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ABSTRACT 

 CAD-BASED POROUS SCAFFOLD DESIGN OF 

INTERVERTEBRAL DISCS IN TISSUE ENGINEERING 

by 

Ye Guo 

 

The University of Wisconsin–Milwaukee, 2019 

Under the Supervision of Professor Zeyun Yu 

 

With the development and maturity of three-dimensional (3D) printing technology over the 

past decade, 3D printing has been widely investigated and applied in the field of tissue engineering 

to repair damaged tissues or organs, such as muscles, skin, and bones, Although a number of 

automated fabrication methods have been developed to create superior bio-scaffolds with specific 

surface properties and porosity, the major challenges still focus on how to fabricate 3D natural 

biodegradable scaffolds that have tailor properties such as intricate architecture, porosity, and 

interconnectivity in order to provide the needed structural integrity, strength, transport, and ideal 

microenvironment for cell- and tissue-growth. In this dissertation, a robust pipeline of fabricating 

bio-functional porous scaffolds of intervertebral discs based on different innovative porous design 

methodologies is illustrated. Firstly, a triply periodic minimal surface (TPMS) based 

parameterization method, which has overcome the integrity problem of traditional TPMS method, 

is presented in Chapter 3. Then, an implicit surface modeling (ISM) approach using tetrahedral 
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implicit surface (TIS) is demonstrated and compared with the TPMS method in Chapter 4. In 

Chapter 5, we present an advanced porous design method with higher flexibility using anisotropic 

radial basis function (ARBF) and volumetric meshes. Based on all these advanced porous design 

methods, the 3D model of a bio-functional porous intervertebral disc scaffold can be easily 

designed and its physical model can also be manufactured through 3D printing. However, due to 

the unique shape of each intervertebral disc and the intricate topological relationship between the 

intervertebral discs and the spine, the accurate localization and segmentation of dysfunctional discs 

are regarded as another obstacle to fabricating porous 3D disc models. To that end, we discuss in 

Chapter 6 a segmentation technique of intervertebral discs from CT-scanned medical images by 

using deep convolutional neural networks. Additionally, some examples of applying different 

porous designs on the segmented intervertebral disc models are demonstrated in Chapter 6. 
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Chapter 1 

 

Introduction 

 

From the perspective of ergonomics, an intervertebral disc (IVD) lies between adjacent 

vertebrae in the vertebral column. Each disc forms a fibrocartilaginous joint (a symphysis) to allow 

slight movement of the vertebrae and acts as a ligament to hold the vertebrae together [1]. The 

structure of the human spine is extremely complicated. There are normally 24 vertebrae in the 

adult spine. Due to the absence of IVD between the atlas and the sacral vertebrae, there are only 

23 discs in the body. The intervertebral discs are located between every two of the vertebrae and 

the total thickness of the disc is ranged from 20% to 25% of the total length of the spine. Among 

them, the lumbar intervertebral disc in the thickest is about 9 millimeters [2]. Figure 1.1 gives an 

example of the intervertebral disc lying between two vertebrae. 

 

https://en.wikipedia.org/wiki/Fibrocartilaginous
https://en.wikipedia.org/wiki/Joint
https://en.wikipedia.org/wiki/Symphysis
https://en.wikipedia.org/wiki/Ligament


2 

 

Figure 1.1 The structure of partial spine (by courtesy of [3]). 

 

In recent years, the incidence of the prolapse of intervertebral discs has been increasing 

year by year and some complications caused by intervertebral disc problems are also becoming 

more and more common, such as sciatica caused by posterior protrusion of the intervertebral disc 

and disc atrophy. Millions of people suffer from intervertebral disc disease (IVDD) and its 

complications every year. People working in certain industries, such as drivers, construction 

workers, software programmers etc., are high-risk crowds with disc diseases. Moreover, the 

intervertebral disc may cause muscle tightness and inflammation of tendon due to aging, trauma, 

poor posture, and overwork. Most pain can be alleviated after proper posture correction, 

recuperation, and medication. Nonetheless, some patients still have persistent lower back pain 

(LBP) and the pain can extend to thighs and shanks. Additionally, some severe disc herniations 

can cause spinal canal, spinal stenosis, and nerve compression. For these cases, the surgery of 

disc replacement becomes inevitable and also the best option for the treatment. Consequently, 

finding a new alternative with same bio-features comes into a serious challenge. 

With the birth of a new paradigm, 3D printing, the opportunity of building superior 

scaffolds with excellent bio-features has greatly increased. 3D printing (3DP), also known as 

additive manufacturing (AM), has provided robust technical supports for manufacturing high-

quality bio-compatible intervertebral disc scaffolds. The latest American Society for Testing and 

Materials (ASTM) standards define 3D printing as “a process of joining materials to make 

objects from three-dimensional model data, usually layer upon layer, as opposed to subtractive 

manufacturing methodologies” [5]. The earliest 3D printing technology originated in Japan in the 

1980s [4]. Later in 1993, Massachusetts Institute of Technology (MIT) obtained a patent for 3D 

printing technology. Ordinary printers used in everyday life can print flat items designed by 
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computers. The so-called 3D printers basically have the same working principle, but the printing 

materials are changed into metal, plastic, and ceramics to replace paper and ink. The working 

principles of 3D printing are firstly modeling by computer modeling software, and then 

“partitioning” the built three-dimensional model into a layer-by-layer cross-section, i.e. slicing, 

so as to guide the printer to print layer by layer. Some most common AM techniques include 

selective laser sintering (SLS), stereolithography (SLA), fused deposition modeling (FDM), 

precision extrusion deposition (PED), etc. [6 – 9]. 

With the help of these advanced 3D printing technologies, the fabrication of tailor 

scaffolds such as intervertebral disc is no longer an impossible task. Actually, 3D printing holds 

remarkable promise for tissue engineering (TE) as it can potentially provide a rapid and robust 

approach to assemble functional tissue in vitro. Tissue engineering is the use of a combination 

of cells, engineering and materials methods, and suitable biochemical and physiochemical 

factors to improve or replace biological tissues [10]. Tissue engineering researches mainly focus 

on four aspects: seed cells, biological materials, methods, and techniques for constructing tissues 

and organs, and clinical application of tissue engineering. At present, there are roughly three 

kinds of tissue repair methods commonly used in clinical practice: autologous tissue 

transplantation, allogeneic tissue transplantation, or application of artificial scaffolds. The 

creation of physiological tissue scaffolds involves the development of viable substitutes that 

restore, maintain and improve the function of human tissue. In the success of tissue engineering, 

3D printing scaffolds have played critical roles as extracellular matrices onto which cells can 

attach, grow, and form new tissues. A few most common artificial scaffold materials include 

high polymers (carbon fiber, polyester, Teflon), metal materials (stainless steel, cobalt-based 

alloys, titanium alloys), bio-inert ceramics (Alumina, zinc oxide, silicon carbide), bioactive 

https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Biochemistry
https://en.wikipedia.org/wiki/Biology
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ceramics (bioglass, hydroxyapatite, calcium phosphate), etc. These materials are characterized by 

high mechanical strength (abrasion resistance, fatigue resistance, non-deformation, etc.), 

biological inertness (acid, alkali, anti-aging, non-degradation). But there is a problem with 

reoperation, so then people began to focus on biodegradable and biologically active materials 

such as fibrin gel, collagen gel, polylactic acid, polyalcohol acid and its copolymer, polylactic 

acid and polyhydroxy acid, agarose, chitosan and hyaluronic acid, etc. Currently, most of the 

studied and used tissue scaffold materials are degradable materials or combinations of degraded 

and non-degraded materials [11].  

In addition to the most basic material issues, the design of the disc scaffold also has 

played a critical role to determine the quality of the final product. In the natural world, most of 

the human tissues are anisotropic, complex structures. Heterogeneous inner pore surface is the 

creature of natural selection and evolution. In fact, the authentic tibia, femur, and intervertebral 

disc are all inhomogeneous structures with complicated fracture.  Their micro-architectures 

significantly affect the development and some bio-functions. Ideally, a superior bio-functional 

porous scaffold should have at least following characteristics [25, 138-139]: 

1. Biocompatible and bioresorbable. Cells must adhere and migrate onto the inner 

and outer surfaces to proliferate through the scaffold before laying down new 

matrix. The implanted scaffold must elicit a negligible immune reaction to 

prevent any inflammatory responses or rejections by the body. 

2. Biodegradable with a controllable degradation and resorption rate. The scaffold 

must be biodegradable to allow cells to produce their own extracellular matrix. 

And the by-products of this degradation have to be non-toxic and able to exit the 
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body without interference with other organs. Moreover, the biodegradation is 

generally required to match the rate of new tissue formation; 

3. Suitable surface microtopography and chemistry that promote cell attachment, 

proliferation and differentiation. Surface chemistry as well as surface 

microtopography determine whether protein molecules can absorb and how cells 

attach and align themselves; 

4. Three-dimensional porous structure with an appropriate porosity and an 

interconnected pore network for cell growth, nutrient transport and metabolite 

discharge. Usually, low porosity simulates osteogenesis by suppressing cell 

proliferation and force cell aggregation while high porosity results in greater cell 

ingrowth; 

5. Mechanical properties to match those of surrounding tissue. The mechanical 

properties of the scaffold should be consistent with the anatomical site into which 

it is to be implanted. Some materials with good mechanical properties have the 

detriment of retaining high porosity and insufficient capacity for vascularization.  

From these well-defined characteristics, one of the most important parameters in the manufacture 

of tissue engineering scaffolds is the creation of porous structure inside the scaffold because 

these pores directly affect the growth state of cells. For superior biomedical scaffold, the micro-

architecture should be highly porous with interconnected pores of defined diameters, e.g. 200 – 

900 micrometers as the diameter for bones, and also exhibit high surface area-to-volume ratio to 

allow high rates of mass transfer, cell in-growth, and vascularization [12]. And the internal 

communication pore allows the transport of nutrients and metabolic wastes from outside to the 
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inside of the system. Diverse pore structures also can act as a physiological mechanism to affect 

the movement and metabolism of cells. 

On the other hand, even if we can perfectly master the porous design techniques, 

acquiring the 3D contour model of the IVDs becomes another obstacle of fabricating tailored 

disc scaffold for specific patient. The vertebral column is a complex anatomical construct, 

composed of vertebrae and intervertebral discs supported by ligaments and muscles. Due to the 

special relationship between vertebrae column and IVDs, the automated recognition of IVDs 

becomes hard for implementation. And the difficulties mainly reflected in three aspects [103]:  

1) Multiple modalities. The image resolution, contrast, and appearance for the same 

spine structure could be very different when it is exposed to MR/CT, or T1/T2 

weighted MR images; 

2) High repetition. The appearances of vertebrae and intervertebral discs are highly 

repetitive that mismatching could happen easily; 

3) Various poses. The vertebrae sizes and orientations are highly diverse in 

pathological data that regular detectors such as appearance detectors are 

insufficient to match all vertebrae; 

Furthermore, for some unusual conditions of pathological cases, e.g. the abnormal spine 

curvature and bright visual imaging artifacts caused by metal implants, the difficulties of 

accurate localization and segmentation of IVDs are greatly increased correspondingly. 

In this article, a variety of porous design methods will be discussed in separate chapters. 

Additionally, a few art-of-the-state segmentation approaches based on machine learning will also 

be analyzed to form a complete pipeline of creating superior functional porous IVD scaffolds. 
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Chapter 2 

 

Summary of Existing Porous Design Methods 

 

Various conventional methodologies are available for scaffold fabrications and they are 

generally classified into two major categories: Regular and Irregular Porous Designs [13] (see 

Table 2.1). In this chapter, you will have a more comprehensive understanding of different 

advanced porous design techniques. 

 

Scaffold Type Methods 

Regular porous scaffolds 

CAD-based methods [14-16] 

Image-based methods [17-19] 

Implicit surface modeling [20-25] 

Space-filling curves [26] 

Irregular porous scaffolds 

An optimization method proposed by [27] 

Stochastic methods using Voronoi models [28-29] 

A hybrid Voronoi-spline method [30] 

Methods using volumetric meshes [31] 

 

Table 2.1: Categorization of porous scaffolds design techniques used in tissue engineering. 
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2.1 Regular Porous Structure Design 

The physiological structure of native tissues is inherently heterogeneous and complex. 

Instead of trying to exactly reproduce their internal microarchitecture, literature is mainly focused 

on the creation of simplified models that are functionally equivalent to the tissue to be repaired in 

terms of porosity and mechanical properties. Different elemental units with well-customized 

mechanical and transport properties have been discussed in design of functional porous scaffolds. 

The libraries of unit pore structure are designed based on pixel, voxel, and wireframe mesh. And 

the 3D model is used to be created either using the computer-aided software or image-based 

programs. By aggregating these repetitive base units, various scaffolds with tunable properties and 

architectures could be manufactured. In this section, the details of a group of methodologies for 

regular porous structure design are presented. 

 

2.1.1 CAD-Based Methods 

Most of commercial CAD tools, such as NX (Siemens PLM Software), CATIA (Dassault 

Systèmes), Pro/Engineer (PTC), SolidWorks (Dassault Systèmes) and MIMICS (Materialize 

Gmbh), are supporting complicated model design based on solid or surface modeling systems. 

Constructive solid geometry (CSG) and boundary representation (B-Rep) are two most prevalent 

geometric modeling tools. CSG-based software attempt to produce complex structure by 

combining standard solid primitives (cylinders, spheres or cubes) through regular Boolean 

operations (e.g. intersection). However, B-Rep methods describe the solid based on the 

geometric boundary information like vertices, edges, and loops and without specifying their 

explicit relations. Additionally, a preliminary check is usually required to verify that neither gaps 
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or overlaps exist among the boundaries of targets [14]. Conventionally, B-Rep models require 

more storage space but less computation time than the CSG ones. As the inner architectures of 

objects come to larger and more complicated, their dramatically increasing size also makes it 

much harder for visualization and manipulation. To overcome this limitation, additional solid 

unit cells with more bio-inspired features were introduced by [15-16]. 

  

2.1.2 Image-Based Methods 

Image-based methods prefer to combine image processing and free-form fabrication techniques 

for modeling 3D scaffold geometries. Due to their compatibility with real patient data, the 

image-based methods can quickly create porous architectures by intersecting two 3D binary 

images, among which one depicts the outline of the defect and the other one consisting of a stack 

of binary unit cells. Empirically derived geometries are created in a unit cell with basic 

geometric shapes (cylinders, spheres) to represent regular porous structures. While randomly 

arranged pores can be obtained by the usage of a random number generator to set voxel states. 

Among various image-based methods, the integration of topological optimization algorithms has 

been proved pivotal to obtain smooth superior porous scaffolds [17-18]. Hollister et al. defined 

the craniofacial scaffold’s topology by specifically setting the voxels’ densities within an image 

design cube [18]. In addition, Smith et al. used both image-based design and CAD tools to 

generate a precisely sized and shaped scaffold for osseous tissue via selective laser sintering 

(SLS) [19]. 
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2.1.3 Implicit Surface Modeling Methods 

Implicit surface modeling (ISM) is a highly flexible approach, recently proposed as a 

valid tool for the generation of cellular structures providing a compact representation of 

potentially complex surfaces. ISM methods allow scaffold architectures to be simply described 

using a single mathematical equation, with freedom to introduce different pore shapes and 

architectural features, including pore size and porosity etc. In general, the ISM methods not only 

inherited the advantages of both traditional CSG and image-based methods but also have shown 

more efficient computational capacity for modeling and fabrication of biomedical scaffolds.  

Due to the distinguishing properties of minimal surface in nature, a majority of ISM 

methods that are based on and derived from triply periodic minimal surfaces (TPMS) have 

attracted people’s attention. An early attempt using the TPMS-based method to control tissue 

fabrication was first presented by [20]. Then, a majority of TPMSs, such as Schwartz's Primitive 

Surface (P-surface), Schwartz's Diamond Surface (D-surface), and Schoen's Gyroid Surface (G-

surface), had been proved their efficacy in the high-precision fabrication of biomorphic scaffolds 

[21-23]. Nonetheless, their final products were all limited to simple cubic or cylindrical outer 

shape. Recently, an improved process for constructing a porous inner architecture within an 

arbitrary complex anatomical model was developed and successively optimized by Yoo [24-25], 

which we will spend more time to introduce in the later section. 

 

2.1.4 Space-filling Curves 

Space-filling curves methodology is an improvement of extrusion-based techniques, 

which consist of the extrusion of a micro-diameter polymeric filament terminating with a nozzle 

having an orifice diameter in the hundreds of microns range. The fabrication process involves the 
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deposition of polymeric layers that adhere to each other by heating temperature while retaining 

their shape. This process leads to regular repetition of identical pores. Thus, these geometries 

have been named honeycomb-like patterns [26]. A few complex patterns can be obtained by 

changing the deposition angle between adjacent layers. Moreover, fractal space-filling curves, an 

enhanced version of space-filling curves, can be mathematically generated by starting with a 

simple pattern that grows through recursive rules. 

 

2.2 Irregular Porous Structure Design 

Although regular periodic porous structures have enormous advantages in biomedical 

scaffold modeling such as controllable pore size and porosity etc., however, the main 

disadvantage lies in the difficulty of controlling the shape and distribution of the pores since 

slight modification of the unit cells will have an unexpected impact on the entire structure. 

Furthermore, current CAD tools are not suitable to design the complex scaffolds whose inner 

pore networks are randomized and non-repetitive. In real human tissue with variational porous 

architectures, discontinuities of deposition path planning are often discovered at the interface of 

two adjacent regions [32]. In order to increase the authenticity of generated pores, a few 

mechanical approaches have been proposed and analyzed. Mikos et al. demonstrated a native 

scaffold design technique using salt leaching [33]. Mooney et al. proposed to fabricate porous 

sponges of poly using gas-foaming [34]. Additionally, some other methods, such as thermal 

induced phase separation [35-36], porous ceramics [37], electrospinning [38-39], 

biomineralization [40-41], and phase-separation followed by freeze-drying [42], were also 

suggested for the manufacture of functionally graded scaffolds (FGSs). Recently, Khoda et al. 

proposed a CAD-method method using a micronozzle biomaterial deposition system to connect 
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differently spaced tool paths, which has improved continuity and connectivity between 

functionally graded regions [27]. Besides aforementioned methods, Stochastic and Voronoi 

models also have been used to mimics the randomness of porous structure in natural scaffold. 

Heterogeneous pores distributed according to a given porosity level are generated by stochastic 

methods in scaffold design [28-29]. To overcome the limitation that only simple spheres can be 

used to represent pores, Schaefer et al. introduced a hybrid Voronoi-spline representation 

combined with a random colloid-aggregation model [30]. The proposed method has been 

extended to implement graded porosities and porous distributions [31]. Volumetric mesh 

generators derived from finite element tools are used to create heterogeneous porosity within a 

solid model as well [32]. 

 

2.3 Triply Periodic Minimal Surface 

Among all of the state-of-the-art methodologies mentioned above, triply periodic minimal 

surface (TPMS) has attracted extensive considerations over the past decade due to its inherent 

advantages of geometrical and biological arrangement of pore structure. TPMS has inherited 

several attributes from nature: multi-functionality, mathematical precision, optimized topology for 

mechanical applications, and geometrical, thermal and electrical extremals [43-45]. It is noted that 

some mechanical and transport (electrical, thermal, and fluid) properties are competing in minimal 

surfaces. Not only applied in tissue scaffold manufacturing, TPMS also became a natural choice 

among many scientists working in the areas of mechanical, chemistry, biology etc.  

A minimal surface is a surface that is locally area-minimizing, that is, a small piece has 

the smallest possible area for a surface spanning the boundary of that piece. Soap films are 
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minimal surfaces. The first example of TPMS were the surfaces described by Schwarz in 1865, 

followed by a surface described by his student E. R. Neovius in 1883 [46-47]. Later in 

1970s, Alan Schoen came up with 12 new TPMSs based on skeleton graphs spanning 

crystallographic cells [48-49]. While Schoen's surfaces became popular in natural science the 

construction did not lend itself to a mathematical existence proof and remained largely unknown 

in mathematics, until H. Karcher proved their existence in 1989 [50]. 

The periodic implicit surface uses a single-valued function of three variables. The TPMS 

is the locus of points for which the function has some constant value. A zero-valued surface, 

known as zero set or level set, represents the interface regions of the space lying on or inside and 

outside the space. The zero level sets corresponding to the P, G, D, I-WP, F-RD, L, Tubular P, 

Tubular G, and I2-Y** minimal surfaces can be described, to the first order of approximation, by 

the equations list in Table 2.2 [24]. 

 

TPMS Periodic surface model 

P φ(r) = cos(X) + cos(Y) + cos(Z) = 0 

D φ(r) = cos(X)cos(Y)cos(Z) - sin(X)sin(Y)sin(Z) = 0 

G φ(r) = sin(X)cos(Y) + sin(Z)cos(X) + sin(Y)cos(Z) = 0 

I-WP 

φ(r) = 2[cos(X)cos(Y) + cos(Y)cos(Z) + cos(Z)cos(X)] – [cos(2X) + cos(2Y) + 

cos(2Z)] = 0 

F-RD 

φ(r) = 4cos(X)cos(Y)cos(Z) – [cos(2X)cos(2Y) + cos(2X)cos(2Z) + 

cos(2Y)cos(2Z)] = 0 

https://en.wikipedia.org/wiki/Schwarz_minimal_surface
https://en.wikipedia.org/wiki/Neovius_surface
https://en.wikipedia.org/wiki/Alan_Schoen
https://en.wikipedia.org/wiki/Triply_periodic_minimal_surface#cite_note-13
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L 

φ(r) = 0.5[sin(2X)cos(Y)sin(Z) + sin(2Y)cos(Z)sin(X) + sin(2Z)cos(X)cos(Y)] – 

0.5[cos(2X)cos(2Y) + cos(2Y)cos(2Z) + cos(2Z)cos(2X)] + 0.15 = 0 

Tubular 

P 

φ(r) = 10[cos(X) + cos(Y) + cos(Z)] – 5.1[cos(X)cos(Y) + cos(Y)cos(Z) + 

cos(Z)cos(X)] – 14.6 = 0 

Tubular 

G 

φ(r) = 10[cos(X)sin(Y) + cos(Y)sin(Z) + cos(Z)sin(X)] – 0.5[cos(2X)cos(2Y) + 

cos(2Y)cos(2Z) + cos(2Z)cos(2X)] – 14 = 0 

I2-Y** 

φ(r) = -2[sin(2X)cos(Y)sin(Z) + sin(X)sin(2Y)cos(Z) + cos(X)sin(Y)sin(2Z)] + 

cos(2X)cos(2Y) + cos(2Y)cos(2Z) + cos(2X)cos(2Z) = 0 

 

Table 2.2 [24]: Various types of TPMS approximated with periodic surfaces composed of simple 

trigonometric functions. 

 

TPMSs are built of fundamental units spanning the asymmetric domain in a given 

crystallographic symmetry group. For the TPMS, the domain is taken to be a unit cell of the 

periodically repeating structure. As shown in Figure 2.1 [24], let the surface of interest, Γ, be 

represented by the zero level set of φ. Then Γ divides the unit cell into the two distinct phases. We 

define the region where φ(r) ≤ 0 to be phase 1, and the region where φ(r) ≥ 0 to be phase 2, 

respectively. The surface generation will be accomplished by using the well-known marching cube 

algorithm. Figure 2.2 gives an overview of some common designed architectures in a unit cell 

composed of multiple triangular elements generated from marching cube algorithm. 
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Figure 2.1 [24]: Schematic diagram illustrating a TPMS that divides the unit cell into two phases. 

  

 

a) TPMS P surface 
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b) TPMS D surface 

 

c) TPMS G surface 

 

Figure 2.2: Common TPMS-based unit cell libraries. 

 

Although, scaffold modeling using the TPMS is relatively mature, a few obvious 

challenges still remain unsolved regarding this method. For instance, incomplete surfaces may 

occur when resolutions of surfaces are seriously insufficient. As demonstrated in Figure 2.3, some 

structures from the superficial layer are broken and deformed. This situation becomes even worse 

when the resolution drops further. Additionally, the surface mesh between two adjacent distorted 

hexahedrons may not be smoothly continuous as in regular hexahedrons. Broken and deformed 

porous surfaces mainly exist in superficial part of a model when the continuity of the wrapping 

surface mesh is not guaranteed. To overcome such problems, a few mapping techniques, such as 

solid T-spline [51] and distance field [25] etc., are alternative solutions. 



17 

 

 

Figure 2.3: Porous femur bone scaffold designed by TPMS. From the close-up view, one can see 

broken and deformed structures of the surface layer. 
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Chapter 3 

 

Porous Structure Design Using Parameterized Hexahedral Meshes 

and Triply Periodic Minimal Surfaces 

 

In this chapter, a new heterogeneous methodology of modeling scaffolds with internal 

pore structure using parameterized hexahedral mesh and triply periodic minimal surfaces 

(TPMSs) is proposed to address the problems mentioned in Chapter 2. The algorithm not only 

ensures the consistency and continuity of the generated mesh, but also achieves highly 

homogeneous hexahedral meshes with approximate real pore structure. Moreover, the suggested 

parameterized approach will solve the problems mentioned in Chapter 2 from the following 

aspects: 

1) Generating hexahedral surface meshes for a particular model by calculating 12 

geodesic lines via heat conduction functions; 

2) Mapping between regular hexahedral and transformed hexahedral meshes via tri-

linear interpolation, by which the resulting meshes are guaranteed to be 

continuous on the boundary; 

3) Solving the problem of deformation and protruding ridges by using 

parameterization. 

The proposed method consist of four primary steps: 
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1) Re-meshing an input model into a hexahedral mesh;  

2) Solving parametric expressions of 12 geodesic lines using heat conduction 

models; 

3) Constructing quadrilateral surface meshes, and hexahedral volume meshes with 

harmonic-map;  

4) Generating standard TPMS surfaces within a regular hexahedron using the 

Marching Cube (MC) algorithm and then mapping the generated surface onto the 

parameterized hexahedral mesh using tri-linear interpolation. 

 

3.1 Related Work 

Parameterization, which is intended to build parametric equations for space curves or 

fluid, and to implement the mathematical expression of geometric modeling, is an ideal tool for 

representing physical models. This approach has been widely used in numerous domains 

including geometric analysis [52], texture mapping [53], medical image processing [54-55], etc. 

Satisfying different requirements of the parameterization for complex structure modeling, has 

recently motivated researchers to introduce volumetric parameterization methods based on the 

harmonic mapping theory: 

1) Construction of parameterized volume meshes within a constraint set of boundary 

spline surfaces [52]; 

2) Construction of parameterized hexahedral meshes using identical morphology 

from PolyCube-Map to optimize unit volumes and reduce deformation of 

parameterized volumetric meshes [55-56]; 

3) Using biharmonic volumetric mapping on complex structure to ensure C1 
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continuity of the surface on boundaries [57]; 

4) Proposing the method of fundamental solutions (MFS) and a strategy for 

characteristically alignment of diverse manifolds such as points, lines and planes 

[58]; 

5) Generalizing conformal maps to volumetric meshes [59]; 

6) Construction of layered hexahedral meshes for shell objects using distance field 

and parameterization [60]; 

7) Creating higher order parametric trivariate representations from closed triangle 

meshes with higher genus or bifurcations [61]. 

Some researchers have implemented cross parameterization through standard models:  

1) Generating patient-specific hexahedral meshes of facial soft tissue models based 

on a volumetric cross-parameterization mapping from a standard hexahedral mesh 

to the individual model [62];  

2) Parameterization of the cortical surface defined via a harmonic mapping of each 

hemi-sphere surface to a rectangular planar domain that integrates a 

representation of the model [54];  

3) Customizing 3D garment models via transferring garment models initially based 

on a human reference model onto a target model [63]. 

 

3.1.1 Field Function 

With a given piecewise linear manifold 𝑀 = (𝑉, 𝐹) where V and F are sets of vertices 

and faces of M, respectively. And each vertex i is assigned a position 𝑥𝑖 ∈ 𝑅3 in a 3D Euclidean 

space. If we can construct a scalar field 𝑢: 𝑉 → 𝑅3 over the vertices of M, then the orthogonal 
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vector field 𝐺⊥: 𝐹 → 𝑅3 can be derived in consequence. [65] 

Here we are interested in constructing a harmonic function which satisfies the Laplace 

equation ∆𝑢 = 0 subject to Dirichlet boundary conditions that vertices in the set 𝐶 ⊂ 𝑉 of 

constrained vertices take on the prescribed values. That can be described as 

{
∆𝑢 = 0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡: 𝑢|𝑐 = 𝜑
                                     (3.1.1) 

where 𝜑 is the constraint function defined on C. 

 On a triangulated manifold, the discrete Laplace-Beltrami operator [140, 141] can be 

described as 

∆𝑢𝑖 = ∑
𝜔𝑖𝑗(𝑢𝑗−𝑢𝑖)

𝐴𝑖
𝑗∈𝑁𝑖

                                (3.1.2) 

where Ni is the set of adjacent vertices to vertex i and 𝜔𝑖𝑗 is a scalar weight assigned to the directed 

edge (i, j) such that ∑ 𝜔𝑖𝑗𝑗∈𝑁𝑖
= 1. More specifically, 𝜔𝑖𝑗 = −0.5 × (cot(𝛼𝑖𝑗) + cot(𝛽𝑖𝑗)) is the 

weight assigned to the directed edge 𝑒𝑖𝑗 where 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are two diagonals connected by edge 

𝑒𝑖𝑗. Additionally, Ai indicates 
1

3
 of the total areas of the triangles meeting at vertex i. 

 Therefore, by solving the Equation (3.1.2), the values of u can be obtained for all the 

vertices on the manifold. Then, the gradient vector for each triangle on the manifold is computed 

through Equation (3.1.3). 

∆𝑢 = ∑
𝑢𝑖(𝑛×𝑒𝑖)

2𝐴𝑓

2
𝑖=0                                         (3.1.3) 

where ei is the ith edge of triangle f, ui indicates the parameter of opposite vertex of edge ei, and Af 

represents the area of triangle f. Finally, the orthogonal vector 𝐺⊥ could be derived as 𝑛 × 𝐺. 
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3.1.2 Solving Geodesic Lines Using Heat Conduction Model 

 Heat conduction equations are used to describe the temperature changes over time in a 

certain region. In Euclidean space, temperature u = u (t, x, y, z) is a function of time variable t and 

space variables (x, y, z). Suppose that there is a heat source S in the region M (S ⊂ M), constrained 

by the first boundary condition, the problem of solving field function with S can be expressed as: 

{
𝑢′ = ∆𝑢

𝑠𝑢𝑏𝑗𝑒𝑐𝑡: 𝑢|𝑆 = 𝜑
                                  (3.1.4) 

where 𝜑 = 𝑢0 is the initial state when t = 0. 

For a given time t, there is a corresponding function ut such that the discrete time domain 

function can be written as: 

(𝐸 − 𝑡∆) ∙ 𝑢𝑡 = 𝑢0                                  (3.1.5) 

where E is an identity matrix, and ∆ represents either the discrete Laplace or the Laplace-Beltrami 

operators. 

If a space discrete operator such as the operator from Equation (3.1.2) is applied to a 

triangulated mesh, then by plugging Equation (3.1.2) into Equation (3.1.5) we will have: 

𝐸 − 𝑡∑
𝜔𝑖𝑗(𝑢𝑗−𝑢𝑖)

𝐴𝑖
=𝑗∈𝑁𝑖
𝐴𝑖 − 𝑡 ∑ 𝜔𝑖𝑗(𝑢𝑗 − 𝑢𝑖) =𝑗∈𝑁𝑖

{
0, 𝑖 ∈ 𝑀\𝑆
1, 𝑖 ∈ 𝑆

          (3.1.6) 

where the value of equation equals 0 when i is not on the boundary S; Otherwise, the equation 

equals 1. When t is given, the corresponding node parameter u will be solved by Equation (3.1.4). 
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3.2 Method Description 

Based on the idea of combing parameterized hexahedral mesh and TPMS, the proposed 

method firstly takes a set of triangulated meshes as input to construct initial hexahedron. 

Secondly, it parameterizes surface and volumetric meshes, and eventually projects the regular 

TPMS porous surface onto the parameterized hexahedral mesh. The whole process is defined in 

Figure 3.1. 

 

Figure 3.1: The framework of the proposed approach. 

 

 Four essential procedures of the suggested approach in addition to their specific operations 

are illustrated in Figure 3.1 as follows: 

1) Construction of initial hexahedron: 
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Eight vertices of the input triangulated meshes are selected to construct 12 Geodesic 

lines. The 12 edges are solved using single-source heat conduction model. 

2) Surface meshing: 

Assume that different pairs of opposite faces are chosen as poles of the double-pore 

magnetic field system, then the iso-parametric lines are constructed. The parameterized 

surface can be obtained by solving the Laplace’s equation of the vertices on the 

constraint surfaces. 

3) Volume meshing: 

Constrained by the parameterized surface meshes from Step 2), the inner vertices of 

the volume can be solved via the method of energy minimization. 

4) Reconstruction of hexahedral porous surface: 

Regular TPMS surface is generated based on the well-known MC algorithm. Then, the 

generated surface is projected onto the parameterized volumetric mesh using the 

method of tri-linear interpolation. 

 

3.2.1 Construction of Hexahedral Edges 

 It is known that the shortest distance between any two points on a triangular mesh, is the 

straight path through the two points along the surface, however, the efficiency of finding the 

shortest path is restricted by the complexity of surface shape. The time complexity of finding the 

shortest path on surface of a complicated model can be as large as O(nn). This method aims to 
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solve this problem by a practical mathematical method such as the single-source heat conduction 

model. 

 Given a heat source in a thermal field, the geodesic lines between any point in the field 

and the heat source could be measured [64]. In a cube, each vertex is connected with its three 

neighboring vertices and each pair of vertices constitutes an edge of the cube. Therefore, we are 

able to construct three edges for each heat source point. The twelve geodesic curves will be 

drawn out by choosing four different heat sources, and the corresponding thermal field could be 

constructed as well. Table 3.1 lists relationships between the heat sources and the targets which 

are labeled in Figure 3.2. 

 

Figure 3.2: The cube of labeled vertices and edges. 

 

Src. Dest. Reversed Edge 

0 

1 Y 0 

3 N 3 

4 Y 8 
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2 

1 N 1 

3 Y 2 

4 Y 10 

5 

1 N 9 

4 N 4 

6 Y 5 

7 

3 N 11 

4 Y 7 

6 N 6 

 

Table 3.1: The relationships between heat sources and their neighboring vertices along with 

directions of geodesic lines. 

  

3.2.2 Construction of Hexahedral Faces 

A set of numbering rules which is demonstrated in Table 3.2 specifies how four 

surrounding edges construct a hexahedral face. 

Face No. Edge No. (R represents an edge with reversed direction) 

0 0-1-2-3 

1 4-5-6-7 

2 0-9-4(R)-8(R) 
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3 1-10-5(R)-9(R) 

4 2-11-6(R)-10(R) 

5 3-8-7(R)-11(R) 

 

Table 3.2: Numbering rules for hexahedral faces. 

 

To collect the information regarding a plane, we can choose a seed point on the plane and 

increase searching area by adding nearby points to the seed point. Two alternative searching 

algorithms which could be used in this algorithm are listed the two following subsections. 

 

3.2.2.1 In-plane Based Seed Searching Algorithm 

To search the local area near a vertex, all in-plane points are restricted to the area 

constrained by the three edges that are connected to the vertex. For example, in Figure 3.3 (a) v0 

is a vertex on plane f0, and all points inside f0 are residing in the area constrained by edges e0 and 

e3. As a result, all in-plane points from neighbor triangles could be found by using the approach 

of in-plane based seed searching. 

              

(a)                                                                (b) 
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Figure 3.3: The in-plane based seed searching algorithm. 

 

In Figure 3.3 (b), as an example of searching in-plane points of plane f0(v0, v1, v2, v3) at 

vertex v0, suppose 𝑒𝑖 ∙ 𝑣𝑗  and 𝑒𝑖 ∙ 𝑡𝑗 represent the i th vertex forming edge ei and the triangle 

where the point locates on, respectively. The searching algorithm is explained as follows:  

1) Search v0’s first-order neighbor vertices Pi and its first-order neighbor triangles Ti 

where i = 0, 1, ..., m where m is the number of neighboring triangles. Also, sort Pi 

and Ti along direction DT; 

2) If 𝑒8 ∙ 𝑡0 is the same as Ti, then continue to Step 3). Otherwise, move back to Step 

1) to search the next vertex; 

3) Search seed point among the first-order neighboring points along direction DT 

starting from point Pi. Firstly, connect points 𝑒0 ∙ 𝑣0 and 𝑒0 ∙ 𝑣1, also, connect 

points 𝑒3 ∙ 𝑣0 and 𝑒3 ∙ 𝑣1. Secondly, find the intersection point between line 

segment PiPi+1 and the two segments above, separately. If only one intersection 

point is found from the three line segments, then the intersection point must lie on 

segment PiPi+1, which means it is located between points Pi and Pi+1. Therefore, 

report Pi+1 as the seed point; If not, move back to Step 1) to search the next 

vertex. 

As it is shown in Figure 3.3 (b), we could find ∆𝑣0𝑃2𝑃3 in Step 2, and next start from P3 

to search P4, P5, . . . counterclockwise. Because segment P4P5 is intersected with edge e0 but not 

edge e3, the intersection point must lie on segment P4P5 and P5 is an in-plane point of the area 

which is constrained by edges e0 and e3. 
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3.2.2.2 In-plane Growing Searching Algorithm 

If the boundary of a surface and a point on or inside the surface are given simultaneously, 

the other points on that surface could be traversed through the growing algorithm. Suppose e is 

the boundary of the surface, and the seed and current points are shown by ptSeed and ptCur, 

respectively. Also, suppose the set C indicates an empty set used to accommodate all points to be 

visited, then the growing algorithm can be demonstrated using following steps: 

1) Push ptSeed into the stack and coerce it into the set C at the same time; 

2) Pop out the top point from the stack and refer ptCur to it. Next, search the 

adjoining points to ptCur, and for every adjacent point Pi to ptCur check if it 

resides inside the surface. Then, connect ptCur and Pi, and find the intersection 

point for each edge of e. If no intersection point is found, then push Pi into stack 

and include it into the set C simultaneously; 

3) Move back to Step 2) and continue until the stack is empty. 

 

3.2.3 Surface Meshing 

To reconstruct the iso-parametric quadrilaterals on the surface, iso-parametric curves 

between each pair of opposite faces must be solved at first. Constrained by the pair of opposite 

planes, the projection would be implemented by using Laplace’s equation to solve the gradient 

field G and its orthogonal gradient field G⊥. We can assume that the iso-parametric lines 

between left and right, front and back, and up and down planes lie on U-axis, V-axis and W-axis, 

respectively; and the density of the mesh is nu × nv × nw. As it is illustrated in Figure 3.2, suppose 

the up face f0 indicates a set of minimal points (w = 0) and the down face f1 indicates a set of 
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maximal points (w = 1). Solving function ∆w = 0 can provide G and G⊥, and the iso-parametric 

lines along W-axis would be drawn by following the gradient lines along the direction of G⊥ 

[65]. Similarly, the iso-parametric lines along U and V axes could be acquired by solving ∆u = 0 

and ∆v = 0, separately. 

The intersection points of lines along U, V, W axes are the vertices of quadrilateral 

meshes, however, the superabundant lines along U, V, W would lead to a low efficiency in 

calculation. To avoid this problem, the proposed approach has adopted a simplified method of 

evenly offset interception to get homogeneous mesh nodes. Using the iso-parametric lines along 

W-axis as an example: 

1) Divide an arbitrary iso-parametric line Wi into four segments, which are labeled 

with W1
i, W2

i, W3
i and W4

i accordingly, by intersecting with the four edges e8, e9, 

e10 and e11, separately; 

2) Divide W1
i and W3

i evenly into nu slices and divide W2
i and W4

i evenly into nv 

slices, simultaneously. The equalization points would be the mesh nodes as 

demanded. 

It is necessary to say that the output mesh has to be consistent with the directions of U, V 

and W axes. 

 

3.2.4 Volume Meshing 

To generate the parameterized mesh with minimal energy, Equation (3.2.1) is used to 

construct Laplace’s equation [66] as below: 
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𝐸 = ∑ (||∆𝑢𝑖 − 𝑢𝑖|| + ||∆𝑣𝑖 − 𝑣𝑖|| + ||∆𝑤𝑖 − 𝑤𝑖||)𝑖∈𝑉                        (3.2.1) 

where V is the set of points of the volumetric mesh. Then Equation (3.2.1) can be resolved into: 

𝐸(𝑖, 𝑗, 𝑘) = ∑ 𝜔ℎ ||𝑣𝑖𝑗𝑘 − 𝑣𝑖𝑗𝑘
ℎ ||ℎ∈𝑁𝑖𝑗𝑘

                                                  (3.2.2) 

where 𝑣𝑖𝑗𝑘
ℎ  is a neighbor point of 𝑣𝑖𝑗𝑘, and 𝑁𝑖𝑗𝑘is the neighboring area of h, and 𝜔ℎ is the weight 

of point 𝑣𝑖𝑗𝑘
ℎ . By setting 𝜔ℎ to 1/6 as a constant in Equation (3.2.2), the equation can be further 

decomposed into [67]: 

𝑣𝑖,𝑗,𝑘 =
(𝑣𝑖−1,𝑗,𝑘+𝑣𝑖+1,𝑗,𝑘+𝑣𝑖,𝑗−1,𝑘+𝑣𝑖,𝑗+1,𝑘+𝑣𝑖,𝑗,𝑘−1+𝑣𝑖,𝑗,𝑘+1)

6
                                (3.2.3) 

 Constrained by the point set of quadrilateral meshes on the surface, all points 𝑣𝑖,𝑗,𝑘 ∈ 𝑉 →

𝑅3 can be solved through Equation (3.2.3). 

  

3.2.5 Reconstruction of Hexahedral Parameterized TPMS Surface 

Simple patterns can be projected onto surfaces of volumes using the parametric mapping 

technique. Similarly, a regular quadrilateral or a hexahedral mesh can be transformed into a 

distorted quadrilateral or a hexahedron in the same way. As it is shown in Figure 3.4, mapping 

relationship between two meshes can be described as: 

𝑓(𝑥, 𝑦)
𝐿
→ 𝑔(𝑢, 𝑣)                                           (3.2.4) 

where f(x, y) and g(u, v) are functions for regular and distorted meshes, respectively, and L is the 

topological mapping function in term of discrete Laplace’s equation. 
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Figure 3.4: Parametric mapping. 

 

3.2.5.1 Generation of Standard Periodic TPMSs 

Based on the TPMS algorithm described in Chapter 2, we could take any 3D model as 

input and partition its corresponding bounding box into a matrix of small cubes. The resolution 

for the matrix is defined as nu × nv × nw. And the surface type can be chosen from P, D, G, and I-

WP. Accordingly, for each of the small cubes, a TPMS iso-surface is generated using the 

marching cube algorithm. And then all of these small surface patches consist a pore network 

which is used as the base model to construct hexahedral porous surface. More details of the 

TPMS surface generation could refer to Section 2.3. 

 

3.2.5.2 Pores’ Mapping Relationship Between Regular TPMS and Parameterized Meshes 

 Parameterized hexahedral meshes are distorted meshes. Although, not all of space 

quadrilaterals can be guaranteed to be a planar quadrilateral, we do know that the two adjacent 

hexahedrons share a common quadrilateral so that the surface on the two hexahedrons should be 

seamless and continuous. To construct a distorted hexahedron which consists of a certain number 
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of nonplanar space quadrilaterals, the method of tri-linear interpolation [68] may be employed to 

map vertices from the regular to the distorted hexahedron. Since both tri-linear interpolation 

function and the point-by-point mapping function are continuous, the transformed pores’ 

structure can be guaranteed to be continuous. 

 In mathematical language, this problem can be translated into that for an arbitrary point 

𝑣𝑖𝑗𝑘
0  on the regular hexahedron V0, suppose the transformed hexahedron is V1 and the mapping 

function Φ is a function of trilinear interpolation, we need to find the projected point 𝑣𝑖𝑗𝑘
1  of 𝑣𝑖𝑗𝑘

0  

on V 1. Combining with Figure 3.2 and Figure 3.5, we can find the solution through following 

steps: 

1) Apply bilinear interpolation to f0 on the U-axis,  

_𝑣0 = 𝑣0 + (𝑣1 − 𝑣0) × 𝑣𝑖𝑗𝑘
0 ∙ 𝑥                                          (3.2.5) 

_𝑣1 = 𝑣3 + (𝑣2 − 𝑣3) × 𝑣𝑖𝑗𝑘
0 ∙ 𝑥                                          (3.2.6) 

Then interpolate points _v0 and _v1 along V-axis, 

_𝑣2 = _𝑣0 + (_𝑣1 − _𝑣0) × 𝑣𝑖𝑗𝑘
0 ∙ 𝑦                                     (3.2.7) 

2) Similarly, apply the bilinear interpolation to f1 to obtain points _v3, _v4 and 

_v5.  

3) Interpolate points v2 and v5 along W-axis, 

_𝑣6 = _𝑣2 + (_𝑣5 − _𝑣2) × 𝑣𝑖𝑗𝑘
0 ∙ 𝑧                                     (3.2.8) 

eventually point v6 is the desired point 𝑣𝑖𝑗𝑘
1 . 
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Figure 3.5: Tri-linear interpolation. 

 

3.3 Experimental Results 

All experiments are processed on an Intel Core i3 3.4 GHz desktop with 8GB of memory 

and Windows 10 OS. And the proposed method was implemented on a VS2008 + OpenGL 

platform, and the displayed models were enhanced using MeshLab. The 3D femur model (the 

same one as used in Chapter 2) is reused to demonstrate some experimental results. TPMS P 

surface is selected as the base type to construct porous surface. And two different resolutions (5 

× 7 × 20 and 5 × 10 × 60) are chosen to render the outputs. Figure 3.6 demonstrates the 

hexahedral boundaries and the distribution of extracted in-plane points. Figure 3.7 shows the 

process of generating parameterized hexahedral mesh in steps (a) to (g). Figure 3.8 gives the 

generate porous TMPS femur scaffolds using hexahedral parameterized surface. Moreover, 

Figures 3.9 and 3.10 display different stages of simulating porous molecule model and dog bone 

with inner porous structure, respectively. Table 3.3 summarizes the statistics of running time for 

different experiments. 
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Surface Type 

Resolution 

5 × 7 × 20 5 × 10 × 60 

MC / IO nV / nT MC / IO nV / nT 

P Surface 

0.25s / 

3.00s 

1047800 / 

2077000 

1.20s / 

13.10s 

4492400 / 

8925200 

D Surface 

0.39s / 

4.90s 

1674500 / 

3327720 

1.70s / 

21.55s 

7181000 / 

14306750 

G Surface 

0.38s / 

3.83s 

1321700 / 

2621984 

1.61s / 

16.76s 

5669000 / 

11272900 

I-WP Surface 

0.40s / 

4.05s 

1383800 / 

2751528 

1.72s / 

17.56s 

5932400 / 

11823100 

Geodesic Line (×12) 0.285s 

U, V, W Iso-parametric 

Lines 

0.03s×0.04s×0.06s 

Volumetric Mesh 0.03s 0.11s 

 

Table 3.3: Run-time for each experimental node. 
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(a) Original mesh 

 

(b) 12 Geodesic lines 

 

(c) Extraction of in-plane points 

 

Figure 3.6: Results of extractions of Geodesic lines and in-plane points. 

 

 

(a) W-axis-oriented iso-parametric lines (5 × 7 × 20) 

 

(b) W-axis-oriented iso-parametric lines (5 × 10 × 60) 
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(c) Cross planes on the W-axis (5 × 7 × 20) 

 

(d) Cross planes on the W-axis (5 × 10 × 60) 

 

(e) Hexahedral surface mesh (5 × 7 × 20) 

 

(f) Hexahedral surface mesh (5 × 10 × 60) 



38 

 

             

(g) Lager views of (e) and (h) respectively 

 

Figure 3.7: Process of parameterization of femur bone. 

 

 

(a) Parameterized TPMS P surface mesh (5 × 7 × 20) 

 

(b) Parameterized TPMS P surface mesh (5 × 10 × 60) 
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(c) Larger views of (a) and (b) respectively 

 

Figure 3.8: Parameterized hexahedral surface imbedded with TPMS P porous inner structure. 

 

 

(a) Original mesh 
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(b) 12 Geodesic lines 

 

(c) Extraction of in-plane points 

 

Figure 3.9: Effects of generation of parameterized molecule model. 

 

 

(a) Original mesh 
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(b) 12 Geodesic lines 

 

(c) Extraction of in-plane points 

 

Figure 3.10: Effects of generation of parameterized dog bone. 

 

From above-mentioned experiments, the 12 Geodesic lines are obtained by solving the 

point heat source function for four times; the iso-parametric lines along U, V and W axes are 

obtained via executing three times of local facial heat source function; and volumetric mesh is 

obtained by solving all points from the hexahedron once. Among which, the time complexity for 

solving Geodesic lines and iso-parametric lines are related to the number of input triangular 

mesh and the time complexity for solving the volumetric mesh is based on the resolution of 

hexahedral mesh (nu × nv × nw). On the other hand, the memory consumption is related to the 

grid’s scale and the major consumption belongs to the following three aspects: 

1) Number of triangles in the pore network  
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The memory of storing points and triangles of the porous network in scale of nV 

/nT are nV × 3 × 8 bytes and nT × 3 × 4 respectively. As it is shown in Table 3.3, 

the generated D Surface with 5 × 10 × 60 resolution would consume 344 MB of 

memory (7181000 × 3 × 8 + 14306750 × 3 × 4 bytes). 

2) Size of volumetric computing matrix  

For a volumetric mesh with nu × nv × nw scale, the size of Laplace matrix would 

be nu · nv · nw × nu · nv · nw. However, if we express the matrix in the format of 

sparse matrices and suppose there are six contiguous triangles connected to each 

triangle, then the size will decrease to nu · nv · nw × 6. Apparently, the larger 

matrices consume more memory space. For a hexahedral mesh with 5 × 7 × 20 

resolution, the required memory to store the density matrix is 3.92 MB while the 

memory needed for the sparse matrix is only 9.6 KB. 

3) Data capacity of volumetric mesh  

For a volumetric mesh with nu × nv × nw resolution, the storage needed for all the 

points in the mesh is (nu + 1) × (nv + 1) × (nw + 1) bytes. Consequently, the 

desired memory for the meshes with 5 × 7 × 20 and 5 × 10 × 60 resolutions are 

24.192 KB and 96.624 KB, respectively. 

 

3.4 Summary 

In the present chapter, we proposed a heterogeneous methodology of modeling scaffolds 

with internal pore structure using parameterized hexahedral mesh and TPMS. It solved the 

integrity and continuity problem of regular TPMS surface in two steps: 1) Firstly, generating 
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hexahedral surface meshes for a particular model by calculating 12 geodesic lines via heat 

conduction functions; 2) Secondly, mapping between regular hexahedral and transformed 

hexahedral meshes via tri-linear interpolation, by which the resulting meshes are guaranteed to 

be continuous on the boundary. The algorithm not only ensures the consistency and continuity of 

the generated mesh, but also achieves highly homogeneous hexahedral meshes with approximate 

real pore structure. Moreover, it’s relatively simple for implementation. Even if this method has 

so many advantages, nonetheless, it still has a deficiency that can’t be ignored, that is, it can only 

be used for hexahedral modeling. 
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Chapter 4 

 

Porous Structure Design Using Tetrahedral Implicit Surfaces 

 

In Chapter 3, the parameterized method deformed the triangular mesh into distorted 

hexahedral mesh and then mapped the regular TPMS surface onto the parameterized mesh. 

Although it is a viable solution to solve the discontinuity and integrality problems for some 

complex shapes. Nonetheless, it remains the limitation of only applying to hexahedral models. 

That TPMS must be constructed based on hexahedral meshes doesn’t mean hexahedron is the only 

and optimal basic unit of modeling porous architectures. Actually, it would save us a lot of time 

and unnecessary work if we can skip the hexahedral mesh generation and model it directly on the 

tetrahedron. Since most of 3D modeling are using triangular mesh and the fact that it’s much 

simpler to re-mesh a triangular mesh into a tetrahedral mesh rather than a hexahedral mesh, it 

would be more efficient to design porous scaffold based on tetrahedrons. Meanwhile, a variety of 

open-source tetrahedralization tools, such as TetGen [69], are easy to use and free to download 

from the internet. 

In this chapter, we introduce a new approach using tetrahedral implicit surface (TIS) to 

construct porous structures. The framework of our proposed porous scaffold design method is 

shown in Figure 4.1. Firstly, we reconstruct the 3D model (spatial triangular mesh) of the damaged 

tissue from the scanned biomedical images and the model is partitioned into a number of small 

tetrahedrons, followed by a mesh smoothing process to improve the equality of the generated 
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tetrahedral mesh. Then, a specific surface type is selected from the TIS library to fabricate pore 

structure for each tetrahedron individually. In the meantime, numerous small patches of TIS 

surfaces comsist of an inner-connected pore network. Lastly, the final product is produced by the 

intersection of the original tissue surface and the smoothed inner-connected porous mesh. 

 

Figure 4.1: The framework of the proposed TIS method. 

 

4.1 Tetrahedral Meshing and Smoothing 

Tetrahedral mesh generation is a very critical step in this algorithm because the quality of 

the tetrahedral meshing directly affects the surface quality of the generated biomedical scaffold. 

Some efforts have been contributed by researchers to figure out the most efficient tetrahedral mesh 

generation algorithms. Overall, the related work can be classified by Delaunary-based, advancing-

front-based, and octree-based methods [70]. The Delaunary-based methods usually distribute a set 

of vertices in the domain and then triangulated by Delaunary triangulation [71]. Miller et al. 

presented a sphere-packing method for Delaunary-based mesh generation [72]. Chew proposed an 

algorithm that produces constant density meshes by adding points in a randomized manner to 

eliminate slivers [73]. Alliez et al. attempted to generate isotropic tetrahedral meshes mixed with 
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a constrained relaxation on the boundary [74]. Advancing front-based methods insert new Steiner 

points inside a given domain to generate tetrahedrons with acceptable shapes and sizes [75]. The 

disadvantage of advancing front-based techniques lies at front-merging which used to occur near 

the high curvature regions of the boundary [76]. Octree-based approaches subdivide the domain 

enclosing the given mesh recursively until certain stopping criterion is reached. Fuchs proposed a 

meshing method based on the body-centered cubic lattice and obtained high quality tetrahedrons 

[77]. Ito et al. created an octree-based mesh generator to fabricate volumetric mesh from 

triangulated surface without sharp features [78]. An example of octree topology is given in Figure 

4.2. 

 

Figure 4.2: An octree topology. 

. 

Too small and too large dihedral angles both will lead to sharp edges and surface 

deformation. To reduce the computational time, the number of tetrahedral elements should be as 

small as possible while important geometric features should be faithfully retained. While taking 

these factors into account, we adopted a tetrahedral mesh generation algorithm based on the body 

centered cubic (BCC) tetrahedral lattice [76], followed by a quality tetrahedral mesh smoothing 



47 

 

via boundary-optimized Delaunay triangulation (B-ODT) [79-80]. The algorithm is illustrated in 

following steps: 

1) Construct and subdivide the octree of the input 3D mesh based on Euclidean distance 

transformation; 

2) Compute the sign of each node in the BCC lattice, and then calculate and snap the 

intersecting points where the edge crosses the input surface mesh; 

3) Decompose the boundary polyhedra into tetrahedra; 

4) The tetrahedral meshes are smoothed using the B-ODT approach.  

Fig. 4.3 (a) shows the tetrahedral mesh of the 3D femur model obtained through the 

tetrahedral meshing and smoothing. Fig. 4.3 (b) shows the cross-section of the tetrahedralized 

femur model. 

 

a) Tetrahedral meshing on the femur model 
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b) Cross-section of the tetrahedralized femur model 

Figure 4.3: Tetrahedral meshing on 3D femur model. 

 

4.2 Method Description 

4.2.1 Mathematical Description of Tetrahedral Implicit Surface 

In mathematics, a minimal surface is a surface with the mean curvature of zero that locally 

minimizes its area overall. The well-known Weierstrass’s method describes a global 

parametrization of minimal surface by [81] 

x = Re∫ (1 − 𝜔′2)𝑅(𝜔′)𝑑𝜔′

𝜔

 

                                        y = Re∫ 𝑖(1 − 𝜔′2)𝑅(𝜔′)𝑑𝜔′
𝜔

                    (4.2.1) 

z = Re∫ 2𝑅(𝜔′)𝑑𝜔′

𝜔

 

By evaluating the integrals of the real part (Re) of the Weierstrass’s function, the Equation 

(4.2.1) can be simplified as: 

                                Φ(r) = ∑ 𝐴𝑘 cos[2𝜋𝑘 ∙ 𝑟 − 𝛼(𝑘)]𝐾
𝑘=1 = 𝐶             (4.2.2) 
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where k are the reciprocal lattice vectors, α(k) is a phase shift, and Ak is an amplitude to a given 

k-vector. The equations of TPMS (see Table 2.1) are actually derived from Equation (4.2.2). For 

more details of TPMSs, you can refer to Section 2.3. 

TPMS is characterized as a minimal surface which is periodic in three perpendicular 

directions. Obviously, the same manner does not apply to the generation of periodic surfaces in a 

tetrahedron. Our goal is to make the surface periodic in certain particular directions, such as the 

vertical direction of each of the four faces of a tetrahedron. Here, we introduce a new coordinates 

system using point-to-plane distances. In this system, there are four axes, corresponding to the 

vertical directions of four faces of the tetrahedron. The coordinate of an arbitrary point inside the 

tetrahedron on a certain axis is determined by the ratio of the distance from the point to the 

corresponding face divided by the corresponding height of the tetrahedron. As shown in Figure 

4.4, the coordinates of point P, (a, b, g s), can be calculated by: 

                                  𝑃𝛼 =
𝑑𝛼

ℎ𝛼
× 2𝜋 × 𝜆𝛼 

𝑃𝛽 =
𝑑𝛽

ℎ𝛽
× 2𝜋 × 𝜆𝛽                                      (4.2.3) 

                                  𝑃𝛾 =
𝑑𝛾

ℎ𝛾
× 2𝜋 × 𝜆𝛾 

                                  𝑃𝛿 =
𝑑𝛿

ℎ𝛿
× 2𝜋 × 𝜆𝛿  

in which dα, dβ, dγ, and dδ denote the projection distances from point P to plane BCD, ACD, 

ABD, and ABC, respectively, and hα, hβ, hγ, hδ are the height of the tetrahedron corresponding to 

each plane. The parameter λi(i = α, β, γ, δ) determines the periodicity of its corresponding 

direction. 
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Figure 4.4: The new coordinates system using scaled point-to-plane distances. 

 

To mimic similar properties of TPMS, we adopt the mathematical expressions of the 

TPMSs on each periodic component and derive the following TIS equations: 

∅𝑃(𝑟) = cos(𝛼) + cos(𝛽) + cos(𝛾) + cos(𝛿) + cos(𝛼) cos(𝛽) cos(𝛾) cos(𝛿) = 𝐶 

∅𝐷(𝑟) = sin(𝛼) cos(𝛽) cos(𝛾) cos(𝛿) + cos(𝛼) sin(𝛽) cos(𝛾) cos(𝛿)

+ cos(𝛼) cos(𝛽) sin(𝛾) cos(𝛿) + cos(𝛼) cos(𝛽) cos(𝛾) sin(𝛿)

+ cos(𝛼) cos(𝛽) cos(𝛾) cos(𝛿) = 𝐶 

∅𝐺(𝑟) = cos(𝛼) sin(𝛽) + cos(𝛽) sin(𝛾) + cos(𝛾) sin(𝛿) + cos(𝛿) sin(𝛼) +

cos(𝛼) cos(𝛽) cos(𝛾) cos(𝛿) = 𝐶                 (4.2.4) 

It is worth noting that these TIS surfaces are expressed by implicit functions with a 

constant threshold C. With a proper threshold given, the TIS surface mesh can be generated as an 

iso-surface by using the Marching Cubes algorithm, which is one of the most famous approaches 

to extracting iso-surfaces from a three-dimension data field.  
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4.2.2 Continuity Analysis of Tetrahedral Implicit Surface 

As we discussed in Section 2.3, TPMS couldn’t produce a porous structure fitting any 

irregular complex shape unless some mapping techniques, such as the distance field [25], T-spline 

[51], or hexahedral parameterization [82], is integrated. Unlike TPMS, a significant advantage of 

the proposed tetrahedral implicit surface method is that it can generate surfaces with same 

morphological features inside the tetrahedron of any shape. When multiple tetrahedra are 

considered, which is almost always true in modeling real-world shapes, the surfaces between 

neighboring tetrahedrons must be seamlessly connected at the joint. Otherwise, it may cause holes 

or gaps in the resulting surfaces. In this section, a mathematical geometry proof is provided to 

validate the C0 continuity of TIS between two adjacent tetrahedrons. 

 

Figure 4.5: Proof of continuity property between adjacent tetrahedrons. 

 

As shown in Figure 4.5, ABCE and ADCE are two adjacent tetrahedrons of arbitrary shapes 

that share the triangular face ACE. F is an arbitrary point on the face ACE. I and J are the 
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perpendicular projections of the point F onto the two faces BCE and DCE, respectively. Similarly, 

H and K are the projections of the point A onto the two faces BCE and DCE, respectively. 

                                     ∵ FI ⊥ BCE and AH ⊥ BCE 

                                                        ∴ FI || AH 

                                                   ∴ ΔGFI ∼ ΔGAH  

so we get: r1 =
𝐺𝐹

𝐺𝐴
=

𝐺𝐼

𝐺𝐻
=

𝐹𝐼

𝐴𝐻
                      (4.3.1) 

The same holds for tetrahedron ACDE and we have: 

 r2 =
𝐺𝐹

𝐺𝐴
=

𝐺𝐽

𝐺𝐾
=

𝐹𝐽

𝐴𝐾
                                      (4.3.2) 

Combine Equation (4.2.5) and Equation (4.2.6), then: 

r = r1 = r2 =
𝐺𝐹

𝐺𝐴
=

𝐹𝐼

𝐴𝐻
=

𝐹𝐽

𝐴𝐾
                       (4.3.3) 

In tetrahedron ABCE, 
𝐹𝐼

𝐴𝐻
∙ 2𝜋 and  

𝐹𝐽

𝐴𝐾
∙ 2𝜋 is the coordinate of point F with respect to the 

faces BCE and CDE, respectively. Similarly, we can conclude that the other two coordinates of 

point F in tetrahedron ABCE with respect to faces ABC and ABE are the same as those of point F 

to faces ADC and ADE in tetrahedron ADCE. Meanwhile, the coordinate of F to face ACE equals 

to 0 in both tetrahedrons ABCE and ADCE, which means the four coordinates of point F are exactly 

the same in both of the two tetrahedrons. As a result, we can conclude that the TIS function values 

of all points lying on the shared face of two neighboring tetrahedrons will be the same, regardless 

of their shape.  
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4.2.3 Porous Structure Generation from Surface Models 

Based on the proposed TIS method, we can achieve porous scaffolds by tetrahedralizing 

the tissue with a customized configuration. Biological tissues are inherently heterogeneous 

architectures. At the macrostructure level, the tissue exhibits great differences in both 

morphology and bio-functionability. Pore-intensive parts have higher structural strength and can 

support most of the weight. Conversely, the sparsely populated parts have better permeability 

and transport of nutrients and metabolic waste. Figure 4.6 shows a flowchart of the details for 

designing a 3D heterogeneous porous scaffold from the 3D anatomical shape. 
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Figure 4.6. Flowchart showing the procedures for designing a 3D heterogeneous porous scaffold 

using the TIS method. 

 

4.3 Experimental Results 

In this section, various types of TIS surfaces are compared with the TPMS surfaces from 

different perspectives. The TIS algorithm is implemented in C programming language running 

on an 8×2.20-GHz Intel(R) Core(TM) i7 computer with 16 GB of memory. A volume of 
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200×200×200 voxels was used as the resolution for both TPMS and TIS to generate various 

types of surfaces. While different selections of the threshold C can significantly change the 

porosity and pore size, we chose the constant 0 as the threshold of the generation of P, D, and G 

surfaces for all TPMS models in this paper. For TIS surface generation, however, we used a 

concept of relative threshold, which is related to the actual threshold as follows: 

actual_threshold = (max - min) * relative_threshold + min          (4.4.1) 

in which max and min are the minimum and maximum of the calculated TIS function values 

from Equation (4.2.4). The range of the relative threshold was rescaled into 0 to 1 according to 

the actual threshold, which is the real threshold used in the experiments. The periodicity 

parameter λ, as used in Equation (4.2.3), was chosen as follows. To stereoscopically illustrate the 

fabricated TIS surfaces with a moderate pore size, 0.16 and 0.44 were used as the thresholds for 

P surface (C = 0.16 when λ = 1, C = 0.44 when λ = 2 for the generation of TIS surfaces). Also, 

we used the threshold of 0.67 for the TIS D surface and a threshold of 0.5 for the TIS G surface 

both for λ = 1 and λ = 2. 

In Figure 4.7, 4.8, and 4.9, the surfaces in the two left columns are TPMS Schwarz P, D, 

and G surfaces, while the right two columns contain the TIS surfaces of the same type, 

respectively. The meshes in the first row were constructed using a single period (λ = 1), while 

the meshes in the second row were constructed using a double period (λ = 2) on each axis 

instead. From these figures, it is not hard to figure out that the shapes of the surfaces and the 

locations of the holes are very similar between the same types of surfaces for different groups. 

For example, the P surfaces in both TPMS and TIS have an opening on each face of the unit 

domain (either tetrahedron or hexahedron). The opening on the tetrahedral face is an ellipse of 

the triangle outline, while the opening on the hexahedral face is a regular circle. The interiors are 
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also connected, which allows for cell growth through the holes on the surface. In addition, 

Figures 4.10, 4.11, and 4.12 also give closer views of the surfaces between two neighboring 

tetrahedrons. And Figure 4.13 shows the generated porous surface obtained from an icosahedron. 

 

Figure 4.7: TPMS Schwarz P surface (left two columns) vs. TIS P surface (right two columns). 
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Figure 4.8: TPMS Schwarz D surface (left two columns) vs. TIS D surface (right two columns). 

 

 

Figure 4.9: TPMS Schwarz G surface (left two columns) vs. TIS G surface (right two columns). 

 

 

Figure 4.10: Two views of the TIS P surface generated from two connecting tetrahedrons. 

 

 

Figure 4.11: Two views of the TIS D surface generated from two connecting tetrahedrons. 
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Figure 4.12: Two views of the TIS G surface generated from two connecting tetrahedrons. 

 

 

Figure 4.13: TIS surfaces generated from an icosahedron (P surface – top, D surface - bottom). 

 

 To further analyze the characteristics of these tetrahedral implicit surfaces, we first used 

the well-known open source CAD software, Meshlab [137], to compute the average curvatures 
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over the whole surface. Figure 4.14 demonstrates the distributions of curvatures of different 

surfaces, as well as their corresponding detailed histograms. The color map ranges from red to 

blue indicating the curvature values from the minimum of -30 to the maximum of 30 (the values 

on X-axis are curvatures in ascending order while the values on Y-axis are the number of points 

that whose curvatures share the same value). Additionally, more information including the 

minimum/maximum curvature and the mean curvature and also the standard deviation of the 

curvatures is also provided for each of the TPMS and TIS surfaces in Table 4.1. In the table, the 

minimum curvatures of TIS P-surface and G-surface are almost double of the values of TPMS P-

surface and G-surface. And only the maximum curvature of TIS P-surface is significantly larger 

than the same type TPMS surface. Moreover, the standard deviation of the curvatures of TIS 

surfaces is relatively larger than that of TPMS surface of the same type. From Figure 4.14 and 

Table 4.1 it’s not hard to conclude that the distributions of curvatures of TPMSs are all 

symmetrical while this symmetry doesn’t apply to TISs. Nonetheless, one of the most important 

common attributes for TPMS and TIS is that the overall distribution of the curvatures tends to 

converge to the mean curvature which approximates to 0. 
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Figure 4.14: Distribution maps of the mean curvature and corresponding histograms for TPMSs 

and TISs. 

 

Curvatures 

TPMS Surfaces TIS Surfaces 

P-Surface D-Surface G-Surface P-Surface D-Surface G-Surface 

Minimum -12.66 -14.99 -14.34 -33.19 -14.88 -26.48 
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Maximum 12.59 13.83 18.32 21.09 12.16 15.17 

Medium -0.57 -1.18 -0.66 -1.68 0.45 -1.68 

Average -0.49 -1.29 -0.79 -2.88 -0.94 -2.79 

Standard Deviation 3.78 3.32 2.85 4.11 4.32 4.51 

Variance 14.28 11.04 8.11 16.88 18.63 20.36 

 

Table 4.1 Statistical analysis to the curvatures of TPMSs and TISs. 

 

 Besides, we also realized that the porosity and pore size of the surfaces are quite sensitive 

to the selection of threshold. Through experiments we found that not all thresholds in the range 

from 0 to 1 can generate a completely connected surface. To create the TIS surfaces of a single 

period from a regular tetrahedron, the ideal threshold range for P-surface is 0.118 - 0.275, for D-

surface is 0.569 - 0.765 and for G-surface is 0.431 - 0.627. A value out of these ranges will cause 

the generated corresponding type of surface deformed, which means the pore will disappear. On 

the other hand, TPMS surfaces also have the same issues of surface discontinuity and 

deformation as TIS surfaces. Nonetheless, the difference is that the selective areas of the 

reasonable threshold for TPMSs all uniformly concentrate on the range from -1 to 1. Table 4.2 

gives more information of the relationship between measured porosities and different thresholds 

C. Additionally, some examples of the deformed TPMSs and TISs with a threshold that exceeds 

the proper range are demonstrated in Figure 4.15. It is noted that the hole size gets bigger and the 

porosity behaves more saturated when C gets increased in the given range for both TPMS and 

TIS. Meanwhile, the surface areas of different TPMS and TIS surfaces for a unit volume are 

measured by the sum area of the generated mesh triangles, and the results are presented in Table 
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4.3 as a reference. All related parameters, including the resolution and threshold, are the same as 

mentioned at the beginning of Section 4.4.  

TPMS P-Surface TPMS D-Surface TPMS G-Surface 

Threshold C Porosity (%) Threshold C Porosity (%) Threshold C Porosity (%) 

-0.95 22.79 -0.95 10.28 -0.95 18.77 

-0.5 35.71 -0.5 29.42 -0.5 33.81 

0 49.98 0 49.94 0 50.00 

0.5 64.28 0.5 70.57 0.5 66.19 

0.98 77.21 0.95 89.71 0.95 81.22 

 

TIS P-Surface TIS D-Surface TIS G-Surface 

Threshold C Porosity (%) Threshold C Porosity (%) Threshold C Porosity (%) 

0.118 18.36 0.569 57.35 0.431 44.03 

0.157 35.80 0.618 66.88 0.480 57.29 

0.196 49.36 0.667 75.73 0.529 67.76 

0.235 61.17 0.716 83.04 0.578 76.09 

0.275 71.86 0.765 89.90 0.627 84.04 

 

Table 4.2 Effect of diverse thresholds C on different TPMS and TIS surfaces. 

 

Surface Type Surface Area for Unit Volume 

TPMS Surfaces 

P-Surface 2.353180 

D-Surface 3.828864 

G-Surface 3.083422 
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TIS Surfaces 

P-Surface 3.798055 

D-Surface 2.367160 

G-Surface 2.654556 

 

Table 4.3 Surface areas of TPMSs and TISs for a unit volume. 

 

 

Figure 4.15: Deformed TPMS and TIS surfaces with a threshold C that exceeds the reasonable 

range. 

 

Moreover, by analyzing the properties of the P-, D-, G-type surfaces generated by TIS, we 

found that the TIS P surfaces offer better quality in constructing porous architectures from large-

scale models. An example showing the comprehensive process of constructing 3D porous scaffold 

based on TIS P surface is given as follows. Firstly, as shown in Figure 4.3 (a), the 3D femur model 
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is tiled into 989 tetrahedra of different sizes and shapes. Secondly, we apply TIS algorithm to each 

of the tetrahedrons, resulting in 989 TIS P surfaces. As we have proved, the continuity between 

adjacent TIS surfaces are guaranteed. Thirdly, we smooth the porous network using Laplacian 

smoothing and curvature-based smoothing algorithms. Lastly, as shown in Figure 4.16, the 

smoothed porous surface is intersected with the original input femur model to generate a porous 

femur scaffold. Figure 4.17 gives the cross-section of the generated porous scaffold. 

 

Figure 4.16: Porous femur generated by TIS P-surface. 
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Figure 4.17: Sectional view of porous femur generated by TIS P-surface. 

 

In the process of generating TIS surfaces, with varying resolutions chosen for each single 

tetrahedron domain, the computational time and the consumed memory change correspondingly. 

To construct a high-quality porous surface, higher resolution is demanded. Meanwhile, the heavy 

computation for the computer is also required. Under the assumption that a single period of P type 

surface with the unit volume is generated, a comparison of the performance between the TPMS 

algorithm and TIS algorithm is offered in Table 4.4. From the results, you can see that our TIS 

method generates fewer grids in less time than TPMS with the same resolution. 

Resolution 

TIS TPMS 

Computational Time 

(s) 

Number of 

Triangles 

Computational Time 

(s) 

Number of 

Triangles 

100 0.195 15329 0.355 116492 

200 1.451 63293 2.756 471692 

300 4.829 143766 9.382 1067468 
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400 11.575 256662 23.78 1900676 

500 22.615 402198 43.276 2975372 

 

Table 4.4: Running time comparison between TIS and TPMS. 

 

4.4 Summary 

 In this chapter, an implicit 3D surface method for designing bio-scaffolds based on the 

tetrahedral implicit surface is proposed. To the best of our knowledge, this is the first attempt to 

construct implicit surface based on tetrahedral elements. The TIS method has demonstrated its 

great potential in the field of designing optimized porous structure. Comparing to the well-

established TPMS approach, this concise method brings several advantages to the tissue 

engineering scaffold design:  

1) The generation of TIS surface could avoid the restriction of modeling based on 

regular unit domain such as regular hexahedron in TPMS. Even in the deformed 

tetrahedron, there still can create characteristic tetrahedral surface and guarantee 

C0 continuity between adjacent TIS surfaces; 

2) Different from the TPMS method described in Chapter 3, which needs to 

parametrize the tissue surface into hexahedral meshes first, it is more convenient 

to tetrahedralize the triangular surface mesh as in the proposed TIS method. 

Moreover, without integrating the special mapping procedure makes the entire 

process simplified; 

3) The strong interconnectivity and tetrahedron-base modeling grant the TIS 

method more flexibility and creativity for complex shape modeling. 
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Notwithstanding, there are also several limitations to the TIS method. Though the TIS 

surface of multiple period obtained from a single unit has shown the characteristics of 

approximate zero mean curvature and C0 continuity, the C1 continuity of the surface at the 

junction of two neighboring tetrahedrons cannot be guaranteed. Moreover, some isolated closed 

surfaces could be rendered using the TIS D-surface when the input is a complicated shape model. 
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Chapter 5 

 

Porous Structure Design Using Anisotropic Radial Basis Function 

 

In the last two chapters, we have discussed porous scaffold designs based on hexahedron 

and tetrahedron. It’s true that using subdivided volumetric mesh could reproduce periodic porous 

elements. The resulting pore network has some outstanding characteristics such as the consistent 

shape of pores, strong connectivity, and controlled porosity over the entire network. Nonetheless, 

the uniform distribution of identical pores also exposes the problem of lacking flexibility and 

randomness. That means changing the unique iso-value C would adjust the porosity and the pore 

size through the entire surface. And a small modification to the equation of implicit surface can 

definitely change the architecture of the whole pore network. As a result, these features make an 

inhomogeneous design of porous structure with different pore sizes almost an impossible task. 

In this chapter, we try to turn a new route to design and construct porous architecture using 

anisotropic radial basis function (ARBF). This proposed method not only can produce porous 

models from hexahedral or tetrahedral units but also can use spatial point cloud to generate pores. 

It has three major advantages over the implicit surface modeling methods that were introduced in 

the last three chapters.  
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1) Firstly, adaptive regional modifications to the pore shape, pore size or pores’ 

distribution can be easily achieved by adjusting the local configuration of the sub-

volumes or the point cloud accordingly.  

2) Secondly, this approach is flexible to simulate heterogeneities and discontinuities 

in natural tissue structures by using purposely-designed point cluster as the input. 

For example, if we want a specific region of the tissue to be sparse, then we just 

need to reduce the distributed points in that region. On the contrary, the operation 

of assigning more points could generate the denser pores in that region.  

3) Thirdly, unlike other implicit methods that need post-actions such as Boolean 

operations to get the final pieces built, the only post-action in this approach is to 

retrieve iso-surfaces using marching cube algorithm, which makes it much easier, 

faster and more flexible to implementation. 

In order to assign points equably inside the space of a scaffold, we would use the vertices 

of the tetrahedralized volumetric mesh as the input to build spatial pore network. The adopted 

tetrahedral meshing and smoothing algorithm is the BCC-based one introduced in Section 4.1. 

 

5.1 Traditional Radial Basis Function (RBF) Interpolation  

The conventional radial basis function interpolation is given by 

f(x) = ∑ 𝑤𝑖∅(||𝑥 − 𝑥𝑖||)
𝑁
𝑖=1                       (5.1.1) 
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where the interpolated function f(x) is represented as a weighted sum of N radial basis functions 

φ(·) and each function is centered differently at xi and weighted by wi. Once the values of fi where 

i = 1…N are given at xi, the weights wi can be solved through  

[
∅11 ⋯ ∅1𝑁
⋮ ⋱ ⋮

∅𝑁1 ⋯ ∅𝑁𝑁

]

𝑤1

⋮
𝑤𝑁

=
𝑓1
⋮
𝑓𝑁

                       (5.1.2) 

where ∅𝑗𝑖 = ∅(||𝑥𝑗 − 𝑥𝑖||). Accordingly, the value at an arbitrary point can be evaluated through 

Equation (5.1.1). 

 In conventional RBF method, the distance between point x ∈ Rd and center of basis 

function xi ∈ Rd is measured by Euclidean distance which is denoted as r = ||x – xi||. Some 

commonly used radial basis functions are listed in Table 5.1. 

Types of basis function Definition 

Gaussian ∅(r) = 𝑒−(𝑐𝑟)
2
 

Multiquadrics (MQ) ∅(r) = √𝑟2 + 𝑐2 

Inverse multiquadrics (IMQ) ∅(r) =
1

√𝑟2 + 𝑐2
 

Thin plate spline (TPS) ∅(r) = 𝑟2 ln(𝑟) 

 

Table 5.1: Common radial basis functions. 

 

In radial basis functions, the shape parameter c plays an important role in improving the 

accuracy of numerical solutions. In general, the selection of optimal shape parameter depends on 

densities, distributions and function values at all mesh nodes. The selection of adaptive shape 
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parameter has been an active topic in approximation theory [83]. Interested readers can refer to 

[84-88] for more details.  

 

5.2 Anisotropic Radial Basis Function (ARBF) Interpolation 

Conventional RBF interpolation is isotropic to all directions such that the target domain 

of any basis function tends to be circular in 2D or spherical in 3D, which makes it difficult to 

create comprehensive porous topological structures. Anisotropic RBF, on the other hand, could 

perfectly overcome the limitation of constructing a tailored directional porous network. The 

major feature of anisotropic RBF interpolation is to assign the basis functions consistent 

directionality with the generated pores by redefining the distance functions. Figure 5.1 (a) and 

(b) depict the support domains by using isotropic RBF and anisotropic RBF in a 2D triangular 

mesh, respectively. 

 

Figure 5.1: 2D interpolation schemes. x is the pixel to be interpolated. Dashed circle (for RBF) or 

ellipses (for anisotropic RBF) describe the support domains of underlying basis functions. (a) 

RBF interpolation. (b) Anisotropic RBF interpolation. 

 



72 

 

In anisotropic RBF interpolation, a new basis function centered at a line segment rather 

than a point is introduced such that the resulting surface is connected along the line's direction. 

Given a combination of line segments and single points L = {lj}j=1…N as the centers of basis 

functions, the anisotropic RBF interpolation is described as 

𝛷(𝑢) = ∑ 𝜔𝑗∅(||𝑢 − 𝑙𝑗||
𝐿
)𝑁

𝑗=1                           (5.2.1) 

where ||u-lj||L denotes the distance between two points or two line segments or a point and a line 

segment. The distance between two points are still measured using Euclidean distance in ARBF. 

However, the distance between two line segments or between a point and a line segment is 

redefined as follows. Assume we are calculating the distance between point x and line segment 

(a, b), there are three possible cases. 

1) For case 1, if point x is on the line segment (a, b), then the distance between x and 

(a, b) directly equals to 0. 

2) For case 2, if point x and the endpoints of line segment (a, b) form an acute 

triangle, the distance is evaluated as the perpendicular distance from x to line 

segment (a, b). 

3) For case 3, if x and the endpoints of line segment (a, b) form an obtuse triangle, 

the distance is defined as min{||x - a||, ||x – b||}. 

Figure 5.2 (a-c) illustrates the three distances between point x and line segment (a, b) 

under the above circumstances. Besides, the distance between two line segments (a, b) and (c, d) 

is defined as min{||a - c||, ||a – d||, ||b – c||, ||b – d||}. An example is provided in Figure 5.2 (d). 
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Figure 5.2: Distance definitions used by ARBF. (a) Point x is on line segment (a, b). (b) Point x 

and line segment (a, b) form an acute triangle. (c) Point x and line segment (a, b) form an obtuse 

triangle. (d) Distance between line segments (a, b) and (c, d). 

 

The new distance functions of ARBF take both magnitude and direction into account to 

change the support domain of the basis function from a regular circle or sphere to an ellipse or 

ellipsoid, which enables the conventional RBF method with some new properties to control the 

shapes of internal pore structures. 

 

5.3 Algorithm Description 

Anisotropic RBF interpolation mainly involves three stages. The first is function-fitting 

by solving a linear system corresponding to the interpolation conditions. To figure out the weight 

coefficients of the basis functions in Equation (5.1.2), some specified values are assigned to the 

given mesh. In the current method, the values of all mesh vertices are assigned 1. For 2D 

meshes, the middle point of each edge, the face (triangle or quadrangle) center and also the line 

segments from the center to the middle point are all set to -1. For 3D meshes, the centers of 

surfaces and the centers of sub-volume (tetrahedron or hexahedron) are assigned -1. Moreover, 

the line segments from the volume center to the face centers are assigned -1 as well. Figure 5.3 
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(a-c) demonstrates the distribution of values at the centers of all radial basis functions in a 2D 

triangular mesh, a 3D tetrahedral mesh, and a 3D hexahedral mesh, respectively. Secondly, once 

the weight coefficients of the basis functions are solved using the revised distance definitions, 

the function values of the interpolated points could be easily calculated through Equation (5.2.1). 

In our algorithm, the bounding box of the target object is partitioned into a matrix of small cubes 

of the same size, and the vertices of the small cubes are chosen as the interpolation points. 

Lastly, an iso-surface is extracted using the well-known Marching Cube algorithm.  

 

Figure 5.3: Values assigned to mesh nodes. Red dots indicate value 1 is assigned while blue dots 

indicate value -1 is assigned. Brown lines indicate value -1 is assigned as well. In 3D meshes, 

green dots represent interior nodes. (a) Sample distribution of node values in the 2D triangular 

mesh. (b) Sample distribution of node values in the 3D tetrahedral mesh. (c) Sample distribution 

of node values in the 3D hexahedral mesh. 

 

In general, a finite number of mesh nodes can be used to initialize the matrix in Equation 

(5.1.2) with a reasonable size for simple scaffolds. Nonetheless, the matrix will become singular 

or extremely time-consuming to solve when a complex model is given as the input. To this end, 

the global interpolation method (see Figure 5.4) can be substituted with a local ARBF 

interpolation method (see Figure 5.5). Instead of solving the coefficients for all nodes at once, a 

set of adaptive coefficients are figured out for each unit domain. At the same time, the nodes 

from neighboring domains will be taken into consideration to ensure the connectivity and 
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smoothness between the target domain with surrounding domains. To identify the neighboring 

domain of each point instantly and accurately, we integrate the well-known k-d tree algorithm 

[89] into our local interpolation scheme. 

 

Figure 5.4: ARFB global interpolation. 
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Figure 5.5: ARFB local interpolation. 
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5.4 Experimental Results 

Given an iso-value and a specified shape parameter, a variety of porous architectures can 

be obtained by determining the locations of various centers of the radial basis functions within a 

given boundary constraint. In this section, we choose the inverse multiquadric (IMQ) function as 

basis functions and use a constant C = 0.1 as its shape parameter. A proper iso-value is applied to 

each independent porous structure. Figure 5.6 (a) shows a pore structure obtained from single 

regular tetrahedron whose opening grows from the center of the tetrahedron toward the centers of 

its four triangle surfaces. Figure 5.6 (b) presents a surface inserted into two adjacent regular 

tetrahedrons. Figure 5.6 (c) describes a pore network comprised of the ARBF surface pieces 

from twenty tetrahedrons. Figure 5.7 (a) shows the surface interpolated from a single 

hexahedron. Figure 5.7 (b) presents the structure obtained from eight hexahedrons in a cube 

shape. Figure 5.7 (c) describes the surface obtained from a rod comprised of four hexahedrons in 

a row. Furthermore, diverse basis functions lead to distinctive patterns of morphology. 

Interpolated results using different basis functions, including multi-quadric (MQ) function, 

inverse multiquadric (IMQ) function, Gaussian function and thin plate spline (TPS) function, are 

illustrated in Figure 5.8. To further study the practicality of ARBF surfaces in biomedical 

engineering, we manufactured a realistic porous femur scaffold in 3D vision. At first, a scanned 

femur model was tiled into 989 pieces of arbitrary tetrahedrons. Here we use a body-centered 

cubic (BCC) lattice [76] based tetrahedral mesh generation algorithm followed by a quality 

tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation (B-ODT) [79-80]. 

For each tetrahedron, we use the four vertices, the centers of four triangle faces, the tetrahedron 

center, and the line segments from the triangle centers to the tetrahedron center as the centers of 

basis functions. Moreover, the basis functions from the first layer of surrounding tetrahedrons are 
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included in current tetrahedron's linear system to ensure the pore surface smoothly connected 

with the surfaces from adjacent tetrahedrons. Consequently, a large number of connected porous 

structures are formed tetrahedron by tetrahedron as illustrated in Figure 5.9. 

 

Figure 5.6: Generated porous surfaces in regular tetrahedrons. (a) Surface in single regular 

tetrahedron. (b) Surface in two connecting tetrahedrons. (c) Surface in an icosahedron. 

 

 

Figure 5.7: Generated porous surface for regular hexahedrons. (a) Surface in single hexahedron. 

(b) Surface in 2x2 stack of hexahedrons. (c) Surface in 4 hexahedrons arranged to form a rod. 
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Figure 5.8: Results obtained from icosahedron domain using different basis functions. (a) 

multiquadrics (MQ). (b) inverse multiquadrics (IMQ). (c) Gaussian. (d) thin plate spline (TPS). 
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Figure 5.9: Interpolated porous inner structure of femur scaffold. 

 

The randomness of porous distribution can be enhanced by moving the centers of basis 

functions toward arbitrary directions, which is a viable method to manufacture more realistic 

tissue scaffold with complex physiological architectures. Figure 5.10 shows some randomized 

mesh surfaces generated from the hexahedral domain. Moreover, the surface appearance and the 

porosity would change hugely when the iso-value or the shape parameter varies. Figure 5.11 (a-

d) reveal that the porosity increases as the iso-value augments. 
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respectively.

 

Figure 5.10: Resulted meshes from hexahedron domain with disturbance. 

 

 

Figure 5.11: Internal pore becomes larger with iso-value increased. 
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In addition to the shape configuration, we also did some research on the porosity of the 

generated porous structures. There are two crucial factors determining the porosity of ARBF 

surface. First is the iso-value, which is the threshold for separating the internal and external 

spaces. Secondly, the unified shape parameter c of all radial basis functions listed in Table 5.1 

also could change the surface appearance greatly. Figure 5.12 reveals that the porosity increases 

as one of the mentioned factors are augmented.

 

Figure 5.12: Relationships between porosity and different factors. 

 

5.5 Summary 

 In this chapter, we presented an ARBF-based implicit surface modeling approach to 

generating inhomogeneous porous tissue scaffolds. The discussed method has several advantages 

that can be mainly described in four aspects: 

1) Firstly, for most of periodic surface methods, a small modification to the base 

shape would greatly change the appearance of the entire porous architecture. 

Nevertheless, in the ARBF method, the local modifications of pore shape, size or 

pore distribution can be easily achieved by accordingly adjusting the local 
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configuration of sub-volumes. 

2) Secondly, the ARBF approach is the most flexible one which can handle 

different types of mesh as inputs (tetrahedral mesh or hexahedral mesh).  

3) Thirdly, unlike other implicit methods, the ARBF algorithm doesn’t require any 

post-action (e.g. intersection) to produce the final product; 

4) Compared with the aforementioned parameterization method and the TIS 

method, the proposed ARBF method not only can construct porous surface based 

on tetrahedral or hexahedral mesh surface, but also could generate connected 

hollow surfaces using designated point clouds. 

Although our ARBF porous design method has such many advantages, the performance 

of the experimental result is still sensitive to the quality of the input meshes. For some 

complicated shapes, a poor tetrahedral/hexahedral input mesh could seriously affect the quality 

of the generated porous surface. 
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Chapter 6 

 

Segmentation of Intervertebral Discs and Application of Porous 

Design for Intervertebral Disc Scaffolds 

 

In previous chapters, we have sufficiently discussed the porous design of artificial tissue 

scaffold using several innovative methodologies. Both the tetrahedral implicit surface (TIS) 

method and the parameterization method based on triply periodic minimal surface (TPMS) and 

hexahedral mesh use volumetric mesh as the input to generate unit-based repetitive implicit porous 

surfaces. However, the anisotropic radial basis function (ARBF) method utilizes a more flexible 

approach based on points and line segments to construct connected hollow paths. Various porous 

structure design methods give the fabricated tissue scaffolds more reliable mechanical and 

transport properties and increase their values for clinic purposes. 

One of the main purposes of this study is to apply these porous designs to the extremely 

high incidence of intervertebral disc (IVD) scaffolds. In clinical practice, the identification of 

intervertebral discs is usually manually labeled out by experienced experts from scanned medical 

images that are collected by traditional medical imaging techniques such as computed tomography 

(CT) and magnetic resonance imaging (MRI). However, this process is extremely tedious and time 

consuming. Moreover, most of the labeled out intervertebral disc models are somewhat unsmooth 

and bumpy such that they can’t be used for 3D printing directly. The fully-automatic localization 
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and segmentation of intervertebral discs have been analyzed in the field for years. In this section, 

we are discussing a few prevalent techniques for the segmentation of intervertebral discs by using 

machine learning (ML) algorithms. In addition, a few generated porous IVD models will be 

presented in the Section 6.3. 

 

6.1 Overview of Approaches for Segmentation of Intervertebral Disc  

Despite tons of studies have been focused on brain, heart and bone images, relatively less 

researches can be found for spinal image with regard to vertebra or intervertebral disc localization 

and segmentation. Research interests in automatic segmentation of intervertebral discs mainly can 

be classified into two groups: traditional methods and machine learning based methods. 

6.1.1 Traditional Methods 

Most of successful traditional semantic segmentation techniques developed in the past 

decade reply on hand-crafted features and shape information. Carballido-Gamio et al. proposed 

the normalized cut to segment vertebral bodies from MR images [90]. And Huang et al. 

improved this method by proposing an interactive algorithm and evaluated their method on 2D 

sagittal MR slices [91].  Chevrefils et al. presented 3D segmentation of intervertebral scoliotic 

discs from three specific MR image acquisition protocols with average DICE coefficient of 0.73 

[92]. They implemented the watershed method across the sagittal and coronal volume planes 

resulting in over-segmentation, which was corrected through pixel classification utilizing image 

textual features. A semi-automatic approach based on probabilistic atlas was deployed by 

Michopoulou et al. to segment degenerated lumbar IVDs from 2D MR images of the spine [93]. 

Their method requires an interactive selection of the leftmost and rightmost disc points. Ghosh et 



86 

 

al. presented a herniated disc diagnostic method that classifies pathology limited to 2D MR scans 

using a Bayesian classifier with a coupled active shape model and a gradient vector flow snake 

[94]. Seifert et al. proposed an automatic cervical intervertebral disc segmentation technique that 

identified discs using the Hough transform based on segmented vertebrae and refined 

segmentation using statistical shape-aware deformable models [95]. Neubert et al. segmented the 

IVDs and vertebral bodies from high-resolution spine MR images using a statistical shape model 

based method [96]. Also, this method requires an interactive placement of a set of initial 

rectangles among spinal curves. Glocker et al. presented a method based on regression forests 

and probabilistic graphic models. However, their method is likely to suffer from the narrow 

field-of-view (FOV) because the broad contextual information is not always available [97]. To 

overcome this limitation, Glocker et al. again proposed a randomized classification forest based 

approach which achieved reasonable localization and identification performances on 

pathological cases and those with limited FOV [98]. 

 

6.1.2 Machine Learning Methods 

Great successes of machine learning based methods have gained increasing interests in 

the domain of computer vision, especially for medical image analysis. At first, Zheng et al. 

proposed a marginal space learning (MSL) to localize the heart chamber in 3D CT data [99]. In 

the study of Kelm et al. [100], the MSL strategy has been used again to detect and segment IVDs 

based on Haar-like features. Then Chen et al. [101] and Wang et al. [102] introduced two 

regression-based methods for the segmentation of IVDs. More specifically, Chen et al. proposed 

a unified data-driven estimation framework to localize IVDs by predicting foreground and 

background probability of each pixel [101]. And Wang et al. designed a sparse kernel machine 
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based regression approach to address the segmentation of multiple anatomic structures in 

multiple anatomical planes from multiple imaging modalities [102]. More recently, some 

literatures have been focused on segmentation of vertebrae or IVDs from 3D volumetric data or 

2D images using deep learning based methods. For example, Cai et al. used a 3D deformable 

hierarchical model from multi-modality images to extract multi-modality features [103]. And 

Chen et al. employed a deep learning method based on convolutional neural network (CNN) for 

vertebrae identification in spine images [104]. One year later, Chen et al. proposed a 3D fully 

convolutional network (FCN), which is a derivative framework of CNN, had achieved the state-

of-the-art localization performance of IVDs [105]. Since then FCNs have become the back-bone 

of state of the art medical image segmentation systems and a lot of variant FCNs have been 

introduced to advance this stream. For example, Kamnitsas et al. presented a multi-scale 3D 

FCN, which includes the low resolution and the normal resolution input, with two convolutional 

pathways for brain lesion segmentation [106]. A DSMS-FCN method proposed by Guodong 

Zheng et al. archived a mean Dice overlap coefficient of 92% and a mean average symmetric 

surface distance of 0.41 mm in the MICCAI 2015 IVD localization and segmentation challenge 

[107]. Moreover, Li et al. introduced an advanced 3D multi-scale FCN with random modality 

voxel dropout learning for IVD localization and segmentation from multi-modality MR images 

[108]. The multi-scale FCN method expands the typical single-path FCN to three pathways 

where each pathway takes volumetric regions in a different scale. And the features extracted 

from the three pathways are then concatenated to generate a probability map, from which the 

final 3D segmentation mask is generated with a single threshold. 
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6.2 Segmentation of Intervertebral Disc Using U-Net 

As one of the most famous fully convolutional networks (FCNs), U-Net has been 

published in 2015 international conference on medical image computing & computer assisted 

intervention (MICCAI) with more than 3000 citations. U-Net and its variants have outperformed 

the state-of-art in many biomedical image segmentation tasks, including brain tumor detection 

[109], liver image segmentation [110], pixel-wise regression [111], etc. The pertinacious 

architecture and affluent data augmentation allow U-Net to quickly converge to the optimal 

model from a limited number of annotated samples. Comparing to the other two popular 

convolutional neural networks, CNN and FCN, U-Net uses skip connections between contraction 

and expansion and a concatenation operator instead of a sum, which could provide more local 

information to global information while expansion. Moreover, U-Net is symmetric such that a 

large number of feature maps in expansive path facilitate to transfer more information. In fact, 

U-Net has been widely applied to the IVD segmentation problem. Chen et al. [112] applied a 

conventional 3D U-Net [113] on the IVD dataset provided by the 3rd MICCAI Challenge of 

Intervertebral Discs Localization and Segmentation. And Kim et al. designed a new network 

architecture, boundary specific U-Net (BSU), to segment IVDs and their complex boundaries 

from MR spine images [114]. Their architecture contained a modified convolutional and pooling 

layer scheme and applied a cascaded learning method to overcome these structural limitations of 

the max-pooling layer of a conventional U-Net. Dolz et al. extended the U-Net by adding three 

identical pathways in the contracting path to process the multi-modality channels of the input 

[115]. These pathways were interconnected with hyper-dense connections to better model 

relationships between different modalities in the multi-modal input images. More recently, Lu et 

al. proposed an IVD segmentation pipeline which first localize the IVD centers using the 2D U-
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Net and then cropped transverse 2D images and sagittal 3D patches around the centers to train a 

ResNeXt-50 [116] which mixed both 2D and 3D convolutions [117]. However, the effectiveness 

of data augmentation and multi-modality input images are not fully explored in these works. 

The performance of 2D neural networks versus 3D neural networks has remained as an 

open discussion. Some researchers believe the accuracy of 2D deep learning exceeds that of 3D 

mainly because the manual segmentations of the original IVD dataset is performed in a slice-by-

slice manner [115]. These annotation labels usually contain sharp contours, which makes the 

segmentation task difficult for 3D CNNs that generally predict smooth contours. However, only 

considering the pixels in each image from the stack will lose the spatial information between 

different slices. To clarify this consideration, next we will tackle the IVD segmentation problem 

from the perspectives of both 2D and 3D. For the 2D framework, we train a modified 2D U-Net 

that takes images slices from the volumetric dataset as input and predict the IVD segmentation 

mask in 2D space. For the 3D framework, we apply 3D convolutional kernels directly on the 

volume and generate a volumetric mask using a modified multimodal 3D U-Net. Additionally, 

powerful augmentation techniques, including homogeneous and non-homogeneous 

deformations, are also utilized to increase the number of training samples. In the following 

sections we will introduce the multi-modality dataset and the augmentation methods. Also, the 

architectures of the 2D network and 3D U-Nets will be demonstrated in detail. 

 

6.2.1 Multimodal Dataset 

Due to the excellent soft tissue contrast and no ionizing radiation, magnetic resonance 

(MR) imaging (MRI) has been widely applied in the diagnose and assessment of lumbar IVD 
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diseases. Multi-modality MR images can be obtained using different scanning configurations for 

the same object. The spine dataset was provided by Prof. Guoyan Zheng from University of Bern 

[118]. It consists of 8 sets of 3D multi-modality MR spine images collected from 8 patients in 2 

different stages of prolonged bed test. Each subject was scanned with 1.5 Tesla MR scanner of 

Siemens Magnetom Sonata (Siemens Health- care, Erlangen, Germany). The repetition time of 

5240 ms and echo time of 101 ms were used to generate T2- weighted sagittal images. The 

resolution of all images was 2 mm ×1.25 mm ×1.25 mm. Each spine image contains at least 7 

IVDs of the lower spine (T1-L5) and four modalities following Dixon protocol: in-phase (inn), 

opposed-phase (opp), fat and water (wat) images. In total, there are 32 3D single-modality 

volumes and 66 IVDs. For each IVD, the segmentation ground truth is a binary mask manually 

labeled by three trained raters under the guidance of clinicians.  

The traditional multi-modality deep learning methods conventionally fed all modalities 

images into different channels as input to the neural network. Zhang et. al. use multi-modality 

images to segment infant brains. Li et. al. trained the 3D FCN separately on each single modality 

(fat, in-phase, opposed-phase, and water) and then on a merged full-modality of the spine dataset 

to validate the superiority of training with multi-modality data. Both works show that training on 

the full-modality images could yield a more accurate IVD segmentation result than using any of 

the single-modality [108]. Moreover, Li’s research indicates that the image modalities of 

opposed-phase and water could enhance the performance than the image modalities of fat and in-

phase. Nonetheless, the full-modality-fused images will not guarantee the best outcomes in all 

experiments. The dependency between different modalities could lead to data co-adaption, which 

means the same features are detected repeatedly. In addition, the significant difference between 
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modalities at the same locations could trigger data corruption problem to misdirect the 

corresponding neurons. 

To address these concerns, we made a further exploration on the intensity distribution of 

various modalities and the mean gradient on the boundary of the intervertebral discs. As shown 

in Figure 6.1, the image modality of fat has relatively low intensity contrast at the IVD 

boundaries while compared with the other three image modalities. More specifically, assume the 

target IVDs are foreground and the other areas are background and Table 6.1 lists the average 

intensities and the standard deviations for the foreground and background samples using the 

provided label maps as a reference. Moreover, it also shows the absolute Weber contrast 

coefficients of in-phase, opposed-phase, fat and water images. The absolute Weber contrast 

coefficient is defined by [119] 

𝐶 =
|𝐼−𝐼𝑏|

𝐼𝑏
             (6.2.1) 

where I is the mean intensity value of the foreground voxels and Ib is the mean intensity value of 

the voxels in the background. The Weber contrast indicates the relationship between the 

luminance or color of an interest area and that of adjacent areas. The significant contrast yields a 

big value of absolute Weber contrast. The results from Table 6.1 show that the image modalities 

of fat and in-phase have relatively low Weber contrast values than the image modalities of water 

and opposed-phase. To sufficiently take advantage of the multiple modalities of the dataset, we 

train our networks on different combinations of multi-modality images to examine their 

effectiveness in segmentation accuracy. 
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Figure 6.1. MR spinal images collected from different modalities. 

 

Modality 

Mean ± STD 

(foreground) 

Mean ± STD 

(background) 

Absolute Webber 

Contrast 

Fat 15.9 ± 12.7 35.2 ± 47.5 0.57 

In-phase 172.1 ± 39.9 97.9 ± 89.5 0.75 

Opposed-

phase 

155.4 ± 47.5 63.2 ± 65.1 1.46 

Water 163.4 ± 41.1 67.9 ± 67.5 1.43 

 

Table 6.1. Statistical analysis to different image modalities. 
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6.2.2 Data Augmentation 

When limited training samples are available, data augmentation is essential to increase 

the size of the desired dataset and increase the network's robustness to data variances. Also, data 

augmentation is a regularization technique which is used to eliminate overfitting when training 

machine learning models. Existing image augmentation methods are generally grouped into two 

categories: traditional (white-box) methods and black-box methods [120]. The most popular 

practice for data augmentation is to perform a combination of affine transformations and color 

modification to create new samples. The common affine transformation techniques include 

translation, rotation, reflection, scaling (zoom in/out), shearing and etc. Affine transformation is 

a linear mapping method that preserves points, lines and planes and parallel lines remain parallel 

after an affine transformation. The affine transformations have been proved as fast, reproducible 

and reliable and the according codes are easy to implement. Additionally, some color 

modification approaches are also frequently used combined with affine transformations. The 

most popular techniques include histogram equalization, enhancing contrast or brightness, white-

balancing, sharpening and blurring. On the other side, black-box augmentation methods are all 

adaptive and distinct. For example, as a new and powerful tool to perform unsupervised 

generation of new images using min-max strategy [121], generative adversarial networks 

(GANs) [122] are found to be extremely useful in the image manipulation and generation 

problems such as super-resolution [123], image blending [124], and text-to-image synthesis 

[125], etc. Moreover, texture transfer [126] is another prevalent tool which synthetize a texture-

source image while constraining the semantic content of a content-source image. Additionally, 

Gaussian noise and stochastic noise [127] are also black-box tools that reduce the risk of 

overfitting and makes the model more robust. 
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With only 8 sets of spine data provided, our networks demand more data for training and 

validation. Especially for the 2D U-net, augmenting the training samples could significantly 

enhance the performance. A variety of conventional 3D image processing techniques are adopted 

in our method. In addition to these affine transformations, as a particularly important 

augmentation technique in biomedical segmentation tasks, elastic deformation is also used in 

combination with other transform functions due to the fact that the most common variation in 

tissue is deformation [118]. We fabricate smoothly deformed surfaces by generating random 

displacement fields and the fields are convolved with a Gaussian of standard deviation δ (in 

pixels). And the displacement fields are then multiplied by a scaling factor α that controls the 

intensity of the deformation [118]. The per-pixel displacements are computed using bicubic 

interpolation. Based on the augmentation functions mentioned above, a random combination of 

operations is selected in an arbitrary order and applied to the original spine dataset. 

Consequently, the size of the training dataset is increased from 6 to 24 (2 of the 8 sets of original 

spine data are not used for augmentation but for validation of the prediction). To sufficiently take 

advantage of the information between adjacent layers, besides using the augmented spine data in 

3D framework, we also use the stack of images sliced along each axis of the 3D augmented data 

as the training set of the 2D network rather than directly applying 2D augmentation techniques 

on the sliced images from the original dataset. 

 

6.2.3 2D U-Net 

The architecture of our 2D U-Net is shown in Figure 6.2. It consists of a contraction path 

and an expansion path. The contracting path is composed of 4 convolutional blocks. Each block 

contains the repeated application of two unpadded 3×3 convolutions that are followed by a 
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rectified linear unit (ReLU). Consequently, the number of feature channels is doubled for each 

down-sampling step and the number is increased from 1 to 1024 through the whole four blocks. 

Moreover, for each down-sampling step, a 2×2 max pooling with stride 2 is applied to the end of 

every blocks except the last block, which makes the size of feature maps decreases from 

512×512 to 16×16. In the expansive path, we operate the opposite that every block starts with a 

deconvolutional layer with the filter size of 3×3 and the stride of 2 and follows with a ReLU 

layer, which doubles the size of feature maps in each block but halves the number of feature 

channels such that the size of feature maps increases from 16×16 to 512×512 and the number of 

channels decreases to 64. In the end, a 1×1 convolution with the sigmoid function as the post-

operation is used to restore the original size of the input images. The last but the most important 

is that a concatenation with correspondingly cropped feature map from the contacting path is 

placed after each up-convolutional layer. 

 

Figure 6.2. 2D U-Net architecture. 
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The soft tube models of the lumbar spine column are all 3D volumetric data such that 

partitioning the same 3D model from different angles could create different 2D image datasets. 

To analyze the efficiency of trainings along different directions, we train the 2D U-Net on image 

slices extracted from the augmented spine dataset along varying directions (X-axis, Y-axis and 

Z-axis) to predict segmentation masks. The stack of images sliced along X-axis are of size 

256×256 pixels while the images retrieved from the other two axes are both size of 256×36 

pixels. To ensure the trained network can handle images of different sizes, we preprocess all 

images to the same size of 256×256 pixels using zero-padding. It’s noted that the number of 

images retrieved from a single 3D sample along Y-axis or Z-axis is 256 while the number of 

images sliced from Y-axis direction decreases to 36, which is roughly seventh of 256. However, 

the number of samples will be increased to the same for all directions after the data 

augmentation. There will be 1200 images generated in total, among which 1000 of them consist 

of the training set and the rest make up the validation set. 

 

6.2.4 3D U-Net 

Since the provided spinal dataset is in NIfTI (Neuroimaging Informatics Technology 

Initiative) format [128], which is a volumetric image, and the volumetric contexture information 

between different layers could facilitate to enhance the performance of the IVD prediction, we 

decided to try to apply U-Net directly on the 3D spinal images rather than the sliced 2D images. 

Moreover, we also noticed that because the colors of some of the target IVDs and the 

background are too similar such that unexpected segmented IVDs could be detected at some 

positions in the background. Here we adopt a two-stage coarse-to-fine strategy to tackle the 

problem using 3D U-Net. The general framework is demonstrated in Figure 6.3. In the first 
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stage, the centers of IVDs will be localized based on a conventional 3D U-Net. Next, the small 

patches of IVD samples, whose centers are the ones detected from the first step, are cropped out 

with a fix-size window. In the second stage, those cropped samples are used to train a 

multimodal model for accurate segmentation of each IVD. This could simplify the problem by 

removing most deceptive information from the background. In the end, a post-operation will be 

placed to finalize the segmentation results. 

 

Figure 6.3. Framework of the proposed 3D neural network method. 

 

6.2.4.1 Localization of IVD Centers 

It has been shown that 3D U-Net achieves the best result for localization but not for 

segmentation [129]. Consequently, a conventional 3D U-Net is deployed to find out the centers 

of the intervertebral discs from the spine column in our method. From the observation, the spines 

are sharing a common morphological profile that the IVDs are sparsely located in the spine with 

a roughly distance of 25 voxels. Thus, we use a fix-size bounding box, whose resolution is 

35×35×25 voxels, around each detected center to crop a 3D patch. Then we resize these patches 
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to resolution of 36×36×28 using zero-padding so they can be nicely fed into the segmentation 

network in the second stage. 

 

6.2.4.2 Segmentation of IVDs 

For IVD segmentation from the 3D patches, we employ a modified 3D U-Net 

architecture shown in Figure 6.4 that essentially looks at IVD segmentation as a regression 

problem. This network takes 3D patches as input and predicts 3D patches where the intensity 

value on each voxel stands for how confident is the network in the voxel belonging to an IVD. 

Figure 6.4 presents an overview of the architecture of our 3D segmentation network. Each step in 

the contracting path consists of repeated application of two 3×3×3 unpadded 3D convolutions 

followed by a ReLU. A dropout operation is inserted between the two convolutions to reduce the 

dependence on the training dataset. Experiments show that, compared with a network trained 

without dropout strategy, the network with dropout strategy can generate more discriminative 

features and achieve more accurate segmentation results. A dropout rate of 0.2 is used following 

the analysis on the dropout effect in CNN [130]. We also apply batch normalization to speed up 

and stabilize the training process and a 2×2×2 max pooling layer with stride 2 for down-

sampling after every two convolutional layers. At each down-sampling step we double the 

number of feature channels. Every step in the expansive path consists of an up-sampling of the 

feature map followed by a 2×2×2 up convolution that halves the number of feature channels, a 

concatenation with the corresponding feature map from the contracting path, and two 3×3×3 

convolutions, each followed by a ReLU. The output layer is a 1×1×1 convolution layer with 
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sigmoid activation used to generate the segmentation mask for each modality. In total the 

network has 12 convolutional layers and 1.4 million parameters. 
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Table 6.2. 3D segmentation network architecture. 

 

6.2.4.3 Post-operation 

The prediction results of the IVD segmentation usually contain continuous intensity 

values rather than a static value set (0 and 255). However, those continuous values cannot 

represent either an IVD voxel or the background. As a result, the final segmentation mask for 

each IVD would be obtained through a binary thresholding with a threshold of 0.5. Then the 

small IVD models are assembled back to the 3D volumes of the lower spine based on the 

location information of the IVD centers obtained from 6.2.4.1. 

 

6.2.5 Training 

The input images and their corresponding segmentation maps are used to train the deep 

learning networks. Both the 2D and the 3D networks in the present work are implemented in 

python with Keras [131] and Tensorflow [132] as the backend. To minimize the overhead and 

make maximum use of the GPU memory, the batch size is set to 1 for the 3D network and 16 for 

the 2D network. The models are trained on a PC with an 8-core 3.4GHz CPU and a single 

NVIDIA GTX Titan Xp GPU. The training time of a single epoch takes about 3 seconds in the 

3D model and 45 seconds in the 2D model. Eventually, the validation loss will stop increasing at 

around 10000 epochs for the 3D model and 500 epochs for the 2D model before overfitting.  

In deep networks with many convolutional layers and different paths through the network, a 

good initialization of the weights is extremely important. Otherwise, parts of the network might 

give excessive activations, while other parts never contribute. The convolutional kernels of our 

networks are initialized with the He initialization [133] in order to speed up the training process. 
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For updating the parameters in the networks, we employ the Adam optimization algorithm [135], 

which has been popularized in the field of stochastic optimization due to its fast convergence 

compared to other optimization functions. The learning rate is set to 1e-5 for accurate predictions 

and reasonable training time. The energy function is computed by the Dice-coefficient loss 

function defined as: 

𝐸 =
2×𝐼+𝑆

∑𝑇+∑𝑃+𝑆
                             (6.2.2) 

where T stands for the ground truth label and P for the prediction. I is the number of true 

positives calculated by the number of intersection pixels between T and P. S is a smoothing 

factor with a value of 1. 

 

6.2.6 Evaluation Metrics 

To evaluate the segmentation performance, two metrics from the 2015 MICCAI 

Challenge are adopted: 

• Dice overlap coefficient (DOC) 

DOC reveals the similarity between the segmentation result and the ground truth 

annotation. More specifically, DOC measures the rate of correctly segmented voxels 

by 

𝐷𝑂𝐶 =
2×|𝑋∩𝑌|

|𝑋|+|𝑌|
                     (6.2.3) 

where X denotes the set of voxels in the ground truth segmentation mask and Y 

denotes the set of voxels predicted by the neural network. A larger DOC score 

indicates more accurate segmentation result. 
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• Hausdorff distance (HD) 

HD measures how far two metric spaces are from each other. Usually, it can be used 

to judge the similarity between two surface meshes. We compute HD for the 

surfaces reconstructed from the ground true segmentation mask and the 

segmentation result. The surfaces are generated using Iso2Mesh [136] from binary 

segmentation masks. The HD is computed as the closest distance from each vertex 

on the source surface mesh to the target surface mesh. In contrast to DOC, a smaller 

HD indicates better segmentation performance. 

 

6.2.7 Experimental Results 

From Section 6.2.1, we concluded that the fat and in-phase image modalities have lower 

absolute Weber contrast than the opposed-phase and water image modalities. In order to analyze 

the influence of the image modalities to the performance of IVD segmentation, we mean to train 

our 3D neural network on 4 different configurations of modality combination: 

1) Full-modality (4 modalities) 

2) Water, opposed-phase, and fat modalities (in-phase modality excluded) 

3) Water, opposed-phase, and in-phase modalities (fat modality excluded) 

4) Opposed-phase and water modalities (in-phase and fat modalities excluded) 

The generated performance for different modality combination is listed in Table 6.2 as below. 

The experimental results reveal that the network trained on the full-modality dataset has the 

lowest DOC score, which indicates the worst performance in the segmentation task. On the other 
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hand, the 3D image dataset which consists of the water, opposed-phase, and fat modalities 

produces the best outcome. Moreover, from the reconstructed 3D models with different modality 

configuration (Figure 6.5), the combination of opposed-phase, water, and fat modalities 

obviously can get rid of a few extra bad estimated pieces when compared with the ground truth. 

Based on what we have found, the rest of section will focus on discussing the results generated 

using the second combination of modalities that are water, opposed-phase, and fat modalities. 

Modality Combination DOC ± STD 

opp, wat, fat and inn 87.9 ± 1.7 

opp, wat and fat 89.0 ± 1.4 

opp, wat and inn 88.0 ± 1.6 

opp and wat 88.5 ± 1.6 

 

Table 6.3. Performance analysis of 3D segmentation using different combinations of image 

modalities. 
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Figure 6.4. Training 3D U-Net based on: 1) full-modality (left) 2) opp, wat, fat modalities 

(middle) 3) ground truth (right). 

 

For the 2D-Unet, using the sliced images of the spine volume from three different 

directions could yield various accuracies. Table 6.3 lists the corresponding prediction 

performances based on the datasets obtained by partitioning the augmented spine columns from 

X-axis, Y-axis, and Z-axis, respectively. Additionally, we overlap the models generated from the 

three directions and take half of the maximum value, which is 127.5, as the threshold to 

distinguish the IVDs and the background. From Table 6.3, it’s noted that the results using the 

dataset sliced from Y-axis have a higher mean accuracy than the results using the data from the 

other two directions. Also, the standard deviation (STD) of the intensity on X-axis is the 

smallest. Furthermore, using the average intensity from all directions will not improve the 

outcomes. 
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Direction Mean DOC ± STD 

X-axis 79.4 ± 1.0 

Y-axis 81.8 ± 1.3 

Z-axis 77.3 ± 6.7 

Merged 80.0 ± 1.5 

 

Table 6.4. Segmentation performance of 2D U-Net trained with images sliced from 

different directions (X-, Y-, Z-axis). 

 

Combining Table 6.2 and Table 6.3, we observe that the 3D network achieves a much 

better result compared with the 2D version. Figure 6.6 gives a more comprehensive visualization 

of the comparison between the results generated by the 2D network and the 3D network. It also 

has verified that the conjunction relationship information between adjacent slices can contribute 

to enhance the efficiency of neural network and improve the accuracy of the prediction result. 
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Figure 6.5. A comparison between the 2D and 3D methods. The images from leftmost column to 

rightmost column are respectively source images, ground truths, 2D prediction results, 3D 

prediction results, and merged contours of all results. 
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Moreover, to evaluate the performance of the proposed methods, we also compare the 

segmentation results achieved by our methods with those by 3D U-Net [113], the CNN-based 

team UNICHK [112] and the winning team UNIJLU [136] of the 2015 MICCAI Challenge. 

Quantitative results evaluated with the different methods are presented in Table 6.4. The mean 

DOC score obtained by our 3D method is 89.0% with a standard deviation (STD) of 1.4%. We 

bring a 1.5% boost comparing to the conventional 3D U-Net by training our network on 3D 

image patches using image modalities of opposed-phase, water and fat. But it is still 2.5% behind 

the state-of-the-art performance achieved by team UNIJLU. The mean HD of our 3D method 

achieves 0.8 mm with a standard deviation of 0.3 mm, which indicates that our method is slightly 

better when the segmentation results are reconstructed to 3D models. The strength of deep 

learning methods is the computation time. The Theano-based implementation of 3D U-Net from 

UNICHK takes 3.1 s to process one 40 × 512 × 512 volume. Our network is implemented based 

on Tensorflow and it takes about 0.5 s to segment all the IVDs in a 36 × 256 × 256 input volume. 

Overall, the computation time of our end-to-end segmentation is about 10 seconds, including 

localization, preprocessing, segmentation and postprocessing, whereas it takes 5 min on average 

to segment all IVDs for a patient by UNIJLU. It is also worth mentioning that the training dataset 

used in our study only contains data from 6 patients while UNICHK and UNIJLU have access to 

a training dataset from 16 patients i.e. our network is able to learn the 3D geometric 

morphometrics of IVDs with much less data. 

To explore the effectiveness of data augmentation in training a neural network, we 

conducted experiments by training our 3D network with and without the proposed data 

augmentation method. The results do not suggest obvious differences in terms of DOC and HD. 

However, we found that data augmentation enables the network to learn more details in the 
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boundary area. More specifically, segmentation results are improved in the regions between an 

IVD and the adjacent vertebral body. Detailed examples are given in Figure 6.7, the regions well 

segmented by our 3D network trained with augmented dataset are marked by the red boxes. 

Segmentation on the regions with sharp boundaries is a difficult task for convolutional kernels 

since most of convolutional neural networks tend to predict smooth contour. The core of an IVD 

is composed of a jelly-shape material and the smooth elastic deformation technique from the data 

augmentation techniques mimics the deformation of IVDs from the real world and enriches the 

training dataset with more morphological features. This makes U-Net more capacity to deal with 

unseen IVD data and make a better prediction. 

Method Mean DOC ± STD Mean HD ± STD 

Conventional 3D U-Net 87.5 ± 0.9 1.1 ± 0.2 

UNICHK 88.4 ± 3.7 1.3 ± 0.2 

UNIJLU 91.5 ± 2.3 1.1 ± 0.2 

Our 3D Network 89.0 ± 1.4 0.8 ± 0.3 

Our 2D Network 81.8 ± 1.3 2.4 ± 1.0 

 

Table 6.5. Segmentation result evaluation of the conventional 3D U-Net, UNICHK, UNIJLU, 

and our methods. 
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Figure 6.6. Effective analysis of data augmentation. 

 

6.3 Porous Intervertebral Disc 

In Section 6.2, we have successfully segmented the IVDs out from a spine column. Here 

we are trying to fabricate porous structures based on each of these segmented IVDs using 

different porous design methods. As an example, a complete set of IVDs retrieved from a spine, 

which is randomly selected from the given spine dataset (refer to Section 6.2.1), is shown in 

Figure 6.8. And the 7th and the 8th IVDs are displayed in a zoom-in view. 
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Figure 6.7. Segmented IVDs from spine column. 

 

Now the three porous design approaches that are proposed in Section 3-5 respectively are 

independently applied to of the 7th IVD of the reconstructed 3D IVD set (Figure 6.8). The 
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surface type of P surface is selected for all these methods for better presentation. And for 

different approaches, the optimal parameters, including threshold and shape parameter etc., are 

automatically deployed to demonstrate the best results. For more details of how to configure the 

parameters, you can refer to each of previous chapters. 

1) Parameterized hexahedral mesh and TPMS (Section 3) 

 

(a) Front view 
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                               (b) Side view                                                 (c) Oblique view 

Figure 6.8. Different views of porous IVD generated by using the parameterization method. 

 

2) Tetrahedral implicit surface (Section 4) 
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(a) Front view 

 

                (b) Side view                                                        (c) Oblique view 

Figure 6.9. Different views of porous IVD generated by using the TIS method. 
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3) Anisotropic radial basis function (Section 5) 

 

(a) Front view 
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               (b) Side view                                                      (c) Oblique view 

Figure 6.10. Different views of porous IVD generated by using the ARBF method. 
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Chapter 7 

 

Conclusion 

 

 

As one of the most prevalent health problems amongst the world’s population, low back 

pain (LBP) seriously affects people’s work performance and well-being. Intervertebral disc 

degeneration has been seen as the major cause of LBP by various clinical reports. In addition to 

severe pain in the region of lumbar area, disk disease can cause pain in necks which may lead to 

splitting headache. Disc replacement has become a significant tool to help patients relieve from 

long-term pain in the lumbar and neck. To manufacture high-quality disc scaffold, the 

interconnected porous structure plays a crucial role in nutrients transportation and cell migration. 

In this article, three innovative porous design methods are introduced to fabricate bio-functional 

artificial disc scaffold through 3D printing. The first approach applies TPMS on the 

parameterized volumetric mesh and the second one creates implicit surface based on tetrahedral 

elements. The two methods both take advantages of implicit surface modeling to build repetitive 

minimal surface from basic units. The last method sufficiently considers the connectivity along a 

directional path in the usage of radial basis functions. Meanwhile, the 3D reconstruction of 

intervertebral discs from MR images is also incorporated to the pipeline of contrasting porous 

disc scaffolds. Finally, an artificial disc scaffold that can be used in the clinic could be 

manufactured by reading through the entire article. 
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[59]. G.P. Paill é, P. Poulin. As-conformal-as-possible discrete volumetric mapping. Computer 

and Graphics, 35(5), 427-433 (2012). 

[60]. S. Han, J. Xia, Y. He. Constructing hexahedral shell meshes via volumetric polycube 

maps. Computer-Aided Design, 43(10), 1222-1233 (2011). 

[61]. T. Martin, E. Cohen. Volumetric parameterization of complex objects by respecting 

multiple materials. Computers and Graphics, 34(3), 187-197 (2010). 

[62]. M. Li, S. Liao, R. Tong. Facial hexahedral mesh transferring by volumetric mapping 

based on harmonic fields. Computers and Graphics, 35(1), 92-98 (2011). 

[63]. J. Li, G. Lu. Customizing 3D garments based on volumetric deformation. Computers in 

Industry, 62(7), 693-707 (2011). 

[64]. K. Crane, C. Weischedel, M. Wardetzky. A new approach to computing distance based 

on heat flow. ACM Transactions on Graphics (TOG), 32(5) (2013). 

[65]. S. Dong, S. Kircher, M. Garland. Harmonic functions for quadrilateral remeshing of 

arbitrary manifolds. Computer Aided Geometric Design, 22(5), 392-423 (2005). 

[66]. B. Li, H. Qin. Feature-Aware Reconstruction of Volume Data via Trivariate Splines. 

Pacific Graphics Short Papers, 049-054 (2011). 

[67]. X. Wang, X. Qian. An optimization approach for constructing trivariate B-spline solids. 

Computer-Aided Design, 46, 179-191 (2014). 

[68]. Y. Bai, D. Wang. On the Comparison of Trilinear, Cubic Spline, and Fuzzy Interpolation 

Methods in the High Accuracy Measurements. IEEE Transactions on Fuzzy Systems, 18(5), 

1016-1022 (2010). 

[69]. TetGen. Research Group: Numerical Mathematics and Scientific Computing Weierstrass 

Institute for Applied Analysis and Stochastics (WIAS). Berlin, Germany. <http://wias-

berlin.de/software/index.jsp?id=TetGen&lang=1> 

[70]. P. George, P. Frey. Mesh Generation: Application to Finite Elements, 2nd edition. Wiley, 

2013. 

http://wias-berlin.de/software/index.jsp?id=TetGen&lang=1
http://wias-berlin.de/software/index.jsp?id=TetGen&lang=1


122 

 

[71]. Q. Du, V. Faber, M. Gunzburger. Centroidal Voronoi Tesselations: Applications and 

Algorithms. SIAM Review, 41(4), 637676 (1999). 

[72]. G. Miller, D. Talmor, S. Teng, N. Walkington, H. Wang. Control Volume Meshes using 

Sphere Packing: Generation, Refinement and Coarsening. 5th International Meshing 

Roundtable, Pittsburgh PA, 1996. 

[73]. P. Chew. Guaranteed-Quality Delaunay Meshing in 3D. SCG '97 Proceedings of the 

thirteenth annual symposium on Computational geometry, 274-280 (1997). 

[74]. P. Alliez, D. Cohen-Steiner, M. Yvinec, M. Desbrun. Variational Tetrahedral Meshing. 

ACM Transactions on Graphics, 24(3), 617625 (2005). 

[75]. W. Choi, D. Kwak, I. Son, Y. Im. Tetrahedral Mesh Generation based on Advancing 

Front Technique and Optimization Scheme. International Journal for Numerical Methods in 

Engineering, 58, 18571872 (2003). 

[76]. N. Molino, R. Bridson, J. Teran, R. Fedkiw. A Crystalline, Red Green Strategy for 

Meshing Highly Deformable Objects with Tetrahedra. 12th International Meshing 

Roundtable, 103-114 (2003). 

[77]. A. Fuchs. Automatic Grid Generation with Almost Regular Delaunay Tetrahedra. 7th 

International Meshing Roundtable, 133-148 (1998). 

[78]. Y. Ito, A.M. Shih, B.K. Soni. Octree-based Reasonable-quality Hexahedral Mesh 

Generation using a New Set of Refinement Templates. International Journal for Numerical 

Methods in Engineering, 77, 1809–1833 (2009). 

[79]. J. Wang, Z. Yu, Feature-sensitive tetrahedral mesh generation with guaranteed quality. 

Computer-Aided Design, 44(5), 400–412 (2012). 

[80]. Z. Gao, Z. Yu, M. Holst. Quality tetrahedral mesh smoothing via boundary-optimized 

delaunay triangulation. Computer Aided Geometric Design, 29(9), 707-721 (2012). 

[81]. A. Fogden, S.T. Hyde. Parametrization of triply periodic minimal surfaces. I. 

mathematical basis of the construction algorithm for the regular class. Acta 

Crystallographica, 48(4), 11–12 (1992). 

[82]. H. Chen, Y. Guo, R. Rostami, S. Fan, K. Tang, Z. Yu. Porous Structure Design Using 

Parameterized Hexahedral Meshes and Triply Periodic Minimal Surfaces. Proceedings of 

Computer Graphics International 2018 (CGI 2018), 117-128 (2018). 

[83]. J. Wang, G. Liu. On the optimal shape parameters of radial basis functions used for 2-D 

meshless methods. Computer Methods in Applied Mechanics and Engineering, 191(23-24), 

2611–2630 (2002). 

[84]. E. Divo, A. Kassab. An efficient localized RBF meshless method for fluid flow and 

conjugate hear transfer. ASME Journal of Heat Transfer, 129(2), 124–136 (2006). 

[85]. G. Kosec, B. Sarler. Local RBF collocation method for darcy flow. Computer Modeling 

in Engineering and Sciences, 25, 197–208 (2008). 

https://imr.sandia.gov/papers/imr12.html
https://imr.sandia.gov/papers/imr12.html
https://imr.sandia.gov/papers/imr12.html
https://imr.sandia.gov/papers/imr12.html


123 

 

[86]. B. Sarler, R. Vertnik. Meshfree explicit local radial basis function collocation method for 

diffusion problems. Computers and Mathematics with Applications, 51(8), 1269–1282 

(2006). 

[87]. R. Vertnik, B. Sarler. Meshless local radial basis function collocation method for 

convective-diffusive solid-liquid phase change problems. International Journal of Numerical 

Methods for Heat and Fluid Flow, 16(5), 617–640 (2006). 

[88]. R. Vertnik, B. Sarler. Solution of incompressible turbulent flow by a mesh-free method. 

Computer Modeling in Engineering and Sciences, 44(1), 65–95 (2009). 

[89]. Nikolett Bereczky, Amalia Duch, Krisztián Németh, Salvador Roura. Quad-K-d Trees. 

Latin American Symposium on Theoretical Informatics, 743-754 (2014). 

[90]. J. Carballido-Gamio, S. Belongie, S. Majumdar. Normalized cuts in 3-d for spinal MRI 

segmentation. IEEE Transactions on Medical Imaging, 23(1), 36–44 (2004). 

[91]. S. Huang, Y. Chu, S. Lai, C.L. Novak. Learning-based vertebra detection and iterative 

normalizedcut segmentation for spinal MRI. IEEE Transactions on Medical Imaging, 

28(10), 1595–1605 (2009). 

[92]. C. Chevrefils, F. Cheriet, C. Aubin, G. Grimard. Texture analysis for automatic 

segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Transactions 

on Information Technology in Biomedicine, 13(4), 608–620 (2009) . 

[93]. S.K. Michopoulou, L. Costaridou, E. Panagiotopoulos, R. Speller, G. Panayiotakis, A. 

Todd-Pokropek. Atlas-based segmentation of degenerated lumbar intervertebral discs from 

MR images of the spine. IEEE Transactions Biomedical Engineering, 56(9), 2225–2231 

(2009). 

[94]. S. Ghosh, R.S. Alomari, V. Chaudhary, G. Dhillon. Computer-aided diagnosis for lumbar 

MRI using heterogeneous classifiers. 2011 IEEE International Symposium on Biomedical 

Imaging: From Nano to Macro, Chicago IL (2011). 

[95]. S. Seifert, I. Wächter, Rüdiger Dillmann. Segmentation of Intervertebral Discs Trachea 

and Spinal Cord from MRI Images. International Journal of Computer Assisted Radiology 

and Surgery (2006). 

[96]. A. Neubert, J. Fripp, S. Chandra, S. Engstrom, S. Crozier, S. Automated intervertebral 

disc segmentation using probabilistic shape estimation and active shape models. 

Computational Methods and Clinical Applications for Spine Imaging (CSI 2015), 150-158 

(2016). 

[97]. B. Glocker, J. Feulner, A. Criminisi, D.R. Haynor, E. Konukoglu. Automatic localization 

and identification of vertebrae in arbitrary field-of-view CT scans. Medical Image 

Computing and Computer-Assisted Intervention (MICCAI 2012), 590–598 (2012). 

https://link.springer.com/conference/latin
https://www.researchgate.net/scientific-contributions/30065202_I_Waechter
https://www.researchgate.net/profile/Ruediger_Dillmann
https://www.researchgate.net/journal/1861-6410_International_Journal_of_Computer_Assisted_Radiology_and_Surgery
https://www.researchgate.net/journal/1861-6410_International_Journal_of_Computer_Assisted_Radiology_and_Surgery


124 

 

[98]. B. Glocker, E. Konukoglu, D. Haynor. Random forests for localization of spinal 

anatomy. Medical Image Recognition, Segmentation and Parsing: Methods, Theories and 

Applications, 94–110 (2016). 

[99]. Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, D. Comaniciu. Four-chamber heart 

modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space 

learning and steerable features. IEEE Transactions on Medical Imaging, 27(11), 1668–1681 

(2008). 

[100]. M.B. Kelm, M. Wels, K.S. Zhou, S. Seifert, M. Suehling, Y. Zheng, D. Comaniciu. Spine 

detection in CT and MR using iterated marginal space learning. Medical Image Analysis, 

17(8), 1283–1292 (2013). 

[101]. C. Chen, D. Belavy, W. Yu, C. Chu, G. Armbrecht, M. Bansmann, D. Felsenberg, G. 

Zheng. Localization and segmentation of 3d intervertebral discs in MR images by data 

driven estimation. IEEE Transactions on Medical Imaging, 34(8), 1719–1729 (2015). 

[102]. Z. Wang, X. Zhen, K. Tay, S. Osman, W.M. Romano, S. Li. Regression segmentation for 

M(3) spinal images. IEEE Transactions on Medical Imaging, 34(8), 1640–1648 (2014). 

[103]. Y. Cai, S. Osman, M. Sharma, M. Landis, S. Li. Multi-modality vertebra recognition in 

arbitrary view using 3d deformable hierarchical model. IEEE Transactions on Medical 

Imaging, 34(8), 1676–1693 (2015). 

[104]. H. Chen, C. Shen, J. Qin, D. Ni, L. Shi, J.C. Cheng, P.A. Heng. Automatic localization 

and identification of vertebrae in spine CT via a joint learning model with deep neural 

networks. International Conference on Medical Image Computing and Computer-Assisted 

Intervention, 515–522 (2015). 

[105]. H. Chen, Q. Dou, X. Wang, J. Qin, J.C. Cheng, P.A. Heng. 3D fully convolutional 

networks for intervertebral disc localization and segmentation. International Conference on 

Medical Imaging and Virtual Reality, 375–382 (2016). 

[106]. K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. 

Rueckert, B. Glocker. Efficient multi-scale 3D CNN with fully connected CRF for accurate 

brain lesion segmentation. Medical Image Analysis, 36, 61–78 (2017). 

[107]. G. Zeng, G. Zheng. DSMS-FCN: A deeply supervised multi-scale fully convolutional 

network for automatic segmentation of intervertebral disc in 3D MR images. Computational 

Methods and Clinical Applications in Musculoskeletal Imaging (MSKI 2017), 148-159 

(2018). 

[108]. X. Li, Q. Dou, H. Chen, C.W. Fu, X. Qi, D.L. Belavý, G. Armbrecht, D. Felsenberg, G. 

Zheng, P.A. Heng. 3D multi-scale FCN with random modality voxel dropout learning for 

Intervertebral Disc Localization and Segmentation from Multi-modality MR Images. 

Medical Image Analysis, 45, 41-54 (2018). 

https://link.springer.com/book/10.1007/978-3-319-74113-0
https://link.springer.com/book/10.1007/978-3-319-74113-0
https://www.ncbi.nlm.nih.gov/pubmed/?term=Belav%C3%BD%20DL%5BAuthor%5D&cauthor=true&cauthor_uid=29414435


125 

 

[109]. H. Dong, G. Yang, F. Liu, Y. Mo, and Y. Guo. Automatic Brain Tumor Detection and 

Segmentation Using U-Net Based Fully Convolutional Networks. Annual Conference on 

Medical Image Understanding and Analysis, 506-517 (2017).  

[110]. X. Li, H. Chen, X. Qi, Q. Dou, C. Fu, and P. A. Heng. H-DenseUNet: Hybrid Densely 

Connected UNet for Liver and Tumor Segmentation from CT Volumes. IEEE Transactions 

on Medical Imaging, 37(12), 2663-2674 (2018).  

[111]. W. Yao, Z. Zeng, C. Lian, and H. Tang. Pixel-wise regression using U-Net and its 

application on pansharpening. Neurocomputing, 312, 364-371 (2018).  

[112]. H. Chen, Q. Dou, X. Wang, P. A. Heng. Deepseg: Deep segmentation network for 

intervertebral disc localization and segmentation. Proc. 3rd MICCAI Workshop & Challenge 

on Computational Methods and Clinical Applications for Spine Imaging (2015).  

[113]. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3D U-Net: 

learning dense volumetric segmentation from sparse annotation. International Conference on 

Medical Image Computing and Computer-Assisted Intervention, 424-432 (2016).  

[114]. S. Kim, W. Bae, K. Masuda, C. Chung, and D. Hwang. Fine-grain segmentation of the 

intervertebral discs from MR spine images using deep convolutional neural networks: BSU-

Net. Applied Sciences, 8(9), 1656 (2018).  

[115]. J. Dolz, C. Desrosiers, and I. B. Ayed. IVD-Net: Intervertebral disc localization and 

segmentation in MRI with a multi-modal Unet. arXiv preprint arXiv:1811.08305 (2018).  

[116]. Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated 

residual transformations for deep neural networks. CVPR 2017. 

[117]. J.T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, R.G. 

Gonzalez, S.R. Pomerantz. DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-

level Designation, and Spinal Stenosis Grading Using Deep Learning. arXiv preprint 

arXiv:1807.10215 (2018).  

[118]. C. Chen, D. Belavy, and G. Zheng. 3D intervertebral disc localization and segmentation 

from MR images by data-driven regression and classification. International Workshop on 

Machine Learning in Medical Imaging, 50-58 (2014).  

[119]. D.G. Pelli, P. Bex. Measuring contrast sensitivity. Vision Research, 90, 10-14 (2013).  

[120]. Agnieszka Mikołajczyk, Michał Grochowski. Data augmentation for improving deep 

learning in image classification problem. 2018 International Interdisciplinary PhD 

Workshop (IIPhDW), Swinoujście, Poland (2018). 

[121]. L. Engstrom, D. Tsipras, L. Schmidt, A. Madry. A Rotation and a Translation Suffice: 

Fooling CNNs with Simple Transformations. 2017 International Conference on Learning 

Representations (2017). 

https://ieeexplore.ieee.org/author/37085897344
https://ieeexplore.ieee.org/author/37085704280
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8381251
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8381251


126 

 

[122]. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Networks. 

arXiv preprint arXiv:1406.2661 (2014). 

[123]. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, W. Shi. Photo-

realistic single image super-resolution using a generative adversarial network. arXiv preprint 

arXiv:1609.04802 (2016). 

[124]. H. Wu, S. Zheng, J. Zhang, K. Huang. Gp-gan: Towards realistic high-resolution image 

blending. arXiv preprint arXiv:1703.07195 (2017). 

[125]. S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee. Generative adversarial 

text to image synthesis. arXiv preprint arXiv:1605.05396 (2016). 

[126]. A. A. Efros, W. T. Freeman. Image quilting for texture synthesis and 

transfer. Proceedings of the 28th annual conference on Computer graphics and interactive 

techniques, 341-346 (2001). 

[127]. J. Jin, A. Dundar, E. Culurciello. Robust convolutional neural networks under adversarial 

noise. arXiv preprint arXiv:1511.06306 (2015). 

[128]. Brandon J. Whitcher, Volker J. Schmid, Andrew J. Thornton. Working with the DICOM 

and NIfTI Data Standards in R. Journal of Statistical Software, 44(6), 11173 (2011). 

[129]. G. Zheng, C. Chu, D. L. Belavý, B. Ibragimov, R. Korez, T. Vrtovec, and H. Hutt et al. 

Evaluation and comparison of 3D intervertebral disc localization and segmentation methods 

for 3D T2 MR data: A grand challenge. Medical image analysis, 35, 327-344 (2017).  

[130]. S. Park, and N. Kwak. Analysis on the dropout effect in convolutional neural networks. 

Asian Conference on Computer Vision, 189-204 (2016).  

[131]. F. Chollet et al. Keras. chollet2015keras, <https://keras.io>.  

[132]. S. S. Girija. Tensorflow: Large-scale machine learning on heterogeneous distributed 

systems, 2016.  

[133]. K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. Proceedings of the IEEE international 

conference on computer vision, 1026-1034 (2015).  

[134]. D. P. Kingma, and J. Ba. Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980 (2014).  

[135]. Q. Fang, D. A. Boas. Tetrahedral mesh generation from volumetric binary and grayscale 

images. Biomedical Imaging: From Nano to Macro, ISBI'09, IEEE International 

Symposium, 1142-1145 (2009).  

[136]. R. Korez, B. Ibragimov, B. Likar, F. Pernuš, T. Vrtovec. Deformable model-based 

segmentation of intervertebral discs from MR spine images by using the SSC descriptor. 

https://arxiv.org/search/stat?searchtype=author&query=Goodfellow%2C+I+J
https://arxiv.org/search/stat?searchtype=author&query=Pouget-Abadie%2C+J
https://arxiv.org/search/stat?searchtype=author&query=Mirza%2C+M
https://arxiv.org/search/stat?searchtype=author&query=Xu%2C+B
https://arxiv.org/search/stat?searchtype=author&query=Warde-Farley%2C+D
https://arxiv.org/search/stat?searchtype=author&query=Warde-Farley%2C+D
https://arxiv.org/search/stat?searchtype=author&query=Ozair%2C+S
https://arxiv.org/search/stat?searchtype=author&query=Courville%2C+A
https://arxiv.org/search/stat?searchtype=author&query=Bengio%2C+Y
https://www.semanticscholar.org/author/Brandon-J.-Whitcher/2275891
https://www.semanticscholar.org/author/Volker-J.-Schmid/2216394
https://www.semanticscholar.org/author/Andrew-J.-Thornton/49791531
https://keras.io/


127 

 

International Workshop on Computational Methods and Clinical Applications for Spine 

Imaging, 117-124 (2015). 

[137]. P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. 

Ranzuglia. MeshLab: An Open-Source Mesh Processing Tool. Sixth Eurographics Italian 

Chapter Conference, 129-136 (2008). 

[138]. D. Yoo. Heterogenous minimal surface porous scaffold design using the distance field 

and radial basis functions. Medical Engineering and Physics, 34, 625-639 (2012). 

[139]. F.J. O’Brien. Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88-

95 (2011). 

[140]. A.I. Bokenko, B.A. Springborn. A discrete Laplace-Beltrami operator for simplicial 

surfaces. Discrete and Computational Geometry, 38(4), 740-756 (2007). 

[141]. T. Caissard, D. Coeurjolly, J.O. Lachaud, T. Roussillon. Heat kernel Laplace-Beltrami 

operator on digital surfaces. International Conference on Discrete Geometry for Computer 

Imagery, 241-253 (2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 

 

 

 

 

 

Appendix 

 

[1] Huawei Chen*, Ye Guo*, Reihaneh Rostami, Shuqian Fan, Kanglai Tang, and Zeyun Yu, 

"Porous Structure Design Using Parameterized Hexahedral Meshes and Triply Periodic Minimal 

Surfaces”, Proceedings of Computer Graphics International 2018 (CGI 2018), Bintan, Island, 

Indonesia, ACM, pages 117-128, 2018. 

[2] Ye Guo, Ke Liu, and Zeyun Yu, "Porous Structure Design in Tissue Engineering Using 

Anisotropic Radial Basis Functions", International Symposium on Visual Computing (ISVC 2018), 

Las Vegas, LNCS 11241, pages 79-90, 2018. 

[3] Ye Guo, Ke Liu, and Zeyun Yu, "Tetrahedron-Based Porous Scaffold Design for 3D Printing", 

Designs 3(1), page 16, 2019. 

[4] Chuanbo Wang, Ye Guo, and Zeyun Yu, "Fully Automatic Intervertebral Disc Segmentation 

Using Multimodal 3D U-Net", 2019 IEEE Computer Society Signature Conference on Computers 

(COMPSAC 2019). (Accepted) 

 

 

 

 



129 

 

 

 

 

Curriculum Vitae 

 

Ye Guo 

Place of birth: Huanggang, Hubei, China PRC 

Education: 

B.S., Wuhan University, June 2012 

Major: Software Engineering 

B.S., University of Wisconsin – La Crosse, May 2012 

Major: Software Engineering 

M.S., University of Wisconsin – La Crosse, Aug 2013 

Major: Software Engineering 

Dissertation Title: CAD-based Porous Intervertebral Disc Scaffold Design in Tissue Engineering 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2019

	CAD-Based Porous Scaffold Design of Intervertebral Discs in Tissue Engineering
	Ye Guo
	Recommended Citation


	tmp.1560862445.pdf.uCyWy

