM fields. Figure 1 reports the prevalence of 

data sharing in the various disciplines as measured by data citation; specifically, it displays the 

total records of data sharing in the DCI by year. Data sharing was most prevalent in the biological 

sciences and least prevalent in engineering. The lowest data sharing values were for 2014, a result 

attributable to the overall trend in the biological sciences but deserving of further study. 

Inconsistencies from year to year occurred owing to the unpredictability of the sources of the data. 

Thus, for instance, the very limited levels of data sharing in 2017 may have been an artifact of the 

indexing features of the DCI.  

I observed, then, distinct disciplinary differences in data sharing across STEM fields, with 

greater prevalence in the biological sciences and very little activity in astronomy/physics, 
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computing, engineering, and mathematics. Thus, there were more than 3.7 million records of 

shared research data, such as datasets, software, data studies and, repositories, for the biological 

sciences, but only around 7,000 for engineering. To be sure, a lower output of datasets does not 

necessarily mean less data sharing, again owing to differences in data production and use across 

disciplines (Mongeon, Robinson-García, Jeng, & Costas, 2017). Thus, for instance, a certain 

discipline may make relatively heavy use of proprietary or sensitive data, such as that gathered 

from medical patients, that is by nature difficult to share. From this perspective, the growth of the 

open science movement can complicate data-sharing practices by conflicting with ethical 

considerations relating to confidentiality. 

The published records of data sharing in the DCI, having remained fairly stagnant in the period 

leading up to 2003, have shown consistent dramatic growth ever since. This result seems to be in 

line with other patterns in the STEM fields and indicates that research data sharing was, as 

discussed earlier, not prevalent before major funding agencies began implementing data-sharing 

policies, the influence of which is thus manifest. (Again, the NIH began requiring a data sharing 

plan in 2003, and the NSF mandated a management plan for data sharing in 2011, two years later 

also revising its guidelines to allow biosketches to include references to research data and software). 
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Figure 1 The prevalence of data sharing as measured by data citation in STEM fields in the DCI 
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Figure 2 displays data sharing in STEM fields by year as documented by the DCI. An increase 

is observable, but there was variation from year to year, which is another phenomenon that 

deserves further study. The rate of data sharing in the earth sciences has decreased steadily since 

2008, possibly owing to some of the observed changes indexed by the DCI. 
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Figure 2 Data sharing in STEM by year in the DCI 
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Table 12 presents the results of further examination of the document types in the DCI that are 

shared among various STEM fields. Swoger has usefully defined a dataset as “a single or coherent 

set of data or data file provided by the repository, as part of a collection, data study or experiment,” 

a repository as “a database or collection comprising data studies, and data sets which stores and 

provides access to the raw data,” and a data study as a “description of studies or experiments held 

in repositories with the associated data which have been used in the data study” (Swoger, 2012, p. 

110). 

The distribution of document types also differed by discipline. Datasets were the most 

commonly shared document type (over 80%) in the DCI except for computing (1.06%), 

engineering (20.05%), and the mathematical sciences (17.57%). By contrast, datasets were more 

prevalent in astronomy/physics (86.92%), the biological sciences (87.57%), chemistry (99.15%), 

the earth sciences (94.78%) and technology (80.67%). In engineering, citations were concentrated 

in data studies (79.9%), and in computing that were concentrated in software (90.95%). 

Table 12 Document types of the STEM fields in the DCI 

discipline dataset software repository data study 

astronomy/ 

physics 

60,171  

(86.92%) 

1,394  

(2.01%) 

17  

(0.03%) 

7,643  

(11.04%) 

biological 

sciences 

3,194,748 

(87.57%) 

0  

(0%) 

70  

(0%) 

453,599 

(12.43%) 

chemistry 

936,596 

(99.15%) 

0 (0%) 

9  

(0%) 

8,060  

(0.85%) 
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computing 

230  

(1.06%) 

19,770  

(90.95%) 

3  

(0.01%) 

1,735  

(7.98%) 

earth sciences 

551,092 

(94.78%) 

13 (0%) 

15  

(0%) 

30,357  

(5.22%) 

engineering 

1,430  

(20.05%) 

0 (0%) 

4  

(0.06%) 

5,700  

(79.9%) 

mathematical 

sciences 

1,739  

(17.57%) 

8,155  

(82.37%) 

0  

(0%) 

6  

(0.06%) 

technology 

762,082 

(80.67%) 

10,648  

(1.13%) 

37  

(0%) 

191,080 

(20.23%) 

 

Table 13 displays the total number of shared research data types for each of the STEM fields 

in the DCI beyond the four major document types. The biological sciences, earth sciences and 

technology had the most data types, which engineering and mathematical sciences had the fewest.  

Table 13 Total numbers of the shared data types of the STEM fields in the DCI 

discipline total numbers of the data types in the DCI 

astronomy/physics 86 

biological sciences 100 

chemistry 36 

computing 19 
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earth sciences 100 

engineering 7 

mathematical sciences 6 

 

In order to report the results for each discipline as clearly as possible, summaries for the results 

appearing in Table 14 to Table 21 are divided into two tables of four disciplines each. Table 14 

and Table 15 display the top 10 most highly shared/published data types for each discipline in the 

DCI. Certain types were more widely shared in most STEM fields. In computing and the 

mathematical sciences, software represented the most frequently shared data type, constituting 

91.4% and 82.9% of total records, respectively. Test data represents the most frequently shared 

data type in engineering by far (99.7%). In contrast, astrophysics did not have a single data type 

that is most shared. For instance, mass spectral data, the most frequently shared data type 

represented only 7.2% of the shared data records. Considering a few formats dominant data 

formats in astronomy (Greenfield, Droettboom, & Bray, 2015), such as Flexible Image Transport 

System (FITS) files in astronomy (Grosbol, 1988), the findings of only 190 shared FITS files 

(0.43%) in astronomy/physics and of no dominant data type are remarkable. 

Table 14 Data types: The top 10 most highly shared/published data types of the 

astronomy/physics, biological sciences, chemistry and computing fields in the DCI  

astronomy/physics biological sciences chemistry computing 

data type 

total 

records  

data type 

total 

records  

data type 

total 

records  

data 

type 

total 

records  
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mass 

spectral 

data 

31,072 RNA1 931,673 

crystal 

structure 

754,913 software 18246  

NMR 

2results 

6,157 

protein 

sequence 

data 

525,973 

crystallogr

aphic data 

490,252 code 1,278  

spectral 

data 

3,723 SRA3 277,920 

molecular 

structure 

91,870 model 416  

software 1,396 genomic 163,349 

crystallogr

aphic 

informatio

n 

84,687 dataset 3 

image 

file 

233 images 113,107 

bacterial 

carbohydr

ate 

structure 

4,298 

raw 

experime

ntal data 

2 

                                                           
1 Ribonucleic acid 
2 Nuclear magnetic resonance 
3 Sequence Read Archive 
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FITS file 190 

nucleotide 

sequencin

g 

informatio

n 

109,135 

spectral 

data 

3,720 other 2 

final 

output 

pics 

163 

molecular 

structure 

75,899 

crystallogr

aphic 

structure 

3,008 database 2 

data 107 processed 72,717 dataset 2,410  

survey 

and 

census 

data 

1 

dataset 63 FGEM 72,717 

molecular 

data 

954 

(0.1%) 

spreadsh

eet 

1 (0%) 

hrcrop 60 

plant 

trascriptio

n factors 

and their 

annotation 

65,536 molecule 

647 

(0.1%) 

simulati

on 

MATLA

B code 

1 (0%) 

totals 43,164 totals 2,408,026 totals 1,436,759 totals 19,952 
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Table 15 Data types: The top 10 most highly shared/published data types of the earth sciences, 

engineering, mathematical sciences and technology fields in the DCI 

earth sciences engineering 

mathematical 

sciences 

technology 

data type 

total 

records 

data type 

total 

records 

data type 

total 

records 

data type 

total 

records 

dataset 32,975  test data 3,749  software 8,155 dataset 137,375 

interactive 

resource 

22,264  QCM data4 1  matrix 1,640 fileset 33,304 

GPS 

dataset5 

13,080 

microscopy 

images 

1 

 

geoid 

undulation 

given on a 

grid 

35 

image 

TIFF 

14,558 

geoscientif

ic 

informatio

n 

9,108 

GIS vector 

data 

2 dataset 1 image 12,591 

                                                           
4 Quartz Crystal Microbalance (QCM) data 
5 Global Positioning System (GPS) dataset 
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GPS 

collection 

5,741 

fluorescence 

intensity 

data 

1 

academic 

test score 

data 

1 MS 6Word 11,482 

text 4,033 

MS Excel 

sheet 

1 - - software 8,176 

navigation 

primary 

3,691 

datasets 

containing 

results of 

materials 

testing and 

accompanyi

ng info. 

1 - - PDF 6,626 

protein 

sequence 

data 

2,803 dataset 4 - - VND Excel 3,495 

digital 2,699 - 3,760 - - tools 2,428  

image 1063 - 
 

- - text plain 686  

totals 97,457  totals 7,520  totals 9,832 totals 230,721 

 

                                                           
6 Microsoft 
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Table 16 and Table 17 display the top 10 repositories of published records in the STEM fields 

in the DCI. Data repositories have been studied because they function as the centralized 

infrastructure for research data, ensuring greater visibility for future reuse thanks to a readily 

available infrastructure for preservation of, access to, and reuse. Data repositories also play a 

crucial role in data sharing because papers for which micro data are available in a public repository 

received on average 9% more citations than those that did not make such data available (Piwowar 

& Vision, 2013). In order to examine closely how STEM repositories service data sharing, it is 

necessary to examine practices within research data repositories more generally; doing so will also 

reveal disciplinary differences regarding repositories.  

Repositories – which can be housed within data centers or libraries - host and manage research 

data, playing a central role in data stewardship, accessibility, and persistence and facilitating 

conversion of metadata in to data. The findings indicate that data repositories were quite diverse 

across the scientific disciplines of the STEM fields. As can be seen, some digital repositories are 

much more widely used than others, depending on the disciplines that they serve. The findings 

further indicate that only a few data types comprised the published/shared research data in the DCI, 

once again except for astronomy/physics. The types of digital repositories in which data sharers 

can preserve their research data include commercial, institutional, governmental, and 

multidisciplinary repositories, and the websites of firms, journals and individuals. In general, 

sharers preferred to preserve their research data in third-party digital repositories rather than on 

the websites of journals. 

As part of the analysis, typos or varying forms of terms for data types were merged (e.g., “EC-

IRC Petten Institute for Energy and Transport”, “EC-JRC Petten Institute for Energy and 

Transport”, “EC JRC Petten Institute for Energy” and “EC-JRC Petten Institute for Energy” for 
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“EC JRC Petten IET7”. Interestingly, a journal publisher’s repository (i.e., that of the International 

Journal of Engineering and Science) has been used to preserve research data. Given that the data 

repositories of third parties or institutions are becoming widely used for data sharing, the 

repositories of journal publishers merit further study in this regard.  

As just noted, and as can be seen in Table 16, institutions, associations, and governmental 

agencies are among the entities that maintain repositories. In astronomy/physics,  the ten most used 

repositories were institutional. In the biological sciences, the most-used repositories were domain-

specific or maintained by government agencies or associations. In the hard sciences, such as 

chemistry, institutional repositories (e.g., Cambridge Structural Database) were home to more than 

50% of digital repository records; such repositories are widely observed as part of data-sharing 

infrastructure. In computing, sharers make use of company-specific repositories, such as Google’s, 

as well as institution-specific repositories such as those maintained by the University of 

Washington and University of Athens. In the biological sciences, some generic repositories such 

as Dryad, are also observed, while others, such as Zenodo or Figshare, are not. 

As Table 17 illustrates, both the earth sciences and mathematical sciences demonstrated 

unevenness in regard to data sharing, with PANGEA constituting 69.81% of data sharing in the 

former and CRAN 82.73% in the latter. Data citation therefore occurred at the repository -level 

rather than the data -level, as shown in Table 12. U.S. national repositories, such as those of NCDC 

and NOAA, were also used in the earth sciences.  

Table 16 Repositories: Top 10 repositories for published records of the astronomy/physics, 

biological sciences, chemistry and computing fields in the DCI  

                                                           
7 Institute for Energy and Transport 
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astronomy & 

physics 

biological sciences chemistry computing 

reposi-

tory 

total 

records 

reposi-

tory 

total 

records 

reposi-

tory 

total 

records 

reposi-

tory 

total 

records 

EAWAG

8 

7,509 GEO9 1,459,500 CSD10 490,251 ISTI11 1,122 

Keio12 4,780 

UniPro

KB13 

535,810 COD14 329,875 Gitter 324 

UFZ15 2,758 

Arrayex

press 

Archive 

417,716 

Pitt 

Quantum 

Repositor

y 

106,059 

Univ. of 

Athens16 

295 

WSU17 2,623 ENA18 225,122 

EMData

Bank19 

5,394 UW20 264  

                                                           
8 Swiss Federal Institute of Aquatic Science and Technology (EAWAG) 
9 Gene Expression Omnibus 
10 Cambridge Structural Database 
11 istituto di scienza e tecnologie dell informazione a faedo cnr 
12 Keio university 
13 Uniprot KnowledgeBase 
14 Crystallography Open Database 
15 Helmholtz Centre for Environmental Research Ufz Gmbh 
16 National Kapodistrian University of Athens 
17 Washington State University 
18 European Nucleotide Archive 
19 Electron Microscopy Data Bank 
20 University of Washington 
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Univ. of 

Tokyo 

2,471 

YRC 

Public 

Image 

Reposit

ory21 

113,106 GSDB22 4,299 

Imperial 

College 

London 

237 

Nara 

Women s 

Univ. 

1,773 

wwPDB

23 

106,038 

Chemotio

n 

4,047 IBNL 214 

RIKEN24 1,719 

DEG-

NCBI25 

106,025 SDBS26 3,720 

Univ. of 

Oxford 

191 

Univ. of 

Athens 

1,476 

Animal 

GTL 

Databas

e 

82,640 

eCrystals

27 

572 Google 185  

TUT28 1,267  

PlantTF

DB29 

65,536 

SBGrid 

Data 

Bank 

264  CERN30 174  

                                                           
21 Yeast Resource Center Public Image Repository 
22 Bacterial Carbohydrate Structure Database 
23 Worldwide Protein Data Bank 
24Kagaku Kenkyusho 
25 Database of Essential Genes - NCBI 
26 Spectral Database for Organic Compounds SDBS 
27 eCrystals – University of Southampton 
28 Toyohashi University of Technology 
29 Plant Transcription Factor Database 
30 European Organization for Nuclear Research  
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Tohoku 

Univ. 

910  Dryad 65,329  Tardis 81  

Materials 

Virtual 

Lab 

156  

totals 27,286 totals 3,176,822 totals 944,562 totals 3,162 

 

Table 17 Repositories: Top 10 repositories for published records in the earth sciences, 

engineering, mathematical sciences and technology fields in the DCI 

earth sciences engineering 

mathematical 

sciences 

technology  

reposi-

tory 

total 

records  

reposi-

tory 

total 

records  

reposi-

tory 

total 

records  

reposi-

tory 

total 

records  

PANGA

EA 

405,944  

EC IRC 

Petten 

IET31 

656  CRAN32 8,155  

Cell 

image 

library 

CCDB 

1,378  

SIOExpl

orer 

60,195 

MPI for 

Intelligen

t 

Systems

33 

37 

Univ. of 

Florida 

Sparse 

Matrix 

1,640 

CDPH 

Merced 

District 

717 

                                                           
31 European Commission - Institute for Energy and Transport 
32 Comprehensive R Archive Network 
33 Max Planck Institute for Intelligent Systems 
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Collectio

n 

PISCO34 29,230  LEI35 11 J-Pal36 52  

Californi

a Water 

Service 

653 

R2R37 18,224  NRG38 11  

IGeS 

Database

39 

35  

CDPH 

San 

Bernardi

no 

District 

647 

UC3 

Merritt 

Repositor

y40 

14,794 NIMS41 8 

3TU 

Datacentr

um 

17 IJES42 597  

                                                           
34 Partnership for Interdisciplinary Studies of Coastal Oceans 
35 Lithuanian Energy Institute 
36 The Abdul Latif Jameel Poverty Action Lab 
37 Rolling Deck to Repository 
38 NRG Petten 
39 International Geoid Service Database 
40 University of California Curation Center (UC3) Merritt Repository 
41 National Research Institute for Metals 
42 International Journal of Engineering and Science 
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IEDA43 14,351  OECD44 4  - - 

CDPH 

Sonoma 

District 

568  

NODC45 9,155 - - - - 

CDPH 

Tehachap

i District 

420  

NOAA 

Paleocli

matology

46 

9,109  - - - - 

San 

Bernardi

no 

County 

406  

UNAVC

O47 

3,992 - - - - 

Fresno 

County 

396  

NOAA 2,974 - - - - 

CDPH 

Klamath 

District 

375 

totals 101,829 totals 727 totals 9,899 totals 6,157 

 

Table 18 and Table 19 display the top 10 most shared/published data authors for each of the 

STEM disciplines in the DCI. In engineering, two data authors contributed each 33.01% and 

                                                           
43 Interdisciplinary Earth Data Science - Marine Geoscience Data System 
44 Organization for Economic Cooperation and Development OECD 
45 US National Oceanographic Data Center 
46 National Oceanic and Atmospheric Administration (NOAA) Paleoclimatology 
47 UNAVCO Geodesy Data Archive 
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31.47%, respectively of the data publications. In other disciplines, such as the earth sciences, 

mathematical sciences and technology, by contrast, no author contributed more than 5% of total 

data publications.  

In any care, a relatively small number of data authors tend to contribute a large proportion of 

data publications. High rates of data sharing among just a few authors in a discipline (e.g., three 

authors being responsible for more than 30% of sharing within a single discipline) tend not to be 

observed in standard bibliographic publications, such as in the journal articles, books, or 

conference proceedings. Researchers may be pioneers in this regard. The relatively high rates of 

anonymous sharing in astronomy (5.66%) and the biological sciences (3.18%) could complicate 

the rewarding of formal scholarly credit for data sharers. 

Table 18 Data authors: The top 10 most highly shared/published data authors of the 

astronomy/physics, biological sciences, chemistry and computing fields in the DCI  

astronomy/physics biological sciences chemistry computing 

data 

authors 

total 

records  

data 

authors 

total 

records  

data 

authors 

total 

records  

data 

authors 

total 

records  

Schyman

ski E 

7,509  

anonymo

us 

116,017  

Anonym

ous 

5,602  

Howison 

James 

1,713  

Singer H 7,509 Shah P 72,099  

Hursthou

se 

Michael 

B 

2,909  

Crowston 

Kevin 

1,712  
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Stravs M 7,509  

Sherlock 

G 

72,098 

Fun 

Hoong-

Kun 

2,819  

Squire 

Megan 

1,711  

Horai H 4,780 Binkley J 72,094 

Ng Seik 

Weng 

2,585  

Assante 

Massimil

iano 

368  

Kakazu 

Y 

4,780  

Binkley 

G 

72,093  

Rheingol

d Arnold 

L 

2,138  

Perciante 

Costantin

o 

249  

anonymo

us 

3,915  Inglis Do 72,093  

Zhang 

Yong 

2,114  

anonymo

us 

244  

Berger S 3,171 

Miyasato 

Sr 

72,093 Ng SW 2,004  

Panichi 

Giancarlo 

224  

Braun S 3,167 

Simison 

M 

72,093  Jones PG 1,989 

Sinibaldi 

Fabio 

210  

Kalinows

ki H-O 

3167  

Skrzypek 

MS 

72,093  

Skelton 

BW 

1,974  

Ong 

Shyue 

Ping 

209  

Schulze 

T 

2758  

Wymore 

F 

72,093  

Ma Jian-

Fang 

1,925  

Perez 

Jose 

161  

totals 45,098 totals 746,866 totals 26,059 totals 6,801 
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Table 19 Data authors: The top 10 most highly shared/published data authors for earth sciences, 

engineering, mathematical sciences and technology in the DCI 

earth sciences engineering 

mathematical 

sciences 

technology 

data 

authors 

total 

records  

data 

authors 

total 

records  

data 

authors 

total 

records  

data 

authors 

total 

records  

Hofmann 

Jutta 

19,569  Ennis PJ 2,355  

Hoekstra 

R 

192  

Rzepa 

Henry S 

2,046  

Konig-

Langlo 

Gert 

1,4785  

Offerman

n M 

2,245  Welker V 128  

Wang 

Wei 

1,586 

Schwein

gruber 

Fritz 

Hans 

1,3003 

Basan 

Robert 

1,035 

(14.51%) 

Rao A 

91 

(0.92%) 

Zhang 

Wei 

1,370 

Bleyer 

Hans-

Jurgen 

9,131 

Marohnic 

Tea 

1,035 Senses B 91 Li Yan 1,070 

Washbur

n Libe 

8,774 

Mccolvin 

GM 

1,007 

Banerjee 

Abhijit 

52  

Wang 

Jun 

1,032  

Menge 

Bruce 

8,483  

Rubesa 

Domagoj 

833 

Cole 

Shawn 

52  

Wang 

Ying 

1007  
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Chan 

Francis 

8,298  

Mccarthy 

S 

583 

Duflo 

Esther 

52  

Baldock 

Richard 

956  

Mcmanu

s 

Margaret 

7,218  

Schneide

r K 

244 

Linden 

Leigh 

52  

Wang 

Jing 

952  

Friedrich 

Michael 

6428  

de Haan 

F 

227 Zhao W 50  

Richards

on Lorna 

947  

Zuyev 

Aleksey 

N 

5549 

Papuga 

Jan 

202 

Chamberl

ain Scott 

44 

Zhang 

Yan 

945  

totals 101,238 totals 9,766 totals 752 totals 11,911 

 

Table 20 and Table 21 display the top 10 most highly shared/published author groups in STEM 

fields in the DCI. I included author groups in this study because modern research frequently 

involves collaboration among multiple labs, departments and institutions whether within a region 

or internationally. The typos “JMC OICR” and “JMG-OICR” as were engineering typos or 

different uses of terms for data types.  

In the case of four disciplines, no one group of authors was dominant among the rest, notable 

contributors were observed in the biological sciences (UniProt, 14.49%), chemistry (PITT 

Quantum Repository, 11.23%), the earth sciences (MEDAR Group, 16.84%), and engineering (EC 

JRC Petten IET, 8.56%). 
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Table 20 Group authors: The top 10 most highly shared/published group authors for 

astronomy/physics, biological sciences, chemistry and computing in the DCI 

astronomy/physics biological sciences chemistry computing 

group 

authors 

total 

records 

group 

authors 

total 

records 

group 

authors 

total 

records 

group 

authors 

total 

records 

MSSJ48 1,959 UniProt 528,670 

PITT 

Quantum 

Repositor

y 

106,058 

The 

Gitter 

Badger 

270 

Soda 

Aromatic 

Co Ltd 

1,039 PISCO 32,483 DLUT49 6 

Mosquito 

Alert 

67 

Complete 

Team 

572 

EcoTren

ds50 

30,806 

State Key 

Laborator

y of 

Supramol

ecular 

Structure 

and 

Materials 

6 

Making 

GitHub 

Delicious 

60 

                                                           
48 Mass Spectroscopy Society of Japan 
49 Dalian University of Technology 
50 Ecotrends Project 
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Lambda 

NASA 

GSFC 

528 

miRBas

e 

26,717  CT 2 

Cedergro

upCluster

s 

56 

Kuraray 

Co Ltd 

421 JGI51 20,911  - - Cmsbuild 48 

CMS 

Collaborat

ion 

408 USGS52 18,690  - - 

Yanikou1

9 

39  

Nara 

Women's 

Univ. 

223 

Broad 

Institute 

17,137 - - Flxb 35 

Ube 

Scientific 

Analysis 

Laborator

y 

137 

encode 

dcc 

11,370  - - 

JMG 

OICR 

58  

School of 

Medicine 

Hamamats

u Univ. 

104  - - - - 

rgmumuf

eng 

27  

                                                           
51 DOE Joint Genome Institute 
52 United States Geological Survey 
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ISIR, 

Osaka 

Univ.53 

100 - - - - - - 

totals 5,491  totals 686,784  totals 106,072  totals 660  

 

Table 21 Group authors: The top 10 most highly shared/published group authors for earth 

sciences, engineering, mathematical sciences and technology in the DCI 

earth sciences engineering 

mathematical 

sciences 

technology 

group 

authors 

total 

records  

group 

authors 

total 

records 

group 

authors 

total 

records 

group 

authors 

total 

records 

MEDAR 

group 

97,899 

EC JRC 

Petten 

IET  

636  IBM 69 

Cellimag

eliBrary 

CCDB 

1,378 

PISCO 27,703 

Max 

Planck 

Institute 

for 

Metallfor

schung 

37 RAJAT 31 

CDPH 

Merced 

District 

717 

                                                           
53 Institute of Scientific and Industry Research, Osaka University 
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GDC54 26,213 LEI55 11 NASA56 22 

Californi

a Water 

Service 

653 

WOCE 

Sea 

Level 

WSL 

19,649  

NRG 

PETTEN 

11  

Integrated 

Sys Eng 

18  

CDPH 

San 

Bernardi

no 

District 

647 

R2R57 

Program 

18,212 

National 

Research 

Institute 

for 

Metals 

8 

Autoform 

Eng 

16 The IJES 597 

Shipboar

d 

Scientifi

c Party 

17,530 OECD58 4 

COMSOL

59 

9 

CDPH 

Sonoma 

District 

568 

                                                           
54 Geological Data Center 
55 Lithuanian Energy Institute 
56 National Aeronautics and Space Administration 
57 Rolling Deck to Repository 
58 Organization for Economic Co-operation and Development  
59 COMSOL Multiphysics 
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WOCE 

WHP60 

16,946 - - 

Geofarik 

GmbH 

8 

CDPH 

Tehachap

i District 

420  

WOCE 

UOT61 

12,894 - - 

Francesca 

Petralia 

Developer 

2 

San 

Bernardi

no 

County 

406 

OMEX 

Project 

Member

s 

6,006  - - 

Graph 

Drawing 

Contest 

2  

Fresno 

County 

396  

WOCE 

SVP62 

5,921  - - 

KDD cup 

2003 

2  

CDPH 

Klamath 

District 

375 

totals 248,973  totals 727  totals 179 totals 6,157 

  

To summarize, RQ1 addressed the diversity of data sharing practices as measured by data 

citation across STEM variables. In addition to this question, the following trends were observed. 

                                                           
60 WOCE Hydrographic Program 
61 WOCE Upper Ocean Thermal UOT 
62 WOCE Surface Velocity Program SVP 
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• Each STEM field had distinct data sharing practices (i.e., these practices are characterized by 

unevenness), and the distribution of data sharing was very skewed. Thus, for instance, data 

sharing was most prevalent in the biological sciences. 

• Funding agencies’ data sharing requirements served as major triggers for data sharing in all of 

the STEM fields. Thus, for example, the total instances of data sharing rose dramatically after 

2003, when the first data sharing mandate was implemented.  

• Diverse types of digital repositories were observed across STEM disciplines, but one type 

usually dominated in a given discipline. Thus, for instance, governmental agencies maintained 

the repositories most used in the biological sciences, while in the earth sciences, the discipline-

specific repository PANGEA was the locus of 69.81% of data sharing, and in the mathematical 

sciences the discipline-independent repository CRAN was the locus of 82.73% of data sharing.   

 

4.2.2. RQ2: What types of STEM research data are formally cited most often? 

RQ2 was answered using descriptive analysis and the results reported based on the DCI 

records at the data level. 

• Objective of RQ2: To examine the types of research data most often cited formally.  

 

Table 22 lists the data types that are most often cited in STEM fields in the DCI. Topping the 

list in terms of frequency is “data file,” which was the form of 89,934 (1.76%) of citations. Next, 

in order, were sequence data (74,642 total times cited, 1.46%), crystallographic data (52,078 total 

times cited, 1.02%), blank meaning no data type w displayed (43,375 total times cited, 0.85%), 

software code (41,634 total times cited, 0.81%), mass spectral data (31,072 total times cited, 

0.61%), crystal structure (29,209 total times cited, 0.57%), molecular structure (11,144 total times 
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cited, 0.22%), sequence read archive (8,979 total times cited, 0.18%), fileset (8,229 total times 

cited, 0.16%) and nuclear magnetic resonance (6,157 total times cited, 0.12%).  

Quantitative data were more often cited and shared than qualitative data because the STEM 

fields emphasize this kind of data. The sole example qualitative research data observed was in 

technology in 2017. It took the form of a transcript of an interview, and thus represented the 

interviewee’s own words (see discussion below).  

Table 22 displays the top 10 types of data that received the most citations in STEM fields in 

the DCI, none of which was dominant secondary data types, such as MS Excel sheets, MS Word, 

MS PowerPoint, or digital video files, were not observed, and in many cases the data type was not 

recorded (i.e., fields were left blank). Improvements in data curation could thus include (1) 

modification of data structures in the DCI and (2) optional fields for data types in records 

maintained by data-sharing repositories. Given the scope and limitations of the datasets used in 

the present study, an examination of the reasons is left for future research. 

Table 22 Top 10 data types that received the most data citation in STEM fields in the DCI 

data type total times cited percentage 

data file 89,934 1.76% 

protein sequence data 74,642 1.46% 

crystallographic data 52,078 1.02% 

(blank) 43,375 0.85% 

software code 41,634 0.81% 

mass spectral data 31,072 0.61% 
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crystal structure 29,209 0.57% 

molecular structure 11,144 0.22% 

sequence read archive 8,979 0.18% 

fileset 8,229 0.16% 

nuclear magnetic resonance 

results 

6,157 0.12% 

totals 475,803 9.31% 

 

Table 23 to Table 30 display detailed examinations of disciplinary differences among the top 

10 data types that are most cited data types for each discipline. These differences also merit further 

study, as many aspects of data sharing are discipline-specific. The total numbers of data types 

varied across disciplines owing to the diversity of data sharing practice, as seen in relation to RQ1. 

Table 23 displays the top 10 most highly cited data types in the DCI in astronomy/physics. 

The distribution of data type in astronomy/physics was quite skewed in certain data types. These 

top 10 data types accounted for 98.62% of citations, and the top three (mass spectral data, NMR 

results, and spectral data) for over 90% in this discipline 

Table 23 Astronomy/physics: Top 10 most highly cited data types 

data type total times cited percentage 

mass spectral data  31,072 70.80% 

NMR results  6,157 14.03% 

spectral data  3,723 8.48% 
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software  1,396 3.18% 

image file  234 0.53% 

FITS file  192 0.44% 

data/dataset 170 0.39% 

final output picture 163 0.37% 

dataset  63 0.14% 

HRCROP  60 0.14% 

TEX APPB 50 0.11% 

totals 43,280 98.62% 

 

Table 24 displays the top 10 most highly cited data types in the DCI in the biological sciences. 

The top three (RNA, protein sequence data, and SRA) accounted for more than half of the citations.   

Table 24 Biological sciences: Top 10 most highly cited data types 

data type total times cited percentage 

RNA63  931,673 29.67% 

protein sequence data 525,973 16.75% 

SRA64  277,920 8.85% 

Genomic 163,349 5.20% 

images  113,107 3.60% 

nucleotide sequencing information 109,135 3.48% 

                                                           
63 Ribonucleic acid 
64 Sequence Read Archive 
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molecular structure 75,899 2.42% 

FGEM  72,717 2.32% 

Processed 72,717 2.32% 

plant transcription factors and their annotation 65,536 2.09% 

totals 2,408,026 76.69% 

 

Table 25 displays the top 10 most highly cited data types in the DCI in chemistry. The top 10 

data types accounted for 99.95% which indicates the existence of major data types to be cited in 

chemistry. Most notably, the top two data types (crystal structure, crystallographic data) account 

for 86.61% of the citations.   

Table 25 Chemistry: Top 10 most highly cited data types 

data type total times cited percentage 

crystal structure 754,913 52.51% 

crystallographic data 490,252 34.10% 

molecular structure  91,870 6.39% 

crystallographic information 84,687 5.89% 

bacterial carbohydrate structure  4,298 0.30% 

spectral data 3,720 0.26% 

crystallographic structure 3,008 0.21% 

dataset 2,410 0.17% 

molecular data 954 0.07% 
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molecule 647 0.05% 

totals 1,436759 99.95% 

 

Table 26 displays the top 10 most highly cited data types in the DCI in computing. Not 

surprisingly, software comprised over 91.41% (18,246 total times cited) of citations.  

Intuitively, the low percentage of total times cited counts in computing is remarkable given 

the prevalence of software code in the discipline compared with others. This finding is explicable 

in terms of the usage of proprietary software in computing. 

Table 26 Computing: Top 10 most highly cited data types 

data type total times cited percentage 

software 18,246 91.41% 

code  1,278 6.40% 

model 416 2.08% 

dataset 3 0.02% 

database 2 0.01% 

other 2 0.01% 

raw experimental data 2 0.01% 

chemistry data 1 0% 

dataset used in the paper 1 0% 

diagrams 1 0% 

totals 19,952 99.95% 
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Table 27 displays the top 10 most highly cited data types in the DCI in the earth sciences. In 

this discipline, geospatial datasets such as GPS datasets, which can be reused to visualize 

spatiotemporal analyses based on the computational use of source code, are identified as highly 

cited datasets, accounting for 30.64% of citations.  

Table 27 Earth sciences: Top 10 most highly cited data types 

data type total times cited percentage 

dataset  32,975 30.64% 

interactive resource  22,264 20.69% 

GPS dataset 13,080 12.15% 

geoscientific information  9,108 8.46% 

GPS collection  5,741 5.33% 

text 4,033 3.75% 

navigation primary 3,691 3.43% 

protein sequence data  2,803 2.60% 

digital  2,699 2.51% 

totals 96,394 89.56% 

 

Table 28 displays the top 10 most highly cited data types in the DCI in engineering. In this 

discipline, seven data types accounted for 100% of the records, though test data alone accounted 

for 99.71% of the citations, followed distinctly by datasets (0.13%). 
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Table 28 Engineering: Top 10 most highly cited data types 

data type total times cited percentage 

test data  3,749 99.71% 

dataset 5 0.13% 

GIS vector data  2 0.05% 

QCM 65data  1 0.03% 

microscopy images 1 0.03% 

fluorescence intensity data  1 0.03% 

MS Excel spreadsheet  1 0.03% 

totals 3,760 100% 

 

Table 29 displays the top 10 most highly cited data types in the mathematical sciences. 

‘GEOID ondulation given on a grid’ was combined with ‘GEOID undulation given on a grid’ 

because ondulation is a typo. In this discipline, five data types accounted for 100% of the data 

types cited in the DCI the top two, software (82.94%) and matrix (16.69%), accounting for 99.63% 

of citations. 

Table 29 Mathematical sciences: Top 10 most highly cited data types 

data type total times cited percentage 

software 8,155 82.94% 

Matrix 1,640 16.69% 

GEOID undulation given on a grid 35 0.35% 

                                                           
65 Quartz Crystal Microbalance 
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dataset 1 0.01% 

academic test score data  1 0.01% 

total 9,832 100% 

 

Table 30 displays the top 10 most highly cited data types in technology (N=235,315). In 

technology, the top 10 most highly cited data types accounted for 98.05% of the all data types. The 

most highly cited type were datasets (58.38%), followed by filesets (14.15%).   

In light of these observations, consideration needs to be given to standards for text files. Thus, 

for instance, if a data file is a PDF, MS Excel spreadsheet, or a graph or table, searchability for 

reuse is a concern. 

Table 30 Technology: Top 10 most highly cited data types 

data type total times cited percentage 

dataset 137,375 58.38% 

fileset 33,304 14.15% 

image TIFF 66 14,558 6.19% 

image 12,591 5.36% 

application MS Word 11,482 4.88% 

software 8,176 3.47% 

application PDF 67 6,626 2.82% 

application VND MS Excel 3,495 1.49% 

                                                           
66 Tagged Image File Format 
67 Portable Data Format 
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tools 2,428 1.03% 

text plain 686 0.29% 

totals 230,721 98.05% 

 

To summarize the results for RQ2: 

• The data types cited were very diverse in STEM disciplines. 

• Nearly all of the data cited in STEM disciplines were quantitative in nature; only a single 

example of qualitative data, an interview transcript, was observed.  

• The top 10 most highly cited data types in STEM disciplines were, in descending order, data 

files, protein sequence data, crystallographic data, n/a (i.e., no data type was specified by data 

sharers), software code, mass spectral data, crystal structure, molecular structure, sequence 

read archive, filesets, nuclear magnetic resonance and nuclear magnetic resonance results. 

• The data types that most often cited varied across STEM disciplines. 

 

4.2.3. RQ3: How do author self-citation/recitation practices differ across STEM disciplines? 

• Objective 1: To identify factors associated with author self-citation and recitation. 

• Objective 2: To examine these factors (across and within discipline). 

Table 31 displays the comparative analysis of self-citation at the data-level in the DCI using 

citer-based analysis. WoS databases were used for all of the article-level data except for the DCI. 

Low levels of author self-citation and recitation were observed, on average (3.91%), and slight 

differences between the data and article-level outcomes; thus, the average author self-citation rate 

was 3.94% at the data-level and 3.88% at the article-level. The greatest difference between data 
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and article-level outcomes was in computing (1.68% difference) and the least difference was with 

mathematical sciences (0.03% difference). At the article-level, a relatively high author self-citation 

rate was observed in computing, the earth sciences, and technology. 

Table 31 Comparisons of self-citation between data-level and article-level by citer-based 

analysis 

discipline 

no. of 

authors 

data-level article-level 

sum of 

times 

cited 

without 

self-

citations 

self-

citations 

sum of 

times 

cited 

without 

self-

citations 

self-

citations 

astronomy & 

physics 

23 37654 35115 

2539 

(6.74%) 

37239 34822 

2417 

(6.49%) 

biological 

sciences 

29 302522 292701 

9821 

(3.25%) 

299259 289733 

9526 

(3.18%) 

chemistry 25 65111 60366 

4745 

(7.29%) 

63918 59493 

4425 

(6.92%) 

computing 28 7305 7274 

31 

(0.42%) 

7063 6915 

148 

(2.1%) 

earth 

sciences 

24 20695 19911 

784 

(3.79%) 

15498 14811 

687 

(4.43%) 
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engineering 22 5282 5040 

242 

(4.58%) 

5279 5039 

240 

(4.55%) 

mathematical 

sciences 

29 17693 17356 

337 

(1.9%) 

17549 17224 

325 

(1.85%) 

technology  25 19269 19014 

255 

(1.32%) 

19254 18989 

265 

(1.38%) 

average 205 475531 456777  

18754 

(3.94%) 

465059 447026 

18033 

(3.88%) 

 

Table 32 to 37 display outcomes of the Kruskal-Wallis tests. Table 32 to 34 display at the 

data-level. Table 35 to 37 display at the article-level. The groups (i.e., from group 1 to group 8) 

differed in terms of numbers of members (i.e., authors). It was, as mentioned above, owing to this 

violation of the one-way ANOVA assumption (i.e., same group numbers) that the Kruskal-Wallis 

test was conducted as a means to examine the associations within and across shared research data 

and the instances of author self-citation or recitation in the various STEM fields in greater detail. 

The numbers assigned to each group were as follows: group 1 for astronomy/physics, group 2 for 

the biological sciences, group 3 for chemistry, group 4 for computing, group 5 for the earth 

sciences, group 6 for engineering, group 7 for the mathematical sciences and group 8 for 

technology.  

 



139 

Table 32 Data-level: Self-citation rate descriptive statistics for each discipline 

Descriptives 

DataSelfCiteRate   

 N Mean Std. Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

1 23 .0478 .04123 .00860 .0300 .0657 .00 .14 

2 29 .0362 .02611 .00485 .0263 .0461 .00 .10 

3 25 .0836 .06915 .01383 .0551 .1121 .00 .28 

4 28 .0032 .01249 .00236 -.0016 .0081 .00 .06 

5 24 .0421 .04501 .00919 .0231 .0611 .00 .18 

6 22 .0736 .08533 .01819 .0358 .1115 .00 .32 

7 29 .0197 .02612 .00485 .0097 .0296 .00 .09 

8 25 .0120 .01732 .00346 .0049 .0191 .00 .06 

Total 205 .0382 .05166 .00361 .0311 .0453 .00 .32 

 

 

Table 33 displays the independent-samples Kruskal-Wallis test to examine the author self-

citation rate across disciplines. In light of these results, one author in the discipline of chemistry 

was removed as an outlier, because, as noted above, his last name, Lee is very common in East 

Asian countries 

 

 

Table 33 Data-level: Independence-samples Kruskal-Wallis test. (Self-Citation-Rate across 

discipline) 

Independent-Samples Kruskal-Wallis Test 

Summary 

Total N 205 

Test Statistic 71.790a 

Degree Of Freedom 7 

Asymptotic Sig.(2-sided test) .000 

a. The test statistic is adjusted for ties. 
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Table 34 displays the pairwise comparisons of disciplines using the independent-samples 

Kruskal-Wallis test at the data-level. The distribution of DataLevelSelfCiteRate (i.e., author self-

citation) at the data-level differed across disciplines. The null hypothesis (𝐻0 : the distribution of 

DataLevelSelfCiteRate is the same across categories of Discipline) was rejected because the p 

value of .000 was less than 0. 01 (p <0. 01).  

The p-values for the Kruskal-Wallis test comparing the author self-citation rate and disciplines 

showed significant differences ( 𝜌  < 0.01) for several groups from the multiple pairwise 

comparisons by discipline regarding DataLevelSelfCitationRate at the data-level. The pairs of 

groups were 4-5 (computing – earth sciences), 4-1 (computing – astronomy/physics), 4-2 

(computing – biological sciences), 4-6 (computing – engineering),4-3 (computing – chemistry), 8-

3 (technology – chemistry), and 7-3 (mathematical sciences-chemistry). There was no evidence of 

such differences between the other groups. 

 

Table 34 Data-level: Pairwise comparisons of discipline (Kruskal-Wallis test)  

Pairwise Comparisons of Discipline 

Sample 1-Sample 2 Test Statistic Std. Error Std. Test Statistic Sig. Adj. Sig.a 

4-8 -25.371 15.957 -1.590 .112 1.000 

4-7 -39.566 15.365 -2.575 .010 .281 

4-5 -72.473 16.132 -4.493 .000 .000 

4-2 77.807 15.365 5.064 .000 .000 

4-1 82.193 16.320 5.036 .000 .000 

4-6 -86.297 16.522 -5.223 .000 .000 

4-3 108.611 15.957 6.806 .000 .000 

8-7 14.195 15.827 .897 .370 1.000 

8-5 47.103 16.573 2.842 .004 .125 

8-2 52.437 15.827 3.313 .001 .026 

8-1 56.823 16.755 3.391 .001 .019 

8-6 60.926 16.952 3.594 .000 .009 

8-3 83.240 16.403 5.075 .000 .000 
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7-5 32.907 16.003 2.056 .040 1.000 

7-2 38.241 15.229 2.511 .012 .337 

7-1 42.627 16.192 2.633 .008 .237 

7-6 46.731 16.396 2.850 .004 .122 

7-3 69.045 15.827 4.363 .000 .000 

5-2 5.334 16.003 .333 .739 1.000 

5-1 9.720 16.922 .574 .566 1.000 

5-6 -13.824 17.117 -.808 .419 1.000 

5-3 36.138 16.573 2.181 .029 .818 

2-1 4.386 16.192 .271 .786 1.000 

2-6 -8.490 16.396 -.518 .605 1.000 

2-3 -30.803 15.827 -1.946 .052 1.000 

1-6 -4.104 17.294 -.237 .812 1.000 

1-3 -26.417 16.755 -1.577 .115 1.000 

6-3 22.314 16.952 1.316 .188 1.000 

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. 

 Asymptotic significances (2-sided tests) are displayed. The significance level is .05. 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests. 

 

  

Table 35 to 37 display the article-level author self-citation outcomes. The dependent 

variable was the article-level author self-citation rate. Group 6 (engineering) had the highest 

mean values and group 7 (mathematical sciences) the lowest. 

Table 35 Article-level: Self-citation rate descriptive statistics for each discipline  

Descriptives 

ArticleSelfCiteRate   

 N Mean Std. Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum Lower Bound Upper Bound 

1 23 .0474 .04002 .00835 .0301 .0647 .00 .14 

2 29 .0352 .02444 .00454 .0259 .0445 .00 .10 

3 25 .0808 .06608 .01322 .0535 .1081 .00 .26 

4 28 .0032 .01249 .00236 -.0016 .0081 .00 .06 

5 24 .0396 .04298 .00877 .0214 .0577 .00 .17 
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6 22 .0732 .08566 .01826 .0352 .1112 .00 .32 

7 29 .0197 .02612 .00485 .0097 .0296 .00 .09 

8 25 .0200 .04509 .00902 .0014 .0386 .00 .22 

Total 205 .0383 .05204 .00363 .0311 .0455 .00 .32 

 

Table 36 displays the results of the independent-samples Kruskal-Wallis test used to examine 

the author self-citation rate across disciplines. Based on the results, thirty-five authors were 

removed, leaving 205 to be analyzed. 

 

Table 36 Article-level: Independence-sample Kruskal-Wallis test (Self-Citation-Rate across 

discipline) 

Independent-Samples Kruskal-Wallis Test 

Summary 

Total N 205 

Test Statistic 67.749a 

Degree Of Freedom 7 

Asymptotic Sig.(2-sided test) .000 

a. The test statistic is adjusted for ties. 

 

Table 37 displays the pairwise comparisons of disciplines using the independent-samples 

Kruskal-Wallis at the article-level. The distribution of ArticleLevelSelfCiteRate (i.e., author self-

citations) at this level differed across disciplines. Based on these results, the null hypothesis (𝐻0 : 

the distribution of ArticleLevelSelfCiteRate is the same across disciplinary categories) as rejected 

because, again, the p value, 000, was less than 0.01 (p <0.01).  

Several groups from the multiple pairwise comparison tests by discipline showed significant 

differences (p < 0.01) for ArticleLevelSelfCitationRate at the article-level. Thus, the difference 

between data and article-level was 4-6 (computing – engineering), which was added at the article-

level. Groups showing significant differences were 4-5 (computing – earth sciences), 4-1 
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(computing – astronomy/physics), 4-2 (computing – biological sciences), 4-6 (computing – 

engineering),4-3 (computing – chemistry), 4-6 (computing – engineering), 8-3 (technology – 

chemistry), and 7-3 (mathematical sciences – chemistry). 

Table 37 Article-level: Pairwise comparisons of discipline (Kruskal-Wallis test) 

Pairwise Comparisons of Discipline 

Sample 1-Sample 2 Test Statistic Std. Error Std. Test Statistic Sig. Adj. Sig.a 

4-8 -29.284 15.947 -1.836 .066 1.000 

4-7 -39.395 15.355 -2.566 .010 .288 

4-5 -68.631 16.122 -4.257 .000 .001 

4-2 76.740 15.355 4.998 .000 .000 

4-1 82.334 16.309 5.048 .000 .000 

4-6 -84.851 16.511 -5.139 .000 .000 

4-3 107.304 15.947 6.729 .000 .000 

8-7 10.111 15.817 .639 .523 1.000 

8-5 39.347 16.562 2.376 .018 .490 

8-2 47.456 15.817 3.000 .003 .076 

8-1 53.050 16.745 3.168 .002 .043 

8-6 55.566 16.942 3.280 .001 .029 

8-3 78.020 16.392 4.760 .000 .000 

7-5 29.236 15.993 1.828 .068 1.000 

7-2 37.345 15.220 2.454 .014 .396 

7-1 42.939 16.182 2.653 .008 .223 

7-6 45.455 16.386 2.774 .006 .155 

7-3 67.909 15.817 4.293 .000 .000 

5-2 8.109 15.993 .507 .612 1.000 

5-1 13.703 16.911 .810 .418 1.000 

5-6 -16.220 17.106 -.948 .343 1.000 

5-3 38.673 16.562 2.335 .020 .547 

2-1 5.594 16.182 .346 .730 1.000 

2-6 -8.111 16.386 -.495 .621 1.000 

2-3 -30.564 15.817 -1.932 .053 1.000 

1-6 -2.517 17.283 -.146 .884 1.000 

1-3 -24.970 16.745 -1.491 .136 1.000 

6-3 22.454 16.942 1.325 .185 1.000 
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Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. 

 Asymptotic significances (2-sided tests) are displayed. The significance level is .05. 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests. 

 

To summarize the results relating to RQ 3: 

• The author self-citation and recitation rates were very low (i.e., 4% average) in STEM fields. 

• The author self-citation, including recitation, rates differed slightly between the data-level (i.e., 

research data) and bibliographic-level (i.e., articles). 

• Associations between and across shared research data and author self-citation and recitation 

were observed at the article level. Certain disciplines showed significant differences regarding 

author self-citation rates. The same groups with significant differences at both the data and 

article-level were (1) computing – earth sciences, (2) computing – astronomy/physics, (3) 

computing – engineering and (4) computing – chemistry. A difference between data-level and 

article-level associations was observed for computing – engineering. Two groups displaying 

significant differences at the article-level and not included at the data-level were computing – 

engineering.  

 

4.2.4. RQ4: How do data reuse practices differ across STEM disciplines? 

RQ4 was formulated to address the actual data reuse practices in data citation at the article- 

and discipline-levels. I combined automatic text-searching techniques with manual content 

analysis that involved counting the mentions of research data and citations in the full text of article 

for each discipline. 

• Objective: To examine data reuse practices in various STEM fields. 
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I gained direct insight into formal and informal data citation based on data reuse in STEM 

subjecting the full text of articles to semi-automated content analysis. The citation processes 

considered were formal and informal. Formal citations appeared in the references section of 

articles indexed by the WoS. The assumption was that sharers are more likely to receive scholarly 

credit for their data in the form of a recorded citation when references to appear in the references 

section. Informal citation refers to situations in which shared data is acknowledged outside of the 

references section such as in the acknowledgements section as a scholar’s courtesy (Cronin, 1995; 

Cronin, 2001) or in passing in the main text. Citation databases such as the WoS do not index 

informal references in published articles, and formal citation has been found to be low in some 

disciplines. Thus, for example, in 2014, only around 12% of data citations in oceanography articles 

were formal, the other88% being informal (Belter, 2014).  

By examining over 15,000 instances in 705 articles in which data sharing and reuse were cited, 

I determined that research data were widely cited informally in the main text, especially in the 

methodology section. This finding suggests that the total number of data mentions for data sharing 

and reuse, both formal and informal, should be taken into account in order to assess the impact of 

research data in scientific disciplines accurately. 

Table 38 presents an overview of the instances of formal and informal data citation related to 

data reuse and sharing. Again, formal data citation of data sharing and reuse (9.6%) occurred less 

frequently than informal data citation (90.4%) in the STEM fields. Further, the frequency of data 

reuse (51.1%) was similar to that of data sharing (50.7%)- simultaneous -data reuse and sharing 

were not counted. Documentation of data reuse and sharing was fount most frequently in the main 

text (72.4%) of the associated literature of research data especially in the methods section of full 

text articles, followed by supplementary material (10.5%), and references (9.6%). Neither version 
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numbers nor permanent identifiers such as DOIs, were observed in the formal data citations, nor 

was version information included as part of the titles of the articles.



 

 

1
4
7
 

Table 38 Location and practices for data reuse and sharing in STEM fields 

citation type location in journals data reuse 

data reuse/ 

repeat 

data reuse/ 

sharing 

data 

sharing 

data 

sharing/ 

repeat 

total 

informal  

data citation 

(90.4%) 

abstract (0.9%) 14 4 0 5 0 23 

acknowledgments (3.6%) 56 17 0 20 2 95 

footnotes (3%) 41 5 0 27 7 80 

main text (72.4%) 1,002 394 15 407 112 1,930 

supplementary material 

(10.5%) 

45 12 0 196 27 280 

formal data 

citation (9.6%)  

references (9.6%) 

 

204 31 0 20 1 256 

totals 1362 463 15 675 149 2,664 
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Table 39 displays the comparative analysis of informal data citation vs. formal data citation 

in bibliographies in STEM fields. The rates were found to vary across disciplines, but informal 

data citation was, again, more common than formal data citation in STEM fields. 

Table 39 Comparative analysis of informal data citation vs. formal data citation in bibliographies 

in STEM 

discipline 

 

informal data citation 

(total data citations, 

percentage) 

formal data citation  

(total data citations, 

percentage) 

astronomy/physics 338 (98%) 9 (2%) 

biological sciences 1,342 (95.4%) 65 (4.6%) 

chemistry 137 (93.2%) 10 (6.8%) 

computing 90 (86.5%) 14 (13.5%) 

earth sciences 228 (86.4%) 36 (13.6%) 

engineering 45 (69.2%) 20 (30.8%) 

mathematical sciences 115 (60.9%) 52 (31.1%) 

technology 113 (69.3%) 50 (30.7%) 
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Tables 40 to 45 demonstrate formal and informal data citation by each discipline in detail. 

Viewing the data citation phenomenon independently, I observed disciplinary differences sharing 

and reuse across STEM disciplines. (Once again, simultaneous data reuse and sharing were not 

counted for any of the disciplines). 

Table 40 summarizes these results for astronomy/physics. Informal data citation (98%) was 

49 times more frequent than formal data citation (2%), while there was relatively little difference 

between the frequencies of data reuse (40.9%) and data sharing (46.4%). These latter practices 

were cited most frequently in the main text (81%), and occasionally in footnotes (7.2%) or 

supplementary material (4.3%). 
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Table 40 Location and practices for data reuse and sharing in astronomy/physics  

citation 

type 

location in 

publications 

data reuse 

data reuse/ 

repeat 

data reuse/ 

sharing 

data sharing 

data sharing/ 

repeat 

totals 

informal  

data citation 

(98%)  

abstract (2%) 5 1 0 1 0 7 

acknowledgments 

(2.9%)  

8 1 0 1 0 10 

footnotes (7.2%) 14 1 0 10 0 25 

main text (81%) 113 33 1 129 5 281 

supplementary 

material (4.3%) 

0 0 0 14 1 15 

formal  

data citation 

(2%) 

references (2.6%) 2 1 0 6 0 9 

totals 142 37 1 161 6 347 
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Table 41 summarizes these results for the biological sciences. Informal data citation 

(95.4%) was found to be around 20 times more frequent than formal (4.6%), consistent with the 

previous findings (Park, You, & Wolfram, 2018). Data reuse (47.8%) occurred more frequently 

than data sharing (22.1%), and both practices were cited most frequently in the main text (75.6%) 

and supplementary material (13.4%) or references (4.6%).  
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Table 41 Location and practices for data reuse and sharing in biological sciences  

citation type 

location in 

publications 

data reuse 

data reuse/ 

repeat 

data reuse/ 

sharing 

data 

sharing 

data 

sharing/repeat 

totals 

informal  

data citation 

(95.4%) 

abstract (0.9%) 7 3 0 3 0 13 

acknowledgments 

(3.3%) 

24 9 0 11 2 46 

footnotes (2.2%) 20 4 0 5 2 31 

main text (75.6%) 529 274 8 169 84 1,064 

supplementary material 

(13.4%) 

40 12 0 120 16 188 

formal  

data citation 

(4.6%) 

references (4.6%) 52 9 0 4 0 65 

totals 672 311 8 311 105 1,407 
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Table 42 summarizes the results for chemistry. Informal data citation (93.2%) occurred around 

14 times more frequently than formal (6.8%), and data reuse (29.3%) occurred less frequently than 

data sharing (50.3%).  The latter practices were cited most often in the main text (49%) and 

supplementary material (35.4%). 
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Table 42 Location and practices for data reuse and sharing in chemistry  

citation type 

location in 

publications 

data reuse 

data reuse/ 

repeat 

data reuse/ 

sharing 

data 

sharing 

data sharing/ 

repeat 

totals 

informal  

data citation 

(93.2%) 

abstract (0%) 0 0 0 0 0 0 

acknowledgments 

(4.1%) 

3 0 0 3 0 6 

footnotes (4.8%) 0 0 0 5 2 7 

main text (49%) 32 6 1 22 11 72 

supplementary material 

(35.4%) 

3 0 0 41 8 52 

formal  

data citation 

(6.8%) 

references  

(6.8%) 

5 2 0 3 0 10 

totals 43 8 1 74 21 147 
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   Table 43 summarizes the results for computing, in which informal data citation (86.5%) 

occurred around 4 times more frequently than formal (13.5%), and data reuse (68.3%) was more 

frequent than data sharing (19.2%) These latter practices were most often cited in the main text 

(75%) and occasionally in the references (13.5%) or supplementary material (9.6%).  
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Table 43 Location and practices for data reuse and sharing in computing  

citation type 

location in 

publications 

data reuse 

data 

reuse/ 

repeat 

data 

reuse/ 

sharing 

data 

sharing 

data 

sharing/ 

repeat 

totals 

informal  

data citation (86.5%) 

abstract (0%) 0 0 0 0 0 0 

acknowledgments (1%) 1 0 0 0 0 1 

footnotes (1%) 0 0 0 1 0 1 

main text (75%) 57 10 2 9 0 78 

supplementary material 

(9.6%) 

0 0 0 10 0 10 

formal data citation  

(13.5%) 

references (13.5%) 13 1 0 0 0 14 

totals 71 11 2 20 0 104 
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Table 44 summarizes these results for the earth sciences, in which informal data citation 

(86.4%) occurred around 6 times more frequently than formal (13.6%), and data reuse (65.2%) 

was around 3 times more frequent than data sharing (21.2%). The latter practices were cited most 

often in the main text (71.6%) and occasionally in the references (13.6%) and acknowledgments 

(10.2%). Formal data citation, mostly related to data reuse, was relatively high in the earth sciences 

compared with other disciplines.  
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Table 44 Location and practices for data reuse and sharing in earth sciences  

citation type 

location in 

publications 

data reuse 

data 

reuse/ 

repeat 

data 

reuse/ 

sharing 

data 

sharing 

data 

sharing/ 

repeat 

totals 

informal  

data citation (86.4%) 

abstract (0.4%) 1 0 0 0 0 1 

acknowledgments 

(10.2%) 

17 7 0 3 0 27 

footnotes (1.9%) 1 0 0 3 1 5 

main text (71.6%) 132 39 3 12 3 189 

supplementary material 

(2.3%) 

1 0 0 5 0 6 

formal data citation 

(13.6%) 

references (13.6%) 20 11 0 5 0 36 

totals 172 57 3 28 4 264 
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Table 45 summarizes these results for engineering, in which informal data citation (69.2%) 

was more frequent than formal (30.8%) but relatively less frequent than most STEM fields. Data 

reuse (56.9%) was more than 3 times higher than data sharing (18.5%). in the latter practices were 

cited most often in the main text (64.6%), references (30.8%) and rarely in the footnotes (3.1%).  
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Table 45 Location and practices for data reuse and sharing in engineering  

citation 

type 

location in publications data reuse 

data reuse/ 

repeat 

data reuse/ 

sharing 

data 

sharing 

data sharing/ 

repeat 

totals 

informal  

data 

citation 

(69.2%) 

abstract (0%) 0 0 0 0 0 0 

acknowledgments (1.5%) 1 0 0 0 0 1 

footnotes (3.1%) 0 0 0 1 1 2 

main text (64.6%) 24 8 0 9 1 42 

supplementary material 

(0%) 

0 0 0 0 0 0 

formal data 

citation 

(30.8%) 

references  

(30.8%) 

12 6 0 2 0 20 

totals 37 14 0 12 2 65 
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Table 46 summarizes these results for the mathematical sciences, in which informal data 

citation (68.9%) was around twice as frequent as formal (31.1%) but relatively less frequent than 

in most STEM fields. Data reuse (78.4%) was around 5 times more frequent than data sharing 

(14.4%) The latter practices were cited most often in the main text (61.7%), occasionally in the 

references (31.1%), and rarely in the supplementary material (3%) or footnotes (2.4%).   
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Table 46 Location and practices for data reuse and sharing in mathematical sciences  

citation type 

location in 

publications 

data reuse 

data reuse/ 

repeat 

data reuse/ 

sharing 

data 

sharing 

data sharing/ 

repeat 

totals 

informal  

data citation 

(68.9%) 

abstract (0%) 0 0 0 0 0 0 

acknowledgments 

(1.8%) 

2 0 0 1 0 3 

footnotes (2.4%) 4 0 0 0 0 4 

main text (61.7%) 72 6 0 21 4 103 

supplementary material 

(3%) 

1 0 0 2 2 5 

formal data 

citation 

(31.1%) 

references  

(31.1%) 

52 0 0 0 0 52 

totals 131 6 0 24 6 167 
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Table 47 summarizes these results for technology, in which informal data citation (69.3%) 

was around twice as frequent as formal (30.7%) but relatively less frequent than in most STEM 

fields. Data reuse (57.7%) was around twice as frequent as data sharing (27.6%). The latter 

practices were most often cited in the main text (62%) or references (30.7%) and rarely in the 

footnotes (3.1%) 
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Table 47 Location and practices for data reuse and sharing in technology  

citation type 

location in 

publications 

data reuse 

data 

reuse/ 

repeat 

data 

reuse/ 

sharing 

data 

sharing 

data 

sharing/ 

repeat 

totals 

informal  

data citation (69.3%) 

abstract (1.2%) 1 0 0 1 0 2 

acknowledgments 

(0.6%) 

0 0 0 1 0 1 

footnotes (3.1%) 2 0 0 2 1 5 

main text (62%) 43 18 0 36 4 101 

supplementary material 

(2.5%) 

0 0 0 4 0 4 

formal data citation 

(30.7%) 

references  

(30.7%) 

48 1 0 1 0 50 

totals 94 19 0 45 5 163 
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To summarize the results relating to RQ4:  

• Formal data citation of data sharing and reuse at the bibliographic-level (i.e., articles in the 

WoS) accounted for less than 10% of all data citations, the vast majority being informal.   

• Data citation practices were diverse across STEM disciplines.  

• The frequency of informal compared with formal data citation was very high in 

astronomy/physics (98%), the biological sciences (95.4%), chemistry (93.2%), computing 

(86.5%), and the earth sciences (86.4%). By contrast, engineering (69.2%), the mathematical 

sciences (60.9%), and technology (69.3%) had relatively low levels of informal data citation. 

• The main text was the most common location for the documentation of data sharing and reuse. 

• The frequency of data sharing and reuse practices in the main text varied across disciplines, 

from relatively high in astronomy/physics (81%), the biological sciences (75.6%), earth 

sciences (71.6%), engineering (64.4%), and technology (61.7%) to relatively low in chemistry 

(49%).  

 

4.2.5. RQ5: To what extent do STEM disciplines support interdisciplinary data citation? 

Table 48 displays the journals for pairs of STEM disciplines with the potential for shared 

knowledge discovery and scientific measurement in the future. Examination of the journals (i.e., 

formal publication venues) serving the 8 disciplines that were the focus of this study revealed other 

aspects of their relations. Thus, for example, the 589 journals in the biological sciences displayed 

a relatively high degree of interdisciplinarity based on the number of fields cited in their articles.  

Research in STEM, as discussed in detail earlier, is no longer limited to a single field, but is 

rather often interdisciplinary nature. As just mentioned, and as Table 48 indicates, the biological 
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sciences received the most citations among the eight fields – and is noteworthy that this result 

reflects the disciplinary breadth of these citations as well. The results also indicated that 

researchers in some STEM disciplines tended not to collaborate with those in other disciplines. 

Thus, no interdisciplinarity was observed for engineering and relatively little for chemistry or 

computing. The phenomenon was not observed in the dedicated journals. The average number of 

cited subject categories per journal varied depending on the category.  

Table 48 Total number of citations from other fields in STEM 

field sum of records 

astronomy/physics 53 

biological sciences 6,014 

chemistry 30 

computing 1 

earth sciences 591 

engineering 0 

mathematical sciences 279 

Technology 54 

grand total 7,007 

 

Table 49 displays the total number of citations of astronomy/physics by other fields. This 

discipline as constructed in this study is by nature interdisciplinary, being the integration of 

astronomy and physics. In astronomy/physics, then, 53 citations in 18 articles fell into 7 subject 
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categories. Researchers in astronomy/physics cited sources within and beyond their own subject 

areas, in the latter case mainly ones in neighboring rather than distant disciplines.  

Table 49 Total number of citations from other fields in astronomy/physics 

field sum of records 

biology & biochemistry 1 

chemistry 11 

engineering 2 

pharmacology & toxicology 17 

Physics 2 

plant & animal science 7 

space science 13 

totals 53 

 

Table 50 indicates that the biological sciences received the most citations from other fields in 

other STEM fields, meaning that researchers in this field engaged particularly actively in 

interactions with these other disciplines. Research data tended to be more cited by other papers 

from diverse disciplines in biological sciences. Specifically, research data in the biological 

sciences were cited by 6,014 articles across 19 subject categories. This indicated that researchers 

this discipline had access to the greatest diversity of opinions and thinking among the eight STEM 

disciplines studied here. 
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Table 50 Total number of citations from other fields in biological sciences 

field sum of records 

agricultural sciences 29 

biology & biochemistry 508 

chemistry 1 

clinical medicine 2,365 

computer science 2 

engineering 5 

environment/ecology 50 

geosciences 24 

Immunology 502 

materials science 3 

mathematics 4 

microbiology 468 

molecular biology & genetics 570 

multidisciplinary 509 

neuroscience & behavior 204 

pharmacology & toxicology 211 

plant & animal science 165 

psychiatry/psychology 60 

social sciences, general 334 

totals 6,014 
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Chemistry did not receive citations from other fields. Table 51 provides evidence that other 

disciplines did not cite chemistry-based data. The small number of recorded citations indicates that 

the chemistry data were largely siloed.  

Table 51 Total number of citations from other fields in chemistry 

field sum of records 

chemistry 30 

totals 30 

 

Table 52 displays the total times of citation computing received by other fields. Data 

citation practice in computing was rare and only from one other discipline. Research data were 

cited by only one article in physics in the WoS. 

Table 52 Total number of citations from other fields in computing 

field sum of records 

physics 1 

totals 1 

 

The findings presented in Table 53 indicates that researchers in other fields cited work in the 

earth sciences, both those from neighboring disciplines (e.g., agricultural sciences and geosciences) 

and more distant ones (e.g., psychiatry/psychology and the social sciences). This finding deserves 

further exploration -variations in citation practices over time and owing to differences in gender, 

age, and geographical location were beyond the scope of this study (discussed below).  
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Citations of data from earth sciences research were quite diverse, occurring in 591 articles in 

16 subject categories in the WoS. Most of these data citation were from articles in geosciences 

journals (200 articles), followed by multidisciplinary (188 articles) and environment/ecology 

journals (81 articles).  

Table 53 Total times cited counts by other fields in earth sciences 

field sum of records 

agricultural sciences 10 

biology & biochemistry 2 

chemistry 5 

clinical medicine 9 

engineering 8 

environment/ecology 81 

geosciences 200 

immunology 11 

microbiology 5 

molecular biology & genetics 10 

multidisciplinary 188 

physics 1 

plant & animal science 42 

psychiatry/psychology 6 

social sciences, general 10 

space science 3 
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totals 591 

 

The findings presented in Table 54 indicate that research data in engineering were not cited 

by any articles in other subject categories in the WoS. This means that engineering was siloed and 

that data citation was not being practiced in engineering. 

Table 54 Total times cited counts by other fields in engineering 

field sum of records 

n/a n/a 

totals 0 

 

Table 55 displays the citation of data from research in the mathematical sciences cited by 

researchers in other fields. In fact, these other fields were numerous with the 279 citations 

representing 11 subject categories in the WoS. Data was mostly cited by articles in 

multidisciplinary (175 articles), followed by geosciences (28 articles) and environmental/ecology 

journals (15 articles). 

Table 55 Total times cited counts by other fields in mathematical sciences 

field sum of records 

biology & biochemistry 2 

clinical medicine 9 

environment/ecology 15 

geosciences 28 
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immunology 11 

microbiology 5 

molecular biology & genetics 10 

multidisciplinary 175 

plant & animal science 10 

psychiatry/psychology 6 

social sciences, general 8 

totals 279 

 

Table 56 displays the citation counts connecting other fields to technology, which amounted 

to 54 articles across 13 subject categories in the WoS. Research data were mainly cited in articles 

in clinical medicine (12 articles), multidisciplinary (12 articles), and plant & animal sciences 

journals (9 articles). 

Table 56 Total times cited counts by other fields in technology 

field sum of records 

agricultural sciences 1 

biology & biochemistry 2 

chemistry 1 

clinical medicine 12 

engineering 2 

geosciences 5 

materials science 1 
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microbiology 1 

molecular biology & genetics 4 

multidisciplinary 12 

pharmacology & toxicology 1 

physics 3 

plant & animal science 9 

totals 54 

 

Table 57 displays the diversity and interdisciplinarity across STEM fields as an indicator of 

balance with respect to interdisciplinary data citation. This analysis was conducted to measure 

interdisciplinarity comparatively. In this study, variety refers to the number of cited fields in the 

WoS and balance to the distribution of citations among fields in the WoS. I applied the ESI fields 

in order to measure interdisciplinarity based on the diversity of an article’s cited literature as 

indicated by the variety of ESI fields of the citing journals. I applied the Gini-index in order to 

measure balance (Nijssen, Rousseau, & van Hecke, 1998). However, as discussed by Leydesdorff 

(2018), the Gini-index does not measure variety, so I applied Leydesdorff’s formula in order to 

measure interdisciplinarity using one formula in terms of the three aspects of diversity: (again, 

variety, balance and disparity). 

Based on the citations received from other fields (i.e., interdisciplinarity based on the diversity 

of an article’s cited literature that focuses on the variety of journals cited), the biological sciences 

received the most citations from other subject categories, followed by the earth sciences and 

technology. In order to measure inequality among STEM fields regarding interdisciplinary data 

citation, I applied Gini’s diversity index as a measure of concentration (i.e., of inequality or 
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balance), with 0 indicating complete equality and 1 complete inequality. Chemistry, computing 

and engineering showed complete equality (i.e., no concentration, meaning that the citations are 

equally distributed across journals). These three disciplines were then excluded from the 

measurement of diversity because they did not attract citations from more than one field.  Based 

on the disciplinary diversity in the references (i.e., the Gini-index), the mathematical sciences 

showed the most inequality (i.e., the most diversity), followed by astronomy/physics, the earth 

sciences, the biological sciences and technology, meaning that citations were not equally 

distributed across journals. For the Leydesdoff interdisciplinarity formula outcomes, the earth 

sciences showed the highest level of interdisciplinarity, though more fields cited work in the 

biological sciences. 

 

Table 57 Diversity and interdisciplinarity in STEM 

Discipline 

number of ESI 

fields 

Gini-index 

Leydesdorff’s 

interdisciplinarity 

calculation 

astronomy/physics 7 0.8173 0.1821 

biological sciences 19 0.7112 0.1695 

chemistry 1 1 0 

computing 1 1 0 

earth sciences 16 0.7852 0.2728 
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engineering 0 1 0 

mathematical 

sciences 

11 0.8229 0.0885 

technology 13 0.6987 0.1826 

 

These findings for RQ5, which relates to disciplinary knowledge exchange, provide support 

for a growing trend in interdisciplinary diffusion across research data, journal articles and research 

areas. 

To summarize: 

• Interdisciplinarity in data citation varied across STEM disciplines.  

• The biological sciences received the most citations from other disciplines, with research data 

having been cited by 6,014 journals across 19 subject categories in the WoS. Engineering, by 

contrast, showed no interdisciplinarity and chemistry and computing very little.   

• The earth sciences showed the greatest degree of interdisciplinarity based on Leydesdorff’s 

formula. Although it had fewer citing disciplines than the biological sciences, those citations 

were more evenly distributed.
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Chapter 5 DISCUSSION 

In this chapter, I discussed the main findings of this study. In doing so, I present answers to 

the five research questions regarding variation in data sharing and reuse practices and their impact 

on data citation varied across STEM fields (i.e., domain-specific or discipline-specific practices) 

and interdisciplinary data citation. The contributions made by and limitations of this study are also 

addressed in this chapter. 

Specifically, I discuss in turn - (1) data sharing, (2) data type, (3) data reuse, (4) author self-

citation and recitation, (5) disciplinary differences, and (6) interdisciplinarity. 

 

5.1. The impact of data sharing 

Data sharing has become increasingly common in the STEM fields in recent years. It was most 

frequent in the biological sciences, possibly owing to the relatively early adoption of data sharing 

requirements by the NIH (in 2003) compared with influential organizations in other fields (e.g., 

the NSF adopted such requirements in 2011). This finding is consistent with that of Piwowar and 

Chapman (2010), who observed more frequent data sharing in the biomedical fields than in others, 

again seemingly in connection with the implementation of the NIH’s data-sharing mandate.  

The finding that the frequency of data sharing varies across STEM disciplines raises the 

question of how the practice must be promoted. One approach would be to provide formal credit 

to data sharers that could be adduced as evidence of scholarly activity in professional contexts, 

such as consideration for tenure and promotion. The advisability of such an approach receives 

further support from the observation by Andreoli-Versbach and Mueller-Langer (2014) of both an 
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increase in the citation of articles published in journals that had mandatory data-sharing policies 

and changes in personal attitudes toward the open science movement, which promotes data sharing.  

Another finding was that data reuse was five times more frequent than data sharing in the 

mathematical sciences, while in chemistry the situation was reversed, with data sharing occurring 

twice as often as data reuse. A possible explanation for this finding is that perceptions of the 

importance of data sharing vary across disciplines. Thus, in one recent study, researchers in 

chemistry considered data sharing a crucial factor in novel scientific findings, while researchers in 

the mathematical sciences did not (Kim, 2013). 

It was further observed in the present study that each discipline relied on a few discipline-

specific repositories for data sharing, as indexed by the DCI. Such third-party digital repositories 

were preferred over the websites of journal publishers’ or individuals. For data sharers, the choice 

of a leading repository in which to preserve their research data and to receive formal scholarly 

credit can be a real concern and merits further investigation. One advantage of discipline-specific 

repositories is that users can quickly narrow their searches through tailored matches to data within 

that discipline. Researchers must, therefore, familiarize themselves with the controlled 

vocabularies and subject categories used in particular repositories. 

. 

5.2. The impact of author self-citation and recitation 

To the best of my knowledge, this is the first attempt to examine author self-citation and 

recitation in the context of data citation in the STEM fields. Author self-citation is the situation in 

which authors cite their own previous work in subsequent articles. In terms of specific statistics, 

the analysis showed that the average rates of author self-citation and recitation were similarly low 
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at the data-level (3.94%) and article-level (3.88%). This result could indicate that few researchers 

were reusing research data in general, or that they were reusing shared data other than their own. 

It is also important to keep in mind that only recently have journals begun to implement data 

sharing policies, PLoS ONE’ in 2014 (Silva, 2014) and Nature Research (2017), Science (2017), 

and Elsevier (2017) following suit in 2017. The time required to adjust to these policies may in 

part explain the low rate of author self-citation and recitation (an average frequency of 3.91% for 

both practices. 

 

5.3. The impact of data type 

With one exception, all of the data types identified in this study were quantitative in nature. 

This finding is attributable to the fact that qualitative data tend to be viewed with skepticism in the 

STEM fields while being more accepted in the social sciences (Mason, 2007; Mauthner & Parry, 

2009; Yoon, 2014). There may also be ethical considerations regarding personally identifiable data 

in some fields, such as biomedicine. The one piece of qualitative data identified here was an 

interview transcript. When such documents are shared, direct identifiers—names, email addresses, 

date of birth, addresses, and so on—must be removed in order to preserve the privacy of the 

participants. Indirect identifiers, which make it possible to identify individual participants or 

patients by crossing the data with other datasets, must also be removed. Thus, for instance, the 

sharing of interview transcriptions might require reading through many pages of text from multiple 

participants to see whether they mention names or key dates, the latter of which could serve as 

indirect identifiers, as in the case of admittance and delivery dates in hospitals. Other 

considerations related to the sharing of qualitative data include confidentiality and disclosure risks 

for research involving minors, these again being issues that tend to arise in the context of the social 
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sciences. Jeng (2017) has noted such other challenges as the low awareness, the time and effort 

required for data preservation, and the confidentiality concerns and confidence of individual 

primary investigators. These latter considerations and challenges pertain to both the social sciences 

and STEM fields; and indeed the open science movement encourages data sharing across all 

disciplines. In any cases, the conflicting ethical considerations of confidentiality and open science 

can complicate data reuse practices 

Redundancies in the classification of data types were also observed. Thus, for instance, the 

data type “dataset” was also categorized as “data/dataset”, so that  the classification scheme used 

in Data-Planet caused classification redundancies between two levels regarding the resource types 

in DataCite.com specifically the resource type “datatype” was also found as the subtype “dataset” 

in the latter repository owing to inconsistencies in the two classified records based on the 

repository’s scheme. Further, some repositories, such as E-Periodica and ETH E-Collection, have 

only “text” records (Robinson-Garcia, Mongeon, Jeng, & Costas, 2017). Although such 

inconsistencies are beyond the scope of this study, they deserve further study. 

The most-cited data types varied depending on the discipline (Table 13). The greatest variety 

in this respect was observed in the biological sciences and the earth sciences and the least in 

engineering and the mathematical sciences. The widespread use of multiple data types by various 

researchers across diverse disciplines has made the assessment of the integrity and trustworthiness 

of research data extremely complicated when it comes to documenting, tracking and maintaining 

the data in a single workflow (Darch et al., 2015).  

Accurate classification of data types is, then, a crucial part of facilitating data sharing and 

reuse and, therefore, of scientific reproducibility. Classifying data types can, however, be time-

consuming for data sharers because the process requires prior knowledge of the data types. What 
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appears to be needed in order to avoid imposing an additional workload on data sharers is an 

automatic (i.e., machine-actionable) identification system that uses a standardized data type across 

disciplines. Imposing this level of uniformity would not be easy. To begin with machine-actionable 

classification schemes obviously require machine-readable definitions and datasets that include 

dynamic data can have multiple structures. Retrieving the needed data types from a system (e.g., 

a federated system) for data reusers would be especially challenging in the absence of precision 

with regard to the data types shared. Interfaces and technologies that span multiple disciplines 

would need to be developed for the reanalysis of various data types. Data visualization in a 

federated system could, however, serve as a tool for reanalysis by accessing the various data types 

in distributed repositories that, for instance, rely on cloud storage. Additionally, more detailed 

steps regarding interoperability across cyberinfrastructures and shared technologies of a federated 

system need to be considered on an ongoing basis.  

 

5.4. The impact of data reuse  

A further finding is that formal citation was not common in scholarly publications in the 

STEM fields when data were reused (See Table 38). At the disciplinary community level, 

organizations often lack standard data citation guidelines and the guidelines that are in place differ 

from one organization to the next. Even when data are cited, the citation rarely provides accurate 

access information linked to actual data. In the assessment of formal data citation, the 

heterogeneous and unstructured nature of research data suggests few straightforward solutions. 

Style manuals, such as the one published by the American Psychological Association (APA) and 

the Chicago Manual of Style, though, do provide guidelines for the formal citation of datasets, the 

APA’s having done so since 1983(American Psychological Association, 1983). In this study, few 
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instances of data citations were found to follow such style guidelines by providing permanent 

identifiers such as DOIs. This finding indicates a lack of awareness on the part of researchers that 

data are as much a citable source as more traditional material, such as articles. The guidelines for 

research data provided by the style manuals evolve in step with publishers’ requirements for the 

formatting citations – a situation that highlights the importance of assigning a DOI to research data 

with its citing articles (i.e., the landing pages for the research data). Among the challenges of using 

DOIs as permanent identifiers is that the fact that not all publishers turn the DOI-prefixed form 

into a hyperlink, for which reason Hourclé, Chang, Linares and Palanisamy (2012) recommended 

using the HTTP URL form (http://dx.doi.org/10...).  

Informal data citation was found to be more common than formal data citation in the STEM 

fields (Table 38). It sometimes occurred in the acknowledgments section of articles, which is 

where, according to Cronin (1995; 2001), authors express and discuss norms, patterns, and trends. 

In any case, the challenge of the large amount of labor required to collect data from unstructured 

text in published literature. In sum, the acknowledgments section is a poor choice as a place to cite 

data because of inconsistent formatting and other practical difficulties. 

Time gaps for data reuse impact need to be considered. Previous studies have reported that 

the increased citation rate in core astrophysical journals such as Astrophysical Journal published 

in 2010 articles are linked to research data (Drachen, Elleggard, Larsen, & Fabricius, 2016). 

Whether the finding here that the lowest rate of formal data citation occurred in astronomy/physics 

(2.59%) is due to the time gaps (i.e., a 5-year time span by Drachen et al. vs. 15-year time span in 

the present study) is again beyond the scope of this dissertation and left for future study. 

Attention also needs to be given to measurement of the reuse of subsets of data. A possible 

approach would be to use the precise version and time stamp of a dataset as its permanent identifier. 

http://dx.doi.org/10
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By way of precedent, Katz and Smith (2015) proposed, as a means to give partial credit to indirect 

contributors in the context of software, a form of transitive credit that would involve assigning 

varying amounts of credit for both research software and contributors using machine-readable 

JavaScript Object Notation- Linked Data (JSON-LD). 

The citation of data reuse at the data level (i.e., the establishment of usage metrics for research 

data) becomes problematic when the data reside behind institutional or corporate firewalls. Thus, 

for instance, corporations (i.e., reusers) may download open data from a repository and then reuse 

it while it is stored on their own in-house systems. In the absence of an active script in the open 

data itself that allows for the counting of every single reuse, even the application of offline reuse 

metrics poses a challenge. This challenge might be surmountable through the use of event-based 

data usage metrics that standardizes the ways in which downloads and views are counted (Fenner 

et al., 2018) and including usage statistics that keep track of access events (DataCite, 2018, Data 

Observation Network for Earth (2018). Whether a partial download (e.g., involving data breakage 

owing to massive volumes of data) or live streaming of data should be weighted equally as data 

usage for reuse metrics is a related issue deserving consideration. 

5.5. The impact of disciplinary differences 

Data sharing and reuse practices and tendencies were found to be largely field-specific, with 

particular skewedness in the biological sciences. The prevalence of data sharing in genomics 

(which was classified among the biological sciences in this study), for instance, is a well-

established phenomenon attributable to the relatively early development of the necessary 

infrastructure in this field (Anagnostou et al., 2015; Choudhury, Fishman, McGowan, & Juengst, 

2014; Kaye, Heeney, Hawkins, de Vries, & Boddington, 2009; Mongeon, Robinson-García, Jeng, 

& Costas, 2017). The relatively high rate of data sharing in the biological sciences and the 
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disciplinary unevenness of sharing across STEM fields should be interpreted with care, however, 

for the extensive use of proprietary or sensitive data can complicate data sharing in certain 

disciplines, such as medicine, as mentioned earlier. In any case, the variety of data types needs to 

be considered when accounting for disciplinary differences in data sharing. 

 

5.6. The impact of interdisciplinarity 

Scholars have shown increased interest in understanding the mechanisms that facilitate 

knowledge transfer across disciplines. The study of interdisciplinarity and knowledge diffusion in 

scholarly communication helps to clarify factors that contribute to gains and losses in knowledge 

over time and within and across disciplines. However, there has been almost no research into 

interdisciplinary data citation to date, though the impact of interdisciplinarity on research data has 

studied in terms of the role of article-level citation networks on the diffusion of research data across 

all subject categories in the WoS.  

In this study, the biological sciences received the most citations from the most fields among 

the STEM disciplines analyzed (see Table 50). To be specific, roughly 86% of research data 

citations in the biological sciences came from articles published in other fields in the WoS. This 

result indicates that an enormous amount of research data used in the biological sciences was also 

used in research published in journals serving other disciplines. Another question thus arises that 

merits further study regarding whether certain disciplines tend in general to produce more citations 

than others. 

Both computing (with a single citation from another discipline) and engineering (with no 

recorded data citations at all) were revealed in this study to be siloed disciplines when it comes to 
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data citation. This finding may be artifact of the indexing practices of WoS. If not, it appears that 

researchers in these fields were largely indifferent to or unaware of the availably of shared data. 

In this respect, neither computing nor engineering had an impact on published research in other 

disciplines.  

As seen in Table 53, this study revealed that practices of citations in the earth sciences 

occurred both in neighboring disciplines (e.g., in agricultural sciences and geosciences) and more 

distant ones (e.g., psychiatry/psychology and the social sciences). A previous study found, by 

contrast, that data in the earth sciences were cited primarily by journals in the physical sciences 

and multidisciplinary fields in Google Scholar (Chao, 2011), although both set of findings are 

consistent regarding the citations of earth sciences data in multidisciplinary journals. This result 

may be attributable to the fact that the other study addressed only publications included in NASA’s 

Global Change Master Directory (GCMD; https://gcmd.nasa.gov/), while this one examined all 

published and indexed journals in the WoS, a much broader range of material. Another study found 

that datasets in oceanography (which was treated as part of the earth sciences in this study) were 

highly cited by researchers, in naturally, oceanography but also those in the atmospheric sciences, 

geosciences, and multidisciplinary fields, also as indexed in the WoS (Belter, 2014); this finding 

is also consistent with the findings presented here. 

 

5.7. Limitations 

Though I sought in designing this study to mitigate every possible limitation, I nevertheless 

recognize that certain constraints need to be taken into consideration when evaluating its 

significance. To begin with, I focused on STEM fields, so the findings presented here are not 

necessarily relevant to citation practices in for example, the social sciences or humanities. In any 

https://gcmd.nasa.gov/
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case, it is hoped that this exploratory study has shed light on the tendencies of researchers in 

various STEM fields regarding the sharing, , reuse, and citation of research data. 

Owing to citation delays, it may be difficult to capture certain relationships among 

publications at the levels of data, article and discipline. There may also be concerns relating to the 

dependence of repositories on reports of findings. 

A further potential limitation of this study concerns the indexing feature of the DCI used here 

to identify formal citations. The DCI allows users to download a maximum of 100,000 records per 

discipline (as does the WoS), a number that may be insufficient to gather a representative sample. 

The focus here on STEM fields, in which such citation is most prevalent, was however, deemed 

reasonable given that data citation has only recently begun to be investigated. 

There is also some reason for concern with respect to potential bias in the ESI’s journal 

categories owing to its predefined category structure or taxonomy and to lack of consensus about 

the accuracy of the categorization systems used by particular journals (Wagner et al., 2011). As 

noted, all of the publications examined here were obtained from the WoS databases, so conference 

proceedings and papers were not included. Bias may likewise have resulted from the sampling 

rationale in terms of yielding a polarized sample given that I examined the work of only 30 prolific 

authors in each discipline; a significantly larger sample size would at least have allowed for a more 

robust analysis.  

Lastly, characteristics other than the data sharing requirements of funding agencies and 

publishers were not considered in this study. These unexamined characteristics include the sectors 

represented by the various funding sources (e.g., governmental agencies, private companies, or 

individuals), the ownership of research data (in the context of which publishers’ focus on 
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searchable platforms may conflict with funders’ desire to mandate management practices 

throughout the data life cycle), the age of shared data (thus the amount of time that elapses after 

data have been shared can influence digitization, loss, or changes in contact information), and 

technical obstacles to data sharing. 

 

5.8. Implications 

Despite these limitations, this exploratory study has helped to clarify the ways in which STEM 

researchers share, reuse, and cite research data and, most importantly, has captured the impact of 

data sharing and reuse on data citation in the STEM fields. Thus, it was revealed that the current 

reward system in STEM does not adequately recognize researchers’ data sharing and reuse, a fact 

with significant implications for research and practice. 

 

5.8.1. Practical implications 

Practical implications of the findings presented here for researchers, decision-makers, funding 

agencies, and publishers include the importance of providing incentives to data sharers, promoting 

the sharing and reuse of research data, and understanding the needs of researchers. This study can 

be of particular use in this regard because it takes into account the distinct characteristics of various 

disciplines. 

Much more work is needed to define best practices for research data sharing and reuse in the 

STEM fields, but it is clear enough that the awarding of formal scholarly credit varied greatly 

across disciplines. The insights offered here can thus be used to shape citation guidelines for 
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individual disciplines, again so as to help the various stakeholder—for example, decision makers 

at university repositories—to identify citable research data. 

This study also provides insights that should be of interest to project teams or companies that 

are currently developing data-level metrics databases regarding formal and informal data citation. 

Editors should be required to ensure that formal scholarly credit is given in the references section 

of articles. Further, based on the finding that formal data citation was twice as prevalent as informal 

data citation in engineering, the mathematical sciences, and technology, these disciplines should 

be consulted when journals formulate new policies. Thus, for instance, this study identified major 

repositories for each discipline in STEM fields (Table 16 and Table 17)k based on this finding, 

those who craft data policies for journals would be advised to include in them a list of suggested 

or recommended repositories. Authors who shared research data associated with their published 

articles in these major repositories can improve data citation opportunities by making their shared 

data visible and accessible. 

When it comes to incentivizing researchers to share data, institutions should consider data 

citations in tenure review or promotion decisions, since the sharing of data serves the community 

and advances scholarly research. Researchers who share their research data, for their part, need to 

make clear how they are to be cited. They must also, again, take care to remove any information 

in shared research data - especially qualitative data - that could be used to identify, for example, 

medical patients without their consent. 
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5.8.2. Methodological implications 

 As discussed, the mixed methods approach (combining quantitative and qualitative 

methods) used here represents a contribution to the development of a theoretical basis for the field 

of information studies. The methodological implications of this study also include the elaboration 

of a semi-automatic text searching technique, the use of the Kruskal-Wallis test to account for the 

different numbers in the co-author self-citation and recitation groups, and the measurement of 

interdisciplinary data citation using Leydesdorff’s calculation and the Gini-index.  

Taking a moment to examine these issues in greater detail, first, the combination of 

quantitative and qualitative approaches allowed for deep insight into the impact of data sharing 

and reuse on data citation across multiple disciplines. The combination of automatic text extraction 

with human assessment using indicating terms represents a response to the ongoing challenges of 

data citation with associated articles, in particular the need to minimize manual assessment of the 

full text. Though this method does not identify all informal citations in the associated full text, it 

can significantly accelerate their discovery, and it also identifies more general terms for use, since 

newly identified terms tend not to include discipline-specific jargon. The Kruskal-Wallis test, by 

incorporating the group and individual levels, served to reveal key perspectives on co-author self-

citation and recitation; no other study, to the best of my knowledge, has investigated both of these 

levels. Nor has another study applied the Gini-index and Leydesdorff’s calculation to the 

measurement of interdisciplinary data citation by combining disparity, variety, and balance into a 

single formula. 
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Chapter 6 CONCLUSION 

In this chapter, I summarize the findings and suggest directions for future study. This 

dissertation has examined the impact of data sharing and reuse on data citation in the STEM fields, 

issues that have been under-investigated in the literature. The results shed light on the future 

development of data citation and stand to improve understanding of the sharing of research data in 

scholarly communication, with particular attention to the impact of data sharing and reuse on data 

citation in the STEM fields in terms of data type, discipline, and self-citation. The five research 

questions, which were introduced in Chapter 1 (Section 1.3), are reproduced here for the sake of 

convenience and completeness:  

• RQ1: How prevalent is data sharing in various STEM disciplines as measured by formal 

data citation? 

• RQ2: What types of STEM research data are formally cited most often? 

• RQ3: How do author self-citation/recitation practices differ across STEM disciplines?)? 

• RQ4: How do data reuse practices differ across STEM disciplines? 

• RQ5: To what extent do the various STEM disciplines support interdisciplinary data 

citation? 

 

6.1. Summary of the study 

Each STEM discipline was found to have distinctive data sharing practices. Funding agencies 

played a major role in promoting data sharing in various STEM fields; thus, I observed marked 

increases in the frequency of data sharing after the NIH began requiring it. Data repositories 

likewise varied across disciplines, with the biological sciences tending to rely on governmental 
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repositories, the earth sciences on discipline-specific repositories, and the mathematical sciences 

on discipline-independent repositories. 

STEM researchers employed a wide array of data types; I documented some 454 in current 

use in the DCI. Quantitative research data were shared far more often than qualitative research 

data; in fact, only a single example of the latter, an interview transcript, was identified. Various 

data types were dominant across the individual STEM disciplines. Overall, the 10 most cited types 

in the DCI were data files, protein sequence data, crystallographic data, “blank” (that is, no specific 

data type provided by the record), software code, mass spectral data, crystal structure, molecular 

structure, Sequence Read Archive, filesets, and nuclear magnetic resonance. By discipline, the 

three most common types were, for astronomy/physics, mass spectral data, NMR results, and 

spectral data; for the biological sciences, RNA, protein sequence data, and SRA; for chemistry, 

crystal structure, crystallographic data, and molecular structure; for computing, software, code, 

and models; for the earth sciences, datasets, interactive resources, and GPS data; for engineering, 

test data, datasets, and GIS vector data; for the mathematical sciences, software, Matrix, and 

GEOID undulation on a grid; and for technology, datasets, filesets, and TIFF images. 

Regarding author self-citation and recitation, a slight difference was found (0.06%), with a 

frequency of 3.94% for data-level and 3.88% for bibliographic-level citations. The average author 

self-citation and recitation frequency was 3.91%. The differences between the rates were greatest 

in computing (1.68%) and least in engineering (0.03%). At the data-level, author self-citation and 

recitation was highest in chemistry (7.29%) and lowest in computing (0.42%). At the 

bibliographic-level, author self-citation and recitation were most frequent in chemistry (6.92%) 

and least frequent in technology (1.38%). 
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Looking at the associations for author self-citation and recitation, bibliographic-level self-

citations showed associations across various disciplines but, data-level self-citations did not. Some 

disciplines had no associations for self-citation. Disciplines that did not show associations with 

significant differences between the author self-citation and recitation rates were computing – earth 

sciences, computing – astronomy/physics, computing – biological sciences, computing – 

engineering and computing – chemistry, computing – engineering, technology – chemistry and 

mathematical sciences – chemistry at both the data and article levels. A difference was found in 

computing-engineering at the article level but not at the data-level. 

It is one of the major findings of this dissertation that informal data citation was more common 

than formal data citation in the STEM fields and that the rates of both varied across disciplines. 

Informal data citation was most prevalent in astronomy/physics, followed by the biological 

sciences and chemistry. Specifically, the informal citation rates were 97.41% in astronomy, 95.38% 

in the biological sciences, 93.2% in chemistry, 86.36% in computing, 60.86% in the mathematical 

sciences, and 69.33% in technology. When the full text contents of articles were examined, actual 

data reuse (51.1 % across all STEM fields) was similar for sharing (50.7%) at the bibliographic 

level (i.e., articles). It should again be observed that simultaneous data reuse and sharing was not 

counted. To summarize the results by discipline:  

• data reuse (40.9%) was slightly more frequent than data sharing (46.4%) in 

astronomy/physics;  

• data reuse (47.8%) was around twice frequent as data sharing (22.1%) in the biological 

sciences;  

• data reuse (29.3%) was less frequent than data sharing (50.3%) in chemistry; 
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• data reuse (68.3%) was more than four times more frequent than data sharing (19.2%) in 

computing; 

• data reuse (65.2%) was more than three times more frequent than data sharing (21.2%) in 

the earth sciences; 

• data reuse (56.9%) was around three times more frequent than data sharing (18.5%) in 

engineering; 

• data reuse (78.4%) was around five times more frequent than data sharing (14.4%) in the 

mathematical sciences; and 

• data reuse (57.7%) was around twice as frequent as than data sharing (27.6%) in 

technology.  

Disciplinary unevenness in data sharing, then, was found across STEM. This result had been 

biased for the awareness and demand for software in recent years. 

The aim of this dissertation was to shed the light on research practices in the STEM fields 

from the perspective of actual data sharing and reuse. The results suggest certain strategies for 

identifying the best practices for data citation, sharing, and reuse and have implications for data 

citation guidelines and policies in the STEM fields and beyond. The findings should therefore be 

of interest to researchers, publishers, funding agencies, and research organizations. 

 

6.2. Directions for future research 

Data citation has only recently begun to be studied from the perspectives of data sharing and 

reuse, so numerous approaches to this phenomenon have yet to be explored. Taking into account 



 

193 

also the limitations to this study discussed in the previous chapter, the following avenues for future 

research appear to be particularly fruitful.  

To begin with, the diffusion of specific geographic allocations could be explored as a means 

to capture research activities globally. Examining research activities at the geographic level in a 

detailed and timely manner could help to elucidate the knowledge diffusion process in general and 

user behaviors with respect to data citation in particular. Also, informative would be a longitudinal 

study reproducing and extending the findings presented here by tracking dynamic knowledge 

diffusion through data citation. Because data citation practices relating to data sharing and reuse 

may be more widespread and frequent in the future, the diversity in terms of the prevalence of data 

sharing as measured by data citation across the STEM fields deserves scrutiny, particularly with 

regard to the use of proprietary or sensitive data (Mongeon, Robinson-García, Jeng, & Costas, 

2017). Further attention to these issues is also needed because the scope of this study did not allow 

for examination of the impact of the number of co-authors and self-citations on data citation. 

Turning now to publication type, over 90% of data sharing as measured by citation occurred 

through journals rather than conference proceedings or books (Park & Wolfram, 2017). This result 

deserves careful consideration, for conference proceedings have generally been regarded as the 

primary venue for the dissemination of scholarship and research in such rapidly advancing areas 

as computer science. A possible explanation for the result found here is the adoption of more or 

less strict data sharing policies by high impact journals, data and otherwise. 

Regarding the individual disciplines, the finding that data sharing was most prevalent in the 

biological sciences also invites further study. This finding may be attributable either to the DCI’s 

indexing feature or to the gradual adoption of data sharing requirements by the major funding 

agencies—once more, the NIH issued this mandate in 2003 and the NSF eight years later. Future 
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research could also extend the scope of the inquiry beyond STEM, that is, to the social sciences 

and humanities, again with an eye to similarities and differences across disciplines. One major 

difference in this respect is already apparent, namely the difficulty of sharing and reusing the 

qualitative data that are central to much non-STEM research (Yoon, 2014), as has indeed been 

demonstrated for studies based on interviews or ethnography (Faniel & Jacobsen, 2010; Wallis, 

Rolando, & Borgman, 2013). In any case, further research remains to be done on data sharing, 

reuse, and citation within and across the STEM fields in order to build on this exploratory study. 

 

6.3. Final comments 

In this era of open science, the wider availability, accessibility and reusability of open data are 

fundamental to and crucial for efficient scholarly communication and therefore for scientific 

progress. In other words, data citation is part of the open science movement because rewarding 

credit to those people who share their data is essential for the movement to maintain its momentum. 

The results of this study indicate, however, that 90% of references to data do not conform to 

traditional citation practices. Accordingly, reliable measurement of the impact of open research 

data and careful consideration of the ways in which, and extent to which, open research data are 

shared, reused, and hopefully, cited are essential going forward. The findings presented here 

demonstrate that an increase has occurred in data sharing and that dramatic differences exist among 

disciplines, facts that publishers of journals and decision makers at higher education institutions 

and funding agencies need to keep in mind when developing guidelines, recommendations, 

policies and standards for data citation. 
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APPENDICES 

Appendix A. Astronomy/physics: All data types that received at least one data citation  

(data type, number of total data citation) 

mass spectral data (31,072) photometric calibrations (9) readme info file (1) 

nmr results (6,157) fits images (9) readme (1) 

spectral data (3,723) fits image (9) rdf (1) 

software (1,396) astrometric calibrations (9) radio and x ray data (1) 

image file (233) fileset (8) quantitative data (1) 

fits file (190) catalog (8) processed map data (1) 

final output pics (163) images (6) presentation (1) 

data (107) ubvri catalog (5) notebook (1) 

dataset (63) still images or photos (5) 

models derived from small 

angle scattering data (1) 

hrcrop (60) documentation (5) masks (1) 

tex appb (50) asc appa (5) mask definition files (1) 

asc appb (47) fits cube (4) manual (1) 

fesc data (44) ascii spectrum (4) imaging (1) 

ascii file (44) text (3) image (1) 

halo finding (43) model files (3) idl sav (1) 

star data (41) poster (2) GIS vector data (1) 

anyl files (41) plot (2) fits variables (1) 

fits header file (40) photometry (2) fits image gzipped (1) 
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tex figs (38) idl save files (2) fits event list (1) 

ps file (36) idl pro (2) file description (1) 

med (25) fits files (2) 

experimental small angle 

scattering data from 

biological macromolecules 

(1) 

tex tables (22) excel (2) doc (1) 

paper figs (22) csv (2) database (1) 

gmos pre imaging (20) 

textual data individual micro 

level (1) 

code (1) 

spectra (17) tex text (1) catalogs (1) 

raw data (14) 

tapes and transcripts group 

discussion tape recordings 

personal documents press 

clippings minutes of meetings 

audio cassette tapes (1) 

astronomical radio (1) 

fits header (14) supplementary materials (1) astrometry (1) 

redshifts (10) spectroscopic data (1) 2d spectra (1) 

tex appa (9) sample data (1) 1d spectra (1) 
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Appendix B. Biological sciences: All data types that received at least one data citation  

(data type, number of total data citation) 

SRA (931,673) 

genome binding occupancy 

profiling by high throughput 

sequencing (6,118) 

methylation profiling by 

genome tiling array (513) 

protein sequence data 

(525,973) 

protein structure (4,909) rnai phenotype data (442) 

sra (277,920) fileset (4,406) 

methylation profiling by array 

(383) 

genomic (163,349) numeric (3,853) 

expression profiling by rt pcr 

(380) 

images (113,107) mixed (3,364) image stored as reals (379) 

nucleotide sequencing 

information (109,135) 

datafile (3,008) 

snp genotyping by snp array 

(338) 

molecular structure (75,899) sage (2,508) flow cytometry data (323) 

processed (72,717) 

non coding rna profiling by 

array (2,380) 

dataset unite species 

hypothesis (300) 

fgem (72,717) map (2,235) 

expression profiling by sage 

(230) 

plant trascription factors and 

their annotation (65,536) 

non coding rna profiling by 

high throughput sequencing 

(1,999) 

phenotype strain survey (211) 
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quantitative trait locus map 

information (55,623) 

biosamples (1,893) mpss (211) 

adf (55,030) digital (1,854) dataset (200) 

raw (52,496) 

genome binding occupancy 

profiling by genome tiling 

array (1,804) 

case control (186) 

processed data (48,825) sequence (1,615) 

genome binding occupancy 

profiling by array (167) 

sequence data (47,150) 

methylation profiling by high 

throughput sequencing 

(1,173) 

kinomescan (165) 

raw data (44,591) datapackage (1,154) 

protein profiling by protein 

array (160) 

expression profiling by array 

(40,589) 

phylogenetic tree data (978) third party reanalysis (157) 

sdrf (40,092) 

genome variation profiling by 

genome tiling array (955) 

cel (149) 

idf (39,365) annotation (928) gigadb dataset (124) 

normalization (36,063) primary (922) raw sequence (115) 

mirna transcript (26,715) mirna sequence data (833) other (106) 

mirna sequence (26,715) assembly (815) molecular data (106) 

scan (24,865) 

nucleic acid structural 

information (770) 

recording acoustical (102) 
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genomic sequence data 

(24,293) 

profile (754) 

non coding rna profiling by 

genome tiling array (98) 

gene and protein information 

(24,292) 

probe logratios (754) case set (97) 

image (11,778) probe calls (754) cohort (84) 

supplementary material 

(11,374) 

gene logratios (754) analysis results (84) 

expression profiling by high 

throughput sequencing 

(10,162) 

gene calls (754) 

genome variation profiling by 

high throughput sequencing 

(70) 

protein coding (10,054) two columns (691) tabular digital data (69) 

processed data matrix (9,741) profiles (666) raw data matrix (61) 

protein (8,739) 

expression profiling by 

genome tiling array (620) 

family (56) 

r object (7,026) mageml (597) longitudinal (54) 

gene sequence data (6,162) 

genome variation profiling by 

array (587) 

  

nmr results (6,157) 

genome variation profiling by 

snp array (555) 
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Appendix C. Chemistry: All data types that received at least one data citation  

(data type, number of total data citation) 

crystal structure (754,913) still images or photos (63) pka determination data (1) 

crystallographic data 

(490,252) 

molecule characterization 

(38) 

pictures (1) 

molecular structure (91,870) 

envelope stored as signed 

bytes (7) 

nmr titration data (1) 

crystallographic information 

(84,687) 

structural model (4) nmr data (1) 

bacterial carbohydrate 

structure (4,298) 

micro electron diffraction (3) metadata (1) 

spectral data (3,720) xfel diffraction (1) gigadb dataset (1) 

crystallographic structure 

(3,008) 

x ray diffraction images (1) diffraction images (1) 

dataset (2,410) x ray diffraction data (1) crystal x ray structure (1) 

molecular data (954) structures (1) chloride binding data (1) 

molecule (647) structure fragments (1) 

bacterial carbohydrate 

structures (1) 

image stored as reals (379) raw crystallography data (1) anion transport data (1) 

x ray diffraction (255) 

primary data nmr mass ir 

raman xray tlc (1) 

analytical data (1) 
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Appendix D. Computing: All data types that received at least one data citation  

(data type, number of total data citation) 

software (18,246) survey and census data (1) GIS data (1) 

code (1,278) spreadsheet (1) 

earth and environmental data 

(1) 

model (416) 

simulation MATLAB code 

(1) 

diagrams (1) 

dataset (3) raw data (1) dataset used in the paper (1) 

raw experimental data (2) 

open source coding and tools 

(1) 

chemistry data (1) 

other (2) 

network data extracted from 

social media (1) 

  

database (2) life science database (1)   
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Appendix E. Earth sciences: All data types that received at least one data citation  

(data type, number of total data citation) 

dataset (32,975) seismic shottimes mcs (73) 

physicalproperties sediment 

(4) 

interactive resource (22,264) chemistry fluid (72) dopplervelocity (4) 

GPS dataset (13,080) seismic reflection mcs (68) digital map data (4) 

geoscientific information 

(9,108) 

terrestrial lidar point cloud 

(63) 

technicalreport (3) 

GPS collection (5,741) gravity anomaly freeair (60) seismic shottimes scs (3) 

text (4,033) currentmeasurement (60) sample rock ancillary (3) 

navigation primary (3,691) seismic ancillary mcs (53) 

physicalproperties sediment 

ancillary (3) 

protein sequence data (2,803) seismic active subbottom (40) oceanographic data (3) 

digital (2,699) seismic segyhistory mcs (38) interpretation geologic (3) 

image (1,063) radiation (38) chemistry sediment (3) 

observational data (927) gis vector data (33) 

biology species abundance 

(3) 

bathymetry singlebeam (841) 

bathymetry swath ancillary 

(31) 

biology microbiology (3) 

gravity field (738) seismic navigation (28) application pdf (3) 

magnetic field (683) backscatter optical (27) visualization (2) 
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temperature (662) 

geoid ondulation given on a 

grid (26) 

turbulence (2) 

bathymetry swath (643) photograph webgallery (22) spatial characteristics (2) 

meteorological (534) magnetic anomaly igrf (21) scanned map (2) 

imagedigital (417) photograph (20) satellite imagery (2) 

bathymetry (405) 

dkrz series technical report 

(19) 

rainfall patterns (2) 

conductivity (390) bathymetry phase (19) population (2) 

navigation (335) turbidity (18) physicalproperties rock (2) 

sidescan (280) visualization googleearth (15) particleflux (2) 

backscatter acoustic (263) 

aerial or satellite imagery 

(15) 

  

salinity (254) text tab separated values (14)   

software (253) seismic shottimesstatus (13)   

radiation visible (234) photograph mosaic (9)   

radiation infrared (221) 

geoid undulation given on a 

grid (9) 

  

fluorescence (210) digital terrain model (8)   

pressure (184) seismic ancillary scs (7)   

ctd ancillary (179) transmissivity (6)   

seismic reflection scs (147) digital map (6)   

mapdigital (147) biology species list (6)   
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iceconcentration (112) 

chemistry fluid 

electrochemistry (5) 

  

soundvelocity (92) tabledigital (4)   
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Appendix F. Engineering: All data types that received at least one data citation  

(data type, number of total data citation) 

test data (3,749) qcm data (1) excel spreadsheet (1) 

dataset (4) microscopy images (1) 

datasets containing results of 

materials testing and 

accompanying information 

(1) 

GIS vector data (2) fluorescence intensity data (1)   
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Appendix G. Mathematical sciences: All data types that received at least one data citation 

(data type, number of total data citation) 

software (8,155) geoid undulation given on a grid (35) 

matrix (1,640)  
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Appendix H. Technology: All data types that received at least one data citation 

(data type, number of total data citation) 

dataset (137,375) application x rar (23) data (4) 

fileset (33,304) image x ms bmp (18) audio x aiff (4) 

image tiff (14,558) excel (18) application x bzip2 (4) 

image (12,591) mixed (17) video 3gpp (3) 

application MS Word 

(11,482) 

raw data (15) thesis doctoral (3) 

software (8,176) image gif (15) results (3) 

application pdf (6,626) figure data (13) 

provenance files and 

benchmark data (3) 

application vnd MS Excel 

(3,495) 

composite document file v2 

document corrupt can’t 

expand summary info (13) 

performance results (3) 

tools (2,428) 

composite document file v2 

document no summary info 

(12) 

nnmr spectroscopic (3) 

text plain (686) text x PERL (10) 

linked data endpoint access 

logs (3) 

application octet stream (664) microsoft excel (9) image svg xml (3) 

video quicktime (528) table (7) GIS vector data (3) 
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application postscript (527) image x coreldraw (7) 

excel spreadsheets in zipped 

format (3) 

video x msvideo (463) 

application x 7z compressed 

(7) 

data from publication (3) 

image jpeg (421) quantitative (6) base (3) 

video mp4 (249) excel spreadsheet (6) audio files (3) 

application zip (246) excel file (6) newscutting (2) 

audiovisual (138) audio mpeg (6) model (2) 

image png (119) text x tex (5) MATLAB (2) 

application vnd MS 

Powerpoint (116) 

text x fortran (5) images txt files (2) 

video x ms asf (106) text x c (5) geospatial (2) 

video mpeg (94) spreadsheets (5) figures (2) 

text html (93) source code (5) fig (2) 

video protocol (78) gle (5) excel data and images (2) 

text rtf (71) dat (5) eps (2) 

database (64) csv (5) dataset for figure (2) 

compact model (46) code (5) data series (2) 

spreadsheet (34) video (4) 

composite document file v2 

document corrupt cannot read 

summary info (2) 

supplementary material (32) still images or photos (4) audiovisual data (2) 

audio x wav (32) sound (4) application x tar (2) 
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type of data field content (29) origin files (4) 

application x shockwave flash 

(2) 

application xml (29) moving image (4) application ogg (2) 

application x gzip (28) 

image vnd Adobe Photoshop 

(4) 

  

text (23) experimental data (4)   
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