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ABSTRACT 

 

SYNTHESIS AND PERFORMANCE ANALYSIS OF 

POLYETHERSULFONE (PES) NANOCOMPOSITE MEMBRANE 

GRAFTED WITH FUNCTIONALIZED IRON (II, III) OXIDE 

NANOPARTICLES FOR ARSENATE REMOVAL 

 

by 

Jiyoung Rowley 

 

The University of Wisconsin-Milwaukee, 2018 

 Under Supervision of Professor Nidal H Abu-Zahra 

 

  Arsenic (As) is one of the detrimental elements in nature, which has negative effect on 

human health as well as the environment. High levels of arsenic concentration in the drinking 

water can cause skin, bladder, lung liver, and prostate, as well as cardiovascular, pulmonary, 

immunological, neurological and endocrine diseases. Arsenic pollution in the water has been 

reported in many countries as a worldwide problem, including the United States.  

 To develop a separation method for removing Arsenic, various treatment technologies 

including precipitation, coagulation with ferric chloride or aluminum sulfate coagulants, ion 

exchange and adsorption with modified nanocomposite material have been extensively studied. 

All these methods have drawbacks in terms of costs and efficiencies by the generation of toxic 

sludge in coagulation and precipitation method and causing severe pressure drops in column 
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adsorption process and high cost of operation in ion exchange.  However, membrane technology, 

which has drawn considerable attention in the past few decades by offering a promising solution 

for water treatment and pollutant separation. Among the pressure driven membranes, especially 

nanofiltration (NF) and reverse osmosis (RO) are widely used for arsenic removal even though 

the process requires high operational pressure and costly membranes comparing with low 

pressure processes such as microfiltration (MF) and ultrafiltration (UF). In the case of removing 

small size pollutants such as arsenate, microfiltration (MF) and ultrafiltration (UF) membranes 

can overcome these disadvantages by the incorporation of Nano inorganic particle absorbents in 

the polymer matrix membranes.  

 In this research work, functionalized Iron Oxide nanoparticles (APTES-Fe3O4) were 

impregnated into a Polyethersulfone(PES) membrane in order to remove arsenic by exploiting 

the PES membranes inherent filtration capability and reaction between the Iron oxide compounds 

and arsenic species by adsorption mechanism, which provides high As(V) removal capacity. 

APTES(Aminopropyltriethoxysilane) was reacted with Iron Oxide NPs to modify their surface 

for generating strong repulsion between NPs. The modification also prevents those nano 

particles’ aggregations and leads to good dispersion in the PES membrane matrix.  

         To characterize the modification of NPs with APTES (A-Fe3O4 NPs), Infrared 

Spectroscopy was utilized to verify the surface modification of Fe3O4 NPs. TGA analyzed the 

degree of dispersity of A-Fe3O4 NPs in PES membrane matrix. Pore structure of prepared 

membrane was characterized by FESEM and surface roughness was measured with AFM 

(Atomic Force Microscopy). Porosity and mean pore radius size were calculated with 

gravimetric method by using the weight difference of wet and dry membranes. Mean pore size 

was gained by Guerout-Elford-Ferry equation with water flux volume and pressure drop. For 
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analyzing As(V) ion removal capacity through ion concentration of the permeate, ICP-MS 

method was utilized.  

           To evaluate the As(V) removal performance difference and find the best rejection of 

As(V), pure PES membrane was developed by adding APTES-Fe3O4 NPs in different weight 

percentages (1, 2, 3wt %). Batch adsorption tests were conducted with different As(V) 

concentration solution (2ppm, 4ppm, 6ppm, 8ppm) to study isotherm model. Kinetic adsorption 

experiments for As(V) removal were conducted in 50mL membrane cell under 50psi pressure 

with 1ppm As(V) solution for better understanding of adsorption process mechanism.  

           It was confirmed that A-Fe3O4 NPs were dispersed in good quality with the residual 

weight percent from TGA value. Moreover, FESEM images and AFM results indicated that PES 

containing 1wt%, 2wt% and 3wt% of A-Fe3O4 NPs tends to have more porous structure and 

higher roughness on the surface that pure PES membrane.  

           Higher percentage of pores over 60% was shown with PES containing more A-Fe3O4 

NPs. Sub-layer micro-void is inclined to be formed in a bigger size with the addition of A-Fe3O4 

NPs. This increased micro-void size in the bottom layer affected critically on pure water flux 

value. The larger the pore structure with A-Fe3O4 NPs, the prepared membrane showed better 

performance for the pure water flux by having the highest value 23.9Lm-2h-1bar-1 (in the case of 

M4). Furthermore, hydrophilicity was characterized with water contact angle. These values 

indicated the range between 61 ֯ and 76 ֯. Lowest contact angle was found in the PES containing 

3wt % A-Fe3O4.  

           From the batch adsorption test results, sorption isotherm models were applied to define 

the equilibrium adsorption capacities of membranes with different concentration of As(V) 
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solutions. Freundlich and Langmuir models were well fitted into data by giving R2 as 0.9996 and 

0.9955 in PES-A-Fe3O4 NPs 3wt% membrane, respectively. Mostly, Langmuir model gives 

higher R2 for the linear regression of the prepared membranes.  

           Dynamic adsorption results gained under pressure, 50psi in a 50mL membrane cell 

showed the highest rejection percentage, 76% from PES-A-Fe3O4 NPs 3wt% membrane. Most of 

nanocomposites with A-Fe3O4 NPs were equilibrated at 270mins.  

           The prepared PES membrane nanocomposite in this research proves its high capability to 

remove arsenate with its good thermal stability and resistance to extreme pH conditions. Physical 

separation through membrane, in addition to adsorption behavior of PES can propose this PES-

A-Fe3O4 NPs membrane to be an efficient medium for removing As(V) from aqueous solution.  
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CHAPTER1 

INTRODUCTION 

           Contamination of drinking water by heavy metal ions such as Arsenic has been considered 

as a serious problem locally and globally with environmental and physiologically harmful effects 

on human beings and other living creatures. There have been many great efforts in research 

projects to treat the detrimental metal ions by developing efficient methods such as separation, 

absorption, precipitation and other emerging technologies. In this research, 

Polyethersulfone(PES) membrane added with modified Iron Oxide Nano particle were studied 

for removing arsenic through filtration (Membrane) and adsorption (modified Nano particle). 

           In this thesis outline, the following description can show it in the following order. In the 

first chapter, five sections contain overall information which will be utilized for developing the 

research experiments and gaining the expected results. The information about arsenic, the 

treatment and separation method such as adsorption, ion exchange, membrane filtration, 

precipitation, biological treatment, and other emerging techniques were described. The following 

parts are about molecular structure and properties of Polyethersulfone membrane and literature 

review about removal of arsenic through membrane. Last part explains about my research plan 

and final objectives that I have aimed at for the whole process.  

           In chapter 2, the experimental setup for membrane synthesis and nano particle treatment 

are presented. The raw materials, experimental setup, synthesis and characterization of 

membrane with nanoparticles are specifically explained in this order. In chapter 3, the results of 

membrane or nanoparticle characterization and its performance for arsenic removal are shown. 

The final chapter 4 includes the conclusions drawn mainly from chapter 3 experimentations.   
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1.1 Arsenic  

1.1.1 Arsenic Chemistry 

            Arsenic is a group 15 element on the periodic table along with nitrogen, phosphorus, 

antimony, and bismuth. The atomic mass of arsenic is around 75 amu, which has nucleus of 

isotope containing 42 neutrons and 33 protons. Numerous artificial short-lived radioisotopes of 

arsenic have been produced, including excited-state isomers. [1] An arsenic atom in a covalent 

bond shares its valence electrons with another atom in the bond. But, the valence electron in a 

covalent bond are not equally shared between the arsenic atom and the atom of the other 

element. This property leads to the phenomena that the most of the covalent bonds in arsenic 

atom still have an ionic character. [2] The most common valence states of arsenic are -3, 0, +3, 

and +5. Like sulfide in sulfide in pyrite, arsenic in arsenic-rich(arsenian) pyrite(FeS2), arsenide 

and arseno-sulfide minerals have a valence state of -1 or 0. In arsenide niccolite(NiAs), every 

nickel atom is surrounded by six arsenic atoms, where arsenic has a valence state of -1 and nickel 

is +1 [3-5] Arsenic dissolved in natural waters is predominantly in as the form of +3 and +5. 

As3+ and As5+ usually bond with oxygen to form inorganic arsenite (inorganic As(III)) and 

arsenate (inorganic As(V)), respectively.  

          As(III) mostly exists in low-oxygen(reducing) groundwaters and hydrothermal waters. 

Although As(V) is usually the prominent from of arsenic in toxic waters, biological activity may 

result in significant concentrations of metastable As(III) and even mildly reducing conditions in 

groundwater usually results in more As(III) than As(V). [6] As fluids approach the surface and 

become diluted with aerated groundwater, As(III) will begin to oxidize to As(V). By itself, air is 

very slow in oxidizing As(III) and considerable As(II) may persist for some time even under 
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well-aerated conditions In surface and near-surface environments, natural chemicals, light, 

and/or microbial activity can increase the oxidation of As(III).[7-9]  

            In anoxic groundwater and other reducing waters, inorganic arsenite (As(III)) commonly 

hydrates to arsenious acid, which primarily exists as dissolved H3AsO3
0 at pH conditions below 

9.2 and as its dissociated anions (H2AsO3
-, HAsO32-, and AsO33-) under alkaline conditions. 

However, the dominant form of arsenic in oxic natural waters is usually dissolved arsenic acid, 

which includes H3AsO4
0 under very acidic (pH < 2) conditions and its associated anions 

(H2AsO4
-, HAsO4

2-, and/or AsO4
3-) in less acidic, neutral, and alkaline waters. [10] Figure 1.1 

shows the calculated curves for speciation of arsenic acid depending on the pH level.  

 

Figure 1.1 Speciation of arsenic acid with pH. [10] 

 

           For removal of Arsenic, Adsorption or sorption is one of the most widely used methods. 

Iron, aluminum, and manganese oxides widely occur as sorbents and coatings on other solid 

materials in nature. And these are often considered as important adsorbents for the case of 
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removing arsenic from water. Below֯the֯ZPCs֯of֯the֯oxides,֯the֯presence֯of֯abundant֯├OH2
+ is 

responsible for the net positive charges. The pH of a solution associated with an absorbent effect 

both the surface charges and the charges of the dissolved arsenic species, which controls arsenic 

adsorption. [11-12] H3AsO3
0 adsorbs onto negatively charged surfaces near pH neutral 

conditions. But, the adsorption of H3AsO30 is not as effective as the adsorption of As (V) 

oxyanions onto positively charged sorbent surface, which is important for the natural adsorption 

and water treatment. [10]  

           The oxidation of arsenic refers to increasing valence state as high as +5 through chemical 

reactions which causes the arsenic to lose its valence electrons. In the oxidation process such as 

from As(0) to As(III) and from As(III) to As(V), chemical oxidants receive the electrons from 

the arsenic atom and are reduced. The oxidation of arsenic in natural waters is considerably 

enhanced by microorganisms, Fe(III) species, nitrate(NO3-), natural organic matter(NOM), or 

Mn (III, VI) oxide compounds, even in the absence of O2.[9, 13-14] Oxidation under near neutral 

pH conditions, inorganic As(III) could then be slowly oxidized to inorganic As(V) by the 

following reaction 

2H3AsO3
0 +O2 → H2AsO4

- +HAsO4
2- + 3H+         (1.1) 

Chemical oxidents are necessary for oxidation from As(III) to As(V) because oxidation of 

arsenic with only oxygen in the water is not efficient and slow. 

 

1.1.2 Arsenic Source 

           Arsenic contamination is a serious problem and mostly happens in the groundwater at 

various location over the world. Human activity such as mining and arsenic-contaminated 
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products such as pesticides have induced or exacerbated the contamination globally and locally. 

[15] 

           Dissolved arsenic in groundwater primarily exists as inorganic As(V) and As(III). This 

arsenic speciation is largely controlled by changes in redox potential(Eh) of the solution where 

the speciation exists. Inorganic As(V) generally dominates in surface waters, but As(III)/As(V) 

ratio can vary greatly with the presence of chemical absorbents in the natural solution. [16]   

           More than 100 million people have been at risk from the adverse health effect of drinking 

detrimental levels of arsenic for prolonged periods. Mostly, Asia countries such as Bangladesh, 

India, Nepal, Pakistan, mainland China, Taiwan, Cambodia, Vietnam, and Iran show the highest 

leads of arsenic contamination. Large areas of contamination also occur in the Americas (Chile, 

Argentina, Mexico, and various parts of the United States).[15-16] The arsenic-contaminated 

areas over the world are shown in the Figure 1.2. 

 

Figure 1.2  Map showing significant arsenic contamination problems in the United States [17] 
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          Even though the contamination of Arsenic is found worldwide, the region which received 

the most attention is the Bengal basin, which covers most of Bangladesh and parts of the Indian 

states of West Bengal, Assam, and Tripura. It has been estimated that more than 57 million 

people֯in֯Bangladesh֯are֯drinking֯water֯containing֯over֯10μgL-1 of arsenic. [18] 

 

1.1.3 Arsenic Toxicity 

           Arsenic originally was found in various chemical forms and oxidation states in the earth 

as the twentieth most abundant element. This element was once used intentional for poisoning by 

royalty, but mostly has been used as a medical agent, pesticide, a growth promoter in 

semiconductors and manufacture of glass industries. However, Millions of people worldwide are 

at risk for the development of cardiovascular disease, diabetes, cancer, and other adverse health 

effects from drinking arsenic-contaminated groundwater. [10] The largest source of arsenic and 

other metals is usually in foods such as seafood, rice, mushrooms and poultry. But mostly, 

arsenic poisoning is caused throguh industrial exposure, from contaminated wine or moonshine, 

or by malicious administration. Since most arsenic compounds lack color or smell, the presence 

of arsenic is not immediately obvious in food, water or air, thus presenting a serious human 

health hazard given the toxic nature of element. [19] 

           In the majority of cases for being exposed to arsenic are through Respiratory, 

Gastrointestinal, and Dermal absorption. The extent of arsenic poisoning depends on various 

factor such as dosage or concentration in the medium, valence state of arsenic, qualitative and 

quantities interspecies differences. It has been found from the research of arsenic toxicity that 
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blood levels in acutely toxic and֯fatal֯cases֯would֯be֯1000μgL-1 or even greater. [10, 19] Table 

1.1 lists the chronic and acute symptoms for arsenic poisoning. [20-21] 

Table 1.1 Chronic and acute effects of being exposed to inorganic arsenic 

Human System Chronic Effects Acute Effects 

 

Cardiac 

Hypertension, peripheral 

vascular disease, 

cardiomyopathy 

 

Cardiomyopathy, hemorrhage, 

electrocardiographic changes 

 

Hematologic 

Anemia, bone marrow 

hypoplasia 

Hemoglobinuria, bone marrow 

depression 

 

Hepatic 

Hepatomegaly, Jaundice, 

cirrhosis, fibrosis, cancer 

 

Fatty infiltration 

Gastrointestinal Vomiting, diarrhea, weight loss Nausea, vomiting, diarrhea 

 

Neurologic 

Peripheral neuropathy, 

paresthesia, cognitive 

impairment 

Peripheral neuropathy, 

ascending weakness, tremor 

encephalopathy, coma 

 

Renal 

 

Nephritis, cancer 

 

Tubular and glomerular  

damage, oliguria, uremia 

Pulmonary Cancer Edema, respiratory failure 

 

Skin 

Hyperkeratosis, hypo-or 

hyperpigmentation,֯Mees’֯

lines, cancer 

 

Alopecia 

           

           Chronic and acute effects on human organs from arsenic poisoning occur in the same 

organ system. For the case of acute poisoning treatments can be by gastric lavage, hemodialysis. 

The effective remediation for chronic arsenic poisoning has not been developed yet. In the case 

of the already developed chronic arsenic poisoning, minimizing the risk of reexposure to arsenic 

is the best way.  

            For the elimination for both inorganic As (III) and inorganic As (V) in most common 

laboratory animals, urine is the primary route. Comparison of urinary and fecal elimination in 
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mice under the same amount of oral and parenteral dose reveals that only 4~8% of the dose is 

eliminated in feces irrespective of route of intake. [22]   

 

1.2 Separation Methods for Arsenic Removal  

          In numerous contaminated regions, arsenic has occurred in natural materials, wastes, and 

commercial products. High-arsenic contamination can be caused by industrial activity, farming 

and naturally occurring phenomena which have affects on soil, sediments, gases, or water. To 

decrease environmental and human health threats from the arsenic contamination, many 

countries have recently implemented extensive environmental, health and safety regulations 

regarding arsenic. Methods for treating arsenic in water can be divided into several broad 

categories. The categories are listed as follows. [10] 

 

i. Adsorption and Ion exchange treatment (e.g., Activated Alumina, Iron oxide minerals) 

ii. Precipitation/Coprecipitation treatment (e.g., Lime(CaO), Iron salts, Aluminum salts) 

iii. Membrane treatment (e.g., filtration, reverse osmosis, electrodialysis) 

iv. Biological treatment (e.g., living organisms (fungi, bacteria), biological material) 

v. Emerging treatment  

 

1.2.1 Adsorption and Ion exchange treatment  

           Adsorption in the water treatment technologies refers to the removal of contaminants by 

causing them to attach onto the surfaces of solid materials, which are adsorbents or sorbents. 
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Normally adsorption involves ion exchange. [23] Absorption is the assimilation of a chemical 

species into the inner side of a solid material and this process may include the migration of the 

solutes into internal pores. [24] 

           When choosing proper material for an adsorbent, the material has to be large enough to 

facilitate permeability and water flow while still providing sufficient surface area for numerous 

sorption and ion-exchange sites. Other desirable properties for being sorbents and ion-exchange 

media includes (1) ability to remove large amounts of both As(III) and As(V) fast and effectively 

ahead of regeneration or disposal, (2) capability of being regenerated, (3) high durability in 

water, and (4) reasonable cost. [25] In the case of arsenic, sorption onto inorganic solids is more 

convenient than chemical precipitation/coprecipitation method and costs less than ion-exchange 

resins or membrane filtration. [26]  

           For the widely used absorbents and ion-exchange media because of their effectiveness, 

Iron oxides (Figure 1.3), Manganese oxides, Aluminum oxides, activated carbon, Titanium 

oxides have been selected for removal of arsenic in water.  

           Iron oxides (II, III) are very effective in removing arsenic from water. The compound for 

these oxides might have been synthesized or collected from rocks, soils, or sediments. 

Amorphous iron oxides generally have higher surface area, which provides more ability of 

absorption and ion-exchange. [27-29] The ability of ferrihydrite to effectively sorb or ion-

exchange arsenic depends on several factors, including the age, surface area and exact 

composition of the compound. Usually, freshly precipitated ferrihydrites are poorly crystalline 

and have high surfaced areas, which make them ideal sorbents. Another important factor is pH of 

the arsenic solution because this pH affects competition between As(III) and As(V) for 

sorption/ion-exchange sites on ferrihydrites. [11] 
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                                                          Figure 1.3 Iron Oxide Power [30] 

           Manganese oxides are also effective absorbents and ion exchange media for removing 

arsenic ions in the water. Manganese oxides are capable of both oxidizing As(III) in water and 

absorbing the resulting As(V). Amorphous or poorly crystalline manganese oxide sorbents have 

higher surface areas and are usually more effective sorbents than crystalline varieties. [5,11]  

           Aluminum oxides, which share some chemical properties with Fe(III), have been used in 

the form of activated alumina in water treatment systems. This activated alumina is typically 

produced by thermally dehydrating aluminum oxide to form amorphous, cubic, and other 

polymorphs of corundum. However, this activated alumina is usually ineffective in removing 

As(III) from water and pH must be controlled for absorbing As(V) with activated alumina. [31-

32] 

1.2.2 Precipitation/coprecipitation 

           In many cases, precipitation and coprecipitation methods are more effective for oxidizing 

any inorganic As(III) to As(V) before treatment. For achieving optimal performance during this 

oxidation process, pH adjustment is needed. [33] After this pH adjustment process, chemical 

agents such as lime(CaO), Iron salts, Aluminum salts and water are added into the system to 
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form the precipitates. These precipitates exist in the form of colloid and have repulsive surface 

charges which prevent them from agglomerating and settling. Thus, coagulants such as organic 

compounds, iron or aluminum salts are added for neutralizing the repulsive surface charges. This 

will finally lead to agglomeration. [34] 

 

Figure 1.4 A typical precipitation/coprecipitation system [25] 

            Lime(CaO) was extensively used for removing As(V) from water through precipitation of 

calcium arsenates. It was concluded that lime precipitates As(V) from aqueous solutions as 

hydroxyl and hydrated calcium (Ca4(OH)2(AsO4)2·4H2O, Ca5(AsO4)3OH, or 

Ca3(AsO4)2·3
2/3H2O) rather than anhydrous tricalcium orthoarsenate. [35]  

            The most popular and effective techniques for removing As(V) from water is iron salts as 

the chemical agents. Fe(III) chlorides and sulfates(Fe2(SO4)3) react and precipitate iron oxides. 

Fe(III) salts can coprecipitate about 99% of 0.1-1mgL-1 As(V) under pH 7.2. If the arsenic is 

oxidized before treatment, however, only about 50 to 60% of As(III) can be removed by Iron 

salts. [36] 
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           Aluminum sulfate(Al2(SO4)3) and other aluminum salts react with water and precipitate 

oxides similar to Iron salts. Unfortunately, this aluminum salts type of filtration is not as 

effective as Fe(III) salts because it has more of a tendency toward being soluble in water than 

Fe(III) oxide. [37]           

1.2.3 Membrane treatment  

           In most cases, filtration method can be used for physical separation of particles, colloids, 

or other contaminants from water and pressure or vacuum may be applied to filtration systems to 

cause the removal of contaminants. Pressure filtration makes use of pressure to push the 

contaminated water through a semipermeable membrane or other type of barrier. Depending on 

the type of membrane, pH, temperature, pressure, arsenic speciation, or the other characteristics 

of water, this pressure filtration through membrane can reduce the concentration of arsenic in the 

water֯below֯10μgL-1. [3,38] 

           The four major types of pressure filtration processes are microfiltration, ultrafiltration, 

nanofiltration, and reverse osmosis. Microfiltration is generally used to remove particles with 

diameters which are greater֯than֯about֯0.1μm֯and֯ultrafiltration can remove the particle diameter 

size֯as֯small֯as֯0.01μm.֯In֯the֯case֯of֯nanofiltration, the particle sizes up֯to֯0.001μm֯could֯be֯

removed֯while֯osmosis֯can֯capture֯particles֯diameter֯larger֯than֯0.0001μm.            

 

Figure 1.5  Left : Ultrafiltration by pressure  Right : Reverse Osmosis [39] 
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           In the Figure 1.5, ultrafiltration primarily removes arsenic contaminants by physical 

sieving and the pores in this system are bigger than arsenic contaminants size. Thus, 

elecrodialysis can be used for the efficient removal of As(V) by electrically charged membranes 

such as the example shown in the Figure 1.6. [3] 

 

 

Figure 1.6 Three-compartment electro dialysis cell and scheme of the ions transport [40] 

           Reverse osmosis in Figure 1.5, is a suitable technology to reduce As(V) concentration to 

below֯10μgL-1. This reverse osmosis membrane contains cellulose acetate, polyamides, 

polyvinyl alcohol, or other synthetic materials. However, many methods of reverse osmosis 

cannot always be efficient because of sensitivity to the oxidants, which As(III) can cause by 

peroxidation process. Some systems operating with bicycle pumps have been developed for 

removing arsenic from the ground water to be feasible [3]        

1.2.4 Biological treatment  

           Biological treatment of contaminated water means using living organisms such as plants, 

fungi, or bacteria or biological materials to absorb or treat contaminants. It has been attempted to 
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use human hair, crop wastes, fungal biomass, algae, and chitosan for efficient removal of arsenic 

from water. Living bacteria, fungi, plants, and other biological organisms have been mentioned 

for their capability of removing arsenic in the surface water, ground water, soils, sediments, and 

wastewaters. Also, some bacteria can oxidize As(III) into As(V) and this resulting As(V) can be 

treated by non-biological methods such as precipitation/coprecipitation or sorption. However, 

this biological method with fungi and bacteria has to be carefully managed to avoid methylating 

inorganic arsenic into highly toxic methyl arsine. [41-43] 

           In some studies, it was shown that arsenic-spiked groundwater can be treated for 

removing arsenic with G. ferruginea and L. ochracea. The As(III) level in this groundwater 

decreased֯from֯200μgL-1 to֯below֯10μgL-1. And this study also found that bacteria catalytically 

oxidized the Fe(II) to Fe(III) and As(III) to As(V) . [44] 

          Another biological treatment used for arsenic removal is phytoremediation, which uses 

living plants, plants parts, or plant extracts to treat contamination. Growing plants may remove 

arsenic contaminants in soils, sediments, and water by either absorbing the contaminants on iron 

coatings or through bioaccumulation within the plant. It has also been found that 

phytoremediation with living plants may be improved through genetic engineering and 

understanding of arsenic metabolism and detoxification in plants. [45-47] 

           Living trees and flowering shrubs may remediate sites through the bioaccumulation of 

arsenic in their needles, leaves, and other body parts. Pratas et al. (2005) evaluated the 

accumulation of arsenic in plants at old mine sites in Portugal. It was found that elevated 

amounts of arsenic were in the old needles of Pinus pinaster, Calluna vulgaris, and C. 

tridentatum and in leaves from C. ladanifer, Erica umbellate, and Quercus ilex subsp. ballota. 

[48]     
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1.2.5 Emerging Treatment  

          -     Pyrometallurgical treatment 

          Pyrometallurgical treatment makes the usage of heat from incinerators or furnaces to 

extract or concentrate metals and other inorganic contaminants from soils, sediments, or solid 

wastes. Pyrometallurgical treatment methods are usually used with solid materials that contain 

exceptionally high concentrations of inorganic contaminants. Most pyrometallurgical 

technologies essentially treat contaminated geologic materials and solid wastes as ore deposits. 

[49] Pyrometallurgical technologies volatilized arsenic from solid materials. The volatilized 

arsenic is captured by filtration or scrubbing after treating with reductants or fluxing agents. [50-

51] 

- Vitrification 

           Vitrification means melting of soils, sediments, and solid wastes to primarily incinerate 

organic contaminants and encapsulate arsenic and other inorganic species into melts. After the 

melting process, the melted material then cools into an impermeable and chemically resistant 

glass. For removing arsenic, vitrification method tries to minimize the volatilization of arsenic by 

incorporating as much of it as possible into slags unlike pyrometallurgical technologies. 

Especially, arsenic in flue dust or other solid wastes could be stabilized by heating them with 

lime and air, which leads to less volatile calcium arsenates and arsenates. [49, 52] 

- Electro-kinetic methods 

           Electro-kinetic technology refers to removing contaminants from wet soils, sediments, or 

other solid material by passing them through an electric current zone. These electro-kinetic 

currents are usually too low to melt the materials unlike vitrification. Kim, Kim and Kim (2005) 
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estimated the capability of electro-kinetic treatment of arsenic in two fine-grained soils under 

three-compartment chamber with a platinum anode and titanium cathode on opposite ends. One 

soil containing a Korean kaolinite was spiked with 1500mgkb-1 of As(V). With the additional 

treatment of KH2PO4 electrolyte solutions onto the soil, it shows the most effective results for 

removing arsenic. [53] 
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1.3 Polyethersulfone(PES) Membrane: Overview 

           Among Ultrafiltration polymer membranes, the most widely used polymer is 

polyesulfone(PSU) or polyethersulfone(PES) in the Figure 1.7.  

 

Figure 1.7 Molecular structure of Polysulfone and Polyethersulfone [54] 

           The first development of PSU membranes appeared in the 1960s as an alternative to 

cellulosic membranes. Since then several procedures have been developed and described in the 

literatures for this Polysulfone membranes [55, 56] and in many cases using the high molecular 

weight polysulfone Udel P-3500 commercialized by Solvay. The great advantages of PSU in 

comparison to cellulose acetate is its resistance in extreme pH conditions, as well as its thermal 

stability. For Tg of PSU, it has 195 and PES case has higher Tg at֯230˚C.֯Both PSU and PES are 

soluble in chloroform, dimethylformamide and are easily applied in phase-inversion processes. 

However, this high solubility could be the main drawback of PSU as a membrane material by 

eliminating the use of polysulfone-supported membranes in the processing of solvent-based feed 

solution. Another disadvantage of PSU and PES membranes is their hydrophobic character, 

which prevents consistent wetting in aqueous media. Thus, the membrane should be treated with 

a hydrophobic agent such as glycerin before drying completely. The other disadvantage 
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commonly considered is its powerful nonspecific adsorption capacity, which refers to fouling. 

This fouling finally leads to rapid deterioration of the membrane permeability. [54] 

           For its thermal stability, PES is one of the most thermally stable aromatic polymers, for 

which the glass transition temperature, Tg,֯is֯so֯high֯that֯it֯can֯be֯processed֯up֯until֯200֯˚C.֯

There has been experiment to measure its thermal stability by methods of thermo-gravimetric 

analysis (TGA), which checks the point when the thermo-oxidative degradation of PES starts. 

[57] Data reported previously were measured by using MAT445 type PGC-MS with a Curic 

point pyrolyzer and OV-1/C545. In the Data, no pyrolyzate was detected at temperature below 

385֯˚C.֯When֯the֯pyrolyzate֯formed֯at֯590֯˚C,֯it֯was֯composed֯mainly֯of֯Sulphur֯dioxide֯and֯

phenol. [58,59] 

           However, the hydrophobic nature of PES makes the membranes prone to be fouled in 

protein-contacting applications. These are sensitive to many organic solvents, which makes them 

not suitable to be used as asymmetric support-films for the pervaporation membranes. Even for 

the applications in aqueous media, the hydrophobic nature of the membrane surface leads to an 

easy deposition of macromolecular solutes or particles, which have hydrophobic regions. In 

addition to the fouling due to deposition of large size molecules on the membrane surface, the 

hydrophobic nature of the materials leads to a poor wetting performance for the pores and low 

water flux by the filtration process. [61] 

           This PES, PSU or PPSU(Polyephenysulfone) has been produced by BASF, Solvay, 

Sumitomo, 3M etc. The slowdown in global economic growth in 2008 and 2009 has impacted on 

polyarylsulfone (Polysulfone, Polyethersulfone, Polyephenysulfone) sales. The years 2010 and 

2011 following the crisis were characterized by significantly above-average growth due to 

increased application fields for this family of materials such as water and dialysis filters. 
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Especially, the proportion of polyarylsulfone consumed by the medical sector rose from about 

20% in 2010 to the current value of 24%. The consumption of polyarylsulfone as one of High 

Temperature thermoplastic has increased with its broad range of applications in fields such as 

aviation, electronics, medical technology, vehicle construction, household and food technology 

in the Figure 1.8. [60] 

 

 

Figure 1.8 Share of global consumption of polyarylsulfone thermoplastics by application area (2012) [60] 

 

           Polymeric materials that lend themselves in particular to water-contact applications will 

become very important in the short to medium term, as access to clean drinking water becomes 

critical to the world’s֯growing population. With special processes, it is possible to make 

Polyethersulfone membranes of which pore number and size can be varied in a wide range. 

These types of membranes are crucial to water treatment and Polyethersulfone is one of the few 

polymer materials which make this application feasible. [60]  

            As a high-temperature engineering thermoplastic, PES should be processed at a higher 

temperature than when it was originally processed because of its high glass transition 
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temperature (Tg=225˚C).֯This֯processing֯conditions֯might give rise to different thermal and 

thermos-oxidation processes that will affect the properties and structure of PES. This thermal 

processing is more crucial in the case of reprocessing of PES in several cycles. These processing 

cycles will greatly influence the structure and properties of PES. The selection and control of the 

processing conditions is, therefore, important in optimizing the structure and properties. [57] 

Properties of plastics deteriorate mainly as a result of significant changes in polymer structure. In 

general, the reaction involves a main chain scission, which leads to a decrease in average 

molecular weight and viscosity of the melted polymers. [62-63] The viscosity of PES rises as a 

result of repeated processing which leads to the phenomenon known as thickening. The 

thickening process is a result of a reaction brought about by prolonged shear and heat/oxygen 

over a specified range of temperature. [57-58] 

           Synthesized PES membrane by phase inversion method exhibited a typical asymmetric 

structure composed of a thin skin-layer and a porous bulk with a finger-like structure shown in 

Figure 1.9 below. [64] 

 

Figure 1.9 Cross-sectional SEM images of the prepared PES membrane.(Pristine) [64] 

              Most of the membranes used in industry have an asymmetric structure like as Figure 

1.9. It consists of two layers: the top one is a very thin dense layer (also called the top skin 



 

21 
 

layer), and the bottom one is a porous sublayer. This top dense layer governs the performance 

(permeation properties) of the membrane. In the asymmetric membrane, when the material of the 

top layer and porous sublayer are the same, the membrane is called an integrally skinned 

asymmetric membrane. However, if the polymer of the top skin layer is different from the 

polymer of the porous sublayer, the membrane can be a composite membrane. This composite 

membrane has advantage over the integrally skinned asymmetric membrane as that it can 

optimize the performance of the permeation by selecting the top skin layer and sub layer. [65] 

 

Figure 1.10 Cross-sectional view of an asymmetric membrane. [65] 
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1.4    Most Relevant Literature Review: Arsenic Removal from Water using 

Iron Oxide  

           Ioannis A. Katsoyiannis et al. [66] modified polymeric materials (polystyrene and 

polyHIPE) by coating their surface with iron oxide and investigated how this modified media can 

perform for removing inorganic arsenic anions from contaminated water sources. This work has 

been planned as modified֯adsorption֯technology֯“adsorptive֯filtration”֯and is the first research 

attempt applying polymeric materials as filtration matrices for sorptive filtration of arsenic in the 

water. For the treatment of polymeric media, Iron hydroxide was coated on the polymeric beads 

and the filtration of arsenic was conducted.  

 

 

Table 1.2 Iron coated/g polystyrene as affected by the initial concentration of ferric nitrate [66] 

 

 

[FE(NO3)] concentration(M) [Fe] mg Fe/g polystyrene 

0.025 40 

0.1 70 

0.3 75 

Figure 1.11 (a) residual arsenic concentration and (b) percentage arsenic removal [66] 
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           The amount of iron hydroxide coated on the surface of polymer beads or media is an 

important factor when adsorptive filtration techniques are applied. As shown in Figure 1.11 and 

Table 1.2, with the increase in the amount of iron oxide coated on the surface of filtration media, 

the adsorption capacity of the media was increased. However, above certain concentration of 

ferric nitrate which is used for coating iron hydroxide, the amount of coated iron hydroxide did 

not show any further significant increase in the polymer media. [66] 

           Qigang Chang et al. [67] investigated performance of removing arsenic by synthesizing  

iron impregnated granular activated carbon with ferrous chloride. Iron impregnated granular 

activated carbon(GAC) was stabilized with sodium hydroxide and shown to be very stable at the 

common pH range in water treatments.  

 

 

 

 

 

 

          

Figure 1.12 (a) Arsenate isotherm curves for Darco 20×50 Fe-GACs (lines are the Langmuir model fits).  

                     (b) Relationship between iron content and arsenate adsorption capacity/iron use efficiency. [67] 

(a) (b) 
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          Arsenate adsorption test from isotherm data were plotted successfully by Langmuir model 

(Figure 1.12 (a)). The arsenate adsorption capacity by Iron impregnated GACs increased rapidly 

up to 1.95mg/g when iron concentration increased to 4.22%, while it decreased with more 

impregnated iron (>4.22%). Further increase in impregnated iron concentration on GACs will 

resulted in gradual decrease in arsenate adsorption capacity.  Impact of the amount of 

impregnated iron on arsenic adsorption capacity and efficiency were also evaluated and shown as 

a plot in the Figure 1.12 (b). Iron use efficiency is used to explain the relation between the mass 

of absorbed arsenate(mg) and a unit mass(g) of impregnated iron. Iron use efficiency maintained 

at high level from 40mg As/g Fe to 46mg As/g Fe. However, it dropped rapidly to 14mg As/g Fe 

as iron concentration reaches around 12%. [67] 

          It was verified from Qigang Chang et al. [67] that as multi-layers and nano-scale iron 

particles formed, which was observed in SEM analysis, masses of impregnated iron increased 

faster than the increasing of its surface area. High amounts of iron could cause blockage in PAC 

porous system, eventually resulting in declining of the surface area for As to be absorbed.   

           There have been other studies about iron oxide mineral as for removing arsenate 

depending on its type and pH value and high arsenic removal has been achieved. Figure 1.13 

illustrates arsenic (As(III) and As(V)) removal from water in different pH by using different 

types of iron oxide mineral. [68-71] With hematite as the adsorbent, the maximum As(V) 

removal reaches around 100% at pH 3-6 like as the Figure 1.13. 

         Guo, Stuben, and Berner (2007) performed batch and column tests to know the capability 

of natural hematite for removing arsenic from water. It was investigated by them that the arsenic 
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removal efficiency increases when the grain size of hematite decreased. It has been found that 

nitrate ions did not have an influence on the uptake of As(V), while phosphate highly disturbed 

the adsorption of As(V) into iron oxide. [72] 

            

 

 

 

 

 

           Narahari Mahanta et al. [73] has investigated the performance of Fe3+ immobilized poly 

(vinyl alcohol) (PVA) nanofibers for removing arsenic from water. For synthesizing PVA/Fe3+ 

nanofiber, electrospinning technique was used. The adsorption profile of arsenic shows that the 

maximum value in adsorption experimentation was achieved within 30 min for all concentration 

ranges as shown in Figure 1.14. Especially for As(III) solution of 20 ppm, the adsorption 

efficiency value was higher than 95% in 30min and capacity was 20mg/g after 6 hours of 

extraction. However, in the case of higher arsenic concentration (100ppm) for the same amount 

of media, the adsorption efficiency is around 90% in 30min and adsorption capacity was 

recorded as 66mg/g. In the Figure 1.15, the As(V) removal percentage is relatively lower than 

As(III) removal percentage in the same concentration range when using the same amount of 

nanofibers. The maximum value of adsorption efficiency was found during the initial 30 minutes 

(a) 
(b) 

Figure 1.13 Arsenic removal as a function of pH by adsorption on various iron oxide mineral [68-71] 
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with the adsorption capacity being around 60mg/g at the concentration of 100ppm. In the case of 

60ppm solution of As(V), adsorption capacity was extracted as 33mg/g at pH 7.0.  

 

Figure 1.14 Concentration dependent adsorption kinetics of As(III) ions using Fe3+ incorporated  

PVA-Fe nanofibers (10mg, pH=7) as a function of time. [73] 

 

Figure 1.15 Concentration dependent adsorption kinetics of As(V) ions using Fe3+ incorporated  

PVA-Fe nanofibers (10mg, pH=7) as a function of time. [73] 

           It has been verified that adsorption efficiency depends on the surface charge of the 

absorbent and arsenic anions charge. A mechanism was proposed using spectroscopic data that 
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shows that arsenate and arsenite ions from bidentate, binuclear complexes with Fe3+ ions. The 

presences of a free d-orbital on the Fe(III) ion in the PVA/Fe has formation complexes and 

bridges. [74-76] 
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1.5 Research Objectives  

           To Study and achieve the performance of PES (Polyethersulfone) composite membrane 

with modified Iron Oxide nano particles for absorbing Arsenate ion in the solution, the following 

research objectives were specified in the order of experimentation plan.  

           Objective 1 

           To improve dispersion of Iron oxide nano particles in the polymer matrix by separating 

aggregated Nano particles [77], Iron Oxide nano֯particles’֯surface֯were֯modified by APTES, 

silane coupling agent. The modification with APTES was characterized by Infrared spectroscopy 

method. The dispersion of nano particles was analyzed with TGA method. 

            Objective 2 

           To study the effect of APTES-Fe3O4 nano particles different wt(%) on the structure and 

properties of PES(polyethersulfone) composite membrane, FESEM, AFM, contact angle 

analysis, porosity and pure water flux techniques were utilized.  

           Objective 3 

           To study the effect of APTES-Fe3O4 NPs on the performance of adsorption and removal 

of As(V) ions from water solution, Different solution concentrations (2ppm, 4ppm, 6ppm, 8ppm) 

were used to develop an equilibrium isotherm model. In the case of kinetic adsorption test, 1ppm 

solution was utilized under 50psi. All the samples taken for the permeate were analyzed with 

ICP-MS (Inductively Coupled Plasma) analysis. 
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CHAPTER 2 

2.1 Materials 

           The raw materials used for the synthesis of PES/APTES-Iron Oxide Nano Particles (A-

Fe3O4-NP) were Polyethersulfone(PES) pellet, Polyvinylpirrolidone(PVP), N, N-

Dimethylacetamide (DMAc), Aminopropyltriethoxysilane(APTES), and Iron Oxide Nano 

Particle. These are purchased from commercial sources and mentioned in each material sections. 

Other raw materials for As(V) adsorptions were Distilled water and Sodium arsenate dibasic 

heptahydrate (Na2HAsO4·7H2O). 

  2.1.1 Polyethersulfone(PES) 

            PES(Polyethersulfone) are characterized by -SO2- linkages. They are rigid and tough 

thermoplastics with Tg range of 180-250˚C.֯Chain֯rigidity is derived from the relatively 

immobile and inflexible phenyl sulphone groups, and toughness from the connecting ether 

oxygen. [78] Its chemical structure is shown in the Figure 2.1. 

 

Figure 2.1 Polyethersulfone chemical structure [54] 

 

           PES(Polyethersulfone) has excellent high temperature properties and chemical inertness. 

It can be used continuously in the temperature range of 150-200˚C.֯For֯a֯wide֯variety֯of֯

applications requiring sterilization and cleaning at high temperature, its ability to maintain its 
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mechanical properties in wet, hot environments is considered a key point in industrial use. The 

PS family has wide pH tolerance from 1 to 13, which contributes to its usages for the cleaning 

purposes. PES can also be easily fabricated into many complex configurations and modules by 

injecting its resin into a mold.  

           However, PES has limitations for the industrial filtration application with low pressure 

limits and strong hydrophobicity. It is prone to interact with many kinds of solutes in the aqueous 

system thus it has more fouling phenomena than hydrophilic polymers like cellulose. [78] There 

have been a lot of efforts within the research and manufacturing field for overcoming this fouling 

phenomena by adding fillings such as metal oxide Nano particles or Nano Clay for the increase 

of hydrophilicity of PES.    

         In my research project, PES Ultrason E6020P has been purchased from BASF 

Company(Germany) with the specification of Molecular weight, 58,000g/mol as the base 

polymer, PES(Polyethersulfone). 18 wt% of PES pellets were dissolved in 

DMAc(Dimethylacetamide) solvent in a water bath and placed under reflux condenser system 

for֯24hrs֯at֯50˚C֯to֯make֯PES֯pellets֯melted֯into the solvent homogenously for the next 

Nanoparticle mixing steps.  

2.1.2 Polyvinylpirrolidone (PVP) 

           For the purpose of high performance of filtration from the membrane, especially UF 

membranes, decent porous structure has to exist in the polymer membranes. To achieve this 

purpose, Polyvinylpirrolidone(PVP) have been widely studied and used for being added into PES 

polymer resin with its high contribution of effective surface pore structure after PES casting.  
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           With the interaction of O=C-N< function groups in the PVP in the Figure 2.2 and O=S=O 

group, most active polar functional groups in PES, PVP become entrapped in the PES network 

and form an integral part of the polymer structures, providing not a only swelling effect but also 

a hydrophilic nature to the polymer.  

 

Figure 2.2 Chemical Structure of Polyvinylpirrolidone(PVP) [79] 

          The solution structure formed under interaction forces between PVP and PES causes an 

increase in the size of the largest pores involved in the pore size distribution and consequently 

increases the permeation rate. [80] Thus, it has been concluded that the primary effect of PVP in 

the PES casting solution is on the structure of casting solution and, as consequence, on the pore 

size and the pore size distribution of the membrane. [80] 

           In this research project, PVP was purchased from Sigma Aldrich with the specification of 

average molecular weight, 29,000 and 1wt% of PVP was added in the PES casting solution for 

forming the porous structure in membrane.  

2.1.3 N, N-dimetylacetamide (DMAc) 

           In the preparation of membrane process, diffusion induced phase separation was 

employed, the exchange of solvent and non-solvent between polymer solution and coagulation 

bath played an important role. N, N-dimethylacetamide (DMAc) was chosen as the solvent in 

this research based on the past research working on the polymer membrane formation 
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mechanisms with different solvents. Among several solvent candidates for PES, such as N, N- 

dimetylacetiamide(DMAc), N, N-dimethylformamide (DMF), 1-methyl-2-pyrrolidone (NMP), 

the casting solutions including DMAc as its solvent for dissolving PES pellet showed the best 

performance for forming a highly porous structure in membrane. [81] As the membrane 

performance is a function of membrane structure for higher filtration flux, DMAc was selected 

as the solvent for dissolving PES pellets and forming the PES membrane in coagulation bath.    

           N, N – Dimethylacetamide (DMAc) is a colorless, high boiling, polar, hygroscopic liquid. 

DMAc is a good solvent for a wide range of organic and inorganic compounds and its polar 

nature shown in Figure 2.3 enables them to combine to solvents for high yield of the final 

products. [82]  

 

Figure 2.3 Chemical Structure of N, N- Dimethylacetamide (DMAc) [82] 

 

           In this research project, N, N – Dimethylacetamide (DMAc) were purchased from Sigma 

Aldrich with the specification of 99% purity. Weight percent of DMAc in each PES/APTES-

Fe3O4 sample was variant as 81%, 80%, 79% and 78% depending on the weight percentage of 

APTES-Fe3O4 (0%, 1%, 2%, 3%). 
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2.1.4 Iron Oxide Nano Particles (Fe3O4-NP) 

          Iron Oxide Nano Particles(Fe3O4-NP), purchased from Sigma Aldrich(USA) and added to 

PES after modification with APTES(Aminopropyltriethoxysilane), have the nano size range of 

50-100nm. As the chemical formula, Fe3O4, it has the following physical properties: Spherical 

Magnetite nano powder, 97% trace metals basis, molecular weight 231.53g/mol, BET surface 

area over 60m2/g,֯dark֯black֯color,֯melting֯point֯1538֯˚C,֯and֯bulk֯density֯0.84֯g/mL.֯[83] 

          The magnetite(Fe3O4) nano particles with their multifunctional properties such as super 

paramagnetism, low toxicity, excellent thermal properties, good biocompatibility and 

biodegradation, have been widely used for biotechnology and biomedical applications. [84] Also, 

magnetic particles assist in effective separation of catalysts, nuclear waste, biochemical products 

and cells. [85-87] Magnetically driven separations with Iron Oxide nano particles happens 

efficiently with the combination of high dispersion of small and magnetically separable catalysts 

and reactivity with separation system. [84] 

 

Figure 2.4 FE-TEM images of the iron oxide nanoparticles (Magnetite and maghemite)  

(A) Scale bar: 50nm. (B) Scale bar: 100nm. [88] 

           Magnetic properties of Iron Oxide Nano Particles has been extended to include 

environmental remediation of toxic elements because it can be separated easily with magnet. The 
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removal of As(V) from drinking water has been targeted in this research study by considering its 

magnetic separation ability based on the previous literature review.  

          The Iron oxide weight percentage for each PES (Polyethersulfone) differs as written below 

in the table.  

Table 2.1 Weight Concentration of chemical components in each PES sample 

                 Wt(%) PES APTES-Fe3O4 DMAc PVP 

M1 18 0 81 1 

M2 18 1 80 1 

M3 18 2 79 1 

M4 18 3 78 1 

 

2.1.5 Aminopropyltriethoxysilane(APTES) 

           For forming good quality of Polyethersulfone membrane with well dispersed Iron Oxide 

Nano Particles, Iron Oxide particles were chemically modified with APTES, silane agents. The 

main difficulties with polymer nanocomposites is the prevention of particle aggregations caused 

by specific surface area and volume effects. The modification with APTES improves the 

interfacial interactions between the inorganic particles (Iron Oxide) and polymer matrix(PES). 

This particle surface modification generates a strong repulsion between nanoparticles. [77] 

           APTES(3-aminopropyltriethoxysilane) is the most commonly used aminosilane and its 

popularity is contributed to complexities in usages. First, APTES in the Figure 2.5 has many 

possible ways to interact with surface silanol/silanolate groups by hydrogen bonds, electrostatic 

attractions, and siloxane bonds. Secondly, it has three ethoxy groups per molecule and is capable 

of polymerizing in the presence of water, which leads to many possible surface structures such as 
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covalent attachment, two-dimensional self-assembly (horizontal polymerization), and multilayers 

(vertical polymerization). Thirdly, excess water results in not only uncontrolled polymerization 

of silane molecules on surface, but also formation of oligomers and polymers of silanes in bulks, 

which can also interact and attach to the surface. [89] 

 

Figure 2.5 Chemical Structure of Aminopropyltriethoxylsilane [91] 

 

            Thus, APTES(3-aminopropyltriethoxylsilane) compound has been considered as an 

important silane coupling agent and widely used grafting agent to promote interfacial behavior of 

inorganic oxides including silica, ceramics, titania, and magnetic iron oxide Nano particles. [90] 

          In this research project for the surface modification of Iron Oxide Nano Particles, APTES 

was purchased from Sigma Aldrich with its specification of purity, 98.5% and molecular weight, 

221.37g/mol.  

2.2 Synthesis and Characterization 

2.2.1 Synthesis of PES Nanocomposite Membrane 

          The experimentation steps for synthesizing Polyethersulfone(PES) membrane impregnated 

with APTES-Fe3O4-NP were developed based on the reference studying PES with differently 

modified Fe3O4-NP for absorbing copper ion through filtration. [92] For dissolving PES in 
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DMAc, round bottom flask filled with DMAc, PES was placed in water bath at֯50˚C֯and֯stirred֯

with a magnetic stirrer for 24 hours under a condenser reflux setup as described in the Figure 2.6. 

 

Figure 2.6 Experimental setup for dissolving PES pellet in DMAc 

 

          For the mixing magnetic Nano Powder, APTES-Fe3O4 into PES resin after dissolving into 

30 wt.% of total DMAc, modified Fe3O4-NPs were mechanically dispersed in DMAc by 

ultrasonication, Probe type (20% Amplitude, 1 pulse) for 30 minutes. Then, Fe3O4-NPs in 

DMAc were added into PES resin and this solution was mechanically mixed for 2 hours at 

3500rpm for homogenous dispersion of Fe3O4-NPs. To achieve better mixing after mechanical 

mixing process, this PES-APTES-Fe3O4 solution were mixed with an Acoustic mixer for 45 

minutes at 40% Intensity and with probe type ultrasonicator (60% Amplitude, 2 pulse) for 2 

minutes.    

         After completing the homogenous mixing steps, the PES-APTES-Fe3O4 solution was 

casted on a glass plate in Distilled Water with Doctor Blade (number 8, 200μm) at room 
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temperature. Each casted membrane was solidified in DI water for 24 hours and dried in a 

vacuum oven for 24hours. Each composition weight percent is described in Table 2.1.  

2.2.2 Synthesis of Fe3O4-NP grafted with APTES 

           For modification of Fe3O4-NPs surfaces, 2g of Fe3O4-NPs were treated each time in pure 

ethanol 100mL with 2wt% of APTES of this solvent. The experimentation development was 

based on the reference studying for kinetics of APTES Silanization of Iron oxide Nano particles. 

[90]. Pure ethanol solvent(98%) 100mL plus 2g of Fe3O4-NPs was placed into three neck round 

bottom flask (250mL) and mixed with a mechanical mixer at 4000rpm. Nitrogen was supplied 

into this flask until 2mL of APTES was added into system with syringe then all the neck of the 

flasks were blocked with a rubber֯cap֯for֯2֯hours֯mixing֯at֯65˚C.֯ 

 

Figure 2.7 Experimental setup for modification of Fe3O4-NPs with APTES 

 

           After finishing treatment, the APTES-Fe3O4-NPs were washed with anhydrous ethanol 4 

times by distillation with magnet. The treated NPs were then dried in a vacuum oven for 24hrs.  
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         For this modification, the reference [90] studied the modification mechanism by 3 steps, 

hydrolysis of APTES, surface attachments and condensations described in Figure 2.8.  

 

Figure 2.8 Silanization of magnetic iron oxide nanoparticles with APTES [90] 

 The treatment condition of NPs with APTES was referred from the study [93] for effect of 

APTES-NPs on PES performance. (65˚C in oil bath, 2hr) 

 

2.2.3 Characterization of Fe3O4-NP grafted with APTES 

2.2.3.1 IR 

           Iron Oxide Nano Particles (Fe3O4-NP) treated with APTES were characterized with 

Infrared Spectroscopy(IR) Tracer 100 (Shimadzu) by comparison with non-treated Fe3O4-NP.  

From the APTES-Fe3O4-NPs, the modified functional group were expected for - CH2, - CH3 

(wavelength: 2,840–2,960 cm-1), -NH2 (wavelength: 1560cm-1) based on APTES chemical 

structure and mechanism of its modification. [90], [91] The IR spectrometer scanning was 

carried out in the range of 5000cm-1 to 350cm-1 with the transmission intensity mode, Happ-

Genzel Apodization, 200 times of scan, 4cm-1 resolution.    
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 2.2.3.2 TEM 

            To characterize the modification of Fe3O4-NPs, Transmission electron microscopy (TEM, 

Hitachi H-9000NAR microscope) with an attached Noran Energy Dispersive Spectrometer was 

operated at 300keV. For the sample preparation, small amount of powder transferred by wood 

pick to agate mortar and a few drops of ethanol were added. Agate pestle used to gently break up 

aggregates. Plastic pipette used to disperse nanoparticles on Lacey Carbon copper mesh TEM 

grid. Sample dried at room temperature in air. 

 

2.2.4 Characterization of PES Nanocomposite Membrane 

2.2.4.1 FESEM  

            Field emission scanning electron microscopy (FESEM, Hitachi S-4800, Japan) was used 

to analyze morphology of the membrane and agglomerated APTES-Fe3O4-NPs. For taking the 

image of each membrane sample (M1, M2, M3, M4), FESEM was operated with the condition of 

1000 times magnification, 8mm depth, 7.6 kV . The membrane cross section was created by 

being cut after Cryo-snap method(Freeze-Fracture) in liquid nitrogen. [94] The membrane 

samples on the stage support were coated with the 5nm thickness of Ir.  

 

2.2.4.2 TGA  

           Thermogravimetric Analyzer (TGA, SDT 2960) was carried out in the range of 30-

1000˚C֯under air atmosphere with a flow of 50mL/min, heating rate of 20˚C/min֯and֯sample֯
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mass around 16mg. TGA analysis were conducted on 3 times on different locations of each 

sample. (M2, M3, M4) 

 

2.2.4.3 AFM 

          Atomic force microscopy was employed to analyze the surface morphology and roughness 

of the membrane samples. The Atomic Force Microscope apparatus used was the Agilent 5420 

made in the USA. 1cm width and 2cm length size of membranes were prepared for each sample 

and֯taped֯into֯the֯glass֯slide֯by֯dual֯side֯carbon֯tape.֯2μm×2μm֯were֯scanned֯with֯tapping֯

mode, the speed of 1.2 In/s and 256×256 resolution. The surface roughness parameters of the 

membranes are expressed in terms of the mean roughness(Sa), the root mean square of the Z 

data(Sq) and the mean difference between the highest peaks and lowest valleys(Sz) through the 

software, Picoview 1.14. 2D and 3D roughness images with scanning data were processed 

through open source program, Gwyddion 2.51. 

 

2.2.4.4 Contact Analysis 

            The hydrophilicity of membranes was evaluated by measuring the contact angle between 

water droplet and membrane surface by using a contact angle goniometer (Rame –Hart 

Goniometer). The results were the average of five tests at random spots on each membrane 

surface.  
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2.2.4.5 Porosity and mean pore size 

           Overall porosity ε of the prepared nanocomposite membranes was calculated by the 

gravimetric method using the following equation [95] 

ε =
𝜔1 − 𝜔2

𝐴 ∙ 𝑙 ∙ 𝑑𝑤
                                                                     (1) 

where 𝜔1 and 𝜔2 are the weight of the wet and dry membranes, A is the membrane area (m2), 𝑙 

is the membrane thickness(m), and 𝑑𝑤 is the water density (0.998g/cm2).  The membrane 

thicknesses were measured with a Digimatic Digital Thickness Gage (Mitutoyo 547-400S, range: 

0 – 0.47 inch) 20 times per every membrane sample and the average values were used.  

           Moreover, the membrane mean pore radius (rm) was determined by Equation (2) 

(Guerout-Elford-Ferry equation):  

𝑟𝑚 = √
(2.9 − 1.75𝜀) × 8𝜂𝑙𝑄

𝜀𝐴∆𝑃
                                                                    (2) 

Where Q is the volume of the permeated pure water per unit time (m3/s),֯η֯is֯the֯water֯viscosity֯

(8.9×10-4 Pa֯s)֯and֯ΔP֯is֯the֯applied֯pressure֯(0.345֯MPa).֯[95, 96] 

 

2.2.4.6 IR Analysis  

            Infrared Spectroscopy(IR) Tracer 100 (Shimadzu) was used for characterization of 

pristine PES and PES-A-Fe3O4-NPs (1wt%) membrane. Between pristine PES and PES-A-

Fe3O4-NPs, Hydroxyl functional group (H-O-H), Fe-O functional group was expected for the 

derivation. Each membrane sample was analyzed in the wavelength range of 5000cm-1 to 350cm-
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1 with the transmission intensity mode, Happ-Genzel Apodization, 100 times of scan, and 8cm-1 

resolution. 

 

2.3 Membrane Filtration and Adsorption Experiments 

2.3.1 Pure Water Permeability(PWP)  

          The prepared membrane with different A-Fe3O4-NPs concentrations were cut into a 

circular shape for fitting into the bottom of the membrane cell (50 ml Amicon Stirred Cell, 

Millipore, Area: 13.4cm2). The membranes were initially soaked with distilled water for 30 

minutes and stabilized under distilled water by Nitrogen pressure at 50psi for 30 minutes. The 

permeate flux was calculated using the following equation. 

PWP =
𝑄

𝐴 𝑡 ∆𝑃
                                                                     (3) 

 Where Q is the permeate volume(L), A is the membrane area(m2), t is the time(h), and ∆P is the 

pressure difference across the membrane sides. The differential pressure used was 50psi during 

30 minutes for each membrane.  

 

2.3.2 Experimental Sep up for Dynamic adsorption and Arsenate Rejection (%R).  

          The Experimental sep up is composed of 50mL Amicon Stirred Cell (EMD Millipore, 

Billerica, MA, USA). 1ppm of Sodium arsenate dibasic heptahydrate was placed into 1000mL 

for making the working solution. After Arsenate solution was forced to pass through the 
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membrane by nitrogen pressure at 50psi, both the As(V) feed and permeate composition were 

evaluated by Inductively Coupled Plasma(ICP) analysis (ICP-MS-2030, Shimazu, Japan).  

 

Figure 2.9 Experimental Sep-up used for Arsenate (As) removal from solutions. 

 

           Both feed and permeate samples were stabilized with nitric acid (2%v/v HNO3) before 

ICP-MS analysis.  

           The percentage of Arsenic removal %R was defined and calculated as follows: 

%R =
((𝐶0 − 𝐶𝑡) × 100)

𝐶0
                                                                     (4) 

  where 𝐶0 is the initial As concentration and  𝐶𝑡 is the As content at specific time t.  
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2.3.3 Batch adsorption analysis  

         The adsorption behaviors of As(V) with the different PES-A-Fe3O4 membrane samples 

were studied with batch experimentation. All adsorption isotherm experiments were conducted in 

a series of sealed volumetric flask containing 0.05g of each membrane sample and 100mL of 

As(V) solution in 4 different concentration. (2ppm, 4ppm, 6ppm, 8ppm). The solution containing 

each֯membrane֯sample֯was֯stirred֯with֯magnetic֯stir֯bar֯for֯24֯hours֯at֯25֯˚C֯at֯200֯rpm.֯

Arsenate was absorbed into each of the membrane samples and reached equilibrium 

concentration after 24 hours. The concentration of As(V) residual was measured with Inductively 

Coupled Plasma(ICP) analysis (ICP-MS-2030, Shimazu, Japan). Experimental Set-up is descried 

in the Figure 2.9. 

 

Figure 2.10 Experimental Set-up for Batch adsorption tests 
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          The equilibrium adsorption amount and removal efficiency of As(V) by the membranes 

were calculated as follows: 

𝑞𝑒 =
((𝐶0 − 𝐶𝑒) × 𝑉)

𝑀𝑚
                                                                     (5) 

where 𝐶0 (mg/L)is the initial As concentration and  𝐶𝑒 (mg/L) is the As content at equilibrium. V 

is the total volume(L) of the arsenate solution(0.1L) and 𝑀𝑚 is the mass(g) of dry membrane 

used in the adsorption study.  

 

2.3.4 Inductively Coupled Plasma(ICP) analysis 

          Inductively Coupled Plasma Mass Spectrometry of ICP-MS is an analytical technique used 

for elemental determinations. ICP-MS has many advantages over other elemental analysis 

techniques such as atomic absorption and optical emission spectrometry, including ICP atomic 

Emission Spectroscopy. [97]  

           An ICP-MS combines a high temperature inductively Coupled plasma source with a mass 

spectrometer. The ICP source then converts the atoms of the target elements in the sample into 

ions.  These ions are then separated and detected by the mass spectrometer. Figure 2.10 shows 

the schematic drawing of an ICP source.  [97] 

           For the Mass spectrometry technique, three essential parts of the instrumentation could be 

identified: (i) the ion source, in which the ions are provided, (ii) the mass spectrometer itself, in 

which the ions are separated from one another as a function of their mass-to-charge ratio, and 

(iii) the detection system that converts the ion beam into a measurable electrical signal. [99] 
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Figure 2.11 Schematic representation of the essential parts of mass spectrometric instrumentation [98] 

 

To summarize, Table 2.2 below is a list of the characterization experiments and the purpose of 

each 

Table 2.2 List of characterizations and purpose of each 

Characterization Purpose 

FESEM To analyze morphology of membrane and A-Fe3O4 NPs for the 

change of pore structure in cross-section 

TGA To evaluate the degree of dispersion of A-Fe3O4 NPs in PES 

membrane 

AFM To measure roughness value of prepared membrane 

Contact Angle Analysis  To evaluate hydrophilicity of prepared each membrane 

Porosity and 

 mean pore size 

To verify the effect of A-Fe3O4 NPs on the pore size and percentage 

of porous structure 

IR analysis  To confirm the surface modification of Fe3O4 NPs 

Pure water flux To confirm the degree of porosity 

Batch adsorption 

analysis 

To define the relation between equilibrium adsorption capacity of 

prepared membranes vs initial concentration of As(V) solution  

Dynamic adsorption 

analysis 

To study the kinetic adsorption phenomena As(V) of prepared 

membranes under pressure through membrane cell 

ICP Analysis  To analyze the As ion concentration in each permeate samples 
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CHAPTER3 

RESULTS AND DISCUSSION 

3.1 Characterization Analysis 

3.1.1 FESEM Analysis 

           Cross-section FESEM image of PES-A-Fe3O4 membrane and pristine PES membrane are 

displayed in Figure 3.1 to evaluate the change in porous structure. Each membrane exhibited an 

asymmetric structure composed of a skin-layer and porous bulk containing finger-like channels. 

It has been shown that there֯is֯significant֯difference֯in֯skin֯layers’֯thickness֯and porous bulks 

by adding APTES-Fe3O4. 

           In the Figure 3.1 (c) and (d), it is verified that addition of APTES-Fe3O4 NPs contributes 

into making a more porous structure in the top layer due to an increase in the solution 

thermodynamic instability of the non-solvent system. This thermodynamic instability caused 

rapid mass transfer between solvent and non-solvent components in the solidification process 

and then this phenomenon leads to a larger porous structure in membrane skin layers. [95] 

           However, adding more APTES-Fe3O4 NPs decreased the porous radius in the skin layer 

because of increased viscosity of the casting solution and agglomeration of NPs with a higher 

weight percent of NPs. High viscosity typically delays the mass transfer process between non-

solvent and solvent, which finally contributes to the formation of the smaller pores in the skin 

top layers. [95]  

          For the bulk layers in the cross section, addition of APTES-Fe3O4 affects the porosity and 

pore shape Figure 3.1. According to FESEM, sub-layer micro-voids have been formed with a 
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higher concentration of APTES-Fe3O4 and the largest pore sublayer pore structure were found in 

the PES-A-Fe3O4 2wt% and PES-A-Fe3O4 3wt%. These micro voids sizes’֯extension֯across֯the֯

membrane was induced by increased miscibility of non-solvent with hydrophilic Fe3O4 NPs. 

Growth of micro-voids in sub-layer by addition of metal oxides nanoparticles to membrane has 

been proven in the past. [95, 100]  

 

Figure 3.1 Cross-sectional FESEM images of the prepared membranes, (a) M1: Pristine PES, (b) M2: 

PES-A-Fe3O4 1wt%, (c) M3: PES-A-Fe3O4 2wt%, (d) M4: PES-A-Fe3O4 3wt% 

 

           NPs agglomeration was found in the cross section of membrane, mostly in the skin layer. 

Surface modification of NPs prevent the membrane from having the agglomeration phenomenon, 

but this can happen locally in the skin layer. (Figure 3.2)   
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Figure 3.2 FESEM Image of cross section of M2(left) and M4(right) 

           Agglomeration of NPs can block the channels, which decrease the efficiency of filtration 

performances. This will interfere the liquid solution flow and can possibly decrease pure water 

flux.  

3.1.2 Thermal Analysis(TGA) 

           To examine the degree of dispersion of APTES-Fe3O4 NPs in the polymer matrix, 

thermogravimetric analysis (TGA) test was done on each PES-A-Fe3O4 NPs 3 times. The TGA 

results are shown in Figure 3.3 with its residual amount and wt. present (%). This indicates that 

PVP (1wt%) and PES (18wt%) were leaching out when the temperature reached into֯850˚C֯and֯

the residuals are composed of Iron oxide (1,2,3wt%). Assuming that all of the DMAc solvents 

were transferred out of the solidified PES membrane in the phase inversion process, residual 

weight percent of each PES-A-Fe3O4 NPs membrane (M2, M3, M4) can be expected as 5wt%, 

9.5%, and 13.6%.  The result from the TGA are 7.2%, 9.7%, and 14.9% (M2, M3, and M4) are 

shown in Table 3.1 with expected values.  
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Figure 3.3 TGA for M2, M3, M4 APTES-Fe3O4 NPs dispersion 

 

Table 3.1 Expected A-Fe3O4 and experimental A-Fe3O4 from TGA residual 

 

  Type                    

   

APTES-Fe3O4 wt. % 

 Expected A-Fe3O4 in 

Membrane(wt. %) 

TGA residual  

(A-Fe3O4 wt. %) 

M2 1 5 7.2 ± 0.27 

M3 2 9.5 9.7 ± 0.15 

M4 3 13.6 14.9 ± 0.07 

 

 

           With the comparison between Expected wt. % of A-Fe3O4 NPs and actual TGA results, it 

indicates that the modification of Fe3O4 has provided a good degree of dispersion of A-Fe3O4 in 

PES membranes.   
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3.1.3 Atomic Force Microscopy(AFM) and Porosity 

           AFM analysis was conducted to verify other characterization results. Figure 3.5 (3D) 

indicates all PES-A-Fe3O4 membranes AFM images which defines roughness with their bulges 

and valleys. The higher roughness can be gained with more up and down figures in the 

designated֯area֯(2μm֯×֯2μm).֯These֯roughness values in the Table 3.2 revealed that the more 

NPs a nanocomposite has, it tends to have a higher value of roughness. However, M4, PES-A-

Fe3O4 NPs (3wt%) shows the least roughness value and this could be explained with a somewhat 

smaller pore size on the surface rather than other membrane samples (M1, M2, M3) 

 

Figure 3.4 Two dimensional(2D) AFM Image (a) M1, (b) M2, (c) M3, (d) M4 
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Figure 3.5 Three dimensional(3D) AFM Image (a) M1, (b) M2, (c) M3, (d) M4 

  

           Decrease in the M4 membrane’s surface roughness with more NPs can be partially caused 

by less agglomeration on the surface area. However, the average roughness parameter, Sa, shows 

tendency to increase with more NPs in the Membrane matrix in M1, M2, M3. This phenomenon 

is due to a higher֯chance֯of֯NPs’֯agglomeration,֯which֯leads֯to֯hunks֯in֯the֯membrane matrix. 

[92] 
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Table 3.2 Roughness parameters, porosity, and mean porous radius of membranes. 

Membrane 

Type 

Roughness Parameters (nm) Porosity (%) Mean Porous 

radius(nm) Sa Sq Sz 

M1 4.08 5.11 38.5 0.53 12.13(±0.4) 

M2 4.21 5.33 40.1 0.61 10.70 (±0.1) 

M3 4.50 5.71 41.6 0.59 12.38(±0.2) 

M4 3.51 4.41 36.7 0.71 12.15(±0.1) 

 

           It was indicated from porosity results that addition of NPs contributed to higher 

percentage of pores in membranes. These results are verified from FESEM images (Figure 3.1) 

with more pores in skin layer and bigger micro-voids in sublayers in higher NPs wt. (%). It has 

been noticed that iron oxide NPs have a tendency to accumulate in the membrane surface and its 

superficial pores, which was mostly caused when the DI water touches the surface first in the 

casting process. [101] It has been found from the results in Table 3.2 that porosity is slightly 

decreased in M3, which could be due to the blockage of agglomerated NPs in the channels. This 

porosity has affected pure water flux and filtration of As(V) results.  The mean porous radius 

increased from M2 to M4, which is in good agreement with the FESEM images (Figure 3.1). 

However, M2 turns out to have smaller pore size than M1 and this can be resulted by increased 

viscosity with addition of NPs. [64] [95] 

3.1.4 Contact Angle Analysis 

              The hydrophilicity of PES-A-Fe3O4 membrane surfaces were characterized with contact 

angle. The larger contact angle it has, the more hydrophobic the membrane surfaces are, whereas 

the smaller contact angle represents a hydrophilic surface. [102] As shown in Figure 3.6, water 

contact angle of the membranes diminished with the addition of more A-Fe3O4 NPs. The 

Original PES membrane had a contact angle around 74.4 ֯ , while the PES-A-Fe3O4 1wt%, PES-
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A-Fe3O4 2wt%, and PES-A-Fe3O4 3wt% showed decrease in contact angle as 70.04 ֯ , 68.8 ֯ , 62.9 

֯ with more contents of A-Fe3O4 NPs. This indicates that hydrophilicity of PES membrane was 

improved with the increase of A-Fe3O4 NPs. The measurements were conducted 5 spots in each 

membrane sample and average values were described in the Figure 3.6. The images of water 

drop on each membrane were shown in the Figure 3.7 by implying more hydrophilicity of 

membranes with addition of A-Fe3O4 NPs. 

 

Figure 3.6 Average Water Contact Angle of PES-A-Fe3O4 NPs membrane (0, 1, 2, 3wt. %) 

 

           The improved hydrophilicity from Figure 3.6 and Figure 3.7 can be explained with more 

NPs around the membrane surfaces, which was caused by the phenomenon to reduce interface 

energy of NPs during phase inversion process. APTES-Fe3O4 Nano composites migrate 

spontaneously to the surface in the membrane matrix when the DI water touches casting 

solutions in glass substrates.  
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Figure 3.7 Image from Goniometer for Water Contact Angle of each membrane sample. (a) Pristine PES, 

(b) PES-A-Fe3O4 1wt%, (c) PES-A-Fe3O4 2wt%, (d) PES-A-Fe3O4 3wt% 

 

           The increase in hydrophilicity of Nano composite membranes was caused by the 

hydrophilic properties of Fe3O4 NPs and the -NH2 functional group grafted on Fe3O4 NPs. 

3.1.5 IR Analysis 

           To analyze the functionality of Fe3O4 NPs with APTES (Aminopropyltriethoxy silane) 

modification, Infrared spectroscopy (IR spectroscopy, Shimadzu IR Tracer 100) was used with 

the condition of 200 scans 4cm-1 Resolution for the transmittance.  The Figure 3.8 indicates 

difference between Fe3O4 NPs and APTES modified Fe3O4 in the wavelength range from 

350cm-1 to 5000cm-1. The graph (b) illustrated peaks at the band range of 2840-2960 cm-1 

which represents the stretching model of alkyl (-CH2, -CH3) and another peak at the band range 

of 1560cm-1 which represents –NH functional group. The APTES structure is shown below in 

the Figure 3.9 
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Figure 3.8 IR spectra of unmodified (a) and APTES modified (b) 

 

 

Figure 3.9 Chemical structure of silane coupling agent (APTES) [91] 
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           From the IR analysis, it can be ascertained that the functional silane groups are 

successfully grafted into Fe3O4 NPs surface.  

           Figure 3.10 shows the IR spectra of PES and PES-A-Fe3O4 NPs (1wt%). Even though 

APTES-Fe3O4 NPs was comprised as 1wt% of the whole PES-A-Fe3O4 composite membrane, 

relatively higher intensities of H-O-H bond at peak at the range of 3200-3700cm-1, Fe-O 

band(weak) at the peak of 421cm-1[103], and CH3 stretch bond anchored onto Iron oxide at the 

peak of 2354 cm-1 were shown in IR analysis. 

 

Figure 3.10 IR spectroscopy for (a) Original PES and (b) PES-1wt% APTES-Fe3O4 

          

            For the operating IR spectroscopy of pristine PES and PES-APTES-Fe3O4, the 

transmittance was chosen under 100 scans and 8cm-1 resolution in the wavelength range of 

350cm-1 to 5000cm-1. 
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3.1.6 TEM Analysis 

           To analyze the modification of Fe3O4-NPs surface, Transmission electron microscopy 

(TEM, Hitachi H-9000NAR microscope) was operated at 300KeV. Sample was characterized 

with bright field (BF) imaging for sample morphology, selected area diffraction (SAD) for 

crystallographic information, and high-resolution transmission electron microscopy (HRTEM) 

for high-mag morphology and crystallography. Modified A-Fe3O4 NPs TEM images are shown 

in Figure 3.11. APTES, amorphous polymer structure, were directly attached into the Fe3O4 NPs 

surface based on the IR characterization. Since TEM analyzes only crystalline structure of 

samples, Figure 3.11 does not show amorphous layer (APTES) on crystalline NPs (Fe3O4).  

 

 

Figure 3.11 TEM Images for APTES-Fe3O4 NPs 
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3.2 Performance Analysis 

3.2.1 Water Flux of Membranes 

           Pure water flux or pure water permeability (PWP) indicates a critical parameter for the 

degree of porosity for membrane samples (M1, M2, M3, M4) and is directly related to the 

membrane pore size. [104-106] The result of pure water flux is shown from Figure 3.12 by 

representing the effects of adding APTES-Fe3O4 NPs on PWP results. The biggest reason for the 

increase in PWP of membrane samples can be the extended size of macro-voids in the sub-layer 

and more porous structure in the skin layer. [95] However, PES-A-Fe3O4 1wt% membrane 

showed less ability for filtration of solution than pristine PES membrane, this can be caused by 

blockage of the possible water channels or pores by APTES-Fe3O4 NPs agglomeration.  

 

 

Figure 3.12 Pure water permeability (PWP) of the prepared each sample (M1, M2, M3, M4) 
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3.2.2 Arsenic Adsorption of Membrane 

3.2.2.1 Equilibrium study and adsorption isotherms  

            The relation between the equilibrium adsorption capacities of pristine and nanocomposite 

PES membranes(M1, M2, M3, M4) vs the initial concentration of As(V) solution(2ppm, 4ppm, 

6ppm, 8ppm) were presented in Figure 3.2  The pristine PES membrane shows the lowest 

adsorption capacity close to zero for As(V) due to the absence of APTES-Fe3O4 NPs, efficient 

absorbent in the PES membrane matrix. On the other hand, PES nanocomposite containing 

APTES-Fe3O4 NPs showed an increasing tendency in absorption capacity for the increasing 

concentration of As(V) solution (2ppm, 4ppm, 6ppm, 8ppm) with higher chance of absorption 

between As(V) ions and APTES-Fe3O4 NPs. The results shown in the Figure 3.13 indicate that 

the adsorption capacity of PES nanocomposite increases with the addition of APTES-Fe3O4 NPs. 

The maximum adsorption capacity was achieved in PES-A-Fe3O4 3wt% (M4) as the value of 

14.6mg/g in the curve. 

 

Figure 3.13 Equilibrium adsorption curves of As(V) : Qe 
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           For the equilibrium adsorption curves of As(V) solution (2ppm, 4ppm, 6ppm, 8ppm), two 

types of isothermal models, Langmuir and Freundlich were applied with the equations below.  

  

1

𝑄
=   

1

𝐾𝐿𝐶𝑒𝑄𝑚𝑎𝑥
+

1

𝑄𝑚𝑎𝑥
                                                             (6) 

where 𝐶𝑒 is the arsenic concentration in solution(mg/L), 𝑄𝑚𝑎𝑥 is maximum adsorption value for 

capacity(mg/g), and 𝐾𝐿 is the Langmuir adsorption constant(L/mg). 𝑄𝑚𝑎𝑥 and 𝐾𝐿 can be 

determined by the intercept and the slope of 
1

𝑄
 vs 

1

𝐶𝑒
 curve, distinctively,  

 

logQ = log𝐾𝐹 +  
1

𝑛
 log𝐶𝑒                                                           (7) 

where, 𝐾𝐹 is the Freundlich constant and n is the heterogeneity factor. All the constants for both 

of the equations were calculated by the linear regression of each isotherms and the obtained 

values are listed in Table 3.3. Each equation’s R2 values demonstrate that Langmuir adsorption 

isotherm is more suitable to show the adsorption isotherm of As(V) for PES-A-Fe3O4 NPs. Since 

Langmuir isotherm is a traditional model for adsorption phenomena on a homogeneous surface 

while Freundlich isotherm is adsorption model for heterogeneous surface, the results for R2 value 

suggest that the adsorption between surface and adsorbate takes place at specific homogeneous 

spots in PES-A-Fe3O4 NPs membranes assuming a molecule occupies a single spot. [108] 

However, the more contents of NPs the membrane has, the adsorption tends to take place more in 

heterogeneous surface by having higher R2 value in Freundlich isotherm model. These were 

confirmed by the plot of Langmuir isotherm equation (6) and Freundlich isotherm equation (7) in 

the Figure 3.14 and Figure 3.15. 
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Figure 3.14 Langmuir adsorption isotherm of nanocomposite membranes, conditions: T=25 ֯ C, pH=2 

 

 

 

Figure 3.15 Freundlich adsorption isotherm of nanocomposite membranes, T=25 ֯ C, pH=2 
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Table 3.3 Langmuir and Freundlich isotherm parameters for As(V) removal using 

nanocomposite membranes with different APTES-Fe3O4 contents pH=2 

 

Membrane 

Langmuir model Freundlich model 

KL(L/mg) Qmax(mg/g) R2 KF (mg/g) 1/n R2 

PES-A-Fe3O4 1wt% 0.10 17.83 0.9588 1.93 0.6996 0.8810 

PES-A-Fe3O4 2wt% 0.13 20.96 0.9971 2.92 0.5974 0.9316 

PES-A-Fe3O4 3wt% 0.27 21.19 0.9955 5.06 0.5028 0.9996 

 

 

3.2.2.2. Adsorption dynamic kinetics As(V) studies of membranes 

           In order to study the adsorption kinetic of As(V) of prepared membrane, PES membranes 

with A-Fe3O4 NPs which have high removal efficiency in batch adsorption (M2, M3, M4) were 

tested for filtration of the synthetic 1 ppm As(V) solution, pH=7.  The permeate solution through 

membrane cell under pressure of 50psi was collected and analyzed every 30 minutes with ICP-

MS-2030, Shimazu, Japan. The permeate As(V) concentration and As(V) rejection in the Figure 

3.16 and Figure 3.17 show that As(V) adsorption continues until it reaches 210 mins having a 

70±6 % rejection. After 210mins, all the prepared membranes’ (M2, M3, M4) results indicate 

that the adsorption capacity decreases rapidly and reaches its equilibrium at 270mins. These 

observations can be attributed to the saturation of accessible bonding sites of A-Fe3O4 NPs by 

previously adsorbed As(V) ions. For the membrane samples (M2, M3, M4), It was found that the 

more A-Fe3O4 NPs it contains, the higher As(V) rejections and filtration performance it has 

during the kinetic adsorption experimentation. 
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Figure 3.16 Prepared Membranes (M2, M3, M4) As(V) ion Permeate Concentration at 50psi  

 

 

Figure 3.17 Prepared Membranes (M2, M3, M4) As(V) ion rejection at 50psi  
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CHAPTER4 

CONCLUSION 

           Novel polyethersulfone membranes were prepared with surface modified APTES-Fe3O4 

NPs to remove arsenate ions from drinking water or industrial waste.  

           Several conclusions can be made from the experimental work as listed below. 

1. TGA analysis results for each prepared membrane samples (M2, M3, M4) verify 

that treated nano particles were well-dispersed in the PES membrane. The 

characterization of nano particles using IR spectroscopy proved that Fe3O4 NPs were 

surface treated by showing transmittance peak around 2840-2960 cm-1 wavelength for 

alkyl group stretch and another peak around 1560 cm-1 wavelength for -NH group for 

grafted APTES molecules. 

 

2. The addition of A-Fe3O4 NPs caused more porous structure and smaller size pore 

in skin layer. Atomic Force Microscopy shows the difference in roughness between 

the samples by indicating that A-Fe3O4 NPs contributed in the formation of rougher 

surface until more than 2wt % A-Fe3O4 NPs was added. Membrane with 3wt% A-

Fe3O4 NPs showed least roughness among samples with smaller pore size on the 

surface area. Pore structure image of membrane cross-section was analyzed by 

FESEM. It was found in FESEM that sub-layer has extended size of micro-void by 

adding more A-Fe3O4 NPs.  
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3. Membrane pore percentage was increased by addition of A-Fe3O4 NPs. Mean 

pore size has a tendency to increase with more contents of A-Fe3O4 NPs, which is due 

to higher viscosity. Sub-layer micro-void size with different A-Fe3O4 NPs weight 

percent affected pure water flux value. Pure PES membrane shows better performance 

than PES-A-Fe3O4 NPs 1wt% because agglomeration phenomena is more dominant 

than enlarged sub-layers pore structure effect. However, for the cases of M3 and M4, 

which include 2wt% and 3wt% A-Fe3O4 NPs, it has been found that pure water flux 

performance is inclined to be higher when adding more NPs.  

 

4. Addition of A-Fe3O4 NPs improves hydrophilicity. Contact analysis of PES-A-

Fe3O4 NPs measured verify that the lowest value of contact angle and highest 

hydrophilicity were observed from the sample M4 (PES-A-Fe3O4 3wt%).  

 

5. The prepared PES-A-Fe3O4 NPs nanocomposite membrane showed an increasing 

trend in adsorption capacity with higher concentration of As(V) solution, while pure 

PES membrane shows nearly zero adsorption capacity as was revealed by the batch 

adsorption test.  

 

6. The adsorption capacity decreases dramatically for all of three membranes 

samples (M2, M3, M4) at 210 mins. In adsorption dynamic kinetics for As(V) 

adsorption test under pressure, 50psi with 1ppm As(V) , pH=7 solution, PES-A-Fe3O4 

3wt% (M4) showed a little of higher As(V) removal percentage than PES-A-Fe3O4 
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1wt% (M3) PES-A-Fe3O4 and 2wt% (M2). M2 and M3 values showed similar As(V) 

removal percentage. All of these three membrane samples (M2, M3, M4) removed 

70±6% of As(V) from feed until it reached equilibrium point at 270 mins.  
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