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ABSTRACT

MEASURING DETERMINISTIC AND STOCHASTIC
GRAVITATIONAL WAVES WITH PULSAR TIMING ARRAY

EXPERIMENTS

by

Kristina Islo

The University of Wisconsin–Milwaukee, 2019

Under the Supervision of Professor Xavier Siemens

Pulsar timing arrays (PTAs) are uniquely poised to detect the nanohertz-frequency

gravitational waves from supermassive black hole binaries (SMBHBs) formed during

galaxy merger. Efforts are underway to observe three species of gravitational signal

from these systems: the stochastic ensemble, individual, adiabatic binary inspirals, and

bursts with memory. This dissertation discusses all three.

A typical Bayesian search for evidence of a stochastic gravitational wave background

from the superposition of many unresolvable SMBHB inspirals requires weeks to months

to deliver results. This is due in part to the inclusion of inter-pulsar spatial and temporal

correlations induced in PTA data by such a signal. By integrating a simplified Bayesian

search into an existing frequentist statistic, we are able to create a robust background

amplitude estimator that requires minimal CPU time and does not compromise the key

information gleaned from a full Bayesian analysis.

As PTA sensitivity increases, individual binary inspirals will rise above the stochastic

background, promising information about local SMBHBs. PTAs, like the North American

Nanohertz Observatory for Gravitational Waves, regularly conduct searches for these

single-frequency sources, with the latest results coming from the 9- and 11-year data sets.

Although detection is still in the future, results are already informing binary candidate

properties.

Finally, an SMBHB coalescence is theoretically accessible to PTAs through bursts

with memory, a purely General Relativistic phenomenon which imparts a permanent
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spacetime deformation and affects the coalescence signal amplitude at leading quadrupole

order. Simulations parameterized by astrophysical observables from galaxy mergers out

to z=3 predict the rates and signal-to-noise ratios for bursts occurring in the PTA-band.

Extending the synthesized population to include less massive SMBHBs shows space-based

interferometers may also observe this atypical signature.
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Chapter 1

Introduction

1.1 Gravitational Wave Spectrum

Gravitational radiation offers a unique opportunity to observe “dark” phenomena in the

Universe. Objects invisible to telescopes are illuminated through their propagated influ-

ence on spacetime curvature. In a manner independent of electromagnetic observations,

gravity is able to communicate information in the form of spacetime perturbations trav-

eling at the speed of light. These gravitational waves (GWs), like light, contain the

signatures of various physical processes. With the addition of General Relativistic mod-

els and complementary electromagnetic observation, GWs can be used to further our

understanding of astrophysics and cosmology.

Currently, detected GWs only inform the physics governing the inspiral and coales-

cence of some compact binary systems including stellar mass black holes and neutron

stars. This is only a small slice of the types of potentially detectable binaries, however.

An entire spectrum of GW frequencies exists – spanning an array of interesting sources

(see Fig. 1).

Binaries with orbital periods longer than milliseconds emit radiation beyond the sen-

sitivity of ground-based GW observatories, like the Laser Interferometer Gravitational-

Wave Observatory (LIGO) and Virgo (Martynov et al. 2016). The development of GW

detectors optimized to operate in lower-frequency bandwidths is necessary if we are to

understand a broad range of binary configurations.
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Seismic noise sets the minimum frequency detectable by terrestrial GW observatories

– so, lower-band instruments must operate in space. The proposed Laser Interferometer

Space Antenna (LISA) will cover frequencies within 10−4 − 1 Hz, encapsulating signals

emitted by extreme mass ratio compact binary inspirals and black hole binaries up with

masses up to 108 M� (Amaro-Seoane et al. 2017). The confusion background of signals

from binaries in the Milky Way will cap the lower-frequency end of LISA’s sensitivity.

Going beyond the solar system, Galactic-scale GW detectors will have access to the

dynamics of supermassive black hole binaries (SMBHBs). Classic Michelson interferom-

eters rely on measuring the passage of a GW by witnessing an increased or decreased

displacement between two (effectively) freely-falling test masses, be they suspended mir-

rors or propulsion-stabilized spacecraft. For SMBHBs, this experimental method requires

test-mass separations of thousands of parsecs. Thus, Galactic-scale detectors use existing

astrophysical objects to probe these lowest GW frequencies.

1.2 Pulsar Timing Arrays

Pulsar timing arrays (PTAs) are GW observatories sensitive to frequencies in the

10−9− 10−7 Hz range (Detweiler 1979; Sazhin 1978). PTAs consist of a network of galac-

tic Millisecond Pulsars (MSPs): a class of rapidly rotating neutron stars with strongly

beamed radio emission along its magnetic poles. If the spin and magnetic axes are mis-

aligned, and some of the radio emission is projected onto the line-of-sight to Earth, MSPs

appear as ultra-stable pulsing beacons, rivaling the precision of atomic clocks (Hartnett

& Luiten 2011). MSPs exhibit stability over ∼ decades (see Cordes 2013) – a necessary

condition when optimizing for long-wavelength GW detection.

By monitoring MSPs with radio telescopes, we can probe not only the physics which

governs bodies of supranuclear density (e.g. Cromartie et al. 2019), but also the spacetime

at and between the Earth and the pulsar. Importantly, a GW would alter the null

geodesic along which these pulses travel, affecting the observed radio signal. PTAs aim

to accurately measure the radio pulse times-of-arrival (TOAs). We develop a theoretical

timing model which predicts pulse arrival and compare that against the measured TOAs.

The difference between the two is the timing residual. A benefit of using MSPs is the

2
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Figure 1: The gravitational wave (GW) spectrum with shaded colored regions corresponding to the

different black hole binary sources. Sensitivity across the entire range requires various GW detectors

operating within different frequency limits. Highest frequency phenomena like compact stellar mass

black hole binaries are accessible to ground-based detectors, including aLIGO (advanced LIGO). Future

space-based instruments like LISA will find sources emitting within 10−4 − 1 Hz. Pulsar Timing arrays

serve as a galactic-scale experiment receptive to the longest period binaries. Current and future sensitivity

curves of these detectors are in black, reporting the strength of GW signal measurable by each instrument.

Figure adapted from C. Moore, R. Cole, and C. Berry, with modifications by C.F. Mingarelli.

large number of pulses collected during each timing observation, e.g., we record ∼ 106

pulses for the typical observation of a 10 ms pulsar. This allows us to fold the pulse

data, stacking individual pulses to create an average pulse profile we can then measure to

high precision. Current PTAs can accurately predict TOAs to a few tens of nanosecond

precision.

Non-zero timing residuals of this order may be due to incorrect parameter estimates

for the pulsar (for instance, pulse period, pulsar spin-down, astrometry, etc.), but, they

may also be from a spacetime disturbances encountered during pulse propagation to

Earth, such as gravitational wave. Depending on the considered source of GWs, we tailor

3



a search to mine PTA data for evidence of temporal offsets consistent with the polarized

stretch and squeeze induced by a GW.

Currently, there are three PTA experiments in operation: the North American Ob-

servatory for Gravitational Waves (NANOGrav; McLaughlin 2013), the European Pul-

sar Timing Array (EPTA; Desvignes et al. 2016), and the Parkes Pulsar Timing Array

(PPTA; Hobbs 2013). Together these groups form the International Pulsar Timing Ar-

ray (IPTA; Verbiest et al. 2016a) which periodically releases combined datasets (Verbiest

et al. 2016b). Efforts are in place to continue these experiments as they reach sensitivities

consistent with predicted GW signal levels. Dedicated telescope time ensures PTAs can

not only continue to monitor well timed pulsars but embark on searches for more MSPs.

1.3 Supermassive Black Hole Binaries

A promising source of GWs in the PTA-band arises from a cosmological population of

inspiraling supermassive black hole binaries with total mass ∼ 107 − 1010 M� (Sesana

et al. 2004; Sesana 2013; Burke-Spolaor et al. 2018). Binaries this massive are theorized

to develop through accretion and repeated minor mergers of galaxies, each seeded with

a central black hole. Since their formation is thought to be a direct consequence of the

hierarchical clustering of large-scale structures, gravitational observation of these systems

has widespread implications for cosmology.

During a galaxy merger, the resident black holes sink to the shared galactic nucleus

where interactions with surrounding dark matter, gas and stars extract energy, shrinking

the binary orbit until the black holes form a bound pair. If enough energy is siphoned

by the environment, e.g., stellar scattering or accretion, the binary will reach sup-parsec

separations at which point gravitational radiation from an accelerating quadrupole mass-

moment dominates the orbital decay. Provided the black holes are sufficiently close, this

GW emission will succeed in drawing the binary to coalescence within a Hubble time. The

cosmic timeline of binary evolution strongly depends on galaxy morphology and contents;

also, the expected rate and brightness of the signals from these systems strongly depend

on the time spent undergoing various modes of energy loss (Kelley et al. 2017b).

There are well-publicized correlations between the mass of a SMBHB and observable
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parameters of its host galaxy, such as bulge mass or the velocity dispersion of stellar

matter in the bulge (Gültekin et al. 2009), hinting that large galaxies and binaries are

thought to grow symbiotically. These relations are sewn into population syntheses aimed

at predicting the rate and strength of signals with respect to detector sensitivity from

these sources, as further discussed in Chap. 2.

Figure 2: Schematic of the various mechanisms thought to contribute to SMBHB orbital decay over

cosmological timescales. Depending on the available matter for coupling, a binary can be efficiently

drawn to coalescence within a Hubble time or stall toward parsec separations. (Figure from Taylor et al.

(2019); further credit therein).

1.4 SMBHBs in PTA data

SMBHBs imprint themselves in PTA data in two ways: individually and en masse. His-

torically, PTA data analyses focus on the stochastic GW background (GWB) formed by

a population of inspiraling SMBHBs, as models predict that this signal is expected to

be detected first (Rosado et al. 2015). Although the GWB contains the signatures of

individual binaries, these properties are washed out in favor of the emergent properties

describing the signal of the ensemble. Thus, our detection searches focus on extracting the

statistical properties of the background, namely the power spectrum and the cross-power

correlations of pulsar residuals.

A comprehensive derivation of the theoretical power spectral density (PSD) for a

GW background can be found in numerous works (e.g. Allen & Romano 1999; Thrane
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& Romano 2013). If we assume the energy density of the stochastic background suits

a power-law description, and whose constituent gravitational waves collectively form an

isotropic, unpolarized, stationary background of zero mean, then the strain power spectral

density is

Sh(f) =
A2

gwb

12π2

(
f

fyr

)−γ
f 3
yr (1.4.1)

where Agwb is the frequency-independent background amplitude, fyr ≡ 1/(1 yr), and γ

dictates the spectral distribution of power. In the case of an ensemble of circular binaries

evolving to increasingly smaller orbital separations by radiating energy through GW

emission, γ = 13/3 (Phinney 2001).

The power spectral density due to the GWB within a single detector can be written

as

Ph = R(f)Sh(f) (1.4.2)

with R(f) serving as the transfer function between GWB and the detector response

power, i.e., the antenna pattern of the detector over polarizations and directions on the

sky.

Any individual pulsar can, in theory, serve as a single detector, however, many MSPs

show evidence for noise that can also be well described by a power-law with amplitude and

spectral character similar to that of the background (Arzoumanian et al. 2018a). A net-

work of pulsars provides addition means by which to increase signal-to-noise, introducing

cross-correlated detector response terms.

The GWB-induced power shared by the residuals of pulsar a and pulsar b is

Ph,ab = ΓabSh(f) (1.4.3)

where Γab is the overlap reduction function which scales the degree of cross-correlated

power. An isotropic population of inspiraling SMBHBs induces unique quadrupolar cross-

correlations in any pair of pulsar residuals. The cross-correlation coefficients depend only

on the angle between the pulsar pairs and form the so-called Hellings and Downs curve
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(originally conceived in Hellings & Downs (1983) and rigorously detailed in Anholm et al.

(2009a)).

Identifying not only the correct power spectrum but also measuring the proper cross-

correlations is needed to claim a confident GWB detection with PTAs.
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Figure 3: Hellings and Downs cross-correlation coefficients as a function of pulsar pair angular separa-

tion. Pulsar timing residuals expect to be related via this spread of power for gravitational waves from

an isotropic distribution of inspiraling supermassive black hole binaries

We turn now to individually resolvable SMBHBs. PTAs are also sensitive to GWs

emitted from nearby individual SMBHBs with periods on the order of months to years,

total masses of ∼ 108 − 1010 M�, and orbital separations of ∼ 10−3 − 10−1 pc, depending

on the total mass of the binary. SMBHBs that are emitting in the PTA band have

nearly-constant orbital frequencies, and hence the GWs from these sources are referred

to as “continuous waves” (CWs). We treat these as a deterministic signals in our data

with recoverable frequency, phase, and amplitude. PTAs may also be sensitive to bursts

with memory. This is the DC component of the chirp signal emitted just prior to binary

coalescence. In general, PTA sources evolve too slowly to directly detect the coalescence

during the length of a typical PTA experiment.
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Our target signals are present during the entirety of data collection. Consequently,

PTA analyses use simultaneous modeling of interesting and nuisance sources of noise. This

provides unique challenges when optimizing our detection analyses to accommodate all the

available degrees of freedom. A boon, though, is that longer observation baselines grant

increasing signal-to-noise to any astrophysical signal. This means there is no fundamental

low-frequency limit – our sensitivity will continue to extend into lower-frequency territory

without any additional instrumentation.

1.5 Dissertation Outline

In this dissertation, we explore aspects of all three types of GW signals described above.

In the following chapter, we estimate detection prospects for bursts with memory using

an observation-based simulation framework to construct SMBHB populations evolving

to coalescence. This requires further our understanding of how this non-oscillatory GW

signal appears in PTA data. We evaluate expected rates for various signal strengths and

signal-to-noise ratios with respect to both current PTAs and LISA. Chapter 3 discusses

NANOGrav’s latest search for individual inspiraling SMBHBs in PTA data. We expound

on methods for noise modeling and Bayesian procedures used in typical PTA data analysis.

Our results are then used to inform astrophysical constraints of binary candidates. Lastly,

Chapter 4 describes a new hybrid detection-frequentist statistic useful for discriminating

the presence of a GWB power spectrum in PTA data without the need for comprehensive

Bayesian analysis. Finally, we present a brief summary of results.
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Chapter 2

Prospects for Memory Detection

with Low-Frequency Gravitational

Wave Detectors

“All that you touch you Change.
All that you Change Changes you.
The only lasting truth is Change.”

— Octavia Butler, Parable of the
Sower

This chapter is based on:
Prospects for Memory Detection with Low-Frequency Gravitational Wave Detectors
K.Islo et al. 2019
Submitted

2.1 Introduction

Non-linearities in Einstein’s field equations suggest that during the coalescence of compact

objects, the oscillatory GW radiation is accompanied by a monotonically increasing or

decreasing component of the strain. The result is an enduring change of gravitational

potential in the wake of a propagating GW, a feature termed “memory” (Christodoulou

1991; Blanchet & Damour 1992; Thorne 1992). For example, a GW with memory passing

through a system of two isolated, free-falling test masses would permanently stretch or

compress the co-moving distance between them.
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Like the oscillatory component of a GW, memory is sourced by a changing time

derivative of the system’s mass multipoles, but only in part. It also grows through the

cumulative history of GW emission. As such, the memory signal inherits the radiating

system’s evolving past: its strength at any time the result of the integrated history of

the system. For an SMBHB undergoing a merger, the memory signal initially displays

negligible growth corresponding to the slow time evolution of the binary’s inspiral. Once

the binary enters its most dynamic phase during coalescence, the system emits a ‘burst’

of memory signal which propagates outwards. Observations of SMBHB merger memory

events would shed light on strong-field effects of General relativity, and provide informa-

tion about SMBHB properties augmenting that obtained from the oscillatory components.

More broadly, a memory observation would provide robust evidence of fundamental sym-

metries in GR (Strominger 2017).

In this chapter, we estimate the current and future potential to detect GW memory

from SMBHB coalescence based on a simulation-suite of semi-analytic models for the

SMBHB population. Importantly, the models are based in local observables for SMB-

HBs, and thus encompass only uncertainties from local mass functions, galaxy merger

timescales, etc. rather than uncertainties in casting dark matter halo simulations to a

binary supermassive black hole population (as has been the case for other similar simu-

lations in the past (Enoki et al. 2004; Sesana et al. 2008; Ravi et al. 2012; Kulier et al.

2015)). This study is also novel from previous studies in that we expand our models to

include lower black hole masses, down to MBH & 105, and higher redshifts, such that the

memory signals expected in the bands relevant to both PTAs and LISA can be explored.

We also take into account the unknown decoupling radius for binary-host interactions.

We look at the likely rate and SNR for memory events detectable within these frequency

bands.

2.2 SMBHBs: A Viable Source of Memory

SMBHBs form during major mergers, and harden through repeated interactions with

their galactic environment (Begelman et al. 1980; Volonteri et al. 2003). The effectiveness

of the mechanisms by which these black hole systems are driven to merger is an open
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question in astrophysics, although many studies conclude these binaries will coalesce given

sufficiently gas-rich galactic environments or continuous rates of stellar loss-cone refilling

(Colpi 2014; Roedig et al. 2011; Khan et al. 2013; Vasiliev et al. 2015). SMBHBs that

eventually merge are candidates for producing strong GW memory bursts.

The persisting spacetime offset induced by a passing GW memory signal is propor-

tional to ∆Erad/D, where ∆Erad is the total energy radiated in the form of GWs and D

is the co-moving distance to the coalescence. For equal-mass SMBHBs, the energy avail-

able for the GW memory burst ranges from 5% to 10% of the total binary energy. The

precise value depends on binary inclination and the degree of black hole spin-alignment

(see Pollney & Reisswig 2011). For example, an optimally-oriented binary consisting of

two 109 M� black holes coalescing 1 Gpc away from Earth will emit a GW memory burst

with amplitude hmem ∼ 10−15. per Kaplan: how does this change for various inclinations

and orientations?

Population synthesis: To find SMBHB coalescence rates we use the population syn-

thesis model described in Simon & Burke-Spolaor (2016). This simulation is constructed

using empirical quantities that characterize galaxy mergers – namely, galaxy stellar mass

function, galaxy pair fraction, and galaxy merger timescale. These are cast from galaxy

pairs into inferred SMBHBs and mergers using the empirical relationship that has been

found between host galaxy bulge mass and black hole mass (McConnell & Ma 2013; Kor-

mendy & Ho 2013; Shankar et al. 2016). Our usage of the Simon & Burke-Spolaor (2016)

prescription is as follows: In order to evaluate the number of bursts occurring per year, we

start with the galaxy merger rate. The probability of a single galaxy completing a major

merger is proportional to fpair/Tmg, where fpair is the fraction of galaxies in dynamically

close pairs and Tmg is the merger timescale.

The probability of a galaxy of mass M becoming paired with another galaxy of mass

qM , where q < 1, at a redshift z is,

R(z,M, q) =
dfpair(z, q)

dq

1

Tmg(z,M)

dt

dz
, (2.2.1)

where dt/ dz is a cosmological term converting the proper time rate to a redshift rate.

This differential merger rate along with the galaxy stellar mass function (GSMF) Φ,
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produces the differential number density of galaxy mergers,

d3n

dz dM dq
= Φ(z,M)R(z,M, q). (2.2.2)

In order to represent our merger rate as one of SMBHBs, we cast the host galaxy mass

into a black hole (BH) mass using an MBH −Mbulge scaling relation. Then we can define

the number of SMBHB mergers in an interval dt on Earth as,

d4N

dt dz dM dq
=

d3n

dz dM dq

dVc
dz

dz

dt
, (2.2.3)

where Vc is the co-moving volume at a redshift z. Note that this differs from the for-

mulation of Simon & Burke-Spolaor: Instead of deriving binary coalescence rates, they

calculated the number of binaries contributing to the strain in each GW frequency bin. We

restrict the parameter space to include only what we know observationally. Specifically,

we take the redshift to be z < 3, the primary galaxy mass to be 108 M� < M < 1012 M�,

and the mass ratio to be consistent with ‘major mergers’ with 0.25 < q < 1.

Evolution of SMBHBs: Evolution of SMBHBs: At the early stages of galaxy

merger, we expect dynamical friction to reduce the orbital angular momentum of the

individual black holes until they sink to the center of the merger remnant, forming a

SMBHB (Begelman et al. 1980; Volonteri et al. 2003). The dominant mode of energy

loss below ∼10 pc binary separation is not yet understood, although many environmental

interactions potentially contribute (Merritt & Milosavljević 2005). As such, it is unclear

when the environment decouples from the binary, after which GW emission dominates.

This has been the center of a growing debate in predicting the strength and spectral shape

of the stochastic gravitational wave background in the nanohertz frequency band (e. g.

Arzoumanian et al. 2018c; Taylor et al. 2017; Rasskazov & Merritt 2017; Kelley et al.

2017a).

Here, we incorporate varying environmental influence to predict GW memory bursts

for populations with different evolutionary timescales. We introduce a parameter we

term the decoupling radius ad to be the orbital separation at which the binary’s evolution

becomes GW-dominated. SMBHBs embedded within sparse environments exhaust their

environmental interactions earlier and have the potential to stall before reaching a regime

where GW-radiation can drive the binary to merger (i.e., ad > 1 pc). The opposite
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scenario involves a binary strongly coupled to its environment, undergoing extremely

efficient orbital shrinking, and reaching coalescence quickly (ad → 0).

If we assume circular binaries, the time to coalescence can be expressed in terms of

Keplerian parameters and chirp mass M = (M1M2)
3/5/(M1 +M2)

1/5

τGW =
5 c5

256G

a4d

M5/3M
4/3
tot

. (2.2.4)

Establishing ad is therefore akin to specifying the total time to binary coalescence, i.e.,

tcoal = tGal + τGW, where tGal is the time between galaxy merger and SMBHB formation.

τGW contributes a difference in the redshift between SMBHB formation and coalescence

– zmerge vs. zcoal. We must be careful to evaluate the last two factors in Eq. (2.2.3) at

this lower redshift if we are to interpret it as a memory burst rate as seen at Earth.

Addition of lower-mass black holes: Previous simulations of SMBHB populations

(such as that in Simon & Burke-Spolaor (2016)) only include progenitor galaxy mass

greater than 1010 M� which corresponds to individual black hole mass of ∼ 107 M�.

Lower galaxy masses are likely not relevant PTA-band sources, but 105 − 107 M� black

hole binaries can produce GW memory signals which enter the LISA band. We use

results from the Galaxy And Mass Assembly survey as outlined in Wright et al. (2017)

to estimate the distribution of these lower mass binaries at z < 0.1 along with those from

the ULTRAVista survey reported in Ilbert et al. (2013) for higher redshifts.

Owing to their comparatively lower luminosity, observations do not constrain the

distribution of these binaries well. As a comparison to the observations of the galaxy

stellar mass function (GSMF) for these lower mass systems, we also use a GSMF fit to

simulated binary populations as described in Barausse (2012) and Sesana et al. (2014).

2.3 GW Memory Signal Model

2.3.1 Memory signal from SMBHBs

Over the binary’s lifetime memory undergoes a slow growth prior to merger, rapid ac-

cumulation of power during coalescence, and eventual saturation to a constant value at

ringdown. Thus, in the time domain, the signature of a memory signal from a SMBHB
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can be approximated by a step-function centered at the moment of coalescence:

hmem
+,× (t) = ∆hmem

+,× Θ(t), (2.3.1)

where Θ is the Heaviside-step function and ∆hmem
+,× is the net difference between the

spacetime perturbation long before and long after the passage of a gravitational wave

with memory, i.e.,

∆hmem
+,× = h(t→ +∞)− h(t→ −∞). (2.3.2)

In the frequency domain,

h̃mem
+,× (f) =





i∆hmem
+,×

2πf
for 0 < f < fc,

0 for f ≥ fc,

(2.3.3)

where fc, the cut-off frequency, corresponds to twice the orbital frequency at coalescence.

Frequencies larger than fc do not contribute to the GW signal. We can approximate

fc ∼ τ−1, where τ is the light crossing time of the merger remnant. τ is also the timescale

for the rise of the memory signal during the merger. Eq. (2.3.3) is sufficient for PTA signal-

to-noise ratio calculations, however, we include a minor correction since LISA may be able

to resolve the time varying features of the memory signal between onset of coalescence

and ringdown. From Favata (2009),

h̃mem
+ (f) ≈ i

∆hmem
+

2πf

[
1− π2

6
(τf)2

]
, (2.3.4)

The magnitude of the spacetime offset ∆hmem is affected by black hole spin-alignment,

with the maximally aligned spinning case exhibiting the strongest signal Pollney & Reis-

swig (2011). Higher-order spin effects should be incorporated in future simulations to

properly reflect the saturated memory amplitude. We use the spin-averaged formula for

circular binaries as given by Madison et al. (2017),

∆hmem
+ ' (1−

√
8/3)

24

Gµ

c2D
sin2

(
17 + cos2 ι

)
, (2.3.5)

∆hmem
× = 0 (2.3.6)

with dependence on additional binary parameters reduced mass µ, inclination angle ι,

and co-moving distance D.
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Figure 4: The low-frequency end of the gravitational wave spectrum. Estimated LISA sensitivity to

individual black hole binary mergers as of the LS Mission Proposal (Amaro-Seoane et al. 2017) along with

the sensitivity of a 12.5-year baseline PTA with biweekly observations, nanosecond root-mean-squared

timing residuals, and only white noise (Moore 2015). Plotted are memory signals from binaries with total

mass 1010 M� and 106 M� at z = 1.0 with mass ratio 0.25. (magenta and teal, respectively.) Include

references here used to make curve

2.3.2 Signal-to-Noise Ratio

Previous studies expound on ideal strategies for searching and conducting analyses of

memory signals (e.g. Braginskii & Thorne 1987). In this work, rather than discuss best

practices, we evaluate the astrophysical motivation for implementing searches of GW

memory signals from a cosmic population of SMBHBs, specifically focusing on the signal-

to-noise for memory events within LISA and PTAs.

LISA

Proposed space-based interferometers like LISA would respond to a burst with memory

as a permanent change to the proper distance between its free mirrors. In theory, the

signal may be stored forever. Ground-based interferometers are not optimized for memory
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detection, requiring stacking of stellar-mass coalescence signals to accumulate SNR (Lasky

et al. 2016) or waiting on new space-based observatories like the Big Bang Observatory

to detect memory from GW150914-like events (Johnson et al. 2019). Here we calculate

the SNR for memory from higher mass binaries, relevant for LISA.

The signal-to-noise ratio (SNR) is computed using an optimal match filter to extract

a known signal model from noisy data as described in Flanagan & Hughes (1998). With

Eq. (2.3.4) as our memory signal model, the average SNR is given by

〈ρ2〉 = 4 Re

∫ ∞

0

〈h̃mem(f)|h̃∗mem(f)〉
Sf

df (2.3.7)

=
∆h2mem

π2

∫ fc

0

df

f 2

(
1− π2

6
(τf)2

)2
1

Sn(f)
. (2.3.8)

Fig. 5 shows the SNR for a memory burst produced by SMBHBs of total binary mass

Mtot coalescing at redshift z. Expected SNR ranges from 100 to 10,000 with the highest

SNR events coming from binaries at z < 0.5 and with 105 M� < Mtot < 107 M�. Our

approximated memory model only minimally diverges at higher redshift from the LISA

SNRs reported in Favata (2009). Analysis of LISA mergers within the same range of

mass and redshift, indicate that Mtot < 104.2 M� coalescences will occur beyond the

LISA frequency band (≥ 1 Hz), in which case, the memory signal will be the dominant

coalescence signature. “Orphan memory” signals, as they are termed in McNeill et al.

(2017), effectively increase the high-frequency limit of the detector, allowing access to

previously forbidden binary masses and redshifts.

As LISA data analysis stands, the degree to which a memory burst will be distin-

guishable from any other cause of detector response relies on the co-incidentally modeled

signals and sources of noise. Future work will hopefully elaborate on best practices for

memory signal extraction in light of LISA’s unique GW window.

Pulsar Timing Arrays

PTAs measure the times of arrival of radio pulses from an array of galactic millisecond

pulsars. GW memory manifests in pulsar timing observations as an abrupt increase

or decrease in pulsar rotational frequency. PTAs currently target their search to the
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Figure 5: LISA signal-to-noise ratio for GW memory bursts from optimally-beamed (e.i., ι = ±π/2),

equal-mass SMBHBs with Mtot between 104 M� − 109 M� and coalescence redshift between 0.1 − 3.0.

Dots fill the space in which the memory burst signal falls outside the LISA band due to strain amplitude

below the noise amplitude or a cut-off frequency below the minimum band frequency. The hatched region

encompasses binaries for which the memory signal will be observable, while the oscillatory merger signal

will not.

stochastic background formed by the superposition of GW emission from a cosmological

population of inspiraling SMBHBs, but, with longer baseline observations, will eventually

be able to effectively marginalize over intrinsic pulsar noise to detect deterministic GW

signal from an individual binary, which includes, in theory, GW memory.

GW memory manifests in pulsar timing observations as an abrupt increase or decrease

in pulsar rotational frequency. A burst passing Earth will affect the timing residuals for

all pulsars in the array in a correlated way. Leveraging the data from many pulsars is

crucial when claiming a confident memory detection within PTA data as intrinsic noise

in individual pulsars can mimic a burst. Below we derive the SNR of a memory event

within a single pulsar’s residuals – the SNR using an entire array is easy to estimate from

this single pulsar derivation.
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Figure 6: From Wang et al. (2015). Pre-fit pulsar timing residuals injected with a burst with memory.

The time advance or lag of pulse arrival times depends on the black hole spin alignment of the source

binary.

The timing residual for the jth pulsar accumulated during a length of observation t

is computed by integrating the redshift of the signal over the time interval.

Rj(t, Ω̂) =

∫ t

t0

dt′ zj(t
′, Ω̂), (2.3.9)

where z is the redshift corresponding to the rate of arrival of signals from pulsar x and

Ω̂ is the propagation direction of the GW contributing to the redshift modulation. Since

the burst signal effectively alters the pulse redshift, we can write Eq. (2.3.9) as

Rj(t, Ω̂) = Bj(Ω̂)

∫ t

t0

dt′Θ(t− tmem) (2.3.10)

= Bj(Ω̂)(t− tmem)Θ(t− tmem). (2.3.11)

The Fourier transform of the integrated time-series residuals is

R̃j(f) = −Bj∆hmem
eiftmem

2πf 2
, (2.3.12)

where Bj is a geometrical factor accounting for pulsar position, GW polarization and

propagation direction. PTA SNR is similarly determined through a matched filter anal-

ysis. From van Haasteren & Levin (2010):

〈ρ2j〉 = 4 Re

∫ ∞

1/Tobs

|〈R̃j(f)|R̃∗j (f)〉|
Sr(f)

df, (2.3.13)
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where Sr is the power-spectral density of the timing residuals and Tobs is the total time

span of pulsar observation. Assuming the residuals are white and Gaussian, the one-sided

power-spectral density can be written as

Sr(f) = 2σ2∆t, (2.3.14)

where σ is the white noise root-mean-square errors on the pulsar residuals and 1/∆t is

the observation cadence (typically ∼ 1/month). Inserting Eq. (2.3.12) and Eq. (2.3.14)

into Eq. (2.3.13), and averaging over pulsar and source location gives

SNR =
∆hmemT

3/2
obs

6πσ∆t
.1 (2.3.15)

If a GW memory wavefront were to strike the Earth, we can correlate the entire array’s

timing residuals over the burst event epoch to uncover frequency changes in every pulsar.

Multiple pulsar observations enables more confident GW memory detection by increasing

the observed SNR by a factor proportional to
√
Npulsars (van Haasteren & Levin 2010).

We incorporate Eq. (2.3.8) and Eq. (2.3.15) into the simulation outlined in Sec. 2.2 to

repeatedly generate instances of an ensemble of coalescing SMBHBs, allowing us to arrive

at GW memory event statistics for PTAs and LISA.

2.4 Results

We begin by reporting the number of GW memory events per year with burst amplitude

hmem equal to or larger than a given value. We fix the decoupling radius to 0.001 pc,

and present the average results recovered from 100 populations initialized with different

GSMFs and MBH −Mbulge relations in Figure 7. Minor differences occur between the

observed and simulated GSMFs (Ilbert (Ilbert et al. 2013) and Sesana (Sesana et al.

2014), respectively). In the most optimistic model (SMBHB masses determined from the

Ilbert GSMF and McConnell & Ma (2013)), we expect bursts with hmem ≥ 10−16 to occur

0.03 times per 1000 years. Previous works estimate similar cumulative rates at this strain

1N.B. Henceforth we substitute hmem in place of ∆hmem. This is only a semantic change to be

consistent with related literature.
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amplitude (Ravi et al. 2015; Sesana et al. 2007) for assembled SMBHB populations. The

selection bias incorporated into the MBH − Mbulge relation from Shankar et al. (2016)

diminishes the median rate to less than once per 1000 years. In our combination of

inputs, the chosen MBH − Mbulge relation proves the most influential (Fig. 7 includes

McMa (McConnell & Ma 2013), KorHo (Kormendy & Ho 2013), and Shankar (Shankar

et al. 2016)). GW memory detections (or lack thereof) could therefore have the potential

to discriminate competing constraints on source parameter relations.
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Figure 7: Median cumulative memory event rate for bursts with strain amplitude at or above given

strain amplitude (hmem from Eq. (2.3.5)) for 100 realizations of a simulated SMBHBs. We include results

for populations generated using various MBH −Mbulge relations and GSMFs.

To establish the extent to which a more or less efficient environment can influence

memory event rates, we vary the decoupling radius to between 0.001 pc and 1.0 pc.

From Eq. (2.2.4), we see that increasing ad yields longer times between galaxy merger

and SMBHB coalescence. Decoupling at 1.0 pc returns a population where all but the

most massive binaries have stalled. Binary stalling is most likely to occur following the

merger of massive elliptical galaxies (Begelman et al. 1980). Therefore, due to the lack

of low-mass elliptical galaxies (MGal < 1010 M�), we fix the maximum decoupling radius

for the binaries produced in MGal < 1010 M� to 1 mpc. The subset of stalling binaries
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Figure 8: Cumulative memory event rate for bursts with strain amplitude at or above hmem for 100

realizations of simulated SMBHBs. The shaded region is the 1−σ confidence interval from the distribution

of simulated event rates using the McConnell and Ma MBH−Mbulge relation along with the Ilbert et al.

GSMF.

creates a dip at 10−18 < hmem < 10−16 (as seen in Figure 8). However, that dip does

not strongly impact the detectable population for either LISA or PTAs. Henceforth our

simulated populations assume more efficiently driven environments.

We use Eq. (2.3.8) and Eq. (2.3.15) to calculate the SNRs associated with each memory

burst event. Figure 9 shows the median number of burst events per year of given SNR

specific to both a 12.5 year PTA observation and LISA for 100 realizations of a simulated

SMBHB population using the most optimistic and pessimistic combination of MBH −
Mbulge relation and GSMF.

Given the low rate of close, high-mass binary coalescences, PTAs systematically show

poorer prospects. Memory events with SNR ≥ 5 occur 2.2× 10−9 − 9.8× 10−9 times per

year in the optimistic model, and never in the pessimistic model.

Recent results indicate that even treating the pulsar lines of sight as independent lenses

through time so that the entire array effectively has an observation baseline equal to the

sum of individual baselines, constraints on event rates are far from arbitrating tension
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Figure 9: Median number of memory bursts per SNR bin from 100 realizations of a simulated population

of SMBHBs with 1-σ confidence interval. All panels assume the Ilbert et al. GSMF. We use either the

McConnell and Ma or Shankar MBH −Mbulge relation (upper and lower plots, respectively.)

between population models for these heavier SMBHBs. Stochastic searches currently

(and will remain to) serve as the primary point of access to broad-stroke understanding

of this population.

LISA demonstrates better prospects with SNR = 5 events occurring 0.21− 1.27 times

per year in the optimistic model, and 0.001 − 0.03 times per year in the pessimistic

model. High-mass binaries have low cut-off frequencies, truncating the signal’s power

spectrum before entering the LISA band. Low-mass binaries, despite having more efficient

environmentally driven decay, evolve too slowly to accumulate appreciable event counts.

These two effects work to create a peak event rate at SNR ∼ 1 in the upper left panel of

Figure 9.

Figure 10 demonstrates the integrated event rate. From this figure, it is clear that
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given a fly time of 4 years, LISA has the potential to witness at least one memory burst

with SNR > 1.
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Figure 10: Cumulative number of memory bursts at or above specified LISA/PTA signal-to-noise ratio

for same population as in Figure 9.

Figure 11 breaks down the demographics for the binary populations resulting in high

SNR memory events with respect to LISA. Using the same average population as in

Figure 9, we see that for SNR > 1 the most relevant binaries have total binary mass of

∼ 105.5 M�, coalescing below z = 0.1. Such a region of binary mass is relatively unprobed.

The last few years have seen numerous searches for active galactic nuclei from the black

holes in these local (z < 1.5), low-mass galaxies and future time-domain surveys, like the

Large Synoptic Survey Telescope, may be able to constrain this population (Baldassare

et al. 2018).

Memory detections from these sources would therefore complement our understanding

of LISA’s target population. As well, studies indicate discernible electromagnetic (EM)

counterparts from these mergers (Tang et al. 2018). Paired with an EM trigger, memory

signal searches could be conducted with restricted parameter priors to boost SNRs.
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Figure 11: Distribution of total binary masses and coalescence redshifts from the upper two panels of

Figure 9 yielding LISA SNRs between 1 and 100. Binaries of total mass 106 M� and z < 1 form the

most promising population of LISA memory sources.

2.5 Outlook and Conclusions

We evaluated the prospects for detecting a GW memory burst from source populations

within reach of low-frequency GW detectors. We modified the initial inputs from popula-

tion synthesis to include galaxy masses below 1010 M�. This probes additional black hole

binary masses down to 104 M�, and includes observable orphan coalescences from parent

mergers outside the LISA band. While an orphan signal is unlikely, given the constraints

of our models, it is a signal class worthy of future investigation.

The incorporation of the decoupling radius allowed us to take into account the effi-

ciency of environmentally-driven orbital decay. Even assuming highly efficient environ-

ments, PTAs suffer from a sparser population of coalescing SMBHBs, making memory

detection from these sources unlikely. This does not, however, preclude the possibility

of detection memory from more exotic sources. Projections of PTA sensitivity at the

advent of the LISA era strongly depend on the likelihood of PTA’s access to increasingly
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sensitive radio telescopes, such as the planned ngVLA, SKA and DSA2000 (NANOGrav

Collaboration 2018; Wang & Mohanty 2018; Hallinan et al. 2019). Detailed explorations

of future PTA sensitivities are beyond the scope of this work, although SNRs ≥ 5 remain

infrequent at below 1.4× 10−7 yr−1 for even a 30 year PTA dataset. SNRs ≥ 5 can occur

on average more than 0.5 yr−1 for LISA. If 106 M� binaries are indeed driven to low sep-

arations before their orbital decay is dominated by GW emission, LISA has a compelling

science case in GW memory.
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Chapter 3

Continuous Waves from SMBHBs

“But now I’m not so sure I believe
in beginnings and endings.”

— Arrival, Adapted from story by
Ted Chiang

This chapter is based on:

The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual

Supermassive Black Hole Binaries

Aggarwal et al. (The NANOGrav Collaboration, including K. Islo)

Submitted to ApJ

3.1 Introduction

In this chapter, we present the results of a search for GWs from individual circular

SMBHBs performed on the NANOGrav 11-year data set (Arzoumanian et al. 2018b;

hereafter NG11a). This is an extension of Arzoumanian et al. 2014 (hereafter NG5b),

which performed a similar analysis on the NANOGrav 5-year data set. While conducting

the search, we also considered the evolution of sensitivity to individual inspiral signals by

simultaneously evaluating the 9-year data set (Arzoumanian et al. 2015; hereafter NG9a).

This proved incredibly useful as we uncovered sources of unmodeled noise which spurred

efforts to develop more advanced noise models and additional Bayesian diagnostic tools

for identifying spurious detections. We place upper limits on the strain from individual

sources across a range of gravitational wave frequencies and sky positions. Additionally,
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we establish minimum luminosity distances to potential SMBHBs.

3.2 The 11-year Data Set

A detailed description of the data set can be found in Arzoumanian et al. (2018a), and

a summary in Aggarwal et al. (2018). Briefly, we made observations using two radio

telescopes: the 100-m Robert C. Byrd Green Bank Telescope (GBT) of the Green Bank

Observatory in Green Bank, West Virginia; and the 305-m William E. Gordon Telescope

(Arecibo) of Arecibo Observatory in Arecibo, Puerto Rico.

We observed most pulsars once a month. In addition, we started a high-

cadence observing campaign in 2013, in which we made weekly observations of two

pulsars with GBT (PSR J1713+0747 and PSR J1909−3744) and five pulsars with

Arecibo (PSR J0030+0451, PSR J1640+2224, PSR J1713+0747, PSR J2043+1711, and

PSR J2317+1439). This high-cadence observing campaign was specifically designed to

increase the sensitivity of our PTA to GWs from individual sources (Burt et al. 2011;

Christy et al. 2014). In most cases, we observed pulsars at every epoch with two receivers

at different frequencies with wide enough bandwidths to measure the pulse dispersion due

to the interstellar medium (ISM).

For each pulsar, the observed TOAs were fit to a timing model that described the

pulsar’s spin period and spin period derivative, sky location, proper motion, and parallax.

The timing model also included terms describing pulse dispersion along the line of sight.

For those pulsars in binaries, the timing model also included five Keplerian parameters

that described the binary orbit and post-Keplerian parameters that described relativistic

binary effects if they improved the timing fit. In the GW analyses, we used a linearized

timing model centered around the best-fit parameter values.

3.3 Data Analysis Methods

As in NG5b we dispatch Bayesian inference to obtain posterior distributions for our signal

parameters. Here we discuss the signal model, PTA likelihood, and methods used in our

analysis.
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3.3.1 PTA Likelihood

We anticipate the residuals to be combination of offsets δξ in the linearized timing model

M , white noise nwhite, red noise encompassing any time-correlated signal not of cosmo-

logical origin nred, and the gravitational wave signal s. Then we can write the residuals

for a pulsar as

δt = Mδξ + nwhite + nred + s. (3.3.1)

If we parameterize the residuals in terms of white noise parameters ~θ, red noise pa-

rameters ~ϕ, and gravitational wave parameters ~λ, Bayes theorem states

p(δξ, ~θ, ~ϕ,~λ|δt) =
p(δt|δξ, ~θ, ~ϕ,~λ)p(δξ, ~θ, ~ϕ,~λ)

p(δt)
. (3.3.2)

where

p(δξ, ~θ, ~ϕ,~λ|δt) : ”posterior”; i.e., probability of parameter values generating resid-

uals δt

p(δt|δξ, ~θ, ~ϕ,~λ) : ”likelihood”; i.e., probability that residuals δt are drawn from a

random distribution of parameter values

p(δξ, ~θ, ~ϕ,~λ) : ”prior”; knowledge of parameter values a priori analysis

p(δt): ”evidence”

Specifically, we seek the posterior probability distributions for parameters of interest,

namely GW parameter ~λ. As previous analyses for individual SMBHB sources in the

PTA band conclude a detection at this stage of the experiment is unlikely, we seek upper

limit values of ~λ. In that case, the evidence serves as a normalizing factor we can safely

ignore.

The likelihood for a single pulsar is a weighted multivariate Gaussian distribution,

i.e.,

p(δt|δξ, ~θ, ~ϕ,~λ) =
exp

[
−1

2
(δt− s−Mδξ)TC−1(δt− s−Mδξ)

]
√

(2π)NTOA detC
(3.3.3)
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with correlations between the residuals encapsulated in C. It is possible to separate the

white and red components of noise so that

C = Cwhite + Cred. (3.3.4)

Depending on the complexity of parameter covariance, the likelihood can be expensive

to compute numerically. It is crucial that our models are concise enough to minimize the

dimensionality of the problem, but not so concise as to compromise recovered information

in the posteriors.

3.3.2 Signal and noise models

White noise

We used the same white noise model as NG5b, which has three parameters: EFAC,

EQUAD, and ECORR. The EFAC parameter scales the TOA uncertainties, and the

EQUAD parameter adds white noise in quadrature. The ECORR parameter describes

additional white noise added in quadrature that is correlated within the same observing

epoch across radio frequencies, such as pulse jitter (Dolch et al. 2014; Lam et al. 2017a).

We used the improved implementation of ECORR described in NG11b.

Red noise

We use red noise to describe any time-correlated noise process with an higher ensemble-

average power at lower frequencies. There are many possible sources of red noise in pulsar

timing residuals including spin noise, variations in pulse shape, pulsar mode changes, and

errors in modeling pulse dispersion from the ISM (Cordes 2013; Lam et al. 2017a; Jones

et al. 2017). For our core individual SMBHB search, we decompose the red noise in each

pulsar through a Fourier analysis as follows

nred =

Nmode∑

j=1

[
aj sin

(
2πjt

T

)
+ bj cos

(
2πjt

T

)]
= Fa (3.3.5)

where we divide the noise spectrum into 30 bins spaced linearly between f = 1/Tobs

and f = 30/Tobs, where Tobs is the total observation time for that particular pulsar.
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If we assume the pulsar’s red noise does not vary measurably across observation time,

then the Fourier coefficients a may be treated as spanning an orthogonal basis of sines

and cosines. These enter the likelihood through the red noise piece of the covariance

matrix

Cred = 〈Fa(Fa)T 〉 = F 〈aaT 〉F T (3.3.6)

where 〈aaT 〉 is a diagonal matrix containing the red noise power at every Fourier frequency

bin, i.e.,

〈aaT 〉ij = ϕiδij. (3.3.7)

Our standard red noise model is a power-law that can be written as

P (f) = A2
red

(
f

fyr

)−γ
(3.3.8)

where fyr ≡ 1/(1 yr), Ared is the amplitude, and γ is the spectral index.

Then

ϕ2
i =

1

Tobs

1

12πf 3
yr

P (f). (3.3.9)

Ultimately, we marginalize over the individual Fourier coefficients and focus on recov-

ering posterior distributions for parameters Ared and γ.

Gravitational wave signal

Finally, we include the gravitational wave signal from an individual SMBHB. Consider a

GW source whose location in equatorial coordinates is given by declination δ and right

ascension α. It is convenient to write the sky position in terms of the polar angle θ and

azimuthal angle φ, which are related to δ and α by θ = π/2− δ and φ = α. The emitted

GWs can be written in terms of two polarizations:

hab(t, Ω̂) = e+ab(Ω̂) h+(t, Ω̂) + e×ab(Ω̂) h×(t, Ω̂) , (3.3.10)

where Ω̂ is a unit vector from the GW source to the Solar System barycenter (SSB), h+,×

are the polarization amplitudes, and e+,×ab are the polarization tensors. The polarization
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tensors can be written in the SSB frame as (Wahlquist 1987)

e+ab(Ω̂) = m̂a m̂b − n̂a n̂b , (3.3.11)

e×ab(Ω̂) = m̂a n̂b + n̂a m̂b , (3.3.12)

where

Ω̂ = − sin θ cosφ x̂− sin θ sinφ ŷ − cos θ ẑ , (3.3.13)

m̂ = − sinφ x̂+ cosφ ŷ , (3.3.14)

n̂ = − cos θ cosφ x̂− cos θ sinφ ŷ + sin θ ẑ . (3.3.15)

The response of a pulsar to the source is described by the antenna pattern functions F+

and F× (Sesana & Vecchio 2010; Ellis et al. 2012; Taylor et al. 2016),

F+(Ω̂) =
1

2

(m̂ · p̂)2 − (n̂ · p̂)2
1 + Ω̂ · p̂

, (3.3.16)

F×(Ω̂) =
(m̂ · p̂)(n̂ · p̂)

1 + Ω̂ · p̂
, (3.3.17)

where p̂ is a unit vector pointing from Earth to the pulsar.

The effect of a GW on a pulsar’s residuals can be written as

s(t, Ω̂) = F+(Ω̂) ∆s+(t) + F×(Ω̂) ∆s×(t) , (3.3.18)

where ∆s+,× is the difference between the signal induced at Earth and at the pulsar (the

so-called “Earth term” and “pulsar term”),

∆s+,×(t) = s+,×(tp)− s+,×(t) , (3.3.19)

where t is the time at which the GW passes the SSB and tp is the time at which it passes

the pulsar. From geometry, we can relate t and tp by

tp = t− L(1 + Ω̂ · p̂) , (3.3.20)

where L is the distance to the pulsar.

For a circular binary, at zeroth post-Newtonian (0-PN) order, s+,× is given by
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(Wahlquist 1987; Lee et al. 2011; Corbin & Cornish 2010)

s+(t) =
M5/3

dL ω(t)1/3
[
− sin 2Φ(t)

(
1 + cos2 i

)
cos 2ψ

−2 cos 2Φ(t) cos i sin 2ψ] , (3.3.21)

s×(t) =
M5/3

dL ω(t)1/3
[
− sin 2Φ(t)

(
1 + cos2 i

)
sin 2ψ

+2 cos 2Φ(t) cos i cos 2ψ] , (3.3.22)

where i is the inclination angle of the SMBHB, ψ is the GW polarization angle, dL is the

luminosity distance to the source, andM≡ (m1m2)
3/5/(m1 +m2)

1/5 is a combination of

the black hole masses m1 and m2 called the “chirp mass.” Note that the variable M is

the observed redshifted value, which is related to the rest-frame value Mr according to

Mr =
M

1 + z
(3.3.23)

Currently PTAs are only sensitive to sources in the local Universe for which (1 + z) ≈ 1.

For a circular binary, the orbital angular frequency is related to the GW frequency

by ω0 = πfgw, where ω0 = ω(t0). For our search, we defined the reference time t0 as 31

December 2015 (MJD 57387), which corresponded to the last day data were taken for the

11-year data set. The orbital phase and frequency of the SMBHB are given by (NG5b)

Φ(t) = Φ0 +
1

32
M−5/3

[
ω
−5/3
0 − ω(t)−5/3

]
, (3.3.24)

ω(t) = ω0

(
1− 256

5
M5/3ω

8/3
0 t

)−3/8
, (3.3.25)

where Φ0 and ω0 are the initial orbital phase and frequency, respectively. Unlike in

NG5b, we used the full expression for ω(t) in our signal model rather than treating the

GW frequency at Earth as a constant, as high-chirp-mass binaries will evolve significantly

over the timescale of our observations.

3.3.3 Bayesian methods and software

The Bayesian inference procedure used followed closely that of NG5b, with the addition

of the BayesEphem model for the uncertainty in the SSB introduced in NG11b. Pulsar

timing uses a Solar System ephemeris (SSE) to transform from individual observatories’

reference frames to an inertial reference frame centered at the SSB. We used DE436
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(Folkner & Park 2016) to perform this transformation, plus the BayesEphem model,

which parameterizes uncertainty in the outer planets’ masses, Jupiter’s orbit, and the

rotation rate about the ecliptic pole.

We implemented the likelihood and priors and performed the searches using

NANOGrav’s new software package enterprise1. We confirmed the accuracy of this

package by also performing some searches using the software package PAL22, which has

been used for previous NANOGrav GW searches. Both packages used the Markov Chain

Monte Carlo (MCMC) sampler PTMCMCSampler3 to explore the parameter space.

For detection and upper-limit runs, we described the Earth-term contribution to the

GW signal by eight parameters:

λ0 = {θ, φ,Φ0, ψ, i,M, fgw, h0} . (3.3.26)

We have reparameterized Eqs. (3.3.21) – (3.3.22) in terms of the characteristic strain h0

rather than dL, where

h0 =
2M5/3(πfgw)2/3

dL
. (3.3.27)

We used log-uniform priors on h0 for detection analyses, and a uniform prior on h0

to compute upper limits on the strain. For both types of analyses, we searched over

log10 h0 ∈ [−18,−11].

We used isotropic priors on the sky position of the source (θ, φ), source inclination

angle i, GW polarization angle ψ, and GW phase Φ0. We searched over log10M with a

uniform prior log10(M/M�) ∈ [7, 10]. For high fgw, we truncated the prior on log10M
to account for the fact that high-chirp-mass systems will have merged before emitting

high-frequency GWs. Assuming binaries merge when the orbital frequency is equal to

the innermost stable circular orbit (ISCO) frequency, M must satisfy

M≤ 1

63/2πfgw

[
q

(1 + q)2

]3/5
, (3.3.28)

where q is the mass ratio. For our analyses, we used the chirp-mass cutoff with q = 1.

This change to the prior on M only affected fgw ≥ 191.3 nHz.

1https://github.com/nanograv/enterprise
2https://github.com/jellis18/PAL2
3https://github.com/jellis18/PTMCMCSampler

34

https://github.com/nanograv/enterprise
https://github.com/jellis18/PAL2
https://github.com/jellis18/PTMCMCSampler


We performed searches at fixed values of fgw. The minimum GW frequency was

set by the total observation time, fgw = 1/(11.4 yrs) = 2.8 nHz. The maximum GW

frequency was set by the observing cadence. Because of the high-cadence observing

campaign, the 11-year data set can detect GWs with frequencies up to 826.7 nHz; however,

the data are not very sensitive at high frequencies. Also, we do not expect to find

any SMBHBs with orbital periods of weeks because high-chirp-mass systems would have

already merged before emitting at those frequencies, and low-chirp-mass systems would be

evolving through the PTA band very quickly at that point. Therefore, we only searched

for GWs with frequencies up to 317.8 nHz, which corresponded to the high-frequency-

cut-off adopted in NG5b.

The pulsar-term contributions to the GW signal used the pulsar distances to compute

the light-travel-time between when the GW passed the pulsars and when it passed the

SSB (see Eq. (3.3.20)). We used a Gaussian prior on the distances with the measured

mean and uncertainty from Verbiest et al. (2012); for the pulsars not included in that

paper, we used a mean of 1 kpc and error of 20%. The phase at the pulsar can be written

as

Φ(t) = Φ0 + Φp +
1

32
M−5/3 [ω(tp,0)

−5/3 − ω(tp)
−5/3] , (3.3.29)

where Φp is the phase difference between Earth and the pulsar. The pulsar phase param-

eters Φp can be computed from the pulsar distances and chirp mass as

Φp =
1

32
M−5/3

[
ω
−5/3
0 − ω(tp,0)

−5/3
]

; (3.3.30)

however, in most cases the pulsar distance uncertainties (∆L ∼ 10− 100 pc) are signifi-

cantly greater than the GW wavelengths (λgw ∼ 0.1−10 pc), and so the phase differences

between the Earth terms and pulsar terms are effectively random. Therefore, following

the approach of Corbin & Cornish (2010), we treated Φp as an independent parameter

with a uniform prior Φp ∈ [0, 2π].

We fixed the white noise parameters to their best-fit values, as determined from

noise analyses performed on individual pulsars. In the GW analyses, we simultaneously

searched over the individual pulsars’ red noise using the power-law model with uniform

priors on log10Ared ∈ [−20,−11] and γ ∈ [0, 7]. In order to burn-in the red noise and
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BayesEphem parameters efficiently, we introduced jump proposals that drew proposed

samples from empirical distributions based on the posteriors from an initial Bayesian

analysis with only the pulsars’ red noise and BayesEphem (i.e., excluding a GW sig-

nal).

We computed Bayes factors for the presence of a GW signal using the Savage-Dickey

formula (Dickey 1971),

B10 ≡
evidence[H1]

evidence[H0]
=

p(h0 = 0|H1)

p(h0 = 0|D,H1)
, (3.3.31)

where H1 is the model with a GW signal plus individual pulsar red noise, H0 is the model

with only individual pulsar red noise, and D the data. p(h0 = 0|H1) is the prior volume

at h0 = 0, and p(h0 = 0|D,H1) is the posterior volume at h0 = 0. We were able to use

the Savage-Dickey formula because H1 and H0 are nested models, i.e., H0 is H1 : h0 = 0.

We approximated p(h0 = 0|D,H1) as the fraction of samples in the lowest-amplitude bin

of a histogram of h0. We computed the Bayes factor for a range of bin sizes, and reported

the mean as B10 and the standard deviation as its error.

For upper limits, following the approach of NG11b, we computed the standard error

as

σ =

√
x(1− x)/Ns

p(h0 = h95%0 |D)
, (3.3.32)

where x = 0.95 and Ns is the number of effective samples in the chain. This definition of

σ is the error in the computed 95% upper limit due to using a finite number of samples.

We estimated the number of effective samples by dividing the total number of samples

by the autocorrelation chain length, which is a measure of how far apart two samples in

the chain must be in order to be statistically independent.

3.4 Results

In this section, we report the results of both detection and upper limit analyses of the

NANOGrav 11-year data set for GWs from individual circular SMBHBs. We used the

data to place upper limits as a function of frequency and sky location and to compare

upper limits from the 11-year data set to those from the 5- and 9-year data sets. We

also briefly discuss a new Bayesian technique to determine how much each pulsar in a
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Figure 12: Bayes factors for a GW signal from an individual circular SMBHB as a function of GW

frequency in the NANOGrav 11-year data set. We found no strong evidence for GWs in our data. The

highest Bayes factor was at fgw = 109 nHz, for which B10 = 20.0(9). For all other frequencies searched,

the Bayes factors were close to 1.

PTA contributes to a common signal in order to diagnose spurious signals. Following

the approach of NG11b, our analyses of the 11-year data set only used the 34 pulsars

which had been observed for at least three years. Our analyses of the 5- and 9-year data

sets used the same subset of pulsars that were used in the corresponding analyses for the

GWB (NG5a, Arzoumanian et al. 2016), which included 17 and 18 pulsars, respectively.

3.4.1 Detection analyses

We performed detection searches for GWs from individual circular SMBHBs on the 11-

year data set. Fig. 12 shows the Bayes factors for each frequency, marginalized over the

sky location. We did not find strong evidence for GWs in the 11-year data set. The largest

Bayes factor was at fgw = 109 nHz, for which B10 = 20.0(9). For all other frequencies,

the Bayes factors were between B10 = 0.43(1) and B10 = 1.31(4), indicating no evidence

of GWs in the data.
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Although the detection search at fgw = 109 nHz found a higher Bayes factor than

any of the other values of fgw, we emphasize that the Bayes factor is not high enough

to claim a detection. A Bayes factor of 20 means 20:1 odds for the presence of a GW

signal; similarly, frequentist analysis yields a signal-to-noise ratio (SNR) of 1.2. Neither

of these metrics supports the claim that the data shows evidence of GWs. Furthermore,

as we discuss in more detail in Sec. 3.4.3, we determined that most of the evidence for

this signal was in the residuals of a single pulsar, J1713+0747, whereas a true GW signal

should be seen in many pulsars.

3.4.2 Upper limit analyses

As we did not find strong evidence for GWs from individual circular SMBHBs in the 11-

year data set, we placed upper limits on the GW strain. Fig. 13 shows the sky-averaged

95% upper limit on the GW strain amplitude. At the most sensitive frequency of 8 nHz,

we placed a 95% upper limit on the strain of approximately h0 < 7.3(3) × 10−15. We

also show the strain upper limits from the 5- and 9-year data sets for comparison. There

was an improvement of about a factor of two between the 5-year and 9-year data sets,

and more than a factor of two between the 9-year and 11-year data sets. Our upper limit

based on the 11-year data set was about 1.4 times lower than that of h0 < 10−14 set by

the EPTA based on observations of 6 pulsars observed for up to 17.7 years (Babak et al.

2016; Desvignes et al. 2016).

We note that there is an increase in the strain upper limit from the 9-year data set

creating a “bump” in the spectrum centered around fgw = 15 nHz. At first glance, this

loss of sensitivity indicates the presence of some noise that could be a GW signal. We

examined the posterior distributions at this frequency and saw our posterior distributions

found maximum likelihood for a source located nearest PSR J0613−0200 (see Fig. 14).

However, there is not a significant Bayes factor at this frequency (B10 = 1.42(3)).

Furthermore, this “bump” in the spectrum is not present in the 11-year data set. A

true GW signal would only increase in significance with the passage of time as a longer

baseline would further diminish down any other noise at this frequency. As discussed in

more detail in Sec. 3.4.4, this increase in the strain upper limit is due to an unmodeled
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Figure 13: Sky-averaged 95% upper limit on the GW strain amplitude from a circular SMBHB as a

function of GW frequency from the NANOGrav 5-year data set (teal), 9-year data set (purple), and 11-

year data set (orange). These analyses used BayesEphem to parameterize uncertainty in the SSB. The

data were most sensitive at fgw = 8 nHz, with a strain upper limit of approximately h0 < 1.51(7)×10−14

from the 9-year data set, and h0 < 7.3(3)× 10−15 from the 11-year data set.

signal in a single pulsar, PSR J0613−0200.

Our sensitivity to individual sources varied significantly with the angular position of

the source due to having a finite number of pulsars distributed unevenly across the sky.

Fig. 15 shows the 95% upper limit on the GW strain for fgw = 8 nHz as a function of sky

position, plotted in equatorial coordinates. The upper limit varies from h0 < 2.0(1)×10−15

at the most sensitive sky location to h0 < 1.34(4)×10−14 at the least sensitive sky location.

3.4.3 “Dropout” analyses

In our searches of the NANOGrav 9-yr and 11-yr data sets, we found two low-SNR signals.

We introduced a new type of analysis that used “dropout” parameters to determine how

much each individual pulsar contributed to these signals. The dropout method tests

the robustness of the correlations in the signal by determining whether evidence for the
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Figure 14: Normalized sky position posterior distribution at fgw = 15 nHz. Color bar corresponds the

percentage of MCMC samples in a particular sky position. Maximum likelihoods were found in a region

nearest PSR J0613−0200 indicating a potential signal originating in that direction.

signal comes from correlations between multiple pulsars, or it only originates from a

single pulsar. It is similar to the dropout technique in neural networks, where units

are randomly dropped during training in order to strengthen the network (Srivastava

et al. 2014). This method is also similar to jackknife resampling (Efron & Stein 1981);

however, in jackknifing, samples are removed in order to estimate the bias in parameter

estimation, whereas in dropout analyses the parameter values are held fixed, and the

dropout parameters indicate how much each pulsar is biasing the parameter estimation.

An upcoming paper will further describe and develop this method (Vigeland et al. 2019)

In a dropout analysis, the GW parameters were held fixed at the values that maxi-

mized the likelihood, and dropout parameters ka were introduced into the signal model.

If ka was above a threshold, then the ath pulsar’s residuals included the contribution

from the GW; otherwise, that pulsar’s residuals did not. Thus at each iteration of the

MCMC, the GW was present in only a subset of the pulsars’ residuals. The posteriors of

40



2×10−15 3×10−15 4×10−15 6×10−15 10−14

GW Strain Upper Limit, h95

Figure 15: The 95% upper limit on the GW strain amplitude from a circular SMBHB with fgw = 8 nHz

as a function of sky position from an analysis of the 11-year data set plotted in equatorial coordinates

using the Mollweide projection. We used the DE436 ephemeris model with BayesEphem to model

uncertainty in the SSB. The positions of pulsars in our array are indicated by stars, and the most

sensitive sky location is indicated by a red circle. The 95% upper limit ranged from 2.0(1) × 10−15 at

our most sensitive sky location to 1.34(4)× 10−14 at our least sensitive sky location.

the dropout parameters indicated whether the data preferred for the GW to be present

in each pulsar.

We performed two dropout analyses. The first was on the 9-yr data set at fgw =

15 nHz. The analysis of the 9-year data set found an increase in the 95% strain upper limit

at fgw = 15 nHz compared to the upper limits at neighboring frequencies. Furthermore,

as shown in Fig. 16, we found that the strain upper limit decreased significantly when

PSR J0613−0200 was removed from the 9-year data set. However, there was very little

difference in the Bayes factor: B10 = 1.42(3) with all pulsars, and B10 = 1.25(3) excluding

PSR J0613−0200. Fig. 17 shows the results of a dropout analysis. We fixed the GW signal

parameters to the best-fit values from a detection analysis including all pulsars and only
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Figure 16: Comparison between a search at fgw = 15 nHz performed on the 9-yr data set with all

pulsars (orange) and excluding PSR J0613−0200 (purple). There was very little difference between the

Bayes factors (B10 = 1.42(3) with all pulsars, and B10 = 1.25(3) excluding PSR J0613−0200), but there

was a significant difference in the 95% strain upper limit. We found an upper limit of 4.1(2) × 10−14

with all pulsars, compared with 3.2(3)× 10−14 without PSR J0613−0200.

allowed the dropout parameters to vary. We set kthreshold = 1/2, so that there was an equal

prior probability of the signal being included or excluded in the model for each pulsar’s

residuals. PSR J0613−0200 had the largest Bayes factor while all other pulsars had Bayes

factors of order 1, from which we concluded that the increase in the strain upper limit at

fgw = 15 nHz was caused by an unmodeled non-GW signal in PSR J0613−0200.

3.4.4 Spurious spectral features in our data:PSR J0613−0200

Luckily, the dropout analysis provides a means to prevent erroneous detections. It is

more efficient, however, to anticipate such problems so that rote upper limits analyses

can be made robust. This has spurred efforts to deploy more bespoke noise models for

individual pulsars in our analyses.

Typically, the power-law is sufficient to capture the pulsar’s these features, but if

certain frequencies have more power than anticipated, that can be mistakenly absorbed
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Figure 17: Bayes factors for the presence of a GW signal in each pulsar’s residuals, from an analysis of

the 9-yr data set with fgw = 15 nHz. The GW parameters are fixed to the maximum-likelihood values,

as determined from a detection analysis. PSR J0613−0200 had the largest Bayes factor for the signal,

with B10 = 23.2(5), indicating that PSR J0613−0200 was the primary source of this signal.

by our GW model. One way to combat this is through the use of a free-spectral noise

model, which each frequnecy bin is treated independently treats the red noise power

spectral density as a series of power-laws broken with varying amplitude and spectral

index in every Fourier frequency bin. This technique is the so-called “sledgehammer”

method because it catches most of a pulsar’s intrinsic red noise, however, it adds Nmodes×2

parameters to the model, due to the Occam penalty associated with the extra parameters.

which reduces the efficiency of our search. Another possibility is a modified power-law

called the t-process. This red noise power spectral density is written as

Pi = αiA
2
red

(
fi
fyr

)−γ
(3.4.1)

where Pi is the power in a Fourier frequency bin centered around a frequency fi, and αi

is a deviation parameter. The t-process allows for deviations from the fiducial power-

law, with a student’s t-distribution as a prior on αi. The t-process also increases the

dimensionality of the searched parameter space, like the free spectral model, but this is

43



partially offset by the effectively reduced prior volume you have to sample.

Fig. 18 shows the results of running the canonical red noise models on the residuals

of PSR J0613−0200. The top panel shows the results from the 9-year data set, and the

bottom panel shows the results from the 11-year data set. For the power-law model,

we plot the spectrum using the maximum-likelihood values for Ared and γ. For the free

spectral model, we plot either the median and 68% confidence interval or the 95% upper

limit, depending on whether the posteriors of the bin amplitudes are consistent with zero.

For the t-process model, we plot the spectrum using the maximum-likelihood values for

Ared and γ, and the median values for the deviation parameters α. We identified an excess

of noise at a frequency of about 15 nHz in both the 9-year and 11-year data sets using

the free spectral model and t-process model. This kind of sharp spectral feature is not

adequately captured by the power-law, allowing it to be mistakenly identified as a GW

signal by our search.

3.5 Limits on Astrophysical Properties of Nearby SMBHBs

In this section, we discuss what we can infer about the astrophysical properties of nearby

SMBHBs from our limits on the GW strain. We used the 95% upper limits on the GW

strain to place 95% lower limits on the distance to SMBHBs using Eq. (3.3.27) for a given

chirp mass. Fig. 19 shows the 95% lower limit on the distances to individual SMBHBs as a

function of sky position, plotted in equatorial coordinates, for sources withM = 109M�

and fgw = 8 nHz. The limits on the luminosity distance varied by a factor of 7 between

the most-sensitive and least-sensitive sky locations. At the most-sensitive sky location,

we found dL > 120 Mpc for SMBHBs with M = 109 M� and dL > 5.5 Gpc for SMBHBs

with M = 1010 M�.

Fig. 20 shows the limits on the chirp masses of any SMBHBs in the nearby Virgo

Cluster, which is at a distance of 16.5 Mpc. We found that there are no SMBHBs in the

Virgo Cluster withM > 1.6(1)× 109M� emitting GWs in the PTA band. Furthermore,

there are no SMBHBs withM > 3.8(1)×108M� emitting GWs with fgw = 9 nHz. These

chirp-mass limits imply that none of the galaxies NGC 4472 (estimated black hole mass

of 2.5×109M�; Rusli et al. 2013), NGC 4486 (estimated black hole mass of 6.6×109M�;
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Gebhardt et al. 2011), or NGC 4649 (estimated black hole mass of 4.5× 109M�; Shen &

Gebhardt 2010) could contain binaries emitting GWs in this frequency range.

In order to assess how likely we were to have detected an SMBHB given our current

sensitivity, we compared our strain upper limit curves to simulations of nearby SMBHBs.

A similar technique was introduced in Babak et al. (2016) to estimate the detection prob-

ability from the strain upper limit curve. We generated populations of SMBHBs using

the technique in Mingarelli et al. (2017), which is based on galaxies in the Two Micron

All-Sky Survey (2MASS; Skrutskie et al. 2006) and merger rates from the Illustris cosmo-

logical simulation project (Genel et al. 2014; Rodriguez-Gomez et al. 2015). We estimated

the number of detectable sources as the number lying above our sky-averaged 95% strain

upper limit curve. Fig. 21 shows the loudest GW sources for a sample realization plot-

ted alongside our 95% strain upper limit curve. We show both the sky-averaged strain

upper limit curve (solid, blue line) and the strain upper limit curve at the most-sensitive

sky location (dashed, red line). For this particular simulation, none of the sources were

above the sky-averaged strain upper limit curve; therefore, we concluded there were no

detectable sources in this particular realization. Out of 75,000 realizations of the local

Universe, 34 contained a source that lay above the sky-averaged strain upper limit curve

(i.e., 0.045% of realizations contained an observable SMBHB), from which we concluded

that our non-detection was unsurprising given our current sensitivity. We point out,

though, that our sensitivity varies significantly with sky location, and therefore some

sources that are below the sky-averaged strain upper limit curve may be detectable de-

pending on their sky locations. In our simulations, we found that a GW source lay above

the strain upper limit curve at the most-sensitive sky location in 918 realizations (1.22%).

3.6 Summary and Conclusions

We searched the NANOGrav 11-year data set for GWs from individual circular SMBHBs.

As we found no strong evidence for GWs in our data, we placed limits on the GW strain.

We determined that the 11-year data set was most sensitive to fgw = 8 nHz, for which

the sky-averaged strain upper limit was h0 < 7.3(3) × 10−15. We produced sky maps of
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the GW strain upper limit at fgw = 8 nHz. At the most sensitive sky location, we placed

a strain upper limit of h0 < 2.0(1) × 10−15. These results are the first limits on GWs

from individual sources to be robust to uncertainties in the SSE due to the incorporation

of BayesEphem in our model.

We introduced a new detection technique that uses “dropout” parameters to determine

the significance of a common signal in each individual pulsar. We applied this technique to

two low-SNR signals found in the 9-year and 11-year data sets and identified the pulsars

contributing the most to these signals. This technique is currently being used within

NANOGrav in other GW searches, and a methods paper developing this technique is

underway. Determining the physical processes causing these low-SNR signals is beyond

the scope of this paper. Advanced noise analyses of all the pulsars in the NANOGrav

PTA are underway, using more complicated models for the red noise and incorporating

models for time-variations in the dispersion measure, and the methods and results will

be the subject of an upcoming paper.

We used our strain upper limits to place lower limits on the luminosity distance to

individual SMBHBs. At the most sensitive sky location, we placed a limit of dL > 120 Mpc

for M = 109 M� and dL > 5.5 Gpc for M = 1010 M�. Our non-detection of GWs was

not surprising given our current sensitivity limits. We generated simulated populations

of nearby SMBHBs using the method introduced in Mingarelli et al. (2017) and found

that only 34 out of 75,000 realizations of the local Universe contained an SMBHB whose

GW strain lay above our sky-averaged 95% upper limit curve. These simulations also

supported the conclusion that the two low-SNR signals found in the 9-year and 11-year

data sets were not GW signals.

Although we have not yet made a positive detection of GWs from individual SMBHBs,

the NANOGrav PTA is sensitive enough to place interesting limits on such sources. Based

on our non-detection of GWs, we have determined that there are no SMBHBs in the Virgo

Cluster with M > 1.6(1) × 109 M� emitting GWs in the PTA band. Furthermore, our

sensitivity to GWs from individual SMBHBs will continue to improve as we increase our

observation times, add MSPs to our array, and develop improved pulsar noise models.
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Figure 18: Red noise spectrum of PSR J0613−0200based on the 9-year data set (top panel) and 11-year

data set (bottom panel). The vertical dashed line is at f = 1/(1yr); excess noise at this frequency is

caused by fitting for the pulsars position and proper motion. We show the results of three different red

noise models: a power-law model (solid orange line), a free spectral model (blue points), and a t-process

model (dashed green line). We found an excess of noise at a frequency of about 15 nHz in both the 9-year

and 11-year data sets using the free spectral model and t-process model, which coincides with the bump

in the 9-year sky-averaged CW upper limit spectrum.
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Figure 19: The 95% lower limit on the distance to individual SMBHBs with M = 109M� and fgw =

8 nHz as a function of sky position based on an analysis of the 11-year data set plotted in equatorial

coordinates using the Mollweide projection. The stars indicate the positions of pulsars in our array, and

the diamonds indicate the positions of known SMBHB candidates or galaxy clusters that may contain

SMBHBs. At our most-sensitive sky location, we place a limit of dL > 120 Mpc for SMBHBs with

M = 109M�, and dL > 5.5 Gpc for SMBHBs with M = 1010M�.
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Figure 20: The 95% upper limit on the chirp mass of any SMBHBs in the Virgo Cluster as a function

of GW frequency. We found that there are no SMBHBs in the Virgo Cluster withM > 1.6(1)× 109M�

emitting GWs in this frequency band. At fgw = 9 nHz, we placed an upper limit of 3.8(1)× 108M�.
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Figure 21: GW frequency and strain for the loudest GW sources for a sample realization of the local

Universe plotted alongside our 95% strain upper limit curve. This simulation used the method from

Mingarelli et al. (2017) to determine the number of SMBHBs emitting GWs in the PTA band based on

galaxies in 2MASS (Skrutskie et al. 2006), using merger rates from the Illustris cosmological simulation

project (Genel et al. 2014; Rodriguez-Gomez et al. 2015). For this realization, there are 87 SMBHBs

– none of them lie above the sky-averaged strain upper limit curve, and there is one source that lies

above the strain upper limit curve at the most-sensitive sky location. This source could be detectable

depending on its sky location.
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Chapter 4

Noise-Marginalized Optimal Statistic

“But there is a limit to thinking
about even a small piece of
something monumental. You still
see the shadow of the whole rearing
up behind you, and you become lost
in your thoughts in part from the
panic of realizing the size of that
imagined leviathan.”

— Jeff VanderMeer, Annihilation

This chapter is based on:

Noise-marginalized optimal statistic: A robust hybrid frequentist-Bayesian statistic for the

stochastic gravitational-wave background in pulsar timing arrays

Sarah J. Vigeland, Kristina Islo, Stephen R. Taylor, Justin A. Ellis.

2018, Phys. Rev. D, 98, 044003

4.1 Introduction

PTAs primarily use Bayesian data analysis methods to search pulsar timing residuals

for evidence of gravitational waves and infer signal parameters (van Haasteren et al.

2009; Lentati et al. 2013). Bayesian inference is a powerful tool because it properly

accounts for degeneracies between parameters and incorporates all sources of uncertainty

into the analysis. However, running a full Bayesian analysis is computationally intensive,

particularly when searching for evidence of Hellings and Downs (HD) spatial correlations

– the “smoking gun” of the GWB.
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The significance of the GWB can also be assessed using the optimal statistic, a fre-

quentist estimator for the GWB amplitude (Anholm et al. 2009b; Demorest et al. 2013b;

Chamberlin et al. 2015). Not only does it provide an independent detection procedure,

complementing a more robust Bayesian analysis, but it requires significantly less time to

compute. In particular, the optimal statistic produces results for a given spatial corre-

lation function within seconds; a full Bayesian analysis including correlations has to run

for many weeks on a supercomputing cluster.

However, when pulsars have significant red noise, the optimal statistic gives biased

results due to the strong covariance between the individual red noise parameters and

the GWB amplitude. Many individual pulsars show evidence for red noise (Lam et al.

2017b; Arzoumanian et al. 2018b), and uncertainty in the position of the Solar System

barycenter leads to a common red process in all pulsars (Arzoumanian et al. 2018d).

Here we present a technique for improving the accuracy of the optimal statistic by

including an additional step: marginalizing over the individual pulsars’ red noise param-

eters using the posterior distributions from a full Bayesian analysis of all the pulsars.

Instead of a single estimate for GWB amplitude Agw we generate a distribution of values

from which we extract the mean. This hybrid approach produces a more precise estimate

of Agw and its uncertainty, while requiring only a few minutes more than the standard

optimal statistic.

Furthermore, the same Bayesian analysis drawn upon by the noise marginalization can

be used to compute the optimal statistic for any choice of spatial correlations simply by

changing the overlap-reduction function (ORF). For example, clock errors lead to a com-

mon red signal with monopole spatial correlations (Hobbs et al. 2012), while uncertainty

in the SSB produces dipole spatial correlations (Champion et al. 2010). This technique is

used to perform the frequentist searches for common red signals with Hellings and Downs

correlations coefficients, monopole, and dipole spatial correlations in the NANOGrav

11-year data set (Arzoumanian et al. 2018d).
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4.2 Noise-marginalized optimal statistic

4.2.1 Derivation

The optimal statistic can be derived by analytically maximizing the PTA likelihood func-

tion in the weak-signal regime (Anholm et al. 2009b; Chamberlin et al. 2015). It is

constructed from the timing residuals δt, which can be written as

δt = Mε+ Fa + U j + n . (4.2.1)

The term Mε describes the contributions to the residuals from perturbations to the timing

model. The term U j describes noise that is correlated for observations made at the same

time at different frequencies and uncorrelated over different observing epochs (ECORR),

while n describes uncorrelated white noise from TOA measurement uncertainties. 1

The term Fa describes red noise, including both red noise intrinsic to the pulsar and

a common red noise signal common to all pulsars (such as a GW signal). We model the

red noise as a Fourier series,

Fa =
N∑

j=1

[
aj sin

(
2πjt

T

)
+ bj cos

(
2πjt

T

)]
, (4.2.2)

where N is the number of Fourier modes used (typically N = 30) and T is the span of

the observations.

The optimal statistic is constructed from the auto-covariance and cross-covariance

matrices Ca and Sab,

Ca =
〈
δtaδt

T
a

〉
, (4.2.3)

Sab =
〈
δtaδt

T
b

〉∣∣
a6=b , (4.2.4)

where δta is a vector of the residuals of the ath pulsar in the PTA. For the GWB with

power spectral density (PSD) Pgw(f) and overlap reduction function (ORF) Γab, the

cross-covariance matrices are

Sab = Fa φ
gw
ab F

T
b , (4.2.5)

where

φgw
ab = Γab Pgw(f) . (4.2.6)

1see Section 3.1 in Arzoumanian et al. (2014) for details
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The ORF is given by the Hellings and Downs curve (Hellings & Downs 1983),

Γab =
1

2

[
1− 1

2

(
1− cos θab

2

)

+3

(
1− cos θab

2

)
ln

(
1− cos θab

2

)]
, (4.2.7)

where θab is the angle between the pulsars. We model the PSD of the GWB as a power

law:

Pgw(f) =
A2

gw

12π2

(
f

fyr

)−γ
, (4.2.8)

where γ = 13/3 assuming SMBHBs evolve solely due to GW emission and fyr ≡ 1/(1 yr).

The optimal statistic Â2 is given by

Â2 =

∑
ab δt

T
aC
−1
a S̃abC

−1
b δtb

∑
ab Tr

(
C−1a S̃abC

−1
b S̃ba

) , (4.2.9)

where S̃ab is the amplitude-independent cross-correlation matrix,

A2
gwS̃ab = Sab . (4.2.10)

This definition of the optimal statistic ensures that 〈Â2〉 = A2
gw. If Agw = 0, the variance

of the optimal statistic is

σ0 =

[∑

ab

Tr
(
C−1a S̃abC

−1
b S̃ba

)]−1/2
. (4.2.11)

For a measured value of Â2, the significance of Â2 6= 0 is given by the signal-to-noise ratio

(SNR)

ρ =

∑
ab δt

T
aC
−1
a S̃abC

−1
b δtb[∑

ab Tr
(
C−1a S̃abC

−1
b S̃ba

)]1/2 . (4.2.12)

4.2.2 Results for NANOGrav-like PTA

When constructing the residuals δta, we typically fix the red noise parameters to the

values that maximize the single-pulsar likelihood. However, this leads to a bias in the

optimal statistic because the individual red noise and common red noise parameters are

highly covariant, the optimal statistic estimates computed using fixed red noise parame-

ters are lower than the true value of A2
gw. In this section, we compare three techniques
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for computing the optimal statistic. First, we fix the individual pulsars’ red noise param-

eters to the maximum-likelihood values from individual Bayesian pulsar noise analyses.

Second, we fix the pulsars’ red noise parameters to the values that jointly maximize the

likelihood for a Bayesian analysis of all of the pulsars in our PTA that searches over

the pulsars’ red noise parameters and a common red process. For the noise-marginalized

method, we draw values of the pulsars’ red noise parameters from the posteriors generated

by the common Bayesian analysis.

We use these methods to compute the optimal statistic for simulated “NANOGrav-

like” data sets consisting of 18 MSPs with observation times, sky positions, and noise

properties matching the 18 longest-observed pulsars in the NANOGrav 11-year data

set (Arzoumanian et al. 2018b). We include white noise for all pulsars, plus red noise

parametrized as a power law,

Pa(f) =
A2

red

12π2

(
f

fyr

)−γ
, (4.2.13)

for those pulsars that show evidence of red noise (see Table 1 for more details). We use

the PTA data analysis package PAL2 (Ellis & van Haasteren 2017) to perform the noise

analyses and compute the optimal statistic.

Fig. 22 shows the fixed-noise and noise-marginalized optimal statistic for a simulation

with a GWB with Agw = 5×10−15. For this particular realization of the GWB, the fixed-

noise analysis using the individual noise results gives Â2 = 6.6× 10−30 with SNR = 2.4,

and the fixed-noise analysis using the common noise results gives Â2 = 2.6 × 10−29

with SNR = 6.0. The noise-marginalized analysis gives Â2 = (2.5 ± 0.1) × 10−29 with

SNR = 4.8± 0.8. The value of Â2 from the fixed-noise analysis using the individual noise

results is significantly lower than the injected level of the GWB, while the values of Â2

from the fixed-noise analysis using the common noise results and the noise-marginalized

analysis are in good agreement with each other and the injected value. The fixed-noise

analysis using the individual noise results also gives a significantly lower SNR than the

other two.

In Fig. 23 we show the optimal statistic for 300 different realizations of a GWB with

Agw = 5 × 10−15 computed using the three techniques described above. For the noise-

marginalized analysis, we plot the mean values of Â2 and ρ. Using the noise values
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Table 1: Pulsar parameters used in simulated PTA data sets.

Pulsar Tobs (yrs) σw (µs) Ared γred

J0030+0451 11.0 0.339 -13.93 3.56

J0613−0200 11.0 0.281 -13.14 1.22

J1012+5307 11.0 0.320 -12.79 1.51

J1024−0719 6.0 0.421 − −
J1455−3330 11.0 0.773 − −
J1600−3053 8.0 0.146 − −
J1614−2230 7.0 0.261 − −
J1640+2224 11.0 0.202 − −
J1713+0747 11.0 0.093 -14.14 1.58

J1741+1351 6.0 0.106 − −
J1744−1134 11.0 0.096 − −
B1855+09 11.0 0.218 -13.75 3.54

J1853+1303 7.0 0.215 − −
J1909−3744 11.0 0.034 -13.84 1.74

J1918−0642 11.0 0.342 − −
J2010−1323 7.0 0.413 − −
J2145−0750 11.0 0.281 -12.69 1.30

J2317+1439 11.0 0.160 − −

from individual noise analyses systematically underestimates the strength of the GWB;

while using the noise values from a common noise analysis more accurately recovers the

injected value. The fixed-noise analysis using the individual noise results finds Â2 =

(7.9 ± 6.8) × 10−30 and ρ = 2.3 ± 1.5, averaging over realizations of the GWB. The

fixed-noise and noise-marginalized analyses using the common noise results both give

Â2 = (2.4± 1.2)× 10−29 and ρ = 4.1± 1.7.

The fixed-noise and noise-marginalized analyses using the common noise results give

the same results for Agw = 5 × 10−15, but there are differences between them when
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analyzing data sets containing smaller injected values of Agw. In Fig. 24 we show a P–P

plot of the cumulative fraction of simulations for which the injected A2
gw lies within a

given confidence interval of the measured Â2. The confidence interval of Â2 is determined

assuming Â2 follows a Gaussian distribution, with mean and variance σ2
Â2 taken from the

distribution for Â2 found from our 300 realizations of the GWB (i.e., the top panel of

Fig. 23). If Â2 has a Gaussian distribution centered around A2
gw, the curves should lie

along a straight line with slope equal to unity (the dotted, diagonal lines in Fig. 24).

We compare the three methods for computing the optimal statistic for simulations

with Agw = 5 × 10−15, Agw = 10−15, and Agw = 5 × 10−16. The fixed-noise optimal

statistic using the individual noise results underestimates Â2 (Fig. 24, left panel). The

fixed-noise optimal statistic using the common noise results recovers Â2 well for large

values of Agw, but for small values it also underestimates Â2 (Fig. 24, middle panel). The

noise-marginalized optimal statistic provides the most accurate estimate of Â2 over the

range of Agw considered here (Fig. 24, right panel).

4.3 Monopole and Dipole Spatial Correlations

The optimal statistic is particularly well-suited for comparing models of spatial correla-

tions since the ORF enters simply into Eq. (4.2.6). Tiburzi et al. (2016) demonstrated how

the optimal statistic can be altered to fit for multiple spatial correlations at once in order

to mitigate common noise sources such as clock error and ephemeris error. Here we take

a different approach – rather than simultaneously fitting for signals with different spatial

correlations, we look at how well we can distinguish between different spatial correlations

by computing the optimal statistic with monopole and dipole spatial correlations for the

same simulated data sets as in the previous section. For a monopole signal, the ORF

becomes simply Γab = 1, while for a dipole signal, the ORF becomes Γab = cos θab.

Our ability to discriminate different spatial correlations depends on the strength of

the GWB and the angular separations between pulsar pairs, θab. We can determine the

overlap between ORFs corresponding to different spatial correlations by computing the
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“match statistic” (Cornish & Sampson 2016),

M̄ =

∑
a,b 6=a ΓabΓ

′
ab√(∑

a,b 6=a ΓabΓab

)(∑
a,b 6=a Γ′abΓ

′
ab

) , (4.3.1)

where Γ and Γ′ are two different ORFs. For the 18 pulsars used in these simulations,

the match statistic for monopole and HD correlations is M̄ = 0.264, and the match

statistic for dipole and HD correlations is M̄ = 0.337. These match statistics describe

a fundamental limit on our ability to identify the spatial correlations of a common red

signal as HD rather than monopole or dipole that depends only on the number of pulsars

in our PTA and their sky positions.

Fig. 25 shows the noise-marginalized mean value of Â2 and the mean SNR computed

assuming monopole, dipole, and HD spatial correlations for 300 simulated data sets.

Using a monopole or dipole ORF gives a lower value for the mean optimal statistic

and mean SNR compared to the HD ORF. Using HD spatial correlations gives Â2 =

(2.4±1.2)×10−29, while using monopole spatial correlations gives Â2 = (2.5±3.1)×10−30,

and dipole spatial correlations gives Â2 = (5.3±4.2)×10−30. We find a noise-marginalized

mean SNR above 1.0 in 97% of our simulated data sets using the HD ORF, and in 50%

and 68% of our simulated data sets using the monopole and dipole ORFs, respectively.

The mean SNR using the HD ORF, averaged over realizations of the GWB, is 4.1, and

we find an SNR greater than this using the monopole and dipole ORFs in just 3% and

3.5% of our simulations, respectively.

This overlap between the monopole, dipole, and HD ORFs also means that a common

red process that does not have HD correlations may be confused for a GWB. Fig. 26

shows the results of 300 simulations containing a stochastic signal with dipole spatial

correlations. Although a dipole signal has been injected, the HD ORF gives a mean SNR

greater than 5 in 82% of the simulations. However, both the monopole and HD ORFs give

smaller values of the mean Â2 and mean SNR compared to the dipole ORF. Furthermore,

there are no simulations for which the mean SNR with HD ORF is greater than the mean

SNR with dipole ORF. This demonstrates the importance of comparing the SNR from

different spatial correlations when determining the type of spatial correlations present.
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4.4 Sky Scrambles

The significance of spatial correlations can also be tested with “sky scrambles,” where the

ORF is altered in order to simulate changing the pulsars’ positions (Cornish & Sampson

2016; Taylor et al. 2017). The scrambled ORFs are required to have small values of M̄

with the true ORF and each other so that they form a nearly-orthogonal set. This ensures

that the distribution of Â2 computed using the scrambled ORFs forms the null hypothesis

distribution. Taylor et al. (2017) showed how sky scrambles affect the Bayes’ factor for

simulated data sets. We performed a similar analysis using frequentist methods.

We generated 725 scrambled ORFs using a Monte Carlo algorithm. We required the

scrambled ORFs to have M̄ < 0.2 with respect to the true ORF and each other. This

threshold was chosen to be comparable to the match statistics between the HD ORF

with monopole and dipole ORFs given in Sec. 4.3. We did not choose a smaller threshold

because significantly more time would have been needed to generate 725 scrambled ORFs.

For each simulation, we computed the noise-marginalized mean optimal statistic and mean

SNR for each scrambled ORF, and compared them to the values found using the true

ORF.

Fig. 27 shows the results of a sky scramble analysis for a sample data set with Agw =

5× 10−15. For this particular realization of the GWB, none of the 725 scrambled ORFs

resulted in a mean SNR greater than the mean SNR using the true ORF (p < 0.0014). In

Fig. 28, we plot the distribution of p-values of the 725 sky scrambles for 300 realizations

of the GWB. For a GWB with Agw = 5 × 10−15, 95% of the simulations have p ≤ 0.05,

and 74% of the simulations have p ≤ 0.003. For a GWB with Agw = 10−15, 76% of the

simulations have p ≤ 0.05, and 39% have p ≤ 0.003. This shows that for smaller values

of Agw, there is a greater chance that noise fluctuations will appear to have the spatial

correlations of the GWB.

4.5 Conclusion

The definitive signature of a GWB in PTA data is spatial correlations described by the HD

curve. Searching for these using a fully Bayesian approach is computationally expensive,

60



requiring many weeks on a super-computing cluster. In contrast, the optimal statistic

can be computed in seconds. Above, we introduced an improved method for computing

the optimal statistic, which uses the output from a Bayesian analysis for individual and

common red signals to marginalize the optimal statistic over the individual pulsars’ red

noises. As shown in Sec. 4.2, the noise-marginalized optimal statistic more accurately

recovers the GWB amplitude than the fixed-noise optimal statistic, which underestimates

the GWB amplitude when significant red noise is present in some pulsars.

Although the noise-marginalized optimal statistic requires computing the optimal

statistic thousands of times, it is still many orders of magnitude faster than a Bayesian

search. Furthermore, the results from a single Bayesian analysis, which are needed to

marginalize over the red noise parameters, can be used to compute the optimal statistic

for many different spatial correlations. In Sec. 4.3 we use the noise-marginalized optimal

statistic to compare the strength of monopole, dipole, and HD correlations in simulated

PTA data with a GWB. In Sec. 4.4 we use the noise-marginalized optimal statistic to per-

form sky scramble analyses, where we compare the mean SNR computed using the true

ORF to the mean SNR computed using scrambled ORFs and measure the significance of

HD spatial correlations through the p-value.

The primary strength of the optimal statistic is how quickly it can be computed. This

is useful for analyses where the significance of many spatial correlations is compared, as

with the sky scrambles. It also makes the optimal statistic a valuable tool for analyzing

simulations where many realizations of the GWB are compared. The noise marginal-

ization technique described in this paper is key to being able to accurately measure the

GWB with the optimal statistic for real PTAs and realistic PTA simulations, for which

red noise is significant.

61



0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 22: Optimal statistic for a simulated PTA data set containing a GWB with Agw = 5×10−15. The

fixed-noise analysis using the individual noise values (dashed blue lines) systematically underestimates

Â2, while the fixed-noise analysis using the common noise values (solid orange lines) and the noise-

marginalized analysis (green histograms) more accurately recover Agw.
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Figure 23: Optimal statistic and SNR for 300 simulated data sets containing a GWB with Agw =

5×10−15. The fixed-noise analysis using the individual noise values (blue) systematically underestimates

Â2, while both the fixed-noise analysis using the common noise values (orange) and the noise-marginalized

analysis (green) accurately recover Agw.
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Figure 24: P–P plot showing the cumulative fraction of simulations for which A2
gw lies within a given

confidence interval of the measured Â2. The probability distribution of Â2 is assumed to be a Gaussian

with variance σ2
Â2

. The fixed-noise optimal statistic using the individual and common noise results

both give biased values of Â2, particularly for small values of Agw, while the noise-marginalized optimal

statistic gives more accurate values of Â2 over a large range of injected values of Agw.
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Figure 25: Noise-marginalized mean optimal statistic and mean SNR for 300 simulated data sets

containing an injected GWB with Agw = 5×10−15. We compare the values of the mean optimal statistic

and the SNR found using monopole (blue), dipole (orange), and HD (green) spatial correlations. The

dashed vertical line indicates the injected value, Â2 = 2.5× 10−29.

65



0.00 0.25 0.50 0.75 1.00 1.25 1.50
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Figure 26: Noise-marginalized mean optimal statistic and mean SNR for 300 simulated data sets

containing an injected stochastic signal with dipole spatial correlations and A = 5× 10−15. We compare

the values of the optimal statistic and mean SNR found using monopole (blue), dipole (orange), and HD

(green) spatial correlations. The dashed vertical line indicates the injected value, Â2 = 2.5× 10−29.
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Figure 27: Comparison between the noise-marginalized mean optimal statistic and mean SNR with

and without sky scrambles for a simulated data set containing a GWB with Agw = 5 × 10−15. None of

the 725 scrambled ORFs gave a mean SNR as large as the mean SNR using the true ORF (p < 0.0014).
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Figure 28: Distribution of p-values for the noise-marginalized optimal statistic mean SNR using the true

ORF compared to 725 sky scrambles from 300 realizations of the GWB. We show results for simulations

with Agw = 5× 10−15 (blue) and Agw = 10−15 (orange).
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Chapter 5

Conclusions and Outlook

“I have seen the dark universe yawning,
Where the black planets roll without aim;
Where they roll in their horror unheeded,
Without knowledge or lustre or name.”

— H. P. Lovecraft, Nemesis

Here we summarize the essential themes and key findings in the above manuscript.

5.1 Incorporating and Imposing SMBHB Constraints

PTAs and LISA are uniquely poised to detect ultra-low-frequency GW signals. This in-

cludes GW bursts with memory, which can be treated as a step-function of the measured

strain in the time domain, as discussed in Chap. I. Using a model of the memory sig-

nal amplitude derived from General Relativity, we simulated a population of coalescing

SMBHBs and compared their GW memory emission to current low-frequency detector

sensitivities. We modified the initial inputs from population synthesis to include galaxy

masses below 1010 M� and redshifts out to z = 3. This expanded the initial parameter

space to include sources in the LISA band. We constructed a galaxy mass-, redshift-, and

mass ratio-dependent SMBHB merger rate. Parameterized in this way, we describe the

expected rate of detectable events through astrophysical observables.

The incorporation of the decoupling radius allowed us to take into account the effi-

ciency of environmentally-driven orbital decay. Even assuming highly efficient environ-

ments, PTAs suffer from a sparser population of coalescing SMBHBs, making memory
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detection from these sources unlikely. This does not, however, preclude the possibility of

detection memory from more exotic sources.

SNRs > 5 can occur on average upwards of 0.5 yr−1 for LISA. This assumes minimal

selection bias in the M•−Mbulge relation used to populate simulated galaxy mergers. The

largest SNRs originate from cosmologically local 106 M� binaries. These exhibit evidence

of material-rich nuclear cores; strong environment coupling drives these binaries to the

GW-emission regime quickly. As a result, these events occur frequently enough to be

detectable during LISA’s mission.

In Chap. I we were able to use PTA limits of continuous waves to place contraints

on nearby candidate binaries. Importantly, we established 95% lower luminosity limits

across the sky as a function of chirp mass and GW frequency. At our most sensitive sky

location, we found dL > 120 Mpc for M = 109 M� and dL > 5.5 Gpc for M = 1010 M�

around our most sensitive GW frequency.

If we include the pulsar-term in our Bayesian continuous wave analysis, we can effec-

tively construct a history of GW frequency evolution. Since this depends on the chirp

mass of the emitting binary, we can set upper limits on candidate binary chirp mass

by searching for evidence of GW frequency evolution. We created a targeted search in

the direction of one potential binary candidate: the Virgo cluster. Setting the sky posi-

tion and distance from electromagnetic observations, our search reconstructed posterior

distributions for frequencies in the PTA-band. We showed a maximum chirp mass of

M > 1.6(1)× 109M� for the lowest sensitive frequency bin.

5.2 Red Noise in PTA Data

We encountered instances where spectral peculiarities intrinsic to individual pulsars com-

plicated estimates for the strength of both deterministic and stochastic gravitational

waves in PTA data. Gravitational waves from a single inspiraling SMBHB appear as ex-

cess noise with fixed amplitude and frequency. PTAs are most sensitive to these sources

in a frequency range consistent with time-correlated phenomena we term red noise.

While conducting a continuous analysis of NANOGrav’s 9-year data set, we found a

maximum likelihood value SMBHB candidate near PSR J0613−0200 emitting at fgw =
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15 nHz. Although the calculated Bayes factor was uninteresting at ∼ 1, the 95% upper

limit worsened by roughly a factor of 2 near this frequency when compared to previous

upper limit analyses.

A free-spectral analysis of the PSR J0613−0200ś residuals showed an uptick in power

at fgw = 15 nHz. When fit to a power-law with fixed amplitude and slope, this frequency

saturated the allowable fit, the excess thus leaking into a continuous wave signal. This in-

spired the development of further diagnostic tools for discriminating between GW signals

and unmodeled noise.

The t-process increases the flexibility of a typical red-noise power law. Per frequency

bin, we included a deviation parameter which adequately accounts for abrupt increases

or decreases in residual power across the PTA-band. Constraining the deviation param-

eter prior to a t-distribution allowed for accurate modeling without suffering the Occam

penalty of an inflated Bayesian prior volume. We demonstrated in Sec. 3.4 how incor-

porating the t-process adequately mitigates the “bump” to within expected values from

scaling laws Moore et al. (2015).

In addition to red noise, we consider the antenna response generated from an fgw =

15 nHz SMBHB in the direction of PSR J0613−0200. An individual source detected at

Earth will induce quadrupolar spatial inter-pulsar correlations. Consequently, we must

tackle simultaneous model selection across the entire PTA. We do this with a “dropout”

analysis. In the full Bayesian search we append to our noise model a GW signal with

a multiplier between 0 and 1, corresponding to the GW being absent or present in a

subset of pulsars. This effectively serves as model selection in that the posterior for the

multiplier indicates which state the data prefer. We evaluated the evidence for the signal

appearing each pulsars’ residuals and found the betting odds for PSR J0613−0200 being

the culprit against all other pulsars to be > 2 : 1.

In the case of the stochastic GWB, we expect the signal to emerge as red noise shared

among all the pulsars in the PTA. Therefore, removing degeneracies between intrinsic

and common red noise is of primary focus. One way we combat this confusion is by de-

veloping advanced statistics which incorporate intrinsic pulsar noise, including the noise-

marginalized optimal statistic. This statistic provides an alternative method for searching
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PTA data for evidence of a GWB using the same PTA likelihood as used for Bayesian

parameter inference. Importantly, the noise-marginalized optimal statistic delivers quick

GWB amplitude estimates without significant differences from a full Bayesian analysis.

Iterations of the optimal statistic take seconds to compute. This makes it trivial to

conduct rapid estimates of the amplitude and SNR for a common-red process with various

spatial correlations among pulsar timing residuals. Scrambling pulsar positions and find-

ing orthogonal ORFs effectively generated a null distribution against which we evaluated

evidence for any specific spatial correlation. Results indicate this estimator prescription

has limited ability to arbitrate tension between monopole, dipole and HD correlations

to the degree that a Bayesian model selection procedure could. This is primarily true

of weak GWBs. As PTA data sets lengthen and more sources of noise are identified

and modeled within our likelihood, deploying Bayesian inference will become increasingly

cumbersome for rote analyses. Frequentist statistics like these will be necessary to rapidly

and accurately report evidence of a GWB in PTA data.
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