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ABSTRACT 

ANALYZING DUCTILE SHEAR ZONE NETWORK GEOMETRIES IN THE GRASSY 
PORTAGE SILL, RAINY LAKE REGION, NORTHWESTERN ONTARIO, CANADA 

 
by 

Ernest J. Thalhamer 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Dr. Dyanna Czeck 

 

The Grassy Portage Sill (GPS) is a ~2.7 Ga metagabbroic sill located in the Rainy Lake region of 

northwestern Ontario. The Rainy Lake region is located in the Superior Province between the 

metavolcanic Wabigoon subprovince to the north and the metasedimentary Quetico subprovince 

to the south. Two regional faults bound the region and intersect to the east, forming a wedge 

which defines the Rainy Lake zone. This area was regionally deformed due to oblique 

transpression, resulting from the Kenoran Orogeny (~2.7 Ga). The GPS is approximately 20 km 

long and 1-2 km wide, and has undergone heterogeneous strain along its length. This strain 

variation is a function of the competence contrast between the GPS, the gneissic Rice Bay Dome 

to the west, and the metavolcanic and metasedimentary units between the two. The GPS has a 

higher competence than the adjacent metavolcanic and metasedimentary units, but all have a 

lower competence than the Rice Bay Dome. Within the GPS, anastomosing ductile shear zone 

networks accommodated the bulk of the deformation within the largely competent sill. The 

orientations of the networks vary along the length of the sill, apparently related to strain 

variations, as the inferred shortening directions of the shear zone networks matches those 

assumed from regional foliations and calculated from previous work on deformed dikes and 

veins. At all locations, both steeply dipping dextral and sinistral sets of shear zones formed, 
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presumably simultaneously as evidenced by mutual cross-cutting relationships. The shear zones 

are curviplanar and dip more shallowly near some of their intersections. The style of deformation 

varies within the gabbro based on grain size.  Fine grained lithologies are deformed via a 

pervasive foliation.  Coarser grained lithologies generally contain discrete (mm-cm scale) shear 

zones, often without a pervasive foliation. There is no relationship between mineralogy and shear 

zone or foliation formation. Microstructural analysis of shear zone bearing samples indicated that 

dislocation creep served as the primary deformation mechanism throughout the GPS, but showed 

no pattern regionally, or with grain size. At the lowest strain sites, the gabbro has a pervasive 

foliation, but few, if any, shear zones. At low-medium strain sites, the sinistral and dextral shear 

zone sets have fairly consistent orientations, approximately 65-75° apart from one another. As 

strain increases, the orientations of both sets become increasingly more variable and the average 

angle between the two sets decreases. We hypothesize that the shear zone sets formed at 

relatively high angle to one another and rotated to a lower relative angle with increasing strain. 

The newer strands in the higher strained sites formed at high angle, causing the orientations of 

each shear zone set to become more diffuse at higher strain. 
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Chapter 1: Introduction 

1.1 Shear Zones 

Shear zones, and their brittle equivalent, faults, are common and important structural 

features that are indicative of inhomogeneous deformation in the crust. Near the surface, 

deformation is typically accommodated by brittle processes including faulting, whereas ductile 

shear zones accommodate deformation at depth. A variety of factors including pressure, 

temperature, strain rate, rock type, and presence and type of fluids control the transition between 

brittle and ductile deformation styles with depth. Faults and shear zones can both accommodate 

offsets from the sub millimeter to the multi-kilometer scales. 

Ductile shear zones are typically defined as planar bands of highly deformed rock, 

surrounded by lesser to undeformed rock, where offset is localized without a loss of continuity at 

the macroscopic scale (Fossen, 2010). More often, shear zones are not found in discrete planar 

bands, but rather in more complex curvilinear geometries which link with others to form 

complex anastomosing geometries that bound undeformed or lesser deformed lozenges (Ramsay 

and Graham, 1970; Mitra, 1979, 1998; Ramsay and Allison, 1979; Bell, 1981; Choukroune and 

Gapais, 1983; Gapais et al., 1987; Burg et al., 1996; Corsini et al., 1996; Hudleston,1999; 

Arbaret et al., 2000; Carreras, 2001; Czeck and Hudleston, 2003, 2004; Pennachioni, 2005; 

Fusseis et al., 2006; Bhattacharyya and Czeck, 2008; Carreras et al., 2010).      

 

1.2 Ductile Shear Zone Networks 

Often, shear zones are not found as individual strands, but instead are interconnected into 

more complex networks, often in conjugate pairs (Fig. 1a & 1b) (e.g. Ramsay and Allison, 1979; 

Bell, 1981; Choukroune and Gapais, 1983; Gapais et al., 1987; Burg et al., 1996; Burg, 1999; 
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Hudleston, 1999; Arbaret et al., 2000; Carreras, 2001; Arbaret and Burg, 2003; Burg et al., 2005; 

Bhattacharyya and Czeck, 2008; Carreras et al., 2010; Ponce et al., 2013). These networks of 

conjugate pairs are often curviplanar and bound larger bodies, or lozenges, of lesser or 

undeformed rock. Anastomosing shear zone networks are important because: 1) their geometries 

have been called upon to explain the mechanical processes that initiate shear zones (e.g. Fusseis 

et al., 2006) and, 2) their patterns help explain strain accommodation while maintaining strain 

compatibility (e.g. Hudleston, 1999).  The formation and development of brittle shear fracture 

networks are well-studied (e.g. Wilcox et al., 1973; Ackermann and Schlische, 1997; Maerten et 

al., 2002), but similar ductile shear zones studies are relatively scarce. 

A variety of models have been proposed to explain the initiation and development of 

shear zones, and shear zone networks. Pennacchioni and Mancktelow (2007) proposed that 

shear zones form along preexisting brittle structures, and that the transition is always from 

brittle to ductile (Segall and Pollard, 1983; Pennachioni and Mancktelow, 2007; Fusseis et al., 

2006; Goncalves et al., 2016). Geometry would therefore be controlled by the orientation and 

distribution of brittle structures, which is a testable hypothesis since the geometry of brittle 

structures is relatively well known.  A second model proposes that ductile shear zones initiate 

at sites of preexisting instabilities within the rock, and that these microscopic flaws alone are 

sufficient for shear zones to initiate (Hobbs et al., 1990; Ingles et al., 1999; Mancktelow, 2002; 

Mandal et al. 2004; Misra and Mandal, 2007) or at the larger scale such as localization along 

weaker phases (e.g. Christiansen and Pollard, 1997).  

To date, many researchers have studied the geometry and evolution of shear zone 

networks in the field (Mitra, 1979; Bell, 1981; Gapais et al., 1987; Carreras, 2001; Carreras et 

al., 2010) and in numerical experiments (Cobbold et al., 1971; Hudleston, 1999; Mancktelow, 
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2002; Mancktelow, 2006). Although there has been extensive work on studying the geometries 

of developed shear zone networks, there is a lack of understanding on how and why shear zone 

strands initiate and evolve to form these complex anastomosing networks.  Results from 

numerical based experiments indicate that conjugate shear zone pairs within networks often 

initiate in approximately perpendicular orientations and rotate with continuous deformation 

(Mancktelow, 2002). However, in the field setting, these histories are far more elusive.  

Carreras et al. (2010) observed sets of conjugate shear zones in a single high-strained 

gabbro outcrop and developed criteria to determine the relative timing of the shear strands in 

order to unravel their geometrical development and rotational histories. Using field 

measurements a model was derived to explain the sequential development of shear zone 

networks within the site (Fig. 2). In the early stage of deformation, conjugate sets of shear 

zones develop, with dextral and sinistral strands which are oriented at an approximately 90° 

orientation, which faces the bulk shortening direction (Z in Fig. 2). In later stages, the shear 

zone strands formed during earlier stages will rotate relative to the bulk shortening orientation, 

as well as become thicker under progressive deformation. Using this model, they could 

interpret an inferred shortening direction and estimate the approximate strain magnitude. 

For a shear zone to maintain compatibility, or coherence during deformation, across its 

borders, it must remain continuous across the boundary between the deformed shear zone and 

the non-deformed outlying rock. During simple shearing this compatibility is maintained but, 

when a component of pure shearing or flattening is added, for example during transpression, 

there must be an associated volume loss or extrusion of material. Complex shear zone networks 

have been called upon as a way for strain to be accommodated while maintaining compatibility 
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when there is no loss of volume in the shear zone (Hudleston, 1999) and no escape from the 

system for large-scale extrusion to take place (Baird and Hudleston, 2007).  

The relationships between shear zone thickness, displacement, and duration of 

deformation have also been studied. In some field examples, shear zone thickness can be 

considered roughly proportional to age (Mitra, 1979; Carreras et al., 2010), which indicates 

shear zones widen over time.  Indeed, an analysis of shear zone displacement as compared to 

thickness from a variety of tectonic settings showed a correlation between thicker shear zones 

and greater displacement, further supporting thickness as a viable measure of relative 

deformation duration (Fossen and Cavalcante, 2017).  However, the details of this relationship 

are affected by rock rheology, especially strain softening or hardening (Hull, 1988; 

Means,1995; Schrank et al., 2008) and history of brittle displacement in early or intermittent 

deformation stages (Pennacchioni, 2005; Fusseis et al., 2006; Fossen and Cavalcante, 2017).  

Therefore, the general rule that thicker shear zones accumulated more displacement and 

therefore recorded a longer duration of deformation is likely to be true, but should be used with 

caution. 

 

1.3 Grassy Portage Sill Shear Zones    

Shear zones for this study are located within the Grassy Portage metagabbroic sill (GPS), 

the same unit studied by Carreras et al. (2010) for their detailed analysis. The GPS is located in 

the Rainy Lake region at the Quetico/Wabigoon subprovince boundary of North America’s 

Superior Province (Fig. 3). Shear zones, which range from mm to cm scale in width, are present 

at the majority of studied outcrops within the sill. The GPS shear zones were chosen for this 
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study due to their extent and variation. Strain magnitude is heterogeneous within the sill. This 

strain gradient allows evaluation of shear zone network development with increasing strain. 

 The region has undergone dextral transpression deformation, which has been expressed in 

a variety of ways including homogenous strain evidenced by a single penetrative fabric and 

flattening strains, distributed structures which accommodate the dextral motion and flattening 

strains separately such as strike-slip shear zones and folds, or strongly localized shear zones 

cutting otherwise undeformed units. These different styles of deformation are primarily due to 

lithological variations, relative competence contrasts, and structural variations of the 

metasedimentary, metavolcanic units, and plutonic units (Poulsen, 2000; Czeck and Hudleston, 

2003; Czeck et al. 2006; Druguet et al. 2008; Czeck et al. 2009; Bauer et al., 2011). The 

deformation in the GPS has yet to be studied in detail and placed into this larger context.  

 

1.4 Study Goals 

My goals for this study are three-fold. First, through a detailed geometric analysis, I will 

determine the evolution of shear zones across a strain gradient. Second, I will constrain the 

lithological variations, including mineralogy and grain size, to determine their effects on strain 

patterns and shear zone formation. Last, I will conduct a quantified microstructural analysis to 

interpret the underlying deformation mechanisms responsible for the strain patterns. The 

importance of this work is that it will help us understand how individual shear zone strands form 

and develop into complex anastomosing shear zone networks.   

 This work will also help us understand the regional deformation by defining the 

kinematics and localized deformation variations within this understudied unit. The deformation 
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within the GPS will be placed within the larger context of deformation in the Rainy Lake region 

to help explain how deformation is partitioned into this relatively small, strong rock unit.  
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Figure 1: (a) Photograph of the anastomosing shear zone network within metagabbro on subhorizontal plane at site 
from Carreras et al. 2010 study (coin for scale). This site is located adjacent to Site 7 on the map shown on Figure 6. 
Shear zones are defined by narrow zones of intense foliation surrounding undeformed lozenges and display an 
anastomosing network pattern. (b) Same photograph as displayed in (a), with shear zones traced in red. 
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Figure 2. Model for the sequential development of shear zones from Carreras et al. 2010. In the early stage, dextral 
and sinistral shear zones initiate at an approximate 90° orientation facing the bulk shortening direction (Z). Through 
progressive deformation, these initial shear zones rotate in opposing directions, increasing the angle between them, 
while near shear zones initiate at the ~90° orientation, leading to their complex modern geometries.   



 

 

9 

 
 

Figure 3: The Superior Province. From Czeck and Hudleston (2003), modified from Card & Ciesielski (1986). 
Location of study indicated by star. 
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Chapter 2: Geologic History 

2.1 Geological History of the Superior Province 

The Superior Province covers an area of over 2 million km2 and represents the world’s 

largest exposed undisturbed body of Archean aged rock (Card and Ciesielski, 1986; Fig. 3). 

After its initial Archean formation and deformation, the central part of the Superior Province has 

been relatively undisturbed since ~2.6 Ga, making it a desirable location to study Archean 

tectonic history.  

The Superior Province is subdivided into a series of subprovinces based on their lithologic 

assemblages (Card and Ciesielski, 1986). The central subprovinces are either 

metavolcanic/plutonic (granite-greenstone) or metasedimentary lithologies. The 

metavolcanic/plutonic subprovinces are most commonly interpreted to have formed by the 

accretion of a series of island arcs (Langford and Morin, 1976; Percival and Williams, 1989; 

Card, 1990). The metavolcanic/plutonic subprovinces formed as arcs, and the metasedimentary 

subprovinces formed from adjacent accretionary prisms. Consistent with this interpretation, 

within the arc sequences, ages are similar along strike, but vary significantly across it (Hoffman, 

1989).  

The late Archean Kenoran orogeny occurred at ~2.7 Ga and assembled the central Superior 

Province. During the Kenoran, island arcs formed, and subsequent subduction led to arc 

collision. Deformation within the Rainy Lake region is a result of oblique arc collisions, resulting 

in transpressional deformation which partitioned differently within the various rock units. 

Greenschist (east) to amphibolite (west) facies metamorphism accompanied deformation 

(Poulsen et al., 1980; Davis et al., 1989; Poulsen, 2000; Druguet et al., 2008). 
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2.2 Geological History of the Rainy Lake Region 

The boundary between the Quetico and Wabigoon subprovinces is characterized by a sharp 

change in lithology and localized deformation.  The Rainy Lake Region is a structurally bounded 

triangular wedge, located between the metasedimentary Quetico (south) and 

metavolcanic/plutonic Wabigoon (north) subprovinces near the area of International Falls, 

Minnesota and Fort Frances, Ontario (Fig. 4). This wedge is bound by the Quetico fault at its 

northern boundary and the Seine River-Rainy Lake fault at its southern boundary. The bounding 

faults have likely served as both faults and shear zones at different times throughout their history 

(Czeck and Fralick, 2002).  

 Lithologically, the Rainy Lake Region has similarities to both the Wabigoon and Quetico 

subprovinces. Within the zone, this oblique convergence was accommodated by north-south 

oriented shortening accompanied by dextral strike-slip motion, resulting in a dextral 

transpressive deformation regime. This is evidenced regionally by subvertical foliations and 

asymmetric features in subhorizontal planes coinciding with dextral shear (Poulsen, 1986; 

Poulsen, 2000; Czeck and Hudleston, 2003; Druguet et al., 2008; Czeck et al., 2009; Bauer et al., 

2011; Fernández et al., 2013). 

Five general lithologic units in the Rainy Lake Region have been defined based on previous 

studies (Lawson, 1887, 1913; Poulsen, 2000) in addition to ages obtained by Davis et al. (1989) 

and Fralick and Davis (1999): 

1. Metavolcanic rocks (Keewatin Group, 2728 ± 4 to 2725 ± 2 Ma ): vary from 

ultramafic to felsic composition, found in layered sequences.     
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2. Metasedimentary rocks (Coutchiching Group, between 2704 ± 3 and 2692 ± 2 Ma 

based on detrital zircon and a cross-cutting intrusion): metapelites and 

metagreywackes, predominantly biotite schist, interpreted to be accretionary prisms.  

3. Metagabbroic rocks (2728 – 2727 Ma): variably sized sills, ranging from melagabbro 

to anorthosite composition. Grassy Portage Sill is one of the largest examples in the 

region. 

4. Gneisses (2725 ± 2 Ma: Medium to coarse grained, commonly foliated or lineated, 

granitic gneiss and paragneiss with local occurrence of mica schist, mafic schist, and 

quartz-feldspar porphyry. Rice Bay Dome is one of the largest examples in the 

region. 

5. Granitoids (2686 ± 2 Ma): Relatively undeformed, medium- to coarse-grained 

quartzofeldspathic granite, granodiorite, and quartz monzonite plutons. These have 

been demonstrated to have formed syntectonically, late within the Archean 

transpressional event (Czeck et al. 2006).    

Two major deformation phases formed the structures within the Rainy Lake Region 

(Poulsen, 1986; Davis et al. 1989; Poulsen, 2000). The first phase of deformation (D1) involved 

faulting and recumbent folding of both the island arc and the accretionary prism units resulting in 

the modern day inversion of all strata (Poulsen et al., 1980; Borradaile, 1982; Poulsen, 2000a). It 

was during this deformation that a regional schistosity was developed (S1) which is subparallel to 

the meta-volcanic and meta-sedimentary rocks. 

 Subsequent to the stacking of units during D1 deformation, many surficial units were 

buried and deformed during the second deformation event (D2). D2 is characterized by a shift in 

deformation to folding and dextral transpression. It is during this deformation event that the 
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strong deformational fabrics found throughout the Rainy Lake region formed, including those 

within the GPS (Czeck & Hudleston, 2003; Bauer et al. 2011). The deformation during this 

second phase manifested differently as discrete or distributed structures, dependent on the 

competence of the unit (Druguet et al. 2008; Bauer et al. 2011). 

2.3 The Grassy Portage Sill 

Shear zones for this study are located within the Grassy Portage sill (GPS), an 

overturned, steeply dipping gabbroic intrusion (Fig. 5). The GPS “wraps” around the gneissic 

Rice Bay Dome, and is exposed over an approximate 20 km long and 1-2 km wide area. Bound 

between the Rice Bay Dome to the northwest and the GPS to the southeast, is a layered rock 

sequence largely consisting of Keewatin metavolcanic rocks ranging from intermediate to 

ultramafic with some interlayered metasedimentary rocks largely consisting of biotite schist. At 

the southeastern contact of the GPS is a similar layered sequence, largely composed of 

Coutchiching biotite schist, which contains multiple late granitic intrusions, with minor mafic 

metavolcanic layers.   

 The GPS is primarily composed of metagabbro ranging from leucogabbro to gabbro in 

composition. It contains layers defined both compositionally and mineralogically that may have 

formed by gravitational settling or auto intrusion (Poulsen, 2000). Layering occurs at scales from 

centimeter to kilometer. The GPS is primarily composed of plagioclase, which is likely of 

igneous origin, and hornblende, which is likely metamorphically derived. At the base of the GPS 

(west side) is a hornblende-rich coarse-grained melagabbro. Moving across strike, there is a 

decrease in grain size and increase in plagioclase content, with the finest grained gabbros found 

at the top of the GPS (easternmost exposures). Grain size variation is extensive at both a micro 

and macroscopic scale (Fig. 6). The sill also contains anorthositic lenticular pods within the 
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gabbros. Davis et al. (1989) performed U/Pb zircon dating using a sample from the upper part of 

the intrusion, and yielded an age of 2724 +/- 2 Ma. 

 The GPS has been extensively studied for its potential economic uses due to its sulfide 

and oxide mineralization, which has been actively mined for chalcopyrite and pyrrhotite 

(Poulsen, 2000). Lenses of pyrrhotite-chalcopyrite, ranging from disseminated to massive, can be 

found at the base. In addition, stringers and disseminations are found within a siliceous member 

of the upper zone and in and near gabbroic dikes crosscutting the adjacent mafic and ultramafic 

units.  

  Centimeter-scale shear zones are found within the gabbro, sometimes localized at 

lithological boundaries between the gabbro and anorthositic pods. The shear zones primarily 

have strike slip shear sense, with both dextral and sinistral oriented motion, and are observed on 

the subhorizontal plane. Additionally, shear zones were localized at some of the unit boundaries. 

In particular, the southern contact is sheared where exposed (Davis et al., 1989), but 

metasedimentary inclusions within the GPS suggest that it was intruded as a sill between the 

Keewatin and Coutchiching groups (Davis et al., 1989), and that the shearing merely modified 

this boundary.  

Previous studies within the region (Poulsen, 2000) and within the GPS (Carreras et al. 

2010) indicate that shear zones are a common occurrence within multiple units in the region, 

including the gneisses and metagabbroic sills. The shear zones are centimeters to meters in width 

and, in some regions, contain quartz and are gold bearing. Within the GPS, a weak pre-shearing 

foliation was observed, which showed continuity with the regional foliation (Carreras et al., 

2010).   
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The heterogeneous strain within the GPS is likely a function of the competence contrast 

between the sill, the gneissic dome, and the metavolcanic and metasedimentary rocks lying 

between the two units (Bauer et al., 2011). The GPS has a higher competence than the adjacent 

metavolcanic and metasedimentary units, but all of these units have a lower competence than the 

Rice Bay dome. The competence contrasts result in a regional scale strain shadow created by the 

strong Rice Bay Dome, which was partially resistant to regional deformation (Druguet et al., 

2008; Carreras et al., 2010; Bauer et al., 2011;Block, 2014).  
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Chapter 3: Methods 

3.1 Field Methods 

Study sites were selected in the Grassy Portage Sill based upon availability of outcrop 

and spatial separation. To be useful for this study, an outcrop needed multiple exposed 

dimensions and relatively clean (free of lichen) surfaces to make it possible to identify the sub 

centimeter shear zones. While many of the natural outcrops lacked these criteria, there were three 

zones within the GPS which fit both criteria. These were: 1) The Northern region, an inactive but 

recently logged area, 2) The Central Region, along Highway 11 and an adjacent power line cut, 

and 3) The Southern Region, an abandoned mining camp. There were several good outcrops 

within each of these zones (Fig. 7).  Field observations included estimates of grain size, 

mineralogy, and structural fabric measurements.  Primary fabrics included foliation and 

lineation, which were defined by the alignment of mafic minerals, predominately hornblende. 

Next, I measured the individual shear zones including the orientation of the shear zone 

plane, shear zone thickness, and deflection of mineral (typically hornblende) orientations across 

the shear zones. Mineral deflection indicates sense of shear, dextral or sinistral motion (Fig. 8). 

Not all shear zones had a clearly defined sense of motion, in which case they were identified as 

ambiguous. 

 The last step at each outcrop was a qualitative assessment of the strain magnitude in 

order to compare sites. This qualitative assessment was done by observing the foliation intensity 

and the density of shear zones at the site in addition to grain size, presence of fabric, and shear 

zone thickness. Sites were assigned a broad label (low, medium-low, medium, medium-high, or 

high) to describe their strain magnitude. 
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Previous studies indicated the presence of fine-grained lenticular pods of anorthosite 

within the GPS (Poulsen, 2000; Carreras et al. 2010). In lower strain interpreted exposures these 

pods are equant in shape. Within higher strained rocks, they become flattened/ellipsoidal with 

progressive deformation. As such, these pods could theoretically be used as strain markers within 

the GPS. Where present, long and short axes dimensions of anorthositic pods on sub-horizontal 

surfaces were measured, to determine their strain.  

 

3.2 Shear Zone Analysis    

Shear zone orientations, separated into dextral and sinistral strands, were plotted onto 

stereographic projections, based upon their outcrop site (Fig. 9), and separated based on shear 

zone thickness. The mean vector, or average orientation, for each set (dextral and sinistral), was 

calculated. Lastly, I measured the obtuse angle between the two average strand orientations. 

Previous work suggested that conjugate shear zones initiate at ~90 degree angles (Ramsay and 

Graham, 1970), and with progressive deformation, the angle between the two limbs that face the 

mean shortening direction may increase (Z in Fig. 9; Mitra, 1979; Ramsay and Huber, 1987). 

Carreras et al. (2010) performed a kinematic analysis at a single site within the Grassy Portage 

Sill, and concluded that the conjugate shear zones were consistent with that pattern of initiation 

and evolution. 

The intermediate Y direction was found at the intersection between the mean conjugate 

shear zones.  The X (maximum extension) and Z (maximum shortening) directions were found 

on the plane perpendicular to Y, each bisecting the angles between conjugate shear zones, with  

Z bisecting the obtuse angle and X bisecting the acute angle. 
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3.3 Thin Section Analysis    

Eight oriented samples were collected from 7 sites. These samples were chosen to be 

representative across lithological variation and inferred strain magnitude. From these 8 samples, 

22 thin sections from the principal planes of finite strain were created.  I was able to generate X-

Y and X-Z planes from all samples, and most had a Y-Z oriented thin section as well (using 

convention that finite strain axes X>Y>Z where X is the lineation orientation and XY plane is 

the foliation plane).  

The X-Y thin section of each sample was used for the quantitative analysis, totaling 8 

sections. Before performing the quantitative thin section study, I performed a qualitative 

inspection of all thin sections to assess the minerals and microstructures that were present. The 

lists of those minerals and microstructures were used in the quantitative analysis. 

At 200 points along a grid within each thin section, I recorded the mineral type, the long 

and short axes lengths of the grain, and the microstructures present. Plagioclase is the primary 

microstructure-bearing mineral; other minerals appeared resistant to deformation. Therefore, I 

plotted the long axis length data from plagioclase for each site on histograms (Fig. 17-19).  

Except for some recrystallized grains found primarily along rims of original plagioclase grains, 

plagioclase grain sizes are retained from the igneous protolith.  They are roughly equivalent in 

size to amphibole grains which are metamorphic in origin, suggesting that the metagabbro grain 

size distribution is related to the original igneous grain size heterogeneity and maintained 

through metamorphism.   Additionally, I calculated an approximate average grain size of each 

sample across all minerals by taking the average of the long axis multiplied by the short axis of 

each grain.  
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Lastly, I quantified plagioclase microstructure data and grouped them based on the 

interpreted deformation processes. Microstructures found within the Grassy Portage Sill were 

likely derived from four interpreted deformation processes: brittle, crystal plastic, crystal plastic 

recovery, and alteration (Fig. 10). The majority were observed within plagioclase. Brittle 

deformation was interpreted from intragranular fractures. Crystal plastic deformation was 

interpreted from undulose extinction, bulged grain boundaries, kinked twins, and subgrain 

boundaries. Crystal plastic recovery was interpreted from recrystallized grains around 

plagioclase edges. Alteration was evidenced by partial to near complete sericitization of 

plagioclase grains.     
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Figure 7. Simplified geologic map with the three main outcrop bearing regions. Outcrops are color coded based on 
qualitative strain. Modified from Poulsen (2000) and Druguet et al. (2008).  
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Figure 8. Subhorizontal photograph at GPS11-01 outcrop showing fabric deflection in a sinistral shear zone. Brown 
line is shear zone trace and green dashed lines indicate foliation deflection. Location shown on Fig. 7.  
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Figure 9. Example of a Stereographic Projection plot used in field data analysis. Small dots are poles to shear zone 
planes (blue for dextral, red for sinistral, hollow for uncertain shear sense). Great circles and large dots indicate 
mean vector of pole, and corresponding planes. Diamonds indicate bulk finite stretching axes (X, Y, and Z).    
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Chapter 4: Results 

4.1 Field Results. 

4.1.1 Outcrop Descriptions 

 Within the GPS, the accessible outcrops were found within three distinct and accessible 

regions (Fig. 7). The north region is a series of logging roads, the central region is a series of 

roadway exposures along Highway 11 in addition to two outcrops exposed by a power line 

traverse, and the south region is a previous mining operation site.  Where given, strike and dip  

measurements use right-hand-rule convention (strike/dip) and lineations are given as 

plunge/trend. 

 

4.1.1.1 North Region 

GPS11-07:  

This outcrop is composed of four approximately 2-meter by 1-meter subhorizontal exposures, 

which were hand cleared for this work. GPS11-07 is the northernmost within the north region, 

the gabbros are coarse grained (>1cm), and primarily composed of plagioclase surrounding 

larger grains of hornblende, with minor amounts of biotite and chlorite. Semi-ellipsoidal 

anorthositic pods are contained in the gabbros. This outcrop had a weak foliation oriented 

316/90. 

GPS11-07 contains 36 shear zones, comprised of twelve dextral, fifteen sinistral and nine of 

ambiguous sense of motion. The average strike of dextral sets is 154°, while the sinistral sets 

have an average strike of 103°. Shear zones range in thickness up to 5 cm, with shear zones often 

localizing at the boundary between gabbro and anorthositic pods. There was mutual crosscutting 

of dextral and sinistral shear zones, with neither being dominant throughout the outcrop.   
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GPS11-13: 

GPS11-13 is a sub-horizontal exposure with five shear zones comprised of three dextral, one 

sinistral and one of ambiguous sense of motion, located south of GPS11-07. The dextral shear 

zones have an average strike of 142°, while the sinistral average 059°. It contains a contact 

between coarse grained (>1cm) and medium-grained (<1cm) gabbro, both of which are primarily 

composed of plagioclase and hornblende with minor amounts of biotite. 

Most of the outcrop contains coarse-grained gabbro in which large hornblende megacrysts 

(approximately 1-3 cm) are surrounded by finer plagioclase. There are a variety of shear zones 

up to 3cm thick, and multiple elongated anorthositic pods. A smaller portion of the outcrop 

contains medium-grained gabbros, which are mostly composed of equal amounts of plagioclase 

and hornblende with grain size of <1cm.  

GPS11-12: 

	 This is a subhorizontal exposure with a total of eight shear zones comprised of three 

dextral and five sinistral, located south of GPS11-13. The mineralogy is primarily composed of 

plagioclase and hornblende with minor biotite and chlorite. This outcrop does not contain any 

anorthositic pods. 

 Within this outcrop there are both shear zones and a strong foliation. The shear zones are 

oriented in two dominant directions with dextral striking 172° and sinistral striking 085° on 

average. The rocks surrounding the shear zones contain a strong foliation oriented approximately 

122/75, and a lineation of 06/126. 

GPS11-08: 

	 GPS11-08 is the southernmost outcrop within the north region. It has a total of three 

shear zones comprised of two dextral and one sinistral. The mineralogy is the same as the other 
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sites within the north, primarily plagioclase and hornblende, with minor biotite and chlorite. This 

site has significantly finer grain size (<1mm) than the rest of the region. In addition to shear 

zones, this outcrop had a strong foliation oriented 118/60.  

 The entire outcrop has a very strong pervasive foliation. This outcrop has significantly 

fewer shear zones, measured in both quantity and density. The shear zones that are present are 

very thin (<0.5cm). Quartz veins were offset by shear zones.  

 

4.1.1.2 Central Region 

GPS11-09:  

GPS11-09 contains a total of 42 shear zones comprised of eleven dextral, 24 sinistral and 

seven of ambiguous sense of motion. It is located near the western boundary of the sill, 

composed of surficial roadside outcrops and an adjacent exposure created by a railroad line 

which runs beneath Route 11. It contains coarse-grained (>1cm) gabbros. Plagioclase is the 

dominant mineral, with hornblende as the secondary, and minor amounts of both biotite and 

chlorite. This outcrop had a weak foliation that is oriented 026/87. 

This outcrop contains a moderate quantity of shear zones, ranging in thickness from <0.5cm 

up to 2.5cm. The dextral shear zones have an average strike of 131°, while the sinistral have an 

average strike of 151°. There is no apparent foliation or anorthositic pods. 

GPS11-01:  

GPS11-01 is a road outcrop with a total of 62 shear zones comprised of eighteen dextral, 37 

sinistral and seven of ambiguous sense of motion. The exposure straddles both sides of Highway 

11, south of GPS11-09. Coarse-grained (>1cm) gabbros of various compositions interfinger with 

metavolcanics. Gabbro is composed primarily of plagioclase and hornblende, varying from  
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plagioclase-dominant to subequal plagioclase and hornblende, with minor quantities of biotite 

and chlorite throughout. Garnet is visible at the contacts between gabbro and metavolcanics.  

Shear zones, up to 2 cm thick, are prevalent throughout the outcrop. Grain size reduction is 

apparent within the shear zones. The dextral shear zones have an average strike of 107°, while 

the sinistral shear zones have an average strike of 032°. The 35 anorthositic pods in the outcrop 

showed signs of deformation, having an average sub-horizontal aspect ratio of 2.1 and an overall 

oblate shape.  

GPS11-10:  

GPS11-10 is comprised of 8 shear zones with three dextral, five sinistral and one of 

ambiguous sense of motion. It is located south of GPS11-01 along Highway 11, along both sides 

of the highway. The dextral shear zones have an average strike of 084°, while sinistral shear 

zones have an average strike of 056°. Gabbros are coarse-grained (>1cm), primarily composed of 

plagioclase and hornblende, with secondary biotite and chlorite and visible ore mineralization.  

Shear zones here are less dense than at outcrops north on the Highway 11 traverse. In 

addition to shear zones, there are joints, which crosscut shear zones. Where observed, shear 

zones are relatively thin, up to 0.5cm.   

GPS11-11:  

GPS11-11 is located south of GPS11-10 on Highway 11. It contains ten total shear zones, 

with one dextral, eight sinistral, and one of ambiguous sense of motion. Dextral shear zones have 

an average strike of 086°, while sinistral average 167°. Gabbros are coarse-grained and 

compositions vary. Some are predominantly composed of plagioclase and hornblende and host 

shear zones, whereas some have a greater percentage of plagioclase with trace garnet up to 1 cm 

in diameter and lack of shear zones. This outcrop has extensive jointing which cross cuts shear 
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zones, but are less prevalent than GPS11-10, as well as a moderate foliation oriented 252/82, and 

a lineation of 32/226 

GPS11-04:  

The southernmost exposure along the Highway 11 north-south traverse, GPS11-04 is located 

near the eastern boundary of the GPS. The outcrop contains structural variations in the form of a 

developing foliation and jointing, in addition to interfingering of metasedimentary units. There is 

a complete lack of shear zones. 

The gabbro in the northern part of the exposure is very fine grained, with plagioclase and 

hornblende interlocking in a sugary texture. There are no obvious foliations or shear zones, and 

only a few interspersed joints. Southward, fine grain size is maintained, while both a foliation 

and jointing develop. Foliation has an average orientation of 249/65. Three distinct jointing sets 

are oriented approximately 352/71, 234/57, & 270/75. Subvertically oriented mica schist 

interfingers with gabbro at the southern edge of the outcrop. 

PL2 & PL3:  

PL2 and PL3 are two exposures located along a power line traverse which crosses Hwy 11 at 

the site of GPS11-01, with PL2 located west of GPS11-01, and PL3 located west of PL2. PL2 

has nine shear zones, with six dextral with an average strike of 044°, one sinistral with a strike of 

170° and two with ambiguous sense of motion. PL3 has five shear zones, with three dextral, with 

an average strike of 017°, one sinistral with a strike of 070°, and one with an ambiguous sense of 

motion.     

Both outcrops are coarse grained, primarily composed of plagioclase and hornblende with 

minor biotite. Shear zones vary in thickness up to 2 cm with a majority being discrete (<0.5 cm). 

There are a few lenticular anorthositic pods within both exposures, which have an oblate shape. 
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4.1.1.3 South Region 

GPS11-03:  

 The only outcrop within the south region, GPS11-03 is a historical mining operation, 

located at the eastern boundary of the GPS. The site has four approximately 50 meter long 

exposed tracts of outcrop, running parallel to one another in a NW-SE orientation. Gabbro within 

these tracts varies, with variation from medium (1mm - 1cm) to coarse (>1cm) grained. 

Mineralogically there is less variation throughout the gabbro, with approximately equal parts 

plagioclase and hornblende, with minor biotite/chlorite as well as zones of ore mineralization. 

Within these four exposures, there are multiple intrusions of interfingered mica-schist units. 

 Within this site, shear zones are seemingly preferentially located within coarser grained 

portions of gabbro. Some shear zones appeared to be lithologically bound to the boundary with 

meta-sedimentary units. The majority of shear zones are thin, less than 0.5 cm thick. In total 122 

shear zones were measured, 55 dextral had an average strike of 130°, while 58 sinistral had an 

average strike of 191°, and nine had an ambiguous sense of motion. There is a weak foliation in 

the medium-grained section of gabbro which is oriented 083/81 and has a lineation which varies 

in orientation, but averages 19/075.   

 

4.1.2 Inferred Strain Variation 

  Unfortunately, as in most deformed rocks, strain markers that can be used to quantify 

strain are largely absent within the GPS. While the anorthosite pods found within the GPS would 

serve as good markers for strain analysis, they were only found in three of the studied exposures. 

Where present, the anorthositic pod dimensions were measured on subhorizontal surfaces, as 
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listed in Table 2. Their ratio of their long to short dimensions were used to estimate two-

dimensional strain of the pods, and rank those three outcrops in terms of their relative strain.  

Due to lack of anorthosite pods or other strain markers throughout the entire GPS, strain was 

otherwise inferred by a qualitative assessment of various aspects of the shear zones at each site 

including the quantity, density and overall thickness/appearance of shear zones. The sites were 

given qualitative rankings of inferred strain from low to high (Table 2).  In general, shear zone 

density and shear zone thickness were deemed to be the most reliable indicators for relative 

strain ranking. 

 Qualitatively, within the northern region of the GPS, strain magnitude ranges from the 

highest strained site in the sill (GPS11-07) to the lowest strained site (GPS11-08). The highest 

strained sites within this region are in the north and inferred strain progressively decreases 

southward. 

 Within the central region of the sill, there is much less inferred strain variation compared 

to the northern region. Strain varies between low and medium-high. Generally, strain increases 

across the sill with low strain to the south and med-high strain at GPS11-01, which is 

approximately centered in the sill. GPS11-09 and GPS11-04 are located at the margins of the sill 

and each have inferred strain which is much lower than the next closest sites. 

 In the southern region of the sill, there is only one site, GPS11-03. This site is located on 

the western margin of the sill, and has medium inferred strain. This is comparable, in strain 

magnitude alone, to site GPS11-09, which is also located on the western margin of the sill, 

although it is located over 2.5 kilometers away in the central region. 

 Generally, strain patterns were linked to a combination of grain size and inferred bulk 

strain magnitude. At sites with the finest grain sizes, GPS11-04 and GPS11-08, shear zones are 
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lacking, and deformation generated a pervasive foliation (Fig. 6). Within other sites, shear zones 

are prevalent in coarser grained portions of the GPS. Within sites with grain size variations, such 

as GPS11-03 where grain size varies from medium to coarse grained, shear zones were 

preferentially found within the coarse-grained portions. Additionally, some sites had fine grain 

size (GPS11-11; Table 2), but had relatively well developed shear zones. This site had shear 

zones up to 1.5 cm in thickness, which indicated that despite a fine grain size, a high strain 

magnitude at the site caused the development of shear zones.   

 

4.1.3 Foliation 

Throughout the Grassy Portage Sill, foliation was observed within seven of the twelve 

studied outcrops (Fig. 11). When present, foliation was defined by the alignment of hornblende. 

Foliation was significantly more prominent and pervasive in finer grained sections of the GPS, 

and was accompanied by a lack of shear zone density.  

Foliation orientation varied similarly to the surrounding rock units (Fig. 11). In the north, the 

three outcrops with foliations have an average strike of 305°/125°. In the central portion of the 

sill, the three outcrops with foliation had an average strike of 058°/238°.  In the southernmost 

outcrop, the foliation found at the only measured outcrop, strikes 083°/263°. This variation in 

foliation is similar to the regional foliation, which appears to deflect around the Rice Bay Dome 

located west of the GPS. From these foliation orientations, we would deduce a NE-SW finite 

shortening direction within the northern region, and a NW-SE to N-S oriented finite shortening 

direction within the central and southern regions. These deduced local shortening orientations 

vary from the regional deformation which formed through north-south shortening paired with 

dextral shearing, resulting in an overall transpression.  Previous authors have hypothesized that 
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the foliation deflects due to competence contrasts in rock units; the Rice Bay Dome being more 

competent than all of the surrounding rock types (Carreras et al. 2010). 

 

4.1.4 Lineation 

A weak lineation was measured at four of the twelve studied outcrops within the GPS; it was 

otherwise not present. Lineation, similar to foliation, was defined by the alignment of 

hornblende. As is generally the case in SL tectonites, which are deformed rocks with both 

foliation and lineation, lineation orientations were contained on the foliation plane. Throughout 

all sites with measured lineation, the trend of lineations were approximately parallel to foliation 

strike, which varied by region (Fig. 12). Lineations plunge shallowly; all plunge <40°, most 

plunge <30°. 

 

4.1.5 Shear Zones and their Distribution 

Shear zones in the GPS were defined by a localized (on the order of mm or cm) deflection 

and intensification of foliation, specifically of the hornblende, within the GPS. This deflection 

allowed for the identification of the shear planes, in addition to their sense of motion. Nearly all 

studied shear zones within the GPS were exposed on the subhorizontal surface. Where three-

dimensional exposures of shear zones were available, sense of shear criteria were only observed 

on the subhorizontal surface. 

Of the twelve outcrops investigated, eleven had shear zones in varying quantity and intensity. 

At these eleven outcrops, a total of 342 shear zones were measured with kinematic shear sense of 

137 dextral, 165 sinistral, and 40 ambiguous. Within the northern region, there were a total of 81 
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measured shear zones, in the central region there were 139 shear zones, and in the southern 

region there were 122 shear zones. 

Where shear zones cross cut, there was mutual cross cutting between dextral and sinistral 

shear zones. At all outcrops, where crosscutting between shear zones occurred there were 

examples of both dextral crosscutting sinistral as well sinistral crosscutting dextral.  

 

4.1.6 Synthesis of Shear Zone Field Measurements 

To determine the inferred shortening direction and the angle between the strand sets at each 

site, the measurements were plotted onto stereographic projections, separated by their thickness, 

and grouped by region (Fig. 13). For thickness, shear zones ≤1cm were categorized as thin, while 

those >1cm were categorized as thick.  

   The poles to shear zones for each set were plotted. An average pole orientation was 

determined to find the average orientation of each set. The angle between the sets can 

subsequently be determined, which is hypothesized to face the mean shortening direction 

(Carreras et al., 2010). In Figure 13, these stereographic projections are shown with their spatial 

location on the sill to compare the variation in both geometry and inferred mean shortening 

direction throughout the sill. 

All sites with shear zones contain strands with both dextral and sinistral sense of motion. 

Regionally, each set has preferential orientations. In the southern region, dextral strands strike 

approximately 297°/117°, and sinistral strands strike approximately 029°/209°; in the central 

region dextral strike approximately 275°/095°, and sinistral strike approximately 197°/017°; and 

in the northern region dextral strike approximately 156°/336°, and sinistral strike approximately 

100°/280°. While all shear zones were steeply dipping, when vertical faces were available they 
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showed curvature at depth. The networked orientations combined with curvatures results in large 

shear zone bound lozenges. The obtuse angle between dextral and sinistral sets is interpreted to 

represent the inferred shortening direction.  

For all three regions, the maximum bulk stretching axes were calculated and plotted (X,Y,Z 

on Fig. 13). For the northern region, the minimum finite strain axis (Z) was 33/040 for the thin 

shear zones and 38/037 for thick, the intermediate finite strain axis (Y) was 57/212 for thin shear 

zones and 52/221 for thick shear zones, and the maximum finite strain axis (X) was 05/310 for 

thin shear zones and 02/128 for thick shear zones. For the central region, the minimum finite 

strain axis (Z) was 04/314 for the thin shear zones and 11/158 for thick, the intermediate finite 

strain axis (Y) was 68/052 for thin shear zones and 73/028 for thick shear zones, and the 

maximum finite strain axis (X) was 22/224 for thin shear zones and 13/248 for thick shear 

zones. For the southern region, the minimum finite strain axis (Z) was 04/339 for the thin shear 

zones and 18/164 for thick, the intermediate finite strain axis (Y) was 70/081 for thin shear zones 

and 67/024 for thick shear zones, and the maximum finite strain axis (X) was 20/250 for thin 

shear zones and 16/254 for thick shear zones. 

Pie charts (Fig. 14) for the three regions help compare the quantities of both dextral and 

sinistral shear zones. These are separated by both sense of motion (dextral vs. sinistral) and shear 

zone thickness (thick vs thin). 

 

4.1.7 Shear Zone Thickness Variation 

  The thickness of each shear zone was measured at the same spot where the orientation 

was measured. Thin shear zones were defined as those ≤1cm, while thick were those >1cm. The 

mean, minimum, and maximum width of all shear zones at each site were calculated and plotted 



 

 

38 

(Fig. 15). Thick shear zones were found within all three regions, at sites GPS11-07 in the north, 

GPS11-01 in the central, and GPS11-03 in the south.  

 

4.2 Thin Section Analysis 

4.2.1 Bulk Mineralogical Composition 

 Bulk mineralogy was calculated through point counting using a grid of 200 points per 

thin section. In total, 8 thin sections were analyzed using this method (Fig. 16). The analysis 

indicates that the Grassy Portage Sill is primarily composed of plagioclase, hornblende and 

chlorite, with minor amounts of other minerals, indicating gabbro to leucogabbro compositions.  

 Plagioclase comprised the majority of samples analyzed, ranging from 41% to 69%. The 

mean average of plagioclase from all samples is 51%. Hornblende ranged from 23% to 37%, and 

had an average from all samples of 29%. Chlorite was found in 6 of the 8 samples and where 

present, chlorite ranged from 5% up to 15% with an average of 7%. Other minor minerals 

present were biotite, quartz, potassium feldspar, calcite, garnet, siderite and clinopyroxene which 

were found in quantities of less than 5%, in a minority of the samples. 

4.2.2 Grain Size Variation in Plagioclase 

Grain size was also measured during point counting. Both the long and short grain axes were 

measured. The long axis measurements were plotted on histograms, separated by site, for 

analysis (Fig.17-19). To compare across all sites, the same bin sizes were chosen to best display 

the majority of sites. Plagioclase was the major mineral component and the microstructure-

bearing mineral of the Grassy Portage Sill, therefore it was used for the grain size variation 

analysis. Across the entire GPS, the long axis of plagioclase varied between 0.02 mm and 10.65 

mm.  
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Two samples from the northern region were analyzed for grain size, GPS11-07a and GPS11-

08a (Figure 17). In Sample GPS11-07a, representing a high strain site, the majority of grains 

(54%) were >2mm and ≤ 5mm. In GPS11-08a, which contained very few shear zones, 85% of 

grains were ≤ 3mm, with 43% ≤1mm.  

 Within the central region, five samples from four sites were analyzed, GPS11-01b, 

GPS11-04a, GPS11-11a and two samples from GPS11-09 (Fig. 18). In GPS11-01b, a medium-

high strain site, 79% of grains were ≤ 4mm in length; in GPS11-04a, a site which lacked any 

shear zones, 94% of long axes were ≤ 1 mm; in GPS11-11a, a medium-low strain site, 95% of 

long axes were ≤ 1 mm; in GPS11-09, a medium strain site, sample A had 85% of axes ≤3mm, 

while sample B had 94% of axes ≤ 1mm. 

 In the southern region, one sample was analyzed from site GPS11-03, a medium strain 

site (Figure 19); 97% of its long axes were ≤ 4mm in length. 

 Grain size varied significantly at both the outcrop and regional scale, even showing 

significant variation within a single outcrop. It was noted in the field that the two sites with a 

lack of shear zones (GPS11-04) or a very low quantity and density of shear zones (GPS11-08) 

both had very fine (<1mm) grain size. Figure 20, which shows percentage of plagioclase as 

compared to grain size (long axis length of plagioclase), indicates that there is no apparent 

relationship between them. 

 

 4.2.2 Microstructural Features of Plagioclase 

 Petrographic analysis of 8 samples, representing 7 sites within the Grassy Portage Sill, 

indicates that plagioclase serves as the primary microstructure-bearing mineral. The analyzed 

microstructures have been interpreted to represent a wide range of deformation mechanisms, 
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which include brittle, crystal plastic and recovery mechanisms, as well as some alteration 

structures (Fig. 21). 

 The northern region is represented by two samples, GPS11-08aXY (low strain) and 

GPS11-07aXY (high strain). Both samples displayed minor amounts of intragranular fracture, 

significant undulose extinction, bulged grain boundaries, subgrain boundaries and recrystallized 

edges, in addition to extensive partial sericitization and minor alteration. This microstructural 

combination would indicate minor brittle deformation, with predominant crystal plastic 

deformation and subsequent recovery, and finally minor to moderate alteration.  

 The central region is represented by five samples from four sites: GPS11-04aXY (low 

strain), GPS11-11aXY (medium-low strain), GPS11-09aX and GPS11-09bXY (medium strain), 

and GPS11-01bXY (medium-high strain). Plagioclase grains within two sites contain significant 

intragranular fractures, which indicate brittle deformation: med-high strain for 01b (86%) and 

medium for 09a (32%), while the rest of sites all have <2% of grains exhibiting it. In contrast, 

within sample 04a, nearly every plagioclase grain exhibited undulose extinction (99%), as 

compared to <20% occurrence in the other four samples indicating more crystal-plastic 

deformation. Bulged grain boundaries were observed in more than half of all grains. Sub-grain 

boundaries and recrystallized edges, while both found in all four samples, showed no observable 

trends in occurrence.  

 The southern region is represented by a sample from one site, GPS11-03bXY (medium 

strain). It shows a greater occurrence of brittle deformation interpreted structures as compared to 

the rest of the GPS. Within crystal plastic inferred structures, 03b shows undulose extinction and 

bulged grain boundaries on par with the rest of the sill, but significantly lesser sub-grain 
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boundaries as compared to sites within the rest of the GPS. In addition this southern site lacks 

any grains with recrystallized edges, indicating lack of recovery. 

 Generally, crystal plastic is the dominant deformation mechanism throughout the three 

regions, as evidenced by the extensive and dominant bulged grain boundaries, subgrain 

boundaries, and recrystallization at grain boundaries. In the northern region both deformation 

and subsequent recovery are prominent whereas in the central and south it appears that 

dislocations were able to proceed with lesser amounts of recovery.   
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Table 1. Anorthosite data from throughout GPS where present. Long to short ratio of lengths 
used as strain marker, with ratio of 1.0 assumed to represent pre-deformation geometry of 
anorthosites. Data was collected at two exposures within GPS in addition to high strain site 
studied in Carreras et al. 2010, which is located adjacent to GPS11-07. 
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Figure 11. Generalized geologic map (based on Druguet et al., 2008) and foliation measurements of outcrops where 
rock fabric was apparent.  Dashed lines in neighboring units are generalized foliation trajectories from Druguet et 
al., 2008. Foliation measured in GPS varies along the length of the sill, and similarly to surrounding units, wraps 
around the Rice Bay Dome. 
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Figure 12. Stereographic projection showing foliation (planes) and lineations (points) throughout GPS. Northern 
region measurements in green, central region in pink, and southern region in orange.  
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Figure 14. Pie charts indicating percentage of shear zones of dextral and sinistral shear sense within each of the 
three major regions of the GPS, with approximate 1:1 ratio of total dextral and sinistral shear zones. 
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Figure 15. Shear zone thickness variation, separated by site. Sites are ordered from qualitative lowest strain on the 
left to the highest strain on right. Maximum shear zone thickness at each exposure shows increase with higher 
deformation.  
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Figure 17. Histograms for grain size (long axis) of plagioclase from sites in northern region of the Grassy Portage 
Sill. Majority of grains have consistently short axis length, indicating overall fine grain size. GPS11-07 shows a 
bimodal distribution indicating two distinct grain sizes, one fine and one coarser. 



 

 

51 

 

 
 
Figure 17. continued 
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Figure 17. continued 
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Figure 18. Histograms for plagioclase grain size (long axis) from sites in central region of the Grassy Portage Sill. 
Majority of grains have consistently short axis length, indicating overall fine grain size, with a second small 
population of 6-7mm long axis grains, indicating an unequal  bi-modal grain size distribution. 
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Figure 19. Histograms for plagioclase grain size (long axis) from sites in south region of the Grassy Portage Sill. 
Majority of grains have consistently short axis length, indicating overall fine grain size. 
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Figure 20. Graph showing bulk percentage of plagioclase, as compared to average plagioclase grain size, for each 
sample, as determined by point counting. There is no relationship between plagioclase grain size and mineralogy 
within each sample.   
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Figure 21. Plagioclase microstructures, grouped by interpreted deformation mechanism. These are separated into 
three regions, north, central and south. For all, the Y axis is the percentage occurrence plagioclase, the x axis are the 
observed microstructures, and the colored fields separate the inferred deformation mechanisms implied by the 
microstructures, the bar colors correspond to inferred strain at each site as determined by criteria listed in Table 2. 
Generally, crystal plastic deformation is the predominant mechanism throughout the GPS regardless of location or 
strain magnitude.  
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Chapter 5: Discussion 

5.1 Controls on Shear Zone Formation 

Overall, while the majority of exposures within the GPS contain shear zones which have 

accommodated deformation, there are two exposures which have deformed largely through 

pervasive foliation with very few shear zones (GPS11-08) or a complete absence of them 

(GPS11-04). 

This variation in deformation style appears to be linked, at least in part, to grain size 

variation in the GPS, with finer grain sized lithologies favoring pervasive foliations and coarser 

grained lithologies favoring discrete shear zone formation. Through point counting, across all 

minerals, GPS11-04 has an average grain size of 0.2 mm2, and GPS11-08 has an average grain 

size of 3.8 mm2 (Table 2). GPS11-11 meanwhile, has an average grain size of 0.6 mm2, but had 

deformation that was taken up by shear zones in addition to a moderate foliation. This would 

indicate that grain size, while important, is not the sole factor that determines shear zone 

formation. We hypothesize that overall strain at the exposure assisted in overcoming the fine 

grain size and allowed the development of shear zones.   

 

5.2 Strain Patterns 

Strain variation across the GPS is controlled more by localized variations and lithological 

controls than by other km scale features such as location within sill. Regionally strain did not 

vary systematically across or along the sill (Fig. 7). Field relationships indicate that there was 

great variation of grain size at some exposures, and when present, shear zones were 

preferentially located within the coarser grained regions, or occasionally localized at the 

boundary between the grain size variations.  
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5.3 Microstructures 

Evidence of crystal plastic deformation (also known as dislocation creep), including undulose 

extinction, is found throughout all regions of the GPS. Bulged grain boundaries and subgrain 

boundaries, are the dominant microstructures; they are found in the majority of all plagioclase 

grains across all three regions. Previous studies indicate that for crystal plastic deformation to 

occur in feldspar, it must be deformed under moderate temperature conditions (>400°C; 

Passchier and Truow, 2005). This matches the conditions of amphibolite facies deformation 

interpreted for the region (500°C-600°C & ~3 kilobars pressure; Poulsen, 2000). Interestingly, 

signs of brittle deformation, specifically abundant intragranular fractures, are found in two of the 

8 samples (03b & 01b), with significantly fewer of such features in the other six samples. The 

fractures indicate high strain rate, low temperature, or fluid infiltration during deformation 

(Vernon, 2004). A lack of major alteration in these samples makes fluid infiltration unlikely and 

metamorphic grade is relatively constant, suggesting that strain rates varied locally.   

 In sample 03b, the only sample from the southern region, there are no observed 

recrystallized edges and few subgrain boundaries, indicating a lack of recovery mechanisms. 

This may indicate that less recovery occurred. With dislocation creep serving as the dominant 

process throughout the GPS, the evidence for lesser recovery suggests a lower strain at this 

location.   

Overall, it is clear that crystal plastic deformation is the primary deformation mechanism 

throughout the entirety of the GPS. There are some minor variations across the sill, such as lack 

of recovery in the south, but these are likely due to lower strain within that region or outcrop. 
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There appears to be no pattern regionally to the microstructures noted, nor directly related to 

strain variation. 

 

5.4 Evolution of Shear Zones 

Previous work had hypothesized that shear zones within the GPS initiated in a conjugate set 

with approximately 90° between each strand, and that through progressive deformation, the two 

strands rotated away from the shortening direction towards subparallel orientations (Carreras et 

al. 2010). This hypothesis has been tested using three outcrops from within the GPS: GPS11-03, 

GPS11-01, and GPS11-07 (Fig. 22). These three sites were chosen because: 1) they represent a 

variety of inferred qualitative strain, 2) they contained an adequate number of shear zones 

(n>10), and 3) they contained a large quantity of both thin and thick shear zones.  

Across the three sites, the shortening direction angle between strands for both thin and thick 

sets was lowest in the least strained outcrop, highest in the highest strained, and had a value 

between these two in the middle strain. This pattern is consistent with the Carreras et al. (2010) 

model.  

Within each site, old thick shear zone strands are rotated with respect to the younger thin 

shear zone strands in a way that is consistent with rotation away from the shortening direction. In 

GPS11-03 the thin strands have a separation angle of 69°, compared to 109° in the thick strands, 

with the dextral plane rotating counter-clockwise and the sinistral plane rotating clockwise. In 

GPS11-01 the thin strands have a separation angle of 92°, compared to 118° in the thick strands 

with the dextral plane rotating counter-clockwise and the sinistral plane rotating clockwise. Last, 

in GPS 11-07 the thin strands have a separation angle of 128°, compared to 156° in the older 
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strands with the dextral plane remaining in the same orientation and the sinistral plane rotating 

clockwise. These rotations are also consistent with the Carreras et al. (2010) model. 

 Additionally, the variation from thin to thick shear zones was analyzed for the three 

regions of the GPS, northern, central, and southern (Fig. 23). In the northern region the thin 

strands have a separation angle of 97°, compared to 152° in the thick strands, with the dextral 

plane rotating counter-clockwise and the sinistral plane rotating clockwise. In the central region, 

the thin strands have a separation angle of 83°, compared to 120° in the thick strands with both 

the dextral and sinistral plane rotating clockwise. Last, in the southern region the thin strands 

have a separation angle of 69°, compared to 109° in the older strands with the dextral plane 

rotating counter-clockwise and the sinistral plane rotating clockwise. All are consistent with the 

Carreras et al. (2010) model except for the sense of rotation of the dextral planes in the central 

region. 

The shear zone orientation patterns from both of these sets of sites are consistent with the 

model proposed by Carreras et al. (2010). Increasing strain across the three sites shows an 

increase in the angle between strands. Additionally, within each individual site, and region, the 

thin, young shear zones have a lesser angle of separation between strands as compared to the 

thick, older strands, which further supports their evolution. 

5.5 Shortening Direction 

While the inferred shortening direction throughout the Grassy Portage sill varies, it is 

oriented consistently within a particular region. Generally, shortening is directed approximately 

NE/SW in the northern region, approximately NW/SE in the central region, and NW/SE in the 

southern region. These inferred shortening directions match those inferred from internal and 
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regional foliation, which also wrap around the Rice Bay Dome (assuming bulk shortening 

direction is perpendicular to foliation). 

Within the northern region, four sites with a total of 42 shear zones with identifiable sense of 

motion were analyzed for inferred shortening orientation. The thin shear zones (35 

measurements) have an inferred shortening direction of 040°/220°, with an angle of 97° between 

the sets. The thick shear zones (7 measurements) have an inferred shortening direction of 

037°/217°, with an angle of 152° between them. Foliation was measured at 6 points in this 

region, and has an average strike of 122°/302°, which would infer a shortening direction from 

foliation alone of 032°/212°.  

 The central region is composed of seven sites, with a total of 117 shear zones with 

identifiable sense of motion. The thin shear zones (101 measurements) have an inferred 

shortening direction of 314°/134°, and an angle between sets of 83°. The thick shear zones (16 

measurements) have an inferred shortening direction of 338°/158° and an angle between sets of 

120°. Foliation was measured at 8 points in the region and has an average strike of 069°/249° 

and an inferred shortening direction of 339°/159°. 

 The southern region is represented by one site, encompassing 113 measured shear zones 

with identifiable sense of motion. The thin shear zones (107 measurements) have an inferred 

shortening direction of 159°/339°, and an angle between sets of 69°. The thick shear zones (6 

measurements) have an inferred shortening direction of 164°/344° and an angle between sets of 

114°. Foliation was measured once where it is oriented 084°/264°, indicating an inferred 

shortening direction of 174°/354°. 

Looking at both the finite strain derived from fabric measurements and incremental strain 

derived from shear zone analysis, we see that within each of the three regions the implied 
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shortening direction is consistent. It is important to note that the shortening direction inferred 

from the foliation is the bulk finite shortened direction whereas the shortening direction inferred 

from the shear zones is an incremental shortening direction (the length of the increment 

depending on when the shear zones formed with respect to the overall strain). If the shortening 

directions inferred from each are subparallel, it means that either 1) the shear zones formed early 

in the deformation and record the bulk finite strain or 2) bulk strain was largely coaxial so that 

incremental and finite deformation have the same inferred shortening direction. The data indicate 

that the shortening direction from both fabric and shear zone orientations are nearly parallel. 

Regionally, the inferred shortening direction within the GPS varies significantly along its length. 

Previous work using deformation in dikes and veins in surrounding metavolcanic and 

metasedimentary rocks also shows that shortening directions vary in consistent patterns with the 

shortening directions found in this study (Fig. 24 ;Druguet et al. 2008). As the veins formed later 

in the D2 deformation, the consistent shortening direction with the GPS shear zones and foliation 

indicate that bulk deformation was nearly coaxial. Within both the GPS, and surrounding units, 

shortening direction varies systematically in relation to the Rice Bay Dome.  

 

5.6 Curvature of GPS and shear zones 

We have proposed two possible hypotheses to explain this variation in shortening direction 

along the length of the GPS: 

1. The Rice Bay Dome is acting as a competent unit, surrounded by metavolcanic and 

metasedimentary units of lesser competence. The Rice Bay Dome is thus creating a 

regional scale “strain shadow,” deflecting the strain in the surrounding units and 
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creating variations in the strain direction, evidenced by the variations in shortening 

directions. 

2. The current shear zones were formed during a period when the GPS was straight, 

rather than the current curved orientation wrapped around the RBD. In this scenario, 

when the shear zones formed, they all would have had the same geometries, and in turn 

the same inferred shortening orientation. Subsequently, after the formation of the shear 

zones, the entire GPS was folded around the RBD, resulting in the current geometrical 

variations.   

When considering the first hypothesis, we can look toward analog and numerical modeling of 

rigid inclusions in lesser competent matrices to gain a better understanding. In numerical models, 

an applied bulk stress on a rigid inclusion resulted in the formation of perturbations in the stress 

and strain fields surrounding the inclusion, which varied in shape and location dependent upon 

the shape of the inclusion and orientation of the stress (Misra & Mandal, 2007). These results are 

further understood through analog studies where matrix materials are allowed to vary (Pascual et 

al. 2006). In a pure shear deformation experiment, a competent inclusion was placed in a multi-

layered less competent matrix. This resulted in a complex folding of the matrix surrounding the 

inclusion, which varied dependent on the inclusion orientation and shape.   

To consider the second hypothesis and better understand the curvature of the GPS and the 

orientations of its shear zones, the GPS was ‘uncurved’ to determine if the variation in 

orientations could be explained solely by subsequent curvature of the sill. First, each region was 

assigned an angle of orientation that best represented the orientation of the sill within it (Fig. 25). 

To determine the theoretical uncurved inferred shortening direction, the data for all regions was 
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rotated clockwise according to its representative angle: 125° for the north, 45° for the central, 

and 20° for the south. 

Unfortunately, we currently do not know how exactly this curving would have occurred, and 

what the original orientation would have been. So “uncurving” parts of the GPS was done 

arbitrarily relative to an east-west reference orientation. As most of the GPS is steeply dipping, 

“uncurving” was only conducted about a vertical axis (changing the orientation of the strikes).  

Due to its lithology and contacts with surrounding metasedimentary and metavolcanic units, we 

can assume that the sill was flat lying prior to any deformation. As such, this test is solely to see 

if shear zones developed when the sill was straight rather than curved, i.e. if the curving of the 

unit alone could explain the shortening direction variation of the three regions. 

 Comparing stereographic projections of the three regions as measured in the field (Fig. 26) 

with those that are rotated (Fig.27) allows us to test this hypothesis. While the orientations 

themselves are not meaningful, as we do not know what the original orientation of the sill would 

have been, we can look at the differences between regional variations. For the thin shear zone 

sets, after uncurving, the central and southern shortening direction was exactly the same, and the 

northern shortening direction varied by 14° from them. The thick shear zone shortening direction 

had a variation of 41° total. Overall, these results are intriguing and show that the curvature of 

the GPS could reasonably account for the variation in shortening direction down the sill’s length.   

When evaluating the two hypotheses, both are reasonably consistent with the data collected 

from the GPS. Regional data may help with further evaluation. 
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5.7 Regional Deformation History 

Like many units in the Rainy Lake region, the GPS has accommodated deformation 

differently than the surrounding units and the rest of the region. Discrete small shear zones have 

taken up the majority of deformation, although other factors including grain size and strain can 

lead to variations in the deformation style within the sill. Generally within the Rainy Lake 

region, deformation in weaker units such as metavolcanics and metasedimentary rocks is 

accommodated by pervasive foliation (Druguet et al., 2008; Czeck and Poulsen, 2010; Bauer et 

al., 2011). Deformation in stronger units such as the gneiss domes (Czeck and Poulsen, 2010; 

Bauer et al., 2011; Block, 2014) and the GPS is more likely to be accommodated by discrete 

shear zones bounding regions of lesser deformed rocks. As strain progresses, the bounded 

regions also become deformed as seen here in the more highly strained zones (Carreras et al., 

2010). 

The orientation of the shear zone strands is a viable indicator of the local strain orientation 

within the GPS and indicates that similar systematic variability in strain exists in the GPS and 

neighboring units (Druguet et al., 2008; Fig. 24). The Rice Bay Dome plays an important role in 

understanding the GPS and the shear zones within it. Both proposed hypotheses to explain the 

variation in shortening direction involve the Rice Bay Dome. It may have served as a competent 

unit around which lesser competent units have been wrapped, or alternatively its higher 

competence may have served to create a “strain shadow”, perturbing the strain imparted upon 

units located in close proximity to the dome.  

Other regional data may help distinguish between these two hypotheses. All of the structural 

features we observe are broadly D2: foliation, shear zones in GPS, and deformation of veins 

from Druguet et al. (2008). However, some aspects of the map patterns are likely related to D1. 
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The GPS was likely emplaced into the volcanic and sedimentary package prior to deformation 

(2727 – 2728 Ma) (Davis et al. 1989). The tilting of these units into steep dips likely occurred 

during the D1 stacking phase of deformation (Poulsen, 2000; Poulsen and Czeck, 2010; Bauer et 

al., 2011), however the broad open folding around the Rice Bay Dome was a D2 feature (Poulsen 

et al., 1980; Poulsen, 2000). So the relative timing of features discussed here may be used to 

unravel the evolution of deformation during D2. The radiometric age of the late stage granites 

(orange colored units with cross pattern on map shown on Fig. 4) is 2686 ± 2 Ma (Davis et al. 

1989; Fralick and Davis, 1999). Previous work suggested that these granites intruded very late in 

D2 (Czeck et al., 2006). The syn-D2 veins analyzed by Druguet et al. (2008) are likely to be of 

the same generation as the late stage granites. Since the systematic variation in shortening 

directions interpreted from those veins are compatible with the shortening directions interpreted 

from the GPS shear zones and the foliations, there is intriguing evidence to suggest that it is 

possible that D2 extended well after granite intrusion. The patterns of the northernmost part of 

the GPS and neighboring volcanics provide further supporting evidence, as they both curve 

around the Baseline Bay pluton (Fig. 5). This curving may have occurred in relation to or even 

after the intrusion of these late granitoids.  

 

5.8 Regional Kinematics 

While many authors have invoked transpression to describe features within the Rainy Lake 

Zone, the style of deformation and the kinematics of deformation vary throughout the 

heterogeneous rock units and bounding structures (Poulsen, 1986; Poulsen, 2000; Czeck and 

Hudleston, 2003; Druguet et al., 2008; Czeck et al., 2009; Carreras et al., 2010; Poulsen and 

Czeck, 2010; Bauer et al., 2011). In many examples, authors hypothesize that transpression was 
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partitioned into high strain zones dominated by simple shear and lower strain zones dominated 

by pure shear (e.g. Fossen et al., 1994; Curtis et al., 2010; Weinberger, 2014).  There is evidence 

to suggest that the Rainy Lake Zone followed this general model with high strain simple shear 

concentrated at the discrete shear zone boundaries and more pure shear dominated transpression 

within the various units within the wedge (Bauer et al., 2011). 

There is significant evidence to indicate that portions of the GPS may have been dominated 

by more pure shear dominant strain during deformation. Along the length of the GPS, the 

shortening direction inferred from both foliations and conjugate shear zones varies significantly 

and appears to wrap around the Rice Bay Dome located NW of the GPS (Fig. 24). In the 

northern and southern regions, the orientation of the inferred shortening and the rotation of shear 

zone limbs, as well as the nearly 1:1 ratio of dextral to sinistral shear zone occurrence (Fig. 14), 

are consistent with pure shear dominated deformation. Lastly, inferred shortening directions 

within the three regions are all approximately perpendicular to their corresponding regional 

foliation. If the shear zones formed during a later increment of D2 deformation, the coincidence 

of shortening directions interpreted from the shear zones and the foliation are consistent with 

pure shear dominated transpression. 
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Figure 22. a) Stereographic projections for three outcrops within the GPS to show variation in shear zone 
orientation of thin and thick shear zone sets across three increasing amounts of qualitative strain. In all cases, the 
angle between the thick sets is larger than the angle between thin sets. For thin and thick sets, the angles increase 
with inferred relative outcrop strain. b) Schematic diagram of shear zone strands and the rotation of the average 
shear zone orientation away from the inferred shortening direction, through increasing progressive pure shear 
deformation. Blue are dextral shear zones and red are sinistral shear zones.  
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Figure 23. Stereographic projections for three regions within the GPS to show variation in shear zone strand 
orientation of thin and thick shear zone sets. In all cases, the angle between sets in thick shear zones is greater than 
the angle between sets in thin shear zones. 
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Figure 24. Generalized geologic map (based on Poulsen, 2000 and Druguet et al., 2008) with inferred shortening 
directions. Red arrows are regional inferred shortening based upon shear zone strand analysis, green arrows are 
inferred shortening based upon average regional foliation (from Poulsen, 2000 and Druguet et al., 2008), and blue 
arrows are approximate shortening directions from deformed veins as found in Druguet et al. 2008. 
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Figure 25. Generalized geologic map (based on Druguet et al., 2008) with the assumed general orientation of the 
GPS for each region. The angle shown is the angle used for rotation in the analysis shown in Figure 27. (Rotate to an 
arbitrary EW orientation).  
  



 

 

72 

 

Figure 26. Stereographic Projections for both thick and thin shear zone sets for the three regions in their original 
orientations.  
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Figure 27. Resultant stereographic projections for both thick and thin shear zone sets for the three regions after 
rotation as determined by GPS orientation defined in figure 25.   
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Chapter 6: Conclusions 

The Grassy Portage Sill, through deformation in the Kenoran orogeny, developed a complex 

network of anastomosing shear zones that evolved through progressive deformation. Through a 

detailed analysis of the shear zones and a study of the lithological and microstructural variations 

within the sill, the deformation can be better understood and placed within the regional 

deformational event. 

1. Anastomosing shear zones have taken up the majority, though not all, of the deformation 

within the GPS. There are sections that accommodated deformation through 

development of pervasive foliation, or in some cases with a combination of pervasive 

foliation and discrete shear zone networks. This deformation style variation is linked to 

grain size and strain magnitude variation. Shear zones preferentially form in coarse-

grained gabbros at high strain. 

2. The inferred shortening directions from metamorphic fabric and conjugate shear zone 

geometries systematically vary along the sill. The variation in shortening direction 

mimics the shortening direction of surrounding rock units as determined by previous 

studies that used deformed veins as markers (Druguet et al. 2008). The local variation in 

shortening direction is related to deformation wrapping around the relatively rigid Rice 

Bay Dome. The consistency of shortening directions determined by various techniques 

and rock units suggest that the transpressional deformation was dominated by coaxial 

deformation. 

3. Throughout the Rainy Lake zone, the complex terrane contains a variety of lithologies 

which have partitioned the deformation differently. The Grassy Portage Sill, unlike the 
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surrounding units, has primarily accommodated deformation through the network of 

conjugate shear zones. 

4. The geometries of conjugate shear zones studied are consistent with previous models of 

shear zone development. Thin shear zones (≤1 cm) are assumed to be younger than thick 

(>1 cm) shear zones. Dextral and sinistral conjugate sets initiate at approximately 90° 

orientation and rotate in opposite directions away from the inferred shortening direction 

with increasing strain. 

5. Crystal-plastic deformation, or dislocation creep, of plagioclase is the primary 

deformation mechanism across the GPS. Deformation mechanisms did not vary spatially 

or with strain throughout the sill. 

6. To explain the variation in shortening direction along the length of the GPS, two distinct 

hypotheses were proposed: 1) The GPS was folded around the Rice Bay Dome, and 

shear zone development pre dated the folding event. 2) The high competence of the Rice 

Bay Dome caused deflections of the strain field around it which systematically varied 

the local shortening direction. 

a. For the first hypothesis, shear zones would have developed after D1 stacking 

but before major D2 folding, where the sill, along with surrounding units, 

were folded around the Rice Bay Dome. At a regional scale, the GPS appears 

to have been folded with influence from both the Rice Bay Dome (2725 ± 2 

Ma) and the much younger Baseline Bay granite pluton (2686 ± 2 Ma). 

Previously, folding was interpreted to have occurred before the intrusion of 

these late plutons, but the data are also consistent with later folding, or folding 

over a longer period, with some overlap with the intrusion of the Baseline Bay 
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Pluton. Further analysis of other units within the region would be needed to 

better understand the likelihood of this hypothesis. Additionally, further study 

is needed to understand the original orientation of the sill during shear zone 

formation, perhaps through use of paleomagnetic data if there is a signal that 

can be attributed to original lithology and/or metamorphic fabrics. 

b. For the second hypothesis, the highly competent Rice Bay Dome could have 

caused both the strain field perturbations, as well as the folding in surrounding 

units. Analog studies have shown that rigid inclusions within layered matrix 

will not only lead to strain field perturbations, but can also create folding 

patterns in the surrounding matrix that are unexpected as compared to 

deformation without the inclusion.  
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