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ABSTRACT

A STocHASTIC CONTROL MODEL FOR
ELECTRICITY PRODUCERS

by

Charles Beer

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Richard Stockbridge

Modern electricity pricing models include a strong reversion to a long run mean and a
number of non-local operators to encapsulate the discontinuous price behavior observed in
such markets. However, incorporating non-local processes into a stochastic control problem
presents significant analytical challenges. The motivation for this work is to solve the problem
of optimal control of the burn rate for a coal-powered electricity plant. We first construct a
pricng model that is a good general representative of the class of models currently used for
electricity pricing as well as a model for the supply of fuel to the plant. Under this model,
we state the control problem of maximizing the expected discounted revenue until the first
time at which the plant runs out of fuel. Deriving the HJB equation for this control problem
results in a partial integro-differential equation, which does not fit the classical theory of
viscosity solutions. Building off of work by Barles and Imbert on viscosity solutions for non-
local processes, we extend their theory to apply to non-local processes which also include a
mean-reversion component. We first show that the value function for the control problem
is a solution to this HJB equation. In our main result, we prove a comparison principle for
viscosity solutions which uses a slightly more regular structure of the non-local operators to
relax some of the assumptions of Barles and Imbert. Using this comparison principle, we
are able to show that the value function is in fact the unique solution to the HJB equation.
Thus, we have the desired result that solving the HJB equation is equivalent to solving the
control problem, giving us a direct method for finding the optimal control policy for the

electricity producer.
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Chapter 1

Introduction and Problem
Formulation

1 Background

Beginning with some northern Furopean markets in the early 1990’s, nations around the
world have liberalized the markets for electricity, and later those for other related products
like energy futures and options [4]. In the United States and Canada, this process began in
1996 with the creation of Independent System Operators (ISOs) with the responsibilities of
operating electricity grids and administering wholesale electricity markets for large, multi-
state regions of the United States and Canada. These ISOs allow large energy producers to
act as sellers in a partially regulated commodities market.

The ISO actually operates two separate markets, a day-ahead market and a real-time
market. The day-ahead market allows producers to plan their production in a relatively
deterministic manner since they are guaranteed a certain price. Producers are also obligated
to provide a certain amount of electricity, based on their production capacity, to the day-
ahead market in order to participate in the ISO market. However, since this market is largely
deterministically controlled by the ISO, it is of little interest in this thesis. Of much greater
interest is the real-time market operated alongside the day-ahead. In particular, we consider
the nodes of the Midcontinent ISO (MISO) real-time market which provides service to the
Midwestern US and Manitoba, Canada [11]. We pay particular attention to those nodes
near Milwaukee, WI.

Modeling spot prices for electricity in these markets presents a challenge. While most

commodities markets have been modeled with great accuracy using standard financial math-



ematical models driven by Brownian motion or exponential Brownian motion, these are
continuous-path processes and thus fail to capture the large, instantaneous spikes seen in

electricity prices.
Daily Average Price on MISO Grid 2012-2013
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Figure 1: Crude oil spot price 2008-2016 [8] (left) and electricity spot price on one node of
MISO grid [10] (right)

More sophisticated spot price models based on general Ornstein-Uhlenbeck processes were
developed in the late 2000s (e.g. [3]) and compiled into a textbook on the subject by Fred
Espen Benth in 2008 [4]. While these models contributed greatly to the pricing of ener-
gies derivatives like electricty futures and options, there has been little to no application of
them to stochastic control problems, for example optimal action of an energy supplier in
such a market. This thesis seeks to begin the examination of such applications through the

particular case of a coal-powered electricty plant acting in an open electrictiy market.

2 Description of the Problem

The problem considered in this paper is to optimally control the rate at which a coal plant
burns fuel in order to maximize its revenue from selling to a single node on the MISO grid.
Because the costs of shutting down and restarting such a plant are extremely high, we wish
to consider this as a first-exit problem with the terminal time being the first time the plant’s

coal supply reaches a specified minimum level.



3 The Model

3.1 The Coal Supply Process

Many coal plants have contracts with coal suppliers that specify an amount of coal to be
delivered to the plant via freight train each day. However, several environmental factors
including blockages of railways and failures of unloading equipment at the delivery point
make it necessary to model this supply as a stochastic process rather than a deterministic
one. Also, some minor delays may result in two trains (e.g. a train delayed from the previous
day and the train intended to arrive on the current day) arriving in a single day. Further,
since many of these delays stretch over multiple days, the arrival of coal each day cannot be
considered completely independent of earlier days.

However, a Markovian supply process is needed for most analyses. So, the arrival of coal
is modeled as a two coordinate Markov chain. Each element of the Markov chain has one
coordinate indicating the number of coal trains arriving that day and a second coordinate
that tracks the number of coal trains that arrived the previous day. In this way, some
dependence on earlier information can be included while still creating a Markov process for
the coal arrivals. Based on empirical data, we consider 9 such states s;=(0,0), s2=(0,1),
s3=(0,2), s4=(1,0), s5=(1,1), s6=(1,2), s7=(2,0), ss=(2,1), and s9=(2,2) (i.e. being in state
s¢ means that one train arrived on the present day and two trains arrived on the previous
day). Note that many transitions, e.g (0,0)—(1,1), are impossible since the second coordinate
of the present state must match the first coordinate of the previous state. So, the transition
probability matrix can be greatly simplified by making all such transition probabilities zero.

We can then write the transition probability matrix, P, of the Markov chain as

P11 0 0 P14 0 0 P17 0 0

pi 0 0 poy O 0O por 0 O
pza 0 0 psga O O p3z O O
0 pi2 0 0 pas O 0 pug O
P=10 p2 0 0 ps5s 0 0 psg O
0 p2 0 0 pss 0 0 peg O

0 0 prs 0 0 prg 0 0 prg

0 0 ps3 O 0 pse O 0 pso

0 0 po3z O 0 pos O 0 poyg

where these transition probabilities p;; can be obtained empirically from records of coal

shipment arrivals.



Since the problem we are considering is stated in a continuous-time framework, we instead
think of this coal arrival process as a continuous-time Markov chain with state transition
probabilities p; ; as above and intensity o such that there is a mean rate of one transition per
day; that is a continuous-time Markov chain with transition rate matrix () := aP. Under
the assumption that this transition matrix is irreducible (which, from empirical data, may
require elimination of the last row and column since it is possible that the state (2,2) is
never reached) and noting that it is by construction positive recurrent, this continuous-time
Markov chain will have unique stationary distribution (py, P2, p3, P4, Ds, De, D7, Ds, Do ). We in
fact only need the number of trains arriving currently at any given time ¢, that is the value of
the first coordinate of the Markov chain’s state. So, we define probabilities py := py + P2 + Ps3,
P1 = Pa+Ps+Pe, and po := Pr+Ps+Pg, these being the probabilities that the current number
of arrivals “today” is 0, 1, or 2, respectively. Further, the arrival of each coal shipment adds
a constant amount 5 to the total available coal supply. Since coal can be unloaded and
added to the supply faster than the maximum burn rate, we consider this addition to the
supply to occur instantaneously upon arrival of a train. However, the coal supply is limited
by the storage capacity of the plant to be below z,,,. So, we define for z € [zin, Zmaz),
¢ := CA (Zmaz — 2) and 2¢ = 2C A (Zmaz — 2). Then, for any bounded function f, the
generator, (), of this continuous-time Markov chain is given by

OF(2) = lim BV (Z(0) = F(Z(0)) | 2(0) = -]

h—0 h

=a(polf(2) = f(z+ 0] +pilf(z + Q) = f(2)] + palf (2 + 2¢) = f(2)])
=a(plf(z+ Q) = f(R)] +p2lf(z+20) = f(2)])- (1.1)

Additionally, our control for this problem is the rate at which coal is being burned,
u(t). This rate is limited by the physical capacity of the plant such that w(t) € [tmin, Umaz]
for all t > 0. We further assume that u is a non-anticipating control. Since this control
represents the rate at which coal is being used, it imposes a drift of —u(t) on the process
Z(t). The coal supply is limited by the physical storage capacity of the plant such that
Z(t) € [2Zmin, Zmaz) C RT for all t > 0. The i transition of the continuous-time Markov
chain results in an addition of &; to the coal supply where the & are i.i.d. random variables

where
po , forx=0

Plg=za]=qp , forz=¢ (1.2)
py , forx=2C



for all 7. Letting ¢; be the arrival time of the i'" shipment, we can express Z(t) explicitly in

the form

Z(t) = min {Z(O) — /0 t u(t)dt + Y &lg<ry zm} (1.3)
i=1
An inherent assumption of this problem is that the plant must be shut down the moment
the coal supply reaches the level z,,;,. Therefore, the Z process terminates at the stopping
time 7 := min {¢t > 0| Z(t) = zmn}. Note that since the singular behavior of this process is
only in coal arrivals, any downward change in the coal supply will occur continuously due to
the continuous drift rate u(¢). So, this minimum will exist, and therefore the terminal time

7 is well-defined.

3.2 The Spot Price Process

The form of the spot price model is the same as that used by Gonzalez, Moriarty, and
Palczewski [7], which is a specific form of the general model developed by Benth [4]. This
multifactor model includes three components. The first is a Gaussian Ornstein-Uhlenbeck

process which is the solution to the SDE
1
AYo(t) = 3 (= Yo(0)di + odW (1) . Yo(0) = g (1.4)

with W (t) being a one-dimensional standard Brownian motion, Yy(0) = yo being the spot
price at the initial time, and g being the long-term mean price in the market. This results

in the explicit form

t
Yo(t) = s+ (yo — ple > + / e X dIV (s). (1.5)
0

This process is a mean-reverting Brownian motion which reverts exponentially towards the
mean price p at exponential rate %

The second two components are jump processes which are each driven by an independent
compound Poisson process and revert to 0 at the same rate % (Note: The assumption that
all three components have the same constant reversion rate is made in order to obtain a
tractable HJB equation later in the problem, but was not made in the paper by Gonzalez
et al [7].) One process models the relatively frequent large upward spikes in the spot price

while the other models the much less frequent and smaller downward spikes. We define the



driving compound Poisson processes to be
Li(t) = D€ 0 (1.6)
j=1

for i = 1,2 where the Ti(j )s are the arrival times of independent Poisson processes with rate
n; > 0 (one for each jump process) and the fZ(J s are exponentially distributed jump sizes

with parameter 5; > 0. The compensated compound Poisson processes,

Li(t) = L(t) — E[&]mit, (1.7)
are therefore martingales, and we denote by dL; the compensated Poisson measure associated

with each process. We then define Y;(¢) and Y2(¢) to be the unique strong solutions to
1
A1) =~ Vit +dL{1) . Yi0-) =0 (18)

fori=1,2.
The sum of these random components is then multiplied by a deterministic exponential
function representing the seasonal shifts in the mean price of electricity denoted by e/(®).

Thus, we get the form of the spot price process, S(t) to be
S(t) = 7O [Yo(t) + Yi(t) = Ya(t)] . (1.9)

For simplicity of analysis, we take f(¢) = 0 and thus e/® = 1 for the majority of this paper.
That is, we examine the process
X(t) = Yo(t) + Yi(t) + Ya(?). (1.10)
So, X satisfies the SDE
1
dX@):ng—X@»ﬁ+wwwqw+dLﬂw+dLﬂw. (1.11)
From an application standpoint, this assumption simply requires using the de-seasonalized
spot price, which Gonzalez et al [7] provide a simple and effective method for producing from
raw data, rather than the true spot price. This additive structure reproduces in an analyti-
cally tractable way the main characteristics of the energy spot price: its large, discontinuous
jumps both upwards and downwards and its strong reversion towards a mean price. These

characteristics can be seen in the plot below, which shows a sample path of each component

process, Yy, Y7, and Ys, as well as their sum, X.



Components of the Spot Price Process
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Figure 2: Sample path of spot price process model and its components

Referring to the paper by Gerber and Shiu [6] for the form of the compound Poisson terms,

we can then write the generator of the spot price process for any bounded function f : R — R

Af@) = =) @+ G5 @+ [ (et o) = f@) ey
o [ (o) = Fle) ey (1.12)

3.3 The Paired Spot Price/Coal Process

We assume throughout that the spot price process and the coal process are independent of
one another. This allows us to define the generator of the paired process (X, Z) for any

bounded function f: R X [Zmin, Zmaz] — R to be

2

(1 — ) fulz, 2) + %fm(x, z) + 771/ (f(z+y,2)— f(z,2)) Bre ™Y dy
0

> =

Af(z,z) :=



0
o / (F(@+9,2) — f(z,2)) Boe™ dy — uf.(z, )

—0o0

+alp (f(z,2+0) = f(@,2) +p2 (f(2, 2+ 20) = f(a,2)) ]. (1.13)

3.4 Electricity Production/Revenue

The plant is paid the spot price at any given time for each unit of electricity production.
We consider a continuous revenue function R(x,z,u), which encapsulates the relationship
between the burn rate, u, and the production rate of electricity as well as the structure of
the payment received by the producer for that electricity. We can also consider a continuous

cost function C'(x, z,u). The payoff function can then be written as

G(z,z,u) == R(x,z,u) — C(z, z,u). (1.14)

4 Control Problem

The problem considered in this thesis is to maximize the revenue received by a producer
selling electricity to a single node on the MISO grid in the real-time market. That is, a
producer selling at a spot price determined by the market. The only control the producer
has is the rate at which coal is being burned at the plant, which determines the rate at which
electricity is produced as any electricity produced must be sold immediately. Since the coal
supply is received based on a long-term contract with a supplier at a fixed price, the cost of
burning coal is considered to be fixed regardless of the burn rate. So, we can consider the
problem as simply maximizing revenue without including these fixed cost terms. However,
if the coal supply ever reaches a certain minimum level, z,,;, the plant must be shut down
in order to avoid damage. This shutdown and restart of the plant is extremely costly, so
we wish to avoid it. Thus, we define the first hitting time of the minimum coal level to
be 7 := min{t > 0 ‘ Zi = Zmin}, and we consider the problem of maximizing the expected
revenue for the plant until the first time the coal supply reaches this minimum level. That
is, for discount rate o > 0, we wish to maximize

E [ / eG(X (1), Z(8), u(t)) dt (1.15)

0
where u(t) : RT = [tmin, Umaz] is the non-anticipating control representing burn rate for the
plant at time ¢ and 7 is the first time at which the process Z reaches z,,;, (at which time

the paired process terminates).



5 Notation

For the sake of notational clarity and brevity, the following notational conventions will be

used throughout the remainder of the paper.

14() denotes the indicator of the set A. (1.16)
U := [Umin, Umaz) denotes the range of possible burn rates for the plant. (1.17)
U,y  denotes the space of admissible control functions (1.18)

for the paired process with initial position(z, ).

D :=R X [Zmin, Zmaz)  denotes the range of the paired process (X, 7). (1.19)

We will also occasionally make use of the probabilists’ notational convention for stochastic
processes, X, of taking the notations X (¢) and X; to be equivalent as some expressions are

more clear with one notation or the other.



Chapter 2

Derivation of the HJB Equation

1 Overview of Continuous Time Stochastic Control

We will use a version of the dynamic programming principle presented in Pham [13], which
differs slightly from the standard version in its conclusion of the equivalence of using supre-

mum or infimum over the set of stopping times.

Theorem 2.1. (Dynamic Programming Principle) Let X (t) be a controlled Markov process,
A(t, x) be the family of admissible controls for the initial point (t,z), and Ty be the family
of all stopping times between t and T'. Then then following hold:

(a) (Finite Time Horizon) Let (t,x) € [0,T] x R". Then we have

0
v(t,r) = sup sup E [/ f (s,Xﬁ’x,as) ds +v (Q,Xé’x)] (2.1)
t

acA(t,x) 0Ty,

0
= sup inf E [/ f (S,Xﬁ’z,as) ds +wv (0,X§’$)]. (2.2)
t

acA(t,x) 0cTe,r

(b) (Infinite Time Horizon) Let x € R™. Then we have

0
v(z) = sup supE [/ e P F(XT a,) ds 4 v (Xg)] (2.3)
acA(z) 0€T 0
0
= sup infE [/ e P f (X ) ds —|—U(Xg;’”)}. (2.4)
acA(z) 0T 0

Proof. For the sake of completeness, we quote the proof of this version of the dynamic pro-
gramming principle in the finite time horizon case with terminal time 7" as seen in Theorem

3.3.1 in Pham [13].

10



Given an admissible control o € A(t, z), we have pathwise uniqueness of the flow of the

SDE for X, the Markovian structure

9, X"
Xﬁ’x:Xs o 5>0

for any stopping time 6 € [¢t,T]. By the law of iterated conditional expectation, we then get

J(t,x, ) [/f X5 ay) ds—i—J(@ng, )},

and since J(-,-, ) < v and 6 is arbitrary in Ty r

Jt2.0) < ind EU F(5, X5 ) ds + o0, X”)}
SYFN

< sup inf E[/f , XET o) ds + v(6, Xg’m)].

acA(t,x) 967} T

By taking the supremum over « in the left-hand side term, we obtain the inequality:

v(t,z) < sup inf E {/ f(s, X" o) ds + v(0, th)} (2.5)
acA(t,x) 0T, T

Fix some arbitrary control a € A(t,z) and 6 € T, r. By definition of the value functions,
for any € > 0 and w € €, there exists a*¥ € A(0(w), Xg’(’fu) (w)), which is an e-optimal control
for v(0(w), X;("fu)( w)), i.e.

It can be shown by the measurable selection theorem (see, e.g. Chapter 7 in [5]) that the
process & is progressively measurable, and so lies in A(t,z). By using again the law of

iterated conditional expectation, we obtain
o(t,z) > J(t, U (s, X", a ds+J(9,X§’x,af)]

Ufsxm’ )Yds + J(0, X", 6)}—6.

11



From the arbitrariness of a € A(t,x), 8 € T,r and € > 0, and we obtain the inequality

0
sup sup E [/ [ (s, X" ay) ds+ v (H,X;’x) < v(t,x). (2.6)
acA(t,z) 0€T, T t

By combining the two relations (2.5) and (2.6), we get the required result. ]
Pham remarks that the following extension to existence of e-optimal controls also holds.

Remark 2.2. (Existence of e-Optimal Control)

(a) In the finite time horizon case, for all a € A(t,z) and 0 € Ty 7

0
v(t,z) > E {/ f(s, X" ay)ds + U(@,Xé’x)] :

In the infinite time horizon case, for all « € A(x) and 0 € T:
0
v(z) > E [/ e P f (s, XF, og)ds + U(G,Xg)} :
t

(b) In the finite time horizon case, for all € > 0, there exists « € A(t, z) such that for all
0 < 7;7TZ

0
v(t,x) —e <E [/ f(s, X" ay)ds + U(Q,X;’x):| :
t

In the infinite time horizon case, for all € > 0, there exists a € A(x) such that for all

0eT: ,
v(iz) —e<E [/ e P f(s, X7, o )ds +v(9,X§)] :
t

2 Derivation of the HJB Equation
Recall that the generator of the paired spot price and coal process (X, Z) is given by
1 o2 * _
Af@,200) = (0= ) ol 2) 4 G ol b [ (Flat92) = F,2) Bre 7 dy
0

0
+772/ (f(l’—y,Z) _f(x7z))ﬁ26_ﬁ2ydy_ufz(xvz)

— 00

+alp (f(w,2+Q) = f(w,2)) +p2 (f(z, 2+ 20) = f(z,2))]

12



which, using standard dynamic programming techniques (see, e.g., Chapter 3 of Pham [13]),
leads to the HJB equation

df(z,z) —sup{Af(x,z) + G(z,z,u)} =0 (2.7)

uelU

for all (x, z) € R X [Zmin, Zmaz] Where ¢ is the constant discount rate. The boundary condition
with respect to Z imposed by the stopping time 7 indicating the first hitting time of the
minimum coal supply is V(z, z;im) = 0 for all x € R. So, noting that the control, u, appears
only in the f, term of the generator and in the payoff function, we have the explicit form

0=46f(x,z2) — l(,u — ) fo(z, 2) — O—Qfm(a:,z) —sup {—uf.(z,z) + G(z,z,u)}
A 2 uelU

. / Tt ) — flx2) Bre P dy

[ =) = fa) e dy
—alp (f(z, 24 ¢) = f(z,2) +p2 (f(z, 2+ 20) — f(z,2))]. (2.8)
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Chapter 3

Value Function is a Viscosity Solution
to the HJB Equation

We limit our consideration to a market in which the producer may sell energy only to a
single node on the grid at the spot price for that node.
Recall that the generator of the paired spot price and coal process (X, Z) is given by

2 [e'S)
Af(iL’, 2y u) = %(H - .Z')fx(fl', Z) + %fxz(xy Z) + 771/0‘ (f(x + Y, Z) — f(x, Z)) 5167’811/ dy

0
T / (ot 12) — f,2)) Boc™™ dy — uf.(x, 2)

— 00

+alp (f(z,2+0) = f(2,2) +p2 (f(2, 2+ 20) — f(2,2)) ]
which leads to the HJB equation

oV (x,z) — [ sup ]{AV(x,z) +G(z,z,u)} =0 (3.1)
UE | Umin Umaz
for all (z,2) € R X [Zmin, Zmaz] Where § is the constant discounting rate. The boundary
condition with respect to Z imposed by the stopping time 7 indicating the first hitting time
of the minimum coal supply is V(z, zin) = 0 for all z € R.

The nonlocal behavior due to the jumps in the spot price and the instantaneous nature
of the coal arrivals requires an extension of the classical theory of viscosity solutions. This
chapter follows closely the structure of the classical proofs seen in Chapter 4 of Pham’s text
[13], but some careful adjustments must be made to ensure that the nonlocal terms remain

locally bounded.
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1 Definition of Viscosity Solution

Let O be an open domain in RY.
Definition 3.1. Let w : O — R be locally bounded. Then we define

(a) the upper-semicontinuous envelope w* by w*(x) = lim sup w(x’)
x/'—x

(b) the lower-semicontinuous envelope w, by w,(x) = lim inf w(x")
x'—=x

We will consider a second-order PIDE (partial integral-differential equation) of the form
F(x,w(x), Dw(x), D*w(x), Z[x,w]) = 0 (3.2)
where Z[x,w] is an operator which contains all non-local terms of the PIDE.
Definition 3.2. Let w : O — R be locally bounded.
(a) w is a (possibly discontinuous) viscosity subsolution of (3.2) on O if
F(x,w"(x), Do(x), D*¢(x), Z[x,¢]) < 0
for all x € O and for all ¢ € C*(O) such that x is a maximum point of w* — ¢.
(b) w is a (possibly discontinuous) viscosity supersolution of (3.2) on O if
F(%,w,(x), D3(%), D*$(%), I[%, ¢]) > 0
for all x € O and for all ¢ € C*(O) such that X is a minimum point of w, — ¢.

(c) w is a (possibly discontinuous) viscosity solution of (3.2) on O if it is both a viscosity

subsolution and a viscosity supersolution of (3.2).

2 Verification That the Value Function is a Viscosity
Solution of the HJB Equation
Proposition 3.1. Suppose the value function
V(z,z) = sup supE {/GAT e "G(X (1), Z(r),u(r)) dr
ueld 0T 0

is locally bounded. Then, V is a viscosity supersolution to (3.1).
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Proof. Let (7,2) € R X [2min, Zmaz)- Let ¢ € C*(R X [Zmin, Zmaz]) be a test function such
that (recalling V, represents the lower semicontinuous envelope of V')

0=(V.—)@2)= min (V.- d)(z,2) (3.3)

(I,Z) eRx [zmin 7zmaz}

Since Vi is defined to be V. (x, z) = ( lirr)l iI(lf )V(w', ') for each (z, z), there exists a sequence
z' 2" )= (x,z

(Tn, 2n) C R X [Zmin, Zmaz) such that (z,,z,) — (7, 2) and V(z,, z,) — Vi(Z, 2) as n — oo.

Also, since ¢ is continuous, ¢(x,, z,) — (T, z). Thus,
Yo =V (T, 2n) — O(Tp,2n) =0 asn — oo

Let u € [Umin, Umaz) and set u(t) = u. Then, u € U. Denote the controlled process under
this u starting at initial point (z,,z2,) by (Xﬁn),Zﬁn)). Fix some p > 0, and let 7w, =
inf {r >0 | |Y0(n)(r) —Z| > p}. Let (h,) C R be a sequence of positive numbers such that
hn—>0andZ—Z—>0asn—>oo.

Further, let & = min{t > 0 | Ly (t) — L (t—) # 0} and & = min{t > 0 | Lo(t) — La(t—) #
0 }, i.e. the first time a jump occurs in each of the Poisson processes driving the price
process. Note that the jump processes L; and Ly which drive the jumps in the price process
X are independent of the starting price, that is these stopping times are the same for each
n since they are independent of z,. Let & = min{t > 0 | Z"(t) — Z™(t—) # 0}, and
set & = & A & A &s. Further, take two sequences of values in [2in, Zmaz)s 2n — Zmin and
" = Zag, and let 7, = inf {t > 0 | Z"(t)&(%,,2")}. Without loss of generality, we can
assume that z, € (Z,,2") for all n. Finally, let 0, := 7, A hy A AT, A 7. Then (recalling
the notational convention that X; = X(t) and Z; = Z(t)), since V(x, z) is defined as the
supremum over all admissible controls and the supremum over all stopping times 6, applying

the dynamic programming principle of Theorem 2.1, we have in particular that
On
V(zy,z,) > E [/ e“”’G(Xﬁﬁ)ﬂ Zopry ) dr + 6_69”V(X;:), Zé:))} .
0

Note that (3.3) implies that V' (z,2) > Vi(z,2) > ¢(z, 2) for all (z,z) € R X [zmin, Zmaz)- S0,

together with the previous inequality, we have

On,
2 [ [ a2 v 240
0
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On
zEU e TG Zin w dr e (XY, Z37) |
0

Now, applying Ito’s formula to e 59”¢( ). 7 (:)) and recalling the compensated jump pro-

cesses Ly, Lo, and Z, which are local martlngales, we get
On
O(@ns 20) + 0 = E{ / G, 20w dr + 6(X5", Z")
0
On
T / e (AGX, Z) — (XM, Z)) dr
0
0n n -
+ / e (XM, ZIV) dW, + / e (X", ZIV) L (dr)
0 0
en o 9’" ~
b [T e mau X 20 Latar) + [ o0, 20 azp)|.
0 0

Since Xén) = x, and Z(g = z,, we can replace ¢(X, , én)) by ¢(zn, z,) which is a constant.
Further, note that since ¢ is in C?(R X [Zin, Zmaz)) and the choice of stopping time 6,, means
that X\ and Z™ are both bounded, we have that both gb(X(n AR ) and ¢, (Xr xm Z(n))
are continuous and bounded, so the stochastic integrals all have mean 0. These observations
yield

On
(T, 2n) + Y > E / e QXM ZM ) dr
0

0n
n / I (AG(X, Z00) = 56(X, Z0)) dr| + Bl 22)
0
which implies that
On On
%—E[ |Gz e [T et (0, 20 - s0x, 2) dr} >0
0 0
(3.4)

Dividing by h,, on both sides, we get
0n
% +E { - / e (XM, ZM) — Ap(X™, Z) — G(X [, Z™ ) dr} >0 (3.5)
n n J0

Now, we consider

On
0 <liminf < el 1 { / e (0p(X M, ZM) — Ap(X ™, ZM) — G(X™M, Z(M ) er
n 0

n—00 h,,
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I
= liminf E {h— / e (XM, ZM) — Ap(X ™, ZM) — G(X™, Z{ ) dr
n J0

n—oo

By definition of ,, we have that | X\ — z,| < p for all » € [0,6,). Further, since
x, — &, for any 0; > 0 there exists some N such that |z, — Z| < §; for all n > N.
Thus, there exist x, and z* such that x,, € [z, — d1,2* + &;] for all n. That is, for all n,
X" e [2.—01—p, 2*+81+p] for all v € [0, 6,,). Also, by definition, for all n, A=
for all r. Moreover, by definition of &, for all n the paired process (X. () Z.(n)) is continuous
for r in the time interval [0,6,). So, we have that the integrand above, e 5T(5¢(5E7« ,qu")) —
AQS(XT(n), ZT(")) — G(Xr(n), AR u(r))), is continuous on [0, §,,) and that there exists a compact
set C := [z, — 0 — p, 2" + 01 + p| X [Zmin, Zmaz] independent of n such that (X.("), Z.(n)) eC
for all n. That is, there exists a uniform bound M < oo such that e~ (d¢(z\™, Z) —
Ap(xI Z8My — G(x\, Z& u(r)))| < M for all n. So, we have for all n that

[Zmirw Zmax]

1 O
i [T EOX. 2 — A, Z) = G, 2, ulr) dr
n JO

1 [0 0,
< = 2M dr = —(2M) < 2M
ha Jo I,
(3.6)
since 6,, < h,, for all n.

We continue the analysis of this inequality with the following lemma.

Lemma 3.2.

1 Gn
lim - [ BN, Z00) — AG(X, Z07) - GX, 20 0 dr
0

n—oo fu,,
= 00(Tn, 2n) — AD(T, 2) — G(T, Z,u)
almost surely.

Proof. First, define a sequence of subsets of the sample space €2 of the paired process (X, Z)

as follows
E, ={we|0,=h,}.

Then, Q = E,, U E¢ for each n, and therefore,



I
+ h_ / lEﬁe_ér(_A¢(X£n)7 qun)) - G(Xﬁn)a Zﬁn)v u)) dr
n J0O

Note that by Lemma 5.2 and Lemma 5.3 in the appendix, we have that 1 — 1 a.s. and
1ge — 0 a.s as n — 0o. So, using this result and the fact that (z,, z,) — (7, Z), we conclude

from the mean value theorem that

T T

1 [0
lim — / e (XM, ZM) = Ap(X[™, Z1M) — G(XV, ZIV ) dr
0

1 [0
= lim g [ e (50X, Z07) — AG(XI, Z0) ~ GX(, 21, w) dr,
0

7 s

L[
+ lim — / e (0p(X M, ZM) — Ap(X ™, Z) — G(X™, Z™ ) drlpe
0
= 6¢('j7 2) o A(b<§, Z) - G<j7 Z, u)
almost surely. |

Returning to the proof of Proposition (3.1) , we have from the dominated convergence
theorem that

I
0 < liminf E LT / e (3p(X M, ZM) — Ap(X ™, ZM) — G(X™, Z(M ) dr}

n—o0 0

I
=E llim — / e (0p(X M, ZM) — Ap(X™, ZM) — G(X™, Z{M ) dr}
0

r
n—oo n

=0¢(z,z) — Ap(Z, 2) — G(T, Z,u) > 0. (3.7)

So, since u was arbitrary in [tmin, Umaz], We have that the value function V(z,z) is a

viscosity supersolution of (3.1). O

Proposition 3.3. Suppose the value function

ONT
V(z,z) = ilelg zlellr)E {/0 e "G(X (1), Z(r),u(r)) dr

is locally bounded. Then, V is a viscosity subsolution to (3.1).

Proof. Let (Z,2) € R X [Zmins Zmaz]- Let ¢ € C*(R X [2pmin, Zmaz)) be a test function such that

0=V, -9)(z,2) = max (Vi = 9)(z, 2) (3.8)

(Q?,Z) eRx [ZTVL'L'TL 7zmaz}
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We wish to show that d¢(z,2) — Ap(z, 2) — G(Z,Z,u) < 0. In order to proceed by contra-

diction, we assume that
0p(z,z2) — Ap(z,2) — G(z, Z,u) > 0. (3.9)
Then, since ¢ is in C%*(R X [Zmin; Zmae)), there exist constants 7 > 0 and € > 0 such that

dp(x',2) — Ap(a',2") — G(2', 2 u) > e.

for all (2/,2") € B((z,2),n) = {(2/,2") € R X [Zmin, Zmaz) : /(T — )2+ (Z— /)2 <n}.

Since V* is defined to be V*(z,2) = limsup V(a',z’), there exists a sequence (z,, z,) C
(z',2") = (z,2)

R X [Zmin, Zmaz) such that (z,, 2z,) — (z,2) and V(z,, 2,) — V*(Z, Z) as n — o0o. Also, since

¢ is continuous, ¢(z,, z,) = ¢(Z, z). Thus,
Yo =V (T, 2n) — O(Tp,2n) = 0 asn — co.

Let (h,) C R* be a sequence of positive numbers such that h, — 0 and 7> — 0 as
n — oo. Define a sequence of stopping times 6,, := 7, A h, NA{ AT, AT with & and 7, defined
as in the proof of Proposition 3.1 above and 7, := inf {r > 0 : |Y0(") (r) —z| > n'} for some
0 < 1 < n with 7 chosen such that B((x,,z,),n) C B((Z,z),n) and for 0 < r < 6,
(Xﬁ"),Zr(n)) € B((z,2z),n). Then, according to Theorem 2.2, for each n there exists an
EhT"—optimal control 4™ € U such that
eh, ehnp

V(xna Zn) - T = Qb(xnu Zn) + Vn — 7

On
<E| [ e G, 20, i )kar + 00157, 20))
0

n

Note that if we choose 1’ < % (where ( is the amount of coal delivered in a single shipment),

¢.(x, z) will be continuous. So, choosing 7’ in this way and applying It6’s formula, we have

eh,,

gﬁ(l’n, Zn) + Y — 7

r

On
<E|9(zn, 20) + / e (AG(X, Z00) = 66(X(7, Z0) + G(X, 20, i) dr|
0

On ~ On, ~
+E { / e (XM, ZM) dX ™ 4 / e‘S%Z(X?E”),ZT(”))dZT(”)].
0 0
(3.10)

20



By the choice of stopping time 6,,, the integrand in the stochastic integrals above is continuous
and bounded on [0,6,), so the expectations of the stochastic integrals are zero. Moreover,

by choice of n, for 0 < s < 6,,

and thus dividing by h,, everywhere in (3.10) shows that

Yn 1 1
L <0. .
W € <2 hn]E[Qn]) <0 (3.11)
We now consider
P, AEATL AT < hy) < Plr, < hy] +Pl€ < hy] + Pl < by +Plr < hyl. (3.12)

Using Lemma 5.1, Lemma 5.2, and Lemma 5.3 in the appendix which show that the first
three terms of this sum approach 0 as n — oo and noting that P [7,, < h,,] — 0 implies that
P[r < h,] — 0 (since Z, > 2z, implies that 7, < 7 for all n), we have from (3.12) that

lim Pm, AEAT, AT < hy) < lim P[m, < hy,)+ lim P¢ < h,] + lim Plr, < h,] =0.

n—oo n—oo n—oo n—oo
(3.13)

Further, we have that

1
P [ﬂ-n A g NTp NT > hn] - IE"[]-{7rn/\§/\frn/\7—>hn}] - h_E[hTL]'{ﬂ'n/\f/\Tn/\T>hn}]‘

n
By definition, 6,, := m, A h,y A AT, AT. So, on the event {m, A{ AT, AT > h,}, we have
en = hn Thus, hn]-{ﬂn/\ﬁ/\rn/\-r>hn} = enl{wn/\f/\Tn/\T>hn}7 and we have

1 1
IP) [7Tn /\ § /\ Tn /\ T > hn] - h_E[enl{ﬂn/\s/\Tn/\T>hn}] S h—E[Qn]
Also note that, by definition, 6,, < h,, for every w € Q for each n, so E[f,] < h,, which gives
us

1
Plr, NEAN TR AT > hy Sh—E[Gn] <1

n

So, letting n — oo, we have that %E[@n] — 1. Finally, letting n — oo, that is h, — 0, in
(3.11) gives the desired contradiction.
]

So, combining the results of Proposition 3.1 and Proposition 3.3, we have that the value

function, V, is a viscosity solution to the HJB equation (3.1).
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Chapter 4

Uniqueness of Viscosity Solution of
the HJB Equation

As previously mentioned, the nonlocal behavior present in both the spot price (due to the
discontinuous jumps caused by the compound Poisson terms in the spot price model) and
the coal supply (due to the instantaneous nature of coal arrivals) implies that the HJB
equation associated with this problem is in fact the second order partial integro-differential
equation (PIDE) (3.1) rather than a second order PDE as is usually associated with a
stochastic control problem. Thus, the traditional theory of viscosity solutions is not sufficient
to determine the uniqueness of a solution to this HJB equation. We turn instead to the work
of Barles and Imbert [2], who provide a set of sufficient conditions for the uniqueness of the
viscosity solution to a second order PIDE. However, the mean-reversion term of our HJB
equation (4.32) fails to satisfy assumption (A3-1) of Barles and Imbert. While mean-reverting
processes are generally considered very well-behaved, the assumptions of Barles and Imbert
place particularly strong restrictions on the interaction of the position of the process with
the drift. Since mean reversion here imposes a drift with exponentially increasing magnitude
as the process moves away from the mean pric, u, there is a very strong interaction between
position and drift over much of the domain.

An extension of the theory of Barles and Imbert which provides conditions which are
satisfied by this spot price process is developed in this chapter. We first define a continuous
function F(x,g,p, X,f) where x € R, g e R, p € RY, X € Sy, and £ € R. The general form

of a second order PIDE with nonlocal behavior is then

F(x, f,Vf.D*f.Ix. f]) =0 (4.1)
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where x € R?, f is a function on R?, Vf is the gradient, D?f is the Hessian, and Z[x, f] is
an operator which collects all of the terms appearing due to nonlocal behavior.

In order to handle this nonlocal behavior, it is necessary to restrict the class of functions
on which we will work. Given an upper-semicontinuous function R : R? — R, define C to be

the space of functions f such that there exists a constant ¢ > 0 such that for all x € R,
|f(x)] < (1 + R(x)).
Note the following important properties of the space C:
e Any function f € C is locally bounded.
e For any functions fi, fo € C, max{fi, fo} € C and min{ f1, fo} € C.

e For any compact set K C R? and function ¢ € C?(K), there exists a function ¢ € C
such that ¢ = ¢ on the interior of K.

1 Comparison Principle

1.1 Some Results from Barles and Imbert [2]

We quote here, without proof, a few of the results from the paper by Barles and Imbert [2]
which will be used in the following section.

We begin by defining a modified version of the inf-convolution and sup-convolution that
are commonly used in viscosity solution theory. For any upper-semicontinuous function

U:R™ — R and r € R™, we define

RYU](y,r) := sup {U(Y)—r~(Y—y)—M}. (4.2)

Y —y|<1 2a

Similarly, for any lower-semicontinuous function V : R™ — R, we define

._- Y —yf?
RVIr) = it fvir - -+ 2 (4.9
Note that, similarly to the traditional inf/sup-convolutions, R,[V] = —R*[—V]. The next

proposition gives some other useful properties of these functions.
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Definition 4.1 (Superjet and Subjet). Let U : R — R be an upper-semicontinuous func-
tion. A couple (p,Y) € R? x Sy is a superjet of U at y € R if

1
Uly+2) SU) +p-2+5Yz- 2+ o(z]).

Let V : RY — R be a lower-semicontinuous function. A couple (p,Y) € R? x Sy is a subjet
of V at y € R if

1
Viy+z)>V(y) +p-z+ §Yz -z 4 o(|z]?).

We denote by JTU(y) and J~U(y), respectively, the set of superjets and subjets of U
and V at y and.

Proposition 4.2 (Proposition 3 of Barles and Imbert [2]). For any upper-semicontinuous
function U : R™ — R and any lower-semicontinuous function V : R™ — R, the functions
RU] and R,[V'] satisfy the following properties:

1. For any y,r € R™, R*[U](y,r) > U(y) and R,[V](y,r) < V(y).

2. Foranyy € R™ and k > 0, there exists a = a(y, k) such that, for 0 < a < a, R*[U|(-,r)

is semi-convex in B(y, k) (respectively, R,[V](-,r) is semi-concave in B(y,k)).

3. Assume that U € C*(R™) (respectively V € C*(R™)). For any y € R™ and k > 0,
there exists a = a(y, k) such that, for 0 < a < a, R*[U] (respectively R,[V]) is C* in
B(0,k). Moreover, R*[U] (respectively R,[V]) converges towards U (respectively V) in

C%(B(0,k) as a — 0.
b I ROUYy, ) =U®G) =7 (5 —y) — 5L and if |§ — y| < 1, then

(s, A) € JFRU(y,r) = (s, A) € J*U(G) and s = r — L—Y, (4.4)

a

(r,A) € D" RYUI(y,7) = (s,A) e DT U(y). (4.5)

Lemma 4.3 (Nonlocal Jensen-Ishii’s Lemma, Lemma 1 of Barles and Imbert [2]). Let u
and v be respectively an upper-semicontinuous and a lower-semicontinuous function defined
on R?, and let ¢ be a C? function defined on R?L. If (Z,y) € R* is a zero global mazimum

point of u(x) —v(y) — ¢(z,y) and if p == D,¢(Z,7), q := Dyp(Z,7), then the following hold:

u(z) —v(y) < R'[ul(x, p) — Ra[v](y, —q) < R[8]((z,), (p,q)),
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and R*[¢]((Z,7), (p,

Moreover, for any k > 0, there exists a(k) > 0 such that, for any 0 < a < a(k), we have

that there exist sequences x — T, Y — Y, Px — P, and qx — q, matrices X and Yy, and a

sequence of functions ¢, € C*(B((Z,y),k)) converging uniformly to ¢, := R*[¢]((x,v), (p,q))

such that

(x, yr) 18 a global mazimum point of u — v — ¢y,
u(xy) = u(z) and v(y,) — v(Y)
(pry Xi) € JTu(z)
(—aqr, Yi) € Jv(yx)
1 |:Xk 0

- 2
aI <1y —YJ < D*¢p(w, yr)-

MOT'@OU@?", Pr = Dx¢k(xkayk); qr. = Dy¢k(xkayk); ¢a(£7g) = ¢(jag)7 and D¢a(£>g) =

Do(x,y).

Finally, the main result needed for the comparison principle discussed in the next section

is Corollary 1 from [2]. Here we assume that we can decompose the operator Z into

Ilx, f] =T, f] + I*°[x, V £, f].

(This decomposition will be discussed in greater detail in the following section.)

Corollary 4.4 (Corollary 1 of Barles and Imbert [2]). Let U be an upper-semicontinuous

viscosity solution of (3.2), let V' be a lower-semicontinuous viscosity solution of (3.2), and
let € C*(R?). If (z,9) € R* is a global mazimum point of U(z) — V (y) — ¢(x,y), then,

for any 6 > 0, there exists a such that, for 0 < a < a, we have

F(z,U(z),p, X, IT"°[Z, ¢a (-, 9)] + T*°[z,p,U]) <
F(5.V(®),q,Y, TG, —¢a(z, )] + T*°[g, q,V]) >

where p = V,04(7,7), ¢ = —Vyo(Z,9) = V0 (T,7), and
1 {X 0
a
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Remark 4.5. Barles and Imbert note in Section 5.2 of [2| that the conditions of their
comparison principle require a certain interaction between the first derivative term in the
generator and the location of the process. Because exponential mean reversion has a very
strong interaction between these two components, the conditions in their paper are not met

by the spot price process under consideration.

1.2 Specialized Comparison Principle

The result shown in this section is a specialization of that found in Barles and Imbert [2]
which allows for a relaxation of one of the assumptions of the main result of that paper
due to the greater regularity of the nonlocal operator used in our problem compared with
that in the original paper. This relaxation allows the uniqueness result to be applied to

mean-reverting processes, as well.

1.2.1 Assumptions

First, we have the following general ellipticity assumption on the function F,
o (E) Foranyx € R g e R; pe R% M, N € Sy; and Iy, 1, € RY,

F($,g,p,M, ll) S F(l’,g,p,N, l2> it M Z N and ll 2 l2- (49)

We also make a series of assumptions about a decomposition of the nonlocal term Z[z, f],

all of which are combined under assumption (NLT') below.

e (NLT) For any § > 0, there exist operators Z'°[z, ¢] and Z%°[z, Vé(z), ¢] which are
well-defined for any € R? and ¢ € C N C?(R%) and which satisfy the following:

o For any * € R? and ¢ € C N C*(RY), Z[z,¢] = Iz, ¢] + I?°[x, Vo(x), ¢].
Moreover, for any a € R, [z, ¢ + a] = I[x, ¢] and Z*°[z,Vé(x),¢ + a] =
I*°[2, Vo(x), ).

o There exists Rs > 0 with R — 0 as § — 0 such that, if ¢; = ¢ on B(z, Ry),
then Z%°[x, ¢1] = Iz, ¢o] (and respectively if ¢; = ¢ on R?\ B(z, Rs),
I*°[2, Vi (x), 1] = I*°[z, Vs(2), 62]).

o For any ¢ € C*(RY) and g € C such that g — ¢ attains a maximum at x on
B(x, Rs), there exists a sequence ¢, € C N C?(RY) such that g — ¢, attains a
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global maximum at =z,
TV, ] = TV9z,6] s k — oo,

and
12’5[$, Vor, o] — I2’5[x, Vo, ¢ as k— co.

o The operator Z'[x, ¢] is well-defined for any # € R? and ¢ € C%(B(x,7)) NC for
any r < Rs. Moreover, [z, ¢] — 0 as § — 0 and Z'%[xy, ¢p] — T1°[z, ¢] when
ry — x and ¢, — ¢ in C*(B(z,r)) N C(B(z,r)).

o The operator Z2°[x,p, ¢| is defined for any 2 € R? and ¢ € C. Moreover, if

x — x, pr — p, and (¢ ) is a sequence of uniformly locally bounded functions
such that |¢x| < ¢ with ¢ € C,
lim sup Z*° [z, pi, ¢x) < I*°[z,p,¢]  where ¢ :=limsup ¢y,
k—o0
and
lim inf Z%° [z, pr, ¢x] > T*°[x,p,¢] where ¢ := liminf ..

k—o0 -

These two assumptions mirror precisely those in [2].

The remaining assumptions are nearly the same as those made by Barles and Imbert
except for (A3*) where a relaxation is required for this problem and (A1*) where it is
notationally convenient (though not actually necessary for the comparison result) to use a
slightly stronger assumption since the process being considered in this paper is more regular
than a general Lévy-Ito process. We assume here that the nonlocal operator Z can be written
in terms of a jump size function j : RY x R? — R? and a jump measure x in the following
way:

Il(x, 2),9] = / (9((z, 2) + J((z, 2), (y, w))) = 9(x, 2)) p(dy, dw). (4.10)

We then make the following assumptions on p, j, and F"

e (A1*) The measure u(dy,dw) and the function j(z, z) satisfy

/M@mw«mwdsw (@ 2), (o w)? uldy, dw) < co,  (4.11)
R4 (z,2)€D JRE

and there exists a constant ¢ > 0 such that

y ((x, 2), (g, w)) = 5((&, 2), (g, w))|” uldy, dw) < &(w,2) = (7, 2)* and
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[ 1520 0) = 510320, ()| ) < el(w2) = B2 (@12

(Note that the last two points of this version of the assumption are a simple consequence
of the Cauchy-Schwartz Inequality given the modification to the first two points used
here.)

(A2) There exists v > 0 such that for any (z,2) € D, g,h € R, p € RY, X € Sy, and
leR,
F(z,9,p, X,1) — F(z,h,p, X,1) > v(g — h) when g > h. (4.13)

(A3*) Given a fixed constant p > 0, for any 8 > 0, there exist moduli of continuity w
and wg such that, for any [(z, 2)[,[(z, 2)| < §, [h| < §, I € R, and for any X,Y € S,

satisfying
X 0 111 —I I 0
ol ol
for some € > 0 and r(8) — 0 as § — 0, then, if gs(ﬁ) — 0 as 8 — 0, we have
1 1

F((j:72>7h7 E((xvz) - (i’g))vyao - F((:L', Z)aha g((x72) - (f,é)) + S(ﬂ)aX’l)

SWW%H%W%@—QJH+3@J%%ﬁ®W-

(Ad) F((x,z2),g,p,X,1) is Lipschitz continuous in [, uniformly with respect to all the

other variables.

Remark 4.6. Note that assumption (A3*) is a subtle but significant relaxation of assump-

tion (A3-1) in [2] where the same is required for all s(5) — 0 rather than just those s(/3)

with %s(ﬂ) — 0. We also replace an arbitrary constant, R, used in the original by g. But

since this is the only form used in the version of the original proof using (A3-1) in [2], which

is the version we have modified here, this change does not amount to any further restriction

than is actually put to use there.

1.2.2 The Specialized Comparison Principle

Theorem 4.7. (Specialization of the Comparison Principle) Suppose that the PIDE (4.1)
satisfies assumptions (A1%), (A2), (A3%), and (A4) as well as assumptions (E) and (NLT)

above. If g is a bounded upper semi-continuous viscosity subsolution of (4.1) and h is a

bounded lower semi-continuous viscosity supersolution of (4.1), then g < h on D.
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Proof. For the sake of clarity in the longer expressions in this proof, we will use boldface
letters to represent points in D or R?, as appropriate. For instance, where we have previously
referred to points (x, z) € D, we will instead use x € D, and we will notate a value (y, w) € R?
representing a jump size by y € R2.

Define M := sup(g — h). Assume by way of contradiction that M > 0.

We now use a%edoubhng of variables technique similar to that in the classical viscosity
solution theory to approximate M. First, we define R := (||g||oc + ||7||oo). Let ¥ : R — R
be a smooth function such that ¢ (x) = 0 for |x| < 1, ¥(x) = R + 1 for |x| > 2, and ¢, V),
and D?1) are all bounded. Then, for 8 > 0, define 15 : R? — R by ¢5(x) = (8°x). We
note the following important properties of such functions 1. By the chain rule, %ng — 0
and D%*)5 — 0 as 8 — 0 uniformly on R?. Also, it can be shown that Z[¢s,x] = 0 as 8 — 0
uniformly on R2.

We now approximate M by

%1 — X2|2

- %(XI)} (4.16)

M.z := sup {g(xl) — h(xg) —

x1,X2€D

where € and /5 are small parameters which will tend to 0. Since 13(x1) > R when [x;| > %,

the supremum above is achieved and is thus actually a maximum.

Consider any maximum point (X;,Xs) of the function

2
X; — X
g(x1) = h(x2) — % — Yp(x1).
For € and (8 sufficiently small,
M -
0<% <My < (%) —h(x:) and =%l % and (%) SR+ 1.
€ €

Further, for any d,d’ € R?, we have

Cxi+d =% —d?
2¢

< g(x1) — h(x2)

g()_(1 + d) - h()_(z + d/>

— (X1 +d)
2|2
R mp ;6"2' ().
In particular, let y € R? be arbitrary, and set d = j(X;,y) and d = j(X3,y). Then,

rearranging terms in the above inequality, we have
%1 +7(%1,y) — X2 — (X, ¥))°
2e

9(X1 +J(X1,¥)) — 9(X1) < h(X2 + j(X2,¥)) — h(X2) +
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R =%
2e

< h(Xe + j(X2,y)) — h(%2) +

+p(X1 + j(X1,y)) — Ys(x1)
(X1, y) — J(Xe, y)

2€
Bl )~ )
+¥s(X1 + j(X1,y)) — ¥s(X1). (4.17)

Define ¢(x1,x3) := M + p(x1). Further, define ¢1(x;) := ¢(x1, X2) and ¢o(x2) :=
¢(X1,X2). Then, returning for a moment to the notation xX; = (71, z1), Xo = (T9, Z3), and

y = (y,w), we have

/6 L(ml +y,21) = (25, )

TY[Ry, ¢1] = m + (71 +y, 21))

2e
(@A) ;6(:B2,22)|2 B ¢5((571,51))] Bre~ P9y

O (@ +y, 21) — (2, 22) ] _ _
+ M2 /5 [ 9¢ +s((Z1 +y, 7))

= 5\ _ (7 =.\|2
B ’(301,,21) 2€<£U2,22)’ —¢5(($1,21))] /Bgeﬁwdy

— /0(S {|($1 +y,21) — (T2, 52)|2 [(Z1,21) — (22, 22)|2}ﬁ16—51ydy

2¢ 2¢

T A RS B P
1 /0 P(fl +y,5) = (@, 2)° |(@1,5) - (52752)’2}526/32;,@

2e 2¢€

e [ (@14, 20) = bl 20) | By

-6

(71 + y,z1 ($2a22)| (@, 2) ;6(52’52”2}&@—51;;&/

-+ 5 x 72 2 x 72 —(x 72 §
—|—772/ [ I +y 2'1 (2 2)‘ ’( 1 1) ( 2 2)’ }ﬁ2652ydy

2¢ 2¢

Yl(@1, 21), vl
Applying the triangle inequality to the above, we can further estimate

5T N AT SN (= =2
TY(%,, ] 2771/ [|($1+y721;6 (@2, 2)°  |(Z1,21) 26(902,22” :|/81651ydy
0

"T@ 4y, 5) — (@2, 2)* (T1,21) — (%2, 22))?
9 9 o 9 9 ﬁ2yd
+ 12 /—5 [ e 9¢ ]526 Yy
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+IY(21, 21), @/)ﬁ]

{ 371;21 ) (f2752>|2 _ |<j1721> - (@’22”21516_/31%3/
2¢
4 772/ |: 171721 y720) — <52722)’2 . |(.i’1,,§1) — (j2’§2)|2}ﬁ2€’82ydy
€ 2¢
-I—Il I, 7) Pg)
[ 2uh) — 2l e O @, 5) (f2752)‘2]ﬂleﬁ1ydy
2¢ 2€
+772/ |: 1'1721 I2,22>| + |(y720)|2 _ ‘(jlv'gl) - (i‘2722)‘2}52e/52ydy
€ 2€
+IM T, 21), @/)ﬂ]
y 0 y?
0 -6
L(m 2, -8 772025 16[ (= =
= 5/ Yy Pie 1ydy+5/ Y B2e™Vdy | +17°[(21, 21), Vs)-
0 —0

Finally, since foa y? e PYdy — 0 and fis y2B2eP2Ydy — 0 as § — 0, we have that
1
D051, 6] < Zo(1) + 2@, 5), 5] (4.13)
A similar computation shows that
1,67= 1 [ 2 -8 1 ’ 2 -8
T[Xe, —@o] + = | y'Bie™dy > — [ y*Bre”"¥dy > 0.
€ Jo 2¢ Jo
Combining these inequalities with assumption (A1*), we have
107 1,07 L, -8 L, -8 10{(= =
7%, 1] ST°[%2, —¢o] + A pre”"dy + % Y Bre” "y + T7°((2, 2), g)
0 0
1
< IH[%, — o] + —0s(1) + 05(1). (4.19)

We now develop a similar estimate on Z2°[%;, g]. We again return to the two-coordinate
notation for a moment (e.g. x = (x, z)). First, recall that j((z, 2), (y,w)) = (y, WA (Zmaz —2))
for any (z,z) € D and (y,w) € R? and thus

j()_(ly}I) - j()_CQ,Y) = (y - Y, (w A (zmam - 21)) - (w N (Zma:c - 22)))
= (0, (WA (Zmaz — 21)) — (WA (Zmaz — 22)))-
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By direct calculation of each of the four possible cases, it can be shown that

(%1 — %] [(1(%1,y) = (%2, y)] = (71 — T2, 51 — 2)
. (O, (U} A (Zmax - 21)) - (w A (Zma:c - 22)))
=04 (21 — 22)[(w A (2maz — 21)) = (WA (Zmaz — 22))]

<(z1— &)~
Therefore,
1 - o o 1 L,
- (X1 — o] - [((X1,y) — J (X2, ¥)] pu(dy, dw) < - (Z1 — Z2)"p(dy, dw)
€ JR2\B(x1,Ry) € JR2\B(x1,Rs)
1
e / (dy, duw)
€ R2\B(x1,Rs5)
1
= —(z1 — &)’
€
o = |2
<0 (g) | (4.20)
€
By a similar calculation,
1 . - 2 1 - = \2
= 1, - 2 ) =~ 5 1 — <2 ) )
17(X1,y) = J(X2, ¥) " p(dy, dw) < (21 — 22)"p(dy, dw)
2e R2\B(x1,Rs) 2¢ R2\B(x1,R5)
and thus
1 (% e 2 %1 — X
% 17 (%1,y) — (X2, ¥)|"pe(dy, dw) < O | ———— ] . (4.21)
€ JR2\B(x1,Rs) €

Now, integrating on both sides of inequality (4.17) on R?\ B(X1, d) and applying inequalities
(4.20) and (4.21), we get

1

T*°[%,, g] < T*°[Xy, h] + %
€

/ %1 — Xa) - [(/(%0, ) — (%o, ¥)] pu(dy, cw)
R2\B(x1,0)

1

2¢ Jr2\B(x,.,0)

< I*°[%g, h] + O (

+ |]<X17Y> _j(i27Y)|2/'L(dy7dw) +I276[5(17¢5]

M) +o0g(1). (4.22)

€

Combining (4.19) and (4.22), we get an estimate for the nonlocal integral terms we wish to

consider:
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(.= 11’5[5(17 ¢1] + 1275[5(17 g]

X1 — Xo|?

< TH[Ry, — o] + T*°[%g, h] + O < ) +o0g(1) + %05(1). (4.23)

€

Let (p, —q) = Vo(z,y) and define ¢, := R*[¢|((z,v), (p,q)) as in (4.3). Then, by Corollary
4.4, for any a > 0, there exist matrices X,Y € S, such that (4.8) holds and

F(%1,9(%1),p, X, T [%1, Ga(, Ra)] + T*°[%1,9])) <O 4.24)
F (%, h(X2), 4, Y, T[R9, =¢a(X1, )] + T>°[X2, h])) > 0 (4.25)
Now, applying Proposition 4.2, we get
F(%1,9(%1),p, X, £) < 04(1)
F (X, h(%2), ¢, Y, T"[R2, =] + I[X2, h]) > 04(1)
By assumption (A2), we have that there exists some v > 0 such that
M o L

77 S F(Xh g(xl)apa X: E) - F(X27 h(XZ)vpa X7 6) (426)

First, note that by definition, p = ¢+ V)3(X1). So, the above inequality can be rewritten as

7% < F(X1,9(%X1),p, X, l) — F(X2, h(X2),q + Vips(X1), X, () (4.27)
Now, applying inequalities (4.24) and (4.25) and adding and subtracting F'(Xs, h(X2), q,Y, {),
we get
M _ _ _
1 S F9(%0),p, X, €) = F(X2, h(Xe), a + V(%) X, £)
< F(xq1,9(x1),p, X, 0) — F(Xa, h(X2), ¢+ Vis(x1), X, 0)

+ F(Xa, h(X2), ¢, Y, I [Xa, —¢a(X1, )] + I*°[X2, h]))
— F(x1,9(%1),0, X, T [X1, du (-, X2)] + T°[X1, g]))
+ F()_(Qa h<)_(2)a q, }/a E) - F()_(Qa h<)_(2)a q, K E) (428)

Rearranging the terms above, we will consider the inequality

M
2

IN

Y F(ilag(i1>7p7 X: 6) - F<)_<27 h()_(2)7q + vwﬁ(il)7X7 g)
F(Xg, h(X2),q, Y, 0) — F (X2, h(X2), ¢ + V(X1), X, ()

+ P (R, M(%2), ¢, Y, TRz, —¢a(%1, )] + T°[R2, h])) — F(Re, h(%2), 4, Y, ()

IN
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+ F(Xlag<il)7p7 X? g) - F(th(il)vpa X:-’Z‘.l?a[xhgba('a}ZQ)] +I275[X17g]>

We now examine each of the last two pairs of terms. By assumption (A4), we have that

there exists a Lipschitz constant K7, such that

’F<ilag(il)7p7 X7 g) - F(ilag@_(l)ap? Xaz-lﬁ[)_(lvqﬁa('?i?)] +I2,5[>—(17g]))’
< Kpip |l — (Z"[%1, —ba(-, %2)] + I*°[%1, g])]
= KLip|Il’6[>_<1, ¢r] — T"0[Xa, —da(X1, )]|-

Since Proposition 4.2 implies that Z'[Xy, — 4 (X1, )] = Z'[X1, ¢,] as a — 0, we have that
F(i17g(i1)7p7 X7 é) - F(Xl)g(il)7p7 X7II’6[X17¢11('75(2)] +IQ’6[X1’9])) S 0(1(1)' (430)

Turning to the other pair of terms from (4.29), we first note that, by (4.23) and the ellipticity

assumption (E),
F(X9, h(X2),q, Y, 0) > F(Xa, h(%X2),q, Y, T"[Xa, o] + T*°[Xs, h]
o (B2 4o+ Lo,
Therefore,
F (%2, h(Xs), ¢, YT [Xa, =@a(X1, )] + I*°[%s, h])) — F (X2, (%), 4, Y, ()
< F(%0, h(Xa), ¢, Y, TV [Ra, —¢a(X1, )] + T2 [X2, ]))

1 — %o|2
N F<)_(2’ h()_(2)7 q, Y7 ILJ[}_(% ¢2] + 1276[)_(27 h} + O (M>

€
1
+o5(1) + os(1))
Furthermore, again using assumption (A4),
‘F (i% h(i2)7 q, Y7 IL&[X% _gba(ila )] + IQ’E[X% h])
_F<)_(2a h(}_{2)7 q, Y7 1176[}_(27 ¢2] + 1276[}_(27 h]

%1 — X, 1 1,61 - 2,67
_'_O f + 0,8(1> + Eoé(l))‘ g KLip 1 [X27 _¢a<xla )] +I ' [X27h‘]

— I [Rg, o] + I*°[X2, h]

+0 (—"_‘1 - ’_‘2|2> +o,(1)

€
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+ %05(1))‘

S KLip 1'175[5(27 _gba(ila )] + Igﬁ[i% h]

- 11’6[5_(2, ®o] + 12’6[322, h|
- 2|2
+O<ﬁ—ﬁi>+%m

€

1
+ —05(1)).
€
So, again applying Proposition 4.2 as we did to the previous pair of terms, we have
F()_(27 h()_CQ)v q, KIl,é[x27 _¢a(}_{17 )] + 1275[>_C27 h])) - F()_(z, h(i2)7 q, K E)

<o +0

%) — Xo|? 1
— +05(1) + Zo(;(l).

So, finally we have

M _ _ _ _ _ %) — X
’Y? S F<X27h(x2)7Q7Y7€) - F<X17h(x2>7q+ Vl/)ﬂ(xl)7X7 6) +O0 | ——

Fos(1) +ou(1) + Zos(1). (431)

In particular, (4.8) and the properties of ¢3 above imply that

o<B )2l 7[R g
<[, ]+ ewram ] ]

with 0,(1) and og(1) being uniform in e.

We now apply assumption (A3*) taking p = 2 to get

€

M o o ~ %) — Xo|?
gy < F(X2,MX2),q, Y, l) — F(X1, MX2),q + Vibg(X1), X, £) + O | ———

+05(1) + 04(1) + %05(1)

Xy — Xo|? Xy — Xo|?
<w ('172' + %1 — %o +oﬁ(1)> + wp, (% +1% —)‘Q\)

+0 <@) +05(1) + 0,(1) + %05(1).

Finally, letting in order 9, a, €, and then S go to 0, we get that M < 0 giving us the desired

contradiction. ]
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1.3 Verification of the Assumptions

Define R(z) := min{e(1=9% (#2797 for some € > 0 such that both (8; —¢€) and (B — €) are
positive. Then, the class of functions C is defined to be all functions v : D — R such that

u(+, z) is continuous on [Zyin, Zmaz] and there exists a constant ¢ > 0 such that
u(z, z) < é(1+ R(z)).

We will restrict our choices of proposed value function to these functions of sub-exponential
growth in order to ensure that all terms in the HJB equation for this problem are integrable.
Note that, in particular, the class C certainly contains all functions u which satisfy the

polynomial growth condition for any degree p > 0.

1.3.1 The Nonlocal Term

Recall that in the HJB equation for this problem,

0= F((x,z2),f,Df,D*f,I[(x,2), f]) (4.32)
=0f(x,2) — %(u — ) fo(x,2) — %fm(a:, z) — igg{—ufz(x,z) + G(z,z,u)}

- / T (faty.2) — flo ) fre Y dy
0

- / Ty, 2) — fl,2)) BocPV dy
Calp (Fa 2+ ) — f@ D)t e (flaz +20) — fw2)],  (433)

the last three terms are due to the nonlocal behavior of the X and Z processes. That is, we

can write the nonlocal operator for this PIDE as
Tlw 2 S == m [ (Fa+3.2)— fo,2) Bre 7 dy
0

0
. / (F@+y,2) — F(,2)) fac™ dy

—0o0

—alp (f(z,2+0) = f(z,2) +p2 (2, 2+ 20) — f(=,2)) ]. (4.34)

Following the form of Barles and Imbert, we separate this operator into

Rs
IY(x,2), f] = — m/o (f(z+uy,2)— f(z,2)) Bre ™Y dy
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o / (F(@+y,2) — fla,2)) ac™ dy (4.35)
—R;

[e.9]

I*((x,2), f] = — 771/ (f(z+y,2) — flz,2)) Bre ™Y dy

Rs
o /  (Fle T 2) — fl@,2)) fac™ dy
—alp (2O — f(5,2) +po (w2 +20) — f(z.2))]. (436)

for any ¢ > 0 where Rs = min{0, (}.
By construction of Z' and Z?°, it is clear that for any (z,2) € D and ¢ € C N C*(D),

I((x,2), 0] = T"[(w, 2), ¢] + I*°[(x, 2), ],

and further for any a € R,

oo

(2, 2), ¢ +a] = —m / ([p(z + v, 2) + a] — [p(z, 2) + a]) Bre Y dy

Rs
o / (0@ 4, 2) + a] — Bz, 2) + a]) Bac®V dy

— afp1 ([¢(z, 2 + () + a] — [¢(x, z) + a])
+p2 ([¢(x, 2 4+ 2¢) + a] — [p(z, 2) + a]) ]

= [ (0l 2) = ol ey

—Rs
o / (O +y,2) — (. 2)) foc™ dy

—api (@(w, 2 +¢) = ¢, 2)) + p2 (¢, 2+ 20) — dla,2)) |
= 1.276[(1" Z)v QS]

and similarly Z19[(z, 2), ¢ + a] = Z%°[(x, 2), ¢]. Moreover, setting Rs = min{d, (}, we have
that Rs — 0 as § — 0 and, for ¢y, ¢y € C N C?*(D),

&1 = ¢ V(z,2) € B((x,2),Rs) = Il’é[(x,z),(bl] = Il’é[(x,z), ¢s] and

o1 =2 V(z,2) € (D\ B((x,2), Rs)) U{(z,2)} = I*[(w,2),1] = I**[(x,2), b]-

Now, let ¢ € C*(D) and f € C be an upper semi-continuous function such that f — ¢

attains a maximum on B((z, %), Rs) at (z,2) and ¢(z,2) = f(z,2). Denote the ball of
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radius d > 0 centered at (Z,2) by B(d) := B((, 2),d), and denote the annulus with inner
radius d > 0 and outer radius D > 0 centered at (Z,2) by A(d,D) = {(z,z) € D :
d < |(x,z) — (2,2)] < D}. We proceed with the following construction of a sequence of
approximating functions which follows a very similar construction by Arisawa [1]. First, we
note that in the case of viscosity solutions, it is sufficient to consider f € C N C(D), since
if f is not continuous, it can be approximated by the sequence of sup-convolutions, each of
which is continuous. It is a classical result of viscosity solution theory that f is a viscosity
subsolution of (4.1), if and only if each of the sequence of sup-convolutions approximating
f is a viscosity subsolution of (4.1) (see, for example, Section 5.2 of the book by Pallaschke
and Rolewicz [12]).

Consider B (s) for some s > Rs. Since, as noted earlier, the class C contains the polyno-
mial functions, there certainly exists a sequence of functions v, € C*(D) x C such that

lim ¢, ((z,2)) = f((x,2)) uniformly in B(s).

n—o0

Define ¢,,((2, 2)) = ¥n((x, 2)) + | = ¥u((2, 2))ll 1o (3(s))- Then,

J— N

U, (z,2)) > f((z,2)) ¥V (z,2) € B(s) and

lim ¥, ((z,2)) = f((z,2)) uniformly in B(s).

n—oo
Without loss of generality, we may assume that f — ¢ takes a strict maximum at (%, 2) (since
if it does not, we can add a small positive quadratic function to ¢), and therefore for any r
such that Rs < r < s, there exists some o(r) > 0 such that

min (¢ — f)(z,2) = o(r) > 0.
(z,2)€A(r,s)

Let x,(x,2) € C*(B(s)) be a function such that 0 < x,(z,z) < 1 for all (2, z) € B(s) and
1 if |(z,2) — (2,2

v, 7) = it ](z,2) = ( )IA

0 ifr <|(z,2)— (2,

Then, define

an(‘% Z) = Xr(xa Z)¢(x7 Z) + (1 - XT('L Z))wn(xv Z)

for all (x,2z) € B(s). That is, the function ¢, takes on the same values as ¢ inside the

ball B(R;s) and the same values as f on the annulus (z,z) € A(r, s), making the transition
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between the two in a C? manner across the annulus (z,z) € A(Ry,r). By construction of
1, and the fact that ¢(x,z) > f(z,z) for all (z,z) € B(s) by assumption, it is clear that
¢, (x,2) > f(x,z) for all (z,2) € B(s) and all n = 1,2, .... Further, since ¢, 1,,, and Yy, are
all in C%(B(s)), we also have that ¢, € C2(B(s)). Also, by the definitions of x, and ¢, , it is
clear that ¢, (x,z) = ¢(x,2) for all (z,2) such that |(z,2) — (&, 2)] < Rs. Moreover, noting
first that there exists some n; € N such that

gb(x,z) - ¢n(z72) = QS(:L‘?Z) - f(ZL’,Z) + f(ZE, 2) - 1/)n($»z)
> o(Rs) + f(w,2) = ¢, (2,2) > 0

for any n > ny and (z, z) € A(Ry, s), it is clear that

¢<I72> - ¢n - (1 - XT<I72>)(¢(I7Z) - ¢n($7z>> >0

for n > ny and (z,2) such that Ry < |(z,2) — (&, 2)| < s. That is, for n > nq, ¢,,(z,2) <
¢(z,2) for (x,z2) € A(R(;,s). Since the fact that ¢, — f uniformly gives us that ¢, — f
uniformly on (z,z2) € fl(r, s), there exist r > Ry sufficiently small and ny € N such that for
n > ny and for all (z, z) € A(Ry, s),

W | =

|$n(x,z) - f(I,Z)l <

Take n := max {n,ns}. Also note that since ¢, (z, 2) = ¢(x, z) for (x,2) € B(Rs) and, as
argued earlier, ¢, (,z) < ¢(z, z) for (z,2) € A(Rg, s) for n > n’, we have

f(x,2) < b, (x,2) < ¢lx,z) forall (z,2) € B(s).

Then we can extend this ¢,, to ¢; € C?(D) such that

A

b1(z,2) = é,/(x,2) for (z,2) € B(s),

f(z) < ¢1(x,2) < ¢(x,z) for all z € D,

and f — ¢ takes a strict maximum at (z, 2).
Now, repeat the above construction with ¢ replaced by ¢; and s replaced by 2s. This
will yield a function ¢, € C?(D) such that

f(CL’) S ¢2(ZE, z) S ¢1<x7z) S ¢(xa Z) for all z € D7
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|po(x, 2) — f(z,2)| < 2% for (z,2) € {(x,2) € D: Rs < |(z,2) — (&, 2)]| < 2s}

and f — ¢ takes a strict maximum at (z, 2). Continuing iteratively in this manner, we can

construct a sequence of functions ¢ € C N C?*(D) such that
f(x) < o, 2) < dp—ny(x,2) < ... < i(x,2) < P, 2) forall z € D,

|k (2, 2) — f(x,2)] < é for (z,2) € {(z,2) € D: Rs < |(x,2) — (2, 2)| < ks}

and f — ¢y takes a strict maximum at (z, 2).

A

Since ¢i((z,2)) = ¢((x, 2)) for all (z,z) € B(Rs) for every k= 1,2, ..., clearly
TH((2,2), ¢x) — T°((2,2), 9] as k — oo,

Further, since each function ¢y, is in the class C,

w [ (onla ) - m@,z))ﬁleﬁwdy\

+ < 00,

—R;
" / (606 + . 2) — bul(i, 2)) fac™ dy

o0

and ¢ is a monotone decreasing sequence converging to f outside B (Rs), the Monotone

Convergence Theorem implies that
1236[(“%7 2)7 ¢k] — 2’-276[(:%7 2)7 f}

Clearly, Z%°[(x, 2), ¢] is well-defined for (x,z) € D and ¢ € C*(B((x,z),r)) NC for any
r € (0, Rs). Further, when § — 0, Rs = min{4,(} — 0 and thus Z'9[(x, 2), ¢] — 0. Now,
suppose (zy, 2) — (z,2) and {¢y} C C*(B((z, 2),r))NC(B((x, 2), Rs)) with ¢ — ¢. Then,

since the integrands are continuous and thus bounded for y € [0, Rs), we have

Rs
lim Z°[(a, 21), o] = —m kILm / (o (2 +y, 21) — dr(k, 1)) Pre” ™Y dy
*Jo

k—o0
0

— 1 lim (or(wk + 1y, 26) — dr(Ths 21)) Bae™Y dy

k—00 —Rs

Rs
=—m / kh_{n (or(zk + 1y, 2%) — dr(Thy 21)) Bre 7Y dy
0 o0

0
— 12 /_ klggo (r(zr —y, 21) — Or(Tr, 21)) 526*521/ dy

Rs
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Rs
= [ 0t 09— o) e dy

0
— / (6(z +y,2) — (. 2)) foc™ dy

Since all functions ¢ € C are locally bounded, Z??[(z, 2), ¢] is well-defined for any (x, z) €
D and any ¢ € C. Let (¢x) be a sequence of uniformly locally bounded functions such that
|px| < 1 for some function ¢ € C. Recalling the definition ¢ := lim sup* ¢, we then have by

a standard extension of Fatou’s lemma that

lim sup Z*°[(x, 2), ¢x] = — m lim SUP/ (O(zr +y, 21) — D, 21)) fre™ ™Y dy

k—o00 k—o0 Rs

“Rs
— 1o lim sup/ (or(zk + v, 21) — O (xk, 21)) Bae™Y dy

k—o0 o0

— ahl,;n sup [p1 (¢r(k, 26 + C) — (@, 21))
+ 2 (dk(2k, 21 + 20) — Or(wr, 1)) |

<—-m / lim sup (¢(:Ek + v, Zk) — ¢<$k7 Zk)) 516—512/ dy

Rs k—o0

—Rs
- 772/ lim sup (¢p (2 + Y, 2) — f(2k, 2)) B2e™Y dy

o0 k—oo

—afp (hm sup o (Tr, 2 + ¢) — lim sup ¢y (g, Zk))

k—o0 k—o0
+ p2 (lim sup ¢ (x, 2 + 2¢) — lim sup ¢ (4, Zk)) ]
k—o00 k—o0
=7"°((x, 2), @]

By a symmetric argument and the definition ¢ := liminf" ¢4, we also have that

li}gn inf Z[(zk, 2x), ox] > Z[(x, 2), ¢].
— 00 -
Thus, the nonlocal operator Z satisfies the conditions of assumption (NLT).

1.3.2 Assumptions of the Comparison Principle

Again mirroring the form of Barles and Imbert, we define the following function j representing
the sizes of the jumps and Lévy measure p representing the action of the nonlocal components

of the paired process (X, Z):

i((2,2), (y, w)) := (y, 0 A (Zmaz = 2)) (4.37)
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p(y, w) == — ML) (y)BreYdydioy (dw) — n21(—co0)(y) B2e"* dydoy (dw)

— a[pid(dw) + padgacy (dw)] dgoy (dy) (4.38)
where 14(-) is the indicator of the set A € R and d4)(-) is the point mass at a € R. Note
that in the measure u, the point masses guarantee that p will only have non-zero mass if at
most one of the processes X or Z jumps at any given time. We can make this simplifying as-
sumption since these two processes are independent and each have exponentially distributed
times between jumps, implying that

P(IX (1) = X(t=)| £ 0, |Z(t) = Z(t=)| #0) =0 V& >0,

Recall that we defined above the following function j representing the sizes of the jumps

and Lévy measure pu representing the action of the nonlocal components of the paired process
(X, 2):
i((z, 2), (g, w)) == (y, 0 A (Zmaz — 2)) (4.39)
p(y, w) =m0, (y)Bre” Y dybioy (w) + N2l (—oe0) (y) Bae™ dydioy (w)
+ta [p15{<}(w) + P2dgacy (w)} d103(y) (4.40)
where 14(+) is the indicator of the set A € R and dy,(+) is the point mass at a € R.

Lemma 4.8. The HJB equation (4.32) with the paired process (X, Z) as defined above satisi-

fies assumption (A1*) of the comparison principle.

Proof. First, we note that

[ vy = [ [ m1om@)sie dysio o)
R2 RJR
+//7721(—00,0)(y)52€ﬂ2yd95{0}(dw)
R JR
+ / / a[pidiey(dw) + padgacy (dw)] 8oy (dy)
RJR

[e’s) 0
=/ mﬂle‘ﬁ”’dw/ 128267V dy + p1¢ + 2paC
0

—00

=m + N2+ a[p1(CA (Zmae — 2)) + P2(2C A (Zmaz — 2))]-

So clearly fR2\B w(dy, dw) < ny +n2 + p1¢ + 2pa¢ < oo for any open ball B C D. Further,
)P =y + (0 A (2mae — 2))? < ¥+ w? = |(y, w)|? for all (z, 2) in D,

(y
sup /|J x, 2), (y, w)|*p(dy, dw) < / (y, w) > u(dy, dw)

(z,2)€D

since [j((x, z),
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— [ 7+ uPuldy dw)
RQ
[e%s) 0

:/ yzﬁlﬁﬁﬁlydy‘f‘/ Y2 o BaeY dy
0 —00

+al(€)*p1(¢) + (20)*p2(20)]

2 2
=M—5 th—-s+ alpi1C® + 4paC?)
B B

and thus sup 17((x, 2), (y,w))|*u(dy, dw) < co. Now, note that
(z,2)€eD JRR2

|j((fL’, Z)v <y7w)) - .]((jv 2)7 (yv w))| = |(y - Y, (w N (Zmax - 2)) - (w A (Zmaa: - 2)))|
= [(w A (Zmaz — 2)) = (WA (Zmae — 2))|

<|z—Z
for any (z,z) and (Z, 2) in D. So, noting that u(dy, dw) does not depend on z and

|j((l‘, Z)’ (yaw)) - ]((j’ 2)7 (ya w))|2 = |(y7w A (Z - zmax)) - (va A (2 - zma:(:)|2

=(y—y)’+(-27=(z-2)7
we have

/R2 (2, 2), (g, w)) = §((F, 2), (y, w)[*pu(dy, dw)

B R2 |((w A (Z - Zmal’)) - (w A (2 - Zma;v)>|2 N(dy, dw)

< [ =27 utdy.du)

— (22 / (g, dw)
<e(z—2)?
< el(z,2) - (@ 2)

for any ¢ > my 4+ 12 + a[p1(C A (Zmaw — 2)) + D2(2C A (Zmae — 2))] and any (z, z) and (z, Z) in
D. Similarly,
(@, 2), (y,w) = 5(3, 2), (y, w)|ul(dy, dw) < elz = 2| < ¢f(z, 2) = (2, 2)]
R
for any constant ¢ > 1y + 12 + [p1(C A (Zmaz — 2)) + P2(2C A (Zmaz — 2))] and any (z, z) and
(Z,2) in D. Thus we have that assumption (A1) is satisfied. O
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In order to show the remaining assumptions, we need to consider the PIDE (4.32) in terms
of constant arguments rather than functions. That is, for (z,2) € D, a € R, b = (b1, by) € R?,
XeSy,andl € R,

1 2
F((z,2),a,b,X,l) = da — X(p — )b — %Xl,l —sup {—ubs + G(x,z,u)} +1 (4.41)
uclU
Then clearly
F((z,2),a,b, X,1) — F((z,2),a,b, X,l) = d(a — a),

and thus assumption (A2) is satisfied. Also, F' is clearly Lipschitz continuous in [, and thus
assumption (A4) is satisfied.

It remains only to show that assumption (A3-1%*) is satisfied.

Lemma 4.9. The HJB equation (4.32) with the paired process (X, Z) as defined above satisi-

fies assumption (A3*) of the comparison principle.

Proof. First, we note that the assertion that the matrices XY € S, satisfy

[)0( —OY} = % {—II _JI] +7(B) [(I) ?] (4.42)

for some € > 0 and some () with r(5) — 0 as § — 0 really means that the matrix

M ::% {—I] _II] +r(B) {é ﬂ - [)o( —OY]

L4+ r(8) — X1, Xi2 —1 0
B — X129 % +7(f) — Xao 0 %
N — 0 L r(B)+ Y Yio
0 -1 Yip L4+7(B) 4 Yap

is positive semi-definite. That is, for any non-zero column vector v € R*, " Mv > 0. So, in

particular,
1 %—i_T(ﬂ)_Xl,l_% 1
0 X 0
1,0,1,0)M = ’
(1LO.LOM | —t+ i +r(B)+ Y, 1
0 Yieo 0
1 1 1 1
:Z+T(B)_X1’1_E_E+E+T(B)+Ym:2T(5)_X1’1+Y1’1ZO’
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implying that Y7 ; — X
B — 0and |z, 2)|, |(Z, 2)|

>
<

—2r(

L.
5=

F((:E,Z),a,z((LZ) —(%,2)),Y,



+ sup {—u (1(2 _ z)) + G, 2 u) + GlE 2, 0) — G, 5, u)}

uelU €

< 3518 + Ll + 0%r(6) + uslsa()] ~ sup { (= 2)) + Gl 2 |

uelU

+ sup {—u (1(2 _ z)) LG 2 u)} 4 sup {G(z, 2, u) — G(F, 7, u)}

uelU € uelU
= %usl(ﬁ) + %Isl(ﬂﬂ +0°7(8) + Umaz|52(8)| + sup {G(, 2,u) — G(%, Z,u)}

uelU

< 151(8) + L5 151(8)| + 07 (B) + tnassa(B)] + Kol 2) = (7,2)

for some Kp > 0 (where the last inequality holds due to the continuity of G and the fact that
(z,z) and (Z, Z) both lie in a compact subset of D). So, taking w(f) = ;us1(3) + £s1(8) +
02r(B) + Umaz|52(8)| and wr(|(z, 2) — (%, 2)|) = Kgl|(z, 2) — (Z, Z)|, we have that assumption
(A3*) is satisfied since we assume that %5(6) — 0 as § — 0 and therefore s1(8) — 0 as

£ — 0, as well. n
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Chapter 5

Conclusions and Future Work

1 Conclusions

We first developed a model which accurately captures both components of the environment
in which the plant operates: the arrival of coal shipments and the spot price of electricity
in the open market. We then formulated a control problem with the goal of maximizing the
expected revenue of the plant until the first time the coal supply reached the shutdown level
Zmin and formally dervied the HJB equation associated with this problem

2

0= 67(2,2) = (1 = 0)ful,2) = G fuuli2) = sup {~uf.(0,2) + Gl )}

- / T (flaty.2) — flo2) fre Y dy
0

o / (F(@ =y, 2) — f(z,2)) Boe™ ™ dy

—0Q0

—alpi (f(z.2+¢) = f(2,2) + p2 (f(z, 2+ 20) = f(2,2)) ]

where ¢ = C A Zmaz and 2¢ = 2C A Zmnas represent the amounts of coal actually added by a
single and double train arrival, respectively. In Chapter 3, we proved that the value function
(the maximum expected revenue we sought) is a viscosity solution to the HJB equation.
Finally, we proved in Chapter 4 that the viscosity solution to this HJB equation is unique
on any bounded domain in D.

So, combining all of these results, we have shown that by finding the solution to the
HJB equation above, we can solve the optimal control problem for the plant as it was posed
in Chapter 1. As a consequence, we know that any burn rate policy v which achieves this

optimal value is an optimal policy for the plant operator (though the policy is not necessarily
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unique).

2 Future Work

2.1 Numerical Solution Using Real Market Data

A particularly useful area of continued research is the application of these principles to real
production plants and markets. Finding an approximate numerical solution for the value
function and optimal burn policy using real spot price and production data would provide
a tangible connection to the theoretical work presented here. Finding such a numerical
approximation involves two stages. First, real data must be used to fit the parameters of
the spot price model. Then, those parameters can be used to implement the Markov chain
approximation methods of Kushner and Dupuis [9] to find the desired approximation to the
solution of the HJB equation. We oultine in the following subsections a standard approach

to this problem.

2.1.1 Parameter Fitting of the Spot Price Model

Gonzalez, Moriarty, and Palczewski [7] provide a method for parameter fitting in the spot
price model used here. They provide results showing that the model provides a good ap-
proximation in two European energy markets for daily average prices. Oliver Meister showed
in his MS thesis [10] that these methods can be applied to an American market, the MISO
market, with equally good results. However, both of these works use only aggregated daily
average prices, while a power plant operator needs to work on a shorter time scale, usually
in the range of 15-30 minutes. Further examination of possible parameter fitting schemes
on this shorter time scale would show whether the pricing model used here continues to be

valid.

2.1.2 Production Function for a Coal Plant

In particular, electricity production at a coal plant is generally modeled by a linear relation-
ship with some constant k& kilowatts produced per ton of coal burned. With the spot price

x being paid per kilowatt, this gives us a revenue function

R(x, z,u) = zku.
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Such plants generally have long-term contracts with a coal supplier in which a constant
amount is paid per month or year for a certain number of deliveries. That is, the cost rate

for such a plant is constant, and we have cost function
C(z,z,u) = C.

So, we have a payoff function
G(z,z,u) = xku — C.

2.1.3 Finite Difference Scheme

Having parameters for the spot price process and a particular form for the payoft function,
a numerical approximation to the value function and optimal control policy for our control
problem could be sought using the method of Markov chain approximation as developed in
the text by Kushner and Dupuis [9]. The particular HIB equation for this problem is

2

0=ov(x,z2)— %(,u — 2)vg(, 2) — %vm(a:, z) — 81615 {—wv,(z,2) + zku — C}

—n{/ (0(z + 9, 2) — vz, 2)) Bre~Y dy
0

—m/‘wm+%w—wmawﬁ&wy

—0o0

—alp (v(z, 24+ () —v(z,2)) + pa (v(z, 2 + 20) — v(z,2)) ] (5.1)

on the domain D = R X [Zmin, Zmaz)-

Discretizing the domain, we use a regular mesh in each direction. That is, we take
the bounded domain D = [Zmins Tmaz] X [Zmin, Zmaz) With Zpig, and @, chosen so that all
observed spot prices in the dataset fall within D. We then choose N,,N, € Z" and set
hy = W and h, = (ZT”‘””T_;”“") We partition D into a regular grid with mesh
size h, in the z-direction and mesh size h, in the z-direction. So, we have the discretized
domain ﬁNw,Nz ={(xi,2;)|i=0,...,N;; 7 =0,..., N,} where x; = %y, + ih, for each 7 and
2j = Zmin + jh. for each j.

For clarity of notation, define v; ; := v(z;, 2;), and define f to be the closest integer to hﬁ
Further, we take a discretization of the probabilities of the exponential jump sizes to allow

us to rewrite the two integrals in this HJB equation as sums by defining for ¢ € Z*

W [ ety and g [ gy,
(¢ (

—1)ha m—1)hg
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(1)
N <e€

, < €. Finally, take as a discretized form

and then defining, for some small € > 0, N to be the smallest integer such that p

(2)
N(

of the distributions of jump sizes in the spot price

and N® to be the smallest integer such that p

pél), for1 <0< NW pg), for 1 <m < N®
(1) _ NM—1 2) _ N@ 1
Ty = and m,’ =
¢ 1— Z pl(zl), for ¢ = N 1— Z pg), for m = N,
=0 m=0

Using the forward difference approximation for the first derivatives and the central approx-

imation for the second derivative, we then write the finite-difference approximation to the
HJIB (5.1) at each (v, 2;) € Dy, n. as

1 i1 —Vij O Vi1, — 205 F i
0 = by — (= o) I _ T Beld S0 T 0
(A — Vi
— sup {—UM + x;ku — C’}
uelU hz
N N2
1
- Z (Vites — vig) Wé ) 72 Z (Viem,j — Vi) o
=1 m=1
— a[p1(v; g roan. = Vig) T P2(V; G rapan. — Vig)]- (5.2)

In all boundary cases, we use a sticky boundary. That is, we take for ¢ < 0, v; ; = v j; for
J <0, v;; =v;0; for i > Ny, v; j = vy, j; and for j > N,, v;; = v; y.. Further, the boundary
condition due to the termination of the process at the first time the coal supply reaches zero
gives us v(x;, z9) = 0 for all 4.

This finite-difference approximation is then used to find the value function at each iter-
ation of the policy iteration method of Kushner and DuPuis. The optimal policy at each
iteration is found by the simple maximization

u;; = argmax {—UM + xzku}
{tmin timaz} h.
where u; ; := u(x;, z;) is the discretized version of the policy as with the value function above.
That is,
Ui 1 —”’”ﬁ?”’j > xik
i = {um if Lt < gk

Unfortunately, preliminary tests showed that this standard numerical method results in

highly numerically unstable behavior. An upwind/downwind scheme in which the approxi-

mation of v, is made using a forward difference when the coefficient on v,, —%(,u —x;), is
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positive and a backwards difference when it is negative produces a more stable solution, but
it is still not satisfactory. Further investigation into the cause of this instability and more

appropriate numerical schemes is necessary.

2.2 Alternative Supply Process and Payoff Function

Another productive area of research would be replacing the particular forms of the supply
process and/or payoff function used here. The action of a coal plant with the simple payoff
function described in the previous section was the model driving the research in this paper.
However, the methods used could be extended in several directions. Directly using these
methods, but with different production and cost functions leading to a different form of
the payoff function, but one that is still continuous, could lead to better numerical results
than those found thus far. Working with a different supply process, whether continuous or
discontinuous, could also prove worthwhile. More ambitiously, one could examine whether
the restriction to continuous payoff functions could be relaxed, as we have not proven that

this condition is necessary, merely sufficient.

2.3 Multiple Nodes

The problem examined in this paper was, for analytical tractability, limited to a single spot
price at a single node on the national electricity grid. However, in reality, plants are able to
sell to dozens of different nodes, each with its own spot price process. This extension would
require a significantly different payoff structure as well as an examination of the correlation
of the spot price at different nodes (as a cursory examination shows that these prices are
far from independent). Even an extension to two nodes would require another component of
the control representing the distribution of the power being produced between the available
nodes. So, while this area of research would be of great interest for practical applications of

the model presented here, it presents a great deal of increased complexity to be dealt with.
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Appendix

We collect here the proofs to three lemmas concerning the ordering of the stopping times

used in Chapter 3.
Lemma 5.1. Let m,, hy, be defined as in Proposition 3.1. Then, P[m,, < h,| — 0 as n — oo.

Proof. For each n, Y( (t) is defined by the SDE

V0 = 0G0~ ) 0) =0 (5.3

Let Yy(t) be defined by the same SDE with Yy(0) = z. Since z,, — 7, for any € > 0, there ex-
ists some N such that z,, € (_—e Z+e) foralln > N. Let m, :=inf {r > 0| Y ) <z —p}
and 7} = inf{r > 0] Y(n ) > x4+ p}. Note that for every n, the random behav1or of
Yo(n) is determined by the same Brownian motion process W (t). Define Y, (¢) as in (5.3)
with Y;7(0) = # + €. So, for every n > N, Y, (t) > Y(")( t) for all ¢ for each w € Q,
and thus 77 > 7t = inf{r >0 ‘ Yy (r) >z + p}. Since the process Y, is just a mean-
reverting diffusion process and h,, — 0, nlggo P[r* < h,] = 0 and therefore, since 7,7 > 7+,

lim P[r;" < h,] = 0. By defining Yy (¢) as in (5.3) with ¥, (0) = 7 — ¢ and making a similar
n—o0

argument, it can be shown that for n > N, 7, > 7~ and P[r~ < h,] = 0, and therefore
lim Plr, < h,] = 0. Concluding from the fact that 7, = m, A 7, we have the desired
n—oo

result. O
Lemma 5.2. Let £, h, be defined as in Proposition 3.1. Then, P[§¢ < h,| — 0 as n — oo.

Proof. Recall that £ = & A& A& where & = min{t > 0 | Ly (t) — L1 (t—) # 0}, & = min{t >
0| Lo(t) — Lo(t—) #0 }, and & = min{t > 0 | Z"(¢) — Z™(t—) # 0}. So,

PIE < hn] = Pl&1 A& AN &g < hn] S PG < hn] + P € < ho] + P €5 < hn]. (5.4)

o4



We first consider P [¢; < h,,|. By the definition of L; as a Poisson process with intensity

A1, the first arrival time, &; is an exponential random variable with rate A. So,
Plé, < hy) =1 —e M,

and since h,, — 0 as n — oo, we have that P[¢; < h,] — 0 as n — oc.

Since & and &3 are also exponentially distributed first arrival times with a constant
intensity, a similar argument shows that P[¢; < h,,] — 0 and P[¢3 < h,,] — 0 as n — oo. So,
we have from (5.4) that

lim P[¢ < h,] = 0.

n—oo

]
Lemma 5.3. Let 7, h, be defined as in Proposition 3.1. Then, P[1, < h,] — 0 as n — oo.

Proof. Recall that 7, := min{t > 0 | Z"&(Z,,2")}. We consider two possible cases. First,
let 7, := min{t > 0| Z™(t) > z"}. Since we assume that z, < 2", Z((t) can only be
greater than or equal to z" if at least one coal shipment has arrived by time ¢, that is if
¢ < t. As shown in Lemma 5.2, P[¢3 < h,] — 0 as n — oo. Therefore, P[7, < h,] — 0 as
n — oo.

Next, we consider 7, := min{t > 0] Z™(¢) < ,}. Since, by construction, 2, > Z, and
the control u is constant, 7, > % > 0. So, P[r,, < h,] = 0. We therefore have that

lim P[r, < hy,) = lim P{7, AT, < hy] = 0.

n—oQ n—oQ
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