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ABSTRACT
GRADED MULTIPLICITY IN HARMONIC POLYNOMIALS FROM THE VINBERG
SETTING

by

Alexander Heaton

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Jeb F. Willenbring

We consider a family of examples falling into the following context (first considered by
Vinberg): Let G be a connected reductive algebraic group over the complex numbers. A
subgroup, K, of fixed points of a finite-order automorphism acts on the Lie algebra of G.
Each eigenspace of the automorphism is a representation of K. Let g; be one of the
eigenspaces. We consider the harmonic polynomials on g; as a representation of K, which
is graded by homogeneous degree. Given any irreducible representation of K, we will see
how its multiplicity in the harmonic polynomials is distributed among the various graded
components. The results are described geometrically by counting integral points on faces of
a polyhedron. The multiplicity in each graded component is given by intersecting these

faces with an expanding sequence of shells.
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1 Introduction

Consider the representations of a cyclic quiver on r nodes. If r = 12 we have

\

OO

he

Recall the definition of a quiver. For each node j, associate a finite-dimensional vector
space V. For each arrow j — j 4+ 1 (mod r), associate the space of linear transformations,
Hom(V}, Vii1). Set V =Vi@---@&V,, and let K be the block diagonal subgroup of G = GL(V)

isomorphic to GL(V}) x --- x GL(V,) acting on

p = Hom(Vi, Va) @ Hom(V5, V3) & - - & Hom(V;_y, V;) @ Hom(V,., V7).

Here we let GL(U) x GL(W) act on Hom(U, W) by (g1,92) - T = g2 0T 0 g *, as usual. For

(Ty,...,T,) € p, we have a K-invariant function defined by

trp(1y,...,T,) = Trace [(Ty o - - - o T,)P],

for 1 < p < min{dimV;}. By a result of Le Bruyn and Procesi [3], the tr, generate the
K-invariant functions on p. The representations considered in this paper will turn out to be
equivalent to representations of a cyclic quiver, and this result about the invariant functions

will be put to use in finding the decompositions.
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Throughout the paper, the ground field is C. Leaving the cyclic quiver above for a mo-
ment, we recall the the definition of G-harmonic polynomials. Let G denote a linear algebraic
group. Given a regulaill| representation, V', of G, we denote the algebra of polynomial func-
tions on V' by C[V], which we define by identifying with Sym(V™*), the algebra of symmetric
tensors on the dual of V.

The constant coefficient differential operators on C[V] will be denoted by D(V'), which
we can define by identifying with Sym(V). The differential operators without a constant
term will be denoted D(V'),, and the G-invariant differential operators will be denoted by
D(V)E. We define

H(V)={f€C[V]: Af =0 for all A € D(V){}

to be the G-harmonic polynomial functions. In the case of G = SO3(R) acting on its defin-
ing representation, D(V)¢ is generated by the Laplacian 97 + 97 4+ 92 and the harmonics
decompose into minimal invariant subspaces, which, when restricted to the sphere, admit
an orthogonal basis, namely the Laplace spherical harmonics familiar from physics [9]. In
that case, decomposing the harmonic polynomials (the subject of this paper) leads to a com-
plete set of orthogonal functions on the sphere, useful in numerous theoretical and practical
applications.

In general, every polynomial function can be expressed as a sum of G-invariant functions

multiplied by G-harmonic functions. That is, there is a surjection
ClV]I* @ H(V) = C[V] =0

obtained by linearly extending multiplication. When is this an isomorphism? That is, when is
each polynomial a unique sum of products of invariants and harmonics? Equivalently, when

is C[V] a free module over C[V]¢, the algebra of G-invariant functions? For the Laplace

!That is, the morphism G — GL(V) is a morphism of complex linear algebraic groups.



spherical harmonics this isomorphism holds. All invariants are generated by the squared
Euclidean distance function, and any polynomial can be written uniquely as a product of its
radial and spherical components.

The scalar multiplication of C on V' commutes with the action of G. The resulting C*-
action gives rise to gradation on C[V], which is the usual notion of degree. The G-harmonic
functions inherit this gradation, so we can define H,, (V') to be the homogeneous G-harmonic

functions of degree n. We have the direct sum of G-representations

H(V) =P Ha(V).

We now assume that G is reductive in the category of linear algebraic groups. Under this
assumption, every regular (hence finite-dimensional) representation of G is completely re-
ducible. Let {F,} uec denote a set of representatives of the irreducible representations of
G.

Problem: For each n, how does H, (V) decompose? That is, given u € @, what is the

multiplicity of the irrep F), inside H,,, denoted
[ Ha(V)] = 7

Returning to the cyclic quiver above, the K-harmonic functions on p form a graded repre-

sentation of K:

H(p) = P Halp)

The fact that the polynomial functions are a free module over the invariants is a consequence
of the Vinberg theory of #-groups [10]. Yet, the literature on quivers does not seem to address
the structure of the associated harmonic polynomials.

As a representation of K, the harmonics are equivalent to an induced representation.

For details, see Chapter 3 of Nolan Wallach’s book, entitled Geometric invariant theory over



the real and complex numbers [12]. Alternatively, see An Analogue of the Kostant-Rallis

Multiplicity Theorem. for 0-group Harmonics [11].

1.1 Background from some existing literature

The standard results concerning spherical harmonics on R3 were generalized by Kostant in
his 1963 paper Lie group representations on polynomial rings [3]. This is Kostant’s most
often cited paper. Among many of its results, it establishes that C[g] is a free module over
C[g]® for a connected reductive group G.

To a combinatorialist, a natural thing to do is consider the, indeed polynomial, defined

by the series

pu(q) = Z [FM tHa (V)] g™

n=0
In the 1963 case addressed by Kostant, V' = g, the adjoint representation.

These polynomials extract deep information in representation theory. For starters, they
are Kazhdan-Lusztig polynomials for the affine Weyl group [2]. Outside of Kostant’s setting,
very little is known about them.

In the case that g is of Lie type A, then py(¢) was studied by Richard Stanley in [7].
Later on, connections with Hall-Littlewood polynomials were made [6]. Even combinatorial
interpretations for their coefficients are known. An alternating sum formula was found by
Hesselink in [1].

Then, in 1971, Kostant and Rallis obtained a generalization to the symmetric space
setting in [4]. The Kostant-Rallis setting applies to each symmetric pair (G, K). That is, K
is the fixed point set of a regular involution on a connected reductive group G. A natural
way to generalize is to consider K that are fixed by automorphisms of order larger than two.
Exactly this was done by Vinberg in his 1976 theory of #-groups, published as The Weyl
group of a graded Lie algebra [10]. Since then, an enormous amount of work has been done

on f-groups, but the analog of the graded structure of harmonic polynomials still does not



exist. Taking 6 : G — G to be the identity automorphism on G = SO3(R) we have K = G

acting on its Lie algebra g = R3 and we recover the spherical harmonics example.

1.2 The results of this paper

In this paper, we consider an infinite family of examples. For each choice of r > 2 we will
define a Vinberg pair (G, K) where K will be the fixed points of an order r automorphism
0 : G — G for a connected reductive linear algebraic group G over C. As will be described
below, we define a representation of K on a space of polynomial functions P on an eigenspace
of df, and so also a representation of K on the space of K-harmonic polynomials H C P.
As a consequence of Vinberg’s theory of #-groups, the polynomials will be free over the
invariants and

P=ProH

Being interested in the structure of H as a K-representation, we will immediately notice
that there is a multi-gradation on H such that each multi-graded component Hz is itself a
subrepresentation, for each 7 € N". So we ask, what is the multiplicity of each K-type F),

for u € K inside any multi-graded component Hz?

[F,:Hz| =7

There are of course many graded components H 7, one for each choice of @ = (ny,ng,...,n,) €
N". But actually, describing the graded multiplicity of a fixed irrep F), will surprisingly be-
come one dimensional, in the sense that all nonzero multiplicity will occur in Hz for 7 sitting
along a single ray inside N (Figure . This reduction in complexity has the additional
nice property that the ray of nonzero multiplicity is completely determined by the center of
K. Tt will turn out that the irreps of K can be parametrized by Z = (21,...,2,_1) € Z"!
and § = (s1,...,8,_1,8,) € N', where Z corresponds to the center of K and § corresponds

to the semisimple part of K. The central parameter 2 will determine ray(?) C N", and all
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Figure 1.1: Points 7 in ray(Z) when r = 3

>
z

non-zero multiplicity will occur in Hz for 77 € ray(7).

How is that non-zero multiplicity distributed along this ray? We give a geometric descrip-
tion of the answer in terms of counting intersection points between the faces of a polyhedron
and a ray of shells Shell(Az). First, for each point 7 € ray(Z) we will define an array of

points A C N™ and its shell Shell(A7) C N7, pictured in Figure[l.2] The parameter § € N”

Figure 1.2: A 53y and Shell(A 5 3))

corresponding to the semisimple part of K will determine the hypersurface S C R", where
S is simply r faces of a certain polyhedron constructed from the parameter 5 € N”. The

number of intersection points

4 (Shell(Aﬁ) N 5)

will count the multiplicity [F'z ¢ : Hz]. The structure of K shows up nicely in this description
of graded multiplicity, because the center of K determines ray(z’), and hence also determines
the entire ray of shells Shell(Az) for 7 € ray(Z’), while the semisimple part of K determines

S. For r = 3 we can actually draw the faces of the polyhedron inside R3. As an example,

the irreducible representation Fis 1) (7,54) occurs with multiplicity six in Hs.3), and Figure

6



1.3|illustrates the six intersection points between Shell(A 53y) and S. For dimension r > 3,
(6,5,3)

Figure 1.3: 6 Intersection points between S and Shell(A 5 3))

despite not being able to draw the polyhedron, the same description of graded multiplicity
holds, namely, the graded multiplicity is given by intersecting Shell(Az) with r faces of a

polyhedron.

1.3 Structure of the paper

In Section we describe in detail the infinite family of Vinberg pairs (G, K) considered in this
paper. In Section [3| we describe the irreducible representations of K in terms of parameters
corresponding to the center and semisimple parts of K. In Section 4| we see two explicit
examples of our results for r = 2 and r = 3, including pictures of the hypersurface § and its
intersections with the Shell(Az), which count the graded multiplicity. In Section |5 we prove
how a fixed graded component H 7 decomposes into irreps by using character theory. Finally
in Section [6] we connect this decomposition of Hz to integral geometry and our description
of multiplicity in terms of intersections of the Shell(Az) with the hypersurface S, proving

the assertions made for the examples in Section [4]



2 A specific family of Vinberg pairs

Let G = GL(V) or SL(V) for some finite-dimensional vector space V over C. In either case,
we can construct a Vinberg pair (G, K) for each choice r > 2 (since r = 1 corresponds to
the identity automorphism). Thus, we will have two infinite families of examples. However,
regardless of whether we begin with GG the general linear or special linear group, the results
will be extremely similar. Therefore we will provide the details for only one family of exam-
ples, those where G = SL(V). We will provide comments at appropriate places reminding
the reader that the entire story can be worked out almost identically for the general linear
group as well.

To construct a Vinberg pair (G, K = GY) we also need a finite-order automorphism 6.
What do these look like? First, simplify the question by considering inner automorphisms.
If we have an inner automorphism of order r, it comes from conjugation by some A € G,
denoted 64 sending g — AgA~!. Requiring 6, = 1 forces A" = \I, the identity transforma-
tion. If A" = I for some A € G then this forces A to be (up to conjugation) diagonal with
entries from the set of rth roots of unity {1,(,¢?,...,¢""'}. Since we are only concerned
with the automorphism action g — AgA~!, the factor of A will not affect the fixed points

K = GY. Thus, we can take our arbitrary finite-order inner automorphism to be simply:

conjugation by a diagonal matrix A of rth roots of unity, its eigenvalues.

The simplest case is when all eigenvalues of A have multiplicity 1. In this case K = G
is simply the diagonal subgroup isomorphic to (C*)™ for some m. It’s irreps are all one-
dimensional and the space of harmonics would decompose into one-dimensional irreps. The
paper would be over too quickly.

The first difficult case is when eigenvalues have multiplicity > 1. In those cases K = G

will be a block diagonal subgroup with blocks equal in size to the multiplicities of each root



of unity.

Ezxample. If

<3

CS

then K = G? will be block diagonal with one 3 by 3 block and one 2 by 2 block.

In these cases the irreps of K = G and the corresponding decomposition of the harmonics
become much more interesting and difficult. In this paper we make a first step in this

direction, by considering the inner automorphisms that fix 2 by 2 block diagonal subgroups.

2.1  An infinite family of examples

For each choice r > 2, we construct a Vinberg Pair (G, K) where K is 2 by 2 block diagonal.

Let G = SLy,.(C) and define the inner automorphism of order r

0:G—-G

g+ hgh™!

where h is the diagonal 2r by 2r matrix with eigenvalues the rth roots of unity: 1,¢,..., (" !,

each with multiplicity 2. The fixed points are exactly the block diagonal subgroup

K=G"=8(GLy x -+ x GLy)

TV
r factors

of 2 by 2 blocks with overall determinant 1. If we had taken G = G Lo, rather than SLs, then
K would have been GGLs X - - - X G Ly without the requirement that the overall determinant be

1. Thus K differs only by one parameter in the center between the two cases. Both choices



work out almost identically, so we provide details only for G = SLs, in this paper.

Ezample. For r = 3 and g € SLg(C) we have

hgh_1 = g

¢? ¢
¢? ¢

The fixed points are exactly the block diagonal subgroup

K =G’ = S(GLy x GLy x GLy)

The automorphism descends to the automorphism df on the Lie algebra g, which de-
composes into eigenspaces. Following Vinberg we index the eigenspaces by Z/rZ as g =
0o D g1 D - D ge,, where g, denotes the eigenspace with eigenvalue 1 = (°, g, denotes the
eigenspace with eigenvalue ¢!, and so on, where ( is a primitive rth root of unity. Since G
acts on g via the Adjoint action, then also K acts on g in the same way. By restriction K acts
on each eigenspace. Thus the polynomial functions on each eigenspace yield a representation
of K. For the eigenspace g, this is simply K acting on its Lie algebra and we are in the
original case described by Kostant in 1963. For any eigenspace g1, ..., g,_1 Kostant’s theory
does not apply, but Vinberg’s theory does. As can be quickly calculated, each g;,...,g,_1 is
isomorphic as a vector space to r copies of the 2 by 2 matrices, so without loss of generality
consider the (!-eigenspace

where each X; = Hom(C? C?).

10



Ezxample. Consider r = 3. If we take an element X € g broken into 2 by 2 blocks

Zy X1 Y
X=|Y, Zy X,
X3z Y3 Z3

we see the decomposition g = go & g1 & g2, where
01 =X 0 XD X5

We can restrict the Adjoint action of K on g to the eigenspace g;. If we write an arbitrary
element g € K = S(GLy x GLy x GLy) as g = (g1, g2, 93) and if X € g; then we have an

action X — ¢.X given by

93X39f1
where X € gy is X = X; + X5 + X3 and each of X, X5, X5 is simply a 2 by 2 matrix.

Definition 1. For each r > 2 let (G, K) be the Vinberg pair defined above where

G:SLQT((C> andK:S(ng Xoee XGL%)

TV
r factors

11



Let P be the space of polynomials on g, the (!-eigenspace of df. Define an action

KxP—7P

(9, f)—9g.f

where

(9./)(x) = fg~"2)

This gives a representation of K on P, which we can restrict to the K-harmonic functions

HCP.

We consider the K-harmonic polynomials H inside P, and because this example falls into
the Vinberg setting [10], we know that every polynomial can be written uniquely as a sum

of invariants times harmonics, i.e. that

P=PKoH

See, for example, the paper by Wallach [IT]. The subject of this paper is to ask about the
structure of H as a representation of K, specifically addressing the multi-graded structure
of H, as we will describe presently.

Consider g, = X, ®- - -®X,. Since each X; is a 2 by 2 matrix, isomorphic to Hom(C?, C?),
we consider homogeneous polynomials of degree n; on each X;, which we can think of as
polynomials of degree n; in the four variables coming from X7, degree ny in the four variables
coming from X5, and so on. Thus we have a multi-gradation on P and hence also on H. We
denote by H# the multi-graded component of harmonic polynomials of homogeneous degree
n; on X;, where the subscript labeling the graded component Hz is 7 = (ny,na,...,n,) € N".

Being interested in the structure of H as a K-representation we immediately observe that
each multi-graded component is invariant, and so we can ask, for any component Hz, how

does it decompose as a K-representation? We also ask, given an irrep F), of K, what is the

12



multiplicity
[F,:Hz]l =7

for all 4 € K and for all @ € N".

Remark: Recall the previous discussion of quivers. Consider the cyclic quiver on r > 2
nodes, where each Vi,...,V, is simply C? so that V' = C* and consider G = SL(V) =
SLy.(C), so that K is the block diagonal subgroup isomorphic to a product of r copies of

G Ly with overall determinant 1, denoted

vV
r factors

acting on

p = Hom(C? C?) @ - - - ® Hom(C? C?)

:Xl@...@XT

For each r > 2 the representation of K on P constructed above is equivalent to this represen-
tation of a cyclic quiver. Due to a result of Le Bruyn and Procesi [5], all invariant functions

in P are generated by two. Call them

f = trace(X1 X5+ X,)

and

g = trace((X1 X2+ X,)?)

We will make use of this in Section [5.2]

13



3 The irreducible representations of K

To describe the multiplicity of each K-type in the various graded components Hz, we first
must describe all the irreducible representations of K. In Section [3.1] we describe a covering
map ¢ and its kernel, plus make some necessary definitions and notation. In we see

which irreducible representations of a covering group K factor through

p: K=K

to become irreps of K as well. In|3.3|we will see how the center Z(K') acts on the multi-graded
component Prz. We will also see that the multiplicity [Fz 2 : Hz] = 0 for all 7 ¢ ray(7).
In (3.4 we will see that in decomposing H# as a representation of K it will be enough to
ignore the central characters and decompose using the semisimple characters alone. All of
these terms will be defined below.

This section is very detailed, but necessary. If you accept that the irreducible represen-
tations of K are denoted Fz 2 where 2 € Z" ! and § € N” subject to a mod 2 condition,

then you may skip to Section g} Examples, for some nice pictures and motivation.

3.1 The kernel of a covering map

Consider the surjective map

C* x SLQ — GL2

given by sending
a b wa wb
(w, ) —
c d we  wd

Every irrep of GLs pulls back to an irrep of C* x SLy, but C* x SL; has more irreps.

Another way to say this is that taking the algebraic dual in the category of representations

14



of linear algebraic groups with regular matrix coefficients, we have an injection
@ — C@LQ

Definition 2. Since K = S(GLj3) define K = (C*)"~! x SLj, then define

given by sending

-1 -1 —1
(w17 ceey Wr—1,915 -+ -, Gr—1, gr) — (wlgb w292, ..., Wr—1Gr—1, Wy Wy -+ - wr—lgr)

where w; € C* for i € {1,...,r — 1} and g; € SLy fori € {1,...,r}.
Remark: We need the overall determinant to be 1, so we made the arbitrary choice of
multiplying the last factor g, € SLs by the products of inverses of all the w;.

Example. We give a quick example of the kernel of ¢, and then prove it in general in the

next Proposition. For r = 3, the kernel of ¢ is the four element set labeled by g(+1+1) as in

-1 0 -1 0 10
{g(—l,—l) = (_17_17 ) ) )7
0 -1 0 -1 01
10 -1 0 -1 0
ga,—1) = (17_17 ) ) )7
01 0 -1 0 -1
-1 0 10 -1 0
g(-1,1) = (_1717 ) ) )7
0 -1 01 0 -1
1 0 10 10
gan = (1a17 ) ) )}
01 0 1 01

15



Proposition 1. The kernel of ¢ is the set of all tuples

w1 0 Wyr_1 0 sz 0
(w17w27"'7w7“—17 IR ) )
0 W1 0 Wr_1 0 Hwi
where each w; € {1,—1} and the product ] w; is taken for ¢ € {1,...,r — 1}. Denote the

individual elements of the kernel by

9@ = G(ws,...,wr—1)

Proof. Write an arbitrary element of K (as in Definition [2)) as a tuple of w; € C* and
gi € SLy. First we consider i € {1,...,r— 1}, then we deal with i = r at the end. Requiring

that w;g; = I is to require

gi = =
and since w; € C* clearly each b; = ¢; = 0 and w;a; = 1 and w;d; = 1. Multiplying these
last two expressions together we see that w? = 1 since a;d; — b;c; = 1 becomes a;d; = 1.
Thus w; € {1,—1}. But then w;a; = 1 and w;d; = 1 imply that w; = a; = d;, thus for
ief{l,...,r—1}

10 -1 0
gi € { 3 }
01 0 -1
and w; = —1 if and only if g; = —I5, as required. For g, we have that
witwy e w g =1

Since each w; equals 1 or —1, w; ! — w;, and a similar argument shows that ¢, can be written

using [[w; as claimed. Because there are exactly as many elements in the kernel as choices

16



of {1, -1} for each w;, a convenient notation for the elements of the kernel is gz where w0

has each w; € {1, —1}.

We consider irreducible representations of K with matrix coefficients that are regular
functions on the affine variety K. These representations are all finite-dimensional. Recall
for the group C* all irreps are one dimensional and the irreducible characters are given for
z; € 7. by

w; — w;’

Also recall that if g; = diag(us, u; ') is a parametrization of the maximal torus of SL, then

the irreducible characters are given by

—uf tui i gt

for all s € N, where, as we will see, s was chosen for semisimple. Because our representations
are regular, knowing the character on the torus determines the character everywhere. For this
reason when calculating characters we will restrict them to elements of the torus. We denote
these irreducible characters by xs or xs(u;) when we include the choice of toral variable. This
is in contrast to our notational usage of y to denote the character of a graded component of

the harmonics or of the polynomials, as in x(Pz).

Proposition 2 (Clebsch-Gordan). When we have two irreducible characters of S Ly parametrized

by the same variable, we can expand their product into a sum as follows:

Xa (W) X6(1) = Xats (1) + Xatro—2(w) + -+ + Xja—p| (1)

Proof. This identity is well-known, but briefly, first notice that we can write x,(u) as

u® + ua72 N uf(a72) + w Y =
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Then we have the product

e R I b+2 b
Xa<u)>(b(u):( u— a1 )(U +ut —|—u_)
Distributing and collecting terms in the correct order gives our result. O

Recall K = (C*)"~! x SLj. It’s irreducible representations are standard: they are tensor

products of irreps of C* and SLs.

Definition 3. We parametrize the irreducible representations of K by Z € Z" ! and § € N

and denote them by

- =
zZ,8

where 2 = (21,...,2.-1) and § = (s1,...,5,). The ~ on Fz ¢ simply reminds us we are

talking about irreps of the covering group K.

Consider the irreducible characters of these representations. Again, when we evaluate a
character at a group element, we will always restrict to the torus in each SL, factor. We

will usually choose the variable u; to parametrize the torus of each SL,.

Definition 4. We denote the character of F > 3 evaluated at a group element g € K by

X?,?(Q) = wy' - 'wifllXﬁ (u1) -+ Xsp_y (Ur—1) X, (ur)
where each SLs factor has been restricted to its torus as in

up 0 u, 0
g:(wl,...,wr,l, go ey )
0 uy' 0 wu!
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3.2 Parametrizing the irreducible representations of K

The identity element of K must act via the identity transformation in any representation.
So, if an irrep of K is going to factor through ¢, becoming an irrep of K, we must require
that gz € kerp act by the identity transformation as well. The character of a group element
acting by identity is equal to the dimension. Thus, the irreps F > that factor through ¢ are

exactly the irreps such that evaluating the character at any gz € kery gives the dimension.

Proposition 3. The irreducible representations of K, denoted Fz 3, are parametrized by
Z €Z ' and § € N" such that
r—1 I
zi+ZsZ~ =0 (mod 2)
- ,

= =1

These are exactly the irreps }7}3 of K that factor through ¢.

Before giving the proof we state a lemma. Recall that ys(w) for w € C* denotes the
irreducible character of an (s + 1)-dimensional SLs irrep evaluated at the element of the

torus parametrized by w as in

Lemma 1. If s is odd

Xs(=1) = —=(s+1)

xs(1) =s+1
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and if s is even

xs(—1)=s+1

xs(1) =s+1

Proof. Direct calculation. O

Proof of Proposition[3 Consider the character of an irrep F > of K evaluated at an element

of the kernel gz. We have that

X(gw) = wi'ws? - - w3 X, (1) Xy (W2) - Xy (Wr—1) X, (Wrws - - - wp_1)

Recall each w; € {1,—1} since gz € kerp. Each factor w;* will equal +1, and each factor
Xs; (w;) will equal £(s; + 1), and so this character evaluated on elements of the kernel will
give & the dimension. Thus, if the irrep F 2,7 factors through ¢ then we need to check that
the character is positive, simultaneously for all elements of the kernel. For which irreps does
this happen?

Consider Z = 0 and 3 = 6, meaning, consider the irrep Fa(;, where 0 = (0,0,...,0)
is shorthand for the vector full of zeros. It’s easy to see that x(gz) > 0 for all gz € kery

and also that

z+ Y si=0 (mod 2) (3.1)

r—1 T
1 i=1

1=

holds. Now consider, for some fixed i € {1,...,r — 1}, changing z; by +1. For any choice of

zi£1

gw, every factor keeps the same sign, except the factor w;*" which changes sign for any gz
with w; = —1. This changes the sign of x(¢z), meaning the irrep no longer factors through
. But also Equation now fails to hold. If now we alter yet another z; by %1, for any
j€{l,...,r — 1} including the same factor j = ¢ from before, exactly the reverse happens:
we go from an irrep that fails to factor, to an irrep that succeeds. At the same time Equation

3.1| changes from false to true.
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Similarly, by Lemma , altering any s; for any ¢ € {1,...,r} by adding 1 introduces
elements of the kernel which make the character x(gz) negative, and at the same time
causes Equation to change truth value. This works for s, as well. In this way, we can
move from the irrep ]:};’5» to any irrep of K, and so we have shown that Equation exactly

records the ability of an irrep to factor through ¢, proving the Proposition. O]

3.3 The action of the center on Pz

In this section we will see how the center Z(K) acts on the multi-graded component Pz.
We will also see that the multiplicity [Fz z : Hz] = 0 for all 7 ¢ ray(Z), which we will

define below.

Definition 5. Recall K = S(GLy X --- X GLy). We choose a parametrization of the center

Z(K) by wy,...,w,—1 € C* where an element g € Z(K) is given by

w1 0 Wr—1 0 H U)i_l 0
g = ( VAR ) )
0 wy 0 w,_y 0 TTw;*

where the product [Jw; ' is taken over i € {1,...,r — 1}. Thus Z(K) is exactly the image

of ¢ restricted to the subset C' C K

10 10 -
C:{(wl,...,w,,_l, s }CK
01 01

The center Z(K) is isomorphic to (C*)"~! so we can label an irreducible representation of
Z(K) by an (r — 1)-tuple of integers 2 = (21, 22, . .., 2,_1) Which, because of our choice of
parametrization matches our definition of ¢, corresponds to the 2" from Fz 3. These are

simply choices of an irrep of C* in each factor. We refer to the irreducible characters of
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Z(K) as central characters and they are written

Briefly consider a related group (it would be our K had we chosen G = G Ly,.)

H:GLQX"'XGLQ

Then its center Z(H) = {(w1s,...,w,I2)} where wy,...,w, € C*. In a moment, we will

set wr:wfl--

-w, !, to recover Z(K). Throughout the paper we work with indices mod
r, but with the representatives of the equivalence classes chosen as {1,2,...,r} rather than
{0,1,2,...,r — 1}. For example, n; — n;_y is simply ny — n, when i = 1.

We have described the action of K on g; = X; & --- ® X, and so also on Pz. Allow H

to act similarly.

Proposition 4. For each 7 € N", Z(H) acts on f € Pz by multiplication by a scalar

depending on 70 as in:

=1

Ezample. 1f r = 3 then Z(H) acts on g; by conjugation

X5
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As we will see in the proof below, if f € P(32.4) then

(w1 fw2)? (w /w3)? (wy /wr)* f
= wy wy wi f

Proof. It’s clear that for general r each entry of of the matrices X; gets multiplied by w; *w;, ;.
Transferring the action to X the inverse switches spots, so for each basis element €, of X/,
€ > wiw;rllek. Thus the homogeneous polynomials of degree n; in the ¢, get multiplied by

(wiw;rll)"i. Now f € Pz has homogeneous degree n; in each of the variables ¢; from X in

every term, so all scalars pull out with powers and

fr— <11[<wz-wi+ﬁ>"i>f

i=1
Distributing the exponent and re-writing the product yields the proposition. O

Proposition 5. For each 7 € N, the center Z(K) acts on f € Pz by multiplication

depending on 7i:

r—1
f N (H w?i—ni—1—m~+nr1> f

=1

where we have parametrized Z(K) as in Definition [5|

Proof. Since K differs from H above only by having an overall determinant = 1, the only
change from the center Z(K) compared to Z(H) is to require determinant 1. So whereas

Z(H) ~ (CX)7, instead Z(K) ~ (C*)"~!. So that Z(K) = ¢(C) as in Definition [5] let

-1 1

w, = w; 'wy -+ w, Y. Replace w™ "= in Proposition 4| by (w;'---w. )"~ -1. Bach w;

r—1—"Nr

gets an extra w;' , yielding the claimed action. O

Definition 6. Choose Z € Z"~! such that z; +--- + 2,_1 = 0 mod r. Then Z determines a
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base point b e N by setting b, = 0 and by, for k € {1,...,r — 1} given by

k r—1
k
bk = E Zi — — E Zi
- r“
=1 1=1

Define ray(?) to be all points 7 € N" extending upwards along the vector T = (1,1,...,1)

from the base point b as in

or written more succinctly

ray(Z) = b +N(1,...,1)

7 ones

Ezample. Consider Z = (5,1) in the case r = 3. Then b= (3,2,0) which yields the following

list for ray(7):

Remark: For some choices of 2 it will turn out that b has some negative components.
But moving upwards from b in the direction T, we eventually reach N”. Because ray(?) is
defined as points inside N” we only count the points 7 where every n; > 0. The polynomials

are graded by homogeneous degree, which is non-negative, which explains this choice.

Proposition 6. For all Z € Z'! and 5§ € N" satisfying Equation 3.1} the irreducible

representation Fz ¢ of K occurs with multiplicity zero in every Hz with 77 ¢ ray(7).

where we have chosen our parametrization of Z(K) as in Definition 5] so that Z(K) = ¢(C).
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Proof. Recall the image of ¢ restricted to the subset C' C K

10 10 _
C:{<w1,...,wr_1, goe ey }CK

01 01

is exactly Z(K), so any Fz g corresponds to an action of Z(K) on Pz as in Proposition .

From Proposition [5| we obtain an underdetermined linear system

n
1 1 =2 No 21
-1 1 1 -1 29
-1 1 1 -1
-1 1 1 -1
-1 2 -1 . Zr_1
Ty

The variable n, is free, and row reducing yields exactly 7 € ray(Z) as the only non-negative
integer solutions. O]
Corollary: Iz z has multiplicity zero in ‘H if
r—1
Z z; # 0 (mod 1)
i=1
zZ

Proof. Without this requirement ray(z) is empty. O

3.4 The action of the semisimple part of K on Pz

In this section we will see that in decomposing Hz as a representation of K it will be enough

to ignore the central characters and decompose using the semisimple characters alone.
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Consider the character of Pz, denoted x(Pz). We can attempt to write it as a sum
of irreducible characters of K, thus obtaining the decomposition of Pz into irreducible
representations of K. Inside Pz is the subspace of harmonics Hz, and we will try to
find its character x(Hz) inside of x(Pz), thus obtaining the multi-graded decomposition
of the harmonics as a K representation, including the multiplicity of any given irreducible
representation of K within Hz for all 7. So what will these characters look like?

Recall the irreducible representations F'z z of K are parametrized by 20 € Z"~! and

s € N” such that Equation is satisfied. Every such irrep comes from an irrep of K, and

so by restricting ¢ to the subset {(1,...,1)} x SL} we can evaluate yz ¢ at elements
up 0 u, 0
(1,...,1, e )
0 wu! 0 wu !

where the components coming from each SL, factor have been restricted to the torus, we

obtain the semisimple characters for that irrep. From Definition |4 we have

XE’,E’(Q) =wi' - ‘wi:11X51(u1> S Xy (1) X, (1)
=17 1ZT71X81 (ul) T Xspoa (urfl)xsr (UT)

= Xs1 (u1> © o Xspot (uT*1>Xsr <UT>

which we can simply denote y3 when we are only concerned with the semisimple part of K.

Ezample. If r = 4, we have (1,1,1) x SL3, and the semisimple character

X(1,3,02) = x1(ur) - x3(uz2) - xol(us) - x2(us)

= (u1+u1_1)-(u§+u2+u2_1+u2_3)-(1)-(ui+1—|—u;2)

corresponds to an irreducible representation of dimension 24 =2-4-1 - 3.

Thus, looking at the character x(P) we will find a sum of semisimple characters from S L%,
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each multiplied by a different central character of (C*)"~! = Z(K). Recall from Proposition
that the center’s action on f € Pz will be by scalar multiplication by some powers that

depend on 7

r—1
f — (H w?i—ni—1—nr+nr1> f

i=1
Consider x(Pz) for a fixed multi-graded component 7. In principle, if we ignore the char-
acters coming from the center Z(K) and we find a term x(3 2 inside x(Pz), we won’t know
if it comes as part of an irrep F(_5 _1) (3,0,2) Or as part of Fiys) (3,0,2), Or some other F'> (30 .2).
However, by Proposition , we know that Z(K) acts in exactly one way on all polynomials
inside Pz.

Thus, fixing 77 determines exactly which central characters of Z(K) we will see in x(Pz),
namely from 7 where each z; = n; — n;_1 — n, + n,_;. When we write x(Pz) as a sum
of irreducible characters, any irreducible character yz will appear with the same multiplier,
[Jw;". In this case, fixing the multi-graded component Pz allows us to ignore the center
Z(K) and decompose into a sum of irreducible characters xz of the semisimple part of K
alone. Later, we proceed in this direction, and once we obtain the decomposition of Hz
for all 77, we can turn the question around and ask: Fixing an irrep Fz z, what is the
multiplicity in the various Hz? But first, let us see some examples of the answer worked out

in simple cases.
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4 Examples

In this section we work out two specific examples for the cases r = 2 and r = 3. We will see

that in each case the graded multiplicity

is given by counting intersection points between Shell(A7) and a hypersurface S C R". S
will simply be r faces of a certain polyhedron. At this point we make several definitions, but

follow with explicit examples.

Definition 7. For 77 € N" define a Cartesian product of sets Az and the subset Shell(Az)

as follows:
Az = ﬁ{nl, n;—2,m; — 4, [ngla}
i=1
Shell(Az) = {7 € Az such that M + 2 ¢ Az}
where [n;]s means reduce n; mod 2 and indices are taken mod r from the set {1,...,7}.

We follow Vinberg’s A Course in Algebra, Chapter 7, for some of the (standard) lan-
guage and results about affine geometry. For example, a polyhedron is an intersection of
finitely many half-spaces (thus not necessarily bounded). Every face is an intersection of the

polyhedron with some of its supporting hyperplanes [§].

Definition 8. If f is an affine-linear function on R" define

Hy = {m eR": f(i}) =0}

Hy ={m eR": f(m) <0} = H,
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The set Hy is a hyperplane. H;{ and H, are the half-spaces bounded by Hy.

Definition 9. For each § € N", let M C R" be the polyhedron defined as the intersection

of half-spaces

M:ﬂﬂf+

feJ

where J is the set of affine-linear functions R" — R

J:{f17‘"af’/‘aglw--,gr,hl,...,hr}

and each of the fi,..., fr,g1,...,9r, h1,...,h, depends on the parameter 5 € N" as follows,

where indices are taken mod r from the set {1,...,r}:

fi,..., fr by fz(f) =1+ X — S

8|

g1, 9r bygi( ) =T — T+ 8

hi,..., h. by hl<§f)> = —Ti—1+T;+5;

Each of the fi,..., f, also defines a hyperplane Hy,, and if we intersect M with one of
the Hy, we obtain a face of M. Finally we define our hypersurface S to be the union of
these r faces formed in this way. Later, we count certain integral points on S to determine

the graded multiplicity.

Definition 10. Let § C R" be the union of the r faces of the polyhedron M defined by the

affine-linear functions fi,..., f, as in:

S=MnNHg)U---U(MnNH;y)

J/

VvV
r faces
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4.1 An example with r = 2

Say we fix a K-type denoted Fz z with 2 = (6) and 5§ = (7,5). We ask, what is the
multiplicity in Hz for all possible 77 € N"? The answer is

other Hz

Hss) | Hoe

Graded component || Hs o) | Hsz) | Hra

Multiplicity 1 2 1 1 1 0
This answer can be obtained by counting the intersection points between a hypersurface S
and Shell(A7) for each 7. For example, Shell(A(3)) intersects S twice, giving multiplicity
two. So what are S and Shell(Az)?

We will see how this happens in detail later, but for now recall the Clebsch-Gordan

formula for the character of a tensor product of two SLsy irreps:

Xmy (U)sz (U) = Xmi+ma (u> + Xm1+m2—2(u) + Xm1+m2—4(u) +e+ X\Tm—mz\(u)

Briefly, requiring m;_1 +m; > s; gives us a half-space that will correspond to the affine-linear
function f; from Definition |§| On the other side, requiring s; > |m;_; — m;| will produce a
pair of half-spaces corresponding to the g; and the h; from Definition [9] For now though, we
are simply considering an example from r = 2. We continue.

Since § = (7,5) we can build the polyhedron M and the hypersurface S defined as the

union of two of its faces, both of which depend on this semisimple parameter .
M=H} NH; NH; NH, NH NH,
where
filzy,me) =20+ 21— 7

folz1,22) =21+ 22— 5
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and where

g1(z1,00) =20 — 11 + 7
go(T1,22) =1 — T2 +5
hl(xl,l'z) = —To+ T+ 7

h2($1,l'2) = -2+ 22+ 5

Figure shows the half-spaces corresponding to these affine-linear functions. It shows
H} NH}, in the first picture followed by all half-spaces in the second picture. In this example
Hf N Hf NH; NH; corresponds to requiring that |z, — 21| < 7 and that |z, — 25| <5, as

pictured in the figure.

Figure 4.1: Intersecting H; N Hj, and then all of the half-spaces giving M

The polyhedron M is unbounded, but the hypersurface &, which is simply some of its
faces, will always be bounded. Intersecting M with each of Hy, and Hy, yields 2 faces of M,
where in this case one of the faces is the empty set. For r > 2 every face will be nonempty,
but the construction remains identical in every dimension r. The final hypersurface § is
pictured in Figure [£.2]

To find the graded multiplicity, the multiplicity in Hz, we must recall our parameter

7 = (6). We ask, for which Hz could Z(K) act in this way? Recall the action of the center,
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Figure 4.2: The polyhedron M and the hypersurface &

where an element g € Z(K) acting by ¢~ X g, where g can be parametrized by w € C*.

Xy

X

After some brief calculation, or by utilizing Proposition , we see that Z(K) acts on f €

P(nl,n2) by

f — (w2n1—2n2)f

So to obtain Z' = 6 we require 2n; — 2ny = 6 where n; € N. Thus Z(K) acts by 2 = (6)

exactly on the graded components
Hi0), Hiany, Hs2) Hes)s - - -

Here b = (3,0) from Definition @ Recalling the definition of Shell(A7) we can consider all
Shells for 77 € ray(?Z) = {(3,0), (4,1),(5,2),(6,3),...} and how they intersect our hyper-
surface §. Figure shows these points and their Shells, color-coded, and finally the points
of intersection with &, where the two green-colored points correspond to the fact that Fz 2

has multiplicity 2 in Hg_3).
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Figure 4.3: Intersecting S with Shell(Az): Graded Multiplicity

4.2 An example with r = 3

Consider the case 7 = 3 and the K-type denoted Fz z with Z = (5,1) and § = (7,5,4). We
ask, what is the multiplicity in each graded component of the harmonics H77 The answer is

given in Table where all 77 not included correspond to multiplicity zero. Again the only

b+NT n Multiplicity
(3,2,00+ 0 (3,2,0) 0
(3,2,0)+ T (4,3,1) 0
(3,2,0)+ 2 (5,4,2) 2
(3,2,00+3  (6,5,3) 6
(3,2,00+ 4 (7,6,4) 7
(3,2,0)+ 5  (8,7,5) 6
(3,2,00+ 6  (9,8,6) 4
(3,2,0)+ 7 (10,9,7) 2
(3,2,0)+ 8 (11,10,8) 1
(3,2,0)+ 9 (12,11,9) 0

Table 4.1: Graded Multiplicity

non-zero multiplicities appear in a ray extending from b= (3,2,0) by multiples of (1,1,1).
This is due to the action of the center Z(K) as in Proposition [f]
For now consider building the hypersurface S C R? out of faces of the polyhedron M C

R3. Since we chose 3 = (7,5,4) as our example, the affine-linear functions on R? are given
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filzr, 20, 23) =23+ 21— 7
fa(x1, 22, 23) =21 + 22 — 5

fs(x1, 22, 23) =20+ 23 — 4
and also

g1(1, 29, 73) = 13 — 11 + T
92(21, T2, 73) = 11 — T2+ 5
93(21, T, 73) = 19 — 13 + 4
hi(z1, 9, 23) = —x3+ 21 + 7
ho(z1, 9, 23) = —x1 + 9 + 5

hg(l’l, Xa, 133) = —XT9 + T3 + 4

First consider the hyperplanes defined by Hy,, Hy,, Hy, pictured in Figure , where the
r1 = 0,29 = 0,23 = 0 planes are included for reference only. Of course, they also bound
3 of the 9 half-spaces whose intersection gives the convex polyhedron M C R3. In R3 it’s
harder to picture half-spaces in our figures, and so we now illustrate all of the 9 hyperplanes
that bound the half-spaces in Figure Each pair H;g and H ;L“ will be parallel half-spaces
opening in opposite directions, each towards the other, because they come from requiring
|z — 2] < s

In this case we build the polyhedron M and the hypersurface S as follows:

M= ﬂ H}L where J = {f1, f2, fs, 91, 92, g3, h1, ha, 3}
feJ

34



Figure 4.4: The hyperplanes Hy,, Hy,, Hy, to become the faces of the hypersurface S

Figure 4.5: Hyperplanes used in constructing M and S

and

S=(MNH,)U(MnH)U(MNH)

Recall, the intersection points of S with each Shell(Az) will give us the graded multi-
plicity. Always S depends on ¥, the parameter from our irrep Fz 7, and in this specific
example S came from § = (7,5,4) and is pictured in Figure 1.6, When we intersect with
Shell(A 5,3) we find six intersection points, as explained below.

Intersecting S with all Shell(Az) for 77 € ray(Z) we obtain exactly 28 integral points

on S, which gives the total multiplicity in H. For the graded multiplicity we must intersect
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Figure 4.6: Finished hypersurface § and six intersection points

S with each particular Shell(Az). These Shells are harder to picture now, but they expand
upward from (3,2,0) and eventually hit S. The Shells for 7 = (3,2,0), (4,3,1),(5,4,2) and
(6,5,3) are color-coded in Figure

Figure 4.7: ray(Z) and the first four of its Shells

The last, blue Shell pictured in Figure [£.7]is Shell(Ag53)). Our irrep Fz 3 = F(51),7.54)
appears with multiplicity six inside H53). This fact is recorded by the six intersection

points of that Shell with S and is pictured in Figure [1.8

Figure 4.8: Graded Multiplicity #(Shell(A7) N S)
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5 Decomposing the Harmonics Hz

In this section we discover that the character x(Hz) can be written

W) = Y ( Zm)xy>

meShell(Aw)  PeShell(

Then in Section [6| we use this result to see the geometric description of the graded multiplicity

as counting intersection points between S and the Shell(Az).

5.1 Decomposing A7 and Az into shells

Consider a point 7 = (n{,ns,...,n,) inside N". Denote the minimum of all components
n; as Npin. For example if @ = (5,3,6,2,4) then n,,;, = 2. Define two kinds of lattice

polytopes, or arrays, as follows.

Definition 11. For each 7 € N” define

A;{ = H{nz, n; — 2,”1’ - 47 R [nl]Q}
=1

T
A = H{ni—l +np iy 0 —2,m 0 — 4, nis — ngl}
i=1

where [n;]o means reduce n; mod 2 and indices are taken mod r from {1,... r}.
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Example. Az23) and A3 21) would be

A@as = {3,1} x {2,0} x {3,1}

=1{(3,2,3),(3,2,1),(3,0,3),(3,0,1), (1,2,3),(1,2,1), (1,0,3), (1,0,1)}
Az = {42} x {5,3,1} x {3,1}

={(4,5,3),(4,5,1),(4,3,3),(4,3,1), (4,1,3),(4,1,1),

(27 9, 3)a (27 9, 1)7 (2’ 3, 3)7 (27 3, 1)7 (27 L, 3)a (Za 1, 1)}
Definition 12. Define Shell(A) be all m € Az such that m+2 ¢ Az, and define Shell(Az)
similarly.

Example. Shell(A¢23)) would be everything except (1,0,1) because that is the only point

such that adding 2 to each n; yields another element of A 3).

Proposition 7. For every 7 € N” such that n,,;, > 2 we have
Az = ShGH(A;{) U Aﬁ»_g

Proof. This follows from the definitions above, and also since the parity of n; does not change

if you subtract 2. n

Proposition 8. For every m € N” we have
At = Shell(Ast) UShell(Ay 7) U - - - U Shell A )

Proof. Replacing i} by i — 1 we go from Az to A 7, but since (m;_y — 1) + (m; — 1) =
m;_1+m;—2and |(m;_1 — 1) — (m; — 1)| = |m;_1 —m;| we have that Az loses the first entry

in each factor becoming

T
)\mii’ = H{mi,1 + m; — 2, ceey ]mi,l — m2|}
i=1
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Thus
Am = Shell A\z) UX> 7

Applying this recursively we obtain the decomposition above. O]

5.2 Invariants

Recall, inside the space of polynomial functions of multi-graded degree Pz will be the sub-
space of harmonic functions Hz7, a subrepresentation of K. Therefore we can consider the

character of each of these representations, denoted x(Pz) and x(Hz) respectively.

Proposition 9. For every 7 € N” we have

WP = 3 (L2l 1)x(Heg)

J=0,1,..., Nmin

where [j/2] is the floor function. If n,,, is large this starts out as

X(Pz) =x(Hz) +x(Hz_7) +2x(Hz_3) +2xX(Hz_3)

+3x(Hp_z) +3x(Hz_z) +4x(Hu_g) +4x(Hz_7) + ...

Proof. Due to a result of Le Bruyn and Procesi [5], all invariant functions in P are generated
by two. Call them

f =trace(X1 X5+ X,)

and

g= trace((X1X2 . -X,.)2)

f has degree T = (1,1,...,1) and g has degree P (2,2,...,2), meaning degree 1 or 2 in
each of the r components for f and g respectively. To see this, denote the (a,b)th element

of X; by X éll)) Matrix multiplication gives the (a,b)th element of the product X;X5--- X,
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as a suim

1) (r)
Z th J1XJ1 g2 Xjnq,b

Taking the trace puts an additional sum over a, but changes the last index b to an a as

well. Thus it’s clear that each term will have exactly one entry from each X;, so that f has

degree T. Similarly, g has degree 2. Because the polynomials are free over the invariants,

we can write the table below. Each line corresponds to a different power of ¢, and the terms

in each line correspond to different powers of f. The table should continue until a column

. —
corresponding to n

— Nomin, Which would have a zero in at least one component. Hence at

that point there are no more invariants, since both f and g have non-zero degree in every

component.
Pr =Hn +fHa 7 +[*Hz 5 +[Hr3 +fHz 7z +PHz = +..
t9Mm 3 AfoHz 3z +fP9Ma 7 +fP9Hn 3 +..
+9Mz HfPHz 5 .
+..
+..

Pﬁ’ == Hﬁ’ +H;;_T +2/Hﬁ_§’ +27‘[ﬁ>_§’ +3H7_{—Z +3H,—{_g’

Table 5.1: Collecting isomorphic copies of lower Harmonics

Ezample. Since ny,;, = 1 for 7 = (5,1,4, 3) we have
X(Pi143) = X(Hs1.43) + X(Haos2)
Example. For any 1 with n,,;, = 0 we have x(Pz) = x(Hz).

5.3 The character x(Pz)

Proposition 10. For any 77 € N" with indices mod 7 in {1,...,7} we have

x(Pa) =11 {Xni(uz‘)xni(um) + Xni—2(Ui) X, —2(Wi 1)+ + Xfng)a (U)X, (Ui41)
i=1
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In order to prove Proposition [10] we will use two Lemmas. We use the notation 6;(7) =

(0,...,0,n;,0,...,0) simply setting all components except the ith to zero.

Lemma 2. For any 77 € N” we have

x(Pz) = x(Ps,7)) - - - X(Ps,())

Proof. We can take any multi-graded component Pz and write it as a tensor product of the
spaces of polynomials of matching non-zero homogeneous degree in only one multi-graded
component, as follows:

P =Py (t) @ - ® Ps, ()

This is true for the same reason that C[zy, z, ..., 2z, = Clz1|®Clza,...,z,] =Clz;]®- - ®
C[x,] is true. The result now follows because the character of a tensor product is the product

of the characters. O

Ezxample.

P24 = P3,00) @ Po,2,0) @ P0,0.4)

Lemma 3. For any 77 € N” we have

X(Ps,(ity) = X (Ui) Xy (Wit 1) + Xni—2 (i) Xny—2(Wit1) + -+ Xnalo (Ui) X[l (Wis1)

Proof. ‘Ps,(w) consists only of polynomials on the X; component of g; = X; @ ---® X,.. But

we know the explicit action of K on any given X; is simply

Xi — gi_lXigi—l-l , for (gl, . 7g'r) e K
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Ty
Restricting to the torus in each g; and g;.1, and letting X; = we have

Ty u; - 0 x oy (CESE

Z W 0 Z W 0 u;rll

-1 -1, 1
Uj  Uip1 T Uy Uiy

-1
U; U172 uiuiﬂw

Since at the character level this is simply SL, X SLs acting on 2 by 2 matrices, we know
that the determinant of X; will be a degree 2 invariant and can compute the character using

the following identity:

o = Xk (i) Xn(Uir1)g
[l (1 =2 ) kZ:O

This identity is proved by closing geometric series and recognizing the S L, characters in the

k+1—u’?’1 . . . . .
result (recall uu—,l) The determinant det(X;) corresponding to (1 — ¢?) in the identity

Z %

above is not actually invariant under K, so all these terms lie in the same graded component,

and the lemma follows. O

Proof of Proposition [10. Multiplying the expressions from Lemmal3]in agreement with Lemma
[2, Proposition [I0] follows. O

5.4 A quick example

Consider the case r = 3 and the polynomials of graded degree 7 = (3,2,3). Reading this

example will make the rest of the proof easier to follow.

X(P(3,2,3)) = X(P(B,O,O)) : X(P(o,z,o)) : X(P(o,o,z))
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X(Ps2,3) = [xs(u1)xs(uz) + X1(U1)X1(U2)]
: [Xz(uz))@(us) + Xo(uz)Xo(U3)]

- o) xaun) + 1 () (wn)

Notice how each term in the first factor has a u; and a uy. In fact, each term in the ith
factor has a u; and a w;y; where the indices are taken mod r. If we expand this product
we obtain 2 % 2 % 2 = 8 terms. They are indexed by the array Az = {3,1} x {2,0} x {3,1}
inside N3, so that for each point m € Ay we get a term. The terms are listed below, so for

example, the first term corresponds to m = (3,2, 3).

X(P23)) = Xs(u1)xs(u2)x2(u2)x2(us) xs(us) xs(u)
+ X (u1) X3 (u2) Xa (u2) Xa (us) X1 (us) X1 (u1)
+ X (u1) xs(u2) Xo(u2) Xo(us) X3 (us)x3(u1)
+ X3 (u1) xs(u2) Xo(u2) Xo(us) X1 (us) X1 (u1)
+ X (ua) X1 (u2) X (u2) Xa(us) X3 (us)x3(u1)
+ X (u1) X1 (u2) X (u2) Xa (us) X1 (us) X1 (u1)
+ X1 (u1) X1 (u2) Xo(u2)Xo(us) X3 (us)x3(u1)

+ X1 (w1 ) xa (u2) xo(u2)xo(us)xa (us) xa (u1)

The only other thing to notice is that each term in the resulting expansion above has two
factors involving wuy, two factors involving wusy, and two factors involving uz. We can move
the factors involving u; together, so that in general, the expansion of Proposition [10| will be

a sum of terms that look like

H Xmi—1 (UZ)XTM (ul>

i=0
because each u; occurs in the ith factor but also in the (i—1)th factor. In the next subsection,

we will expand each of these pairs via the Clebsch-Gordan identity into sums of irreducible
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characters.

5.5 Rewriting x(Pz)

Proposition 11. For any 7 € N” we have
)= 3 (T (o)
meAm ~i=1
Proof. Examine the terms in each factor of Proposition repeated here:
X(,PFL)) = H [an(uz)an(qu) + Xni—Q(Ui)Xni—Q(Ui-i-l) +oeee X[mb(ul)X[mb(uH-l)

=1

The terms in each factor are indexed by {n;,n; —2,...,[n;]2} and so when we expand the
product into a sum of terms, the resulting terms will be indexed by points m € Ap. Each
of these terms is a product of one choice from each of the r factors. Each choice looks like
Xom; (i) Xm, (tir1). Thus in the resulting product there will be two factors involving each w;,

but coming from neighboring indices m;_; and m;. See Section for an example. O

Proposition 12. For any 7 € N” we have
CEED I PIT)
meNm N DEAR
where y 7 denotes the semisimple character x,, (u1)xp, (U2) - - - Xp, (Ur)-

Proof. We first consider []'_; Xm,_, (%) Xm,(u;). By the Clebsch-Gordan identity, we can
multiply two irreducible characters and obtain a sum of irreducible characters.
HXmi—l(ui>Xmi (ul) = H |:X(mi1+mi)(ui> + X(m¢71+m¢*2)(ui) +e X|mi—1*mi|(ui>

i=1 i=1

But now it’s clear that when we expand that product, the terms in the resulting sum will be
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indexed by points 7 € Az. If we let x denote X, (1) Xp, (U2) - - * Xp, () then we have a new

way of writing x(P#), as above, where the x # are the characters of irreducible representations

of the semisimple part of K. O

5.6 Finding x(H7) inside x(Pz)

Proposition 13. For any 7 € N” such that n,,;, > 2 we have

> {( > o)+ ( i)+ (Y Xﬁ)]

meShell(Aw) pEShell(Ai) peShell(Ay;_7) peShell(Am— )

with the convention that the sums over Shell(\;_7) are empty whenever i1 — 7 has any
component m; — 7 < 0.

Proof. Since Az = Shell(Az) U A»_ 3 whenever n,,;, > 2, we have

But the right-hand summand is simply x(P-_z), which means

w) +x(Pz_3)

X(Pe) = ) ("e

imeShell(A )

Am

Since
A = Shell(Az) U Shell(A5_7) U - - - U Shell Ap—mrz)
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we have

[( ) + ( i)+ (Y W)]
meShell(Az) -  BeShell(Am) PeShell( A7) PeShell(Am—mi2)
Each term corresponding to a choice of m will be a sum as above, which will clearly have a
different number of terms for different m, since m,,;, is different for each 7. Since 7 itself is
an element of Shell(Az), we may have m = 77, which is when m,,;, is maximized. So instead,
we take the convention that the sums over p € Shell()\m»_;) are empty unless 7 < Myuin,
and we write each sum using n,,;, as in the Proposition. This introduces potentially empty
sums, but simplifies the expression in a way that becomes useful during Propositions [14] and

15l O

Now consider distributing the outer sum over the inner ones, and examine just one term.

Proposition 14. Re-indexing the double sum: For any 77 € N” and j € N we have

> ( > X?f) = > ( >, Xﬁ’)
meShell(Aw)  FeShell(A;_7) ﬁeShell(Am;) PeShell(A—)
Proof. This proof is actually quite straight-forward, but the notation can be confusing. Both
sides are sums of yz, and so we need only check that the sets of indices P are the same, so
the proposition is nothing but a re-indexing of the sum.

Consider showing C. Choose 7 € Shell(Az;_7) for some 717 € Shell(Az). Since we have
chosen a p, we chose it from a non-empty sum, and so j < Mmyn. Define m by defining
m; = m;—j. We have that p; € {m;_1—j+m;—j,m;_1—j+m;—j—2,...,|mi_1—j—(m;—75)|},
where there is some k such that p, = my_1 — j +my — j, since we are in the Shell. But this
is the same as saying that p; € {m,_; + ml,m/_, + m] —2,..., |m,_;, — m})|}, and for the
same k, pp = mj_; +mj. Thus 7 € Shell(Az) as needed. Now, is 7’ € Shell(A;_>)? Since

m € Shell(Az) then m; € {n;,n;—2,...,[n;]2}, and there is some k such that m; = ny,. Since
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J < Munin then m = m; — j is always > 0, so we know m} € {n; —j,n;—j—2,...,[n; —jl2},
and for the same k, mj, + j = n; so mj, = n; — j. This means 7’ € Shell(A;_>) as required.

And now to show D. Pick P € Shell(A—) for some m e Shell(A_7). Define mi by
defining m; = m.+j. Is m € Shell(A7)? We have that m} € {n;,—j,n;—j—2,...,[n;—jl2},
which means that m; + j € {n;,n; — 2,...,[n; — jla + j}, which also means that m; €
{ni,n; — 2,...,[ni]2}. We also have the existence of [ such that m) = n; — j, implying
my —j = mg — j, which means m; = n;. Thus m € Shell(Ag). Is 7 € Shell(A\y;_7)?
We have that p; € {m,_, + m},m,_, +m, —2,...,|m._;, — m}|} where for some k we have
pr = mj,_q +mj,. Then since m; = m}+j we have p; € {m;_1 —j+m;—j,mi_1—j+m;—j—
2, [(mi—y = j) 4 (my — 5)|} with pp = my_y — j 4+ my, — j. This means 7 € Shell(A5;_>).

This completes the proof. O

Proposition 15. For any 7 € N” such that n,,;, > 2 we have

X(Pa) = x(Pz_3) = > ( > Xﬁ’)

meShell(Aw) ~ BPeShell(Am)

oy (Y )

meShell(A ) ° PeShell(Am)

Y (Y v
meShell(Aw_m——) ~ PeShell(Am)

Proof. This follows easily from the previous two Propositions. First distribute the outer sum

over the inner sums in Proposition [13| and then re-index each resulting double sum by using

Proposition [I4] O

5.7 Decomposing Hz by induction

Finally we come to the decomposition of Hz. The claim is that
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Proposition 16. For any 77 € N” we have

W= Y (X )

meShell(Az) ~ PeShell(Am)

where the x 3 are irreducible characters

Xpr (U1) Xps (U2) -+ Xp, (1r)

of SLY coming from the semisimple part of K.

Proof. The proof is by induction. Consider the graded component 7. Let’s refer to the
minimum coordinate n; as n,,;,. The base case is when n,,;, = 0. In this case, Az =
Shell(Az), since in the factor of n,, {n;,n; —2,...,[n;]2} degenerates to simply {0} and
so every point is in the Shell. Then every m € Shell(Az) has at least one component, say k,
where my = 0. A\ = [[{mi—1 + mi,mi_1 +m; —2,...,|m;_1 —m;|} by definition, but then

the kth factor degenerates to simply {my_1}. This means that Shell(Am) = A\m. Then

X(Pa)= > (Z Xﬁ) = ) ( ka)w)

meEAR N TEAm meShell(A7) ~ PEShell(

Since there are no invariants when n,,;, = 0, this is also the character x(H#) (see Proposition
@, which completes the base case n,,;, = 0.

Consider now the case n,,;, = 1. Then there is one invariant, f, of multi-graded degree
(1,1,...,1). In this case

X(Pw) = x(H=) + x(Hz_7)

At this point, we know both x(Pz) and x(H7_7), meaning we can solve for the unknown
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x(Hz). Since when n,,;, = 1, Shell(Az) = Az, we have

X(Pa)= Y ( > Xz_f)

mEAR  DEAm
= ) ( > Xt x;ﬁ)
meShell(A)  PeShell(Am) PeShell(Ay_ 7)

- > (X ) (. )
meShell(Az) ~ PEShell(Am) meShell(Aw)  peShell(A

SRS B O S

meShell(Az) ~ PeShell(Ai) meShell(An_7) * PEeShell(A\m)
= > ( > w) +x(Hz-7)
meShell(Az) ~ PEShell(Am)

where we have used Proposition [I4] as well as our induction base case of n,,;,, = 0. It’s now
clear that x(Hz) is leftover, and is exactly as claimed.

Consider the graded component 7, where n,,;,, > 2. The final induction step assumes
we have shown the claim is true for all m,,;, < Nmin. Since by the induction step we know

the character of any Hy_7 for j > 0 then Proposition (15 becomes

X(Pz) = x(Pr_z) = > ( > X?>+X(HR—T)+"'+X(HTL’—W>
) )

meShell(Aw P eShell( A

We can break up Proposition [9]into two separate lines as in the table below. But recognizing

X(Hz) =x(Pz) —xHz_17) —xHz_3)
XHzz)  —x(Hz
x(Hw) =xPr) —xHz_7) _QX(HH 7) —2x(Hz_3) —3x

Table 5.2: Subtracting characters in two ways

the second line of subtractions in the table as nothing but x(P»_z), and comparing the two

equations, we see that

)= Y ( 3 xﬁ»)

meShell(Aw) ~ PeShell(Am)

as claimed. 0
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6 Connecting x(Hz) to affine geometry

In the previous section we found the decomposition of Hz into irreducible representations

of K. We know from Proposition [I6] that

VHa) = Y ( 3 xﬁ»)

meShell(Aw) ~ PeShell(Am)

But now, given a K-type F'z 3, we ask for the multiplicity in all the various Hz,

(£,

w
o
X
>
I
~

—
z

Proposition 17. If @ ¢ ray(?) then the multiplicity is zero. Otherwise, for 7 € ray(?)
we have

[Fz5: Hz] = #{m € Shell(Az) such that § € Shell(A\z))}

Proof. By the definition of Shell(Az), any § can appear once, or not at all. Thus this

proposition follows directly from Propositions [16] and [6] H
Proposition 18. For §,m € N, then § € Shell(\z) if and only if i satisfies

L. |mi—y —my| < s; <m;_q +my for all 7.

2. s; =m;_1 + m; (mod 2) for all 1.

3. There exists at least one index k such that s, = my_1 + my.

Proof. This simply turns around the definition
A = H{mi—l +mi,mio +my — 2,0, |mi — myl}

=1

combined with the definition of Shell(-). O
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We are interested in the multiplicity of our K-type Fz ¢ inside Hy where 7 € ray(7).
We know all the points m € Shell(Az), and we need only ask: how many of them satisfy the
requirements from Proposition [18? The answer is our multiplicity.

Moving toward a geometrical description of these multiplicities, recall that a linear in-
equality defines a half-space in R". It will be beneficial to think back to the examples in
r =2 and r = 3 given in Section[d We intersect half-spaces to create a polyhedron M C R",
and then by requiring some of the inequalities to be equalities we obtain r faces of M which
we call § C R", a hypersurface. We then intersect the Shell(Az) with S to obtain the graded
multiplicity [Fz ¢ : Hz].

Recall from Section [4] Definition [0]defined M C R" as an intersection of half-spaces which
depended on the parameter 5 € N”. Also Definition [10] defined the hypersurface S C R"
as the union of r faces of M, hence also depending on the parameter s € N". Note that
condition (1) from Proposition , regarded as a linear inequality on 7 € R” give exactly
the half-spaces used in constructing M. Then note that condition (3) simply means that
m € N" C R" lies on one of the r faces of M which define the hypersurface S. In summary,
condition (1) defines the polyhedron and condition (3) requires 7 to lie on one of r faces.

And now we state the main result.

Proposition 19. Consider the irrep F'z ¢ and inquire about its multiplicity [F'z ¢ : Hz]. If
7 ¢ ray(?) then the multiplicity is zero. Otherwise, for a fixed 7 € ray(7"), the multiplicity
of Fz 3 inside Hz is given by the number of intersection points between S and Shell(Az).

In other words,

[Fz5: Mg =# (Sheﬂ(/\ﬁ) N 3)

where the parameter S determines the polyhedron M and also the hypersurface formed

from r of its faces S.

At this point we need to invoke some results from [I1] before finishing with a proof of

Proposition . We need this simply to satisfy condition (2) of Proposition .
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Lemma 4. If the multiplicity of F'z 3 in H is non-zero, then we have

1. Forall k e {1,...,r —1}

r—1

1
zk—i-;;zi:sk (mod 2)

1 r—1

- ZZZ = s, (mod 2)

r
i=1

Proof. The proof of this fact requires calculations very similar to those done in [I1]. Let
M be the centralizer in K of a maximal abelian subspace a C g consisting of semisimple
elements, where g is the Lie algebra of our group G = SLs,.. Then the number of M-fixed
vectors is equal to the multiplicity of F'z ¢ in the harmonics H (but completely ignoring
the gradation!). When you require the number of M-fixed vectors to be non-zero, the two
conditions on Z and ¥ stated in this Lemma follow. Thus, these conditions are satisfied by
any irrep [z 3 occurring in ‘H with non-zero multiplicity. Rather than include such detailed
calculations, we leave them as an exercise in line with [I1], since although technical, they

are straight-forward, and have been considered elsewhere. O]

Lemma 5. If m € Shell(Az) for 77 € ray(?) then for all s € {1,...,r}
m;_1 + m; = s; (mod 2)

Proof. If we can show n;_1 +n; = s; (mod 2) then we are done, since 7 is obtained from 7
by simply subtracting multiples of 2 from various components.

Recall that if 77 € ray(?) then for k € {1,...,r — 1}

k r—1
k
nkznr-i-g Zi__g 2
r
i=1 i=1
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First consider k£ € {1,...,r — 1}. Doing all calculations mod 2 we have

r—1
=z + — ZZ’ (mod 2)
= Sk + S + 5, (mod 2)

= s (mod 2)

where we have used Lemma {4] in the second-to-last step. Last we consider k& = r. Again

doing calculations mod 2 we have

Np—1 + Ny = (nr—’_zzzﬁ_%zzz) + ny

This concludes the proof. O

Proof of Proposition[19. By the definition of S, properties (1) and (3) of Proposition [18| are
satisfied. By Lemma , property (2) is also satisfied. Thus, any 7 € Shell(Az) that lies on

the hypersurface § will satisfy Proposition , and § will be in its Shell(\z). O

At this point, we have proved everything necessary to understand why the examples in
Section [4] are true. We have a geometric description of the total multiplicity in H given
by counting the intersections between a certain hypersurface & and an expanding sequence
of shells, and we have a geometric description of the graded multiplicity in Hz given by

intersecting a given shell with that same hypersurface.
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