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Abstract

Machine Intelligence for Advanced Medical Data Analysis:
Manifold Learning Approach

by
Fereshteh Sadat Bashiri

The University of Wisconsin–Milwaukee, 2019
Under the Supervision of Prof. Zeyun Yu and Prof. Roshan M. D’Souza

In the current work, linear and non-linear manifold learning techniques, specifically Prin-

ciple Component Analysis (PCA) and Laplacian Eigenmaps, are studied in detail. Their

applications in medical image and shape analysis are investigated.

In the first contribution, a manifold learning-based multi-modal image registration tech-

nique is developed, which results in a unified intensity system through intensity transfor-

mation between the reference and sensed images. The transformation eliminates intensity

variations in multi-modal medical scans and hence facilitates employing well-studied mono-

modal registration techniques. The method can be used for registering multi-modal images

with full and partial data.

Next, a manifold learning-based scale invariant global shape descriptor is introduced. The

proposed descriptor benefits from the capability of Laplacian Eigenmap in dealing with high

dimensional data by introducing an exponential weighting scheme. It eliminates the limita-

tions tied to the well-known cotangent weighting scheme, namely dependency on triangular

mesh representation and high intra-class quality of 3D models.

In the end, a novel descriptive model for diagnostic classification of pulmonary nodules

is presented. The descriptive model benefits from structural differences between benign and

malignant nodules for automatic and accurate prediction of a candidate nodule. It extracts

concise and discriminative features automatically from the 3D surface structure of a nodule
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using spectral features studied in the previous work combined with a point cloud-based deep

learning network.

Extensive experiments have been conducted and have shown that the proposed algorithms

based on manifold learning outperform several state-of-the-art methods. Advanced compu-

tational techniques with a combination of manifold learning and deep networks can play a

vital role in effective healthcare delivery by providing a framework for several fundamental

tasks in image and shape processing, namely, registration, classification, and detection of

features of interest.
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Chapter 1

Manifold Learning for Medical Data

Analysis

1.1 Introduction

There are diverse medical data sources available ranging from electronic health records

(EHRs), exam reports and clinical notes to medical images and gene expression generated in

structured and unstructured data formats. Their rapid expansion in size and complexity have

turned into a big challenge in today’s health informatics research area. A technical report

published by EMC 1 indicates overall a 48% annual increase in medical data which exceeds

2,314 Exabytes by 2020 [1]. By utilizing such data sources, the healthcare community could

deliver efficient diagnoses and treatment for a large number of patients worldwide.

Diagnostic methods developed in computational health informatics include several com-

ponents, such as data acquisition, data processing, data visualization, data storage and

transmission as illustrated in Figure 1.1 [2]. The aim of data processing is to turn data into

high quality information and knowledge systematically. This has been widely explored in

the literature under topics such as EHR based phenotyping [3–6], clinical and scientific text

1https://www.dellemc.com/en-us/index.htm
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mining [7, 8], and medical image analysis [9–12] purposing to name a few.

Figure 1.1: Components of modern diagnostic imaging.

As noted in the New England Journal of Medicine (NEJM), the evolution of medical

imaging has been recognized as one of the top 10 medical developments in the past thousand

years that have had an immeasurable impact on the clinical medicine [13]. IBM estimates

that medical images recently accounted for almost 90% of all clinical data, making them the

largest and fastest growing data in the healthcare community [14]. IBM Watson notes that

60 billion images were generated in the United States in 2015. With the extensive amount

of medical images being generated every day, it is infeasible for physicians to effectively

keep track of all images and extract information required to find the best solution for each

patient [15].

Medical images play a vital role in early detection and diagnosis of a variety of diseases.

With the massive number of medical images and the variety of image modalities, there exists

a pressing need to design and develop efficient machine intelligence methods to harness

this wealth of data, providing a “second opinion” and a precise interpretation of medical

images [2, 16, 17].

In today’s modern world, medical image processing often deals with high dimensional

data. Working with such data is considerably time demanding and computationally expen-
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sive [18]. However, the desired information may lie on or near a low dimensional smooth

manifold. In order to uncover the underlying low dimensional manifold, several dimension-

ality reduction techniques have been developed.

Dimensionality reduction algorithms have shown a great potential in improving as well

as enhancing image processing techniques. In brief, dimensionality reduction algorithms

uncover or learn a low dimensional manifold embedded in a high dimensional space while

respecting the intrinsic geometry of the data [19]. These algorithms hereupon are referred

to as manifold learning techniques. The size of the low dimensional space must be chosen

according to the intrinsic dimensionality of the data which is defined as the minimum number

of parameters required for representing the data [20].

The extensive amount of medical images and capabilities of manifold learning for dealing

with such high dimensional data motivate the main contributions of the current thesis.

To make sure the current contribution is self-contained, Section 1.2 briefly explains the pre-

liminary concepts of Manifold learning from a mathematical perspective. Our contributions

are extended to both 2D and 3D medical image analysis, as well as 3D shape analysis, with

the use of manifold learning, which are summarized in Section 1.3.

1.2 Manifold Learning

Manifold learning techniques, as advanced computational strategies, are categorized to linear

and nonlinear methods with respect to the transformation that maps high dimensional space

into the low dimensional space. Linear dimensionality reduction methods have been used

by almost all scientific disciplines since the invention of the Principal Component Analysis

(PCA) by Karl Pearson in 1901 [21]. However, real-world data is more likely to be nonlinear

causing linear methods to be incapable of dealing with them adequately [20]. Accordingly,

nonlinear manifold learning techniques have been introduced in order to cope with complex

nonlinear relationships between data points [19]. Figure 1.2 shows the concept of manifold
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learning with a synthetic dataset which is embedded in (a) 2D space as a low dimensional

manifold, (b) 3D space with a linear transformation, and (c)-(d) 3D space with nonlinear

transformation.

(a) Flat 2D-manifold (b) Flat 3D-manifold (c) The swiss roll (d) The S-curve

Figure 1.2: An example showing the concept of manifold learning. (a) A flat plane embedded
in 2D space representing a low dimensional manifold. This manifold is embedded in 3D space
via: (b) Linear transformation, (c) Nonlinear transformation on the surface of a swiss roll,
(d) Nonlinear transformation on the surface of a s-curve shape.

Traditional linear methods include PCA and Multidimensional Scaling (MDS) [22, 23].

There are other linear methods such as Fishers Linear Discriminant Analysis (LDA) [24], In-

dependent Component Analysis (ICA) [25] and Projection Pursuit (PP) [26], to name a few.

Some popular nonlinear manifold learning techniques in chronological order are Multilayer

Auto-encoders [27, 28], Kernel PCA [29], Isomap [30, 31], LLE [32, 33], Laplacian Eigen-

map [34], Hessian LLE [35], Manifold Charting [36], Local Tangent Space Alignment [37],

Maximum Variance Unfolding (MVU) [38], Diffusion maps [39], Riemannian Manifold Learn-

ing (RML) [40], Locally Multidimensional Scaling [41]. The major component of all types

of algorithms is a set of eigenvectors associated with the top (or bottom) eigenvalues of a

specific matrix adapted to a given application. Therefore, these algorithms are considered

spectral embedding methods [42].

The other classification of manifold learning techniques is contingent on the properties

of the high dimensional data preserved while mapping to the low dimensional space. Algo-

rithms that tend to preserve global geometric characteristics of the manifold are called global

techniques while, on the other hand, those that to preserve local geometric characteristics

of the manifold are called local techniques. In general, linear manifold learning algorithms

4



are global, while a majority of nonlinear algorithms are local. Manifold learning techniques,

their theory and performance on both real and synthetic data have been well studied in the

literature. Interested readers are referred to [18–20, 40, 42–49] for further information.

From the application perspective, manifold learning has made a significant advance in

many research studies, such as visualization [50], clustering [51], classification [52], shape

analysis [53], registration [54], and segmentation [55]. Nonlinear manifold learning methods

are engaged in medical data processing extensively, due to the nonlinear and high dimensional

nature of the medical data.

Although several linear, as well as nonlinear manifold learning methods, are introduced in

the data/image processing community, the common characteristics of all types of algorithms

are flexibility and simplicity. These properties are briefly discussed in [18]. Two widely used

methods, indeed, are PCA and Laplacian Eigenmaps which are employed in the presented

dissertation. Therefore, the rest of this section is dedicated to explaining the structure

and developing the foundation of PCA and Laplacian Eigenmaps as linear and non-linear

methods, respectively.

1.2.1 Linear Methods

Linear manifold learning methods are based upon the assumption that the high dimensional

manifold is projected onto a low dimensional manifold by using a linear transformation [42].

Two advantages of linear methods are that they are easy to compute and they provide an

explicit mapping from the high dimensional manifold to the low dimensional embedding.

The latter property states that new incoming data points can be projected to the same

low dimensional space without going through the embedding procedure from the beginning.

On the other hand, they are not capable of revealing nonlinear relationships between data

points [18].

Although various linear manifold learning algorithms exist, indeed PCA is the most

popular one [20]. In this section, we intend to describe and develop the necessary background
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for PCA as it has been employed in the following chapters.

Consider a set x1, ..., xn ∈M of n sampled data points from the manifoldM with xi ∈ Rl

and we are looking for a set of corresponding points y1, ..., yn in Rm(m� l) that preserves the

relevant information of X = [x1, x2, ..., xn]. PCA is a dimensionality reduction technique that

provides the directions (vectors) along which the data has maximum variance by considering

the relative importance of these directions [43]. PCA is based upon the assumption that the

variance of a dataset is a measure of the amount of information stored in the dataset. The

higher the variance, the more information stored. Hence, PCA looks for a transformation

M that preserves maximum variance [42].

Given the matrix X ∈ Rl×n whose columns are l-dimensional data points, we define

matrix Xc ∈ Rl×n as the matrix of centered data points. Then the projections are given by

Y = MXc, which is an (m× n) matrix. PCA optimizes the objective function:

max
M

var(MXc) (1.1)

where M is an orthogonal (m× l) matrix. The covariance matrix of Y is:

Σy = E[YYT ] =
1

n
YYT =

1

n
(MXc)(MXc)

T

=
1

n
MXcX

T
c MT = M

XcX
T
c

n
MT

= MVMT (1.2)

where V = 1
n
XcX

T
c = cov(Xc) is the covariance matrix of centered data points. From

equation (1.2) it is clear that M attempts to maximize the cost function trace(MVMT ).

By adding a constraint ‖M‖2 = MMT = I, we make sure that the transformation matrix is

orthonormal.

Using the Lagrange multiplier technique, the maximization problem simplifies to solving
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the eigenvalue problem of the covariance matrix V:

MV = λM (1.3)

According to linear algebra, any matrix in the form of AAT is symmetric. Therefore, V

is symmetric which yields to the conclusion that, according to the spectral theorem, V is

orthogonally diagonalizable and has only real non-negative eigenvalues. The orthogonally

diagonalizable matrix V has orthogonal non-zero real eigenvectors.

It is proven that an (l×l) matrix V has l eigenvalues and l eigenvectors of size (l×1). Let

λ1 ≥ λ2 ≥ ... ≥ λl ≥ 0 (in decreasing order) with corresponding orthonormal eigenvectors

~m1, ~m2, ..., ~ml. The eigenvectors of matrix V are principal components of data points, along

which data points have maximum variance. Principal components of a sample synthetic

dataset are illustrated in Figure 1.3. These principal components make a set of normal

basis vectors that projects high dimensional data points into a low dimensional space while

preserving most of the information. The desired linear transformation matrix M is made up

of the first m principle components associated with the first m largest eigenvalues.

Figure 1.3: Principal components of a sample dataset.
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1.2.2 Nonlinear Methods

Nonlinear dimensionality reduction is a problem of finding a meaningful low dimensional

representation for a complex nonlinear high-dimensional data when linear methods fail to do

so. In the literature, the term manifold learning usually refers to nonlinear manifold learning

techniques. Hence, from now on in this thesis, manifold learning indicates nonlinear manifold

learning.

Across different manifold learning methods, Laplacian Eigenmaps is relatively computa-

tionally efficient with well-established computational structure [54]. It is a spectral analysis

technique which is based upon graph Laplacian and Laplace-Beltrami (LB) operator on the

manifold and in close connection to the heat flow [56]. Accordingly, we have employed

Laplacian Eigenmaps in the design and development of our algorithms. In the following, an

introduction into manifold learning and the mathematical foundations of Laplacian Eigen-

maps algorithm is provided.

Manifold learning, more specifically Laplacian Eigenmaps, deals with the following prob-

lem: consider a set x1, ..., xn ∈ M of n points on manifold M embedded in Rl, and we are

looking for a set of corresponding points y1, ..., yn in Rm(m� l) as a structural representation

which also benefits from locality preserving and structural equivalence properties. Locality

preserving means structural representations of two similar patches of the same dataset are

similar after being mapped to the new coordinates. On the other hand, structural equiva-

lence is the case when structural representations of two similar patches of different datasets

are similar. It is shown that Laplacian Eigenmap satisfies both properties [54].

Graph Laplacian is constructed over an undirected weighted graph G = (V,E) with a set

of points xi ∈ V and a set E of edges that connects nearby points with. The graph G is

called the adjacency graph as it specifies connectivities between adjacent points. The weight

wij between two neighbor points xi and xj determines the power of the connection.

With a given set of points in the high dimensional space, there are two ways to construct

the adjacency graph. (1) Two points i and j from a set V are considered as neighbors if they
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are in less than ε distance from each other. That can be formulated as ‖xi−xj‖2 < ε where the

norm is the usual Euclidean norm in Rl. This method which is called ε-neighborhood makes

a symmetric graph, however, tends to construct a graph with several connected components.

Besides, choosing the parameter ε would be challenging. (2) Alternatively, the graph is

constructed by finding k-nearest neighbors of each point in the high dimensional space and

specifying an edge between the point and each of its’ neighbors. This method, which is called

k-nearest neighbor (parameter k ∈ N), tends to construct a directed graph, which is when

node i belongs to the set of k-nearest neighbors of node j but, node j is not among k-nearest

neighbors of node i [34].

In the mathematical theory behind the Laplacian Eigenmap method, it is assumed that

the graph is undirected/symmetric. Therefore, when adjacency graph is constructed using k-

nearest neighbors, an extra step is required in which the graph is forced to become symmetric

by either adding more edges wherever there is a one-way edge (called symmetric kNN graph)

or deleting one-way edges (called mutual kNN graph)[57]. Either way, after this step, the

number of neighbors of each point might not be the fixed value k.

In [34] the problem of finding a low dimensional data set that preserves local information

is simplified to the optimization problem of minimizing the following function:

∑
ij

(yi − yj)2wij. (1.4)

Indeed, the minimization problem ensures that two neighboring points xi and xj stay close

after being mapped to yi and yj. It is shown that for any y:

∑
ij

(yi − yj)2wij = 2yTLy (1.5)

where L = D−W, so called Laplacian matrix, W is a symmetric weight matrix with entries

wij, and D is a diagonal matrix, so called degree matrix, with entries dii =
∑

j wij. The

entries of the degree matrix D are column (or row, since W is symmetric) sums of W. If
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the set V consists n points, then W and therefore D and L are all sparse n× n symmetric

matrices.

By adding the orthogonality constraint yTD1 = 0 in order to eliminate the trivial solution

and the constraint yTDy = 1 for removing an arbitrary scaling factor in the embedding, the

minimization problem of equation (1.4) simplifies to:

arg min
yTDy=1
yTD1=0

yTLy. (1.6)

The solution vector y to equation (1.6) is obtained by the minimum eigenvalue solution

to the generalized eigenvalue problem [34]:

Ly = λDy. (1.7)

The equation (1.7) is called eigen-decomposition or spectral decomposition of LB operator,

whereby the matrix is represented in terms of its eigenvalues and eigenvectors. The set of

eigenvalues is called the spectrum of L [58]. The most important property of the eigenvalues

and eigenvectors of LB operator is that they are isometric invariant. In other words, if the

manifold is not stretched (e.g., bent into extra dimension), the spectral values will not change.

Hence, two manifolds with different orientation should have similar spectral representations

provided by the underlying topology of two mesh graphs [59].

Regarding the weighting scheme of the graph Laplacian, in [34], it is discussed that graph

Laplacian is comparable to the LB operator on manifolds and hence, desirable embedding

can be obtained by finding the eigenfunctions of LB operator. For the best approximation,

it is recommended to use the following heat kernel weighting scheme:

wij =

e
(
−
‖xi−xj‖

2

2σ2

)
if (i, j) ∈ E

0 otherwise

(1.8)
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where σ ∈ R. In the simplest case, so called simple minded weighting scheme, (σ = inf) and

therefore, wij = 1 if two nodes i and j are connected with an edge, and wij = 0 otherwise.

From equations (1.5) and (1.8) it is clear that L is real symmetric and positive semi-

definite. All eigenvalues of a real symmetric matrix are real, and eigenvectors corresponding

to distinct eigenvalues are orthogonal. As L is positive semidefinite, all eigenvalues are non-

negative (λi ≥ 0 for all i) [60]. Every row sum and column sum of L is zero. In consequence,

eigenfunction 1 and eigenvalue λ = 0 are trivial solutions to equation (1.7). The multiplicity

of eigenvalue zero is associated with the number of connected components of the graph [56].

For a graph with multiple connected components, L is a block diagonal matrix, where each

block represents the Laplacian matrix of a connected component, possibly after reordering

vertices [61].

The Laplacian Eigenmaps algorithm suggests to leave out all eigenvectors corresponding

to eigenvalues equal to zero and use the next m eigenvectors with the smallest non-zero

eigenvalues for embedding the manifold in low m-dimensional Euclidean space [34]. The

embedded manifold will be in the form of an n ×m matrix Y = [y1,y2, ...,ym] where the

ith row demonstrates embedding coordinates of the ith point.

There are many different algorithms available for finding m-smallest eigenvalues of the

generalized eigenvalue problem. Among them are the Householder method [62, 63], the Q.R.

method [63], subspace iteration [64, 65], etc. Many of these algorithms are inefficient when

applied to very large structural systems [66]. The most efficient algorithms are implemented

in ARPACK software. ARPACK which stands for ARnoldi PACKage is very powerful in

approximating a few eigenvalues and corresponding eigenvectors. As the matrix L is sym-

metric, the Arnoldi process is reduced to a variant of the Lanczos process called the Im-

plicitly Restarted Lanczos Method (IRLM) [67]. Computational approximations performed

by eigen-solvers make the smallest eigenvalue not to be exactly equal to zero. Knowing the

number of connected components in L helps with discarding as many eigenvectors as should

be discarded.
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To conclude, Laplacian Eigenmap algorithm is a local nonlinear dimensionality reduction

as it considers the small neighborhood of each point. While preserving local information, it

extracts structural information from the high dimensional manifold and embeds it in a low

dimensional space. The embedded manifold is called structural representation [54].

1.3 Summary of the Thesis Work

The current chapter introduces the importance of medical images among other types of

clinical information (e.g., EHRs, clinical notes), and highlights the high dimensionality of

images available to the healthcare community. There are several computational approaches

to deal with high dimensional space, in which many of them try to reduce the dimensionality

while keeping most valuable information. Manifold learning is the area of studying all these

algorithms for dimensionality reduction. This chapter briefly covered the learning strategy

of manifold learning along with technical details of PCA and Laplacian Eigenmaps. The

following chapters explore applications of manifold learning in medical image and shape

analysis.

Chapter 2 introduces a multi-modal image registration algorithm in which a manifold

learning-based intensity transformation maps reference and sensed images to a unified in-

tensity system. The proposed method facilitates recovering strong scales, rotations, and

translations while having application in registering multi-modal images with either full or

partial data.

Chapter 3 introduces a global shape descriptor that benefits from the capability of man-

ifold learning in extracting relevant features from a smooth manifold along with unique

properties of Laplacian Eigenmap, namely, locality preservation and structural equivalence.

It also presents a straightforward and efficient approach for scale normalization than can only

be used for applications in which the scale does not characterize the object. The proposed

descriptor intended to eliminate the limitations tied to the existing spectral descriptors,
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namely dependency on triangular mesh representation and high intra-class quality of 3D

models. It has a wide variety of applications such as shape classification and retrieval for a

broad range of objects from molecules to planets.

Chapter 4 introduces a descriptive model for accurate and reliable diagnosis of pulmonary

nodules. The model benefits from the proposed shape descriptor developed in Chapter 3

combined with discriminating features extracted automatically using a point cloud-based

deep learning network. The innovative combination of spectral features with a PC-based

deep network presents high sensitivity on detecting malignant nodules aiming to improve

patients survival rate, while, showing high specificity that reduces unnecessary financial and

emotional costs due to misclassification of benign nodules.

Chapter 5 summarizes the main findings of my dissertation and points to future areas of

research.
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Chapter 2

2D Image Analysis: Manifold

Learning Approach

2.1 Introduction

Medical image analysis is an active research area that develops computational and mathe-

matical methods in order to extract clinically relevant information. Medical images might

have been acquired from different modalities based on the type of desired information such as

Ultrasound, Computed Tomography (CT), X-ray, and Magnetic Resonance Imaging (MRI)

for anatomical information alongside functional imaging modalities like Positron Emission

Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Mag-

netic Resonance Spectroscopy (MRS). Medical image analysis focuses on the development

and implementation of algorithms and strategies to solve different types of problems such as

visualization, image segmentation, image fusion, image registration, and others.

Medical image analysis has a wide range of applications in research and in the clinical

setting such as intra-operative studies, surgery planning, image-guided surgery, and monitor-

ing growth/healing process of tumors, to name a few. In some applications, the information

we are looking for can be achieved by comparing or fusing two or more images. As misalign-
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ment between images is inevitable, image registration plays a critical role in the accuracy of

information obtained [68].

Medical image registration is one of the key image processing techniques in medical image

analysis that has attracted great attention in the past few decades. Image registration

is the process of estimating the spatial transformation such that it overlays two or more

images. Images representing the same Region-of-Interest (ROI) are acquired at different

times, possibly with different sensors or from different viewpoints [69].

Generally speaking, image registration involves (at least) two images: reference and

sensed [70]. Image registration aims to align the sensed image with the reference image

[71]. Any registration technique is an ill-posed inverse problem [72] containing three compo-

nents: 1) a transformation model, which maps the sensed image to the reference image; 2)

a (dis)similarity measure, which determines the relative merit between reference and sensed

image; and 3) an optimization method, which seeks parameters that lead to the optimal

transformation [68, 72]. From a mathematical perspective, image registration is an opti-

mization problem:

arg min
θ

M(R, S ◦ T (θ)) +R(T (θ))

where M quantifies the level of alignment, R and S represent reference and sensed image

respectively, T (θ) is transformation parameterized by θ, and R is the regularization term

which accounts for the ill-posedness of the problem [72].

Medical image registration has been studied extensively, and numerous techniques have

been developed over the past three decades. Several surveys are available for interested

readers [68, 71–77]. Despite all the efforts that have been used to resolve the problem of

image registration, there is no unique technique that works in all circumstances. Considering

the importance of image registration in the accuracy of further analysis, and due to the

progress made in the past decade in the field of computational techniques, medical image

registration is still a field of interest.

The existing challenges in the developing a single generic algorithm for the problem
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of medical image registration can be summarized as: 1) the nature of transformation can

vary widely and be highly non-rigid; 2) images acquired from different modalities present

different structures of the underlying organ; 3) missing/partial data causes the loss of one-

to-one correspondence between the images; 4) there is no unique similarity measure for every

problem; 5) some optimization algorithms may trap in local extremum points; and, 6) each

imaging modality introduces its unique challenges [78, 79].

The most widely-used taxonomy proposed by Maintz and Viergever [75] categorizes reg-

istration methods according to nine different criteria including dimensionality, nature of

registration basis, nature of transformation, domain of transformation, interaction, opti-

mization procedure, modalities involved, subject, and object were incorporated. Concerning

modalities involved in acquiring images, registration methods are categorized to mono-modal

and multi-modal registration. Unlike mono-modal registration in which images are captured

using the same imaging technique, in multi-modal medical image registration, as is the focus

of the current work, images from different imaging modalities are aligned and registered

in one coordinate system, using rigid or deformable techniques [77]. Multi-modal image

registration is usually necessary as it provides additional information due to the intrinsic

differences between different imaging modalities and the data that they extract from the

organs. For example, CT and MRI provide high-resolution anatomical representations with

limited physiological information, while SPECT and PET provide physiological data with

reduced resolution in comparison to the previous ones.

In a complementary taxonomy [80], based on the amount of overlap between images,

registration methods are categorized in two groups; methods that work in the presence of:

1) full image data; 2) both full and partial image data. Image registration with partial

overlap is the situation in which, only a portion of one image is captured in the other image.

In such a situation, local convergence and lack of one-to-one correspondence are two factors

that make it more challenging. Moreover, when it comes to multi-modal registration, the

significant variations in the intensity levels of the images demand extra attention [79, 81, 82].
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Generally speaking, registration methods proposed in the literature for the problem of

multi-modal image correspondence can be divided into two major categories: 1) informa-

tion theoretic based approaches; and 2) multi-modal to mono-modal reduction based ap-

proaches [72]. In the first class, methods based on Mutual Information (MI) and its vari-

ants (e.g., Normalized MI (NMI) and Regional MI (RMI)) [83–86], Correlation Ratio (CR)

[87], Kullback-Leibler Divergence (KLD) [88], Jensen-Shannon Divergence (JSD) [89] and

Correlation Coefficient (CCoef) [90] are great examples of the use of information theoretic

approaches for the problem of multi-modal image registration.

In the second class, the problem of multi-modal registration is reduced to a mono-modal

registration problem. The reduction can be made by simulating the results of one modality

from the other. Examples of this can be found in the works of Roche et al. [91] and Wein et al.

[92] for multi-modal registration of ultrasound-MRI and ultrasound-CT data, respectively.

In another approach, which attracted more attention in recent years, a proper mapping

to bring the two sensor data into a third common modality for registration is desirable.

Several researchers have devised approaches that try to incorporate intensity gradients as a

means for a more robust and accurate registration. In [93], a combination of morphological

operators (opening and closing) for edge information extraction with cross-correlation is

used for rigid registration. In [94], the common modality is created by use of normalized

intensity gradients as a representative of the anatomical structure of the organs in the images.

In another work, Butz and Thiran [95] employed local edge variance in combination with

mutual information for multi-modal image registration. The usefulness of Gabor filter banks

for describing edges and texture has also been investigated for deformable image registration

[96]. The use of neighborhood descriptors is further investigated in the work of Heinrich et

al. [97]. Authors inspired by the idea of using non-local means for image denoising, devised

a Modality Independent Neighborhood Descriptor (MIND) for cross-modality registration.

In recent years, research in multi-modal to mono-modal reduction class took a new direc-

tion by employing Manifold Learning (ML) techniques [19, 54, 98–102]. Manifold learning,
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e.g., Laplacian Eigenmap in [54, 98], is used to generate a more general structural represen-

tation of the input images, which is less affected by the differences in the intensities. The

representations should satisfy two conditions: 1) locality preservation: if two patches of the

image are close according to some norm, their structural representation should also be close;

and 2) structural equivalence: two patches from different images are equivalent if and only

if their structural representations are the same. In [99], deformable brain image registration

is performed in two steps. First, the manifolds are learned for individual brain regions sep-

arately, and region-specific deformations are computed. Then, the whole brain images are

registered using the global manifold while preserving the region-specific deformations. In

[101], T1 and T2 MRI images are registered using manifold-based feature point matching.

In the proposed technique, after transforming the images to feature domain images, Scale

Invariant Feature Transform (SIFT) is used for feature extraction followed by Best-Bin-First

(BBF) method for feature matching [103]. In a similar approach, a higher accuracy was

obtained compared to using conventional MI for registration of T1, T2, and PD MRI images

[102]. The proposed method transformed input images into a feature domain using diffusion

maps.

In general, multi-modal to mono-modal transformation can be interpreted as intensity

transformation in which two images from different modalities use comparable relative in-

tensity levels to make the necessary contrast in the image. In the current contribution, we

are inspired by the work done by Wachinger et al. [54]. For two primary reasons, namely

using large patch sizes and inefficient manifold alignment, the method proposed in [54] re-

sults in a vague structural representation of input images. Poor representation affects the

performance of the method for registering images with delicate structures. Also, it fails in

registering images with partial data. To address these issues, we propose an intensity trans-

formation method that allows us to deal with the problem of multi-modal image registration

with full or partial data by employing advanced mono-modal registration methods. Below,

we summarize the main contributions of the current work:
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1. The current work, facilitates multi-modal image registration through an efficient in-

tensity transformation by improving the technique presented in [54]. We elaborate on

details of the algorithm, the choice of parameters, and aspects of the result that would

be affected. Over and above that, we introduce a simple, efficient, and straightforward

manifold alignment technique.

2. To evaluate the performance of the proposed method, extensive experiments, using

human brain MRI as well as CT scans, were carried out on real-world (patient) data in

addition to simulated data containing five degrees of freedom in 2D space; translation,

rotation, and scale.

3. We claim and experimentally prove that image registration with partial data can also

benefit from the proposed method. Therefore, the proposed method can be utilized in

the preprocessing step of any multi-modal image registration.

The organization of this chapter is as follows. In Section 2.2, we introduce the proposed

multi-modal to mono-modal transformation method along with technical background and

discussion on the choice of parameters. The effectiveness of the proposed method on multi-

modal image registration with full as well as partial data is examined by performing several

qualitative and quantitative experiments using widely used datasets in Section 2.3. Finally,

in Section 2.4, we conclude the work and experimental results in more details.

2.2 Proposed Method

In the current contribution, we propose to bring reference and sensed images into a same co-

ordinate system that represents the internal structure of both images. As internal structures

across images from different modalities are similar, the process of finding similarities between

images and eventually, finding a transformation that aligns one image with the other one

will be less challenging and more promising.

19



The Laplacian Eigenmaps guarantees the preservation of locality, meaning that if two

patches of an image are close according to some norm, their structural representation should

also be close. In other words, after embedding in low dimensional space, the embedded

manifold, called the structural representation of the image, is similar to the original image

while it highlights different features.

Reference Image
(N Pixels)

Sensed Image
(N Pixels)

Set parameter D
Construct high-D space

Set parameter D
Construct high-D space

Manifold Learning Manifold Learning

Right hand rule
examination

PCA

Monomodal registration algorithm
(Gradient decent)

Transformation matrix

Manifold Alignment

Reference Point Cloud
Matrix [N ×D]

Reference Manifold
[N × d]

Sensed Point Cloud
Matrix [N ×D]

Sensed Manifold
[N × d]

Sensed Manifold
Updated [N × d]

Sensed Manifold
Aligned [N × d]

Figure 2.1: Pipeline of the proposed technique.

The pipeline of the proposed algorithm is illustrated in Figure 2.1. The idea is to construct

a high dimensional manifold by extracting more information than just the intensity of each

pixel. After that, the structural representation of each input image is computed using the

Laplacian Eigenmap technique. Laplacian Eigenmap guarantees locality preservation and

structural equivalence. Meaning that each embedded manifold is similar to the original
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manifold, and as they represent internal structure of the same organ, they are structurally

equivalent. However, it does not guarantee alignment of embedded manifolds. Consequently,

a manifold alignment step is required [98]. In the proposed algorithm, rigid transformation

using principal components is suggested. Sometimes the mapping between two embeddings

requires a reflection. A simple step in the pipeline, which from now on we call it the right-

hand rule step, handles that issue.

In summary, manifold learning computes the structural representation of the reference

and sensed images, and manifold alignment combined with right-hand rule aligns embedded

manifolds. The result is a transformation that justifies the intensity differences between

images captured from different modalities. The intensity transformation, or intensity regis-

tration, leads us to direct application of L1 and L2 norm in image registration which has

been studied well in the community and improves the accuracy of the registration process.

In the following, the proposed idea is explained in details.

2.2.1 Constructing High-Dimensional Space

Unlike problems in which manifold learning has application in population studies, where

each point represents an image in the high dimensional space, in the image registration

problem only two images, reference and sensed, are present. The point cloud in the high

dimensional space is constructed by taking patches from each image. In the current problem,

each dimension of the high dimensional space is dedicated to one image pixel of the patches.

Patches consist up of an s× s neighborhood for each image pixel. Considering each patch is

moved one pixel from the previous patch, for an image of size nr × nc, the high dimensional

manifold includes nr × nc = N points in an s2 = D dimension space. To be consistent with

the description of manifold learning in section 1.2.2, the reader can clearly see that n = N

and l = D. Such a set of points can be represented in matrix format using the coordinates

of points (Figure 2.2). For a gray-scale image of size N pixels with patches of size D pixels,

the matrix size is [N ×D].
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Figure 2.2: Matrix representation of point cloud in high dimensional space; For an image of
size 200× 200 and patch size of 3× 3, the matrix is 40, 000× 9.

The choice of D depends on the application and size of the image. The embedded

manifold, which resembles the original image, contains details of the original image when D

is chosen relatively small. However, choosing a large value for D results in a blurred version

of the image. In Figure 2.3 (a), a slice of a T2-MRI image is shown. Laplacian Eigenmap

with several D values is used to study the image. Figures 2.3 ((b)–(d)) shows the effect of

the selected value for parameter D on the sharpness of the rendered image after embedding.

(a) (b) (c) (d)

Figure 2.3: (a) A slice of a T2-MRI and the image representation of its’ embedded manifold
with: (b) D = 9; (c) D = 25; and (d) D = 49.

2.2.2 Dimensionality Reduction using Laplacian Eigenmaps

The Laplacian Eigenmap algorithm consists of several steps and determining multiple pa-

rameters. The registration accuracy depends on the correct choice of parameters. The

implemented algorithm according to the steps introduced in [34] is summarized in Figure 2.4
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and explained in more details below.

1. Constructing the adjacency graph

• Compute the distance between every two data points;

• Put an edge between every two data points by considering:

– k-nearest neighbor with choice of k;

– Symmetric kNN graph.

2. Choosing the weights

• Assign weight to each edge between every two neighbor points using:

– Heat kernel with choice of bandwidth.

3. Eigenmaps

• Construct Laplacian Matrix;

– Real symmetric sparse [N ×N ] matrix.

• Compute number of connected components;

– Number of connected components determines the number of eigenvalues equal to zero.

• Solve generalized eigenvalue problem Lv = λDv;

– Leaving out all eigenvectors corresponding to eigenvalues equal to zero.

• Take the first d-eigenvectors corresponding to the smallest eigenvalues greater than zero as
basis for embedding manifold in the d-dimensional space.

Figure 2.4: Summary of dimensionality reduction with Laplacian Eigenmaps

The first step in dimensionality reduction with Laplacian Eigenmaps requires constructing

the adjacency graph. The point cloud acquired in the RD space makes up graph nodes. It is

worth noting that in this context, we use terms point and node interchangeably when we are

referring to the high-dimensional space and the graph respectively. We form the set of edges

E that specifies connections of points using the k-nearest neighbor followed by symmetric

kNN graph technique. In other words, two points i and j are neighbors if one of them is in

k-nearest neighbors of the other one.

In general, to extract the structure of the image both approaches for computing the

set of edges (k-nearest neighbor and ε-neighborhood) work. Since choosing the parameter

k is considerably less challenging than determining the value of ε, we chose the k-nearest

neighbor approach. Now, a question arises as to what the appropriate value for the number

of neighbors ‘k’ is? Strictly speaking, what are the effects of choosing either a small or large

value for the parameter k in the results? The parameter k determines the sparsity of the
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Laplacian matrix that we will later compute from the adjacency graph. A large value of k

leads to a less sparse Laplacian matrix which is more memory demanding and time invasive.

Besides, it is clear that finding more number of neighbors for each point takes more time.

On the other hand, picking a small value for k may result in a graph consisting of several

connected components. Also, the information contained in the resulting graph may be so

small that it fails to reveal the internal structure of the image and the eigenvalue problem

fails to converge. Therefore, there is a tradeoff between memory/speed and assuring to have

a single connected component with a Laplacian matrix that will converge while solving the

eigenvalue problem. There is no rule for choosing a value for the parameter k. Tentatively,

k = 20 works for most medical head scans in size around 200×200 pixels. Symmetrizing the

adjacency graph using symmetric kNN method has the advantage of keeping as many edges

as possible and not breaking the graph into smaller connected components. Even with these

considerations, the graph may still consist of multi-connected components. In this case, we

might increase k as far as the processing time and required memory allow us.

The second step is assigning a weight to each and every edge of the graph. For better

capturing local features it is more desirable to specify higher weights to edges between closer

nodes. Therefore, we prefer the exponential weighting scheme offered by the heat kernel.

For a set {xi|1 ≤ i ≤ N} of N points in RD, edge weights are computed as follows:

wij = e

(
−
‖xi−xj‖

2

2σ2

)
; where σ ∈ R . (2.1)

Selecting a value for parameter σ is relatively challenging and data-dependent [104].

When σ is relatively large compared to ‖xi − xj‖, the weight of connections is close to one

which results in an un-weighted adjacency graph. On the contrary, a relatively small σ leads

to non-significant edges which may later cause failure in the convergence of the Eigenvector

problem. The right choice for σ lies in between these two extremes [104].

In [105], it is suggested to construct the σ-dependent weight matrix W(σ2) and compute

24



S(σ2) =
∑N

i=1

∑N
j=1wij(σ

2) for several values of σ. Then plot S-curve versus (σ2) in semi-

logarithmic scale. The S-curve has two asymptotes at σ = 0 and σ = inf and can be used

for choosing a proper value for standard deviation. Initially, we chose σ2 at a point around

the upper two-thirds of the total range of the function S(σ2). This idea adds extra processing

time, for each image to compute the logarithmic curve. In order to reduce the processing

time, we offer to select the variance equal to the maximum squared distance of all edges. In

other words:

σ2 = max
allxi,xj∈V

(‖xi − xj‖2). (2.2)

In equation (2.2), the lower limit of edge weight is e
−1/2 ≈ 0.606 and obviously, the upper

limit is 1. Empirically, we found out that the results did not change much and were still

reliable.

The last step is computing the Laplacian matrix and solving the generalized eigenvalue

problem. Knowing the weight matrix W of the adjacency graph, the Laplacian matrix

L = D −W is computed with no difficulty. At this stage, it is beneficial to compute the

number of connected components that make the Laplacian graph. Because, it is equal to the

number of trivial solutions λ = 0, which have to be left out from the eigen-decomposition of

LB operator. As explained in section 1.2.2, the Laplacian matrix is a real, sparse, symmetric

and positive semi-definite matrix [34]. Therefore, the generalized eigenvalue problem of

equation (1.7) has real and positive eigenvalues. Besides, the eigenvectors corresponding

to distinct eigenvalues are orthogonal [60]. The first d-eigenvectors corresponding to the

smallest non-zero eigenvalues are orthogonal bases of new low dimensional space, and the

resulting manifold in the d-dimensional space is called the embedded manifold.

Reordering each eigenvector to the size of the original image (nr × nc) resembles the

original image while highlighting one of the layers of the image structure. Since each rendered

image is associated with one eigenvalue of the spectrum of the image, in the following it is

shortly referred to as the feature image [101]. As the corresponding eigenvalue increases the

feature image highlights smaller details of the image. Whereas the input to the Laplacian

25



Eigenmap is an [N ×D] matrix, the output is an [N × d] matrix. In the current work, we

only need the first d = 3 eigenvectors.

2.2.3 Manifold Alignment

The Lanczos algorithm starts with a random initial vector. Therefore, the embedding in low

dimensional space is arbitrary. In other words, along with preserving the locality, manifolds

of different modalities would be embedded in different parts of the low dimensional space.

Consequently, a manifold alignment step is required [98]. Several linear and non-linear

manifold alignment techniques have been developed over the past decade [106–109]. A

linear manifold alignment technique, namely Principal Component Analysis (PCA), provides

the principal directions of reference and sensed embedded manifolds. Rigid registration of

embedded manifolds is fulfilled by finding the translation and rotation transformation using

the principal directions.

Rigid registration of point clouds (embedded manifolds) in the low dimensional space is

adequate for some applications, e.g., population studies, in which the manifold conversion

over the entire population is investigated. Nevertheless, for image registration, we need to

investigate whether intensity inversion of feature images is needed, caused by the fact that

inverse of a principal direction is a valid principal direction and cannot be compensated

using rigid registration. In the current contribution, we suggest using PCA-based alignment

combined with computing the covariance between feature images of the reference and sensed.

In this work, we refer to this step as right-hand rule examination.

As Figure 2.5 shows, in the right-hand rule examination step, we aim to inspect whether

the principal directions of both manifolds follow the same right- or left-hand rule; which is

finding whether the direction of the cross product of the first two vectors is the same as the

direction of the third vector. If principal directions of both manifolds follow the same rule,

PCA is capable of aligning both manifolds without the need for inverting intensities of a

feature image; otherwise, reversing one of the vectors compels them following the same rule.
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Figure 2.5: Right-hand rule inspection of two embedded manifolds using 3D synthetic data.
The first three principal directions of the reference (blue) and the sensed (green) embeddings
follow the left- and right-hand rule, respectively.

Right-hand rule compliance test requires computing the cross product of two vectors

which is relatively easy in 3-dimensional space. However, it becomes more elusive in higher

dimensional spaces. Therefore, we offer a more general test for any N-dimensional manifolds.

The sign of the covariance matrix between two feature images indicates the direction of their

association. If the covariance is negative, sensed feature image increases/decreases in the

opposite direction to the reference feature image. Aligning every two corresponding feature

images will eventually result in both embeddings follow the same right- or left-hand rule.

After compensating the reflection error, we employ PCA for the rigid transformation of

embedded manifolds. Rigid registration using PCA is obtained by translating the center of

both manifolds to the origin followed by rotating the principal directions of one manifold

(sensed) to get aligned with the principal directions of the other manifold (reference) [110].

As discussed in details in section 1.2.1, PCA is based on the eigenvectors of the covariance

matrix M = VVT . The largest eigenvector that is associated with the largest eigenvalue

indicates the direction of the largest variance [110].

Let points p1, ..., pN be the embedded manifold from the first three eigenvectors of the

Laplacian matrix centered at location c = (cx, cy, cz)
T . The Vc, matrix representation of

a manifold centered at the origin, and the corresponding covariance matrix are defined as
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follows:

Vc =


p1x − cx, p2x − cx, ..., pNx − cx

p1y − cy, p2y − cy, ..., pNy − cy

p1z − cz, p2z − cz, ..., pNz − cz

 and M = VcV
T
c .

We solve for the eigenfunctions of the covariance matrix:

MsA = ΛsA

MrB = ΛrB

where Mr, Ms, B, and A are covariance matrices and principal components of the reference

and sensed centered manifolds, respectively. Then the rotation matrix R that aligns sensed

along with reference satisfies the equation:

RA = B .

Since matrix A is orthonormal, the rotation matrix simplifies to:

R = BA−1 = BAT .

The PCA-based rigid registration of the sensed manifold to align with the reference can

be formulated as follow:

V′s = RVsc + cr (2.3)

where cr is the centroid coordination of the reference.

The objective of manifold alignment is to form a direct mapping between two embed-

dings that facilitates finding correspondences, and transferring knowledge from one domain

to another. Here, coefficients from each dimension translates into an intensity of a feature
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(a) T1-weighted MRI (b) T2-weighted MRI

(c) Feature Image 1 of
T1-MRI

(d) Feature Image 1 of
T2-MRI

(e) Feature Image 1 of
T2-MRI after alignment

Figure 2.6: Intensity transformation of human brain T1- and T2-weighted MRI scans. De-
spite intensity variations between (a) and (b) as well as between (c) and (d), after manifold
alignment, feature images (c) and (e) are comparable.

image, corresponding to the dimension. Hence, the mapping obtained from manifold align-

ment results in intensity transformation. That is to say intensity variations among different

modalities will be removed, and feature images become comparable in terms of relative in-

tensity. As shown in Figure 2.6, despite differences between T1- and T2- weighted MRIs

(Figure 2.6 (a) and (b), respectively) as well as between their feature images (Figure 2.6 (c)

and (d), respectively), multi-modal scans are transferred to mono-modal intensity systems

with comparable intensity mapping (compare Figures 2.6 (c) and (e)). The final result of

this step is the ability to perform mono-modal registration on feature images.
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2.2.4 Registration

As discussed and shown earlier in this section, manifold learning of multi-modal medical scans

followed by manifold alignment leads to multi-modal to mono-modal transformation which

facilitates utilizing mono-modal registration algorithms to find registration parameters. In

this work, we use intensity based, and Fourier-Mellin based [111] image registration for the

problem of image registration with full and partial data, respectively.

Intensity-based registration is an iterative process that requires a metric, an optimizer,

and a transformation type. We use a basic mono-modal intensity-based image registration

with gradient descent optimizer that is available in the MATLAB software. The algorithm

was used in its default configuration. It utilizes regular step gradient descent optimizer in

order to adjust the transformation parameters so that the optimization follows the gradient of

mean squares in the direction of the extrema. However, the optimizer settings were adjusted

to improve the registration results.

As illustrated in Figure 2.1, the registration algorithm is supplied with the structural

representation of each modality instead of the original raw images. The optimizer estimates

rigid transformation matrix which then will be used to align the original sensed image with

the reference.

2.3 Experimental Validation

In this section, we evaluate the general performance of our proposed intensity transforma-

tion method using Laplacian Eigenmap and the proposed manifold alignment technique in

improving and facilitating the multi-modal medical scans registration, in situations either

full or partial data is available. To do so, we performed three sets of experiments.

The purpose of the first set of experiments is to visually assess the effectiveness of the

proposed multi-modal to mono-modal transformation method via intensity transformation

over different modalities. The goal of intensity transformation is to redraw a sensed feature
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image using comparable intensity levels with a reference feature image.

We expect to achieve a higher accuracy by taking advantage of well-developed mono-

modal registration techniques after transferring multi-modal images into a mono-modal in-

tensity space rather than using complicated multi-modal registration techniques. That brings

the motivation of our second set of experiments. Brain images captured from same patients

with different modalities are registered, and the accuracy of alignment is assessed using

distance error and MI metrics, as a measure of similarity.

As we assert that partial to full image registration can also benefit from the proposed in-

tensity transformation, specifically in the case of multi-modal registration, we have designed

another set of experiments to investigate the claim.

The remainder of this section is organized as follows. First, in Section 2.3.1 and 2.3.2, we

present our experimental setup and datasets which are used in this work, respectively. Then,

in Section 2.3.3, we qualitatively visualize how well the multi-modal to mono-modal trans-

formation is done using different modalities. After that, in Section 2.3.4, the competence of

the proposed pipeline is evaluated against mutual information based multi-modal registra-

tion techniques. Finally, in Section 2.3.5, extensive experiments are carried out to study the

effect of modality transformation in improving image registration with partial data.

2.3.1 Experimental Setup

The present experimental studies were implemented using MATLAB R2013a environment

running on a personal computer with Xeon(R) E3-1245 CPU @ 3.50GHz and 32GB memory.

We took advantage of the elastix toolbox [112, 113] for NMI-based registration.

2.3.2 Dataset

To validate the effectiveness of the proposed idea, we exploited two standard, widely used,

and publicly available datasets of simulated and real human brain scans.

We performed experiments on T1-, T2-, and PD-weighted MR images from the BrainWeb
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database1 [114–117]. The BrainWeb dataset contains simulated brain MRI data in a variety

of slice thicknesses, noise levels, and levels of intensity non-uniformity produced using an

MRI simulator. The images in our experiments contained 3% noise and 20% intensity non-

uniformity.

We also made use of the CT, T1-, T2-, and PD-weighted MR images from the Vander-

bilt Database which was collected in Retrospective Image Registration Evaluation (RIRE)

project2 [118–120]. Moreover, RIRE database provides rectified images generated using [121]

for correcting the static field inhomogeneity. The size of the 3D scans of the human brain

are not necessarily equal; however, the difference in their resolution is negligible.

In the current work, all images were resized to 200 × 200 to be cost-effective regarding

processing time and memory usage.

2.3.3 Multi-modal to Mono-modal Transformation

We aim to evaluate the performance of intensity transformation using manifold learning

followed by the proposed manifold alignment technique. To inspect the general performance

of the method aside from patient-dependent similarities in images, we employed images from

different datasets.

The manifold of each image was studied independently. First, each high dimensional

manifold was built up using patches of size 3 × 3 which makes the manifold containing

40,000 points in a 9-dimensional space. Then, to construct the Laplacian graph we used

k = 20 nearest neighbors of each point. Each embedded manifold was generated in a three-

dimensional space. Manifold alignment was performed by keeping the T1-weighted MRI

as the reference and aligning the rest along with it. Figure 2.7 represents the result of

multi-modal to mono-modal transformation. It is clear that after manifold alignment, all

modalities are using similar intensity mapping as of T1-MRI, as expected.

1 http://www.bic.mni.mcgill.ca/brainweb/
2 http://www.insight-journal.org/rire/index.php
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Figure 2.7: Intensity transformation of multi-modal medical scans. (Top row) The original
MRI and CT scans of the human brain; (Middle row) The first feature image of each modality
after manifold learning; (Bottom row) The same feature images after manifold alignment.
Intensity mapping of feature images obtained from T2-, PD-MRI, and CT are matched with
the one obtained from T1-MRI.

2.3.4 Multi-modal Registration with Full Data

To evaluate the efficacy of the proposed transformation, two sets of experiments were carried

out exploiting RIRE dataset as it contains images in different modalities from same patients.

The CT image of each patient was set as the reference image and scans from other modalities

were aligned with the reference. The manifold of all images was studied independently using

the same set of parameters including D = 9, k = 10, and d = 3. Then, the proposed manifold

alignment technique was conducted using the the reference and sensed embeddings. Next,

rigid-body registration parameters were estimated utilizing the first feature image of each

modality. In the end, the registration parameters were applied on the original set of images.

In the first set of experiments, we examined the performance of registering CT scans with
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multiple MR modalities using the proposed method. As the ground truth information for

the RIRE testing dataset was not available, we measured the similarity metric MI between

image pairs before and after registration. MI quantifies the degree of statistical dependency

between the reference and the sensed images. We desire to maximize MI as indication of

The current dataset contains CT, T1-, T2-, and PD-MRI scans of 10 patients. Only 6 of

them have the rectified version of MRIs. Table 2.1 reports mean and standard deviation of

MI measured before and after registration for each pair of the CT-MR scan. The results are

statistically significant with (p < 0.5%). Figure 2.8 presents an example pairwise display of

CT and PD-MRI scan before and after registration with their MI values. It demonstrates the

improvement of MI value resulting from the proposed method, even without the MI value

being computed and optimized during registration.

Table 2.1: Mean and standard deviation of mutual information computed for each pair of the
CT-MR scan before and after registration using the proposed idea. The higher MI indicates
better alignment.

Modality Pair Before Registration After Registration

CT - PD 0.8752 ± 0.15 1.2084 ± 0.22
CT - T1 0.8685 ± 0.15 1.1863 ± 0.23
CT - T2 0.8151 ± 0.10 1.0800 ± 0.20

CT - PD Rectified 0.7846 ± 0.08 1.1132 ± 0.09
CT - T1 Rectified 0.7759 ± 0.06 1.0958 ± 0.08
CT - T2 Rectified 0.7736 ± 0.06 1.0450 ± 0.06

(a) (b)

Figure 2.8: Pairwise display of a sample CT and PD-MRI scans from RIRE database. (a)
Unregistered (MI=0.8276), (b) Registered using the proposed transformation followed by
mono-modal registration (MI=1.1715).
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To further evaluate the competence of our method quantitatively, we designed the sec-

ond set of experiments. We utilized RIRE training dataset, as it contains the ground truth

aligning information. We created a non-aligned slice of CT (sensed image) using randomly

generated rotation angle in the range of [−π/4,+π/4] and translation along each axis, con-

strained to keeping the brain region in the frame. Then, the distorted image was registered

using three different methods: 1) the proposed method in [54, 98] using Laplacian images; 2)

multi-modal registration with Mattes MI metric [122] and One plus One Evolutionary [123]

optimizer; and 3) the proposed method. Then, the registration error was computed using the

Mean Absolute Error (MAE) of 5 random relocated points. The experiment was repeated

30 times for each pair of modalities. Table 2.2 reports mean and standard deviation of the

distance error (in millimeter). Bold-faced numbers show the best result obtained for each

modality pair. All the results presented except those with asterisks are statistically signifi-

cant with (p < 0.1%). Registration error of CT - T1 rectified scans is statistically significant

with (p < 0.3%). Registration error of CT - T2 rectified scans using proposed method is

higher than using MI; nonetheless, it is not statistically significant.

Table 2.2: Mean and standard deviation of distance error (in millimeter) for each pair of
CT-MR modality scans. Images are aligned using Laplacian images, MI-based registration,
and the proposed transformation followed by mono-modal registration.

Modality Pair
Laplacian Images

(ref. [54, 98])
MI-based Reg.

w/o Intensity Trans.
Mono-modal Reg.

w/ Proposed Trans.

CT - PD 3.5622 ± 0.05 2.0239 ± 0.14 1.3740 ± 0.09
CT - T1 2.9912 ± 0.11 1.3873 ± 0.18 1.0042 ± 0.11
CT - T2 1.9467 ± 0.15 1.7335 ± 0.12 1.4137 ± 0.09

CT - PD Rect. 2.3318 ± 0.12 1.3260 ± 0.21 1.1462 ± 0.11
CT - T1 Rect. 2.0075 ± 0.07 0.9727 ± 0.39 0.7424 ± 0.22 *
CT - T2 Rect. 1.9447 ± 0.33 0.9294 ± 0.23 0.9922 ± 0.16 **
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2.3.5 Multi-modal Registration with Partial Data

We assessed the role of intensity transformation in the success of partial image registration.

In the problem of co-registration of multi-modal medical scans with partial data, while

images are acquired from different modalities, the sensed (partial data) only covers part of

the reference (full data) and we seek to locate the small one within the space of the larger

one.

The experiments were carried out as follows. First, synthetic examples of partial data

were generated by rotating, translating, and cropping the sensed image with random param-

eters. For some experiments, extra scaling was added to the template image. Next, both

images were studied with the proposed technique (Figure 2.1) and then a feature image of

each was passed on to the FMT algorithm. Once they are available, the FMT algorithm

computes the transformation parameters (translation, rotation, and scale) accordingly. This

step requires fine-tuning the FMT algorithm. Finally, the co-registration was performed on

the original full and partial sensed images using the estimated transformation parameters.

The performance of the registration is investigated qualitatively with a pairwise display

of original and registered images in Figure 2.9. It’s worth mentioning that none of the

following results were feasible by using FMT without benefiting from manifold learning and

multi-modal to mono-modal transformation. Hence, comparison of registration error is not

reported.

In a more clinically related scenario, a T1-MRI of a patient from a past scan (reference)

is registered with a newly-captured T2-MRI (sensed) that has covered part of the patient’s

brain. Both images were acquired in the axial direction; however, they are reviewed and

registered in the sagittal direction. While taking the new scan (T2), the patient was posi-

tioned differently from T1 on the imaging bed. The reference and sensed images, as well

as registration result from multiple methods, are presented in Figure 2.10. Images do not

represent a real patient and are synthetically generated using the BrainWeb database.
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Full-Partial
modality pair

T1 - T2 T2 - T1 CT - T1 PD - T2

Before
registration

Registered –
MI-based
method

Registered –
NMI-based
method

Registered –
Laplacian
Images
(ref. [54, 98])

Registered –
Proposed
method

Figure 2.9: Pairwise display of multi-modal image registration with partial data.

2.4 Discussion and Conclusion

Medical image registration has hugely contributed to our understanding and interpretation

of medical images. Its’ application broadly lies in a variety of medium and high-level image

analysis tasks, such as segmentation, object localization, tumor detection, and diagnostics

analysis of X-ray, MRI, and CT images. While computational image registration methods
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Input images Registration result

Reference (T1) MI-based NMI-based

Sensed (T2)
Laplacian Images Proposed method

Figure 2.10: Registration of a synthetic example with partial sensed data.

have been widely available in the medical image analysis community, it is almost impossible

to design and develop a general registration method which is optimized for all use cases. The

present work discusses a large body of recent progress in medical image registration with a

great emphasis on utilizing different computational algorithms to develop a multi-modal to

mono-modal transformation technique, providing a significant capability in the multi-modal

registration of medical images. Advancement in the proposed method is applicable for images

with either full or partial overlap.

There are a number of advantages to the current contribution that we discuss here. The

presented multi-modal to mono-modal transformation can be used as a general preprocessing

step, regardless of the overlapping of images. Moreover, it facilitates recovering strong scales,

rotations, and translations. In the context of medical image registration strategies, the

presented method is considered as a parametric one, however, configuring and assigning the

exact value to the parameters is not essential. On the other hand, this gives some degree

of freedom for further tuning the smoothness of the high-dimensional manifold, which will

eventually affect the convergence rate of the eigenvalue problem positively. In support of
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accurate structural representation, with the use of the proposed multi-modal to mono-modal

transformation, multiple feature images (maps) are generated as the output of the structural

representation from which we can select. Although we evaluated the performance of the

proposed transformation by only considering the rigid transformation of human brain images

(except registration with partial data that considered affine transformation), we believe that

registering images of other organs as well as non-rigid registration can benefit from the same

concept.

Two computational bottlenecks of the proposed method are: a) the construction of the

adjacency graph; b) solving the eigenvalue problem. In our experiments and with the system

specification mentioned in Section 2.3.1, for an image size 200×200 with k = 10, the average

time to construct the adjacency graph was 1, 12, and 114 seconds with D = 9, 25, and 225,

respectively. The computational time to find the eigenvectors depends significantly on the

smoothness of the manifold and the sparsity of the Laplacian matrix (parameter k). On

average, for k = 10 to 500, it can vary from 15 to over 300 seconds.

There is also a list of limitations to this study. First of all, the current implementation

is computationally expensive, which makes it inefficient for 3D volume registration. Second,

the proposed pipeline requires extra processing time for learning the structure of the input

images. The solutions to these limitations are beyond the scope of this paper and require

more advanced computational methods (e.g., super-pixels) as well as efficient computational

platforms (e.g., parallel processing on top of high-performance clusters). Furthermore, since

the inner structure must be present in both modalities, the proposed transformation applies

to images of anatomical modalities.

At the expense of time for computing structural representation, we obtained higher accu-

racy in rigid-body registration of multi-modal images with full data. More importantly, a new

door is opened to the registration of partially-overlapped multi-modal images. In the future,

we plan to investigate the effectiveness of the proposed intensity transformation in registering

multi-modal partially-overlapped images quantitatively. In the current implementation, we
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took advantage of Laplacian Eigenmap as a method of nonlinear dimensionality reduction.

However, preliminary experiments indicate some other methods of manifold learning, e.g.,

Isomap and LLE, are also capable of intensity transformation of multi-modal images.
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Chapter 3

3D Shape Analysis: Manifold

Learning Approach

3.1 Introduction

3D models are ubiquitous data available in the form of 3D surface meshes, point clouds,

volumetric data, etc. in a wide variety of domains, such as material and mechanical engineer-

ing [124], genetics [125], molecular biology [126], entomology [127], and dentistry [128, 129],

to name a few. Processing such large datasets (e.g., shape retrieval, recognition, matching)

is computationally expensive and memory intensive. For example, to query against an ex-

tensive database of 3D models to find the closest match for a 3D model of interest, one needs

to come up with a good distance measure besides an efficient algorithm to implement the

searching and retrieval processes. Global shape descriptors play a fundamental role in dealing

with many shape analysis problems such as shape matching [130, 131], classification [132],

and retrieval [133, 134].

A global shape descriptor is used to represent an original 3D shape in the form of a low-

dimension vector y to drastically lower the burden of shape analysis as mentioned earlier.

Such a vector needs to be informative yet concise to capture as much information as possible
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from the 3D shape including the geometric and topological features.

3D shape descriptors have been studied in the literature in depth. For comprehensive

studies and classifications of shape descriptors, we refer the readers to the surveys conducted

by Tangelder and Veltkamp [135], Zhang et al. [136] and Rostami et al. [137]. While a large

number of successful non-spectral shape descriptors have been proposed in the literature,

spectral descriptors have proved to be beneficial in many applications [138, 139].

Generally speaking, the spectral methods take advantage of the eigenvectors and eigen-

values (referred to as the spectrum) of the Laplace-Beltrami (LB) operator applied on the

3D shapes. As the spectrum of the LB operator is computed based on the gradient and

divergence that depend on the Riemannian structure of the manifold, the computed descrip-

tors possess the isometry invariant property [140]. Various well-known local techniques such

as Heat Kernel Signature (HKS) [141] and Wave Kernel Signature (WKS) [142] as well as

global techniques such as Global Point Signature (GPS) [143], Shape-DNA [140] and its

variants such as compact Shape-DNA (cShape-DNA) [144] have been developed from the

LB operator and had found successful applications in graph processing [145], computational

biology [146], and point-to-point correspondence [147].

Different discretization schema (e. g., Taubin Discretization [148], Mayer Discretiza-

tion [149]) of the LB operator on the triangular meshes were discussed in [150]. The Shape-

DNA and many other shape descriptors, global and local, use the cotangent scheme to esti-

mate the LB operator. The main disadvantage of this method is that it does not converge

in general and is sensitive to the peculiarities and quality of the particular triangulation of

the mesh [141, 151].

Inspired by the Shape-DNA approach for extracting fingerprint signature of 3D models

and motivated by the idea of dimensionality reduction for compressing data into a vector,

we introduced a novel Laplacian Eigenmaps based Scale Invariant global shape descrip-

tor, called LESI descriptor [152]. The proposed descriptor benefits from the capability of

Laplacian Eigenmap in dealing with high dimensional data by introducing an exponential
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weighting scheme, and eliminates the limitations tied to the well-known cotangent weighting

scheme, namely dependency on triangular mesh representation and high intra-class qual-

ity of 3D models. The extensive experiments performed on LESI descriptor prove that the

present contribution provides a highly discriminative and robust shape descriptor under the

presence of high level of noise, random scale variations and low sampling rate, in addition

to the known isometric-invariance property of the LB operator. The proposed method con-

sistently outperformed several widely used algorithms on multiple non-rigid shape retrieval

benchmarks.

We made two contributions in the current work which is presented in this chapter.

In our first contribution, inspired by the idea of Laplacian Eigenmaps [34], we learn the

manifold of a 3D model and then, analogous to the approach taken by Shape-DNA, we make

use of the spectrum of the embedded manifold. To the best of our knowledge, this is the first

time that dimensionality reduction by Laplacian Eigenmaps is used to build the global shape

descriptors. There are two advantages to this approach. First, it relies on the adjacency of

the nodes disregarding the fine details of the mesh structure, which is achieved by considering

the length of an edge connecting two adjacent nodes rather than the two angles facing the

edge. Therefore, this idea can be used for the degenerate meshes or non-uniform sampled

meshes. Second, as it does not depend on the mesh structure, it can be applied easily on

any other mesh types like quadrilateral meshes.

In our second contribution, we present a simple and straightforward normalization

technique (motivated by [140, 153, 154]) to make our proposed global shape descriptor scale

invariant. To this end, we propose to subtract the first non-zero eigenvalue from the shape

descriptor after taking the logarithm of the spectrum. One advantage of our approach over

the idea of Bronstein et al. [153] is that we avoid taking direct derivative since the differential

operator amplifies the noise. We owe it to the fact that we only make use of eigenvalues,

and hence, normalization of eigenfunctions are not needed.

The remainder of this chapter is organized as follows. In Section 3.2, to make the current
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work self-contained, we introduce the proposed LESI shape descriptor along with some tech-

nical background. In Section 3.3, the performance of the proposed method, as well as the

robustness of the algorithm, are examined and compared with multiple well-known shape

descriptors by performing several qualitative and quantitative experiments using widely used

3D model datasets. Section 3.4 discusses the results in more details and draws the conclusion.

3.2 Global Shape Descriptors

Global shape descriptors, also called shape fingerprints or shape signatures, aim to simplify

a 3D shape into a d-dimensional vector through the intrinsic information latent in high

dimensional space. From the data compression perspective, global descriptors can also be

considered as a dimensionality reduction problem. Such descriptors are desired to fulfill

several properties namely isometry, scale invariance, similarity, efficiency as well as com-

pression [140]. Shape recognition, classification and retrieval are known to be their primary

applications [137].

Shape-DNA, one of the first of its kind, is a spectral analysis method that fulfills the

properties as mentioned above. It is a well-known and widely used global descriptor. The

original Shape-DNA and its variants require normalization process in order to obtain uniform

scaling factors for the geometric objects [155]. The cShape-DNA proposed in [144] normalizes

the eigenvalues of the LB operator through multiplying the spectrum by the area of the

underlying shape. This approach was initially suggested in [140].

In this section, we first briefly review Shape-DNA. After that, as theoretical background of

the Laplacian Eigenmaps is thoroughly discussed in section 1.2.2, we elaborate our proposed

LESI descriptor; a Laplacian Eigenmaps based scale invariant global shape descriptor.
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3.2.1 Shape-DNA

Shape-DNA, introduced by Reuter et al. in 2006 [140], utilizes the first k smallest eigenvalues

(referred to as the spectrum) of LB operator as a shape signature. It grabbed a great deal

of attention for its unique features such as isometry and rotation invariance [140].

The Laplace-Beltrami (LB) operator ∆ is a linear differential operator defined on a

Riemannian manifold as the divergence of the gradient of a function f on a differentiable

manifold as the following form [140, 144]:

∆f = div(grad(f)). (3.1)

Let M be a compact Riemannian manifold. The heat diffusion equation that describes

the distribution of heat over M is governed by:

∆u(x, t) = −∂u(x, t)

∂t
, (3.2)

where u(x, t) is the temperature at the point x ∈M at time t. Given initial heat distribution

u(x, 0) = u0(x), and Dirichlet boundary condition (if manifold has a boundary), the solution

to (3.2) is called heat kernel and can be numerically computed. Explanation of heat kernel

is essential as the basis of Shape-DNA computations [140].

It is shown that the heat kernel kt(x, y) can be expressed as [141]:

kt(x, y) =
∞∑
i=0

e−λitΦi(x)Φi(y) (3.3)

where λi and Φi are respectively eigenvalues and associated orthonormal real eigenfunctions

of the LB operator, which are the solutions to the Laplacian Eigenvalue problem that can

be stated as [155]:

∆f = −λf. (3.4)
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The spectrum of the LB operator is isometric invariant, independent of the shape location,

informative (contains a considerable amount of geometrical and topological information), and

can become scale invariant without difficulty. These properties are motivations for defining

the global shape descriptor Shape-DNA over the sequence of non-zero eigenvalues of LB

operator [140].

The Laplacian Eigenvalue problem on a triangle surface mesh is discretized using linear

Finite Element Method resulting in the generalized eigenvalue problem of the form [151]:

Acotf = −λBf, where

Acot(i, j) :=


cotαij+cotβij

2
(i, j) edge

−
∑

k∈N(i)

Acot(i, k) i = j

B(i, j) :=


|t1|+|t2|

12
(i, j) edge,

∑
k∈N(i) |tk|

6
i = j

(3.5)

where N(i) stands for the index set of the 1-ring neighborhood of the vertex i, |ti| represents

the area of the triangle ti. In particular, t1 and t2 are the two triangles sharing the edge

(i, j) and αij and βij are the two angles facing the edge (i, j) [151]. Since A and B are sparse

positive semi-definite symmetric matrices, the eigenvalues are non-negative 0 ≤ λ0 ≤ λ1 ≤

... ≤ +∞ and eigenfunctions are orthonormal. The generalized eigenvalue problem can be

solved with direct solvers or the Lanczos method [155].

3.2.2 LESI

From the compression perspective, a global shape descriptor is similar to the problem of

dimensionality reduction in terms of squeezing the latent information of a 3D model into a

vector. Owing to the fact that Laplacian Eigenmap has two properties of structural equiva-

lence and locality preservation, we propose a global shape descriptor using the spectrum of
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graph Laplacian.

Theoretical background of Laplacian Eigenmaps, a nonlinear dimensionality reduction

method, is extensively covered in chapter 1. Briefly speaking, Laplacian Eigenmaps is a

simple-core algorithm which tends to capture the intrinsic geometry of a manifold and seeks

for an optimal embedding that has a minimum distance from the manifold. The optimal

embedding is obtained by employing the LB operator over the graph Laplacian.

The Laplacian Eigenmap, similar to Shape-DNA, deals with sparse, symmetric, and

positive semi-definite matrices and solves generalized eigenvalue problem. Hence, it is com-

putationally efficient, and its’ spectrum has all the properties of the Shape-DNA descriptor,

above all is isometric invariant and informative. Moreover, the locality preservation property

makes it to a certain degree insensitive to outliers and noise.

Laplacian Eigenmap is limited neither to 2D/3D manifolds nor a specific type of, e.g.,

triangulated, mesh representation. It applies to an any-dimension smooth manifold. There-

fore, unlike other spectral methods that utilize the cotangent weighting scheme, the proposed

descriptor is capable of handling any connectivity variations as well as defective models. Be-

sides, its’ convergence error rate is relatively low. Motivated by the mentioned benefits, LESI

descriptor is proffered as follows.

The proposed descriptors’ pipeline, illustrated in Figure 3.1, complies with Laplacian

Eigenmaps steps followed by a normalization step to generate a scale-invariant descriptor.

The major difference with Laplacian Eigenmaps algorithm is that the neighborhood connec-

tivity is already defined in the 3D mesh model and hence, we can skip the first step which

is constructing a graph Laplacian.

Construct:
Laplacian matrix (L)

Solve:
Lf = λDf

Spectrum:
0 < λ1 ≤ ... ≤ λm

Normalization:
log(λi) − log(λ1)

1 ≤ i ≤ m

3D
model

Figure 3.1: The pipeline of the proposed anisotropic Laplacian Eigenmaps based scale-
invariant (LESI) global shape descriptor.

For a given surface mesh, we first compute the weight matrix W for a 1-ring neighbor
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of every point as stated in the equation (1.8). This way, closer points are assigned with

higher weight and so, will have more influence on the process of embedding. In the current

work, the parameter σ is suggested to be chosen as the maximum distance among all 1-ring

neighborhood points:

σ = maxdist(xi, xj) : (i, j) ∈ V,wij 6= 0. (3.6)

Therefore, all non-zero weights would be in the range (e−1/2 ≈ 0.6 ≤ wij ≤ 1). As the

connectivity of adjacent points on the surface mesh is defined in both ways, there is no

need to make the weigh matrix symmetric forcefully. From there, the Laplacian and degree

matrices (L and D, respectively) can be computed without difficulty.

Next, we form the generalized eigenvalue problem (equation (1.7)). After solving the

equation, we take the sequence of smallest non-zero eigenvalues as the shape descriptor.

Since in most cases, a single 3D model is made up of one connected component, we only

need to leave out one eigenvalue and its corresponding eigenfunction.

For shape retrieval and comparison, one of the requirements of a well-designed shape

descriptor is its insensitivity to scale variations. According to Weyl’s law [156], when an

object is scaled with factor α, the eigenvalues are scaled with factor α2. In order to achieve a

scale invariant shape descriptor, we propose to eliminate the parameter of scaling by taking

a logarithm of the descriptor vector and then, computing the difference of the new vector

from its smallest element. Further details of the proposed normalization technique are shown

in Figure 3.2.

In Figure 3.2, two Teddy Bear models are shown. One model is in the original size,

whereas the other model is scaled with a factor of 0.7. After constructing the Laplacian

matrix and solving the generalized eigenvalue problem, it is clear from Figure 3.2(b) that

the spectrum of scaled model is almost (0.7)2 of the spectrum of the original model. Taking

logarithm of the spectrum, takes away the scaling factor from multiplicand and leaves it as

augend. Therefore, subtracting one term (e.g., the first element) removes the scaling factor

from all other terms. The result is a normalized and scale-free spectrum.
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(a) Teddy Bear
models

(b) Spectrum of LB
operator

(c) Logarithm of
spectrum

(d) Normalized
Spectrum

Figure 3.2: An example showing the proposed method for normalizing the spectrum. (a)
The Teddy Bear model and its down scaled version (scale factor 0.7). (b) The spectrum of
original (blue) and scaled (red) Teddy Bear models. Please note that the original spectrum
is approximately multiplied by half. (c) The Logarithm of the spectrum shown in (b). (d)
The normalized spectrum of original and scaled Teddy Bear models after subtracting first
element of logarithm of the spectrum .

3.3 Experimental Validation

In this section, we evaluate the general performance of our proposed shape descriptor and

compare it with several widely-used spectral-based global shape descriptors. In section 3.3.1,

we first present two datasets used in our experiments. Then, in section 3.3.2, we qualitatively

visualize and measure the competence of the proposed method in discriminating different

clusters compared with candidate methods from the literature. Next, in Section 3.3.3, we

validate the effectiveness of the LESI descriptor to distinct multiple classes by measuring

the accuracy of multi-class classification. Finally, in section 3.3.4, extensive experiments are

carried out to study the robustness of the proposed shape descriptor with respect to noise,

scale invariance, and down sampling. All the algorithms were implemented using MATLAB

R2013a environment running on a personal computer with Intel(R) Core(TM) i3-4130 CPU

@ 3.40GHz and 12GB memory.

3.3.1 Dataset

To validate the utility of the proposed shape descriptor, we utilized two standard, widely-

used, and publicly available datasets of 3D polygon meshes. The high-resolution TOSCA
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dataset [157] contains 80 three-dimensional non-rigid models, including 11 cats, 6 centaurs,

9 dogs, 4 gorillas, 8 horses, 12 women poses, 3 wolves and two men with 7 and 20 poses

respectively. In our experiments, we use all models except the gorilla models, as they contain

isolated points. The models in each class of the TOSCA dataset are almost identical in terms

of scale, the number of vertices, quality of triangulation, and structure, which all represent

the same object with different poses.

To assess the capability of our proposed shape descriptor in describing models with poor

intra-class quality, we test our algorithm on the McGill dataset with articulating parts [158].

It contains 3D models of 30 ants, 30 crabs, 25 glasses, 20 hands, 29 humans, 25 octopuses,

20 pliers, 25 snakes, 31 spiders, and 20 Teddy bears. The classification of the McGill dataset

models is more challenging due to scale and shape variations.

3.3.2 Retrieval Results

In this section, we evaluate the general performance of our proposed shape descriptor and

compare it with several state-of-the-art spectral-based global shape descriptors including

Shape-DNA [140], cShape-DNA [144], and GPS [143] algorithms. We chose these methods

because they are widely used by researchers (e.g., [159–161]) to develop new descriptors or

applications, or to evaluate the performance of their proposed descriptors. Moreover, cShape-

DNA represents the normalized version of the original Shape-DNA. Even though there are

multiple ways to convert a local point descriptor to a global shape fingerprint, in this article

we focus only on algorithms that have been originally introduced as global fingerprints. To

this end, we take advantage of the source code made available on Dr. Kokkinoss homepage1

[153], as well as the shape descriptor package provided by Li et al. [162] available on a GitHub

repository2 to generate the Shape-DNA and GPS descriptors, respectively. We also compare

the performance of shape retrieval using the code provided for evaluation by SHREC’11 [163].

The shape descriptors are compared using the TOSCA dataset to discriminate between

1http://vision.mas.ecp.fr/Personnel/iasonas/descriptors.html
2https://github.com/ChunyuanLI/spectral_descriptors
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different classes of 3D objects. In this experiment, we use the first 33 non-zero eigenvalues

(d = 33). Then, to visualize the locations of objects in the shape space, we project them onto

a 2D plane using Principle Component Analysis (PCA). Figure 3.3 displays the effectiveness

of our method compared with the fingerprints of interest.

(a) Shape-DNA (b) cShape-DNA (c) GPS (d) LESI

Figure 3.3: 2D PCA projection of shape descriptors computed using (a) Shape-DNA, (b)
cShape-DNA, (c) GPS, and (d) LESI algorithms on TOSCA dataset.

Figure 3.3 reveals that LESI can differentiate models of various classes significantly better

than the other methods for a refined and normalized dataset. Even though all human models

(David, Michael, and Victoria) are very similar, it can distinguish the women from the men’s

group. However, it fails to discriminate models of Michael from David. Despite the large

isometric deformations in each class, the proposed LESI method clusters all models of the

same class together very tightly.

To demonstrate the power of our method in classifying objects with low intra-class sim-

ilarity compared with other shape descriptors, the same experiment is carried out on the

McGill dataset. Models of the same class with articulating parts are in different scales,

shape, and structure. The 2D PCA projections of 33-dimension descriptors from all four

algorithms are shown in Figure 3.4.

As illustrated in Figure 3.4, the original Shape-DNA is highly sensitive to scales. Multi-

ple methods are presented in [140] to make the descriptor normalized to scale. cShape-DNA

represents a normalized version of it by multiplying the descriptor with the surface area.

Although cShape-DNA can separate models from each other, classes are not separated effi-

ciently. LESI outperforms the other algorithms by providing distinct descriptors, which can
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(a) Shape-DNA (b) cShape-DNA (c) GPS (d) LESI

Figure 3.4: 2D PCA projection of shape descriptors computed using (a) Shape-DNA, (b)
cShape-DNA, (c) GPS, and (d) LESI algorithms on McGill dataset.

Table 3.1: Shape retrieval performance using TOSCA and McGill datasets

Dataset Method NN FT ST E DCG

TOSCA

ShapeDNA 1.0000 0.8091 0.9391 0.4486 0.9584
cShapeDNA 0.9474 0.7748 0.8984 0.4748 0.9241
GPS 0.4868 0.4244 0.6320 0.3614 0.6787
LESI 0.8684 0.8456 0.9430 0.4860 0.9244

McGill

ShapeDNA 0.7922 0.3452 0.4977 0.3411 0.7192
cShapeDNA 0.7882 0.3943 0.5483 0.3852 0.7470
GPS 0.3843 0.2508 0.4066 0.2588 0.6020
LESI 0.9647 0.7046 0.8739 0.6644 0.9251

separate classes. Shape descriptors offered by LESI prove superior to the other algorithms

in the shape retrieval and classification tasks, as described below and in the next section

respectively.

To examine the superiority of LESI quantitatively, we computed multiple standard re-

trieval measures including Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), e-

Measure (E), and Discounted Cumulative Gain (DCG). These measures represent state-of-

the-art quality metrics used when evaluating matching results for shape-based search en-

gines [164]. Table (3.1) reports the results of shape retrieval. Boldface numbers indicate the

highest value for each measure per each dataset. From Table (3.1), it is clear that the LESI

descriptor outperforms all other methods concerning all measures in retrieving models from

the McGill dataset. When retrieving models of the TOSCA dataset, LESI outperforms all

methods concerning FT, ST, and E measures. Shape-DNA outperforms LESI by a higher

value for NN and DCG measures, due to the poor discrimination between David and Michael
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performed by the LESI descriptor. However, it does not diminish the validity of our claim

that LESI performs well for meshes with non-uniform sampling or peculiarities.

3.3.3 Multi-class Classification Results

In this section, we corroborate the findings of Section 3.3.2 by training a linear multi-class

SVM classifier to assess the accuracy of LESI compared to other shape descriptors. For this

experiment, we utilized the McGill dataset. In addition to the shape descriptors evaluated

in Section 3.3.2, we computed another normalized version of Shape-DNA by dividing the

feature vector by its first element (similar to what LESI offers) as suggested in [140]. This

way we can compare the effect of the exponential weighting scheme without the influence

of the normalization method or compactness (offered by cShape-DNA). Using 10-fold cross-

validation and repeating the experiment 3 times, we report the average accuracy for each

method in Table (3.2).

The new LESI approach significantly outperforms all other methods when using a two-

tailed paired t-test (p < 0.05). The t-test was performed on one set of 10 folds in order to

avoid violating the independence assumption of the t-test. There is a significant improvement

in accuracy when comparing the Shape-DNA (Normalized) to other variants of the Shape-

DNA, which is due in part to the normalization method. However, the average accuracy of

the LESI descriptor is noticeably higher (95%) when compared to 90% of the Shape-DNA

(Normalized).

Table 3.2: Classification accuracy using McGill dataset

Method Average accuracy

Shape-DNA 21.02%
Shape-DNA (Normalized) 90.60%
cShape-DNA 71.37%
GPS 50.11%
LESI 95.69%

Finally, Figure 3.5 shows the confusion matrix obtained from the linear multi-class SVM
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Figure 3.5: Confusion matrix obtained from linear multi-class SVM for McGill dataset using
LESI descriptors.

using LESI descriptor. The number of correct classifications made for each class (indicated

by the green diagonal), confirms that our method captures the discriminative features of the

shapes.

3.3.4 Robustness

In this section, we address the robustness of the LESI shape descriptor to shape variations,

including noise, scale, and down-sampling by performing another set of experiments. First,

we generate the disturbed version of every model in the TOSCA dataset. Then, we test

the capability of every method mentioned above in discriminating between different classes.

For this purpose, besides plotting the 2D PCA projection of shape descriptors, we also

compute and plot the pairwise Euclidean distance matrix, in every case. The distance

matrix represents the dissimilarity between each pair of models in the set. It is often used

to compute other evaluating metrics such as nearest-neighbor, and first and second tier,

to name a few. The dissimilarity of descriptors increases from blue to red, and the more

separate classes differ in color, the better they are discriminating from each other.
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Resistance to noise. Multiple noisy versions of the TOSCA dataset are generated follow-

ing the idea articulated in [165]. To this end, the surface meshes of all models are disturbed

by changing the position of each point along its normal vector that is chosen randomly from

an interval (−L,L) with the 0 mean, where L determines the noise level and is a fraction

of the diagonal length of the model bounding box. In this experiment, three noise levels

L = 0.5%, L = 1%, and L = 2% are tested, where the latter one represents a greater level of

noise. Two-dimensional PCA projections of all descriptors with the presence of different lev-

els of noise are plotted in Figure 3.6. Combining these with the results shown in Figure 3.3,

where no noise is present, demonstrates that the LESI algorithm is highly noise-resistant

while the performance of the Shape-DNA and cShape-DNA decreases as the level of noise

increases. Moreover, GPS fails in separating different classes of models with the presence of

noise. Figure 3.9 reflects the effect of noise on the discriminative power of the descriptors.

The LESI algorithm shows consistent results as the level of noise increases from 0% (top

row) to 2% (bottom row).

Scale invariance. In order to validate the insensitivity of the LESI descriptor to scale

variations and compare the robustness of the proposed method with other descriptors, each

model of the TOSCA dataset is scaled by a factor of 0.5, 0.875, 1.25, 1.625, or 2 randomly.

Figure 3.7 shows that the LESI algorithm surpasses other methods in discerning differ-

ent classes. Comparing the result of this experiment with the results shown in Figure 3.3

demonstrates the consistency of the LESI algorithm with the presence of scale variation.

The distance matrices in Figure 3.10 show that the original Shape-DNA algorithm is very

susceptible to scale variations. Even though the cShape-DNA has significantly improved

scale sensitivity of the original Shape-DNA, it does not provide as accurate results as the

LESI algorithm does.

Resistance to the sampling rate. To investigate the effect of sampling rates on the

discriminative power of the shape descriptors, Bronstein et al. [134] propose to reduce the
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Figure 3.6: 2D PCA projection of shape descriptors computed by (from left to right) Shape-
DNA, cShape-DNA, GPS, and LESI algorithms on perturbed TOSCA dataset with (from
top to bottom) 0.5%, 1%, 2% noise level, respectively.

(a) Shape-DNA (b) cShape-DNA (c) GPS (d) LESI

Figure 3.7: 2D PCA projection of shape descriptors computed by (a) Shape-DNA, (b)
cShape-DNA, (c) GPS, and (d) LESI algorithms on scaled samples of TOSCA dataset by a
randomly chosen factor of 0.5, 0.875, 1.25, 1.625, or 2.
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number of vertices to 20% of its original size. Accordingly, the down-sampled version of the

TOSCA dataset is generated, and shape descriptors associated with them are computed.

The 2D PCA projections and distance matrices of descriptors are illustrated in Figures 3.8

and 3.11, respectively. Although the original Shape-DNA shows a more accurate result than

cShape-DNA, the separation of cat, dog, and wolf models is challenging. Although the

performance of the LESI method is slightly affected, it still outperforms cShape-DNA and

GPS methods.

(a) Shape-DNA (b) cShape-DNA (c) GPS (d) LESI

Figure 3.8: 2D PCA projection of shape descriptors computed by (a) Shape-DNA, (b)
cShape-DNA, (c) GPS, and (d) LESI algorithms on down sampled TOSCA dataset by rate
of 20%.

3.4 Discussion

In this chapter, motivated by the unique properties of Laplacian Eigenmap (i.e., locality

preservation, structural equivalence, and dimensionality reduction) and inspired by the ex-

isting spectral-based shape descriptors, we investigated the application of manifold learning

in deriving a shape fingerprint in order to address the limitations tied to popular cotangent-

based shape descriptors. We proposed a global descriptor (LESI) with an easy-to-compute

and efficient normalization technique that facilitates applications such as shape classifica-

tion and retrieval. Our method applies fewer restrictions on the class of meshes as well as

improving the quality of tessellations. Analogous to other spectral descriptors, LESI uses

the spectrum of the LB operator, which is independent of the shape location, is informative

(contains a considerable amount of geometrical and topological information), and above all
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Noise
Level

Shape-DNA cShape-DNA GPS LESI

0%

0.5%

1%

2%

Figure 3.9: The Euclidean pairwise distance matrix of shape descriptors computed by (from
left to right) Shape-DNA, cShape-DNA, GPS, and LESI algorithms on perturbed TOSCA
dataset by (from top to bottom) 0%, 0.5%, 1%, 2% noise levels.

Shape-DNA cShape-DNA GPS LESI

Random
Scale

Figure 3.10: The Euclidean pairwise distance matrix of shape descriptors computed by (from
left to right) Shape-DNA, cShape-DNA, GPS, and LESI algorithms on scaled version of the
TOSCA dataset by a randomly chosen factor of 0.5, 0.875, 1.25, 1.625, or 2.

isometric invariant. We compared the discriminating power of LESI with three prominent

descriptors from the literature, namely Shape-DNA, cShape-DNA, and GPS, and found it

to be superior.

In the first set of experiments illustrated in Figures 3.3 and 3.4, our method substantially
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Shape-DNA cShape-DNA GPS LESI

Down
Sampled

Figure 3.11: The Euclidean pairwise distance matrix of shape descriptors computed by
(from left to right) Shape-DNA, cShape-DNA, GPS, and LESI algorithms on down sampled
TOSCA dataset by rate of 20%.

outperforms the others. The superiority of LESI is more significant when the McGill dataset

is used (Table 3.2 and Figure3.5). This dataset includes wide variations in mesh structure

and scales, causing the failure of the other methods to generate acceptable results. However,

LESI, due to utilizing a different method of discretization to form the LB operator, focuses

on the vicinity rather than the quality of the triangulation. Therefore, our technique, unlike

other methods, is not affected by the low quality of polygon meshes.

The second set of experiments evaluates the reliability of our method in the presence of

noise, scale variations, as well as different sampling rates. LESI shows impressive robustness

against the first two sets of perturbation. Despite the negative impact of down sampling in

LESI descriptor, it continues to show better performance when compared to cShape-DNA

and GPS. It should be noted that the result could also be improved by increasing the size

of the output vector.

In addition to the discriminating power of the descriptor, degenerate and non-uniform

meshes may also cause failure of an algorithm to converge. The cotangent weight-based

algorithms were not able to compute the descriptors for 2 shapes from the McGill dataset.

GPS also failed to compute descriptors for 6 models of the down sampled TOSCA dataset.

However, our technique converges at all times despite the quality of the polygon mesh struc-

ture.

Moreover, LESI, unlike cotangent weight-based techniques, is not confined to the trian-

gulated meshes as it disregards the mesh geometry [166]. LESI inherits this property from

59



the capability of manifold learning techniques in coping with high dimensional data. The

discretization of the LB operator using cotangent weights on the quadrilateral meshes is not

as straightforward as on triangular meshes. To compute the LB operator on a quadrilateral

mesh, all rectangles need to be divided into triangles. It could be done easily, however, as

for each quad there are two possible triangulations, the result is not unique.

In the original Laplacian Eigenmaps, the high dimension data requires a considerable

amount of processing as the list of all connections need to be computed for the dataset. In

fact, for each point in the high dimension space, a given number of nearest neighbors need to

be extracted which could be challenging and unmanageable. While applying this technique

to the 3D meshes, we skip this step as the neighbors are already defined and given in the

mesh structure.

This work benefits from the Laplacian Eigenmap technique in a space in which the

vicinities are given. LESI takes advantage of simple Laplacian computation, to form the LB

operator, which provides concise and informative shape descriptors. Experimental results

prove that LESI is more effective compared with the other powerful descriptors.

One limitation of LESI is its inability to separate models of different men (David and

Michael). However, it was able to differentiate between the wolf and dog, as well as between

women and men.

Although we investigated only the application of Laplacian Eigenmap in introducing a

shape descriptor, there are some other spectral-based manifold learning methods, such as

Isomap, LLE, and Diffusion map, which have not been examined. This can be considered

future work.
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Chapter 4

Lung Cancer Descriptive Analysis: A

Combined Manifold and Deep

Learning Approach

4.1 Introduction

Lung cancer is the second most common cancer disease among both men and women, and has

been the leading cause of cancer mortality worldwide, surpassing colon, breast, and prostate

cancers combined [167]. It is a heterogeneous and aggressive form of cancer, accounting for

1 in every 4 cancer deaths in the United States [167]. Lung cancer does not develop specific

symptoms until it spreads. However, studies have shown that annual screening of people

with higher risk of getting lung cancer, using low-dose CT scan, can save many lives [168].

An uncontrolled cell growth in tissues of the lung, called a pulmonary nodule, may result

in lung cancer. Pulmonary nodules are easy to spot on an X-ray or CT scans, but hard

to diagnose [169]. Diagnosis of a nodule involves determining whether it is cancerous or

non-cancerous. Accurate diagnosis of lung nodules from pulmonary abnormalities is of vital

importance for early detection and effective treatment of lung cancer, where any misclassifi-
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cation of lung nodules may lead to additional medical costs, invasive surgeries, unnecessary

lung biopsies, prolonged hospitalizations and/or physically aggressive treatment plans. It

becomes more apparent when statistics state that the majority – at least 60 percent of lung

nodules overall – are not malignant or cancerous, and thus, there exists a pressing need to

build highly accurate descriptive models to analyze lung nodules reliably [169].

Medical imaging of the chest/lung using X-ray, CT, PET/CT, and MRI is widely used

by radiologists and physicians to screen and analyze lung nodules. Given the harmful effects

of lung nodule misclassification mentioned earlier, computer-aided diagnosis (CAD) systems

are needed to improve patient survival rates as well as to minimize patient radiation expo-

sures. Advanced computational methods including machine learning and computer vision

techniques combined with various medical images have the potential to serve as an accurate

and timely descriptive model that can assist physicians in their ability to diagnose and treat

lung nodules [170–173].

4.1.1 Pulmonary Nodules: Background

A pulmonary nodule is an abnormal growth in the lung tissue that looks like a small, round

or oval-shaped spot. Hence, it also is called “a spot on the lung”. Pulmonary nodules

are very common; about 0.2% of chest X-rays reveal the presence of pulmonary nodules.

However, not every nodule is cancerous. Pulmonary nodules can be benign/non-cancerous

or malignant/cancerous. A pulmonary nodule is defined as three centimeters in diameter or

less. Otherwise, it is called a mass and more likely represents a tumor [169].

Early detection of pulmonary nodules is essential as it increases the survival rate of pa-

tients significantly. There are a few symptoms associated with the presence of lung nodules,

and often the nodules are misdiagnosed with a chest cold or mild flue. Most pulmonary

nodules, about 90%, have been discovered accidentally while the patient had an X-ray or

CT scan taken for other purposes [169].

One of the notable differences between a benign and malignant nodule is the growth rate.
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The growth rate of a benign nodule tends to be zero or very small. On the other hand, a

malignant nodule tends to grow relatively quickly, usually doubling in size every four months.

However, it is possible to grow as fast as doubling in size in 25 days [169].

There are three approaches to determine whether a nodule is benign or malignant. The

first is to monitor the growth rate of the nodule. As discussed earlier, malignant nodules

engulf surrounding tissues and grow fast. The second way is to evaluate the nodules’ apparent

features such as size, edge characteristics, and calcification. While benign nodules tend to

have smoother and more regular shape with monochromatic appearance, malignant nodules

are known to have irregular shapes, rough surface structure and vary in color over the entire

surface. The last approach is using invasive methods such as a biopsy to retrieve cells by

using a needle or performing a localized surgery [169, 174, 175].

Information gained from a nodule’s growth rate and its morphological structure provide

doctors with enough evidence to make reliable diagnoses. This fact motivates us to exploit

computational algorithms to obtain quantitative measures that distinguish cancerous nodules

from non-cancerous ones.

4.1.2 Literature Review

Lung nodule analysis using a CAD system consists of several components including candi-

date nodule region-of-interest (ROI) detection, false-positive reduction, and nodule classifi-

cation [176]. A candidate ROI detection method needs to have high sensitivity in order to

detect every suspicious region; meanwhile, a false-positive reduction algorithm removes non-

nodule regions to reduce the volume of further processes. A nodule classification method,

which is the focus of this research, aims to distinguish malignant nodules from benign ones.

In recent years, numerous research articles introduced pulmonary nodule classification as

a two-step classification process: 1) extract concise and distinct features; and 2) train a

classification model [177]. Although for a specific problem statement some classification

models provide a more robust and accurate out-of-sample prediction than others, still the
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performance of classifiers relies on the extracted features.

Hand-crafted features including shape, intensity, and texture have been used to develop a

nodule classification model [178–182]. In 2010, El-Baz et al. [178] utilized Markov-Gibbs Ran-

dom Field (MGRF) to model the spatial distribution of image intensities (Hounsfield values)

from segmented nodules aiming to develop an early diagnosing of malignant nodules. Later

in 2012, authors extended their work to assess malignancy of lung nodules in 3D space [179].

In an alternative approach, El-Baz et al. [180] proposed to describe shape complexity of

lung nodules with a shape index; the number of Spherical Harmonics (SHs) required to ap-

proximate the 3D surface of a lung nodule. Their approach is based on the hypothesis that

malignant nodules tend to have more irregular surface structure when compared with benign

nodules that have smoother edge characteristics. Besides the morphological features, the ef-

fectiveness of texture features has also been investigated [181, 182]. To assess the efficacy of

texture features in differentiating malignant and benign pulmonary nodules, Han et al. [181]

compared three widely-used texture features, namely the Haralick [183], Gabor [184], and

Local Binary Pattern (LBP) [185]. Also, authors explored the sensitivity of these features

to image thickness and proposed an extension of 2D Haralick features to 3D space. Later,

in 2016, Dhara et al. [182] presented a combined shape and texture features extracted from

2D and 3D image slices/volumes for the purpose of lung nodule classification. Authors ex-

tracted 56 features from segmented nodules and examined the contribution of these features

in nodule classification by computing the AUC and their p-values from two-tailed Student’s

t-test. The task of classification was completed by training an SVM classifier using the 49

most relevant features.

In recent years, Deep Convolutional Neural Networks (DCNN) has made a huge impact

in the field of computer vision and consequently, has found applications in various domains

such as image classification [186], visual tracking [187, 188], concrete crack detection [189],

and biomedical image segmentation [190], to name a few. Since the introduction of DCNN,

automatic feature extraction approach has gained researchers interest in the area of medi-
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cal image analysis. Deep learning architectures derive higher level features from lower level

features using a combination of linear and non-linear transformations in a hierarchical fash-

ion. For the purpose of diagnostic classification of lung nodules, several works have been

published in the literature [191–200]. Most early works on lung nodule classification were

designed and evaluated at the 2D image slice level using 2D CNNs (e.g., [191, 192]). This

approach does not benefit from the 3D context of pulmonary nodules to its full extent.

To account for the volumetric information due to the 3D nature of a nodule, two different

approaches were taken: 1) processing multi-view snapshots of a nodule with 2D CNNs to

mimic a 3D volume (e.g., [193, 194]); and 2) utilizing 3D CNNs with 3D convolutional and

3D max-pooling layers (e.g., [195]). In another approach, to improve the classification perfor-

mance of the CNN architecture, multi-scale CNNs were proposed aiming to extract features

at multiple scales and to provide information from the surrounding tissue of a nodule with

multiple viewing areas. That idea was evaluated in 2D-scale (e.g., [197]) and 3D-scale with

one-view-one-network (e.g., [196, 198, 199]) and multi-view-one-network (e.g., [200]) imple-

mentation strategies. One drawback of 3D CNNs is that they are computationally intensive

and require long training time.

A requirement of deep learning architecture in image recognition is a large-scale, well-

annotated dataset that represents intra-class variations and characteristics. However, obtain-

ing such a dataset in the medical imaging domain is very challenging for two primary reasons:

rigorous regulations that limit access to patient data, and the need for domain-specific ex-

perts who wish to spend a vast amount of time on annotating a large-scale dataset [201].

As a result, deep-based classification models face the problem of over-fitting [202]. To

address the over-fitting issue, a number of research articles propose combining deep fea-

tures with shape/texture features for obtaining a more reliable prediction of future observa-

tions [177, 203]. Buty et al. [203] proposed combining appearance features extracted from a

DCNN model with shape fingerprints obtained from the scale and rotation-invariant spheri-

cal harmonic analysis of 3D shapes aiming to characterize the degree of malignancy of lung
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nodules. In another research, Xie et al. [177] proposed a classification approach by combin-

ing deep features extracted from a DCNN model, texture features computed from the Gray

Level Co-occurrence Matrix (GLCM), and shape features obtained from the Fourier shape

descriptor. A common point among all the deep learning-based classification models that

have been introduced so far is that the input to their network is a series of 2D image slices

or a 3D volume (a stack of 2D images). The former one ignores partial information related

to the 3D context of lung nodules, and the latter one is extremely computation intensive.

Studies show that morphological features and edge characteristics of lung nodules pro-

vide useful information to distinguish between benign and malignant nodules [204]. While a

considerable amount of research activities has been conducted regarding lung nodule classi-

fication using 2D/3D intensity-based images, little attention has been paid to developing a

model based upon the surface structure of nodules. This motivates our first aim, which is

to classify lung nodules based on the features that are extracted from their surface structure.

The second aim focuses on a computational perspective. Our main contribution is in

the development of a lung nodule descriptive model in which, we propose to use deep features

computed using point sets sampled from 3D surfaces. To address the over-fitting issue caused

by using a relatively small medical imaging dataset, and to account for the connectivity of

sampled points, which is ignored in point-cloud based deep learning models, we propose

combining deep features with shape fingerprints computed using surface spectral analysis.

Our proposed classification approach uses discriminating features that are extracted using a

point-cloud based deep learning model along with a spectral analysis of the 3D shape sur-

face. To the best of our knowledge, deep learning networks that are based on the 3D surface

structure of lung nodules have not been employed for automatic feature extraction, nor have

they been combined with shape descriptors. A summary of the reviewed related works is

presented in Figure 4.1.

The rest of this chapter is organized as follows. In Section 4.2, we propose a descriptive

model that employs deep learning and manifold learning techniques with an objective to
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Figure 4.1: Summary of related works and the proposed classification approach.

extract discriminative features from the surface structure of lung nodules. Then, in Section

4.3, the evaluation experiments are presented, and the results are reported. Finally, the main

findings, limitations, and future work are discussed in Section 4.4.

4.2 Proposed Method

In this section, we elaborate on a descriptive model that characterizes pulmonary nodules

aiming to specify whether a nodule is benign or malignant. The objective here is to obtain a

robust and accurate pipeline that has clinical relevance. Meaning that We desire to develop

a classification model with high sensitivity in identifying cancerous nodules; meanwhile, we

wish to obtain a high specificity to prevent complications caused by a false diagnosis.

Our descriptive model benefits from the power of deep learning models in automatic ex-

traction of high-level features along with the spectral analysis of nodule surface structure,

to make up for shortcomings associated with not having a large-enough dataset in medi-

cal imaging domain. Figure 4.2 presents the general pipeline of our proposed model. The

pipeline starts with nodule localization and segmentation from a chest CT scan. Then, hav-

ing the binary volume, a 3D surface polygonal model is generated. The feature extraction

component is made up of two branches; extracting deep features from a 3D shape deep learn-

ing architecture, and extracting shape fingerprints from well-established and mathematically
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powerful spectral analysis of 3D models. In the last step, we combine these features, and

feed them into a classification model; in our case, a random forest classifier. Once a classifier

is trained, it predicts the category of new instances. To assess the generalization capability

of the trained classifier, we followed the k-fold cross-validation strategy.

Figure 4.2: Pipeline of the proposed descriptive model for pulmonary nodule classification
from lung CT scans.

Extensive research has been done on nodule localization and polygonal model generation.

Therefore, the primary focus in the current contribution is on the feature extraction and

classification components, which we will discuss in more details.

4.2.1 Dataset and Preprocessing

LIDC-IDRI Dataset. The Lung Image Database Consortium (LIDC) Image Database

Resource Initiative (IDRI) image collection is a web-accessible resource that is provided and

funded by the National Cancer Institute (NCI), the Foundation for the National Institutes

of Health (FNIH), and the Food and Drug Administration (FDA) through The Cancer

Imaging Archive (TCIA) repository. It consists of 1018 thoracic computed tomography

(CT) scans from 1010 patients with marked-up annotated lesions. Each individual scan

was reviewed by four experienced thoracic radiologists in a two-phase image annotation

process, and is accompanied with an associated XML file that provides information about

every possible nodule including its category (non-nodule, nodule≥3 mm, and nodule<3 mm),

boundary markings for nodules≥3 mm, and malignancy rate evaluated by each physician on
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a 5 point scale. The LIDC-IDRI dataset also contains nodule-specific details, i.e., a list of

available cases, the associated size of each nodule, and the total number of nodules for each

patient [205–208].

Preprocessing. We adopted the protocol reported in [194] which only considers nodules≥

3 mm diagnosed by three or more radiologists. We computed a composite malignancy rate by

taking the median of all malignancy levels. Then, binary classification ground truth labels

were derived by discarding nodules with composite malignancy level equal to 3. Nodules

with a composite level less (greater) than 3 are considered benign (malignant). Table 4.1

reports the number of nodules in each class.

Table 4.1: Description of ground truth information on the LIDC-IDRI dataset

Composite malignancy rate 1,2 3 4,5
Number of nodules 446 511 430
Classification label Benign - Malignant

Before generating a polygonal surface mesh for each nodule, we extracted nodule volume

by masking pixels that were inside or on the boundary region of the nodule on a slice-by-

slice basis. For that purpose, we collected the boundary markings of each nodule drawn by

physicians independently. A consensus of opinion among physicians is obtained by keeping

pixels that are part of the nodule area detected by two or more physicians. Then, having the

binary volume of a nodule, we generated a polygonal model using iso2mesh mesh generation

toolbox [209–211]. These steps are shown in Figure 4.3. In the end, a fixed number of

points were sampled on the mesh surface with probabilities according to the faces area to

generate the point cloud representation of every nodule. The number of sampled points is

2048, determined by the input size of the PointNet network.
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Figure 4.3: Consensual ROI extraction and 3D model generation of a lung nodule.

4.2.2 Deep Feature Extraction

Deep learning architectures that accept 3D voxel grids as input are computationally ex-

pensive. Moreover, shape representation using volumetric occupancy grids is unnecessarily

voluminous [212], and more importantly, a significant portion of volume does not contain

informative content useful for nodule classification.

To make use of the 3D context of lung nodules, meanwhile, avoiding the extensive com-

putations related to volumetric data, we suggest sampling points from the reconstructed

surface meshes. Sampled points form a point cloud (PC), which represents the geometry

and morphological structure of a lung nodule in a compressed form. A general and unified

deep network that learns abstract and useful features of 3D PCs is PointNet [212].

PointNet is a deep convolutional architecture on 3D geometric point sets. This simple

yet efficient network is invariant to permutations of points (N ! permutations), as well as

rigid transformations of the point cloud in whole. PointNet accepts unordered point sets as

input, learns the general structure of the point cloud, and provides n scores for an n-class
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classification task. It is robust to noise as it finds which points contribute the most to the

global features. The number of parameters and FLOPS/sample (floating-point operations

per sample – a representative of speed) utilized by PointNet is significantly less than other

volumetric CNN networks [212].

In this descriptive model, we utilize PointNet as a deep feature extractor. PointNet

contains a series of Multi Layer Perceptron (MLP) combined with input and feature trans-

formations to extract a vector of abstract and efficient features. At the end of the network,

a three-layer MLP provides the prediction scores. To utilize the network as an efficient deep

feature extractor, we first train its network with training samples. Then, for every new test

sample, we take features from the last MLP layer before the output layer as the extracted

features.

While PointNet captures local structures from neighboring points, it ignores the connec-

tivity of points that form the surface. The edges in the surface mesh representation form

faces and boundaries. Also, PointNet looks for global points that contribute to the part

segmentation and object category detection. In this process, it does not take advantage of

the relative distance between neighboring points. To address the issue that comes with PC-

based deep networks, we suggest incorporating spectral shape descriptors in the descriptive

model.

4.2.3 Spectral Feature Extraction

The spectral analysis of geometric shapes aims to extract a compact and informative feature

vector – called a shape fingerprint – from the surface structure of a 3D shape. It defines

the Laplace-Beltrami (LB) operator on the Riemannian manifold to find the distribution of

various functions, e.g., heat or wave, over the surface of the manifold. The LB-operator and

its spectrum offer unique features that are useful for descriptive analysis of 3D geometric

shapes. Among those features, rotation and isometric-invariance are the most important

ones [140].
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The spectrum of the LB operator consists of a series of real and non-negative eigenvalues,

obtained from solving the Laplacian eigenvalue problem. While eigenvectors form a set of real

and orthogonal basis that forms the algebra of a function over the manifold, the spectrum

contains information that characterizes the geometry [213]. In the past two decades, the

eigenvalues and eigenvectors of the LB-operator have been used to develop several local and

global shape descriptors including Shape-DNA [140] and LESI [152].

Spectral shape descriptors are isometric invariant; however, they are able to efficiently

characterize, and tell the difference between benign and malignant nodules due to the amount

of surface deformation between two classes. When a geometric shape is represented with a

3D surface mesh, the spectral method uses one of the several discretizations of the Laplace

operator to solve the Laplacian eigenvalue problem. One key difference between Shape-DNA

and LESI descriptors is the method of discretization used to estimate the distribution of

function on the sampled mesh points. The method of discretization used in the descriptor

leads to forming completely different Laplacian matrices which eventually determines some

properties of the method such as its ability to handle open surfaces, peculiarities of the

triangulation, and accuracy of distribution for non-uniform meshes [141, 151, 214].

Shape-DNA uses widely-used cotangent-based discretization method that is capable of

handling surface boundaries. However, organic structures such as lung nodules are closed

surface meshes. Therefore, they can be analyzed with descriptors that generally have a

problem dealing with manifolds with boundaries, e.g., LESI.

In some problems, such as shape retrieval of everyday objects, it is more desirable to

have a scale-invariant shape fingerprint. Therefore, some shape descriptors provide an op-

tional method for scale normalization that removes the parameter of object scale from the

fingerprint. However, the scale of a nodule is a decisive factor in the problem of lung nodule

classification, and so, scale-sensitive descriptors are more effective.

In the current project, we evaluated the performance of LESI descriptor in extracting

useful and distinctive features with and without scale normalization. The one with better
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performance was used in the implementation of the final descriptive model.

4.2.4 Classification with Random Forest

After extracting features from a PC-based deep network and a spectral shape descriptor,

it is time for building a predictive model. Prediction is made by fitting the training data

into a classification model that learns any relationship between features and class labels. In

the current contribution, we used random forest as a classification model with Gini impurity

criterion as a measure of the overall gain in class purity.

Random forest is an ensemble decision tree that improves the prediction accuracy and

controls over-fitting of individual trees. Random forest classifier has a few substantial high-

lights. It decorrelates individual trees by randomly sampling from the set of features that

contribute to fitting a tree. Sampling features at each split can be implemented with replace-

ment (i.e., bootstrap). Also, it reduces the variance of predictions by aggregating decisions

made by a number of trees. Not only is it highly efficient on a large dataset, but also it

ranks the importance of features [215].

4.3 Experimental Validations

4.3.1 Experimental Setup

The present experimental study has been carried out on a high-performance computer with

64-bit MS Windows 10 operating system, Intel(R) Xeon(R) E3-1245 CPU @ 3.50GHz, and

32GB memory. The current system is equipped with an NVIDIA Quadro M5000 GPU.

Data preprocessing and spectral analysis of lung nodules are implemented using MATLAB

R2017b environment. Deep learning of point cloud sets is performed using Anaconda 5.1

and Python 3.6 with TensorFlow 1.10, CUDA 9.0, and cuDNN 7.1.4.

The dataset was split into training and testing sets as reported in Table 4.2. To find the

best classification model, and to achieve a reliable estimate of the out-of-sample classification
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prediction, 10-fold cross-validation was utilized. After the deep network, as well as the

classification model, were trained with the training set, the performance of the whole model

was evaluated with the actual out-of-sample data from the testing set.

Table 4.2: Train/test split of the LIDC-IDRI dataset

Benign Malignant Total

Training set 348 336 684
Testing set 98 94 192

Total 446 430 876

4.3.2 Experimental Results

We evaluated the performance of the proposed descriptive model (Figure 4.2) on the dataset

presented in Table 4.2 using 10-fold cross-validation. More specifically, the training set is

split randomly into 10 folds; using 9 folds for training and the last fold for testing, and

repeating the experiment such that each fold is used once for testing. Several classification

metrics including accuracy, sensitivity, specificity, and the area under the receiver operating

characteristic curve (AUC) are recorded to assess the predictive capability of the model. Op-

timization of hyper-parameters for random forest classifier was obtained using cross-validated

grid-search over a set of parameters. The k-Fold cross-validation provides an estimate of pre-

diction accuracy for out-of-sample data. After tuning the parameters of the random forest

classifier, we examined the performance of the model on the testing set (actual out-of-sample

data). The results of the proposed model have presented in Table 4.3. In this table, we com-

pare the performance of our model with multiple state-of-the-art lung nodule classification

algorithms.

As Table 4.3 shows, our proposed method outperforms methods that use hand-crafted

features (as in [181, 182]), multi-scale deep learning features (as in [196]), and a combina-

tion of shape, texture and image-based deep learning features (as in [177]) in accuracy and

sensitivity. Even though our specificity and AUC are lower than some other methods, our
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Table 4.3: Classification metrics of five studies.

Han et al.
[181]

Dhara et al.
[182]

Shen et al.
[196]

Xie et al.
[177]

Proposed

Accuracy 85.59 88.38 87.14 86.79 88.54
Sensitivity 70.62 84.58 77.00 60.26 87.23
Specificity 93.02 90.03 93.00 95.42 89.80
AUC 89.25 95.76 93.00 - 92.30

method is the one that obtains both sensitivity and specificity over 87%. Higher specificity

obtained by some methods is the result of low sensitivity; meaning misclassification of malig-

nant nodules. High specificity is important for reducing unnecessary procedures; meanwhile,

high sensitivity and accurate labeling is essential for making informed decisions.

In another experiment, we investigated the effect of scale normalization on the discrimi-

nating power of the shape fingerprint. We hypothesized that the addition of scale normaliza-

tion would reduce the accuracy of prediction, simply because the nodule size is a key feature

in classification. Comparing the performance of the spectral feature with and without scale

normalization, reported in Table 4.4, proves the hypothesis. It also suggests that eliminating

the parameter of scale from the shape fingerprint has a devastating impact on the feature

vector by shifting a majority of predictions toward the malignant class. Therefore, while

the sensitivity of predicting malignant nodules is increased, the specificity is significantly

reduced; meaning many benign nodules are classified as malignant.

Table 4.4: The impact of scale normalization on the performance of the spectral feature
using Laplacian Eigenmaps (LE).

LE LE + Norm

Accuracy 84.90 70.31
Sensitivity 86.17 92.55
Specificity 83.67 48.98
AUC 90.52 78.57

We also trained a separate classifier for each set of feature vectors to investigate the

contribution of each set in the overall prediction. Table 4.5 compares the performance of each
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set of features (deep from PointNet and spectral from LESI) with the combined descriptive

model. Combining features improved false-positive reduction significantly (p-value < 0.05).

It is good to note that due to the small size of the testing data, the increase in the sensitivity

of deep features compared with the combined feature set, is not significant.

Table 4.5: Contribution of deep (Pnet) and spectral (LE) features in the overall classification.

Pnet LE Pnet + LE

Accuracy 83.85 84.90 88.54
Sensitivity 88.30 86.17 87.23
Specificity 79.59 83.67 89.80
AUC 91.23 90.52 92.30

4.4 Conclusion and Discussion

Diagnostic classification of lung nodules is of high importance. In this contribution, we

developed a descriptive model that provides high sensitivity and specificity. Having a high

sensitivity for a classification model results in a high rate of malignant nodule detection, and

an increase in the overall survival rate; meanwhile, a high specificity reduces false-positive

detections and unnecessary invasive procedures such as biopsies. Comparing our model with

four other studies shows that the proposed descriptive model achieves higher accuracy with

sensitivity and specificity both more than 87%.

Our proposed descriptive model is based on an analysis of the surface structure of lung

nodules. It combines deep features that are obtained from a PC-based deep network with

shape fingerprints obtained from a spectral analysis of the 3D surface mesh. Addition of

spectral features to the model addresses two problems: 1) the over-fitting problem of deep

networks caused by relatively small dataset in medical imaging domain; and 2) ignoring the

connection of neighboring points that form the face of the 3D shape. Experimental results

show that combining deep and spectral features significantly (p-value < 0.05) improves the

specificity and overall accuracy of prediction. By comparing the performance of spectral
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features with and without scale normalization, we found out that spectral features without

built-in scale normalization are more appropriate for this study as the nodule scale is a

determining factor in class prediction.

In the present work, the number of sampled points for all nodules is constant, which

is determined by the input size of PointNet. A question that arises here is whether that

sampling rate provides enough information from large nodules. In our observations, iso2mesh

generates non-uniform sampled meshes in which, more samples are taken at irregular spots

and fewer samples on smooth surfaces. Therefore, for LIDC-IDRI dataset, we only up-

sampled point clouds.

The proposed model benefits from PC-based deep learning of 3D shapes, which speeds

up the analysis. Because it only consumes sampled points from the surface of the nodule

and ignores voluminous data from the internal structure of the nodule that does not contain

informative content useful for nodule classification. Our model mimics what physicians do

as they review a patient’s scan slice-by-slice and envision the nodules’ structure in their

mind. Another advantage of this approach is that it can simply be generalized to diagnostic

classification of abnormalities at other organs. Although the method proposed by Dhara

et al. presents higher overall AUC and better specificity, their method uses hand-crafted

features which makes it less adaptable to new tasks.

One limitation of the proposed descriptive model is related to data preparation for analy-

sis. Unlike image-based deep learning networks that accept an image patch as input directly

from CT scans, the proposed model with its current implementation relies on manual seg-

mentation of nodules, which is a tedious and clinically impractical task.

As a future work, we would like to equip our descriptive model with an end-to-end data

preparation package using semantic segmentation of biomedical images. Not only it will

remove the ambiguity of disagreement between radiologists, but also it makes it suitable for

use in clinics. Also, PointNet would benefit from the calcification information if we map the

intensity inside the nodule to the surface color. It can help with classification of pulmonary
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nodules with Ground Glass Opacity (GGO). Moreover, visualizing the network provides an

understanding of the network performance, which can help with improving the model in the

future. Two other possible future works can be summarized as: 1) using transfer learning

that has the potential to compensate the limitations of deep learning tied to relatively small

dataset in the medical image domain; and 2) using a graph-based deep learning instead of

a PC-based network as it considers edge-connectivity into the network and eliminates the

need for spectral analysis.
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Chapter 5

Conclusions and Outlook

5.1 Summary

In this dissertation, I demonstrate the innovative use of machine intelligence to a number of

medical data processing problems using advanced computing techniques including manifold

and deep learning methods. I begin by emphasizing the importance of medical imaging in

the healthcare community, which has been recognized as one of the top 10 medical devel-

opments in the past thousand years. Then, I provide technical background information on

Principal Component Analysis (PCA) and Laplacian Eigenmap as linear and non-linear man-

ifold learning techniques. Finally, the application of manifold learning in different problems

including image segmentation, shape classification, and descriptive analysis of pulmonary

nodules are discussed in Chapters 2–4, respectively.

Chapter 2 discusses the challenges related to registering multi-modal images. As intensity

variations between images make some similarity metrics inefficient in this kind of problem,

missing and partial data eliminates one-to-one correspondence between input images, and

causes the failure of many mutual information-based registration techniques. One approach

that has recently been investigated is reducing the problem of co-registration of multi-modal

images to mono-modal scans. This research introduces an intensity transformation which
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relies on learning a manifold generated from image patches by using Laplacian Eigenmap as

a manifold learning technique. It also presents a simple and efficient manifold alignment that

completes the intensity transformation in the manifold embedded domain. As a result, using

RIRE dataset, mean absolute error of 1.00, 1.41, and 1.37 mm are obtained for registering

CT images with T1-, T2-, and PD-MRIs, respectively. We also empirically investigate the

efficacy of the proposed transformation in registering multi-modal images with partial data.

Chapter 3 introduces a spectral-based global shape fingerprint that addresses the lim-

itations tied to popular cotangent-based shape descriptors, namely, dependency on trian-

gular mesh representation and high intra-class quality of 3D models. Besides the state of

being invariant to rotations and isometries, this study presents a straightforward and easy-

to-compute normalization method that takes out the parameter of scale from the shape

descriptor. Unlike methods with a built-in scale normalization step, gives the opportunity

to preserve the parameter of scale in problems in which scale is a determining feature, such

as tumor classification.

Chapter 4 demonstrates the novel application of manifold learning to characterize pul-

monary nodules aiming to specify whether a nodule is benign or malignant. Building on

the idea presented in Chapter 3 combined with recent advances in deep learning on point

sets, we propose a descriptive model that outperforms a number of state-of-the-art methods

with accurate predictions. The model shows high sensitivity in identifying cancerous nod-

ules, as well as high specificity that reduces false-positive diagnosis. Using the LIDC-IDRI

dataset, we obtained 88.54% accuracy, 87.23% true-positive rate, 89.80% true-negative rate,

and 92.30% area under the receiver operating characteristic curve (AUC).

The common theme throughout these chapters has been using manifold learning to study

the surface structure of a smooth manifold, whether it is generated from image patches or

provided by 3D surface meshes. Manifold learning along with other computational meth-

ods including manifold alignment, scale normalization, and deep networks characterizes the

underlying structure of the problem of interest and offers an accurate and robust solution.
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5.2 Future Work

This research can be extended from both computation and application perspectives. Below,

I point interested readers to a few areas of research.

Computational perspective. In Chapter 4, we proposed a descriptive model that

benefits from the structural differences between benign and malignant nodules to extract

discriminative features. However, in our model, a nodules’ structure is represented in the

form of a point cloud. With recent advances in generalizing deep architectures to non-

Euclidean structured data, intrinsic convolutional neural networks have the potential to

learn and describe non-rigid deformations of the surface. Such deep architectures give an

opportunity to enrich the non-Euclidean structured data used in the learning process by

including other related features, e.g., nodule calcification, vertex color, and point normal.

Segmentation of 3D structures. One application of manifold learning is in graph

clustering, which is to partition a graph in such a way that it optimizes a cut criterion.

Therefore, these learning techniques can be used for image segmentation. Whether the

smooth manifold is constructed using image patches or other forms of image representatives,

such as SIFT features, the computational complexity of manifold learning methods hampers

the segmentation of 3D structures from image volumes. A possible approach to this problem

could be incorporating an adaptive region-growing technique into segmentation of 2D image

slices using manifold learning.

Dermatosis Conditions. A skin condition, a condition in which the integumentary

system of the body is affected, can be categorized into many different types. In many types,

the skin condition can be detected with naked eyes. However, even with the help of an

expert, diagnosis of a skin condition may require a skin biopsy or special imaging technique

called dermoscopy. People with these conditions may face a number of challenges such as

limited access to specialized physicians supplied with advanced imaging devices, the cost,

and convenience of screening on a regular basis. Recent advances in machine intelligence

with computational techniques that have been developed in computer vision and learning
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domains can maximize the chance of identifying, characterizing, and effective treatment of

these conditions including lesion outlining and classification, accurate measurement of a

healing wound, and Melanoma image analysis, to name a few.
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