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ABSTRACT
GRADED MULTIPLICITY IN HARMONIC POLYNOMIALS FROM THE VINBERG

SETTING

by

Alexander Heaton

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Jeb F. Willenbring

We consider a family of examples falling into the following context (first considered by

Vinberg): Let G be a connected reductive algebraic group over the complex numbers. A

subgroup, K, of fixed points of a finite-order automorphism acts on the Lie algebra of G.

Each eigenspace of the automorphism is a representation of K. Let g1 be one of the

eigenspaces. We consider the harmonic polynomials on g1 as a representation of K, which

is graded by homogeneous degree. Given any irreducible representation of K, we will see

how its multiplicity in the harmonic polynomials is distributed among the various graded

components. The results are described geometrically by counting integral points on faces of

a polyhedron. The multiplicity in each graded component is given by intersecting these

faces with an expanding sequence of shells.
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1 Introduction

Consider the representations of a cyclic quiver on r nodes. If r = 12 we have

1

2

3

4

5
6

7

8

9

10

11
12

Recall the definition of a quiver. For each node j, associate a finite-dimensional vector

space Vj. For each arrow j → j + 1 (mod r), associate the space of linear transformations,

Hom(Vj, Vj+1). Set V = V1⊕· · ·⊕Vr, and letK be the block diagonal subgroup ofG = GL(V )

isomorphic to GL(V1)× · · · ×GL(Vr) acting on

p = Hom(V1, V2)⊕ Hom(V2, V3)⊕ · · · ⊕ Hom(Vr−1, Vr)⊕ Hom(Vr, V1).

Here we let GL(U)×GL(W ) act on Hom(U,W ) by (g1, g2) · T = g2 ◦ T ◦ g−1
1 , as usual. For

(T1, . . . , Tr) ∈ p, we have a K-invariant function defined by

trp(T1, . . . , Tr) = Trace [(T1 ◦ · · · ◦ Tr)p] ,

for 1 ≤ p ≤ min{dimVj}. By a result of Le Bruyn and Procesi [5], the trp generate the

K-invariant functions on p. The representations considered in this paper will turn out to be

equivalent to representations of a cyclic quiver, and this result about the invariant functions

will be put to use in finding the decompositions.
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Throughout the paper, the ground field is C. Leaving the cyclic quiver above for a mo-

ment, we recall the the definition of G-harmonic polynomials. Let G denote a linear algebraic

group. Given a regular1 representation, V , of G, we denote the algebra of polynomial func-

tions on V by C[V ], which we define by identifying with Sym(V ∗), the algebra of symmetric

tensors on the dual of V .

The constant coefficient differential operators on C[V ] will be denoted by D(V ), which

we can define by identifying with Sym(V ). The differential operators without a constant

term will be denoted D(V )+, and the G-invariant differential operators will be denoted by

D(V )G. We define

H(V ) =
{
f ∈ C[V ] : ∆f = 0 for all ∆ ∈ D(V )G+

}
to be the G-harmonic polynomial functions. In the case of G = SO3(R) acting on its defin-

ing representation, D(V )G+ is generated by the Laplacian ∂2
x + ∂2

y + ∂2
z and the harmonics

decompose into minimal invariant subspaces, which, when restricted to the sphere, admit

an orthogonal basis, namely the Laplace spherical harmonics familiar from physics [9]. In

that case, decomposing the harmonic polynomials (the subject of this paper) leads to a com-

plete set of orthogonal functions on the sphere, useful in numerous theoretical and practical

applications.

In general, every polynomial function can be expressed as a sum of G-invariant functions

multiplied by G-harmonic functions. That is, there is a surjection

C[V ]G ⊗H(V )→ C[V ]→ 0

obtained by linearly extending multiplication. When is this an isomorphism? That is, when is

each polynomial a unique sum of products of invariants and harmonics? Equivalently, when

is C[V ] a free module over C[V ]G, the algebra of G-invariant functions? For the Laplace

1That is, the morphism G→ GL(V ) is a morphism of complex linear algebraic groups.

2



spherical harmonics this isomorphism holds. All invariants are generated by the squared

Euclidean distance function, and any polynomial can be written uniquely as a product of its

radial and spherical components.

The scalar multiplication of C on V commutes with the action of G. The resulting C×-

action gives rise to gradation on C[V ], which is the usual notion of degree. The G-harmonic

functions inherit this gradation, so we can define Hn(V ) to be the homogeneous G-harmonic

functions of degree n. We have the direct sum of G-representations

H(V ) =
∞⊕
n=0

Hn(V ).

We now assume that G is reductive in the category of linear algebraic groups. Under this

assumption, every regular (hence finite-dimensional) representation of G is completely re-

ducible. Let {Fµ}µ∈Ĝ denote a set of representatives of the irreducible representations of

G.

Problem: For each n, how does Hn(V ) decompose? That is, given µ ∈ Ĝ, what is the

multiplicity of the irrep Fµ inside Hn, denoted

[Fµ : Hn(V )] = ?

Returning to the cyclic quiver above, the K-harmonic functions on p form a graded repre-

sentation of K:

H(p) =
∞⊕
n=0

Hn(p)

The fact that the polynomial functions are a free module over the invariants is a consequence

of the Vinberg theory of θ-groups [10]. Yet, the literature on quivers does not seem to address

the structure of the associated harmonic polynomials.

As a representation of K, the harmonics are equivalent to an induced representation.

For details, see Chapter 3 of Nolan Wallach’s book, entitled Geometric invariant theory over
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the real and complex numbers [12]. Alternatively, see An Analogue of the Kostant-Rallis

Multiplicity Theorem for θ-group Harmonics [11].

1.1 Background from some existing literature

The standard results concerning spherical harmonics on R3 were generalized by Kostant in

his 1963 paper Lie group representations on polynomial rings [3]. This is Kostant’s most

often cited paper. Among many of its results, it establishes that C[g] is a free module over

C[g]G for a connected reductive group G.

To a combinatorialist, a natural thing to do is consider the, indeed polynomial, defined

by the series

pµ(q) =
∞∑
n=0

[Fµ : Hn(V )] qn.

In the 1963 case addressed by Kostant, V = g, the adjoint representation.

These polynomials extract deep information in representation theory. For starters, they

are Kazhdan-Lusztig polynomials for the affine Weyl group [2]. Outside of Kostant’s setting,

very little is known about them.

In the case that g is of Lie type A, then pλ(q) was studied by Richard Stanley in [7].

Later on, connections with Hall-Littlewood polynomials were made [6]. Even combinatorial

interpretations for their coefficients are known. An alternating sum formula was found by

Hesselink in [1].

Then, in 1971, Kostant and Rallis obtained a generalization to the symmetric space

setting in [4]. The Kostant-Rallis setting applies to each symmetric pair (G,K). That is, K

is the fixed point set of a regular involution on a connected reductive group G. A natural

way to generalize is to consider K that are fixed by automorphisms of order larger than two.

Exactly this was done by Vinberg in his 1976 theory of θ-groups, published as The Weyl

group of a graded Lie algebra [10]. Since then, an enormous amount of work has been done

on θ-groups, but the analog of the graded structure of harmonic polynomials still does not
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exist. Taking θ : G → G to be the identity automorphism on G = SO3(R) we have K = G

acting on its Lie algebra g ∼= R3 and we recover the spherical harmonics example.

1.2 The results of this paper

In this paper, we consider an infinite family of examples. For each choice of r ≥ 2 we will

define a Vinberg pair (G,K) where K will be the fixed points of an order r automorphism

θ : G → G for a connected reductive linear algebraic group G over C. As will be described

below, we define a representation of K on a space of polynomial functions P on an eigenspace

of dθ, and so also a representation of K on the space of K-harmonic polynomials H ⊂ P .

As a consequence of Vinberg’s theory of θ-groups, the polynomials will be free over the

invariants and

P = PK ⊗H

Being interested in the structure of H as a K-representation, we will immediately notice

that there is a multi-gradation on H such that each multi-graded component H #»n is itself a

subrepresentation, for each #»n ∈ Nr. So we ask, what is the multiplicity of each K-type Fµ

for µ ∈ K̂ inside any multi-graded component H #»n?

[Fµ : H #»n ] = ?

There are of course many graded componentsH #»n , one for each choice of #»n = (n1, n2, . . . , nr) ∈

Nr. But actually, describing the graded multiplicity of a fixed irrep Fµ will surprisingly be-

come one dimensional, in the sense that all nonzero multiplicity will occur inH #»n for #»n sitting

along a single ray inside Nr (Figure 1.1). This reduction in complexity has the additional

nice property that the ray of nonzero multiplicity is completely determined by the center of

K. It will turn out that the irreps of K can be parametrized by #»z = (z1, . . . , zr−1) ∈ Zr−1

and #»s = (s1, . . . , sr−1, sr) ∈ Nr, where #»z corresponds to the center of K and #»s corresponds

to the semisimple part of K. The central parameter #»z will determine ray( #»z ) ⊂ Nr, and all
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Figure 1.1: Points #»n in ray( #»z ) when r = 3

non-zero multiplicity will occur in H #»n for #»n ∈ ray( #»z ).

How is that non-zero multiplicity distributed along this ray? We give a geometric descrip-

tion of the answer in terms of counting intersection points between the faces of a polyhedron

and a ray of shells Shell(Λ #»n ). First, for each point #»n ∈ ray( #»z ) we will define an array of

points Λ #»n ⊂ Nr and its shell Shell(Λ #»n ) ⊂ Nr, pictured in Figure 1.2. The parameter #»s ∈ Nr

Figure 1.2: Λ(6,5,3) and Shell(Λ(6,5,3))

corresponding to the semisimple part of K will determine the hypersurface S ⊂ Rr, where

S is simply r faces of a certain polyhedron constructed from the parameter #»s ∈ Nr. The

number of intersection points

#
(

Shell(Λ #»n )
⋂
S
)

will count the multiplicity [F #»z , #»s : H #»n ]. The structure ofK shows up nicely in this description

of graded multiplicity, because the center of K determines ray( #»z ), and hence also determines

the entire ray of shells Shell(Λ #»n ) for #»n ∈ ray( #»z ), while the semisimple part of K determines

S. For r = 3 we can actually draw the faces of the polyhedron inside R3. As an example,

the irreducible representation F(5,1),(7,5,4) occurs with multiplicity six in H(6,5,3), and Figure

6



1.3 illustrates the six intersection points between Shell(Λ(6,5,3)) and S. For dimension r > 3,

Figure 1.3: 6 Intersection points between S and Shell(Λ(6,5,3))

despite not being able to draw the polyhedron, the same description of graded multiplicity

holds, namely, the graded multiplicity is given by intersecting Shell(Λ #»n ) with r faces of a

polyhedron.

1.3 Structure of the paper

In Section 2 we describe in detail the infinite family of Vinberg pairs (G,K) considered in this

paper. In Section 3 we describe the irreducible representations of K in terms of parameters

corresponding to the center and semisimple parts of K. In Section 4 we see two explicit

examples of our results for r = 2 and r = 3, including pictures of the hypersurface S and its

intersections with the Shell(Λ #»n ), which count the graded multiplicity. In Section 5 we prove

how a fixed graded component H #»n decomposes into irreps by using character theory. Finally

in Section 6 we connect this decomposition of H #»n to integral geometry and our description

of multiplicity in terms of intersections of the Shell(Λ #»n ) with the hypersurface S, proving

the assertions made for the examples in Section 4.
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2 A specific family of Vinberg pairs

Let G = GL(V ) or SL(V ) for some finite-dimensional vector space V over C. In either case,

we can construct a Vinberg pair (G,K) for each choice r ≥ 2 (since r = 1 corresponds to

the identity automorphism). Thus, we will have two infinite families of examples. However,

regardless of whether we begin with G the general linear or special linear group, the results

will be extremely similar. Therefore we will provide the details for only one family of exam-

ples, those where G = SL(V ). We will provide comments at appropriate places reminding

the reader that the entire story can be worked out almost identically for the general linear

group as well.

To construct a Vinberg pair (G,K = Gθ) we also need a finite-order automorphism θ.

What do these look like? First, simplify the question by considering inner automorphisms.

If we have an inner automorphism of order r, it comes from conjugation by some A ∈ G,

denoted θA sending g 7→ AgA−1. Requiring θrA = 1 forces Ar = λI, the identity transforma-

tion. If Ar = I for some A ∈ G then this forces A to be (up to conjugation) diagonal with

entries from the set of rth roots of unity {1, ζ, ζ2, . . . , ζr−1}. Since we are only concerned

with the automorphism action g 7→ AgA−1, the factor of λ will not affect the fixed points

K = Gθ. Thus, we can take our arbitrary finite-order inner automorphism to be simply:

conjugation by a diagonal matrix A of rth roots of unity, its eigenvalues.

The simplest case is when all eigenvalues of A have multiplicity 1. In this case K = Gθ

is simply the diagonal subgroup isomorphic to (C×)m for some m. It’s irreps are all one-

dimensional and the space of harmonics would decompose into one-dimensional irreps. The

paper would be over too quickly.

The first difficult case is when eigenvalues have multiplicity > 1. In those cases K = Gθ

will be a block diagonal subgroup with blocks equal in size to the multiplicities of each root

8



of unity.

Example. If

A =



ζ

ζ

ζ

ζ3

ζ3


then K = Gθ will be block diagonal with one 3 by 3 block and one 2 by 2 block.

In these cases the irreps of K = Gθ and the corresponding decomposition of the harmonics

become much more interesting and difficult. In this paper we make a first step in this

direction, by considering the inner automorphisms that fix 2 by 2 block diagonal subgroups.

2.1 An infinite family of examples

For each choice r ≥ 2, we construct a Vinberg Pair (G,K) where K is 2 by 2 block diagonal.

Let G = SL2r(C) and define the inner automorphism of order r

θ : G→ G

g 7→ hgh−1

where h is the diagonal 2r by 2r matrix with eigenvalues the rth roots of unity: 1, ζ, . . . , ζr−1,

each with multiplicity 2. The fixed points are exactly the block diagonal subgroup

K = Gθ = S
(
GL2 × · · · ×GL2︸ ︷︷ ︸

r factors

)

of 2 by 2 blocks with overall determinant 1. If we had taken G = GL2r rather than SL2r then

K would have been GL2×· · ·×GL2 without the requirement that the overall determinant be

1. Thus K differs only by one parameter in the center between the two cases. Both choices

9



work out almost identically, so we provide details only for G = SL2r in this paper.

Example. For r = 3 and g ∈ SL6(C) we have

hgh−1 =



1

1

ζ

ζ

ζ2

ζ2


g



1

1

ζ2

ζ2

ζ

ζ


The fixed points are exactly the block diagonal subgroup

K = Gθ = S(GL2 ×GL2 ×GL2)

The automorphism descends to the automorphism dθ on the Lie algebra g, which de-

composes into eigenspaces. Following Vinberg we index the eigenspaces by Z/rZ as g =

g0 ⊕ g1 ⊕ · · · ⊕ gr−1, where g0 denotes the eigenspace with eigenvalue 1 = ζ0, g1 denotes the

eigenspace with eigenvalue ζ1, and so on, where ζ is a primitive rth root of unity. Since G

acts on g via the Adjoint action, then also K acts on g in the same way. By restriction K acts

on each eigenspace. Thus the polynomial functions on each eigenspace yield a representation

of K. For the eigenspace g0, this is simply K acting on its Lie algebra and we are in the

original case described by Kostant in 1963. For any eigenspace g1, . . . , gr−1 Kostant’s theory

does not apply, but Vinberg’s theory does. As can be quickly calculated, each g1, . . . , gr−1 is

isomorphic as a vector space to r copies of the 2 by 2 matrices, so without loss of generality

consider the ζ1-eigenspace

g1 = X1 ⊕ · · · ⊕Xr

where each Xi = Hom(C2,C2).

10



Example. Consider r = 3. If we take an element X ∈ g broken into 2 by 2 blocks

X =


Z1 X1 Y1

Y2 Z2 X2

X3 Y3 Z3


we see the decomposition g = g0 ⊕ g1 ⊕ g2, where

g1
∼= X1 ⊕X2 ⊕X3

We can restrict the Adjoint action of K on g to the eigenspace g1. If we write an arbitrary

element g ∈ K = S(GL2 × GL2 × GL2) as g = (g1, g2, g3) and if X ∈ g1 then we have an

action X 7→ g.X given by

g.X =


g1

g2

g3




X1

X2

X3



g−1

1

g−1
2

g−1
3



=


g1X1g

−1
2

g2X2g
−1
3

g3X3g
−1
1


where X ∈ g1 is X = X1 +X2 +X3 and each of X1, X2, X3 is simply a 2 by 2 matrix.

Definition 1. For each r ≥ 2 let (G,K) be the Vinberg pair defined above where

G = SL2r(C) and K = S
(
GL2 × · · · ×GL2︸ ︷︷ ︸

r factors

)

11



Let P be the space of polynomials on g1, the ζ1-eigenspace of dθ. Define an action

K × P −→ P

(g, f) 7−→ g.f

where

(g.f)(x) = f(g−1x)

This gives a representation of K on P , which we can restrict to the K-harmonic functions

H ⊂ P .

We consider the K-harmonic polynomials H inside P , and because this example falls into

the Vinberg setting [10], we know that every polynomial can be written uniquely as a sum

of invariants times harmonics, i.e. that

P = PK ⊗H

See, for example, the paper by Wallach [11]. The subject of this paper is to ask about the

structure of H as a representation of K, specifically addressing the multi-graded structure

of H, as we will describe presently.

Consider g1 = X1⊕· · ·⊕Xr. Since each Xi is a 2 by 2 matrix, isomorphic to Hom(C2,C2),

we consider homogeneous polynomials of degree ni on each Xi, which we can think of as

polynomials of degree n1 in the four variables coming from X1, degree n2 in the four variables

coming from X2, and so on. Thus we have a multi-gradation on P and hence also on H. We

denote by H #»n the multi-graded component of harmonic polynomials of homogeneous degree

ni onXi, where the subscript labeling the graded componentH #»n is #»n = (n1, n2, . . . , nr) ∈ Nr.

Being interested in the structure of H as a K-representation we immediately observe that

each multi-graded component is invariant, and so we can ask, for any component H #»n , how

does it decompose as a K-representation? We also ask, given an irrep Fµ of K, what is the

12



multiplicity

[Fµ : H #»n ] = ?

for all µ ∈ K̂ and for all #»n ∈ Nr.

Remark: Recall the previous discussion of quivers. Consider the cyclic quiver on r ≥ 2

nodes, where each V1, . . . , Vr is simply C2, so that V ∼= C2r and consider G = SL(V ) ∼=

SL2r(C), so that K is the block diagonal subgroup isomorphic to a product of r copies of

GL2 with overall determinant 1, denoted

K = S
(
GL2 × · · · ×GL2︸ ︷︷ ︸

r factors

)

acting on

p = Hom(C2,C2)⊕ · · · ⊕ Hom(C2,C2)

= X1 ⊕ · · · ⊕Xr

For each r ≥ 2 the representation of K on P constructed above is equivalent to this represen-

tation of a cyclic quiver. Due to a result of Le Bruyn and Procesi [5], all invariant functions

in P are generated by two. Call them

f = trace(X1X2 · · ·Xr)

and

g = trace
(
(X1X2 · · ·Xr)

2
)

We will make use of this in Section 5.2.

13



3 The irreducible representations of K

To describe the multiplicity of each K-type in the various graded components H #»n , we first

must describe all the irreducible representations of K. In Section 3.1 we describe a covering

map ϕ and its kernel, plus make some necessary definitions and notation. In 3.2 we see

which irreducible representations of a covering group K̃ factor through

ϕ : K̃ → K

to become irreps of K as well. In 3.3 we will see how the center Z(K) acts on the multi-graded

component P #»n . We will also see that the multiplicity [F #»z , #»s : H #»n ] = 0 for all #»n /∈ ray( #»z ).

In 3.4 we will see that in decomposing H #»n as a representation of K it will be enough to

ignore the central characters and decompose using the semisimple characters alone. All of

these terms will be defined below.

This section is very detailed, but necessary. If you accept that the irreducible represen-

tations of K are denoted F #»z , #»s where #»z ∈ Zr−1 and #»s ∈ Nr subject to a mod 2 condition,

then you may skip to Section 4: Examples, for some nice pictures and motivation.

3.1 The kernel of a covering map

Consider the surjective map

C× × SL2 → GL2

given by sending

(w,

a b

c d

) 7−→

wa wb

wc wd


Every irrep of GL2 pulls back to an irrep of C× × SL2, but C× × SL2 has more irreps.

Another way to say this is that taking the algebraic dual in the category of representations
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of linear algebraic groups with regular matrix coefficients, we have an injection

ĜL2 ↪→ ̂C× × SL2

Definition 2. Since K = S(GLr2) define K̃ = (C×)r−1 × SLr2, then define

ϕ : K̃ → K

given by sending

(w1, . . . , wr−1, g1, . . . , gr−1, gr) 7→ (w1g1, w2g2, . . . , wr−1gr−1, w
−1
1 w−1

2 · · ·w−1
r−1gr)

where wi ∈ C× for i ∈ {1, . . . , r − 1} and gi ∈ SL2 for i ∈ {1, . . . , r}.

Remark: We need the overall determinant to be 1, so we made the arbitrary choice of

multiplying the last factor gr ∈ SL2 by the products of inverses of all the wi.

Example. We give a quick example of the kernel of ϕ, and then prove it in general in the

next Proposition. For r = 3, the kernel of ϕ is the four element set labeled by g(±1,±1) as in

{
g(−1,−1) = (−1,−1,

−1 0

0 −1

 ,

−1 0

0 −1

 ,

1 0

0 1

),

g(1,−1) = (1,−1,

1 0

0 1

 ,

−1 0

0 −1

 ,

−1 0

0 −1

),

g(−1,1) = (−1, 1,

−1 0

0 −1

 ,

1 0

0 1

 ,

−1 0

0 −1

),

g(1,1) = (1, 1,

1 0

0 1

 ,

1 0

0 1

 ,

1 0

0 1

)
}
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Proposition 1. The kernel of ϕ is the set of all tuples

(w1, w2, . . . , wr−1,

w1 0

0 w1

 , . . . ,

wr−1 0

0 wr−1

 ,

∏wi 0

0
∏
wi

)

where each wi ∈ {1,−1} and the product
∏
wi is taken for i ∈ {1, . . . , r − 1}. Denote the

individual elements of the kernel by

g #»w = g(w1,...,wr−1)

Proof. Write an arbitrary element of K̃ (as in Definition 2) as a tuple of wi ∈ C× and

gi ∈ SL2. First we consider i ∈ {1, . . . , r−1}, then we deal with i = r at the end. Requiring

that wigi = I2 is to require

gi =

wiai wibi

wici widi

 =

1 0

0 1


and since wi ∈ C× clearly each bi = ci = 0 and wiai = 1 and widi = 1. Multiplying these

last two expressions together we see that w2
i = 1 since aidi − bici = 1 becomes aidi = 1.

Thus wi ∈ {1,−1}. But then wiai = 1 and widi = 1 imply that wi = ai = di, thus for

i ∈ {1, . . . , r − 1}

gi ∈ {

1 0

0 1

 ,

−1 0

0 −1

}
and wi = −1 if and only if gi = −I2, as required. For gr we have that

w−1
1 w−1

2 · · ·w−1
r−1gr = I2

Since each wi equals 1 or −1, w−1
i = wi, and a similar argument shows that gr can be written

using
∏
wi as claimed. Because there are exactly as many elements in the kernel as choices
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of {1,−1} for each wi, a convenient notation for the elements of the kernel is g #»w where #»w

has each wi ∈ {1,−1}.

We consider irreducible representations of K̃ with matrix coefficients that are regular

functions on the affine variety K̃. These representations are all finite-dimensional. Recall

for the group C× all irreps are one dimensional and the irreducible characters are given for

zi ∈ Z by

wi 7−→ wzii

Also recall that if gi = diag(ui, u
−1
i ) is a parametrization of the maximal torus of SL2 then

the irreducible characters are given by

ui 0

0 u−1
i

 7−→ usi + us−2
i + · · ·+ u−si

for all s ∈ N, where, as we will see, s was chosen for semisimple. Because our representations

are regular, knowing the character on the torus determines the character everywhere. For this

reason when calculating characters we will restrict them to elements of the torus. We denote

these irreducible characters by χs or χs(ui) when we include the choice of toral variable. This

is in contrast to our notational usage of χ to denote the character of a graded component of

the harmonics or of the polynomials, as in χ(P #»n ).

Proposition 2 (Clebsch-Gordan). When we have two irreducible characters of SL2 parametrized

by the same variable, we can expand their product into a sum as follows:

χa(u)χb(u) = χa+b(u) + χa+b−2(u) + · · ·+ χ|a−b|(u)

Proof. This identity is well-known, but briefly, first notice that we can write χa(u) as

ua + ua−2 + · · ·+ u−(a−2) + u−a =
ua+1 − u−a−1

u− u−1
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Then we have the product

χa(u)χb(u) =
(ua+1 − u−a−1

u− u−1

)(
ub + ub−2 + · · ·+ u−b+2 + u−b

)
Distributing and collecting terms in the correct order gives our result.

Recall K̃ = (C×)r−1×SLr2. It’s irreducible representations are standard: they are tensor

products of irreps of C× and SL2.

Definition 3. We parametrize the irreducible representations of K̃ by #»z ∈ Zr−1 and #»s ∈ Nr

and denote them by

F̃ #»z , #»s

where #»z = (z1, . . . , zr−1) and #»s = (s1, . . . , sr). The ∼ on F̃ #»z , #»s simply reminds us we are

talking about irreps of the covering group K̃.

Consider the irreducible characters of these representations. Again, when we evaluate a

character at a group element, we will always restrict to the torus in each SL2 factor. We

will usually choose the variable ui to parametrize the torus of each SL2.

Definition 4. We denote the character of F̃ #»z , #»s evaluated at a group element g ∈ K̃ by

χ #»z , #»s (g) = wz11 · · ·w
zr−1

r−1 χs1(u1) · · ·χsr−1(ur−1)χsr(ur)

where each SL2 factor has been restricted to its torus as in

g = (w1, . . . , wr−1,

u1 0

0 u−1
1

 , . . . ,

ur 0

0 u−1
r

)
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3.2 Parametrizing the irreducible representations of K

The identity element of K must act via the identity transformation in any representation.

So, if an irrep of K̃ is going to factor through ϕ, becoming an irrep of K, we must require

that g #»w ∈ kerϕ act by the identity transformation as well. The character of a group element

acting by identity is equal to the dimension. Thus, the irreps F̃ #»z , #»s that factor through ϕ are

exactly the irreps such that evaluating the character at any g #»w ∈ kerϕ gives the dimension.

Proposition 3. The irreducible representations of K, denoted F #»z , #»s , are parametrized by

#»z ∈ Zr−1 and #»s ∈ Nr such that

r−1∑
i=1

zi +
r∑
i=1

si = 0 (mod 2)

These are exactly the irreps F̃ #»z , #»s of K̃ that factor through ϕ.

Before giving the proof we state a lemma. Recall that χs(w) for w ∈ C× denotes the

irreducible character of an (s + 1)-dimensional SL2 irrep evaluated at the element of the

torus parametrized by w as in

w 0

0 w−1

 7−→ ws + ws−2 + · · ·+ w−s+2 + w−s

Lemma 1. If s is odd

χs(−1) = −(s+ 1)

χs(1) = s+ 1
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and if s is even

χs(−1) = s+ 1

χs(1) = s+ 1

Proof. Direct calculation.

Proof of Proposition 3. Consider the character of an irrep F̃ #»z , #»s of K̃ evaluated at an element

of the kernel g #»w . We have that

χ(g #»w) = wz11 w
z2
2 · · ·w

zr−1

r−1 χs1(w1)χs2(w2) · · ·χsr−1(wr−1)χsr(w1w2 · · ·wr−1)

Recall each wi ∈ {1,−1} since g #»w ∈ kerϕ. Each factor wzii will equal ±1, and each factor

χsi(wi) will equal ±(si + 1), and so this character evaluated on elements of the kernel will

give ± the dimension. Thus, if the irrep F̃ #»z , #»s factors through ϕ then we need to check that

the character is positive, simultaneously for all elements of the kernel. For which irreps does

this happen?

Consider #»z =
#»
0 and #»s =

#»
0 , meaning, consider the irrep F̃ #»

0 ,
#»
0 , where

#»
0 = (0, 0, . . . , 0)

is shorthand for the vector full of zeros. It’s easy to see that χ(g #»w) > 0 for all g #»w ∈ kerϕ

and also that
r−1∑
i=1

zi +
r∑
i=1

si = 0 (mod 2) (3.1)

holds. Now consider, for some fixed i ∈ {1, . . . , r− 1}, changing zi by ±1. For any choice of

g #»w , every factor keeps the same sign, except the factor wzi±1
i which changes sign for any g #»w

with wi = −1. This changes the sign of χ(g #»w), meaning the irrep no longer factors through

ϕ. But also Equation 3.1 now fails to hold. If now we alter yet another zj by ±1, for any

j ∈ {1, . . . , r − 1} including the same factor j = i from before, exactly the reverse happens:

we go from an irrep that fails to factor, to an irrep that succeeds. At the same time Equation

3.1 changes from false to true.
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Similarly, by Lemma 1, altering any si for any i ∈ {1, . . . , r} by adding 1 introduces

elements of the kernel which make the character χ(g #»w) negative, and at the same time

causes Equation 3.1 to change truth value. This works for sr as well. In this way, we can

move from the irrep F̃ #»
0 ,

#»
0 to any irrep of K̃, and so we have shown that Equation 3.1 exactly

records the ability of an irrep to factor through ϕ, proving the Proposition.

3.3 The action of the center on P #»n

In this section we will see how the center Z(K) acts on the multi-graded component P #»n .

We will also see that the multiplicity [F #»z , #»s : H #»n ] = 0 for all #»n /∈ ray( #»z ), which we will

define below.

Definition 5. Recall K = S(GL2 × · · · ×GL2). We choose a parametrization of the center

Z(K) by w1, . . . , wr−1 ∈ C× where an element g ∈ Z(K) is given by

g = (

w1 0

0 w1

 , . . . ,

wr−1 0

0 wr−1

 ,

∏w−1
i 0

0
∏
w−1
i

)

where the product
∏
w−1
i is taken over i ∈ {1, . . . , r − 1}. Thus Z(K) is exactly the image

of ϕ restricted to the subset C ⊂ K̃

C = {(w1, . . . , wr−1,

1 0

0 1

 , . . . ,

1 0

0 1

} ⊂ K̃

The center Z(K) is isomorphic to (C×)r−1 so we can label an irreducible representation of

Z(K) by an (r − 1)-tuple of integers #»z = (z1, z2, . . . , zr−1) which, because of our choice of

parametrization matches our definition of ϕ, corresponds to the #»z from F #»z , #»s . These are

simply choices of an irrep of C× in each factor. We refer to the irreducible characters of
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Z(K) as central characters and they are written

r−1∏
i=1

wzii

Briefly consider a related group (it would be our K had we chosen G = GL2r)

H = GL2 × · · · ×GL2

Then its center Z(H) = {(w1I2, . . . , wrI2)} where w1, . . . , wr ∈ C×. In a moment, we will

set wr = w−1
1 · · ·w−1

r−1 to recover Z(K). Throughout the paper we work with indices mod

r, but with the representatives of the equivalence classes chosen as {1, 2, . . . , r} rather than

{0, 1, 2, . . . , r − 1}. For example, ni − ni−1 is simply n1 − nr when i = 1.

We have described the action of K on g1 = X1 ⊕ · · · ⊕Xr and so also on P #»n . Allow H

to act similarly.

Proposition 4. For each #»n ∈ Nr, Z(H) acts on f ∈ P #»n by multiplication by a scalar

depending on #»n as in:

f 7−→
( r∏
i=1

w
ni−ni−1

i

)
f

Example. If r = 3 then Z(H) acts on g1 by conjugation



w−1
1

w−1
1

w−1
2

w−1
2

w−1
3

w−1
3





X1

X2

X3





w1

w1

w2

w2

w3

w3
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As we will see in the proof below, if f ∈ P(3,2,4) then

f 7−→(w1/w2)3(w2/w3)2(w3/w1)4f

= w−1
1 w−1

2 w2
3f

Proof. It’s clear that for general r each entry of of the matricesXi gets multiplied by w−1
i wi+1.

Transferring the action to X∗i the inverse switches spots, so for each basis element εk of X∗i ,

εk 7→ wiw
−1
i+1εk. Thus the homogeneous polynomials of degree ni in the εk get multiplied by

(wiw
−1
i+1)ni . Now f ∈ P #»n has homogeneous degree ni in each of the variables εk from X∗i in

every term, so all scalars pull out with powers and

f 7−→
( r∏

i=1

(wiw
−1
i+1)ni

)
f

Distributing the exponent and re-writing the product yields the proposition.

Proposition 5. For each #»n ∈ Nr, the center Z(K) acts on f ∈ P #»n by multiplication

depending on #»n :

f 7−→
( r−1∏

i=1

w
ni−ni−1−nr+nr−1

i

)
f

where we have parametrized Z(K) as in Definition 5.

Proof. Since K differs from H above only by having an overall determinant = 1, the only

change from the center Z(K) compared to Z(H) is to require determinant 1. So whereas

Z(H) ' (C×)r, instead Z(K) ' (C×)r−1. So that Z(K) = ϕ(C) as in Definition 5, let

wr = w−1
1 w−1

2 · · ·w−1
r−1. Replace wnr−nr−1

r in Proposition 4 by (w−1
1 · · ·w−1

r−1)nr−nr−1 . Each wi

gets an extra w
nr−1−nr

i , yielding the claimed action.

Definition 6. Choose #»z ∈ Zr−1 such that z1 + · · ·+ zr−1 = 0 mod r. Then #»z determines a
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base point
#»

b ∈ Nr by setting br = 0 and bk for k ∈ {1, . . . , r − 1} given by

bk =
k∑
i=1

zi −
k

r

r−1∑
i=1

zi

Define ray( #»z ) to be all points #»n ∈ Nr extending upwards along the vector
#»
1 = (1, 1, . . . , 1)

from the base point
#»

b as in

ray( #»z ) = { #»

b ,
#»

b +
#»
1 ,

#»

b +
#»
2 , . . . }

or written more succinctly

ray( #»z ) =
#»

b + N (1, . . . , 1)︸ ︷︷ ︸
r ones

Example. Consider #»z = (5, 1) in the case r = 3. Then
#»

b = (3, 2, 0) which yields the following

list for ray( #»z ):

ray( #»z ) =

{
3

2

0

 ,


4

3

1

 ,


5

4

2

 ,


6

5

3

 , · · ·
}

Remark: For some choices of #»z it will turn out that
#»

b has some negative components.

But moving upwards from
#»

b in the direction
#»
1 , we eventually reach Nr. Because ray( #»z ) is

defined as points inside Nr we only count the points #»n where every ni ≥ 0. The polynomials

are graded by homogeneous degree, which is non-negative, which explains this choice.

Proposition 6. For all #»z ∈ Zr−1 and #»s ∈ Nr satisfying Equation 3.1, the irreducible

representation F #»z , #»s of K occurs with multiplicity zero in every H #»n with #»n /∈ ray( #»z ).

[F #»z , #»s : H #»n ] = 0

where we have chosen our parametrization of Z(K) as in Definition 5, so that Z(K) = ϕ(C).
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Proof. Recall the image of ϕ restricted to the subset C ⊂ K̃

C = {(w1, . . . , wr−1,

1 0

0 1

 , . . . ,

1 0

0 1

} ⊂ K̃

is exactly Z(K), so any F #»z , #»s corresponds to an action of Z(K) on P #»n as in Proposition 5.

From Proposition 5 we obtain an underdetermined linear system



1 1 −2

−1 1 1 −1

−1 1 1 −1

. . .

−1 1 1 −1

−1 2 −1





n1

n2

·

·

·

·

·

nr



=



z1

z2

·

·

·

zr−1



The variable nr is free, and row reducing yields exactly #»n ∈ ray( #»z ) as the only non-negative

integer solutions.

Corollary: F #»z , #»s has multiplicity zero in H if

r−1∑
i=1

zi 6= 0 (mod r)

Proof. Without this requirement ray( #»z ) is empty.

3.4 The action of the semisimple part of K on P #»n

In this section we will see that in decomposing H #»n as a representation of K it will be enough

to ignore the central characters and decompose using the semisimple characters alone.
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Consider the character of P #»n , denoted χ(P #»n ). We can attempt to write it as a sum

of irreducible characters of K, thus obtaining the decomposition of P #»n into irreducible

representations of K. Inside P #»n is the subspace of harmonics H #»n , and we will try to

find its character χ(H #»n ) inside of χ(P #»n ), thus obtaining the multi-graded decomposition

of the harmonics as a K representation, including the multiplicity of any given irreducible

representation of K within H #»n for all #»n . So what will these characters look like?

Recall the irreducible representations F #»z , #»s of K are parametrized by #»z ∈ Zr−1 and

#»s ∈ Nr such that Equation 3.1 is satisfied. Every such irrep comes from an irrep of K̃, and

so by restricting ϕ to the subset {(1, . . . , 1)} × SLr2 we can evaluate χ #»z , #»s at elements

(1, . . . , 1,

u1 0

0 u−1
1

 , . . . ,

ur 0

0 u−1
r

)

where the components coming from each SL2 factor have been restricted to the torus, we

obtain the semisimple characters for that irrep. From Definition 4 we have

χ #»z , #»s (g) = wz11 · · ·w
zr−1

r−1 χs1(u1) · · ·χsr−1(ur−1)χsr(ur)

= 1z1 · · · 1zr−1χs1(u1) · · ·χsr−1(ur−1)χsr(ur)

= χs1(u1) · · ·χsr−1(ur−1)χsr(ur)

which we can simply denote χ #»s when we are only concerned with the semisimple part of K.

Example. If r = 4, we have (1, 1, 1)× SL4
2, and the semisimple character

χ(1,3,0,2) = χ1(u1) · χ3(u2) · χ0(u3) · χ2(u4)

=
(
u1 + u−1

1

)
·
(
u3

2 + u2 + u−1
2 + u−3

2

)
·
(
1
)
·
(
u2

4 + 1 + u−2
4

)
corresponds to an irreducible representation of dimension 24 = 2 · 4 · 1 · 3.

Thus, looking at the character χ(P) we will find a sum of semisimple characters from SLr2,
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each multiplied by a different central character of (C×)r−1 ∼= Z(K). Recall from Proposition

5 that the center’s action on f ∈ P #»n will be by scalar multiplication by some powers that

depend on #»n :

f 7−→
( r−1∏

i=1

w
ni−ni−1−nr+nr−1

i

)
f

Consider χ(P #»n ) for a fixed multi-graded component #»n . In principle, if we ignore the char-

acters coming from the center Z(K) and we find a term χ(3,0,2) inside χ(P #»n ), we won’t know

if it comes as part of an irrep F(−5,−1),(3,0,2) or as part of F(4,5),(3,0,2), or some other F #»z ,(3,0,2).

However, by Proposition 5, we know that Z(K) acts in exactly one way on all polynomials

inside P #»n .

Thus, fixing #»n determines exactly which central characters of Z(K) we will see in χ(P #»n ),

namely from #»z where each zi = ni − ni−1 − nr + nr−1. When we write χ(P #»n ) as a sum

of irreducible characters, any irreducible character χ #»s will appear with the same multiplier,∏
wzii . In this case, fixing the multi-graded component P #»n allows us to ignore the center

Z(K) and decompose into a sum of irreducible characters χ #»s of the semisimple part of K

alone. Later, we proceed in this direction, and once we obtain the decomposition of H #»n

for all #»n , we can turn the question around and ask: Fixing an irrep F #»z , #»s , what is the

multiplicity in the various H #»n? But first, let us see some examples of the answer worked out

in simple cases.

27



4 Examples

In this section we work out two specific examples for the cases r = 2 and r = 3. We will see

that in each case the graded multiplicity

[F #»z , #»s : H #»n ]

is given by counting intersection points between Shell(Λ #»n ) and a hypersurface S ⊂ Rr. S

will simply be r faces of a certain polyhedron. At this point we make several definitions, but

follow with explicit examples.

Definition 7. For #»n ∈ Nr define a Cartesian product of sets Λ #»n and the subset Shell(Λ #»n )

as follows:

Λ #»n =
r∏
i=1

{ni, ni − 2, ni − 4, . . . , [ni]2}

Shell(Λ #»n ) = { #»m ∈ Λ #»n such that #»m+
#»
2 /∈ Λ #»n}

where [ni]2 means reduce ni mod 2 and indices are taken mod r from the set {1, . . . , r}.

We follow Vinberg’s A Course in Algebra, Chapter 7, for some of the (standard) lan-

guage and results about affine geometry. For example, a polyhedron is an intersection of

finitely many half-spaces (thus not necessarily bounded). Every face is an intersection of the

polyhedron with some of its supporting hyperplanes [8].

Definition 8. If f is an affine-linear function on Rr define

Hf = { #»m ∈ Rr : f( #»m) = 0}

H+
f = { #»m ∈ Rr : f( #»m) ≥ 0}

H−f = { #»m ∈ Rr : f( #»m) ≤ 0} = H+
−f
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The set Hf is a hyperplane. H+
f and H−f are the half-spaces bounded by Hf .

Definition 9. For each #»s ∈ Nr, let M⊂ Rr be the polyhedron defined as the intersection

of half-spaces

M =
⋂
f∈J

H+
f

where J is the set of affine-linear functions Rr → R

J = {f1, . . . , fr, g1, . . . , gr, h1, . . . , hr}

and each of the f1, . . . , fr, g1, . . . , gr, h1, . . . , hr depends on the parameter #»s ∈ Nr as follows,

where indices are taken mod r from the set {1, . . . , r}:

f1, . . . , fr by fi(
#»x ) = xi−1 + xi − si

g1, . . . , gr by gi(
#»x ) = xi−1 − xi + si

h1, . . . , hr by hi(
#»x ) = −xi−1 + xi + si

Each of the f1, . . . , fr also defines a hyperplane Hfi , and if we intersect M with one of

the Hfi we obtain a face of M. Finally we define our hypersurface S to be the union of

these r faces formed in this way. Later, we count certain integral points on S to determine

the graded multiplicity.

Definition 10. Let S ⊂ Rr be the union of the r faces of the polyhedronM defined by the

affine-linear functions f1, . . . , fr as in:

S =
(
M∩Hf1

)
∪ · · · ∪

(
M∩Hfr

)︸ ︷︷ ︸
r faces
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4.1 An example with r = 2

Say we fix a K-type denoted F #»z , #»s with #»z = (6) and #»s = (7, 5). We ask, what is the

multiplicity in H #»n for all possible #»n ∈ Nr? The answer is

Graded component H(5,2) H(6,3) H(7,4) H(8,5) H(9,6) other H #»n

Multiplicity 1 2 1 1 1 0

This answer can be obtained by counting the intersection points between a hypersurface S

and Shell(Λ #»n ) for each #»n . For example, Shell(Λ(6,3)) intersects S twice, giving multiplicity

two. So what are S and Shell(Λ #»n )?

We will see how this happens in detail later, but for now recall the Clebsch-Gordan

formula for the character of a tensor product of two SL2 irreps:

χm1(u)χm2(u) = χm1+m2(u) + χm1+m2−2(u) + χm1+m2−4(u) + · · ·+ χ|m1−m2|(u)

Briefly, requiring mi−1 +mi ≥ si gives us a half-space that will correspond to the affine-linear

function fi from Definition 9. On the other side, requiring si ≥ |mi−1 −mi| will produce a

pair of half-spaces corresponding to the gi and the hi from Definition 9. For now though, we

are simply considering an example from r = 2. We continue.

Since #»s = (7, 5) we can build the polyhedron M and the hypersurface S defined as the

union of two of its faces, both of which depend on this semisimple parameter #»s .

M = H+
f1
∩H+

f2
∩H+

g1
∩H+

g2
∩H+

h1
∩H+

h2

where

f1(x1, x2) = x2 + x1 − 7

f2(x1, x2) = x1 + x2 − 5
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and where

g1(x1, x2) = x2 − x1 + 7

g2(x1, x2) = x1 − x2 + 5

h1(x1, x2) = −x2 + x1 + 7

h2(x1, x2) = −x1 + x2 + 5

Figure 4.1 shows the half-spaces corresponding to these affine-linear functions. It shows

H+
f1
∩H+

f2
in the first picture followed by all half-spaces in the second picture. In this example

H+
g1
∩H+

g2
∩H+

h1
∩H+

h2
corresponds to requiring that |x2− x1| ≤ 7 and that |x1− x2| ≤ 5, as

pictured in the figure.

Figure 4.1: Intersecting H+
f1
∩H+

f2
and then all of the half-spaces giving M

The polyhedron M is unbounded, but the hypersurface S, which is simply some of its

faces, will always be bounded. IntersectingM with each of Hf1 and Hf2 yields 2 faces ofM,

where in this case one of the faces is the empty set. For r > 2 every face will be nonempty,

but the construction remains identical in every dimension r. The final hypersurface S is

pictured in Figure 4.2.

To find the graded multiplicity, the multiplicity in H #»n , we must recall our parameter

#»z = (6). We ask, for which H #»n could Z(K) act in this way? Recall the action of the center,
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Figure 4.2: The polyhedron M and the hypersurface S

where an element g ∈ Z(K) acting by g−1Xg, where g can be parametrized by w ∈ C×.



w−1

w−1

w

w




X1

X2





w

w

w−1

w−1


After some brief calculation, or by utilizing Proposition 5, we see that Z(K) acts on f ∈

P(n1,n2) by

f 7−→
(
w2n1−2n2

)
f

So to obtain #»z = 6 we require 2n1 − 2n2 = 6 where ni ∈ N. Thus Z(K) acts by #»z = (6)

exactly on the graded components

H(3,0),H(4,1),H(5,2),H(6,3), . . .

Here
#»

b = (3, 0) from Definition 6. Recalling the definition of Shell(Λ #»n ) we can consider all

Shells for #»n ∈ ray( #»z ) = {(3, 0), (4, 1), (5, 2), (6, 3), . . . } and how they intersect our hyper-

surface S. Figure 4.3 shows these points and their Shells, color-coded, and finally the points

of intersection with S, where the two green-colored points correspond to the fact that F #»z , #»s

has multiplicity 2 in H(6,3).
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Figure 4.3: Intersecting S with Shell(Λ #»n ): Graded Multiplicity

4.2 An example with r = 3

Consider the case r = 3 and the K-type denoted F #»z , #»s with #»z = (5, 1) and #»s = (7, 5, 4). We

ask, what is the multiplicity in each graded component of the harmonics H #»n? The answer is

given in Table 4.1, where all #»n not included correspond to multiplicity zero. Again the only

#»

b + N #»
1 #»n Multiplicity

(3, 2, 0) +
#»
0 (3, 2, 0) 0

(3, 2, 0) +
#»
1 (4, 3, 1) 0

(3, 2, 0) +
#»
2 (5, 4, 2) 2

(3, 2, 0) +
#»
3 (6, 5, 3) 6

(3, 2, 0) +
#»
4 (7, 6, 4) 7

(3, 2, 0) +
#»
5 (8, 7, 5) 6

(3, 2, 0) +
#»
6 (9, 8, 6) 4

(3, 2, 0) +
#»
7 (10, 9, 7) 2

(3, 2, 0) +
#»
8 (11, 10, 8) 1

(3, 2, 0) +
#»
9 (12, 11, 9) 0

Table 4.1: Graded Multiplicity

non-zero multiplicities appear in a ray extending from
#»

b = (3, 2, 0) by multiples of (1, 1, 1).

This is due to the action of the center Z(K) as in Proposition 6.

For now consider building the hypersurface S ⊂ R3 out of faces of the polyhedron M⊂

R3. Since we chose #»s = (7, 5, 4) as our example, the affine-linear functions on R3 are given
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by

f1(x1, x2, x3) = x3 + x1 − 7

f2(x1, x2, x3) = x1 + x2 − 5

f3(x1, x2, x3) = x2 + x3 − 4

and also

g1(x1, x2, x3) = x3 − x1 + 7

g2(x1, x2, x3) = x1 − x2 + 5

g3(x1, x2, x3) = x2 − x3 + 4

h1(x1, x2, x3) = −x3 + x1 + 7

h2(x1, x2, x3) = −x1 + x2 + 5

h3(x1, x2, x3) = −x2 + x3 + 4

First consider the hyperplanes defined by Hf1 , Hf2 , Hf3 pictured in Figure 4.4, where the

x1 = 0, x2 = 0, x3 = 0 planes are included for reference only. Of course, they also bound

3 of the 9 half-spaces whose intersection gives the convex polyhedron M ⊂ R3. In R3 it’s

harder to picture half-spaces in our figures, and so we now illustrate all of the 9 hyperplanes

that bound the half-spaces in Figure 4.5. Each pair H+
gi

and H+
hi

will be parallel half-spaces

opening in opposite directions, each towards the other, because they come from requiring

|xi−1 − xi| ≤ si.

In this case we build the polyhedron M and the hypersurface S as follows:

M =
⋂
f∈J

H+
f where J = {f1, f2, f3, g1, g2, g3, h1, h2, h3}
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Figure 4.4: The hyperplanes Hf1 , Hf2 , Hf3 to become the faces of the hypersurface S

Figure 4.5: Hyperplanes used in constructing M and S

and

S =
(
M∩Hf1

)
∪
(
M∩Hf2

)
∪
(
M∩Hf3

)
Recall, the intersection points of S with each Shell(Λ #»n ) will give us the graded multi-

plicity. Always S depends on #»s , the parameter from our irrep F #»z , #»s , and in this specific

example S came from #»s = (7, 5, 4) and is pictured in Figure 4.6. When we intersect with

Shell(Λ(6,5,3)) we find six intersection points, as explained below.

Intersecting S with all Shell(Λ #»n ) for #»n ∈ ray( #»z ) we obtain exactly 28 integral points

on S, which gives the total multiplicity in H. For the graded multiplicity we must intersect
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Figure 4.6: Finished hypersurface S and six intersection points

S with each particular Shell(Λ #»n ). These Shells are harder to picture now, but they expand

upward from (3, 2, 0) and eventually hit S. The Shells for #»n = (3, 2, 0), (4, 3, 1), (5, 4, 2) and

(6, 5, 3) are color-coded in Figure 4.7.

Figure 4.7: ray( #»z ) and the first four of its Shells

The last, blue Shell pictured in Figure 4.7 is Shell(Λ(6,5,3)). Our irrep F #»z , #»s = F(5,1),(7,5,4)

appears with multiplicity six inside H(6,5,3). This fact is recorded by the six intersection

points of that Shell with S and is pictured in Figure 4.8.

Figure 4.8: Graded Multiplicity #(Shell(Λ #»n ) ∩ S)
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5 Decomposing the Harmonics H #»n

In this section we discover that the character χ(H #»n ) can be written

χ
(
H #»n

)
=

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

Then in Section 6 we use this result to see the geometric description of the graded multiplicity

as counting intersection points between S and the Shell(Λ #»n ).

5.1 Decomposing Λ #»n and λ #»m into shells

Consider a point #»n = (n1, n2, . . . , nr) inside Nr. Denote the minimum of all components

ni as nmin. For example if #»n = (5, 3, 6, 2, 4) then nmin = 2. Define two kinds of lattice

polytopes, or arrays, as follows.

Definition 11. For each #»n ∈ Nr define

Λ #»n =
r∏
i=1

{ni, ni − 2, ni − 4, . . . , [ni]2}

λ #»n =
r∏
i=1

{ni−1 + ni, ni−1 + ni − 2, ni−1 + ni − 4, . . . , |ni−1 − ni|}

where [ni]2 means reduce ni mod 2 and indices are taken mod r from {1, . . . , r}.
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Example. Λ(3,2,3) and λ(3,2,1) would be

Λ(3,2,3) = {3, 1} × {2, 0} × {3, 1}

= {(3, 2, 3), (3, 2, 1), (3, 0, 3), (3, 0, 1), (1, 2, 3), (1, 2, 1), (1, 0, 3), (1, 0, 1)}

λ(3,2,1) = {4, 2} × {5, 3, 1} × {3, 1}

=
{

(4, 5, 3), (4, 5, 1), (4, 3, 3), (4, 3, 1), (4, 1, 3), (4, 1, 1),

(2, 5, 3), (2, 5, 1), (2, 3, 3), (2, 3, 1), (2, 1, 3), (2, 1, 1)
}

Definition 12. Define Shell(Λ #»n ) be all #»m ∈ Λ #»n such that #»m+
#»
2 /∈ Λ #»n , and define Shell(λ #»m)

similarly.

Example. Shell(Λ(3,2,3)) would be everything except (1, 0, 1) because that is the only point

such that adding 2 to each ni yields another element of Λ(3,2,3).

Proposition 7. For every #»n ∈ Nr such that nmin ≥ 2 we have

Λ #»n = Shell(Λ #»n ) ∪ Λ #»n− #»
2

Proof. This follows from the definitions above, and also since the parity of ni does not change

if you subtract 2.

Proposition 8. For every #»m ∈ Nr we have

λ #»m = Shell(λ #»m) ∪ Shell(λ #»m− #»
1 ) ∪ · · · ∪ Shell(λ #»m− #          »mmin

)

Proof. Replacing #»m by #»m − #»
1 we go from λ #»m to λ #»m− #»

1 , but since (mi−1 − 1) + (mi − 1) =

mi−1 +mi−2 and |(mi−1−1)− (mi−1)| = |mi−1−mi| we have that λ #»m loses the first entry

in each factor becoming

λ #»m− #»
1 =

r∏
i=1

{mi−1 +mi − 2, . . . , |mi−1 −mi|}
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Thus

λ #»m = Shell(λ #»m) ∪ λ #»m− #»
1

Applying this recursively we obtain the decomposition above.

5.2 Invariants

Recall, inside the space of polynomial functions of multi-graded degree P #»n will be the sub-

space of harmonic functions H #»n , a subrepresentation of K. Therefore we can consider the

character of each of these representations, denoted χ(P #»n ) and χ(H #»n ) respectively.

Proposition 9. For every #»n ∈ Nr we have

χ(P #»n ) =
∑

j=0,1,...,nmin

(
bj/2c+ 1

)
χ(H #»n− #»

j )

where bj/2c is the floor function. If nmin is large this starts out as

χ(P #»n ) = χ(H #»n ) + χ(H #»n− #»
1 ) + 2χ(H #»n− #»

2 ) + 2χ(H #»n− #»
3 )

+ 3χ(H #»n− #»
4 ) + 3χ(H #»n− #»

5 ) + 4χ(H #»n− #»
6 ) + 4χ(H #»n− #»

7 ) + . . .

Proof. Due to a result of Le Bruyn and Procesi [5], all invariant functions in P are generated

by two. Call them

f = trace(X1X2 · · ·Xr)

and

g = trace
(
(X1X2 · · ·Xr)

2
)

f has degree
#»
1 = (1, 1, . . . , 1) and g has degree

#»
2 = (2, 2, . . . , 2), meaning degree 1 or 2 in

each of the r components for f and g respectively. To see this, denote the (a, b)th element

of Xi by X
(i)
a,b. Matrix multiplication gives the (a, b)th element of the product X1X2 · · ·Xr
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as a sum ∑
jk

X
(1)
a,j1
X

(2)
j1,j2
· · ·X(r)

jn−1,b

Taking the trace puts an additional sum over a, but changes the last index b to an a as

well. Thus it’s clear that each term will have exactly one entry from each Xi, so that f has

degree
#»
1 . Similarly, g has degree

#»
2 . Because the polynomials are free over the invariants,

we can write the table below. Each line corresponds to a different power of g, and the terms

in each line correspond to different powers of f . The table should continue until a column

corresponding to #»n − #      »nmin, which would have a zero in at least one component. Hence at

that point there are no more invariants, since both f and g have non-zero degree in every

component.

P #»n = H #»n +fH #»n− #»
1 +f 2H #»n− #»

2 +f 3H #»n− #»
3 +f 4H #»n− #»

4 +f 5H #»n− #»
5 + . . .

+gH #»n− #»
2 +fgH #»n− #»

3 +f 2gH #»n− #»
4 +f 3gH #»n− #»

5 + . . .
+g2H #»n− #»

4 +fg2H #»n− #»
5 + . . .

+ . . .
P #»n = H #»n +H #»n− #»

1 +2H #»n− #»
2 +2H #»n− #»

3 +3H #»n− #»
4 +3H #»n− #»

5 + . . .

Table 5.1: Collecting isomorphic copies of lower Harmonics

Example. Since nmin = 1 for #»n = (5, 1, 4, 3) we have

χ(P(5,1,4,3)) = χ(H(5,1,4,3)) + χ(H(4,0,3,2))

Example. For any #»n with nmin = 0 we have χ(P #»n ) = χ(H #»n ).

5.3 The character χ(P #»n )

Proposition 10. For any #»n ∈ Nr with indices mod r in {1, . . . , r} we have

χ(P #»n ) =
r∏
i=1

[
χni

(ui)χni
(ui+1) + χni−2(ui)χni−2(ui+1) + · · ·+ χ[ni]2(ui)χ[ni]2(ui+1)

]
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In order to prove Proposition 10 we will use two Lemmas. We use the notation δi(
#»n ) =

(0, . . . , 0, ni, 0, . . . , 0) simply setting all components except the ith to zero.

Lemma 2. For any #»n ∈ Nr we have

χ(P #»n ) = χ(Pδ1( #»n )) · · ·χ(Pδr( #»n ))

Proof. We can take any multi-graded component P #»n and write it as a tensor product of the

spaces of polynomials of matching non-zero homogeneous degree in only one multi-graded

component, as follows:

P #»n = Pδ1( #»n ) ⊗ · · · ⊗ Pδr( #»n )

This is true for the same reason that C[x1, x2, . . . , xr] = C[x1]⊗C[x2, . . . , xr] = C[x1]⊗· · ·⊗

C[xr] is true. The result now follows because the character of a tensor product is the product

of the characters.

Example.

P(3,2,4) = P(3,0,0) ⊗ P(0,2,0) ⊗ P(0,0,4)

Lemma 3. For any #»n ∈ Nr we have

χ(Pδi( #»n )) = χni
(ui)χni

(ui+1) + χni−2(ui)χni−2(ui+1) + · · ·+ χ[ni]2(ui)χ[ni]2(ui+1)

Proof. Pδi( #»n ) consists only of polynomials on the Xi component of g1 = X1 ⊕ · · · ⊕Xr. But

we know the explicit action of K on any given Xi is simply

Xi 7−→ g−1
i Xigi+1 , for (g1, . . . , gr) ∈ K
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Restricting to the torus in each gi and gi+1, and letting Xi =

x y

z w

 we have

x y

z w

 7−→
u−1

i 0

0 ui


x y

z w


ui+1 0

0 u−1
i+1


=

u−1
i ui+1x u−1

i u−1
i+1y

uiui+1z uiu
−1
i+1w


Since at the character level this is simply SL2 × SL2 acting on 2 by 2 matrices, we know

that the determinant of Xi will be a degree 2 invariant and can compute the character using

the following identity:

1− q2∏
a,b=±1(1− uai ubi+1q)

=
∞∑
k=0

χk(ui)χk(ui+1)qk

This identity is proved by closing geometric series and recognizing the SL2 characters in the

result (recall
uk+1
i −uk−1

i

ui−u−1
i

). The determinant det(Xi) corresponding to (1− q2) in the identity

above is not actually invariant under K, so all these terms lie in the same graded component,

and the lemma follows.

Proof of Proposition 10. Multiplying the expressions from Lemma 3 in agreement with Lemma

2, Proposition 10 follows.

5.4 A quick example

Consider the case r = 3 and the polynomials of graded degree #»n = (3, 2, 3). Reading this

example will make the rest of the proof easier to follow.

χ(P(3,2,3)) = χ(P(3,0,0)) · χ(P(0,2,0)) · χ(P(0,0,3))
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χ(P(3,2,3)) =
[
χ3(u1)χ3(u2) + χ1(u1)χ1(u2)

]
·
[
χ2(u2)χ2(u3) + χ0(u2)χ0(u3)

]
·
[
χ3(u3)χ3(u1) + χ1(u3)χ1(u1)

]

Notice how each term in the first factor has a u1 and a u2. In fact, each term in the ith

factor has a ui and a ui+1 where the indices are taken mod r. If we expand this product

we obtain 2 ∗ 2 ∗ 2 = 8 terms. They are indexed by the array Λ #»n = {3, 1} × {2, 0} × {3, 1}

inside N3, so that for each point #»m ∈ Λ #»n we get a term. The terms are listed below, so for

example, the first term corresponds to #»m = (3, 2, 3).

χ(P(3,2,3)) = χ3(u1)χ3(u2)χ2(u2)χ2(u3)χ3(u3)χ3(u1)

+ χ3(u1)χ3(u2)χ2(u2)χ2(u3)χ1(u3)χ1(u1)

+ χ3(u1)χ3(u2)χ0(u2)χ0(u3)χ3(u3)χ3(u1)

+ χ3(u1)χ3(u2)χ0(u2)χ0(u3)χ1(u3)χ1(u1)

+ χ1(u1)χ1(u2)χ2(u2)χ2(u3)χ3(u3)χ3(u1)

+ χ1(u1)χ1(u2)χ2(u2)χ2(u3)χ1(u3)χ1(u1)

+ χ1(u1)χ1(u2)χ0(u2)χ0(u3)χ3(u3)χ3(u1)

+ χ1(u1)χ1(u2)χ0(u2)χ0(u3)χ1(u3)χ1(u1)

The only other thing to notice is that each term in the resulting expansion above has two

factors involving u1, two factors involving u2, and two factors involving u3. We can move

the factors involving u1 together, so that in general, the expansion of Proposition 10 will be

a sum of terms that look like
r∏
i=0

χmi−1
(ui)χmi

(ui)

because each ui occurs in the ith factor but also in the (i−1)th factor. In the next subsection,

we will expand each of these pairs via the Clebsch-Gordan identity into sums of irreducible
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characters.

5.5 Rewriting χ(P #»n )

Proposition 11. For any #»n ∈ Nr we have

χ(P #»n ) =
∑

#»m∈Λ #»n

( r∏
i=1

χmi−1
(ui)χmi

(ui)

)

Proof. Examine the terms in each factor of Proposition 10, repeated here:

χ(P #»n ) =
r∏
i=1

[
χni

(ui)χni
(ui+1) + χni−2(ui)χni−2(ui+1) + · · ·+ χ[ni]2(ui)χ[ni]2(ui+1)

]

The terms in each factor are indexed by {ni, ni − 2, . . . , [ni]2} and so when we expand the

product into a sum of terms, the resulting terms will be indexed by points #»m ∈ Λ #»n . Each

of these terms is a product of one choice from each of the r factors. Each choice looks like

χmi
(ui)χmi

(ui+1). Thus in the resulting product there will be two factors involving each ui,

but coming from neighboring indices mi−1 and mi. See Section 5.4 for an example.

Proposition 12. For any #»n ∈ Nr we have

χ(P #»n ) =
∑

#»m∈Λ #»n

( ∑
#»p∈λ #»m

χ #»p

)

where χ #»p denotes the semisimple character χp1(u1)χp2(u2) · · ·χpr(ur).

Proof. We first consider
∏r

i=1 χmi−1
(ui)χmi

(ui). By the Clebsch-Gordan identity, we can

multiply two irreducible characters and obtain a sum of irreducible characters.

r∏
i=1

χmi−1
(ui)χmi

(ui) =
r∏
i=1

[
χ(mi−1+mi)(ui) + χ(mi−1+mi−2)(ui) + · · ·+ χ|mi−1−mi|(ui)

]

But now it’s clear that when we expand that product, the terms in the resulting sum will be
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indexed by points #»p ∈ λ #»m. If we let χ #»p denote χp1(ui)χp2(u2) · · ·χpr(ur) then we have a new

way of writing χ(P #»n ), as above, where the χ #»p are the characters of irreducible representations

of the semisimple part of K.

5.6 Finding χ(H #»n ) inside χ(P #»n )

Proposition 13. For any #»n ∈ Nr such that nmin ≥ 2 we have

χ(P #»n )− χ(P #»n− #»
2 ) =∑

#»m∈Shell(Λ #»n )

[( ∑
#»p∈Shell(λ #»m)

χ #»p

)
+
( ∑

#»p∈Shell(λ #»m− #»
1 )

χ #»p

)
+ · · ·+

( ∑
#»p∈Shell(λ #»m− #        »nmin

)

χ #»p

)]

with the convention that the sums over Shell(λ #»m− #»
j ) are empty whenever #»m − #»

j has any

component mi − j < 0.

Proof. Since Λ #»n = Shell(Λ #»n ) ∪ Λ #»n− #»
2 whenever nmin ≥ 2, we have

χ(P #»n ) =
∑

#»m∈Λ #»n

( ∑
#»p∈λ #»m

χ #»p

)
=

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈λ #»m

χ #»p

)
+

∑
#»m∈Λ #»n− #»

2

( ∑
#»p∈λ #»m

χ #»p

)

But the right-hand summand is simply χ(P #»n− #»
2 ), which means

χ(P #»n ) =
∑

#»m∈Shell(Λ #»n )

( ∑
#»p∈λ #»m

χ #»p

)
+ χ(P #»n− #»

2 )

Since

λ #»m = Shell(λ #»m) ∪ Shell(λ #»m− #»
1 ) ∪ · · · ∪ Shell(λ #»m− #          »mmin

)
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we have

χ(P #»n )− χ(P #»n− #»
2 ) =∑

#»m∈Shell(Λ #»n )

[( ∑
#»p∈Shell(λ #»m)

χ #»p

)
+
( ∑

#»p∈Shell(λ #»m− #»
1 )

χ #»p

)
+ · · ·+

( ∑
#»p∈Shell(λ #»m− #         »mmin

)

χ #»p

)]

Each term corresponding to a choice of #»m will be a sum as above, which will clearly have a

different number of terms for different #»m, since mmin is different for each #»m. Since #»n itself is

an element of Shell(Λ #»n ), we may have #»m = #»n , which is when mmin is maximized. So instead,

we take the convention that the sums over #»p ∈ Shell(λ #»m− #»
j ) are empty unless j ≤ mmin,

and we write each sum using nmin as in the Proposition. This introduces potentially empty

sums, but simplifies the expression in a way that becomes useful during Propositions 14 and

15.

Now consider distributing the outer sum over the inner ones, and examine just one term.

Proposition 14. Re-indexing the double sum: For any #»n ∈ Nr and j ∈ N we have

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m− #»

j )

χ #»p

)
=

∑
# »

m′∈Shell(Λ #»n− #»
j )

( ∑
#»p∈Shell(λ # »

m′
)

χ #»p

)

Proof. This proof is actually quite straight-forward, but the notation can be confusing. Both

sides are sums of χ #»p , and so we need only check that the sets of indices #»p are the same, so

the proposition is nothing but a re-indexing of the sum.

Consider showing ⊆. Choose #»p ∈ Shell(λ #»m− #»
j ) for some #»m ∈ Shell(Λ #»n ). Since we have

chosen a #»p , we chose it from a non-empty sum, and so j ≤ mmin. Define
# »

m′ by defining

m′i = mi−j. We have that pi ∈ {mi−1−j+mi−j,mi−1−j+mi−j−2, . . . , |mi−1−j−(mi−j)|},

where there is some k such that pk = mk−1 − j +mk − j, since we are in the Shell. But this

is the same as saying that pi ∈ {m′i−1 + m′i,m
′
i−1 + m′i − 2, . . . , |m′i−1 −m′i)|}, and for the

same k, pk = m′k−1 +m′k. Thus #»p ∈ Shell(λ #»m′) as needed. Now, is #»m′ ∈ Shell(Λ #»n− #»
j )? Since

#»m ∈ Shell(Λ #»n ) then mi ∈ {ni, ni−2, . . . , [ni]2}, and there is some k such that mk = nk. Since
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j ≤ mmin then m′i = mi− j is always ≥ 0, so we know m′i ∈ {ni− j, ni− j− 2, . . . , [ni− j]2},

and for the same k, m′k + j = ni so m′k = ni − j. This means #»m′ ∈ Shell(Λ #»n− #»
j ) as required.

And now to show ⊇. Pick #»p ∈ Shell(λ # »

m′) for some
# »

m′ ∈ Shell(Λ #»n− #»
j ). Define #»m by

defining mi = m′i+j. Is #»m ∈ Shell(Λ #»n )? We have that m′i ∈ {ni−j, ni−j−2, . . . , [ni−j]2},

which means that m′i + j ∈ {ni, ni − 2, . . . , [ni − j]2 + j}, which also means that mi ∈

{ni, ni − 2, . . . , [ni]2}. We also have the existence of l such that m′l = nl − j, implying

ml − j = nl − j, which means ml = nl. Thus #»m ∈ Shell(Λ #»n ). Is #»p ∈ Shell(λ #»m− #»
j )?

We have that pi ∈ {m′i−1 + m′i,m
′
i−1 + m′i − 2, . . . , |m′i−1 −m′i|} where for some k we have

pk = m′k−1 +m′k. Then since mi = m′i+j we have pi ∈ {mi−1−j+mi−j,mi−1−j+mi−j−

2, . . . , |(mi−1 − j) + (mi − j)|} with pk = mk−1 − j +mk − j. This means #»p ∈ Shell(λ #»m− #»
j ).

This completes the proof.

Proposition 15. For any #»n ∈ Nr such that nmin ≥ 2 we have

χ(P #»n )− χ(P #»n− #»
2 ) =

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

+
∑

#»m∈Shell(Λ #»n− #»
1 )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

+ · · ·

+
∑

#»m∈Shell(Λ #»n− #        »nmin
)

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

Proof. This follows easily from the previous two Propositions. First distribute the outer sum

over the inner sums in Proposition 13 and then re-index each resulting double sum by using

Proposition 14.

5.7 Decomposing H #»n by induction

Finally we come to the decomposition of H #»n . The claim is that
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Proposition 16. For any #»n ∈ Nr we have

χ
(
H #»n

)
=

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

where the χ #»p are irreducible characters

χp1(u1)χp2(u2) · · ·χpr(ur)

of SLr2 coming from the semisimple part of K.

Proof. The proof is by induction. Consider the graded component #»n . Let’s refer to the

minimum coordinate ni as nmin. The base case is when nmin = 0. In this case, Λ #»n =

Shell(Λ #»n ), since in the factor of nmin, {ni, ni − 2, . . . , [ni]2} degenerates to simply {0} and

so every point is in the Shell. Then every #»m ∈ Shell(Λ #»n ) has at least one component, say k,

where mk = 0. λ #»m =
∏
{mi−1 +mi,mi−1 +mi − 2, . . . , |mi−1 −mi|} by definition, but then

the kth factor degenerates to simply {mk−1}. This means that Shell(λ #»m) = λ #»m. Then

χ(P #»n ) =
∑

#»m∈Λ #»n

( ∑
#»p∈λ #»m

χ #»p

)
=

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

Since there are no invariants when nmin = 0, this is also the character χ(H #»n ) (see Proposition

9), which completes the base case nmin = 0.

Consider now the case nmin = 1. Then there is one invariant, f , of multi-graded degree

(1, 1, . . . , 1). In this case

χ(P #»n ) = χ(H #»n ) + χ(H #»n− #»
1 )

At this point, we know both χ(P #»n ) and χ(H #»n− #»
1 ), meaning we can solve for the unknown
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χ(H #»n ). Since when nmin = 1, Shell(Λ #»n ) = Λ #»n , we have

χ(P #»n ) =
∑

#»m∈Λ #»n

( ∑
#»p∈λ #»m

χ #»p

)
=

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p +
∑

#»p∈Shell(λ #»m− #»
1 )

χ #»p

)

=
∑

#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)
+

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m− #»

1 )

χ #»p

)

=
∑

#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)
+

∑
#»m∈Shell(Λ #»n− #»

1 )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

=
∑

#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)
+ χ(H #»n− #»

1 )

where we have used Proposition 14, as well as our induction base case of nmin = 0. It’s now

clear that χ(H #»n ) is leftover, and is exactly as claimed.

Consider the graded component #»n , where nmin ≥ 2. The final induction step assumes

we have shown the claim is true for all mmin < nmin. Since by the induction step we know

the character of any H #»n− #»
j for j > 0 then Proposition 15 becomes

χ(P #»n )− χ(P #»n− #»
2 ) =

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)
+ χ(H #»n− #»

1 ) + · · ·+ χ(H #»n− #        »nmin
)

We can break up Proposition 9 into two separate lines as in the table below. But recognizing

χ(H #»n ) = χ(P #»n ) −χ(H #»n− #»
1 ) −χ(H #»n− #»

2 ) −χ(H #»n− #»
3 ) −χ(H #»n− #»

4 ) − . . .
−χ(H #»n− #»

2 ) −χ(H #»n− #»
3 ) −2χ(H #»n− #»

4 ) − . . .
χ(H #»n ) = χ(P #»n ) −χ(H #»n− #»

1 ) −2χ(H #»n− #»
2 ) −2χ(H #»n− #»

3 ) −3χ(H #»n− #»
4 ) − . . .

Table 5.2: Subtracting characters in two ways

the second line of subtractions in the table as nothing but χ(P #»n− #»
2 ), and comparing the two

equations, we see that

χ
(
H #»n

)
=

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)
as claimed.
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6 Connecting χ(H #»n ) to affine geometry

In the previous section we found the decomposition of H #»n into irreducible representations

of K. We know from Proposition 16 that

χ
(
H #»n

)
=

∑
#»m∈Shell(Λ #»n )

( ∑
#»p∈Shell(λ #»m)

χ #»p

)

But now, given a K-type F #»z , #»s , we ask for the multiplicity in all the various H #»n ,

[F #»z , #»s : H #»n ] = ?

Proposition 17. If #»n /∈ ray( #»z ) then the multiplicity is zero. Otherwise, for #»n ∈ ray( #»z )

we have

[F #»z , #»s : H #»n ] = #{ #»m ∈ Shell(Λ #»n ) such that #»s ∈ Shell(λ #»m))}

Proof. By the definition of Shell(λ #»m), any #»s can appear once, or not at all. Thus this

proposition follows directly from Propositions 16 and 6.

Proposition 18. For #»s , #»m ∈ Nr, then #»s ∈ Shell(λ #»m) if and only if #»m satisfies

1. |mi−1 −mi| ≤ si ≤ mi−1 +mi for all i.

2. si = mi−1 +mi (mod 2) for all i.

3. There exists at least one index k such that sk = mk−1 +mk.

Proof. This simply turns around the definition

λ #»m =
r∏
i=1

{mi−1 +mi,mi−1 +mi − 2, . . . , |mi−1 −mi|}

combined with the definition of Shell(·).
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We are interested in the multiplicity of our K-type F #»z , #»s inside H #»n where #»n ∈ ray( #»z ).

We know all the points #»m ∈ Shell(Λ #»n ), and we need only ask: how many of them satisfy the

requirements from Proposition 18? The answer is our multiplicity.

Moving toward a geometrical description of these multiplicities, recall that a linear in-

equality defines a half-space in Rr. It will be beneficial to think back to the examples in

r = 2 and r = 3 given in Section 4. We intersect half-spaces to create a polyhedronM⊂ Rr,

and then by requiring some of the inequalities to be equalities we obtain r faces ofM which

we call S ⊂ Rr, a hypersurface. We then intersect the Shell(Λ #»n ) with S to obtain the graded

multiplicity [F #»z , #»s : H #»n ].

Recall from Section 4, Definition 9 definedM⊂ Rr as an intersection of half-spaces which

depended on the parameter #»s ∈ Nr. Also Definition 10 defined the hypersurface S ⊂ Rr

as the union of r faces of M, hence also depending on the parameter #»s ∈ Nr. Note that

condition (1) from Proposition 18, regarded as a linear inequality on #»x ∈ Rr give exactly

the half-spaces used in constructing M. Then note that condition (3) simply means that

#»m ∈ Nr ⊂ Rr lies on one of the r faces of M which define the hypersurface S. In summary,

condition (1) defines the polyhedron and condition (3) requires #»m to lie on one of r faces.

And now we state the main result.

Proposition 19. Consider the irrep F #»z , #»s and inquire about its multiplicity [F #»z , #»s : H #»n ]. If

#»n /∈ ray( #»z ) then the multiplicity is zero. Otherwise, for a fixed #»n ∈ ray( #»z ), the multiplicity

of F #»z , #»s inside H #»n is given by the number of intersection points between S and Shell(Λ #»n ).

In other words,

[F #»z , #»s : H #»n ] = #

(
Shell(Λ #»n )

⋂
S
)

where the parameter #»s determines the polyhedron M and also the hypersurface formed

from r of its faces S.

At this point we need to invoke some results from [11] before finishing with a proof of

Proposition 19. We need this simply to satisfy condition (2) of Proposition 18.
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Lemma 4. If the multiplicity of F #»z , #»s in H is non-zero, then we have

1. For all k ∈ {1, . . . , r − 1}

zk +
1

r

r−1∑
i=1

zi = sk (mod 2)

2.

1

r

r−1∑
i=1

zi = sr (mod 2)

Proof. The proof of this fact requires calculations very similar to those done in [11]. Let

M be the centralizer in K of a maximal abelian subspace a ⊂ g consisting of semisimple

elements, where g is the Lie algebra of our group G = SL2r. Then the number of M -fixed

vectors is equal to the multiplicity of F #»z , #»s in the harmonics H (but completely ignoring

the gradation!). When you require the number of M-fixed vectors to be non-zero, the two

conditions on #»z and #»s stated in this Lemma follow. Thus, these conditions are satisfied by

any irrep F #»z , #»s occurring in H with non-zero multiplicity. Rather than include such detailed

calculations, we leave them as an exercise in line with [11], since although technical, they

are straight-forward, and have been considered elsewhere.

Lemma 5. If #»m ∈ Shell(Λ #»n ) for #»n ∈ ray( #»z ) then for all i ∈ {1, . . . , r}

mi−1 +mi = si (mod 2)

Proof. If we can show ni−1 + ni = si (mod 2) then we are done, since #»m is obtained from #»n

by simply subtracting multiples of 2 from various components.

Recall that if #»n ∈ ray( #»z ) then for k ∈ {1, . . . , r − 1}

nk = nr +
k∑
i=1

zi −
k

r

r−1∑
i=1

zi
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First consider k ∈ {1, . . . , r − 1}. Doing all calculations mod 2 we have

nk−1 + nk = nr +
k−1∑
i=1

zi +
k − 1

r

r−1∑
i=1

zi + nr +
k∑
i=1

zi +
k

r

r−1∑
i=1

zi

= zk +
1

r

r−1∑
i=1

zi (mod 2)

= sk + sr + sr (mod 2)

= sk (mod 2)

where we have used Lemma 4 in the second-to-last step. Last we consider k = r. Again

doing calculations mod 2 we have

nr−1 + nr =
(
nr +

r−1∑
i=1

zi +
r − 1

r

r−1∑
i=1

zi
)

+ nr

=
1

r

r−1∑
i=1

zi (mod 2)

= sr (mod 2)

This concludes the proof.

Proof of Proposition 19. By the definition of S, properties (1) and (3) of Proposition 18 are

satisfied. By Lemma 5, property (2) is also satisfied. Thus, any #»m ∈ Shell(Λ #»n ) that lies on

the hypersurface S will satisfy Proposition 18, and #»s will be in its Shell(λ #»m).

At this point, we have proved everything necessary to understand why the examples in

Section 4 are true. We have a geometric description of the total multiplicity in H given

by counting the intersections between a certain hypersurface S and an expanding sequence

of shells, and we have a geometric description of the graded multiplicity in H #»n given by

intersecting a given shell with that same hypersurface.
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