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ABSTRACT 

A MICROSCOPIC SIMULATION LABORATORY FOR EVALUATION OF 

OFF-STREET PARKING SYSTEMS 

by 

Yun Yuan 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Yue Liu 

The parking industry produces an enormous amount of data every day that, properly 

analyzed, will change the way the industry operates. The collected data form patterns that, in 

most cases, would allow parking operators and property owners to better understand how to 

maximize revenue and decrease operating expenses and support the decisions such as how to set 

specific parking policies (e.g. electrical charging only parking space) to achieve the sustainable 

and eco-friendly parking.  

However, there lacks an intelligent tool to assess the layout design and operational 

performance of parking lots to reduce the externalities and increase the revenue. To address this 

issue, this research presents a comprehensive agent-based framework for microscopic off-street 

parking system simulation. A rule-based parking simulation logic programming model is 

formulated. The proposed simulation model can effectively capture the behaviors of drivers and 

pedestrians as well as spatial and temporal interactions of traffic dynamics in the parking system. 

A methodology for data collection, processing, and extraction of user behaviors in the parking 

system is also developed. A Long-Short Term Memory (LSTM) neural network is used to 

predict the arrival and departure of the vehicles. The proposed simulator is implemented in Java 

and a Software as a Service (SaaS) graphic user interface is designed to analyze and visualize the 

simulation results. This study finds the active capacity of the parking system, which is defined as 
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the largest number of actively moving vehicles in the parking system under the facility layout. In 

the system application of the real world testbed, the numerical tests show (a) the smart check-in 

device has marginal benefits in vehicle waiting time; (b) the flexible pricing policy may increase 

the average daily revenue if the elasticity of the price is not involved; (c) the number of electrical 

charging only spots has a negative impact on the performance of the parking facility; and (d) the 

rear-in only policy may increase the duration of parking maneuvers and reduce the efficiency 

during the arrival rush hour. Application of the developed simulation system using a real-world 

case demonstrates its capability of providing informative quantitative measures to support 

decisions in designing, maintaining, and operating smart parking facilities.  
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1 Introduction 

1.1 Background 

Since an average car spends 95% of a day or 23 hours per day parked, parking spaces occupy a 

huge amount of land use and could possibly cause congestions, emissions, noise and accidents in 

the urban area.  

Since vehicles should be parked at both origins and destinations of trips, the number of 

parking spots is estimated more than twice of the car ownership. For urban areas, increasing 

demands in parking spaces challenge the limited land use. In Los Angeles, 14 percent of 

incorporated land or 200 square miles is tied to parking, the lane use is 1.4 times more area than 

that is devoted to roads, and 18.6 million parking spots are dedicated to storing 5.6 million 

vehicles. In developing countries, the parking cost is increasing sharply. In Guangzhou, China, 

the price of purchasing a parking space is about $114,000, and the public parking fee is about 

$2.29 per hour in the daytime in 2016. Contending such issue, authorities would like to promote 

parking facility development (NDRC of P. R. China, 2015, 2016), and a considerable number of 

new parking spaces are planned to be constructed in a few years. For example, there are 

estimated 600,000 constructing parking spaces and $2.5 billion budget raised in Guangzhou 

(XNA, 2016). 30,000 parking spaces in Chongqing, 17,959 in Suzhou, 14,000 in Quanzhou, and 

10,000 in Qingdao would be constructed. However, the increasing parking facility supply would 

encourage private car ownership and cannot satisfy the demand. Thus, a parking supply/demand 

report in Boise, ID (CCDC, 2015) suggested the following five strategies related to addressing 

parking demand growth: (a) better utilization of existing parking, (b) implementation 

Transportation Demand Management (TDM) initiatives, (c) examining parking regulations, (d) 
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examining parking rates, (e) building additional parking spaces. Modern techniques, such as 

parking demand management, parking reserving system, and parking guide system, are 

developed by engineers and researchers to improve the efficiency of the parking facilities.  

Since on-street/curb-side parking causes higher externalities, such as congestion, space 

occupation, reduced safety and so on (Feitelson and Rotem, 2004), over 80% of the existing and 

most of constructing parking spaces are for off-street parking. However, the “last-mile problem” 

exists in parking systems, which may ruin the experience of drivers and reduces the efficiency 

and safety of parking systems. Thus, it comes to be critical to evaluate the performance to 

improve the operation of the existing parking facilities and the design newly-planned ones.  

To improve the efficiency of the off-street parking lot, newly-opened public parking 

facilities are equipped with intelligent managing devices, such as indicators, sensors, indoor 

positioning system and guiding information distributors for advanced operational requirements. 

New techniques potentially relieve management problems such as:  

(a) insufficient information by traffic signs, warning signs, convex traffic mirrors, 

changeable/variable message signs, in-lot parking guidance systems and so on;  

(b) lacking queuing estimation during peak hours by parking space monitoring, parking 

behavior learning;  

(c) lacking guidelines for designing dimensions of spaces, aisles, and entrances.  

However, there lacks a comprehensive microsimulation tool to estimate the efficiency-

related outputs of adding new devices.  

Safety concerns draw increasing attention in the recent studies. Even though vehicles in 

parking facilities have a low speed (5 MPH to 10 MPH), National Safety Council (NSC) found 
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on average at least 60,000 people were injured and 500 or more died in the 50,000 plus crashes 

in parking lots and garages every year in the U.S., 20% of accidents involving fatalities and 

injuries occurred within parking facilities and 14% of all claims of auto damage involved 

collisions therein (NSC, 2016).  

Parking systems involve the transition between static state and moving the state in 

compact space. Therefore, parking lots have more dilemma zones and blind spots than urban 

streets. The situations accounting for accidents include: (a) when looking for parking spaces, 

distracted drivers leave traffic in danger; (b) obstacles block both drivers’ and pedestrians’ 

visions; (c) the space between the vehicle and surroundings is much narrower than that on road, 

which needs advanced driving experiences; and (d) distracted walking pedestrians have 

unpredictable and misleading behaviors.  

In view of such situation, new design concepts are desired, such as consciousness-raising 

traffic markings and accessible pedestrian design (e.g. in Shanghai Hongqiao International 

Airport, China, see Wang, 2016), where solid arrows are routes for pedestrian, and dotted ones 

are for vehicles. There needs a micro-simulation tool to aid designers with evaluating the 

consciousness-raising and accessible pedestrian designs. 

For the non-traffic safety issue, the off-street parking facilities are so poor-slight enclosed 

areas with dark stairwells, high walls, structural columns that attracted crimes, unfortunately. 

According to the National Crime Victimization Survey in 2015 (BJS, 2016), more than 10% of 

all property crimes (such as theft), and more than 7% of all violent crimes (such as assault, rape, 

and robbery) occurred in parking facilities. Thus, sufficient monitoring systems and security 

systems should be provided to deter crimes to ensure safety and security. However, there lack 

tools for parking lot managers to identify the major and minor security problems to implement 
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effective parking lot solutions.  

Modern parking facilities satisfy more specific customers, such as women, electrical 

vehicles owners, and car sharers. The establishment of the reserved spots for specific users is 

empirical and lacks quantitative analytics. 

Women/female only parking spaces were originally designed in 1990 in Germany. Such 

parking spot sign includes high heels, Venus symbol, Victorian women, or American Institute of 

Graphic Arts (AIGA)-style gender symbol, etc. In some German states, women’s parking spaces 

must be marked as such, should be near the facility entrance, must be monitored by a security 

guard or camera. In Hebei, China, parking spaces for women have been established in shopping 

centers, which are between 3.2 to 3.3 meters wide to allow car door to be fully opened. Women-

only parking spots have been in widespread use in South Korea since 2009. In Seoul, Korea, 

pink “she-spots” are designed near destination for being more conductive. With a similar 

purpose, parking spots are reserved for expected parents in various countries. In other countries, 

similar designs are made with a pelican sign for expected mother/parent only and pregnancy 

only. 

For serving an increasing number of electrical vehicles, plug-in recharging stations are 

usually set up with parking spaces. For increasing mobility with existing parking facilities, the 

reserved parking spaces for car-sharing (such as Zipcar and peer-to-peer car-sharing), ridesharing 

(such as Uber and Lyft with multiple customers), park and rides, and car-pooling. For example, 

carshare-only parking spaces were established at ten metro stations in Los Angeles in 2015, CA. 

However, there lacks a quantitative tool for evaluating the planning of parking spaces of specific 

types, therefore the impact and technical reasoning for designing such specific spots are not 

clear. 
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In view of the efficiency and safety issues, the existing parking simulation system studies 

contribute to (a) evaluating parking guidance system (Li, 2016) and smart parking system 

(Chaniotakis and Pel, 2015), (b) aiding design (Yue and Young, 2005), and (c) demand 

management (Waerden, 2003, 2005).  

However, the previous microscopic modeling frameworks didn’t consider the emerging 

requirements of parking facility design, management, evaluation: (a) park space sharing, (b) 

serving specific types of vehicles to promote green traffic, such as plug-in electrical vehicle 

recharging devices and reserved parking spaces for hybrid vehicles, (c) multi-purpose parking 

space usage for promoting shared mobility, such as car sharing and carpooling, (d) ancillary 

services, such as car washing, (e) mixed-use parking for cars, motorcycles and bikes, (f) multi-

design park-and-ride facility, and (g) automated parking facility. 

1.2 Research objective 

The primary objective of this dissertation is to develop an overall operational framework 

embedded with a set of integrated simulation models for designing, maintaining, operating in 

urban parking systems. This research is expected to assist responsible agencies, planners and 

operators in generating effective simulation models and experiments under various scenarios. 

More specifically, this research contributes to: 

1. Developing agent-based representation of the spatial and temporal interactions between 

components in parking systems due to time-varying demands; 

2. Developing a comprehensive simulation model to capture the interactions and dynamics 

of users and environments within parking systems; 

3. Proposing a methodology for data collection, processing in parking systems that can 
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extract the temporal and spatial distribution of user behavior within urban parking 

systems; 

4. Reporting quantitative measures to support decisions in designing, maintaining, operating 

parking systems within parking facilities; 

5. Illustrating the proposed methodology through a real-world case study to help planners 

and operators to best apply the proposed framework. 

1.3 Thesis outline 

This chapter illustrates the research framework of the proposal and the interrelations between its 

principal components.  
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Figure 1-1. The proposed research framework 

To address the critical issues listed in Chapter 1, this proposal has divided the research 

efforts into the following primary tasks: 

Task 1: Perform a comprehensive review of relevant research for parking behaviors 

and simulation system design.  

Task 2: Propose an agent-based simulation framework for the parking logic 

programming model.  

Task 3: Present a local binomial choice model to capture the cruising and searching 

parking behavior.  
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Task 4: Code the simulation engine in Java programming language.  

Task 5: Develop a Software as a Service (SaaS) and a web-based Graphic User 

Interface (GUI) to visualize the movement of drivers and pedestrians within a 

parking lot. 

Task 6: Real-world data collection and calibration, then possibly modify the simulation 

model. 

Task 7: Perform result analysis and draw a conclusion. 

Base on the proposed research objective, the chapters of this dissertation are organized as 

follows: 

(a) Chapter 1 Introduction outlines the existing problems in the state of practice and 

motivation of this research with respects to challenging parking demand, concerning 

efficiency and safety issues, and emerging new types of reserved parking spaces. 

(b) Chapter 2 Literature review presents a comprehensive review of relevant research, 

including parking behavior models, parking facilities design, and parking system 

simulation. 

(c) Chapter 3 Parking system simulation framework illustrates the modeling framework 

of the proposed research including: (1) Process for evaluation and design refinement, (2) 

Parking system simulator design, (3) Simulation output and measure of effectiveness, (4) 

System integration, and (5) Software architecture.  

Section 3.2 shows the proposed parking system model consists of simulations of 

multi-agent choice model, randomness, system dynamics, processes, and rules. Section 

3.5 shows a simulation engine structure and a Software as a Service design and 

implementation. 
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(d) Chapter 4 A Microscopic agent-based parking system simulator illustrates details 

about elements, data collection and processing procedures of parking systems and their 

interactions: (1) testbed, (2) data collection, (3) descriptive analysis, (4) demand 

distribution calibration and experiments, (5) predicting dynamic demand, (6) 

mathematical notation, (7) modeling traffic dynamics, and (8) modeling entity behavior.  

(e) Chapter 5 System application illustrates the system application of the proposed 

simulator. The structure consists of charting and visualization and simulation-aided 

design.  

Section 5.2 shows the following addressed design concerns smart check-in device, 

flexible pricing policy, special parking spot, and reverse parking policy. 

(f) Chapter 6 Summary and conclusion draws research conclusion and indicates expected 

future work. 
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2  Literature Review 

2.1 Parking facility design, evaluation, and management 

In the conventional methodology, parking lot design follows the infrastructure guideline and 

manuals (Weant, 1987; Wekerle and Whitzman, 1995; Chrest et al., 2012; Yang, 2003; Shao et 

al., 2016). The manuals of parking transportation design are nationally applicable and suitable, 

while most of the guidelines are localized in a city domain (e.g. City of Philadelphia, PA, 2010; 

City of Solana Beach, CA, 2012) or in more limited areas. In developing countries, 

transportation engineers investigate the proper methods to provide enough parking resources. In 

state-of-practice, mature parking programs across the US are moving to a new phase aiming to 

improve their communities and stimulate economic development opportunities (CCDC, 2012). 

Table 2-1 shows some cases of various parking design approaches in the US.  

In the literature, Prevost (1985) modeled the on-street parking transportation. Iranpour 

and Tung (1989) proposed the parking lot optimal design method to maximize efficiency. In the 

modern parking planning and management, the researchers revisit the parking design theory and 

paradigm to expand the role of the parking storage. To address the environmental concern, 

Rushton (2001) investigated low-impact parking lot design to reduce runoff and pollutant loads. 

Ben-Joseph (2012) suggested to rethinking the parking lot design and culture and showed 

parking lots can be aesthetically pleasing, environmentally and architecturally responsible, and 

used for something other than car storage. Jin (2003) investigates the practices of parking lot 

planning in Guangzhou, China. Barone (2013) showed possible applications of intelligent 

parking management system in smart cities. In the US, the parking spaces are oversupplied due 

to the traffic pattern and the car ownership. Abdelfatah and Taha (2014) proposed a 

mathematical model to maximize the capacity of the parking lot with given land use. However, 
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the existing studies do not involve the quantitative simulation study of the parking design and 

management. In the state of practice, the animation of parking facility simulation is used as an 

intuitive representation for design aiding but not a quantitative tool for performance evaluation. 

There lacks a comprehensive tool for aiding design and operational strategies, especially for the 

mixed-use parking facilities (see Table 2-1).  

Table 2-1 Advanced design approaches for mixed-use parking facilities 

Parking design approach Example 

Book-ended with other uses 
Spring Street Garage,  

City of Greenville, SC 

Wrapped with other uses 
15th & Pearl Street Garage,  

City of Boulder, CO 

Stacked between other uses 
Wynkoop Garage,  

LoDo District Downtown, Denver, CO 

Below with other uses 
Terrance at Riverplace,  

City of Greenville, SC 

 

For parking facility layout design, Computer-Aided Design (CAD) tools such as 

AutoCAD and ParkCAD are widely used in the state of practice. There exist a rich set of 

simulators for traffic simulation and animation. However, there’s no dedicated commercial 

software for the parking facility analysis purpose. 

AutoCAD vehicle tracking module is a full function parking facility layout design 

software, vehicle movement animation for testing potential obstacles. The adding a single-sided 

group of spots, adding a two-sided group of spots, adding aisles along with a line, adding a single 

aisle, connecting two aisles, breaking two aisles, editing an aisle, editing a single spot, editing 

parking island. 

ParkCAD is a professional AutoCAD plugin developed by Transoft Solutions for parking 

facility layout design. It supports adding a two-sided group of spots, adding angled spots, adding 
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strip curb, and testing rich standard compliance. 

2.2 Modeling parking behaviors 

Designing efficient and safety parking systems is a vital transportation research topic. 

Researchers are dedicated to modeling parking-related behaviors.  

Cruising around the destination to 

find a parking space

choosing off-street parking

Vehicle orientation

On-/off-street 

parking choice

Space choice Route/strip choice

Spacious, close to exits, 

avoiding corner,... 

Head-in/head-out

if the travelor chooses by car

Mode choice Route choice

Macroscopic choices

Microscopic choices
 

Figure 2-1. Travelers’ parking choice process 

Figure 2-1 shows that parking-related behaviors can be modeled as a consequent 

multiple-stage choice process, including on-/off-street parking choice, parking lot choice, 

parking space choice, vehicle orientation choice (i.e. head-in or rear-in), route choice within the 

parking lot. These choices can be classified into two categories: (a) macroscopic choices (b) 

microscopic choices. Figure 2-1 shows the factors investigated in the literature. Researchers 

found drivers prefer indoor parking spaces closer to the destination, less walking, equipped with 

an intelligent guidance system, and easier to find a space. Table 2-2 summarizes the attributes 

considered in parking lot choice modeling. It is surprising however reasonable that the 

macroscopic choices are based on microscopic factors, such as walking distance, intelligent 

guidance system, chance to find a space. These findings drew attention to microscopic 
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researches. 

For determining the stochasticity of the parking space choice behavior, Cassady and 

Kobz (1998) presented probabilistic strategies for parking space selecting behavior, which shows 

the preference of parking spaces in parking lots. Arnott and Rowse (1999) found complex 

nonlinearity in the parking space searching behavior. 
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Table 2-2. Attributes considered in parking lot choice modeling 

Reference Fee 
Walk 

Distance 

Access 

Time 

Search 

Time 
Duration 

Driver 

Age 

Lot 

Type 
Fine Purpose 

Parking 

Guidance 

System 

Occupancy 

The 

chance to 

find a 

space 

Gillen (1978) √ √ √ √  √       

Kanafani (1983) √    √        

Hunt (1988) √ √ √ √   √      

Axhausen and 

Polak (1991) 
√ √ √ √    √     

Hunt and Teply 

(1993) 
√ √ √ √   √      

Lambe (1996) √ √ √          

Tompson and 

Richardson 

(1998) 

√ √ √ √ √   √     

Dell’Orco et al. 

(2003) 
√ √ √ √     √    

Bonsall and 

Palmer (2004) 
√ √ √       √   

Ruisong et al. 

(2009) 
√ √    √     √  

Caicedo (2010)  √  √         

Van der 

Waerden (2012) 
√ √ √ √ √ √ √  √ √ √ √ 

Shaaban and 

Pande (2016) 
 √     √   √  √ 

 



 

15 

 

2.3 Parking simulation systems 

Simulation (or Monte Carlo Method) is an approximation of the real world. Due to sufficient 

complexity of the stochastic system, it may be the only feasible way to perform quantitative 

assessment numerically. The simulation generates possible behaviors from the simulation model 

and collects statistics from these records to estimate the performance measures. 

Since the parking process in parking systems cannot be simply described by probability 

distributions, simulation methodology is used to describe these complicated behaviors. Parking 

simulation is the imitation of the locations and entities in parking lots to evaluate and improve 

the performance of parking lots.  

With regards to the considered scope of choices, parking simulation can be macroscopic 

or microscopic: (a) macroscopic simulation visualizes parking lot choice, route choice to parking 

lot or road-side parking space to analyze the competitive relations between parking facilities; and 

(b) microscopic simulation focuses on route choice, parking space choice, vehicle orientation 

(head-in/rear-in) choice in the parking lot, pedestrian behavior and so on.  

In microscopic behavior modeling, drivers show preferences for certain spaces in parking 

lots. The website Wikihow shows experienced drivers would like to park in spaces without other 

cars parked aside, and experienced drivers prefer rear-in vehicle orientation because this 

orientation is easy for leaving (Wikihow contributors, 2018). There lacks study on evaluating 

how such preferences impact designing, operating, and maintaining parking lots. 

2.3.1 Macroscopic parking simulation models 

Macroscopic simulation describes parking lot choice, route choice to the parking lot or 

road-side parking space, many scholars studied parking lot choice. Based on parking behavior 
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studies, researchers proposed various kinds of the simulator to capture these behaviors and 

evaluate the impact on the performance of the planned parking lot deployment. 

Benenson et al. (2008) proposed an agent-based model to evaluate search time, walking 

distance, and parking costs over different driver group with self-organizing parking agents. The 

simulation system PARKAGENT by Benenson et al. (2008) captures availability for both on-

street and off-street parking spaces but cannot describe the microscopic movements and 

behaviors with parking systems. Levy et al. (2013) proposed an analytical model called 

PARKANALYST alongside the PARKAGENT to analyze the impact of occupancy rate and 

demand-to-supply ratio on cruising for parking. Levy et al. (2015) applied the PARKAGENT to 

estimate the effectiveness of planned parking facilities and showed the potential benefits of using 

an intelligent parking guidance system. PARKAGENT was a parking searching tool for 

estimating the effectiveness of planned parking facilities for different development scenarios in 

the area and assessing electronic signage system that directs drivers to available parking 

facilities.  

Spitaels et al. (2009) proposed a macroscopic parking behavior simulation system for 

assessing the parking management strategies to support sustainable parking policymaking. 

SYSTAPARK captures aggregated cruising flow of cars, which can investigate the externalities 

of cars cruising for on-street spaces around the parking destinations. 

Dieussaert et al. (2009) developed an agent-based model for simulating parking search, 

where the movement of the car when searching for a parking place is determined by a search 

strategy and translated into cellular automata movements.  

Obdeijin (2011) developed an S-Paramics-based tool to simulate parking guidance 
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systems and applied the tool to analyze the performance of road-side variable message board for 

parking vacancy.  

Waraich and Axhausen (2012) and Waraich et al. (2012) presented an agent-based 

parking lot choice model to illustrate the overall simulation can react to spatial differences in 

parking demand and supply. Horni et al. (2013) reported the development of their model using 

cellular automaton (CA) approach integrating MATSIM and tested the software in a real-world 

scenario for the town center of Zürich. 

Guo et al. (2013) developed an agent-based transportation model of a university campus, 

primarily focusing on vehicle-related travel and the associated parking search progress and 

integrated the proposed model with TRANSIMS and MOVE2010 emissions model. Beheshti 

(2015) presented a hybrid approach for combining agent-based and stochastic simulations to 

forecast transportation patterns and parking lot utilization on a large university campus.  

The macroscopic simulation considered the traffic flow redistribution and the impact of 

on-street cruising on the traffic congestion and pollution, however, failed to capture microscopic 

driver behaviors, maneuvers, and vehicle movements within parking facilities, which have an 

essential impact on the macroscopic behavior.  

2.3.2 Microscopic parking simulation models 

Macroscopic behavior researches only consider parking lot choice and ignore parking 

behavior modeling within the parking lot. For better designing, managing, and maintaining the 

parking lot, microscopic behaviors are investigated to capture the choices within the lot such as 

how motorists select a parking space and how cars will move across the parking lot. For this 
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research topic, scholars have proposed many models to illustrate the dynamics of these 

behaviors. 

For off-street parking simulation, Young (1986), Young and Thompson (1987a, 1987b) 

developed a rule-based parking model to evaluate the means of quantifying measures of 

performance. Yue and Young (1996) proposed a second version of their microscopic simulation 

system, which provided a quantitative measurement of performance of the existing layout 

designs such as parking lot utilization, average travel time and degree of conflicts. The set of 

attributes considered in their simulation system include travel time to the parking place, walking 

time form the parking place to the desired destination, ease of parking, ease of exit from 

vehicles, and available shade. Young (2000) distinguishes five types of parking models, namely 

parking-design models, parking-allocation models, parking-search models (both in parking lots 

and in a street network), parking-choice models, and parking-interaction models. 

However, only simple deterministic models are used to describe the behavior in these 

studies which has deficiencies as follows: (a) failing to detail cars’ and pedestrians’ movements, 

and influence of obstacles; (b) ignoring pedestrians’ interaction; (c) lacking to consider the 

vision of drivers. 

For modeling off-street parking space choice behavior, Thompson and Richardson (1998) 

proposed a conceptual framework with respect to the parking behavior in parking lot, which took 

the state of the parking system (e.g. number of vacant space), individual parking spaces (e.g. the 

distance from a parking space to the entrance, to the pedestrian exit, and to the payment device), 

and the characteristic of the motorist (e.g. gender, age, type of car, car occupancy). Based on this 

framework, van der Waerden et al. (2003) proposed a nested logit model for space choice 

behavior in the parking lot and calibrated their model with real-world data. The results show a 
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substantial degree of heterogeneity in parking choice behavior. Based on their model, Vo et al. 

(2016) developed a multi-agent-based simulation tool to demonstrate its capability of studying 

driver movements across parking lots where vehicle travel time and parking occupancy 

indicators were integrated to investigate the efficiency of the parking. Zhao et al. (2017) 

followed the Vo’s study and proposed a framework for optimizing parking management based 

on microscopic simulation systems. 

However, these studies just focus on ad hoc parking behavior model and fail to  

(a) describe queuing at entrances and exits which impact the real-time capacity;  

(b) evaluate the parking guidance system.  

For the on-street parking facilities, Ukpong et al. (2007) developed a traffic model so as 

to display the travel time of traversing vehicles with and without the presence of on-street 

parking in VISSIM-ENVPRO software, which carried out a comparison in emission levels 

between specified road networks. 

To evaluate the parking guidance systems, Li (2014) used real-world data to evaluate the 

performance for the parking guidance information system. However, the Li’s model only applied 

to a tree-like in-lot network and would fail to incorporate networks with general topological 

structure. Yuan and Liu (2014) implemented Vehicle Generation Model and Car-Following 

Model, vehicle parking behavior, such as individual vehicles parking, and leaving principle and 

multiple parking in VISSIM, the commercial microscopic simulation environment.  

Table 2-3 summarizes the design criteria of the parking lot simulation systems in the literature. 

The existing studies have failed in the following key concerns: (a) agent-based model captures 
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complex behaviors, (b) machining learning techniques driver behavior data mining, (c) general 

modeling templates since existing studies are ad hoc, hard for calibration, and (d) a 

comprehensive modeling and testing environment. 

 



 

 

 

Table 2-3. Design criteria of the parking lot simulation systems in the literature 

Reference 
Scope Detail level 

Parking 

guidance system 
Pedestrian 

Micro Macro On-street Off-street 

Benenson et al. (2008) √  √ √   

Levy et al. (2013) √  √    

Levy et al. (2015) √  √  √  

Spitaels et al. (2009)  √ √    

Obdeijin (2011)  √ √  √  

Waraich et al. (2012)       

Waraich and Axhausen (2012)       

Horni et al. (2013)       

Guo et al. (2013)       

Beheshti (2015)       

Young (1986) √   √   

Young and Thompson (1987a, 

1987b) 
√   √   

Young and Taylor (1991) √ √ √ √   

Yue and Young (1996) √   √  √ 

Young (2000) √   √   

Yang and Weng (2005) √ √ √ √   

van der Waerden et al. (1997)       

van der Waerden et al. (2003) √   √   

Vo et al. (2016) √   √   

Ukpong et al. (2007)       

Li (2014) √   √   

Yuan and Liu (2014) √   √   

2
1
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In view of the deficiencies of the previous microscopic systems, existing studies are case-

specific and hard for calibration. The proposed simulation system includes agent-based model 

captures complex pedestrian behavior, driver behavior data mining with modular machining 

learning techniques, and provides a comprehensive modeling and testing environment. 

2.3.3 Existing commercial and open-source parking simulation systems 

In VISSIM, the parking spot choice is captured by a fixed logit model involving parking 

cost (from zone property parking fee), attractiveness, direct distance between parking lot and the 

destination zone’s center of gravity, general cost of best route from current vehicle position, 

availability of free parking spaces, index of the vehicle type, index of the decision situation 

(departure, routing decision). VISSIM have great animation rendering module in both 2-

dimensional and 3-dimensional environments for transportation and could be a visualizer of the 

results of the proposed model.  

Simulation of Urban Mobility (SUMO, Krajzewicz, et al., 2012) is a free and open traffic 

simulation suite which is designed by Institution of Transportation System, German Aerospace 

Center and is available since 2001. The crosses of parking spot links and aisle links are modeled 

as intersections.  

Figure 2-2 shows a sample surface parking lot modeling in SUMO. Each spot and cross 

are modeled as intersections. Such analog would complicate the problem and the continuous 

traffic simulation would not implement the specific rules and traffic environment in the parking 

facilities. The visualization of such intersection is confusing and messy.  
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Figure 2-2 A screenshot of the parking lot layout modeling in SUMO 

For behavior process modeling, there exist 18 commercial discrete event simulators and 

11 open-source ones. As a typical discrete event simulator, ProModel, the commercial industrial 

simulation system, also allows modeling of continuous processes which is developed by 

ProModel, Inc. However, ProModel is not designed for traffic simulation. The en route 

movement doesn’t have a psychical model.  

A pilot study is conducted on modeling a campus parking lot on ProModel. Figure 2-3 

shows the layout of the studied parking facility built in ProModel.  
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Figure 2-3 A sample of the parking lot layout modeling in ProModel 

In ProModel, the spots and entrances are modeled as locations and the aisles are modeled 

as paths, vehicles are modeled as resources, drivers are modeled as entities, and the arrival and 

exiting patterns are modeled with the empirical distributed process. 

In view of the limitations of the existing traffic simulators, the parking system has unique 

traffics dynamics and user behavior pattern which should be modeled and implemented in the 

self-programmed simulation system. 
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3 A parking system simulation framework 

3.1 Process for evaluation and design refinement 

The parking system evaluation and design refinement follow the procedure: 

(a) Overview and planning a practical objective 

(b) Collecting and preprocessing data 

(c) Evaluating performance measures 

(d) Investigating the relationship between these measures and operation/maintaining factors 

(e) Drawing the conclusion and reporting 

In the state-of-practice parking infrastructure design and management, the simulation does 

not have a critical role in extracting but display animations and renderings. The proposed off-

street parking simulation system would provide a more quantitative tool to aid the designer and 

the manager. With the proposed simulator, the design and the management of parking facilities 

involve the following trial-and-error procedure: (a) establishing a simulation model, (b) 

evaluating the potential outcomes, (c) changing parameters and settings, (d) comparison to the 

former plan, and (f) making the decision. 

3.2 Parking system simulator design 

Modeling the parking system simulator incorporates the common features with the traffic 

simulators such as multiagent-based simulation, random variables and system dynamics, and the 

specific features in contrast to the traffic simulators such as modeling processes and rules. This 

section elaborates the key features of the parking system simulator modeling and construction. 
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3.2.1 Simulation of multi-agent 

The simulation is one of the best strategic and tactical design-support technologies for the 

complex, dynamic and stochastic system (Siebers and Aickelin, 2008). The informative 

simulation modeling depends on the proper design of abstraction and simplification.  

Based on the event organization, the simulation methods can be classified into two 

categories, the continuous and the discrete. The continuous-state simulation is applicable to 

systems with the continuous state space and typically differential equations, such as physical 

motion equations.  

Based on the behavior organization, the simulation modeling in Operational Research can 

be classified into three categories: Discrete Event Simulation (DES), System Dynamics (SD), 

and Agent-Based Simulation (ABS). DES and ABS usually describe the decision processes at the 

microscopic level.  

The discrete-state event-driven simulation models the systems with finite discrete states 

and events. Typical DES systems model deterministic resources without performance variation 

and pro-active behavior. Technically, the DES method maintains a list of events, by adding new 

events and eliminating the finished events for a given horizon of time.  

There exist two mechanisms of DES capturing the processes of the simulation system: (a) 

fixed-time-stamp advance (b) variable-time-stamp advance (Davidsson, 2000). Table 3-1 shows 

the advantages and disadvantages of the two mechanisms. Since this research focuses on non-

differential finite-state systems, the parking system is handled by the fixed-time-stamp advance 

mechanism in this study. 

Table 3-1 Comparison of procedures for executing DES models 
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Fixed-time-stamp advance (time 

driven) 

Variable-time-stamp advance 

(event driven) 

Advantages 

Good for all models where most 

events happen at fixed 

increments of time (e.g., gate-

level simulations). 

Has the advantage that no 

“future event list” needs to be 

maintained. 

Periods of inactivity are skipped 

over, models with a bursty 

occurrence of events are not 

inefficient. 

Disadvantages 

Can be inefficient if events occur 

in a bursty manner, relative to 

time-step used. 

If event times are general (have 

memory) then “future event list” is 

needed. 

 

This study leverages the ABS framework in view of the advantages over the DES. (a) In 

comparison to the DES method, the agent-based simulation initially models agents as a cellular 

automaton, which is able to model systems with heterogeneous, autonomous and pro-active 

entities (Siebers, 2007). The parking system fits well in the framework in agent-based simulation 

due to the nature of nonlinearity and heterogeneousness. In this study, the entities are modeled 

autonomously with multiple goals of a process and intermediate goals to justify the process of 

the method. For example, the vehicle is modeled with a state transition process without external 

stimuli from the simulation environment. (b) ABS supports distributed computation naturally. 

Since each agent is typically implemented separately, the different agents are able to be 

encapsulated to a process or thread for better performance and scalability. This study takes 

advantages of this feature to implement concurrent computation with the Akka framework. (c) 

ABS has the capability of incorporating various modeling paradigms. In this study, the logic 

programming is used to model the behavior of agents, which is diverged from Situated automata 

which is originally proposed by Kaelbing (1986). The logic programming produces an inside-out 

technique to manipulate the attributes of the agents to provide a proof-of-concept prototype 

before creating a full-scale experiment. For example, in logic programming the state of the 

vehicle 𝐶1 is accessed via the query 𝑠𝑡𝑎𝑡𝑒(𝐶1) while in the Objective Oriented Programming 
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(OOP) the state is accessed via the attributes in the vehicle class.  

For the multi-agents design of the proposed simulation, there exist two main kinds of 

agents: (a) entity, the movable agents with complex pro-active behaviors; (b) location, the 

unmovable agents with passive behaviors. The entity may occupy the location. In the industrial 

simulation system, ProModel (Harrel et al., 2004), the entity and the location are abstract models 

of general industrial processes. In the agent-based simulator NetLogo (Tisue and Wilensky, 

2004), the entity and the location are modeled as the turtle and the patch. 

3.2.2 Simulation of randomness 

The Monte Carlo Method (MCM) is based on the combination of stochastic processes. 

The randomness is a critical factor for the universal simulation system. The proposed parking 

simulation system is designed to generate random variables from parametric distributions (e.g. 

normal, exponential distributions) and the nonparametric methods (e.g. histogram, kernel density 

estimation).  

The proposed system facilitates the end-to-end calibration and sampling of the 

hypothetical distributions. To calibrate the random variables generators, the parametric 

distributions and the nonparametric distributions should be identified. For the parametric 

method, the probability distribution is identified by χ2(chi-square) test for the hypnosis that the 

observations are from a distribution of the parameters. For the non-parametric method, the 

probability distribution is captured by the model-free data-driven methods, such as empirical 

distribution and kernel density estimation. When planning new parking facilities, the field survey 

data are not available. The data from neighboring facilities of the similar type or hypothetical 

probability distributions can be used.  
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In comparison to the limited stochastic distribution of the previous studies, the 

contribution is that the proposed set of the probability distribution is rich enough to capture the 

variability of stochastic variables in the parking system. In addition, the proposed framework is 

capable to use extensions for newly developed stochastic methods. 

3.2.3 Simulation of system dynamics 

For a general parking simulation modeling and system design, there exist the following 

phenomena: 

a) Blowing-up 

In the blowing-up system, entities arrive faster than they depart without end and the 

servers cannot serve sufficiently, and the entities do not “appear” or “disappear” when in 

the system. In the steady system, the expected time an entity spends in the system, the 

expected number of entities in the system and the expected inter-arrival time of entities 

into system follow the Little’s Law. The Little’s Laws tells us that the average number of 

entities in the system equals the effective arrival rate times the average time that an entity 

spends in the system. For the parking system, the queuing of vehicles getting in and out 

the parking lot in a surged demand, the quantitative metrics are blowing-up and cannot 

reveal the true performance. 

b) Parallel and series 

The serial servers process entities one-by-one. Any entity cannot skip the step and go to 

the next step. The parallel servers can provide equivalent service redundantly. A 

compound system may have parallel parts and serial parts. For example, in the parking 

system, the parking lot entrances, the parking spots are parallel, respectively. 

c) Blocking 
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In the serial servers, one in-process entity may occupy a server and block the waiting 

others from being processed. For example, the aisles in one strip are serial since vehicles 

should be blocked by the front entities. 

d) Variability 

The simulation system mimics the real-world stochastic situations and the system is 

subject to some level of variability. For example, the parking duration for each vehicle 

varies randomly, which may affect the parking policy and management. 

e) Buffer 

Buffers are spaces between locations for temporary storing waiting for entities to relieve 

blocking. In the parking system, the double-lane aisles provide buffers for the opposite 

vehicles while the single-lane aisles have limited space and shall be one-way.  

f) Aggregation 

Two entities may combine into one entity and show the aggregated behavior. For 

example, when the pedestrian gets on the vehicle, the two entities (the pedestrian and the 

vehicle) are aggregated to one vehicle.  

g) Warming-up 

When the simulation starts, the system is not empty. A preparing stage of simulation is 

used to restore the state of the system. For example, at the starting time, the parking lot 

should be initialized to replicate the utilization of parking spots. In the warming-up, the 

measures are not meaningful due to the missing information of the existing entities. 

3.2.4 Simulation of processes 

One of the key tasks for building the parking simulation system is to identify the general 

processes in the parking systems. According to the observation of the real-world parking 
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systems, the parking simulation system has two critical differences from the road traffic 

simulation system. First, the entities in the road traffic have only one process that is traveling 

from the origin to the destination via the transportation network, while the parking system has 

structural multiple processes. 

 

Figure 3-1 A sample parking process 

Figure 3-1 illustrates an example of the processes in detail, where the red solid line is for 

the vehicle trajectory and the orange dash line is for the pedestrian trajectory. Figure 3-1 shows 

the parking procedure at least involves the following steps: (a) entering the garage, queuing, and 

paying the parking fee or checking the seasonal permit at the entrance; (b) cruising and looking 

for a parking space; (c) during the cruising process, yielding to other vehicles or pedestrians; (d) 

completing the parking maneuver into the spot, where the position could be rear-in or head-in; 

(e) the passenger(s) would get off the vehicle and walk to the pedestrian exit; (f) preparing to 

unpark after the passengers are back to the vehicle and completing the maneuver if there exists 

an acceptable gap; (g) cruising and driving to the exit of the lot; and (h) leaving the parking lot. 

Discrete event parking simulation models are potentially the most realistic replication of 

parking systems because such models can capture the decision-making and interactions of the 

system components with other elements of the parking system in small time intervals (Young 
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2000, 2001). Note that the DES is capable to model processes for replicating the entity behaviors 

in the parking system. 

As a pioneering work, Young (1990) presented a comprehensive flow chart of model 

development process which included (a) the determination of the problem to be addressed, (b) 

the clarification of objectives to be achieved, (c) the criteria to be used to measure the 

effectiveness of achieving these objectives, (d) the methods to collect data and calibrate, verify, 

and validate parameters with real-world situations, and (e) the initial applications of the model. 

This study follows this methodology of simulation modeling and proposes unique traffic 

dynamics for off-street parking inner network. 

Young and Weng (2005) reviewed and summarized discrete event parking simulation 

models of on-street parking systems. Their models replicated the parking and traffic in a general 

parking simulation framework for traffic dynamics, drivers’ decision-making processes, and 

outcomes. The traffic dynamics could be described with:(a) speed, acceleration, and braking, (b) 

car-following, (c) lane changing, (d) overtaking, (e) gaps and gap acceptance in traffic, (f) 

signalized intersection behavior, (g) parking and unparking procedures. The decision-making 

processes could be illustrated with (a) interaction between road users, (b) route choice, (c) total 

trip consideration, (d) driver risk. The outcomes may involve (a) energy consumption, (b) 

emissions, (c) noise levels, (d) community impacts. In comparison to their on-street parking 

system, the off-street parking system simplifies the speed, acceleration, and braking, car-

following, lane changing and overtaking since (a) the speed limit with the parking facilities is 

usually set to10MPH or 15MPH and (b) the lane changing and overtaking are not applicable for 

a compacted inner network with one lane for one movement direction in the parking facility. 

The flowchart presented by Yue and Young (1997) showed a fundamental procedure for 
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the microscopic simulation of parking facilities. The procedure involves entities movement, 

maneuvers, and unparking decisions processes parallelly, which successfully capture the traffic 

features with the parking lot. However, fails to incorporate the decision of drivers, such as 

parking spot choice and parking route choice. 

In view of such deficiency, Thompson and Richardson (1998) proposed a framework 

incorporating parking space choice behavior modeling. This framework illustrated a principle 

process of the off-street parking behavior which was extended by researchers of driver behaviors 

in the off-street parking facilities.  

Vo et al. (2016) presented a preliminary case study for parking systems with an agent-

based modeling and simulation tool, NetLogo (Tisue and Wilensky, 2004). However, their work 

only considered parking space choice behavior for a special case, which would not incorporate 

various behavior patterns. Case-specific behavior modeling would have deficiencies in 

considering extensive behavior factors and evaluating the parking guidance system. 

Li (2016) proposed a simulation model to capture the off-street parking spot choice 

behavior with the multinomial logit model. Li’s model was calibrated using real-world data are 

used for evaluating the performance of parking guidance system. An agent-based simulation 

model is used for implementing in Repast S environment. Li’s model captured both the parking 

spot choice and the entity movement. However, using a case-specific parking choice model, 

drivers should make the strip choice and then the spot choice in Li’s model. This deficiency 

limits the application in parking lots with none tree-like topology. And it’s difficult to fully 

evaluate the model without more technical details about the traffic model and visualization.  

Vo et al. (2016) and Li (2016) contributed to agent-based parking simulation models, 
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however, proposed case-specific and non-scalable models. In view of these deficiencies, the 

proposed off-street parking simulation model captures both choices, traffic movements in the 

parking lot with a general topology. The proposed simulation model captures the behavior 

processes of entities with a state machine. The entities have states with choices and states 

without choices.  

Phase I

Phase III: Vehicle

Start

Stop?

Tick

Phase II: Pedestrian

Moving vehicles with no conflicts: update vehicles positions

Initialization

Pedestrians: update pedestrians positions

Parked vehicles to leave: exam the chance to leave 

Vehicles at intersection in same level: first come, first go

Vehicles looking for a spot: starting in-spot maneuver

N

Y

Parking vehicles: complete parking maneuver 

New vehicle arrival

Gate 

entrance 

blocked?

Gate exit 

blocked?

Y

Y

N

N

Pedestrians getting on the vehicles: erasing pedestrians

Pedestrians going into exits: erase pedestrians

Pedestrians getting off the vehicles: create new pedestrians

Pedestrians returning from exits: put back pedestrians

The vehicle exits

Vehicles unparking: complete leaving-spot maneuver

Vehicles at intersection in lower priority: stop

Vehicles at intersection in higher priority: go ahead

End

 

Figure 3-2 The proposed simulation procedure for off-street parking facilities 

Figure 3-2 shows the parking procedure includes three phases: (I) arrival and departure 

(II) pedestrian behavior (III) vehicle behavior. In Phase I, new vehicles are created if the current 
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simulation time reaches the new arrival time. The pedestrian Phase II has precedence over the 

vehicle Phase III because the vehicles should yield to pedestrians in parking facilities. The 

proposed procedure is easy to parallel for implementing concurrent computing. 

The contribution includes that the proposed system presents the extended process 

modeling integrating the pedestrians’ behaviors and queuing at the entrances and exits which are 

not covered by the previous studies. 

3.2.5 Simulation of rules 

The second critical difference from the road traffic is that the parking simulation model 

solves a rule-based logic problem since many interactivities and blocking checkpoints make 

event triggering mechanism overcomplicated to handle. The entity movement and state transition 

subject to logic constraints which is not explicitly modeled in the road traffic simulation systems.  

For the parking system simulation, the traffic dynamics involves how to find the feasible 

next state of the system subject to a rule-based moving logic. A logic-based approach is required 

to stack up a scalable set of rules. In the literature, the logic-based approaches are studied by two 

communities: (a) operations research and (b) artificial intelligence.  

A logic-based approach to operations research was first discussed by Hammer and 

Rudeanu (1968) and Granot and Hanmmer (1971). The methods are classified into three 

categories: (a) mixed logic linear programming (Jeroslow 1987, 1989; Hooker et al., 1994, 1999; 

Raman and Grossmann, 1993, 1994a, 1994b, 1994); (b) disjunctive programming (Balas, 1975, 

1977, 1979); and (c) combining logic and linear programming (KcAloon and Tretko, 1995; 

Tretkoff, 1996; Barth, 1995).  

From the aspect of the artificial intelligence, the logic programming is introduced by 
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Colmerauer (1973, 1986) and Kowalski (1974), allow one to formulate a problem in a subset of 

first-order logic or Horn clause logic. The logic programming language, Prolog (Clocksin and 

Mellish, 2012) has two major updates to facilitate the constraint programming: III the advent of 

constraint programming (Colmerauer, 1990) and IV the approximation of non-linear constraints 

(Colmerauer, 1996; Colmerauer et al., 2010). 

In a compact traffic infrastructure, deadlocks would occur when two vehicles are moving 

in the opposite direction on a one-lane aisle. The deadlocks would cause severe congestion in the 

parking garage. Thus, the parking facilities are designed carefully to avoid the potential 

deadlocks. However, the parking simulation system does not avoid the deadlock but find a 

possible recovery plan to resolve the deadlock. The deadlock recovery problem varies from the 

traditional game, Huarongdao or Klotski to the modern machine scheduling models.  

To solve this hard problem, a Prolog-like Domain Specific Language (DSL) called 

PICAT was proposed by Zhou and Kjellerstrand (2014), Zhou (2016) and Zhou et al. (2017). 

PICAT provides a language level methodology to address the deadlock issue. Inspired by Zhou’s 

idea, this study also proposes a first-order logic rule system for the parking simulation. The 

specific rules are modeled for the entity behaviors and traffic dynamics. 

3.3 Simulation output and measures of effectiveness 

The simulation system is designed to output historical records and quantitative measures 

for aiding design, management, and maintenance. Note that the applicability and deliverability of 

these outputs are subject to the quality and quantity of data, and the proposed system supports to 

add more suggestive outputs. 
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3.3.1 Measures of efficiency 

In the proposed system, the following measures of efficiency are incorporated. 

• The average time a vehicle moves from the entrance to a parking space in the parking lot 

for measuring the searching time of the vehicles. 

𝐴𝑣𝑔𝑉𝑒ℎ𝐴𝑟𝑟 =
∑ 𝑣𝑒ℎ𝑡𝑜𝑒𝑥𝑖𝑡𝑣𝑣∈𝑉

|𝑉|
     (1) 

where 𝑣𝑒ℎ𝑡𝑜𝑒𝑥𝑖𝑡𝑣 denotes the searching time of the vehicle 𝑣. 

• The average time a pedestrian moves from the vehicle to the exit for pedestrians 

𝐴𝑣𝑔𝑃𝑒𝑑𝐸𝑥𝑡 =
∑ 𝑣𝑒ℎ𝑡𝑜𝑒𝑥𝑖𝑡𝑝𝑝∈𝑃

|𝑃|
     (2) 

where 𝑣𝑒ℎ𝑡𝑜𝑒𝑥𝑖𝑡𝑝 is the time pedestrian 𝑝 in set of pedestrians P moves from the vehicle 

to the exit. 

• Number of moving/parked vehicles for each time interval (per day/week/month) 

𝑁𝑢𝑚𝑀𝑜𝑣𝑉𝑒ℎ𝑡 = ∑ 𝑀𝑜𝑣𝑖𝑛𝑔𝑣𝑡𝑣∈𝑉     (3) 

𝑁𝑢𝑚𝑃𝑎𝑟𝑉𝑒ℎ𝑡 = ∑ 𝑀𝑜𝑣𝑖𝑛𝑔𝑣𝑣∈𝑉     (4) 

where 𝑚𝑜𝑣𝑖𝑛𝑔𝑣 is 1 if the vehicle 𝑣 is moving, 0 otherwise. 

• Number of walking pedestrians for each time interval (per day/week/month) 

𝑁𝑢𝑚𝑊𝑎𝑙𝑃𝑒𝑑 = ∑ 𝑛𝑢𝑚𝑝𝑒𝑑_𝑡𝑡∈𝑇′     (5) 

where 𝑛𝑢𝑚𝑝𝑒𝑑𝑡 is the number of in-system pedestrians at time t, and T′ denotes the set of 

the timestamps of the period. 

• Utilization of each parking space 

𝑈𝑡𝑖𝑠 =
∑ 𝑜𝑐𝑐𝑠𝑡𝑡∈𝑇

|𝑇|
      (6) 

where 𝑜𝑐𝑐𝑠𝑡 is 1 if the spot 𝑠 is occupied at time 𝑡, 0 otherwise. 

• Turnover rate of each parking space 
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𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑠 =
∑ 𝑛𝑢𝑚𝑢𝑠𝑒𝑠𝑠∈𝑆

|𝑇′|
     (7) 

where 𝑛𝑢𝑚𝑢𝑠𝑒𝑠 is the total number of the spot 𝑠 is used and 𝑇′ is the set of the time period. 

• Utilization of each aisle location 

𝑈𝑡𝑖𝑎 =
∑ 𝑜𝑐𝑐𝑎𝑡𝑡∈𝑇

|𝑇|
      (8) 

where 𝑜𝑐𝑐𝑎𝑡 is 1 if the aisle a is occupied at time 𝑡, 0 otherwise. 

• Utilization of aisles by vehicles for measuring routing pattern for vehicles 

𝑈𝑡𝑖𝑉𝑒ℎ𝑎 =
∑ 𝑜𝑐𝑐𝑏𝑦𝑣𝑒ℎ𝑎𝑡𝑡∈𝑇

|𝑇|
     (9) 

where 𝑜𝑐𝑐𝑏𝑦𝑣𝑒ℎ is 1 if the aisle a is occupied by vehicles at time 𝑡, 0 otherwise. 

• Routing pattern for pedestrian, utilization of aisles by vehicles 

𝑈𝑡𝑖𝑃𝑒𝑑𝑎 =
∑ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐵𝑦𝑉𝑒ℎ𝑎𝑡𝑡∈𝑇

|𝑇|
    (10) 

3.3.2 Measures of safety 

The parking facilities have safety concerns including theft, vandalism, robbery and 

vehicle collisions since the compact space blocks the vision and lacks sufficient protections. 

Note that this study involves only the traffic incidents instead of crime within the parking 

facilities.  

In the literature, Gettman and Head (2003) indicated that on-street parking (parallel and 

double) parking create conflict situations, lane-changes, etc. in the real world and have a 

significant safety impact. Simulations that model on-street parking maneuvers are preferred. 

Jason and Jung (1984) showed that parking spaces are a major safety problem for this special 

population; if a disabled person parks far away from a place of employment, he or she might 

have to cross busy thoroughfares and require help up. Charness et al. (2012) showed that the 
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most likely reason for the differential crash types in parking lots for older compared to younger 

pedestrians probably lies in the reduced speed with which older pedestrians can react to 

hazardous events. Yue and Young (1998) proposed a parking simulator Parksim2 to measure 

safety in parking lots. 

The conventional measures are listed as follows. 

• The major reason for accidents within parking lots 

𝑀𝑎𝑗𝑅𝑒𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐴 ∪ 𝑆)     (11) 

where 𝑎𝑟𝑔𝑚𝑎𝑥 is the function to find the index of the maximal number, 𝐴 is the set of the 

aisles, and 𝑆 is the set of parking spots. Note that this measure is derived from the historical 

accident record data. 

• Accident frequency across each layout 

Note that this measure is derived from the historical accident record data. 

In the parking simulation methods, traffic safety is not well investigated in the previous 

works. In this study the traffic safety is evaluated in the following measures: 

(a) Pedestrian-vehicle weaving duration. When the vehicles and pedestrians are moving in 

the parallel directions, the pedestrians may weave with the pedestrians due to the narrow 

aisle. 

𝐴𝑔𝑔𝑃𝑒𝑑𝑉𝑒ℎ𝑊𝑒𝑎𝑎 = ∑ 𝑃𝑒𝑑𝑉𝑒ℎ𝑊𝑒𝑎𝑎𝑝𝑣𝑡𝑝∈𝑃 , ∀𝑎 ∈ 𝐴    (12) 

where 𝑎 denotes the aisle in the set of aisles 𝐴. 
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(a) before the parking spot 

  

(b) pedestrian across the aisle 

Figure 3-3 Pedestrian-vehicle weaving duration in multiple scenarios 

(b) Vehicle-vehicle weaving duration. When the vehicles are merging or turning at 

intersections they may weave with the other vehicles. The weaving zone and duration are 

measures for parking infrastructure safety evaluation.  
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(a) before a parking spot 

 

(b) at an intersection 

 

(c) moving in the opposite direction in a narrow aisle 

Figure 3-4 Vehicle-vehicle weaving duration in multiple scenarios 

(c) Reversing blind zone weaving duration. When the vehicle reverses to unpark from a 

parking spot, the vehicle may weave with the passing-by pedestrians. This weaving spot 

and duration are measured for safety concerns.  

Note that when the pedestrians move on the protected sidewalk, it does not count for the 
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weaving between pedestrians and vehicles as shown in the following figures, where the 

orange cones are for the barrier of the protected sidewalk. These designs consume a 

portion of the land use and reduce the space efficiency and profit but would grant 

pedestrians the reserved right-of-way to eliminate the weaving of vehicles and 

pedestrians. 

 

(a) The mid-strip sidewalk 

 

(b) The barrier sidewalk 

Figure 3-5 The protected sidewalk designs 

Contending the safety issues, the safety design of the parking facilities could be improved 

by the following strategies. These strategies are not implemented in the proposed system but can 
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be an extension within the proposed simulation framework. 

(a) Lighting. It is suggested that all the pathways should be sufficiently covered with motion-

sensor controlled lighting and cameras should be installed in the high-crime areas for 

video surveillance. 

(b) Clear-span construction. To avoid possible collisions due to the narrow space, the 

building designers should reduce the numbers of the columns within the parking facilities 

for better visibility to minimize the potential hiding places. 

(c) Pedestrian accessible structure. The parking facility designer should consider glass-

backed elevators and open stairs for an open environment.  

3.4 System integration 

3.4.1 System structure 

In modern software engineering, the user-orientated application is developed in the 

Software as a Service (SaaS) framework. Its advanced features benefit users including free for 

installation, up-to-date, cross-platform, and user-friendly. This structure continuously delivers 

state-of-art methods to users for testing and production. Based on the feedback from the user, the 

developer of the system is able to improve the simulation system and GUI for better user 

experience. Figure 3-6 shows the SaaS structure of the proposed parking simulation system. 
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Software as a Service

Web Graphical User Interface

Extenstion

Extenstion

Simulation engine

User

 

Figure 3-6 The software as a service framework for the proposed system. 

From the view of software development, maintainability and extendibility are critical for 

a comprehensive system. Thus, the submodules should be decoupled. To replicate the parking 

mechanism, the critical problem is how to model choice behavior coupling with the traffic 

dynamic model. Figure 3-7 shows the proposed system includes the following modularized 

components: machine learning and deep learning, concurrent programming, and logic 

programming. 

 

Web application

Simulation engine

Extenstion Extenstion Extenstion Extenstion Extenstion

Keras/Tensorflow 

Demand prediction

Weka

Data mining

Prolog 

Rule logic

Akka

Concurrent 

computation

 

Figure 3-7 Decoupled the mechanism of the parking system 

 

The implementation of the sketch-up simulation engine complies Object Oriented 
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Programming (OOP) principle. All entities and locations of the simulation system are modeled as 

serializable classes. Figure 3-8 shows a class diagram in the Unified Modeling Language (UML) 

of the proposed structure. 



 

 

 

 

Figure 3-8 The class diagram of the core of the simulation engine in UML 

4
6
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3.4.2 Machine learning and deep learning 

The proposed parking simulation system has adopted big data mining techniques to 

calibrate the demand arrival and departure and drivers and pedestrians decision-making models.  

The conventional statistical methods capture the temporal patterns with time series 

models, such as Auto-Regression Integrated Moving Average (ARIMA). However, the 

estimation of time series models is not asymptotically efficient, the linear models cannot perform 

accurate prediction due to the heteroskedasticity (heterogeneousness of variation), and the 

nonlinear models such as Auto-Regressive Conditional Heteroskedasticity (ARCH) would 

(Hamilton, 1994; Wu and Min, 2005). The estimation of these models is considerable time-

consuming for large-scale scenarios and the strong assumption such as normal randomness 

should be tested. In comparison to traditional time series models, the deep neural networks can 

facilitate the nonlinearity of the parking demand and the big data set.  

In the literature, the Recurrent Neural Network (RNN), Long-Shor Term Memory 

(LTSM), Gated Recurrent Units (GRU) and Identity Recurrent unit (IRNN) neural network show 

great potential in capturing the temporal pattern in big data (Hochreiter and Schmidhuber, 1997; 

Ger et al., 1999; Graves, 2012; Gal and Ghahramani, 2016). 

Based on these pioneer studies, RNN, LSTM, GRU are applied in long-term and short-

term traffic prediction. Ma et al. (2015) employed the LSTM in traffic speed prediction using 

remote microwave sensor data. Tian and Pan (2015) used an LSTM approach for short-term 

traffic forecast. Zhao et al (2017) applied the LSTM in short-term traffic forecast. Fu et al. 

(2016) applied LSTM and GRU in traffic flow prediction. Yu et al. (2017) showed the deep 

approaches are able to predict traffic states under the extreme conditions. Chen et al. (2016) 

predicted traffic congestion with LSTM using online open data. Duan et al. (2016) showed 
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predicted travel time with the LSTM networks. Vinayakumar et al. (2017) showed LSTM 

performed well in comparison to the other RNN methods. Zhuo et al. (2017) combined the 

LSTM and DNN and showed improved effectivity and accuracy. 

To fast implement the proposed neural network, the state-of-art deep learning libraries 

are employed. To facilitate the time-dependent demand prediction, a Keras/Tensorflow library is 

used for implementing the Long-Short Term Memory (LSTM) neural network in demand 

forecasting. Tensorflow is an open source software library for high-performance numerical 

computation developed by the Google Brain team (Abadi et al., 2016). Keras (Chollet et al., 

2015) is a high-level neural networks API on top of deep learning libraries including 

TensorFlow, CNTK (Microsoft Cognitive Toolkit, Seide and Agarwal, 2016), and Theano (Al-

Rfou et al., 2016). Note that there is no single software tool that can outperform others (Shi et al., 

2016). The proposed method can be fully implemented in other libraries. 

This study used a scalable parking space choice behavior model to capture the drivers and 

pedestrian’s parking behaviors and state-of-art machine learning techniques to calibrate the 

parameters, such as:  

(a) Decision tree and random forest 

The decision tree uses a tree-like model of decision and their possible consequences. 

Each node of the flowchart-like structure represents a yes-or-no question on an attribute, each 

branch represents the outcome of the test, and each leaf node represents a possible decision 

result. There exist several algorithms to build the decision tree such as Classification and 

Regression Trees (CART, Breiman et al., 1984) with Gini Index, and Iterative Dichotomiser 3 

(ID3, Quinlan, 1986) with entropy function and information gain. The information gain is the 
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measure of the difference in entropy from before to after the set 𝑆 is split based on an attribute A 

as defined in the following equation. 

𝐼𝐺(𝐴, 𝑆) = 𝐻(𝑆) − ∑ 𝑝(𝑡)𝐻(𝑡)𝑡∈𝑇      (13) 

where 𝐻(𝑆) denotes entropy of set 𝑆, 𝑇 denotes the set of branches created from splitting 𝑆, 𝑡 

denotes the subset of 𝑆 and 𝑝(𝑡) represents the proportion of the number of elements in 𝑡. The 

decision tree method has been applied to the parking simulation by Vo et al. (2016) and Li 

(2016). The random forest is constructed by a multitude of the decision tree to correct the 

overfitting on their training set (Hastie et al., 2008).  

(b) Support vector machine  

The Support Vector Machine (SVM) is one kind of supervised learning model for 

classification and regression analysis. The training of the SVM classifier amounts to minimizing 

the following quadratic programming problem. 

𝑚𝑖𝑛 
1

𝑛
∑ 𝑚𝑎𝑥 (0,1 − 𝑦𝑖(𝑤𝑥𝑖 − 𝑏)) + 𝜆||𝑤||2 𝑛

𝑖−1    (14) 

subject to 

𝑦𝑖(𝑤𝑥𝑖 − 𝑏) ≥ 1 − 𝜁𝑖 , ∀𝑖 = 1,2, … , 𝑛    (15) 

𝜁𝑖 ≥ 0, ∀𝑖 = 1,2, … , 𝑛       (16) 

where 𝑥𝑖 , 𝑦𝑖 denote the attributes and the label of the sample, 𝜁𝑖 represents the smallest feasible 

nonnegative number, 𝜆 is the coefficient of the margin hardness, 𝑤 is the slope and 𝑏 is the 

intercept of the linear margin function. The SVM can efficiently perform a non-learn 

classification using the customized kernel function to address the nonlinearity in the parking 
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simulation system. 

(c) Logistic regression  

The logistic model or logit model or multinomial logit model is a widely-used statistical 

and machine learning model. The probability for choosing the specific option 𝑖 is the softmax 

function which is shown in the following equation.  

𝑃𝑟𝑖 =
𝑒𝑢𝑖

∑ 𝑒𝑢𝑘𝑘∈𝐾
      (17) 

where 𝑃𝑟𝑖 is the probability to choose the option 𝑖, the set 𝑖 is the set of potential options, 𝑢𝑖 , 𝑢𝑘 

are the utility of the corresponding option which is defined as the sum of weighted attributes. 

The logistic model is also employed in parking choice models. Ji et al. (2009) proposed 

the multinomial logit model to capture the parking spot choice behavior from the global vision of 

the parking guidance system. Note that the multinomial logistic model for the parking spot 

choice is used when the decision maker considers the options at the same time. However, when 

the cruising-and-searching drivers do not have the full information of all potential parking spots, 

the local vision of the parking spots should be considered. 

(d) Multilayer Perceptron 

The multilayer perceptron is a class of feedback artificial neural network and is 

recognized as the vanilla neural network. It consists of three layers of nodes or perceptrons: the 

input layer, the hidden layer and the output layer, of which the weights of connections are trained 

by the backpropagation algorithm in a supervised learning manner. The linear activation function 

is applied to all neurons. In the extended version of the multilayer perceptron, the alternative 

nonlinear activation functions include the logistic, rectifier and softplus functions. 
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To implement the classification training and predicting in the proposed system, Weka 

(Hall et al., 2009; Frank et al., 2016), the open source machine learning and data mining library, 

is used for data processing, parameter calibration and the classification of parking spot choice. 

Weka contains tools for data pre-processing, classification, regression, clustering, and 

visualization.  

The contribute is to investigate the application of the machine learning and deep learning 

techniques in the modeling of a parking spot, route choice behavior with classification methods 

and time-varying demand with recurrent neural network prediction methods. 

3.4.3 Concurrent programming 

When the scale of the parking facility is large, the simulation engine would be 

considerably time-consuming. Thus, the proposed system has a parallel computing version to 

speed up computing with the concurrent strategy.  

For developing the concurrent simulation engine, the concurrent actor model is used for 

actor-based concurrent computing. Akka is a free and open-source toolkit and runtime 

simplifying the construction of concurrent and distributed applications on the Java Virtual 

Machine (JVM). 

Actors are defined as computational elements for the concurrent computation. The actors 

wrap the non-concurrent data structures and interact with other actors via messages. The 

proposed implementation creates rules to organize blocking operations and addresses the 

concerns: (a) how to synchronize the actor actions in a concurrent environment, and (b) how to 

implement the mechanism of parking simulation, respectively. To incorporate the concurrency in 

the agent level, this study has the following findings: 
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(a) The synchronize protocol is for each time stamp, sending "move" messages to 

each actor and waiting until receiving feedback from all. 

(b) The vehicle should ask the next location for occupancy before making 

movements. Then the "vision" (the driver may see only a subset of actors) and 

"choice" (the driver may make decisions from the environment information) 

behavior. 

A sample case for illustrating the running process of the concurrent programming is 

shown in Appendix A. Figure 3-9 shows the sequence diagram of the proposed system in Unified 

Marked Language (UML) where the red rectangles represent the actors, the black baskets 

represent the procedures and loops, the solid arrows represent instant communication between 

actors and the dashed arrows represent the delayed messages between actors. In Figure 3-9, the 

domain objects and agents in the proposed simulation model are capsuled into actors, such as 

lotActor, timeActor, locationActor, sourceActor, sinkActor, entityActor, and choiceActor. The 

lotActor is the main node to manage the whole actor network, the timeActor maintains a 

simulation clock to synchronize all of the agents, the entityActor and locationActor are two main 

types of agents, the sourceActor and sinkActor captures the queuing model at the entrance and 

the exits, respectively, and the choiceActor is used to extract attributes and make decisions such 

as the parking spot. This sample presents the procedure of creating a network, creating entities, 

updating the state of entities for the parking simulation. This case demonstrates the actor 

structure in the parking simulation modeling and is extended to the full functional concurrent 

simulation engine. 

In comparison to the nonconcurrent implementation, the concurrent implementation 

would reduce the running time in large-scale cases on multiple multicore workstations and 
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reduce the occupancy of the system resource by allowing nonactive actors sleep such as parked 

vehicles. The contribution is to explore the capability of modeling the agent-based parking 

simulation model in a concurrent mechanism to achieve better computational performance and 

extensibility. 
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Figure 3-9 The sequence diagram in Unified Marked Language 
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3.4.4 Logic programming 

As illustrated in Chapter 2, state transition and traffic dynamics of the parking system are 

rule-based, which is significantly different from the traditional traffic system. The motivation for 

using logic programming is to define the logical condition clearly. If the comprehensive parking 

system is modeled with the 𝑛 if-clause, there exist 2𝑛 cases to be covered, which is impossible to 

implement and can hardly be maintained. Thus, the rule-based simulation model needs a scalable 

extendable framework instead of nested if-else-then rules due to the complexity concern. The 

proposed system presents a Prolog-like domain specific language to scale up the rule modeling. 

Prolog is a modern logic programming language to present the first-order logic where the 

rules and states of entities and locations are programmed as 𝑡ℎ𝑒𝑜𝑟𝑖𝑒𝑠 and 𝑎𝑡𝑜𝑚𝑠, respectively. 

Thus, the additional rules can be organized in Prolog instead of if-else clauses.  

Prolog could figure out the entity movement deadlock in the language level since Prolog 

interpreters incorporate logic programming solvers. To solve the rules, Prolog introduces an 

advanced pattern-matching mechanism called unification. Two terms unify if there is some way 

of binding the variables that make them identical. For instance, given 𝑝𝑎𝑟𝑒𝑛𝑡 is a user-defined 

predicate of arity 2, 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑑𝑎𝑚, 𝐶ℎ𝑖𝑙𝑑) and 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑑𝑎𝑚, 𝑠𝑒𝑡ℎ) unify by binding the 

variable 𝐶ℎ𝑖𝑙𝑑 to the atom 𝑠𝑒𝑡ℎ. One may check the rules by querying via unification. For 

example, the query 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎𝑑𝑎𝑚, 𝑋) is used to find the solution 𝑋 = 𝑠𝑒𝑡ℎ. The logic 

programming semantics makes the declarative model language to avoid side-effects and keep 

interdependencies.  

This study uses the syntax of Prolog to present the first-order logic model in the 

pseudocode, which does not require Prolog as the implementation language but declares a 
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provable model for the rule-based parking simulation modeling. Note that : − (turnstile) is the 

Horn clause operator of Prolog, _ (underscore) means any possible value, capitalized letters 

represent variables, the rule consists of the head expression, the turnstile, and the tail expression, 

and the tail expression may include multiple expressions separated with a comma. If the tail 

expression unifies with the head expression, the rule is satisfied and has true value. To find a 

feasible solution, the meaning of the Horn clause is that if the tail expression is true, the head 

expression is true. The built-in predicates, 𝑟𝑒𝑡𝑟𝑎𝑐𝑡 and 𝑎𝑠𝑠𝑒𝑟𝑡, are used for deleting and creating 

facts, respectively.  

In this study, the parking mechanism rules are modeled in logic programming and are 

defined in Prolog-like equations which may be immediately runnable in Prolog interpreter with 

trivial supplemental codes. 

A sample code is shown in Appendix B. The computational result shows the Prolog 

solver is able to deal with the proposed rule-based logic representation of the entity state 

machine and traffic dynamics. However, the original Prolog interpreters are in low 

computational efficiency.  

Note that the first-order logic and the Prolog are only for representing rules for 

developing the parking simulation model, and the developed model could be implemented in any 

programming language. This study employs a Prolog implementation in Java and proposed a 

Domain Specific Language (DSL) to address the efficiency issue of the native Prolog interpreter. 

In this study, new predicates are designed to better fit the domain used to extend the 

Prolog language. The predicate 𝑣𝑖𝑠𝑖𝑜𝑛 (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) would detect the potential 

location and entities within the vision of the driver located in the parameter location and facing 
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the direction the parameter orientation. The predicate 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑔𝑜𝑎𝑙) would 

construct the network by indicating the location, potential actions, and goals. The predicate 

𝑚𝑜𝑣𝑒 (𝑒𝑛𝑡𝑖𝑡𝑦, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) would update the location and state of the entities. The predicate 

𝑐ℎ𝑜𝑜𝑠𝑒 (𝑒𝑛𝑡𝑖𝑡𝑦, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠) would generate a random choice based on proposed choice models.  

The contribution is that this study originally proposes the logic programming model for 

modeling the entity state transition in the simulation system and the traffic dynamics in the 

parking system. 

3.5 Software architecture 

This section provides an overview of the proposed system from the aspect of software 

engineering.  

Server

Web based GUI

Keyboard-controlled 

manual simulation
Network editor Animation

Chart/heatmap 

display

Simulation Engine

Historical record
Network 

controller

REST API

Webpage injection

Webpage routing 

controller
Data file controllerSimulator

Deserialization Serialization

 

Figure 3-10 The software architecture of the proposed SaaS system 

Figure 3-10 shows the software architecture of the proposed system, where the solid 

arrow is for the transfer of data, and the dashed line is the for transfer of webpage. The proposed 

system integrates four modules: (a) Keyboard-controlled manual simulation, (b) Network Editor, 
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(c) Animation, and (d) Result Display. In the Keyboard-controlled manual simulation module, 

the user can play a parking simulation minigame in a two-dimensional layout with the physical 

engine Box2D, and a script of the maneuvers of the vehicles can also provide the potential 

vehicle trace with the parking facility. In the Network Editor, the user can leverage the web-

based GUI to overlay the locations and links on the parking facility layout. The Network Editor 

support the editing of the simulation model such as adding or removing the locations (including 

spots, aisles, pedestrian exits, entrances, obstacles, etc.), the customer type and distribution 

settings, the arrival, and departure distribution settings, and the simulation configurations. In the 

Result Display, the historical record can be illustrated in charts such as bar chart, line chart, and 

heat map with the Google Charts and Vue frontend libraries. 

Controller

User

Model View

Freemarker

Webpage

Simulation engine Data Template

 

Figure 3-11 The server-side application structure 

Figure 3-11 shows that the server-side application incorporates the webpage routing 

controller, the simulation engine, and the data file controller. The controllers support the 

Representational State Transfer (REST) utilities of the server, where the resources are accessed 

via Hypertext Transfer Protocol (HTTP) API. 
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The coding of the proposed system includes multi-languages (a) Java for the server-side 

application and the simulation engine, and (b) JavaScript/HTML5/CSS3 for the browser-side 

application and the user interface. The proposed system is implemented in the cutting-edge 

programming techniques: (a) Software-as-a-Service (SaaS) browser-server software structure, 

where the most updated features can be feed to the users, (b) serialization/deserialization for the 

persistence of memory in object-oriented programing, where the deserialization means the 

structural data and record files of inputs and outputs in JSON/XML format are converted to 

memory objects and the serialization means the conversion in the other direction, (c) the Spring 

Framework for Model-View-Controller (MVC) development framework, where the web services 

and inversion of control container for the Java platform is managed, and (d) Website Templates 

Injection, where the templates are composed with Apache FreeMarker and the data in the 

webpage are changed in the server side when requested. These features enable the flexibility and 

expandability of the proposed system. 
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4 A microscopic agent-based parking system simulator 

4.1 Testbed 

To describe the capability and modeling of the proposed system, the illustration of the proposed 

microscopic agent-based simulation model is aided by the studied real case. In this case, the 

studied data are collected from transaction record and field survey. Based on the solid data, the 

parameters are calibrated to evaluate the performance of the proposed model. Figure 4-1 shows a 

satellite photo of the University of Wisconsin-Milwaukee (UWM) Sciences surface parking lot, 

which is used to illustrate the proposed method in this section.  

 

Figure 4-1 The satellite photo of the Sciences Surface Parking Lot 
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Figure 4-2 The layout of the studied UWM Sciences Surface Parking Lot 

The Transportation Department provides the layout of the parking lot. Figure 4-2 shows 

the layout of the UWM Sciences surface parking lot, which is used as the case to illustrate the 

proposed method. The to-scale layout of the parking lot is imported as the background picture of 

the simulation network. The simulation network can be established with the web-based editor. 

Figure 4-3 shows the simulation network for the case established in the web-based editor, where 

the rectangle is for spots, the square is for aisles, the edge is for connections between locations, 

the solid arrow is for the entrance, the walking icon is for pedestrian exits, and the wheelchair 

icon is for the handicapped-only spot. These spots and aisles can be drawn either one by one or 

by batch.  
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Figure 4-3 A Screenshot of the sample parking facility modeling in the proposed system 

4.2 Data collection 

The accuracy depends on the quality of the specification of the model and the accuracy 

with which data used to calibrate the validate them can be collected (Young et al, 1989). Table 

4-1 shows the general information collected in the parking lot survey. 

Table 4-1 Parking lot survey items 

Category Attributes Data Type Item 

Basic 

Type of the 

parking lot 

Multiple 

choices 

Mixed-use 

Public 

Commercial 

Curb-side 

Occupying sidewalk 

Under-interchange 

Residential 

Parking-and-ride 

Management 
Filling the 

blank 

Name of managing corporation 

Type of the managing corporation 

Infrastructure 
Filling the 

blank 

Guiding sign 

Automated charging device 

Pedestrian management 
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Others 

Pricing 
Filling the 

blank 

Long-term seasonal permit 

Short-term permit 

Time-of-day ticket 

Available period 

Building 

Building basic 
Filling the 

blank 

Type of ownership 

Construction year 

Total area 

Propensity 
Filling the 

blank 

Number of beds if the building 

belongs to hospitals 

Number of rooms if the building 

belongs to hotels 

Number of faculty and students if the 

building belongs to schools 

Number of tables if the building 

belongs to restaurants 

Number of seats if the building 

belongs to stadiums 

Supply 

Number of 

spaces 

Filling the 

blank 

Number of spaces 

open spaces 

the total area of spaces 

Number of 

constructions 

Filling the 

blank 

Number of surface spaces 

Number of underground spaces 

Number of automated spaces 

Demand 

Peak hour 

demand 

Filling the 

blank 

Total number of vehicles 

Parked vehicles in the spaces 

Traffic influence 

Emergency aisles 

The position of parking (grassland, 

sidewalk, aisle, open space, etc.) 

Overnight 

demand 

Filling the 

blank 

Total number of parked vehicles at 

night 

Operation 
Filling the 

blank 

Turnover rate 

Average parking time 

utilization 

Environm

ent 
Photo and video 

Filling the 

blank 

On-site pictures 

Pictures of surroundings 

Videos of traffic status 

 

The raw real-world data include the transaction records from the University 

Transportation Department (see a sample in Appendix C) and the field survey data (see 

Appendix D). The data spans from October 2016 to June 2017. service. In this case, there’re two 
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kinds of parking service customers in term of payment method: (a) ticket(drive-in) user, paying 

the parking fee each service, and (b) permit (reserved) user, paying for a seasonal permit for 

weekly or monthly or semesterly. In some other cases, there may be a non-reserved seasonal 

user. 

Table 4-2 Data format of the parking facility ticket transaction data 

Attribute Description Example 

Gross Amount 
the prepaid amount of 

parking fee 
$2.00 

Net Amount 
the actual amount of 

parking fee 
2 

At ID 
the ID of the parking 

ticket machine 
0 

Rate 

the rate of parking fee, 

varying between normal 

customers and the 

handicapped 

1 

Ticket Type entry or exit Entry 

Transaction Type 
the normal or 

handicapped customer 
Normal 

Ticket Number the label of the ticket 39177 

Entering Time 
the timestamp when the 

vehicle arrives 
2017/05/03 08:47:00 

Exiting Time 
the timestamp when the 

vehicle exits the garage 
2017/05/03 09:18:00 

Transaction Number 
the label of this 

transaction 
494 

Device name 
the label of the ticket 

machine 
Lubar Pay Station 

 

Table 4-3 Data format of the parking facility permit usage data 

Attribute Description Example 

Card Number the label of the customer 104509 

Date and Time 
the timestamp when the 

customer arrives 
5/3/2017 9:31 

Reader Label the label of the machine Lubar Rev. Entry 

Lot Label the label of the garage 3 

Direction in or out the garage In 

Result 
the result of checking the 

validity of the customer 
Valid Access 
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Allowed 
whether the customer is 

allowed to the garage 
Yes 

Sample transaction data are attached in Appendix C. The field survey data include 

parking choice behavior data and demand data. Sample transaction data are attached in Appendix 

D. The choice behavior file is in CSV format. The default attributes are defined in Table 4-4. 

One can define the own attribute and use the defined data file to calibrate the model. The 

prediction of the calibrated model is subject to simple modification of the simulation code. 

Table 4-4 Parking space choice behavior data collection 

Attribute name Definition Value Type Example 

walkingdistance 

walking distance 

in meter from the 

spot to a 

pedestrian exit 

Double 10 

traveldistance 

driving distance 

from the entrance 

to the spot 

Double 20 

lanestatus 

if the strip in front 

of the spot is 

occupied or clear 

String 
UNOCCUPIED, 

OCCUPIED 

spotstatus 

if the left or right 

neighbor of the 

spot is occupied 

String RIGHT, LEFT, CLEAR 

class 

the choice for the 

spot, 1 for chosen, 

0 for unchosen 

Integer 0, 1 

In view of the collected data, the parking lot demand can be measured with the following 

quantities: the number of arrivals within a period, the number of departures within a period, the 

inter-arrival time, the inter-departure time, and the parking duration. With the advances in the 

parking management and data collection systems, there exist more convenient technologies, such 

as precise vehicle positioning system, than the manual counts and drawing. The proposed data 

processing method would fit the various data sources to fulfill the calibration of the parking 

simulation model. 
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4.3 Descriptive analysis 

The parking service shows long-term heterogeneousness in arrival and exiting 

distributions as well as the short-term variability. To simplify the problem, the distributions are 

assumed to be homogeneous in each time interval. In the parking simulation system, the arrival 

and exiting distribution should be labeled by time period. Ignoring this pattern would induce 

errors in the simulation. For example, if the daily distributions are used as the inputs for a 

morning peak hour simulation, the results would underestimate turnover rate and active vehicles 

and overestimate the occupancy. 

The parking demand on campus has great season-dependent patterns. The following 

demand patterns are observed: (a) The gap between semesters has much lower demand in 

parking on campus and the demand is significantly impacted by the semester and vacation time. 

(b) The daily distribution of parking demand is more retractable than the monthly and weekly 

distribution. (c) The number of ticket user is considerably greater than the permit user. This is 

reasonable since most of the customers of the on-campus garages are college students. The 

propensity of parking on campus is high, but the users are not willing to buy permits since the 

permit is expensive than the ticket if they don’t have to park on campus every day. 



 

 

 

67 

 

Figure 4-4 Time-dependent arrival pattern for ticket and permit users 

Figure 4-5 and Figure 4-6 shows the daily arrival distribution of ticket users during two 

weeks in the middle of the semester. The weekly demand pattern is further addressed. There’re 

two kinds of demand patterns: two-peak pattern from Monday to Thursday and one-peak from 

Friday to Sunday.  

 

Figure 4-5 The daily arrival distribution of ticket users during the week 2017-04-10 to 2017-04-16 
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Figure 4-6 The daily arrival distribution of ticket users during the week 2017-04-17 to 2017-04-23 

The daily parking demand pattern depends on neighboring points of interests (POI) such 

as office, retail, theater, hotel, hospital, and university. Figure 4-7 illustrates a one-day arriving 

and departure patterns of the ticket and permit users in a garage on campus. Figure 4-7 shows the 

following descriptive analysis: (a) the one-day arrival distribution is centralized in the a.m. peak 

hours. (b) The permit and ticket users exiting are distributed heterogeneously, and the permit 

users park significantly longer in the garage than the ticket user. (c) The arrival and exiting peaks 

are overlaps in the a.m. peak hours.  

From the interview survey to the manager of the University Transportation Department, 

the following ideas are learned: (a) the garage manager would prefer to sell more permits than 

tickets since permits are prepaid and fewer efforts are needed to manage the permit users. (b) To 

encourage the permit users, the permit users are guaranteed to have a vacant spot when arriving. 

(c) To achieve this goal, the garage manager should reserve several spots in the a.m. peak hour, 

especially in the rainy morning on Mondays. Thus, the proposed simulation system could help 

the garage manager to investigate the peak hour arrival and exiting pattern and help decision 

making. 
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Figure 4-7 Daily arrival and exiting counts for the ticket and permit users on 2017-04-10 

From the daily arrival and existing record, the demand pattern is learned to explain the 

appearance of peaks in arrival and existing counts. Figure 4-8 shows the demand diagram in 

various scenarios, where the x-axis is for the time span, the y-axis is for the label of the arrival 

vehicle, each bar represents a vehicle arriving at the head of the bar and exiting at the tail of the 

bar. Note that the demand pattern depends on the neighboring land use of the parking lot, and in 

this case, the demand pattern is impacted by the university travel pattern. Figure 4-8 (a) shows 

the daily demand pattern with a morning peak around 9:00 a.m. to 10:00 a.m. because most 

classes are scheduled starting during this period from Monday to Thursday. Figure 4-8 (b) shows 

the demand pattern with one peak around noon from Friday to Sunday. Figure 4-8 (c) shows the 

demand pattern with a surged exiting peak on the special event day. For example, the building 

holds the Poster Competition which attracts far more vehicles than the daily vehicle counts. 

When the event is held in the other building, the parking manager can refer to the history parking 

demand pattern for the special event parking management. Figure 4-8 (d) shows the parking 

duration of the seasonal permit users, which implies a long parking duration and normally 
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distributed arrival and leaving counts on the whole day. 
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 (d) The permit user pattern 

Figure 4-8 The parking demand pattern of the studied case 

4.4 Demand distribution calibration and experiments 

This section shows a real case for calibration of the hypothetical probability parameters. 

To collect the data, a camera is set in front of the IRC building, where arriving area, exiting area 

and route of the car in the parking place can be recorded very clearly. The 1-hour video is 

recorded from 8:30 am to 9:30 am on one Wednesday morning, when is the busiest hour during 

the week. After recording, data need to be sorted. The arrival time of each car is recorded then 

the inter-arrival time is calculated. During 1-hour observation, there are totally 71 cars arrived 

including 32 passing-by cars, 1 motorcycle, and 38 normal cars. 

In order to find which distribution the inter-arrival time follows, a histogram is created to 

make the assumption of the distribution of the data. Figure 4-9 shows that it is assumed that the 

inter-arrival time follows the exponential distribution, where the blue curve is drawn from the 

possible exponential distribution.  
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Figure 4-9 The histogram of the inter-arrival duration 

A 𝜒2 goodness of fitting test is performed to check whether the data follows an 

exponential distribution. Figure 4-10 shows the results of the goodness of fitting test, which 

shows that the inter-arrival is distributed exponentially with the mean 48.01 sec. 

 

(a) Rejecting the normal, Box-Cox, lognormal, 3-parameter lognormal distribution assumption 

2000-200

99.9

99

90

50

10

1

0.1

C1

P
e

r
c
e

n
t

6420

99.9

99

90

50

10

1

0.1

C1

P
e

r
c
e

n
t

1000100101

99.9

99

90

50

10

1

0.1

C1

P
e

r
c
e

n
t

1000100101

99.9

99

90

50

10

1

0.1

C1  - T hreshold

P
e

r
c
e

n
t

Lognormal

A D = 0.630 

P-V alue = 0.097

3-Parameter Lognormal

A D = 0.732 

P-V alue = *

Goodness of F it Test

Normal

A D = 4.950 

P-V alue < 0.005

Box-C ox Transformation

A D = 0.630 

P-V alue = 0.097

A fter Box-C ox transformation (lambda = 0)

Probability Plot for C1

Normal - 95% C I Normal - 95% C I

Lognormal - 95% C I 3-Parameter Lognormal - 95% C I



 

 

 

73 

 

(b) Rejecting the logistic, log-logistic, 3-parameter log-logistic, Johnson Transformation distribution 

assumption 

 

(c) Rejecting the smallest extreme value, large extreme value, Gamma, 3-parameter Gamma distribution assumption 
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(d) Accepting the exponential distribution assumption and rejecting the others 

Figure 4-10 The goodness of fitting of the interarrival distribution 

The parking duration is tested with the distribution identification analysis, however, the 

results show that the parking duration of cars doesn’t follow any hypothetical probability 

distribution. Figure 4-11 shows the histogram of the used empirical distribution. The proposed 

simulation system is capable to calibrate the empirical distribution on the raw data. 

 

Figure 4-11 The empirical distribution of the parking duration 
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In the experimental part, the calibrated model is tested with various inter-arrival time 

distribution parameter values. Various mean values of exponential distribution are tested for 

experiments. Supposing there's a special event holding in the near buildings, demand may 

increase sharply and cause problems in a real-world situation. Figure 4-12 shows the maximal 

number of moving vehicles increases when the mean of interarrival distribution increases, and 

converges to the value 10 vehicles if the mean of the interarrival distribution is lesser than 24.  

 

Figure 4-12 The experiment results for finding the active capacity 

The active capacity is defined as the maximal number of concurrently moving vehicles 

indicates the arrival pattern captured by the simulation model. If the maximal number of 

concurrently moving vehicles is too large, deadlocks may occur. From this experiment, the active 

capacity of this parking lot is found to be 10 vehicles, however, the active capacity in the real-

world scenarios is lesser than the simulated result due to the external factors such as weather. 

4.5 Predicting dynamic demand  

In the literature, Caicedo et al. (2012) proposed a method for predicting real-time parking 
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space availability in intelligent parking reservation systems, which was based on a calibrated 

discrete choice model for selecting parking alternatives to allocate simulated parking requests, 

estimate future departures, and forecast parking availability. 

From the descriptive analysis, the demand for parking facilities is found to have the 

following features: (a) The demand for parking facilities is stable in a short period (e.g. peak 

hour). To address this feature, the hypothetical distributions can be calibrated of multi-period 

data after the simulation starting from not empty (i.e. warming-up period). The demand for 

parking facilities is dynamic from time to time in the long period. Regarding this aspect, the 

prediction of series applies with model-free techniques and times series analysis with 

assumptions.  

Due to the heterogeneousness, the arrival and exiting counts vary from time to time and 

from day to day, and the parameters of the stochastic process cannot be regressed asymptotically. 

The deep learning approaches are able to overcome these issues with sufficient data. Figure 4-13 

shows the neural network structure for predicting the parking arrival and departure counts, where 

the tuples in the right side refer to the shapes of input and output tensors in each layer. The 

employed neural network is sequentially constructed, where the input layer is followed by four 

LSTM layers, and there is one dense (i.e. full-connected) layer connecting the LSTM layers for 

outputting the predicted results. The neural network has the following settings: (a) the size of 

each LSTM layer is 256, which is determined by rule-of-thumb, (b) the activation function of 

each LSTM layer is softsign (Bergstra et al., 2009), which is chosen by trial-and-error method, 

(c) the loss function is the mean squared error, which is determined in view of the real value 

output, and (d) the optimization algorithm is selected as Adam (Kingma and Ba, 2014). The 

softsign activation function is shown in the following equation.  
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𝑓(𝑥) =
𝑥

1+|𝑥|
       (18) 

Input layer

LSTM layer

LSTM layer

LSTM layer

LSTM layer

Dense layer
 

Figure 4-13 The network structure for parking arrival and departure counts 

The data set is split into the training set and the validation set. Figure 4-14 shows the 

trained results and the tested results. The R-squared measure of the training set is 0.91, and one 

of the testing set is 0.90. The results prove the effectiveness of the proposed LSTM neural 

network.  

 

(a) Permit user arrival counts 
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(b) Permit user exiting counts 

 

(c) Ticket user arrival counts 

 

(d) Ticket user exiting counts 
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Figure 4-14 The prediction of arrival and exiting counts of customers in 15 minutes intervals. 

The previous parking simulation system did not consider the impact of the varying 

demand to the operation of the parking facilities. This section contributes to a dynamic demand 

prediction for the parking simulation in view of the short-term system variability. This study 

identifies this critical problem for preparing best preplans of the parking facility management. 

The online prediction and simulation method would benefit the development of the time-

sensitive plans, such as the temporal permit-only policy of the parking facilities.  

4.6 Mathematical notation 

This section formulates a general logic programming model for the parking simulation problem. 

This study uses the following notation: 

𝕄 = space of entity movements; 

ℙ = space of entity processes; 

𝕊 = space of agent attributes; 

𝕋 = space of time; 

𝒜 = set of agents; 

ℰ = set of entities; 

𝒱 = set of vehicles; 

𝒫 = set of pedestrians; 

ℒ = set of locations; 

𝑎 = index of the agent; 
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𝒘 = the vector of random variables; 

𝑡 = a state of time; 

𝑠 = a state of the agent; 

𝑝 = a process of the agent; 

ℳ = a movement of the agent; 

𝑛 = the number of random variables; 

ℱ = a state machine; 

𝒢 = a choice model; 

ℋ = a performance measure; 

In this study, the agents are defined as the interactive physical objects with dimensions, 

the entities are defined as the agents with actions and birth-death processes, and the locations are 

defined as the agents can be affected by other agents, are only created at the beginning of the 

simulation and never die. 

The attributes of an agent include the length, width, height, three-dimensional position, 

orientation etc., and can be further described by the Equation (31). 

𝕊 = ℝ3 × ℝ3 × ℝ × ⋯ × ℝ     (19) 

Equation (32-35) show the definition of the process space and the movement space in the 

proposed simulation model. The transitions of the states in those spaces are defined in the 

process diagram in the next section. The time-space is defined as the discrete simulation time 

span. The space of processes and the space of agent movements are shown in Equation (32)-(33).  
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ℙvehicle  =  {𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔, 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔, 𝑐𝑟𝑢𝑖𝑠𝑖𝑛𝑔, 𝑟𝑒𝑛𝑒𝑔𝑒𝑑, 

 𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡, 𝑝𝑎𝑟𝑘𝑒𝑑, 𝑢𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔, 𝑙𝑒𝑎𝑣𝑖𝑛𝑔, 𝑙𝑒𝑓𝑡}  (20) 

where the process 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 means the vehicle arrives at the entrance of the parking lot and joins 

the end of the entry queue; the process 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 means the informed drivers decide the 

destination parking spot at the entering in the system and travel in the shortest path; the process 

𝑐𝑟𝑢𝑖𝑠𝑖𝑛𝑔 means the uninformed drivers move and search the current vision for the potential 

spot; the process 𝑟𝑒𝑛𝑒𝑔𝑒𝑑 means the driver of the last arrival is not willing to wait in the entry 

queue and leaves the entry queue after waiting for a time interval; the process 𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡 means 

the vehicle moves from the aisle into the spot and stops the engine; the process 𝑝𝑎𝑟𝑘𝑒𝑑 means 

the vehicle is parked in the spot till the duration of being parked is up; the process 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 

means driving into the parking spots from the aisle, the process 𝑢𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔 means driving out of 

the parking spot and merging into the aisle traffic; the process 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 means the vehicle heads 

the exit of the parking lot and moves across the parking lot, and; the process 𝑙𝑒𝑓𝑡 means the 

vehicle has left the system and is moved to the historical list. 

ℙpedestrian = {𝑛𝑜_𝑜𝑝𝑡, 𝑡𝑜_𝑑𝑜𝑜𝑟, 𝑡𝑜_𝑏𝑒_𝑏𝑎𝑐𝑘, 𝑡𝑜_𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑝𝑎𝑠𝑠_𝑏𝑦}  (21) 

where the 𝑛𝑜_𝑜𝑝𝑡 means the pedestrian is moving around in the system without destination such 

as children playing in the parking lot, 𝑡𝑜_𝑑𝑜𝑜𝑟 means the pedestrian is moving towards the 

pedestrian exit, 𝑡𝑜_𝑏𝑒_𝑏𝑎𝑐𝑘 means the pedestrian is temporarily not in the system until the 

parking duration is used up, 𝑡𝑜_𝑣𝑒ℎ𝑖𝑐𝑙𝑒 means the pedestrian returns to the system and walks 

towards the parked vehicle, and 𝑝𝑎𝑠𝑠_𝑏𝑦 means the pedestrian is moving across the parking lot 

without the use of the parking spot. 

𝕄vehicle = {arrive, yield, forward, turn, reverse}     (22) 
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𝕄pedestrian= {arrive, yield, forward, turn, random_moving, on_route, merge} (23) 

The random vector 𝒘 incorporates the random demand distribution and the random 

choice models for parking space choice and path choice. And 𝑛 is the dimension of the random 

vector such that 𝑛 = |𝒘|. 

The state machine is defined of the mapping of the state-action space to the state-action 

space, as shown in Equation (36).  

ℱ: 𝕋 × 𝕊 × ℙ × 𝕄 × ℝ𝑛 → 𝕋 × 𝕊 × ℙ    (24) 

The state machine is applied to all the entities, as shown in Equation (37), where the letter 

with the prime symbol indicates the state in the next time step. 

(𝑡′, 𝑠′, 𝑝′) ← ℱ𝑒(𝑡, 𝑠, 𝑝, 𝑚|𝒘)    ∀𝑒 ∈ ℰ    (25) 

The interaction with other agents is defined as the functions of the state-action-random 

space as shown in Equation (38). 

[(𝑡𝑒
′ , 𝑠𝑒′

′ , 𝑝𝑒′
′ ), (𝑡𝑒

′ , 𝑠𝑒
′ , 𝑝𝑒

′ )] ← ℐ𝑒𝑒′[(𝑡𝑒, 𝑠𝑒 , 𝑝𝑒), (𝑡𝑒′ , 𝑠𝑒′ , 𝑝𝑒)]     ∀𝑒, 𝑒′ ∈ ℰ  (26) 

Choice models are defined as the machines for generating random variables and process 

as shown in Equation (39). 

𝒢: 𝕋 × 𝕊 × ℙ → ℝ𝑛 × ℙ × 𝕄     (27) 

The performance measurements are defined as the functions for evaluating the system for 

given input settings as shown in Equation (40). 

ℋ: 𝕋 × 𝕊 × ℙ → ℝ      (28) 



 

 

 

83 

Statistical measures

State space

Time space

Agent set

InteractionState transition
 

Figure 4-15 The simulation problem diagram 

Figure 4-15 shows the simulation problem is defined to explore the high-dimensional 

space repeatedly, record the explored path and output the measures. The objective of the 

simulation problem is to replicate the real situation on an appropriate detailed level and to 

predicate possible outputs with regards to various scenarios. The statistical simulation result may 

help the engineers and managers to optimize the design, operation and management strategies. 

4.7 Modeling traffic dynamics 

4.7.1 Network representation  

This section presents the network representation and the physical mechanism in the 

parking simulation. In the literature, the representations of simulated traffic networks are 

classified into two categories: the discrete-link network and the continuous-link network. 
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Inspired by the finite element theory, the Cellular Automata (CA) has emerged as a discrete 

approach for modeling complex behavior in the microscopic simulation (Levy, 1992; Wolfram, 

1994). In comparison to the continuous model, the advantage of using CA is that the entities can 

be modeled with intuitive behavioral rules and the CA models are easily implemented and run 

efficiently on the large-scale network. CA microsimulation has been successfully applied to 

modeling vehicular flows, car-following, and pedestrian flow, and is proven to be a sufficient 

approximation of complex traffic flow (Nagel and Rasmussen, 1994; Paczuski and Nagel, 1995; 

Nagel, 1996, 1998; Santé et al., 2010). 

In the previous parking simulation systems, the macroscopic models employed the 

continuous-edge networks since they captured the traffic flow instead of individuals. In the 

microscopic studies, the CA network is employed to describe the occupancy of the location and 

the location structure with the parking facilities. The off-street parking modeling involves the 

specific subdomain of the mixed vehicle and pedestrian traffic modeling. Vo et al. (2016) and 

Zhao et al. (2017) used the cellular network representation to model the vehicle movement 

within parking facilities. However, CA models are not integrated with the choice models and 

their models have limited representability of the details such as vehicle orientation. 

Aisle Cell

Aisle Cell Aisle Cell

Large cell size 

Small cell size 
 

Figure 4-16 The discrete link in the network representation of the parking facility  
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This study uses a CA network representation for the physical network in the parking 

facilities. Figure 4-16 shows the roads in the parking facility are divided into pieces called 

“aisle”, where the length of the large cell is about 4 to 6 meter. The size of the aisles can be 

determined by rule of thumb. Fine-grain simulation results can be derived from a smaller cell 

size of aisles, the trade-off is that finer location dimensions result in more computation and 

additional complexity of the simulation system. The vehicles would occupy one or more pieces 

of aisles. Given the speed of the vehicle is limited to about 15MPH in the parking facility, the 

traffic parameters such as the speed and traffic flow can be simplified to constants. The parking 

spaces are model as discrete cells of locations called “spots”. The exclusive pedestrian way is 

separated and protected by barriers are called “sidewalks”.  

The entities can move from one location to another neighboring location. The occupancy 

of locations can be denoted by binary attributes. If a location is occupied by a car, other entities 

cannot move into this location anymore. If a location is occupied by a pedestrian, other 

pedestrians can move into this location until the number of pedestrians is lower than the location 

capacity. All the locations are connected by weighted directed edges. The edge represents one-

step movement from the tail to the head. The edges can be blocked by the occupancy of other 

overlapping edges or locations. 

In comparison to the previous studies, the proposed method contributes to creating a 

cellular network with connected cells of various sizes. This representation also facilitates the 

collection of the performance measures in the parking system by dividing the continuous space 

into finite elements. In such a manner, the traffic dynamics in the cellular network can be 

described with the rule-based movement logic.  
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4.7.2 Modeling the entity movement 

Based on the cellular network representation, the traffic dynamics can be modeled with 

the logic programming techniques. In logic programming, the facts are a set of given feasible 

conditions, the rules are logical propositions and constraints, and the logical inference can be 

conducted to find the solution subject to a set of facts and rules. The logic programming model is 

to formulate a set of facts and rules to describe the domain problem (i.e. the parking simulation 

system). 

To model the domain concepts in the parking simulation, the following predicates are 

defined to formulate the rule-based model. In the first place, the predicates are defined to 

construct the in-lot network. The predicate 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝐶𝐿, 𝐴, 𝑁𝐿) would construct the network by 

indicating the current location C𝐿, potential actions 𝐴, and the next location 𝑁L. The predicate 

𝑖𝑛 (𝐸, 𝐿) would find the position 𝐿 of the entity 𝐸 as well as the occupancy of location. 

Secondly, the predicates are defined to model the entity behavior. The predicate 𝑐𝑟𝑒𝑎𝑡𝑒 (𝐸) 

would generate an entity 𝐸 or a location 𝐿 in the system. The predicate 𝑣𝑖𝑠𝑖𝑜𝑛 (𝐿, 𝑂, 𝐸) would 

detect the locations 𝐿 in the vision of the entity 𝐸 facing the direction orientation 𝑂. The 

predicate 𝑐ℎ𝑜𝑜𝑠𝑒 (𝑆, 𝐿𝐼𝑆𝑇) would generate a random choice 𝑆 out of a candidate list 𝐿𝐼𝑆𝑇 based 

on proposed choice models.  

The following rules define the creating of vehicles and pedestrians. 

𝑐𝑟𝑒𝑎𝑡𝑒_𝑣𝑒ℎ(𝐸): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐸), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝐸))   (29) 

𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑒𝑑(𝐸): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐸), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛(𝐸))   (30) 

The following rules are defined to build an inner network, where the predicate 𝑠𝑝𝑜𝑡(𝐿) 

means whether the location 𝐿 is of the type 𝑠𝑝𝑜𝑡 and so as the other location type predicates.  
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𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑝𝑜𝑡(𝐿): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑠𝑝𝑜𝑡(𝐿))    (31) 

𝑐𝑟𝑒𝑎𝑡𝑒_𝑎𝑖𝑠𝑙𝑒(𝐿): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑎𝑖𝑠𝑙𝑒(𝐿))    (32) 

𝑐𝑟𝑒𝑎𝑡𝑒_𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒(𝐿): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑒𝑛𝑟𝑎𝑛𝑐𝑒(𝐿))   (33) 

𝑐𝑟𝑒𝑎𝑡𝑒_𝑒𝑥𝑖𝑡(𝐿): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑒𝑥𝑖𝑡(𝐿))    (34) 

𝑐𝑟𝑒𝑎𝑡𝑒_𝑑𝑜𝑜𝑟(𝐿): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑠𝑝𝑜𝑡(𝐿))    (35) 

𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘(𝐿): − 𝑐𝑟𝑒𝑎𝑡𝑒(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘(𝐿))  (36) 

The predicate 𝑣𝑎𝑐𝑎𝑛𝑡 (𝐸, 𝐴, 𝐶𝐿, 𝑁𝐿) refers to checking the connectivity and the vacancy 

of next location 𝑁𝐿 of the entity 𝐸 taking the action 𝐴 at the current location 𝐶𝐿. The checking 

rule is defined as the following rule. 

𝑣𝑎𝑐𝑎𝑛𝑡(𝐶, 𝐴, 𝐶𝐿, 𝑁𝐿): − 𝑖𝑛(𝐶, 𝐶𝐿), 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝐶𝐿, 𝐴, 𝑁𝐿), 𝑛𝑜𝑡(𝑖𝑛(_, 𝑁𝐿))   (37) 

where 𝐶 denotes the index of the vehicle, 𝐴 is the action of the vehicle, 𝐶𝐿 represents the current 

location of the vehicle, and 𝑁𝐿 denotes the next position the vehicle moves to when taking the 

action 𝐴.  

The predicate 𝑚𝑜𝑣𝑒 (𝐸, 𝐴, 𝐶𝐿, 𝑁𝐿) would update the position state of the entity. The 

movement of the vehicle 𝐶 with the action 𝐴 from the position 𝐶𝐿 to 𝑁𝐿 is defined by the 

following rule, where the predicate 𝑓(𝐶, 𝑁𝐿) refers to the process state machine of the entity 𝐶 

moving into the location 𝑁𝐿. 

𝑚𝑜𝑣𝑒(𝐶, 𝐴, 𝐶𝐿, 𝑁𝐿): −𝑣𝑎𝑐𝑎𝑛𝑡(𝐶, 𝐴, 𝐶𝐿, 𝑁𝐿), 𝑐ℎ𝑜𝑜𝑠𝑒(𝐶, 𝑁𝐿),    

𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑖𝑛(𝐶, 𝐶𝐿)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑖𝑛(𝐶, 𝑁𝐿)), 𝑓(𝐶, 𝑁𝐿)       (38) 
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𝑚𝑜𝑣𝑒(𝐶, 𝐴, 𝐶𝐿, 𝑁𝐿): −𝑣𝑎𝑐𝑎𝑛𝑡(𝐶, 𝐴, 𝐶𝐿, 𝑁𝐿), 𝑟𝑜𝑢𝑡𝑒(𝐶, 𝑁𝐿),    

𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑖𝑛(𝐶, 𝐶𝐿)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑖𝑛(𝐶, 𝑁𝐿)), 𝑓(𝐶, 𝑁𝐿)       (39) 

The following rules are examples for adding vehicle movement logic. If the vehicle is in 

the process state 𝑝𝑎𝑟𝑘𝑒𝑑, the movement of the parked vehicle is defined by the following rule. 

With this rule, the parked vehicle does not move. 

𝑚𝑜𝑣𝑒(𝐶, _, _, 𝑁𝐿): − 𝑖𝑛(𝐶, 𝑠𝑝𝑜𝑡(_)),𝑓(𝐶, 𝑁𝐿)         (40) 

For example, supposing the goal is to let all vehicles parked, the predicate 𝑠𝑜𝑙𝑣𝑒 is 

defined to find all vehicles parked by the following rule, where the predicate applies to each 

element of the collection 𝐿𝐼𝑆𝑇. 

𝑠𝑜𝑙𝑣𝑒(𝐿𝐼𝑆𝑇) ∶ − 𝑖𝑛(𝐿𝐼𝑆𝑇, 𝑠𝑝𝑜𝑡(_))           (41) 

In this example, if some vehicles are not parked, the following rule means to try 𝑚𝑜𝑣𝑒 

recursively, where the predicate 𝑐𝑙𝑜𝑐𝑘() refers to moving to the next time step. 

𝑠𝑜𝑙𝑣𝑒(𝐿𝐼𝑆𝑇): − 𝑚𝑜𝑣𝑒(𝐿𝐼𝑆𝑇), 𝑠𝑜𝑙𝑣𝑒(𝐿𝐼𝑆𝑇), 𝑐𝑙𝑜𝑐𝑘()       (42) 

This example of the predicates 𝑚𝑜𝑣𝑒, 𝑠𝑜𝑙𝑣𝑒, and 𝑓 show the if-else condition logic can 

be fully described by stacking up rules instead of nesting conditions. In comparison to the 

nesting conditions, the movement logic built on this feature is more flexible and scalable. 

The following equation defines a rule to find a feasible next movement of the entities, 

where 𝐶 represents the entity, 𝐴 denotes the action, and 𝑋 denotes the potential destinations. 

𝑛𝑒𝑥𝑡_𝑚𝑜𝑣𝑒(𝐶, 𝐴, 𝑋): −𝑖𝑛(𝐶, 𝑌), 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑌, 𝐴, 𝑋), 𝑛𝑜𝑡(𝑖𝑛(_, 𝑋))   (43) 

The following equation defines a rule that finds all possible movements and choose a 
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random movement for the entity, where the predicate 𝑛𝑒𝑥𝑡_𝑚𝑜𝑣𝑒 finds the possible next 

movement of the entity 𝐶, 𝐿𝐼𝑆𝑇 is the list of the possible movements, the built-in predicate 

𝑐ℎ𝑜𝑜𝑠𝑒 selects the one of the candidates with the hypothetical probability or empirical 

distribution. 

𝑟𝑎𝑛𝑑𝑜𝑚_𝑚𝑜𝑣𝑒(𝐶): −𝑓𝑖𝑛𝑑𝑎𝑙𝑙(𝑋, 𝑛𝑒𝑥𝑡_𝑚𝑜𝑣𝑒(𝐶, _, 𝑋), 𝐿𝐼𝑆𝑇), 𝑐ℎ𝑜𝑜𝑠𝑒(𝑌, 𝐿𝐼𝑆𝑇),   

𝑓(𝐶, 𝑌), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑖𝑛(𝐶, _)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑖𝑛(𝐶, 𝑌))   (44) 

The logic model of the entity process transition is detailed in the next section. Appendix 

A presents a sample code in Prolog for elaborating the idea of modeling logic-based traffic 

dynamics.  

4.7.3 Modeling queuing 

The parking lots can be modeled as a multi-server queuing system since each parking 

spot is a parallel server. In the literature, Ceballos and Curtis (2004) investigated queuing in 

parking facilities analyzed the multi-server queuing models and traffic simulation at toll and exit 

areas to capture the queuing at entrances and exits. Ratliff et al. (2016) modeled the urban 

parking system as a set of parallel queues and investigated the user equilibrium and system 

optimal equilibrium of arriving drivers. Thompson and Bonsall (1997); Waterson et al., (2001) 

found PGI systems reduced parking facility queue lengths and marginal system-wide travel time. 

Figure 4-17 shows the general M/M/N queuing model of the parking facilities, where the traffic 

model and the parking space choice model are modeled between the toll plaza and the parallel 

multi-servers. 
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Figure 4-17 Queuing model diagram 

However, the queuing at the toll plaza does not only the conventional queuing model but 

also is impacted by the parking spot choice model and the movement in the in-lot network. 

There’re significant differences between the M/M/N queuing model and the parallel parking 

spots: (a) The parking space choice model creates queues since the vehicle may not use the first 

available server but rejects the feasible spot and looks for other options. (b) And the traffic 

model creates natural physical queues when the vehicle blocks the other vehicle physically. 

Figure 4-18 shows the proposed model involves that the queuing at the parking facility toll 

plazas blocks the traffic in the inner network. Thus, the proposed simulation method outperforms 

the analytical queuing models in capturing the complicated mechanism. 
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Figure 4-18 The exit queue blocking the inner network 

The toll plazas are queuing areas and natural bottlenecks in the traffic system. If the 

entrance queue exceeds the capacity, the road traffic would be impacted by the low efficiency of 

the parking tolling. And the drivers who cannot wait for a time interval would renege. If the exit 

queue exceeds the capacity, the inner network of the parking facility would be severely jammed. 

Majid et al. (2016) investigated the impact of various arrival patterns on the queue at toll plazas.  

In comparison to the existing studies, this study models the queuing at toll plazas with 

queuing as well as spillback to the inner network. The contribution is modeling a mixed queuing 

and spillback at the entrance of the parking facility, which captures the interactions between 

traffic dynamics and queue theory models.  

4.8 Modeling entity behavior 

This study presents a state machine for modeling entity behaviors incorporating both the 

position state and the process state. In this section, the process machine is used to capture the 
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process transition of the entities in the parking facilities. The process machine is formulated in 

the logic programming method. The process machine ℱ of the entity 𝐸 entering the location 𝐿 is 

denoted as the predicate 𝑓(𝐸, 𝐿). The related rules are defined for the process transitions with the 

label of the entity 𝐸 and the goal location 𝐿.  

Figure 4-19 shows the entity process machine for both the Vehicle and the Pedestrian. 

Predicates are defined for each process in the process space ℙ, such as “cruising” and “parked”.  
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Figure 4-19 Parking simulation entity process transition 

This study incorporates two kinds of parking behavior patterns regarding informed 

drivers and uninformed drivers. The informed drivers include the guided drivers, the special 

parking spot users, and the daily users who are familiar with the situation of the parking lot. The 

informed drivers are supposed to travel in the shortest path from the entrance to the destination 
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parking spot as well as from the used spot to the exit of the parking lot. The uninformed driver is 

defined as the driver who finds the parking spot in a cruising-and-searching manner. For both 

kinds of drivers, the arriving transitions are defined as the following rules, where the predicate 

𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑 is a label for the informed drivers and the predicate 𝑎𝑟𝑟𝑖𝑣𝑒(𝐶, 𝐿) is defined for the 

vehicle arrivals in the next section. 

𝑓(𝐶, 𝐿): −𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔(𝐶), 𝑎𝑟𝑟𝑖𝑣𝑒(𝐶, 𝐿), 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑(𝐶),     

𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔(𝐶)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝐶))   (45) 

𝑓(𝐶, 𝐿): −𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔(𝐶), 𝑎𝑟𝑟𝑖𝑣𝑒(𝐶, 𝐿), 𝑛𝑜𝑡(𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑(𝐶)),     

𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔(𝐶)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑐𝑟𝑢𝑖𝑠𝑖𝑛𝑔(𝐶))   (46) 

If the vehicle in the arriving queue does not enter the parking facility in a limited time, 

the vehicle would renege as the following rule, where the predicate 𝑞𝑡(𝐶) means the queuing 

time of the vehicle 𝐶. 

𝑓(𝐶, 𝐿): −𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔(𝐶), 𝑞𝑡(𝐶),        

𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔(𝐶)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑟𝑒𝑛𝑒𝑔𝑒𝑑(𝐶))   (47) 

For the uninformed driver behavior, the transition from the process “cruising” to the 

process “intospot” is defined in the following rule. The meaning of this rule is that if the vehicle 

𝐶 is cruising and will move into a parking spot 𝐿, the state of the vehicle is changed to 

“intospot”. 

𝑓(𝐶, 𝐿): −𝑐𝑟𝑢𝑖𝑠𝑖𝑛𝑔(𝐶), 𝑠𝑝𝑜𝑡(𝐿)        

𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑐𝑟𝑢𝑖𝑠𝑖𝑛𝑔(𝐿))), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡(𝐿))   (48) 
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The following rule determines that the process “cruising” is not changed when the 

vehicle is moving into an aisle.  

𝑓(𝐶, 𝐿): −𝑐𝑟𝑢𝑖𝑠𝑖𝑛𝑔(𝐶), 𝑛𝑜𝑡(𝑠𝑝𝑜𝑡(𝐿))      (49) 

For the informed driver behavior, the entering transition is defined by the following rules, 

where the predicate 𝑟𝑜𝑢𝑡𝑒(𝐿) refers to the optimized route to the selected destination. 

𝑓(𝐶, 𝐿): −𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝐶), 𝑟𝑜𝑢𝑡𝑒 (𝐶, 𝐿), 𝑠𝑝𝑜𝑡(𝐿), 𝑛𝑜𝑡(𝑖𝑛(𝐿))     

𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝐶)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡(𝐶))   (50) 

𝑓(𝐶, 𝐿): −𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔(𝐶), 𝑟𝑜𝑢𝑡𝑒(𝐶, 𝐿), 𝑛𝑜𝑡(𝑠𝑝𝑜𝑡(𝐿))         (51) 

𝑓(𝐶, 𝐿): −𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡(𝐶), 𝑠𝑝𝑜𝑡(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑝𝑎𝑟𝑘𝑒𝑑(𝐶)), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡(𝐶))      (52) 

where the predicate 𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡 checks whether the process of the vehicle 𝐶 is equal to intospot. 

The following two rules define that the parked vehicle waits for the counting down time. 

𝑓(𝐶, 𝐿): −𝑝𝑎𝑟𝑘𝑒𝑑(𝐶), 𝑐𝑑(𝐶), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑢𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝐶)), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑝𝑎𝑟𝑘𝑒𝑑(𝐶)) (53) 

𝑓(𝐶, 𝐿): −𝑝𝑎𝑟𝑘𝑒𝑑(𝐶), 𝑛𝑜𝑡(𝑐𝑑(𝐶))        (54) 

where the predicate 𝑐𝑑(𝐶) means the counting down time of the vehicle 𝐶 and checks whether 

the parked duration of the vehicle 𝐶 is equal to the generated one. If the condition is true, the 

vehicle should unpark. If not, the vehicle 𝐶 should continue until reaching the generated parking 

duration. 

𝑓(𝐶, 𝐿): −𝑢𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝐶), 𝑎𝑖𝑠𝑙𝑒(𝐿), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑙𝑒𝑎𝑣𝑖𝑛𝑔(𝐶)), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑢𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔(𝐶)) (55) 

where the predicate 𝑎𝑖𝑠𝑙𝑒(𝐿) checks whether the location 𝐿 is an aisle. 
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𝑓(𝐶, 𝐿): −𝑙𝑒𝑎𝑣𝑖𝑛𝑔(𝐶), 𝑒𝑥𝑖𝑡(𝐿), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑙𝑒𝑎𝑣𝑖𝑛𝑔(𝐶)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑙𝑒𝑓𝑡(𝐶))  (56) 

𝑓(𝐶, 𝐿): −𝑙𝑒𝑎𝑣𝑖𝑛𝑔(𝐶), 𝑛𝑜𝑡(𝑒𝑥𝑖𝑡(𝐿))       (57) 

𝑓(𝐶, 𝐿): −𝑙𝑒𝑓𝑡(𝐶)          (58) 

The pedestrian process transitions in the process space ℙpedestrian are defined in the 

following rules. 

𝑓(𝑃, 𝐿): −𝑡𝑜𝑑𝑜𝑜𝑟(𝑃), 𝑑𝑜𝑜𝑟(𝐿), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑑𝑜𝑜𝑟(𝑃)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑡𝑜𝑏𝑒𝑏𝑎𝑐𝑘(𝑃)) (59) 

𝑓(𝑃, 𝐿): −𝑡𝑜𝑑𝑜𝑜𝑟(𝑃), 𝑎𝑖𝑠𝑙𝑒(𝐿)       (60) 

𝑓(𝑃, 𝐿): −𝑡𝑜𝑑𝑜𝑜𝑟(𝑃), 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘(𝐿)       (61) 

𝑓(𝑃, 𝐿): −𝑡𝑜𝑏𝑒𝑏𝑎𝑐𝑘(𝑃), 𝑐𝑑(𝑃), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑏𝑒𝑏𝑎𝑐𝑘(𝑃)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑡𝑜𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑃)) (62) 

𝑓(𝑃, 𝐿): −𝑡𝑜𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑃), 𝑠𝑝𝑜𝑡(𝐿), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑡𝑜𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑃)), 𝑚𝑒𝑟𝑔𝑒(𝑃, 𝐿)  (63) 

𝑓(𝑃, 𝐿): −𝑡𝑜𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑃), 𝑎𝑖𝑠𝑙𝑒(𝐿)       (64) 

𝑓(𝑃, 𝐿): −𝑡𝑜𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑃), 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘(𝐿)      (65) 

where the predicate 𝑐𝑑(𝑃) refers to the counting down time of the left time and checks whether 

the left time of pedestrian 𝑃 is equal to the generated one, and the predicate 𝑚𝑒𝑟𝑔𝑒(𝑃) is to 

merge the pedestrian 𝑃 into the corresponding vehicle. If the pedestrian counting down 𝑐𝑑(𝑃) is 

used, the vehicle counting down 𝑐𝑑 (𝐶) does not apply. 

The following rules define the looped pedestrian process transition along with the random 

movement. 

𝑓(𝑃, _): −𝑛𝑜𝑜𝑝𝑡(𝑃), 𝑟𝑎𝑛𝑑𝑜𝑚_𝑚𝑜𝑣𝑒(𝑃)     (66) 
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𝑓(𝑃, 𝐿): −𝑝𝑎𝑠𝑠𝑏𝑦(𝑃), 𝑟𝑜𝑢𝑡𝑒(𝑃, 𝐿)      (67) 

where 𝑃 is the variable of the pedestrian and the processes 𝑛𝑜𝑜𝑝𝑡, 𝑝𝑎𝑠𝑠𝑏𝑦 are not related to the 

type of the location. 

With the presented process machine 𝑓(𝐶, 𝑃), the vehicle and pedestrian parking 

processes are modeled with logic programming technique. In comparison to the flow chart, the 

logic programming can determine where the rules are well-defined rigorously. This study 

contributes to (a) employing a parking spot choice classifier to capture the parking space choice 

behavior and an intersection classifier to capture the route choice behavior; (b) modeling driver 

behavior type with informed (e.g. handicapped, guided, women, etc.), uninformed (e.g. 

uniformly distributed); and (c) modeling interactions with pedestrians.  

4.8.1 Modeling entity intermediate process behavior 

Forward 

Turn Head-in into-spot

Head-in unparking

Rear-in into-spot

Rear-in unparkingReverse

Exiting

Yield

Arriving

 

Figure 4-20 Vehicle movement behavior modeling diagram 

The state transition in the multidimensional space integrates the process transition and the 
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position movement. In the state transition, there exist several intermediate movement processes. 

The extraction of the intermediate movement processes is used to derive the statistical measures 

for aiding the design and management of the parking facility. For example, the critical safety 

measure weaving duration is collected when the vehicle is yielding the pedestrians and other 

vehicles. Figure 4-20 presents the vehicle traffic rules, where the dashed rectangle represents 

intermediate states in the vehicle parking process. To concatenate the intermediate process with 

the defined state transition, the definitions are listed as follows: 

• Arrive. When the coming vehicle arrives at one of the entrances of the parking facility, it 

joins entering the queue and waits until the finishing paying the ticket or checking the 

seasonal permit and getting the right-of-way. The following rules show that if the 

entrance location 𝐿 is not occupied, the vehicle 𝐶 should be put in location 𝐿; otherwise, 

nothing should be done.  

𝑎𝑟𝑟𝑖𝑣𝑒(𝐶, 𝐿): − 𝑞𝑢𝑒𝑢𝑒(𝐶), 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒(𝐿) , 𝑛𝑜𝑡(𝑖𝑛(_, 𝐿)), 𝑎𝑠𝑠𝑒𝑟𝑡(𝑖𝑛(𝐶, 𝐿))(68) 

𝑎𝑟𝑟𝑖𝑣𝑒(𝐶, 𝐿): −𝑖𝑛(_, 𝐿)        (69) 

where the predicate 𝑞𝑢𝑒𝑢𝑒(𝐶) is to check if the head is 𝐶 and pop it. 

• Yield. The vehicle stops and yields when a conflicting entity has the right-of-way. The 

following rule means if the location 𝐿 is occupied, then the vehicle 𝐶 should yield the 

right-of-way. 

𝑦𝑖𝑒𝑙𝑑(𝐶, 𝐿): − 𝑖𝑛(_, 𝐿)        (70) 

• Forward. When the front strip is clear and there’s not a coming pedestrian, the vehicle 

can move on its path forward. The following rule shows the  
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𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝐶, 𝐿): − 𝑚𝑜𝑣𝑒(𝐶, 𝐹𝑜𝑟𝑤𝑎𝑟𝑑, _, _)      (71) 

• Turn. When a vehicle arrives at an intersection or a turning aisle, the vehicle turns if it 

has the right-of-way. 

𝑡𝑢𝑟𝑛(𝐶, 𝐿): − 𝑚𝑜𝑣𝑒(𝐶, 𝐿𝑒𝑓𝑡, _, _), 𝑖𝑛(_, 𝐿)      (72) 

𝑡𝑢𝑟𝑛(𝐶, 𝐿): − 𝑚𝑜𝑣𝑒(𝐶, 𝑅𝑖𝑔ℎ𝑡, _, _), 𝑖𝑛(_, 𝐿)      (73) 

• Reverse. The vehicle goes into a narrow strip when another vehicle goes in the opposite 

direction, there would create a deadlock. In this situation, the blocking vehicle should 

reverse to eliminate the deadlock. 

𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝐶, 𝐿): − 𝑚𝑜𝑣𝑒(𝐶, 𝐵𝑎𝑐𝑘, _, _)          (74) 

• Parking and Unparking. The vehicle moves into the parking spot and finishes the parking 

maneuver. The driver can choose head-in or rear-in parking. If the head-in is chosen, the 

corresponding rear-out unparking maneuvers should be performed. The constraints of 

head-in are defined by the following rules, where the semicolon (;) refers to the “or” 

logic. 

 𝑖𝑛𝑡𝑜𝑠𝑝𝑜𝑡(𝐶): −𝑎𝑠𝑠𝑒𝑟𝑡(ℎ𝑒𝑎𝑑𝑖𝑛(𝐶)), 𝑚𝑜𝑣𝑒(𝐶, (𝐿𝑒𝑓𝑡; 𝑅𝑖𝑔ℎ𝑡), _, _)  (75) 

𝑢𝑛𝑝𝑎𝑐𝑘𝑖𝑛𝑔(𝐶): −ℎ𝑒𝑎𝑑𝑖𝑛(𝐶) , 𝑚𝑜𝑣𝑒(𝐶, (𝐿𝑒𝑓𝑡; 𝑅𝑖𝑔ℎ𝑡), _, _)    (76) 

This study further extended the framework of parking behavior process considering 

pedestrian activities because the safety concerns raise and the deficiency of ignoring pedestrians 

limits the application of the simulation methodology in parking facility design and the 

performance evaluation.  
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The proposed pedestrian behavior model incorporates (a) interaction with vehicles (b) 

moving logic across the parking lot: walking, wandering. Figure 4-21 shows the pedestrian 

intermediate process diagram. 

Walk Random move

To-be-back

To-door

To-vehicle

Merge

Yield
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Random move

 

Figure 4-21 Pedestrian intermediate process diagram 

Figure 4-21 uses the following definitions of intermediate processes, where the solid 

rectangles are for the process state, and the dash rectangles are for the intermediate process. 

• Yield. The pedestrian yields to traffic when the next location on the route is occupied by 

vehicles, which is defined by the following rule. 

𝑦𝑖𝑒𝑙𝑑(𝑃, 𝐿): − 𝑖𝑛(_, 𝐿), 𝑟𝑜𝑢𝑡𝑒(𝐿)      (77) 

• Walk. When the front location is clear and there’s not a coming vehicle, the pedestrian 

can move on its path forward. The following rule defines the forward logic 
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𝑤𝑎𝑙𝑘(𝐶, 𝐿): − 𝑚𝑜𝑣𝑒(𝐶, (𝐹𝑜𝑟𝑤𝑎𝑟𝑑; 𝐿𝑒𝑓𝑡; 𝑅𝑖𝑔ℎ𝑡), _, _), 𝑟𝑜𝑢𝑡𝑒(𝐿)  (78) 

• Merge. When the pedestrians arrive at their vehicles, they get on the vehicles. The 

following rule defines the merge logic, where the predicate 𝑏𝑒𝑙𝑜𝑛𝑔(𝑃, 𝐶) refers to when 

the pedestrian 𝑃 is from the vehicle 𝐶.  

𝑚𝑒𝑟𝑔𝑒(𝑃, 𝐿): −𝑏𝑒𝑙𝑜𝑛𝑔(𝑃, 𝐶), 𝑖𝑛(𝐶, 𝐿), 𝑟𝑒𝑡𝑟𝑎𝑐𝑡(𝑖𝑛(𝑃, _))   (79) 

4.8.2 Modeling driver parking spot and route choice modeling 

In the literature, the previous studies utilized logit models to capture parking space choice 

behavior. van der Waerden et al. (2003) proposed a tree-like process and a nested logit model, 

where the drivers decide parking strip and parking spot sequentially. In this setting, the drivers 

should have a global view of the parking facility with the guidance system. Vo et al. (2016) 

proposed a decision tree to capture the parking choice model, however, didn’t provide details 

about their method, model calibration and how to apply their choice model in the simulation 

environment. However, their model could not apply when the drivers don’t have such a view and 

cruise for available spaces. Li (2016) employed a similar process to evaluate the parking 

guidance system. In Li’s specific case, the drivers don’t need to have a global view since the 

layout of the parking facility has a tree-like topology. Ji et al. (2009) put forward the key factors 

of parking space choice include walking distance, cruising distance, distance to monitors (safety 

concern), state of the lane to the parking space (strip occupancy), sunlight shelter, state of 

available parking space (side spot occupancy). Chen et al. (2011) proposed a parking space 

choice model with a fuzzy set based on Ji’s model.  

However, the previous studies have the critical deficiencies: (a) their models do not apply 

when the drivers are not well-informed and cruise for available spaces; (b) their models are case-
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specific and hard to calibrate in the other parking facilities. When designing the parking 

simulation system, it shows an incompatibility between the parking spot choice model and the 

movement behavior due to the separation in the behavior study. In the parking simulation, the 

integration of the choice models and the movement behaviors is critical to replicate the driver 

behavior. 

This study incorporates two kinds of parking choice patterns regarding the informed 

drivers and uninformed drivers, respectively: (a) uninformed driving which is defined as cruising 

and searching without guiding system, (b) informed driving which is defined driving with the aid 

of parking guiding information, or driving to reserved spaces directly. For the guided driving, the 

proposed system assumes the drivers have full knowledge of the parking facilities such as the 

position of the parking space, and the shortest path to the destination.  

 

Figure 4-22 The diagram of vehicle's parking spot choices 

Figure 4-22 shows an example of the cruising and searching behavior without guiding 

system, where the car in the aisle is looking for the potential parking spot, the dashed circle is the 

vision of the driver, the numbered rectangles are the feasible options for the cruising vehicle, the 

point dash rectangle is out of the vision of the driver. Note that the vision could be in any shape 

depending on the graphical calculation for the visible area of the driver, in this study the vision is 
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simplified as a circle in order to model the localized parking spot choice. The difficulty of the 

previous studies is that the multinomial logit model is not capable to predict the choice out of the 

available parking spots such as label 1, 2, 3 and the next aisle such as label 4 since the aisle 

location does not have the attributes of the parking spots.  

To address this issue, this study uses the binary classification methods such as the 

binomial logit model to predict whether or not to take each option, where the predicted target 

“one” denotes taking this option, otherwise rejecting this option. The proposed parking spot 

choice model assumes the driver should make the decision one-by-one without aftereffect. The 

following rule defines the choice behavior of the entities, where the variable 𝐿𝐼𝑆𝑇 refers to the 

list of options, the built-in predicate 𝑔𝑠(𝐿, 𝐿𝐼𝑆𝑇) extracts the attributes of the options and makes 

predictions of the chosen spot 𝐿.  

𝑐ℎ𝑜𝑜𝑠𝑒(𝐿, 𝐿𝐼𝑆𝑇): −𝑣𝑖𝑠𝑖𝑜𝑛(𝐶, 𝐿𝐼𝑆𝑇), 𝑔𝑠(𝐿, 𝐿𝐼𝑆𝑇), 𝑠𝑝𝑜𝑡(𝐿)   (80) 

In the parking spot choice model, the critical attribute of the potential spot is the walking 

distance from the parking spot to the pedestrian exit or the walking destination in the parking lot. 

The other attributes such as gender are case-specific and should be developed with local survey 

data. 

The route choice behavior is modeled regarding the information perceived by the drivers 

as well. In the route choice model, the critical attribute is the length of the potential path. If the 

parking guidance system is applicable, the occupancy of the path should be considered. For the 

informed drivers, the first 𝑘 shortest paths within the parking are modeled in the following rule, 

where the predicate 𝑔𝑟(𝑅) is the choice model of the routes and the predicate 𝑝𝑎𝑡ℎ(𝑅, 𝐿).refers 

to whether the location 𝐿 is on the path 𝑅. 
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𝑟𝑜𝑢𝑡𝑒(𝐿): −𝑔𝑟(𝑅), 𝑝𝑎𝑡ℎ(𝑅, 𝐿)      (81) 

 

Figure 4-23 The diagram of the route choice at the intersection 

For the uninformed drivers, the vehicle route in the parking lot is not decided at the 

beginning of the vehicle entering the system but at the intersections. Figure 4-23 shows the 

diagram of the route choice at the intersection. In the route choice model, the driver should 

choose the desired direction for choosing at the intersection. According to the calibration results 

and the previous studies, the critical attribute is the aisle occupancy of the strip. If at least one of 

the aisles is occupied, the probability of choosing this strip reduces. If the variable message sign 

provides the spot occupancy of the strip, the route choice behavior should include the spot 

occupancy as attributes. The strip is optional, where the strip consists of a set of aisles and spots. 

The strip choice model is integrated into the model by the following rule, where the predicate 

𝑔𝑎(𝑅) is the choice model of the routes and the predicate 𝑖𝑛𝑠𝑡𝑟𝑖𝑝(𝑆, 𝐿).refers to whether the 

location 𝐿 is on the strip 𝑆. 

𝑐ℎ𝑜𝑜𝑠𝑒(𝐿, 𝐿𝐼𝑆𝑇): −𝑔𝑎(𝐿, 𝑆, 𝐿𝐼𝑆𝑇), 𝑖𝑛𝑠𝑡𝑟𝑖𝑝(𝑆, 𝐿), 𝑎𝑖𝑠𝑙𝑒(𝐿)   (82) 

In the previous studies, the vision and the scope of the feasible parking spot are not 

considered. The choice classifier models are calibrated separately and are able to be used to 
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produce predictions as hyperparameters. To address the incompatibility of the movement and the 

choice model, the proposed model has the advanced features: (a) cooperating with the traffic 

dynamics model without the topology dependence, (b) incorporating the parking behavior 

subject to the parking guidance system, (c) easy to be calibrated and tuned. The deficiency of the 

proposed choice model includes the assumption that the options are standalone decisions and can 

be captured by the binary classification model. 
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5 System application 

5.1 Charting and visualization 

The proposed system incorporates the following charting and visualization modules: (a) curves for 

temporal measures, (b) heatmaps for spatial measures (van der Waerden et al., 2003), (c) 

histograms for outputs and measures, and (d) animation for micro-behaviors. Animation provides 

an intuitive understanding and insight into system dynamics rather than just predicting the output 

of the studied case to support decisions (Yuan and Liu, 2014; Vo et al., 2016). In the proposed 

parking simulator, the outputs are visualized in preliminary web-based animates and are able to be 

present with more user-friendly animation engine. In the proposed parking simulation system, the 

curve, histogram plotting, and animation are designed to produce a flexible ready-to-deliver 

application for the full-scale real-world scenarios. 

The simulation settings can be inputted via dialogs in the web Graphical User Interface 

(GUI) or Representational State Transfer (REST) API. The arrival and departure distributions are 

inputted as CSV files in the simulation model. The initial occupation rate is set to 0.3 according 

to the field survey data. The system yields the simulation results in 10 seconds. The history of all 

entities and locations is recorded for further analyses. From the historical record, the simulation 

system can extract informative Key Performance Indicators (KPI). 

To visualize the result of the simulation, the charts for the efficiency and the safety on the 

system level, the location level, and entity level can be outputted via the web GUI. Figure 5-1 

shows a heatmap for the utilization of the locations, where the higher utilization is in red, and the 

lower utilization is in green. It shows the spots and aisles closer to the pedestrian exits are more 

frequently used, which is consistent with the choice behavior model. In the spot choice behavior 

model, the walking distance from the spot to the pedestrian exit or destination has the largest 
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weight. Note that this behavior feature is founded in most of the parking facilities but may not be 

homogeneous in every parking facility. 

 

Figure 5-1 A sample case for location measures in the proposed system 

Figure 5-2 shows plots of the disaggregated key performance indicators of the 

simulation. The peak in the beginning in Figure 5-2(b) is due to the initialization for the 

nonempty facility. This period is critical for replicating the system dynamics from a state when 

the system is not empty. The warming-up process would create the equivalent number of 

vehicles and initialize the state of each entity. In the final report, the warming-up period should 

not be counted for the overall performance measure.  

The critical finding of this study is the active capacity of the parking system. The active 

capacity is defined as the largest number of actively moving vehicles in the parking system. If 

one vehicle is waiting for any possible movement towards the destination or the intermediate 

destination, the vehicle is not active. The parking simulator finds the active capacity of the 
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existing facility and the planning layout. Note that the active capacity is essentially an attribute 

of the parking facility layout subject to environmental parameters such as the arrival distribution 

and departure distribution. During the peak hour or special event, the arrival or the departure rate 

is considerably greater than the designed capacity, and the entrances would be jammed, and the 

actual throughput of the system would be lower than the active capacity. The design of parking 

facility involves compromise of the limitation of land use, the settings of entrances, the number 

and geometry of spots. The parking simulator helps the designers to detect the potential design 

deficiency. The active capacity is an indicator for potential which may cause a deadlock or 

reduce the throughput of the parking facility. To find the critical active capacity, more replicates 

should be tested for finding the critical blowing-up point of the simulated parking facility. The 

arrival and departure pattern should be calibrated with the land use and customer source 

surrounding. With the fixed arrival and departure pattern, the active capacity finds the constant 

throughput of a layout. A layout with more spots is desired since it would provide more servers, 

however, may also create more blockages and reduce the active capacity and the user experience. 

The desired layout should compromise the efficiency of the land use and the traffic throughput 

during the peak hour. 
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(a) Number of active vehicles in the system 

 

(b) Number of cars in the system 

 

(c) Number of pedestrians in the system 

 



 

 

 

109 

 

(d) Number of turnovers in the system 

 

(e) The utilization of parking spots in the system 

Figure 5-2 Overall key performance indicators of the proposed system 

 

(a) the histogram of the duration of being occupied spot 
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(b) the histogram of the duration of being occupied spot 

Figure 5-3 The histograms of the proposed system 

 

 

(a) The occupied time of the aisles 
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(b) The occupied time of the spots 

Figure 5-4 The key performance indicators of locations in the proposed system 

 

 

(a) The duration of vehicle-pedestrian weaving in the system 
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(b) The time of arrival for vehicles in the system 

 

(c) The duration of vehicles in the system 

Figure 5-5 The key performance indicators of vehicles in the system 
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(a) The arrival time of pedestrians 

 

(b) The time to be back from the exit of pedestrians 
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(c) The duration of pedestrians in the system 

Figure 5-6 Pedestrian key performance indicators in the proposed system 

5.2 Simulation-aided design 

The proposed simulation system provides a new methodology for the parking lot design and 

optimization. In the traditional methodology, the designer does not have a dedicated tool for the 

simulation analysis to test the potential outcomes given the infrastructure configurations and 

assumptions. The proposed system can provide informative KPIs to aid the design of smart 

parking facilities with multiuse, automated spots, shared spots, electrical-charging spots, etc. The 

simulation-aided design incorporates a forward-back process. The designer iterates the draft 

design runs the simulation to extract the feedbacks and revises the design until the final design. 

The design criteria include (a) maximizing the efficiency of land use, (b) fulfilling the 

requirements of the standard and the regulations, (c) providing the vision for the safety concern, 

and (d) supporting the development of smart parking facilities. 

For illustrating the proposed system, the following cases and discussions address the 

critical practical problems: (a) The evaluation of the smart check-in device, (b) the evaluation of 
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flexible pricing policy, (c) the evaluation of the special parking spots, and (d) the evaluation of 

reverse parking policy. Note that to simplify the scenarios, the testing has the assumption that the 

inter-arrival time of vehicles is normally distributed, and the inter-departure time of vehicles is 

exponentially distributed, and each testing case is repeated for 100 replicates for stable average 

outputs. 

5.2.1 The evaluation of the smart check-in device 

In the real-world case, the UWM Transportation Department plans to install the smart 

check-in devices at the entrances of the parking facilities. The smart device can recognize the 

license plate number to automatically check-in and check-out when the vehicle arrives and 

departs. The involvement of this device has several benefits: (a) This device can reduce the 

duration for check-in and check-out by simplifying the pass checking produce. (b) The customers 

don’t have to bring the identification pass for this service. (c) The license plate number 

identification can avoid seasonal parking pass fraud. In the analysis of the benefit of this device, 

the simulation system helps the evaluation of the impact of the new device. The device is 

assumed to reduce the mean of service time in the arrival queue and the departure queue. In the 

settings of the simulation system, the arrival distribution supposing the arrival and the departure 

distributions and the layout configurations are not changed. The arrival and departure entrance 

queuing duration distribution are used as the inputs for smart check-in devices for the 

benchmarking. Figure 5-7 shows the results of comparing the scenarios across multiple 

interarrival with and without the smart check-in device, where the primary y-axis is for the 

average daily revenue and the secondary y-axis is for the average waiting time of vehicles. In 

Figure 5-7, the device does not have a great impact on the performance of the parking facilities. 

Note that the revenue counts only the hourly ticket payments and does not include the seasonal 
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permit incomes. 

 

Figure 5-7 The comparison of facility performance with and without the smart checking device 

The operational concerns focus on how to improve the service level and customer 

experience of the parking infrastructure. Note that the customer experience cannot be simply 

modeled with simulated quantitative measures due to the external impact factors. The smart 

check-in devices save the customers’ time when rushing for parking, and customers enjoy the 

techniques of using intelligent devices and are willing to pay for the service fee. Those factors 

cannot be tracked by the proposed system. 

5.2.2 The evaluation of the flexible pricing policy 

To maximize the profit of the parking service, the more flexible pricing strategies can be 

tested. The critical operational concern is the impact of price. The impact of the change in hourly 

price or seasonal permit depends on the elasticity of the parking fee and the traffic mode choice 

of the travelers. According to the survey of the Transportation Department, the parking service 

on campus is of low elasticity and faculty, crew, and students have strong propensity to drive to 

the campus. The income of the parking sector is used to support the non-profitable sectors such 

as the transit sector, the Be On the Safe Side (BOSS) program, etc. Increasing the parking price 
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is definitely possible to earn more profit, which would induce the complaints from customers. 

Thus, the pricing of the parking service also depends on the negotiation between the parking 

operators and the stakeholders.  

For testing the impact of pricing of the parking system, the flexible pricing policy is 

defined as that the price of spots with higher utilization is greater than the price of spots with 

lower utilization. The customers prefer the spots closer to the pedestrian exits. Thus, the flexible 

pricing policy would balance the geometric distribution of the occupied parking spots. Figure 5-8 

compares the average daily revenue of the scenarios with and without the flexible pricing policy. 

Figure 5-8 shows when the inter-arrival time is lower than 8 min, the flexible pricing policy has 

greater revenue, and when the inter-arrival time is greater than 8 min, the increment of average 

daily revenue is marginal. Note that the revenue does not include the incomes from the seasonal 

permit users and this numerical test does not involve the price elasticity which means the inter-

arrival and inter-departure time do not change over the price changes. 

 

Figure 5-8 The evaluation of flexible pricing policy 
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5.2.3 The evaluation of the special parking spots 

In the modern parking facilities, special types of parking spots, such as shared parking 

spots, electrical-charging parking spots, woman-priority parking spots, attract attention of traffic 

planners and policymakers. In the UWM campus, the electrical-charging parking spots are of 

low utilization, because the electrical vehicles are of low ownership. In the interview to the 

customers in the neighbor community of Bayshore Mall, Glendale, WI, the customers complain 

about the electrical-charging spots because the other spots are occupied while the electrical 

charging spots are empty in the most time. The reduction in performance is also the side effect of 

the special spot. The electrical charging spot is not only for the charging demand of the electrical 

car owner but also granting the priority of parking for the electrical vehicles and encouraging the 

potential of the electrical-powered vehicles. In the US, the tax on purchasing electrical vehicles 

is greater due to the lack of oil tax. The reserved parking spots for electrical vehicles are one of 

the limited ways to promote these vehicles with a new power source. According to the regional 

regulation in Beijing, China, at least 10% of the parking spots in the parking facilities shall be 

available for electrical charging and at least one of the parking spots shall be reserved parking 

spots.  

To address these design concerns, this study provides a comprehensive tool to evaluate 

the potential outputs of the proposed design. To investigate the impact of the number of the 

electrical-charging only spots, it is assumed that the electrical-charging only spots do not have a 

time limit and these spots are located in the spots with the lowest utilization. Figure 5-9 

illustrates the number of electrical-charging only spots impacts the average utilization, where the 

x-axis is the number of electrical-charging, the primary y-axis is for the average utilization of all 

spots, and the secondary y-axis is for the average daily revenue. Figure 5-9 shows the number of 

electrical-charging only spots has a negative correlation with the average utilization and the 
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average daily revenue. This result is consistent with the fact that the ratio of the electrical vehicle 

is much lower than that of the gas vehicles according to the field survey. For the operational 

concern, the parking duration limitation of the electrical charging spots should be optimized. If 

the duration limitation is too low, the current customers cannot get served. If the duration is too 

high, the new customers may get rejected to the service. Figure 5-10 illustrates the impact of the 

duration limitation on the average utilization and the average daily revenue, where the number of 

electrical charging only spot equals one. Figure 5-10 shows the desired duration limitation is 240 

min and 30 min with regards to the average utilization, and when the duration limitation is 30 

min, the average daily revenue is optimized. However, the customers would feel worried about 

the penalty of the duration limit. Thus, the current policy of the campus parking facility is the 4-

hour parking duration limit. 

 

Figure 5-9 Comparison of average utilization when setting the various number of electrical-charging only spots 
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Figure 5-10 Comparison of various time limitation of electrical charging spots 

 

New types of special spots are created since parking facilities have great externalities in 

land use, traffic, and business. Women priority spots are established for the door of vehicles can 

be fully opened and letting the strollers getting on and off, where the priority means the users of 

these spots are not legally enforced by the law. The objective of the establishment of these spots 

is out of the business decision. The setting of these special spots depends on the neighboring 

community of the parking facility. For example, the university parking facility doesn’t prefer the 

setting of women priority spots. However, such spots are preferred by the shopping centers and 

the hospitals because the settings of spots show the parking facility and the business managers 

care about the experience of woman customers, which promotes the business from the parking 

resource supply. Note that the business concern is one of the design criteria of the parking lot, 

and the proposed system does not capture the external business impact of the parking service. 

For commercial sites, the shopping center manager and the operator may like to provide 

free parking for customers or parking hour extension for free. In other cases, the reserved spots 

are free for customers within a limited time (usually 30 minutes). For example, the reserved 



 

 

 

121 

parking spot for online pickup customers is established in Bayshore Mall, Glendale, WI. 

From the view of the urban traffic management, the manager of public parking lot plans 

to establish reserved parking spots for the car-sharing and carpooling vehicles. If the customers 

in the parking facilities have similar destinations, establishing the car-pooling spots benefit the 

mobility of the travelers. The objective is to promote the sharing of vehicles for serving more 

passengers in congested areas since the parking resource takes considerable lane use in the urban 

area and is of low efficiency.  

The special spots may take more spaces and not the economy in the land use and impact 

the experience of the normal customers. However, the design concept is based on the external 

effects of the parking service instead of the profit and the performance of the facility. The setting 

of the special spots depends on the case-specific concern of the owner and manager. The 

proposed system is able to reduce the side effect of the setting of the special spot to the 

minimum. 

5.2.4 The evaluation of the reverse parking policy 

In Japan, the reserve or rear-in parking is encouraged and widely accepted as the parking 

etiquette. In the US, it still raises the debating of which is safer, rear-in or head-in. And it is 

reported that reverse parking is illegal for some stalls but encouraged in others. There’re two 

safety reasons to use the reverse parking (Huey et al., 1997): (a) The rear-in parking ensures 

reversing errors occur only within the confines of the car spot, and not in the open areas where 

moving vehicles and pedestrians. (b) When leaving the parking space, the vision of the reverse 

parking driver is clearer than the head-in parking driver. 

National Highway Traffic Safety Administration (NHTSA) estimated that “267 people 
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are killed and 15,000 injured each year by drivers who back into them usually in driveways or 

parking lots” in 2012. NHTSA has ruled that all new vehicles under 10,000 pounds (including 

passenger vehicles, buses, and trucks) must be equipped with rear visibility technology by May 

2018. 

There lacks the evaluation of the policy of encouraging rear-in parking. The proposed 

system can not only measure the safety of the maneuvers, but also the efficiency of the parking 

facility with compliance with the policy. In the simulation model, the assumptions are made to 

replicate the simplified scenarios. The reverse-only parking policy is assumed for testing 

purpose. The non-restrictive parking policy is used as the benchmark. According to the 

experimental results, the rear-in parking policy can reduce the number of weaving between the 

pedestrians and the reversing vehicles, which means the rear-in parking is safer than the head-in 

parking. In addition, the efficiency of the reverse-only case is greater than the non-restrictive 

case. When another vehicle is waiting to use the same spot, the pulling-out maneuver of reverse 

parking does not occupy the conflicting right-of-way.  

Note that the restrictive policy is not made as the law in the real world. To investigate the 

impact of the application of this policy, the simulation is used to derive the outcome. Figure 5-11 

shows the simulated results show the rear-in policy may help to relieve the congestion in the 

parking system during vehicle departure rush hour. However, Figure 5-11 (a) shows the rear-in 

only policy may increase the duration of the parking maneuvers and reduce the efficiency during 

arrival rush hour. The range of mean inter-departure time in Figure 5-11 (b) is derived from the 

field survey data while the mean inter-departure time in Figure 5-11 (c) is assumed. Figure 5-11 

(b) and (c) show the efficiency improvement depends on the departure pattern of the parking 

facility. In this case, the university does not have a significant p.m. rush hour, thus, the efficiency 
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benefit of the policy is marginal. 
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(a) with a various mean of the inter-arrival time 

 

(b) with a various mean of the inter-departure time 
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(c) with a various mean of the inter-departure time 

Figure 5-11 Comparison of performances with and without rear-in only policy under various scenarios 
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6 Summary and conclusion 

This research proposes an agent-based simulation framework for parking choice modeling to 

capture parking behaviors. The elements of the parking system, such as drivers, pedestrians, 

aisles, spots, entrances, etc., are modeled as agents. The agents are classified based on the 

measures and behaviors into two categories: entities (e.g. drivers and pedestrians) and locations 

(e.g. aisles and spots). The processes transition and the movement in the in-lot network of drivers 

and pedestrians are modeled as state machines. This study originally proposed to formulate the 

state machines of the processes transition and the movement in the first-order logic framework. 

The logic-based rules are presented in the pseudocode, which costs trivial efforts to be justified 

and solved by the logic programming language Prolog. The consequent choice behaviors of the 

entities are modeled to replicate the spot choice and route choice within the parking facility. The 

drivers are classified in the informed and uninformed. The informed drivers have the global 

vision of the parking lot and make choice based on the conventional multiple classification 

models. The uninformed parking spot choice model assumes the driver should make the decision 

one-by-one without aftereffect. In the parking spot choice model, the critical attribute of the 

potential spot is the walking distance from the parking spot to the pedestrian exit or the walking 

destination in the parking lot. In the route choice model, the critical attribute is the length of the 

potential path. If the parking guidance system is applicable, the occupancy of the path should be 

considered. The proposed model is extendable for modern special types of parking spots and 

intelligent parking management system and parking guidance information system. The historical 

record and statistics, such as utilization, turnover, occupied duration, etc., are collected to further 

analyze the potential outcome of the design and operational decision. The parking simulation 
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engine is implemented in Java to justify the state machine and behavior models. 

To investigate the performance of the proposed simulator, this study designs a Software 

as a Service (SaaS) Graphic User Interface (GUI) to visualize the movement of drivers and 

pedestrians within a parking lot and implements the simulation engine in Java and the web-based 

GUI in HTML/JavaScript/CSS. A methodology for data collection, processing, and extraction of 

user behaviors in the parking system is also developed. The application of the developed 

simulation system using a real-world case study demonstrates its capability of retrieving 

quantified measures and key performance indicators to support decisions in designing, 

maintaining, operating parking facilities.  

To justify the proposed methodology, real-world data are collected, and the parameters of 

the proposed model are calibrated in the case of a surface parking lot on campus. The results of 

the goodness of fitting test show the inter-arrival is distributed exponentially with the mean 

48.01 seconds. The experiments show the critical active capacity of this parking lot is 10 

vehicles when the inter-arrival mean is 18 second. A Long-Short Term Memory (LSTM) neural 

network is used to predict the dynamic arrival and departure of the vehicles. The LSTM shows 

the prediction accuracy is 91% in the studied case. The measures of the simulation results may 

help to select the best parking lot layout. The heatmap for the utilization of the locations shows 

the spots and aisles closer to the pedestrian exits are more frequently used, which is consistent 

with the choice behavior model. The critical finding of this study is that the active capacity of the 

parking system. The definition of active capacity is the largest number of actively moving 

vehicles in the parking system. The parking simulator finds the value of the active capacity of the 

existing facility and the planning layout.  

A discussion is conducted to compare the proposed parking simulator with the state-of-
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practice simulators. In comparison to the existing simulators, the proposed model can facilitate 

the specific traffic dynamic and choice models for the parking simulation.  

A numerical study is conducted to justify the application of the proposed system and 

provide a simulator aided design method. The numerical tests show: (a) the smart check-in 

device has marginal benefits in reducing the vehicle waiting time. (b) the flexible pricing policy 

may increase the average daily revenue if the elasticity of the price is not involved. (c) The 

number of electrical charging only spots have a negative impact on the performance of the 

parking facility. (d) The rear-in only policy may increase the duration of the parking maneuvers 

and reduce the efficiency during arrival rush hour. 

The proposed system can provide sufficient information to aid the design of smart 

parking facilities with multiuse, automated spots, shared spots, electrical charging, etc. Real-

world cases are investigated to illustrate the simulator-aided parking facility design and 

management. Note that the objective of design and management is to improve the customer 

experience, however, the customer experience cannot be simply modeled with simulated 

quantitative measures due to the external impact factors. 

Future research may include: (a) the calibration and integration with the parking guidance 

system and the sensor network within the parking facility; (b) the optimal strategy of the 

temporal permit-only policy if the permit user has the flexible reserved parking spot during the 

peak hour; and (c) the case study in multilevel and automated parking facilities. 
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APPENDICES 

APPENDIX A A sample case for concurrent computing 

 

Figure A-1 A toy inner parking lot network 

The concurrent version of the proposed simulation engine is implemented in Java. The 

example is encoded in Java, and the prompt output of this sample case is listed as follows: 

[INFO] [04/25/2018 15:54:46.122] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] add location AISLE_1 

[INFO] [04/25/2018 15:54:46.122] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] create clock 

[INFO] [04/25/2018 15:54:46.122] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] add location AISLE_2 

[INFO] [04/25/2018 15:54:46.122] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] add location AISLE_3 

[INFO] [04/25/2018 15:54:46.122] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] add location SPOT_1 

[INFO] [04/25/2018 15:54:46.123] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] add location SPOT_2 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] add location ENTRANCE_1 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] adding edge AISLE_1_AISLE_2 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] adding edge AISLE_2_AISLE_3 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] adding edge SPOT_1_AISLE_2 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-9] 

[akka://simulator/user/printer] edge out akka://simulator/user/lot/AISLE_1 added 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-9] 
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[akka://simulator/user/printer] edge in akka://simulator/user/lot/AISLE_2 added 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-9] 

[akka://simulator/user/printer] edge out akka://simulator/user/lot/AISLE_2 added 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-9] 

[akka://simulator/user/printer] edge in akka://simulator/user/lot/AISLE_3 added 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-9] 

[akka://simulator/user/printer] edge in akka://simulator/user/lot/AISLE_2 added 

[INFO] [04/25/2018 15:54:46.152] [simulator-akka.actor.default-dispatcher-9] 

[akka://simulator/user/printer] edge in akka://simulator/user/lot/AISLE_2 added 

[INFO] [04/25/2018 15:54:46.153] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] edge in akka://simulator/user/lot/AISLE_2 added 

[INFO] [04/25/2018 15:54:46.153] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] edge in akka://simulator/user/lot/AISLE_2 added 

[INFO] [04/25/2018 15:54:46.153] [simulator-akka.actor.default-dispatcher-5] 

[akka://simulator/user/printer] adding edge SPOT_2_AISLE_2 

[INFO] [04/25/2018 15:54:50.108] [simulator-akka.actor.default-dispatcher-11] 

[akka://simulator/user/printer] now running 

[INFO] [04/25/2018 15:54:50.112] [simulator-akka.actor.default-dispatcher-10] 

[akka://simulator/user/printer] VEHICLE_0 is created 

[INFO] [04/25/2018 15:54:50.114] [simulator-akka.actor.default-dispatcher-11] 

[akka://simulator/user/printer] create a new vehicle 

[INFO] [04/25/2018 15:54:50.119] [simulator-akka.actor.default-dispatcher-2] 

[akka://simulator/user/printer] move VEHICLE_1 to ENTRANCE_1 

[INFO] [04/25/2018 15:54:50.121] [simulator-akka.actor.default-dispatcher-13] 

[akka://simulator/user/printer] entrance is occupied 

/user/lot/AISLE_2 

[INFO] [04/25/2018 15:54:50.130] [simulator-akka.actor.default-dispatcher-10] 

[akka://simulator/user/printer] move VEHICLE_1 out of /user/lot/AISLE_1 

[INFO] [04/25/2018 15:54:50.131] [simulator-akka.actor.default-dispatcher-10] 

[akka://simulator/user/printer] move VEHICLE_1 to /user/lot/AISLE_2 

[INFO] [04/25/2018 15:54:50.131] [simulator-akka.actor.default-dispatcher-11] 

[akka://simulator/user/printer] VEHICLE_1 is created 

/user/lot/AISLE_3 

[INFO] [04/25/2018 15:54:50.132] [simulator-akka.actor.default-dispatcher-8] 



 

 

 

141 

[akka://simulator/user/printer] create a new vehicle 

[INFO] [04/25/2018 15:54:50.132] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] move VEHICLE_1 out of /user/lot/AISLE_2 

[INFO] [04/25/2018 15:54:50.132] [simulator-akka.actor.default-dispatcher-11] 

[akka://simulator/user/printer] move VEHICLE_2 to ENTRANCE_1 

[INFO] [04/25/2018 15:54:50.132] [simulator-akka.actor.default-dispatcher-10] 

[akka://simulator/user/printer] move VEHICLE_1 to /user/lot/AISLE_3 

[INFO] [04/25/2018 15:54:50.133] [simulator-akka.actor.default-dispatcher-9] 

[akka://simulator/user/printer] entrance is occupied 

/user/lot/AISLE_2 

[INFO] [04/25/2018 15:54:50.133] [simulator-akka.actor.default-dispatcher-2] 

[akka://simulator/user/printer] VEHICLE_1: next location is occupied 

[INFO] [04/25/2018 15:54:50.133] [simulator-akka.actor.default-dispatcher-11] 

[akka://simulator/user/printer] move VEHICLE_2 out of /user/lot/AISLE_1 

[INFO] [04/25/2018 15:54:50.134] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] move VEHICLE_2 to /user/lot/AISLE_2 

[INFO] [04/25/2018 15:54:50.134] [simulator-akka.actor.default-dispatcher-14] 

[akka://simulator/user/printer] VEHICLE_1: next location is occupied 

[INFO] [04/25/2018 15:54:50.134] [simulator-akka.actor.default-dispatcher-14] 

[akka://simulator/user/printer] VEHICLE_2 is created 

[INFO] [04/25/2018 15:54:50.135] [simulator-akka.actor.default-dispatcher-12] 

[akka://simulator/user/printer] VEHICLE_2: next location is occupied 

[INFO] [04/25/2018 15:54:50.135] [simulator-akka.actor.default-dispatcher-12] 

[akka://simulator/user/printer] create a new vehicle 

[INFO] [04/25/2018 15:54:50.135] [simulator-akka.actor.default-dispatcher-6] 

[akka://simulator/user/printer] move VEHICLE_3 to ENTRANCE_1 

[INFO] [04/25/2018 15:54:50.136] [simulator-akka.actor.default-dispatcher-11] 

[akka://simulator/user/printer] entrance is occupied 

[INFO] [04/25/2018 15:54:50.136] [simulator-akka.actor.default-dispatcher-11] 

[akka://simulator/user/printer] VEHICLE_2: next location is occupied 

[INFO] [04/25/2018 15:54:50.136] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] VEHICLE_1: next location is occupied 

[INFO] [04/25/2018 15:54:50.136] [simulator-akka.actor.default-dispatcher-3] 

[akka://simulator/user/printer] VEHICLE_3: next location is occupied 
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[INFO] [04/25/2018 15:54:50.137] [simulator-akka.actor.default-dispatcher-5] 

[akka://simulator/user/printer] entrance is occupied 

[INFO] [04/25/2018 15:54:50.138] [simulator-akka.actor.default-dispatcher-14] 

[akka://simulator/user/printer] VEHICLE_2: next location is occupied 

[INFO] [04/25/2018 15:54:50.138] [simulator-akka.actor.default-dispatcher-14] 

[akka://simulator/user/printer] VEHICLE_1: next location is occupied 

[INFO] [04/25/2018 15:54:50.138] [simulator-akka.actor.default-dispatcher-7] 

[akka://simulator/user/printer] VEHICLE_3: next location is occupied 

[INFO] [04/25/2018 15:54:50.138] [simulator-akka.actor.default-dispatcher-7] 

[akka://simulator/user/printer] entrance is occupied 

[INFO] [04/25/2018 15:54:50.139] [simulator-akka.actor.default-dispatcher-10] 

[akka://simulator/user/printer] VEHICLE_1: next location is occupied 

[INFO] [04/25/2018 15:54:50.139] [simulator-akka.actor.default-dispatcher-7] 

[akka://simulator/user/printer] VEHICLE_2: next location is occupied 

[INFO] [04/25/2018 15:54:50.139] [simulator-akka.actor.default-dispatcher-10] 

[akka://simulator/user/printer] VEHICLE_3: next location is occupied 

[INFO] [04/25/2018 15:54:50.140] [simulator-akka.actor.default-dispatcher-4] 

[akka://simulator/user/printer] entrance is occupied 

 

  



 

 

 

143 

APPENDIX B A sample code of PROLOG 

:- dynamic 

in/2. 

 

/* report the position of C */ 

report(car(X)) :- in(car(X), P), write(car(X)), write(': '), write(P), write(' ,'). 

reportall :- report(car(1)), report(car(2)), report(car(3)). 

 

/* don't move if it is already parked in a spot */ 

move(C) :- in(C, spot(_)), 

    write(C), write(' parked'),nl. 

/* make a move if possible */ 

move(C) :- in(C, P1), connect(P1, A, P2), not(in(_, P2)), 

    processmachine(C,P2), 

    write(C), write(' moved '), write(A), write(' -> '), 

    retract(in(C, P1)), assert(in(C, P2)), 

    reportall, nl. 

/* wait without considering time */ 

move(C) :- in(C, P1), connect(P1, _, P2), in(_, P2), 

    write(C), write(' waited'), nl. 

 

/* set up parking lot */ 

connect(path(3), left, spot(3)). 

connect(path(3), right, spot(4)). 

connect(path(2), left, spot(1)). 

connect(path(2), right, spot(2)). 

connect(path(-2), forward, path(-1)). 

connect(path(-1), forward, path(0)). 
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connect(path(0), forward, path(1)). 

connect(path(1), forward, path(2)). 

connect(path(2), forward, path(3)). 

connect(path(3), forward, path(4)). 

connect(path(5), backward, path(4)). 

connect(path(4), backward, path(3)). 

connect(path(-1), backward, path(-2)). 

connect(path(0), backward, path(-1)). 

connect(path(1), backward, path(0)). 

connect(path(2), backward, path(1)). 

connect(path(3), backward, path(2)). 

 

 

/* solved if all three cars are parked */ 

solve(C1,C2,C3) :- in(C1, spot(_)), in(C2, spot(_)), in(C3, spot(_)). 

/* otherwise, try to make some moves */ 

solve(C1,C2,C3) :- tick, move(C1), move(C2), move(C3), nl, solve(C1,C2,C3). 

 

process/2. 

/*change process cruising-> parked if moving into a spot*/ 

processmachine(C,P2):-

P2=spot(_),retract(process(C,cruising)),assert(process(C,parked)),write(C),write(" 

cruising->parked"),nl. 

/*no change cruising if moving into an aisle*/ 

processmachine(C,P2):-P2\=spot(_),write(C),write(" cruising"),nl. 

 

/*time step*/ 

tick:-write("next step"),nl. 
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/*randomly move*/ 

next_move(C,A,X):-in(C,Y),connect(Y,A,X),not(in(_, X)). 

random_move(C):-findall(X,next_move(C,_,X),LST),random_member(Y, LST), 

    processmachine(C,Y), 

    write(C), write(' moved '), write(' -> '), 

    retract(in(C, _)), assert(in(C, Y)), 

    reportall, nl. 

 

go :- retractall(in(_,_)), 

     /* set up initial car position */ 

      assert(in(car(1), path(4))), 

      assert(in(car(2), path(-1))), 

      assert(in(car(3), path(0))), 

      assert(process(car(1),cruising)), 

      assert(process(car(2),cruising)), 

      assert(process(car(3),cruising)), 

      write('current cars are at: '), 

      reportall, nl, nl, 

      solve(car(1), car(2), car(3)). 
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APPENDIX C Transaction sample data 

Payment Type Server Time Terminal Date Meter Code Amount Total Duration Paid 

Duration Total Duration in mins Paid Duration in mins System ID Printed ID

 Space # Plate # Card Type Card #: Zone Desc Circuit Desc Park Code

 Park Meter Description Address Type User Type: End Date Free 

Duration: Free Duration in mins Currency 

Credit Card 2017/4/30 12:21 2017/4/30 12:20 13200030 2 14 h 39 m 

 14 h 39 m  879 879 181356463 109546  474ZZJ

 BANK_ONLINE_EPSUM  EMS Elevator Lobby 132 Unive of 

wisconsin *13200030 (Neops)  Parking 1 2017/5/1 3:00 - 0

 USD 

Credit Card 2017/4/30 11:05 2017/4/30 11:04 13200030 2 15 h 55 m 

 15 h 55 m  955 955 181352475 109545  990VYZ

 BANK_ONLINE_EPSUM  EMS Elevator Lobby 132 Unive of 

wisconsin *13200030 (Neops)  Parking 1 2017/5/1 3:00 - 0

 USD 

Credit Card 2017/4/30 10:05 2017/4/30 10:05 13200031 2 16 h 54 m 

 16 h 54 m  1014 1014 181350831 61100  462DHP

 BANK_ONLINE_EPSUM  EMS SE corner - LL 132 Unive of 

wisconsin *13200031 (Neops)  Parking 1 2017/5/1 3:00 - 0

 USD 

Credit Card 2017/4/30 10:00 2017/4/30 9:59 13200031 2 17 h  17 h 

 1020 1020 181350706 61099  391TGP BANK_ONLINE_EPSUM 

 EMS SE corner - LL 132 Unive of wisconsin *13200031 (Neops) 

 Parking 1 2017/5/1 3:00 - 0 USD 

Credit Card 2017/4/30 9:43 2017/4/30 9:43 13200031 2 17 h 16 m 

 17 h 16 m  1036 1036 181350358 61098  114TNJ

 BANK_ONLINE_EPSUM  EMS SE corner - LL 132 Unive of 

wisconsin *13200031 (Neops)  Parking 1 2017/5/1 3:00 - 0

 USD 

Credit Card 2017/4/30 6:01 2017/4/30 6:00 13200031 2 20 h 59 m 

 20 h 59 m  1259 1259 181346245 61097  954PEL

 BANK_ONLINE_EPSUM  EMS SE corner - LL 132 Unive of 

wisconsin *13200031 (Neops)  Parking 1 2017/5/1 3:00 - 0

 USD 

Credit Card 2017/4/29 15:36 2017/4/29 15:35 13200030 5 11 h 24 m 

 11 h 24 m  684 684 181324044 109544  793XAL

 BANK_ONLINE_EPSUM  EMS Elevator Lobby 132 Unive of 
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wisconsin *13200030 (Neops)  Parking 1 2017/4/30 3:00 -

 0 USD 

Credit Card 2017/4/29 14:44 2017/4/29 14:44 13200030 2.25 1 h 30 m 

 1 h 30 m  90 90 181322168 109543  136LVY

 BANK_ONLINE_EPSUM  EMS Elevator Lobby 132 Unive of 

wisconsin *13200030 (Neops)  Parking 1 2017/4/29 16:14 -

 0 USD 

Credit Card 2017/4/29 10:58 2017/4/29 10:57 13200031 0.5 18 h 56 m 

 18 h 56 m  1136 1136 181311954 61096  391TGP

 BANK_ONLINE_EPSUM  EMS SE corner - LL 132 Unive of 

wisconsin *13200031 (Neops)  Parking 1 2017/4/30 3:00 -

 0 USD 

Bills 2017/4/29 10:20 2017/4/29 10:20 13200031 2 1 h 20 m  1 h 20 

m  80 80 181310818 61095  462DHP   EMS SE 

corner - LL 132 Unive of wisconsin *13200031 (Neops)  Parking 1

 2017/4/29 11:40 - 0 USD 

Bills 2017/4/29 9:50 2017/4/29 9:39 13200030 1 40 m  40 m  40

 40 181309952 109542  494BDB   EMS

 Elevator Lobby 132 Unive of wisconsin *13200030 (Neops) 

 Parking 1 2017/4/29 10:19 - 0 USD 
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APPENDIX D Field survey worksheet 

 

Figure A-2 A sample worksheet for the parking lot survey 
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Figure A-3  A sample worksheet for the parking arrival and routing survey 

The inter-arrival and parking duration file are in the ASC-II/TXT format which includes 

each line represents a value of parking duration in seconds. 

An inter-arrival file example is shown as follows: 

Table A-1 An inter-arrival data example 

Data entry 
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8 

13 

3 

293 

3 

3 

54 

50 

36 

56 

 

A parking duration file example is shown as follows. 

Table A-2 A parking duration example 

Data entry 

20 

291 

1440 

448 

487 

60 

327 

1440 

60 

376 

 

A choice behavior file example is shown as follows. 

Table A-3 A sample of the spot choice behavior data  

walkingdistance traveldistance lanestatus spotstatus 'Class' 

10.5 35 UNOCCUPIED CLEAR 1 

21.5 22 OCCUPIED CLEAR 0 

35 12 UNOCCUPIED CLEAR 1 

10 56 OCCUPIED CLEAR 0 

35 67 OCCUPIED LEFT 0 

17 37 OCCUPIED RIGHT 0 

23.5 20.5 OCCUPIED BOTH 0 

14.2 10 UNOCCUPIED CLEAR 1 

20 20 OCCUPIED CLEAR 0 
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APPENDIX E Collected Vehicle Arrival Data from Video 

Table A-4 The interarrival data from the field survey 

Index 
Arrival Time 

(min:seconds) 

Inter-arrival 

(seconds) 
1 00:33  

2 00:41 8 

3 00:54 13 

4 00:57 3 

5 05:50 293 

6 05:53 3 

7 05:56 3 

8 06:50 54 

9 07:40 50 

10 08:16 36 

11 09:12 56 

12 11:46 154 

13 12:42 56 

14 13:24 42 

15 13:52 28 

16 14:17 25 

17 14:25 8 

18 14:40 15 

19 18:01 201 

20 19:35 94 

21 19:55 20 

22 20:26 31 

23 20:45 19 

24 20:52 7 

25 21:24 32 

26 22:12 48 

27 22:18 6 

28 22:21 3 

29 22:43 22 

30 23:16 33 

31 25:38 142 

32 25:44 6 

33 26:44 60 

34 27:29 45 
35 28:50 81 

36 29:16 26 

37 29:49 33 

38 29:54 5 

39 32:45 171 

40 34:14 89 

41 34:47 33 

42 35:46 59 

43 36:25 39 

44 37:12 47 
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45 38:21 69 

46 39:00 39 

47 39:51 51 

48 40:32 41 

49 41:00 28 

50 41:24 24 

51 43:47 143 

52 44:38 51 

53 44:50 12 

54 45:00 10 

55 45:08 8 

56 45:20 12 

57 45:49 29 

58 45:55 6 

59 47:08 73 

60 47:13 5 

61 48:30 77 

62 50:45 135 

63 50:53 8 

64 51:48 55 

65 51:57 9 

66 52:09 12 

67 53:09 60 

68 53:59 50 

69 54:11 12 
70 54:26 15 
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APPENDIX F A Sample code of LSTM predictor training and testing 

# -*- coding: utf-8 -*- 

""" 

Created on Fri Aug 4 00:11:19 2017 

 

@author: Yun Yuan 

""" 

 

# input 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

import scipy as sp 

import timeit 

import time 

from keras.models import Sequential 

from keras.layers import LSTM, Dense 

from keras.callbacks import EarlyStopping 

from sklearn.preprocessing import MinMaxScaler 

 

 

def input_data(): 

    # read data from csv file 

    df = pd.read_csv('LTR.csv') 

    df.apply(lambda x: pd.to_numeric(x, errors='ignore')) 

    df[['Entr_Time', 'Exit_Time']] = df[['Entr_Time', 'Exit_Time']].apply(pd.to_datetime) 

    df_entr = df[['Rate', 'Entr_Time']].set_index('Entr_Time') 

    df_exit = df[['Rate', 'Exit_Time']].set_index('Exit_Time') 
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    df2=pd.read_csv('LPA.csv') 

    df2[['Date and Time']] = df2[['Date and Time']].apply(pd.to_datetime) 

    df2_entr = df2[['Date and Time', 'Lot']][(df2.Direction == 'In') & (df2.Allowed == 'Yes')] 

    df2_exit = df2[['Date and Time', 'Lot']][(df2.Direction == 'Out') & (df2.Allowed == 'Yes')] 

    df2_entr = df2_entr[['Date and Time', 'Lot']].set_index('Date and Time') 

    df2_exit = df2_exit[['Date and Time', 'Lot']].set_index('Date and Time') 

 

    # aggregating to intervals 

    intervals = '15' 

    entr_count = np.array(df_entr.resample(intervals + 'T').count(), dtype=int) 

    exit_count = np.array(df_exit.resample(intervals + 'T').count(), dtype=int) 

    entr_count2 = np.array(df2_entr.resample(intervals + 'T').count(), dtype=int) 

    exit_count2 = np.array(df2_exit.resample(intervals + 'T').count(), dtype=int) 

 

    # preprocessing 

    length = np.min((entr_count.shape[0], exit_count.shape[0], entr_count2.shape[0], 

exit_count2.shape[0])) 

    dataX = np.hstack((entr_count[len(entr_count) - length:len(entr_count)], 

                       exit_count[len(exit_count) - length:len(exit_count)], 

                       entr_count2[len(entr_count2) - length:len(entr_count2)], 

                       exit_count2[len(exit_count2) - length:len(exit_count2)])) 

    dataY = np.array(np.vstack((dataX[1:len(dataX)], np.zeros(4))), dtype=float) 

    return dataX, dataY 

 

 

# create LSTM model 

def createModel(shape1, shape2, shape3): 

    model = Sequential() 

    # model.add(Embedding(input_dim=3,output_dim=3)) 
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    model.add(LSTM(256, input_shape=(shape1, shape2), return_sequences=True, 

activation='softsign')) 

    model.add(Bidirectional(LSTM(256, return_sequences=True, activation='softsign'))) 

    model.add(Bidirectional(LSTM(256, return_sequences=True, activation='softsign'))) 

    #    model.add(LSTM(256,return_sequences=True, activation='softsign')) 

    model.add(Bidirectional(LSTM(256, activation='softsign'))) 

    model.add(Dense(shape3, activation='softsign')) 

    # model compiling 

    model.compile(loss='mse', optimizer='adam', metrics=['acc']) 

    return model 

 

 

# error measures 

def rmse(y_test, y): 

    return sp.sqrt(sp.mean((y_test - y) * (y_test - y))) 

 

 

def R2(y_test, y_true): 

    return 1 - ((y_test - y_true) * (y_test - y_true)).sum() / ( 

            (y_true - y_true.mean()) * (y_true - y_true.mean())).sum() 

 

 

def R22(y_test, y_true): 

    y_mean = np.array(y_true) 

    y_mean[:] = y_mean.mean() 

    return 1 - rmse(y_test, y_true) / rmse(y_mean, y_true) 

 

 

# data set 
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def create_dataset(X, Y, loop_back=3): 

    dataX, dataY = [], [] 

    for i in range(len(X) - loop_back): 

        dataX.append(X[i:(i + loop_back)]) 

        dataY.append(Y[i + loop_back]) 

    return np.array(dataX), np.array(dataY) 

 

 

# training LSTM 

def training(train_dataX, train_dataY): 

    # normalize the dataset 

    scaler = MinMaxScaler(feature_range=(0, 1)) 

    train_dataX = scaler.fit_transform(train_dataX) 

    train_dataY = scaler.fit_transform(train_dataY) 

 

    # create training data with lookback 

    trainX, trainY = create_dataset(train_dataX, train_dataY) 

 

    # model definition 

    model = createModel(trainX.shape[1], trainX.shape[2], train_dataY.shape[1]) 

 

    # early stopping 

    early_stopping = EarlyStopping(monitor='loss', patience=3) 

 

    # model training 

    history = model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2, 

callbacks=[early_stopping]) 

    evals = model.evaluate(trainX, trainY) 

    print('loss:' + str(evals[0]) + '\n' + 'acc:' + str(evals[1])) 
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    # make predictions 

    trainPredict = model.predict(trainX) 

    print('train rmse:' + str(rmse(trainPredict, trainY))) 

    print('train R2:' + str(R2(trainPredict, trainY))) 

    print('train R22:' + str(R22(trainPredict, trainY))) 

    trainY = scaler.inverse_transform(trainY) 

    trainPredict = scaler.inverse_transform(trainPredict) 

    # plotting 

    for i in range(train_dataY.shape[1]): 

        plt.figure(figsize=(8, 4)) 

        plt.plot(trainY[:, i], label='trainY') 

        plt.plot(trainPredict[:, i], label='predicted trainY') 

        plt.title(i) 

        plt.legend(bbox_to_anchor=(1, 1)) 

        plt.savefig(time.strftime('%Y-%m-%d %H%M%S') + ' 4-11_train ' + str(i), dpi=90) 

        plt.show() 

    return model 

 

 

# testing LSTM 

def testing(model, test_dataX, test_dataY): 

    scaler = MinMaxScaler(feature_range=(0, 1)) 

    test_dataX = scaler.fit_transform(test_dataX) 

    test_dataY = scaler.fit_transform(test_dataY) 

    testX, testY = create_dataset(test_dataX, test_dataY) 

    testPredict = model.predict(testX) 

    print('test R2:' + str(R2(testPredict, testY))) 
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    print('test R22:' + str(R22(testPredict, testY))) 

    testY = scaler.inverse_transform(testY) 

    testPredict = scaler.inverse_transform(testPredict) 

    for i in range(test_dataY.shape[1]): 

        plt.figure(figsize=(8, 4)) 

        plt.plot(testY[:, i], label='testY') 

        plt.plot(testPredict[:, i], label='predicted testY') 

        plt.title(i) 

        plt.legend(bbox_to_anchor=(1, 1)) 

        plt.savefig(time.strftime('%Y-%m-%dT%H%M%S') + ' 4-11_test ' + str(i), dpi=90) 

        plt.show() 

 

 

# main routine 

def main(): 

    start = timeit.default_timer() 

 

    # input a csv file 

    dataX, dataY = input_data('LTR.csv') 

 

    # split data for cross validation 

    train_size = np.int(np.round(len(dataX) * 0.7)) 

 

    # training 

    train_dataX = dataX[0:train_size] 

    train_dataY = dataY[0:train_size] 

    model = training(train_dataX, train_dataY) 
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    # testing 

    test_dataX = dataX[train_size:] 

    test_dataY = dataY[train_size:] 

    testing(model, test_dataX, test_dataY) 

 

    # save model to file 

    model.save("model.json") 

 

 

if __name__ == '__main__': 

    main() 
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