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Abstract-Part I 

 

     Asthma is a major healthcare challenge affecting an estimated 300 million people globally. 

Over $56 billion in asthma-related healthcare expenses occur in the United States annually. 

Moreover, asthma accounts for the majority of missed school/work days, Doctor and emergency 

room visits, and patient hospitalizations in young persons. Consequently, asthma continues to be 

a significant healthcare burden in terms of morbidity, productivity, and medical costs. Beta 2-

adrenergic agonists and inhaled corticosteroids (ICs) are the most commonly prescribed treatments 

for the acute and chronic management of asthma. Both agents present efficacy, compliance, and 

adverse side effect concerns. 
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        Hence, there is an unmet need for asthma therapies with novel mechanisms of action to better 

control the disease with decreased adverse side effects. Previously, it was demonstrated that airway 

smooth muscle (ASM) cells express GABAA receptors (GABAAR's) of the α4 and α5 subunits. 

Agonists of these GABAAR subtypes can relax ASM acutely. Targeting the limited and 

overlapping α subunits with subtype selective GABAAR agonists would effect both ASM 

relaxation and suppression of inflammation in the absence of any off-target CNS activity. 

Bz/GABAAergic agents have been proven to be safe and have a long clinical safety record. As a 

result, targeting Bz/GABAAR in the lung and the peripheral nervous system (PNS) would be a 

novel and effective strategy in a management of asthma in patients. In this vein, novel GABAAR 

positive allosteric modulators designed specifically for α4/α6 subunit selectivity were synthesized 

using iterative computational analyses. In addition, a series of deuterated analogs at key metabolic 

sites (C-3 and C-8 of the imidazobenzodiazepine scaffold) were synthesized to increase the drugs 

stability so that the drug stays in the body for a longer time to permit lower doses and still effect 

its anti-asthmatic properties for a longer duration, presumably with less side effects. Furthermore, 

a library of α4 subtype selective GABAAR ligands which were more hydrophilic to prevent blood 

brain barrier (BBB) penetration reduced CNS side effects. To obtain better in vitro and in vivo 

stability, bioisosteric moieties to replace the labile C-3 ester functional groups were designed and 

synthesized. Preclinical assays such as microsomal stability, cytotoxicity, and sensorimotor 

impairment have been studied on these novel analogs. Several ligands exhibited the desired 

properties required for better management of asthma. The results of studies in several models of 

asthma in vivo reinforces the novel hypothesis, which rests on relaxation of airway smooth muscle 

(ASM), a decrease in airway hyperresponsiveness (AHR), and a decrease in airway eosinophils, 
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as well as modulating inflammatory cells. These ligands may be potential treatments for childhood 

asthma and also for the disease in adults. 

  

 
Abstract-Part II 

 

     Nonselective ligands of the α1-3,5βγ 2 subtypes of GABAARs, such as diazepam have been used 

in the clinic for more than five decades for various central nervous system (CNS) disorders. These 

drugs exhibit various adverse CNS effects including sedation, ataxia, amnesia, tolerance, and 

addiction, which are believed to be mediated by α1 subtypes of GABAARs. As a result, these 

drugs are not applicable to all patients and have limited long-term applications. Despite their 

adverse CNS effects due to non-selective GABAAR efficacy, novel ligands with better subtype 

selectivity, efficacy and reduced adverse effects are now emerging to be suitable replacements for 

these benzos. The GABAAR agonists that possess superior α2/α3 subtype selectivity over the α1 and 

α5 subtypes are considered to be a promising avenue for development of novel GABAAR ligands 

to treat various CNS disorders including inflammatory pain, anxiety, neuropathic pain, and 

epilepsy, while avoiding side effects such as, ataxia, amnesia, tolerance and dependence. 

  
          Previously, it had been shown the α2/α3 subtype selective Bz/GABAAR positive allosteric 

modulator (PAM) HZ-166 exhibited anticonvulsant, antihyperalgesic and anxiolytic properties 

while being devoid of sedation, ataxia, dependence and tolerance. However, the C-3 ester function 

in HZ-166 was too labile for studies of ADME toxicity.  Consequently, research here was carried 

out to prepare new ligands with better efficacy and stability, which resulted in several new lead 

compounds including a 1,3-oxazole (KRM-II-81) and a 1,2,4-oxadiazole (MP-III-80). These 
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bioisosteres were synthesized to overcome the problems with the metabolically labile ester 

functions. Among them KRM-II-81 exhibited prominent anxiolytic, anticonvulsant, 

antihyperalgesia, and antidepressant activity. An improved synthetic route was developed to better 

access the key ligand (HZ-166) in gram quantities for further optimization of this "privileged" 

scaffold. Synthesis of several new ester bioisosteres, importantly, those which contained deuterium 

in the scaffold at key metabolic sites, resulted in d1-MP-III-80, d3-MP-III-80, d5-MP-III-80, as 

well as a few 3-alkyl-1,2,4-oxadiazole derivatives. The in vitro and in vivo evaluation of these 

new ligands look promising and further investigations in vivo are underway. It is felt these new 

α2/α3 subtype selective ligands will result in novel compounds for development into  effective 

treatments  for anxiety disorders, for depression, for pain syndromes and for treatment of epilepsies 

with no tolerance nor dependence. 
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1. Introduction 

1.1 Asthma 

The term ‘asthma’ was first used by Homer (800 BC) in his  book The Iliad, which in Greek 

(ásthma) means panting and shortness of breath.20 Hippocrates (400 BC) first defined the disease 

asthma to the medical community through the Corpus Hippocraticum.20 As it appears, asthma is 

not new, and it has been around for many many centuries, but modern asthma that we now know 

has rapidly evolved over the past several decades. It has become a global health problem affecting 

people from all ages and ethnic groups, especially children and the elderly.21 The cause behind the 

increase in asthma reports is not ethnic nor genetic in nature, rather it is the combined effects of 

many risk factors which includes genetic, environmental, and lifestyle.  

 

Asthma is a chronic lung disease, which is characterized by recurring inflammation and narrowing 

of the airways that results in frequent and involuntary wheezing and shortness of breath. Asthma 

exhibits several major features; inflammation, mucous production, airflow obstruction, and airway 

hyper-responsiveness.22 The results of inflammation can range from discomfort in breathing to a 

life-threatening condition. As a result, asthma accounts for the majority of missed school/work 

days, doctor and emergency room visits, and patient hospitalizations in young persons.23,3,24 The 

severity and rate of recurrence of asthma varies among individuals. The World Health 

Organization (WHO) identifies asthma as one of the major noncommunicable diseases.25 Asthma 

is a life-long condition in the majority of asthmatic individuals and the symptoms can be kept 

under control but there is no cure for it as yet.26 It can affect anyone from children to elderly and 

under-control asthma can flare up at any moment without warning, which can cause severe to 

morbid acute respiratory inflammation. In many cases the triggers of asthma are not visible and 
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asthmatic triggers may vary from person to person, which makes it a challenge to predict and 

control. Another problem with asthma is that the triggers responsible for asthma attacks are in the 

asthmatics, surroundings (outside in the environment or inside the household) and thus the 

exposure seems to be inevitable in many cases. Some of the triggers may be seasonal and for those 

affected by the seasonal triggers (e.g. flower or grass pollen), a certain time of the year may be 

more dangerous than the remaining time of the year. With rapid development and urbanization, 

many people who lead strictly urban lifestyles have less and less exposure to the elements of nature 

and may eventually develop sensitivity towards many common natural substances. In addition, 

due to urbanization, most of the children grow up in a household or surroundings with a higher 

level of hygiene and spends less time outside. This results in fewer infections in the early ages. 

Thus, these children do not develop immunity to many of the germs or triggers that they become 

exposed to as they get older. This argument is known as “The Hygiene Hypothesis”,27 which has 

been reported as a possible origin of some asthmatics. 

 

This ill-educated immune system could also lead to sensitivity to various common germs or 

molecules present in the surroundings. As a result, this type of asthma is more prevalent in western 

civilization and in the rapidly growing industrialized societies than in rural areas where a pristine 

environment exists.28-30 
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Figure 1. Schematic diagram illustrating the heterogeneity of airway diseases in terms of triggers, pattern of 

airway inflammation, associated diseases, airway physiology and the specific underlying pathological 

abnormality (modified from the figures in Wardlaw, et al.5 and Green, et al.6).  

 

A proper definition and classification of asthma is troublesome since asthma is a heterogenous 

disease and there is lack of consensus for such an accurate classification. Recent developments in 

the recognition of phenotypes and sub-phenotypes of asthma based on the pattern of airway 

inflammation have facilitated a systematic understanding of the disease.6 By understanding the 

link between phenotype and pathology, it would be helpful to comprehend the pathogenesis and 

aetiology. The first classification of asthma was based on aetiology by Rackemann in 1921,31 

which divided asthma into two subclasses, namely extrinsic and intrinsic asthma. Afterwards, 

several other causative phenotypes have been identified, for example aspirin-sensitive and 

occupational asthma.6 Further subclassification based on the different patterns of airflow 

obstructions includes ‘brittle asthma’, ‘irreversible asthma’, and ‘the morning dripper’.32 Asthma 
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management guidelines usually classify asthma based on the severity of the disease and amount of 

required treatments to maintain proper lung function and to control symptoms.33 More recent 

classification of asthma is based on the nature of underlying airway inflammation.34,35 It has also 

been suggested from experimental evidence that identification of such inflammatory phenotypes 

might be a useful guide for asthma management for individual patients.36,37 A schematic diagram, 

which illustrates the heterogeneity of asthma is illustrated in Figure 1.5 

 

Examination of Figure 1 depicts how a number of triggers can result in inflammatory responses 

that may range from highly eosinophilic to highly neutrophilic in origin. This is, presumably, the 

relationship between the extent of involvement of the innate (Th1) and adaptive (Th2) immune 

responses. Certain triggers such as allergens and small molecular weight chemicals cause 

syndromes such as extrinsic or occupational asthma and are mainly eosinophilic in origin. On the 

other hand, triggers such as bacterial or viral infections cause syndromes non-eosinophilic 

(neutrophilic) in origin. The triggers for some syndromes such as eosinophilic intrinsic asthma 

(and eosinophilic bronchitis) or non-eosinophilic asthma are not known or vary among individuals. 

To simplify, responses from all the eosinophilic and non-eosinophilic (neutrophilic) triggers can 

be termed as bronchial inflammation, represented as the grey box in the middle of Figure 1. Out 

of this grey box originates different physiological responses depending on the subject.5  

 

If you take away from the broader picture of airway disease as a whole, there is a considerable 

extent of heterogeneity within the symptoms of asthma itself.38 There are many descriptive terms 

to describe the heterogeneity depending on the clinical presentation or aetiology that is used to 

describe the disease.39,40,41,42 Based on clinical patterns, asthma can be categorized into chronic 
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(mild, moderate or severe), acute severe, brittle, nocturnal, premenstrual, and steroid resistant 

phenotypes. Similarly, based on the nature of triggers, asthma can be categorized as extrinsic or 

intrinsic (absence or presence of specific IgE to allergens), occupational (small molecule 

chemicals), infective (virus, bacteria or fungi), aspirin sensitivity, smoking, exercise etc. 

phenotypes. The infiltration of airway smooth muscle (ASM) by mast cells is specifically an effect 

in the asthma phenotype. As a result, to be precise, ‘classical asthma’ can be defined as a condition 

wherein the following indications are co-present: variable airflow obstruction, airway hyper-

responsiveness (AHP), and mast cell infiltration of the airway smooth muscle (ASM).5,38,39,41-43 

 

Asthma affects more than 300 million individuals globally and in the United States as stated above 

and one in every 12 persons suffers from asthma.44,21 The number of asthmatic patients is predicted 

to be over 400 million by the year 2025, globally.45  

 

According to the National Health Interview Survey (NHIS) 2011,46 approximately 39.5 million 

people (12.9% of the population), which includes 10.5 million children (14.0% of child 

population), in the United States alone have been diagnosed with asthma. It is a lifelong condition 

in approximately 40 million individuals in the United States in 2012.21,47 Over 11.5 million 

asthmatic individuals, which includes approximately 3 million children have had at least one 

asthma attack in 2015.48 

 

Every year asthma attacks result in approximately 180,000 deaths globally.49 Consequently, there 

is a huge impact on society, not only in terms of expenses but from productivity as well. As 

indicative by these statistics, there is considerable indirect costs (e.g., cost lost from absenteeism 



7 
 

from work, disability, and mortality), as well as direct costs (e.g., emergency room visits, 

hospitalization, medications, investigative treatments etc.) are associated with asthma incidents.  

Besides, there are some unquantifiable or intangible costs associated with asthma. It is difficult to 

get an accurate confirmation of the negative effect on life-styles in this situation. For example, in 

2013, approximately 13.8 million missed school days were due to asthma incidents.50 According 

to a report published in 2010, the US spent approximately $56 billion for asthma care which was 

several-fold higher than the expense in 1994 (about $12 billion).51 

 

During the last decade (2001-2011) asthma incidents increased by an alarming 28%, which 

indicates asthma was not under control. As a result, more than half a million hospitalizations, and 

about 2 million emergency room visits occur each year (some are often fatal) and more than 14 

million doctor visits occur each year due to asthma incidents.52 According to the WHO, in 2004 

the worldwide asthma costs may have exceeded the cost associated with TB and HIV/AIDS 

combined.53,21 

 

The current options for short-term (acute) and long-term (chronic) management of asthma are 

primarily based on short acting beta agonists (SABA) and long acting beta agonists (LABA) along 

with inhaled corticosteroids (ICS). The β2-adrenergic agonists such as salbutamol or salmeterol 

act as bronchodilators by activating the β2-adreno receptors (β2AR), while corticosteroids, such as 

beclomethasone dipropionate, act as anti-inflammatory agents, which reduce inflammation caused 

during an asthma attack. Both types of treatment have their limitation due to efficacy, compliance 

and side effect concerns. For example, for long term management of asthma, The Food and Drug 

Administration (FDA) has recommended avoiding LABA’s if possible and suggested the use of 
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LABA’s only in combination with corticosteroids due to the effect that LABA’s had on increased 

asthma related deaths.54 Furthermore, this drug it is reserved for patients whose asthma cannot be 

maintained by other available treatments.54 On the other hand, inhaled glucocorticoids, which are 

the best available option for asthma treatments have both oropharyngeal and systemic side effects 

including adrenal suppression, growth suppression, thinning or bruising of the skin, cataract 

formation, increased mortality, and loss of asthma control effects.4,55-60 In addition, there is the  

possibility of osteoporosis and growth problems associated with long-term use of corticosteroids.61 

Furthermore, orally available leukotriene receptor antagonists are commonly used to manage 

asthma symptoms;62 however up to 78% of patients do not respond to this alternative therapy.61,63 

In addition, it is very common to encounter an incident wherein improper use of inhalers results in 

incorrect dosing, oral infections, and poor patient compliance.4 

 

As a result, it can be inferred that the global asthma problem has been exacerbated over the last 

several decades. The current asthma management and/or treatment options are not good enough 

for the necessary treatment of clinical long-term treatment of asthma. There are certainly unmet 

demands for new asthma management programs. The medical community needs strategies to treat 

and/or control asthma to overcome imprecise dosing, as well as reduce adverse CNS side effects.  

 

1.2 GABAA Receptors 

Gamma-aminobutyric acid (GABA; Figure 2) is a neurotransmitter that plays an inhibitory role in 

the central nervous system (CNS). In addition, GABA is also involved in several other 

physiological functions in the peripheral nervous system including the mediation of the paracrine 

signaling. The overall involvement and mechanism of the role of GABA in neurotransmission is 



9 
 

rather complex. However, it has been investigated in detail and as a result its role as a central 

neurotransmitter has been fully established, which employed extensive electrophysiological, 

neurochemical, pharmacological, and molecular biology techniques. GABA is known to be 

involved in many CNS disorders and degenerative diseases including anxiety disorders, sleep 

disorders, schizophrenia, major depressive disorder, bipolar depression and PTSD.64-68 The 

combination of excitatory and inhibitory transmission regulates the overall activity of the brain. 

Excitatory transmitters, such as glutamic acid (Glu) depolarize neurons via a large number of 

receptor subtypes, while the inhibitory transmitter effects of GABAA receptors hyperpolarizes 

neurons also via several receptors.69,70  

                                                  

                                                  Figure 2. γ-Aminobutyric acid (GABA) 

 

Beside the central nervous system (CNS), GABA also regulates a wide range of physiologically 

important functions in the peripheral nervous system (PNS),71,72 as suggested by an increasing 

number of studies. GABA receptors have been found in a large number of peripheral tissues 

including the endocrine glands, smooth muscles, and the female reproductive system, which are 

all parts of the peripheral nervous system (PNS).73Although, the peripheral GABA receptors and 

GABAergic synaptic mechanisms are interesting drug targets, the majority of the GABA based 

drug discovery programs at UWM, target the central GABA-regulated synapses.73 It has also been 
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suggested that GABA plays a crucial role in the hearing mechanism, as indicated by an age-related 

significant reduction in GABA in the central nucleus of the inferior colliculus (CIC) in rats.73,74 

Since GABA receptors are the most abundant inhibitory neurotransmitters in the CNS, they control 

17-20% of all neurons in the brain.75 The physiological actions of GABA under study here are 

implemented via GABAA receptors, which are contained in chloride ion channels, whose 

properties are mediated by GABA. The action of GABAA receptors can be modulated by many 

drug molecules that bind to distinct allosteric binding sites on GABAA receptor in channels.76 

Inferred from the pharmacological effects of such drug molecules, it can be concluded that GABAA 

receptors are involved in multifunctional roles including but not limited to controlling inhibition 

of neurons in the CNS,77,78 which control anxiety.79,80 They also help to monitor feeding and 

drinking behavior,81,82 cognition, the internal body clock, memory and learning, neuropathic pain, 

epilepsy and others.83-87  

GABAA receptors are heteropentameric in nature, which consists of a large N-terminal 

extracellular domain and four transmembrane (TM) domains.88-90 The extra cellular region 

contains sites for potential glycosylation, and a ‘Cys-loop’ connecting two conserved cysteine 

residues via a covalent disulfide bond. In addition, there is one intracellular loop connecting TM3 

to TM4 (Figure 3). Five individual subunits combine to form a chloride ion channel (Figure 4). 

Each GABAAR protein is a polypeptide of approximately 50 kD in size and each subunit is 

structurally related with a high degree of protein homology between subunits.7,9,91 
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Figure 3. Proposed topology of a GABAA receptor subunit. The extracellular domain begins with the N-

terminus and M1-M4 represents the four transmembrane domains (modified from the figures in Burt, et al.91 

and Clayton, et al.).7,9 
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Figure 4. Longitudinal (A) and cross-sectional (B) Schematic representations of the ligand-gated ion channel. 

The number 1-4 refer to the M1-M4 segments. The M2 segment contributes to the majority of the pore lining 

within the membrane lipid bilayer (modified from the figures in Keramidas, et al92. and Clayton et al.).7,9 

However, much of this ion channel topography was developed by Werner Sieghart. 

 

In the mammalian nervous system a total of six major alpha, three beta, three gamma, three ro, as 

well as one of delta, epsilon, pi, and theta each have been sequenced, which results in a set of 19 

(i.e., α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3) different subunits. This collection of different subunits of GABAA 

receptors is the largest among ion channel receptors.93,94 It is inferred from experimental evidence 

that this set of 19 subunits might be the complete set of subunits in the human since no new receptor 

subunit genes were found in the human genome.95 On the other hand, additional subunit types have 

been identified in nonmammalian species.93,96,97 
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Theoretically, if all the subunits could co-assemble with each other, randomly, more than 150,000 

GABAA receptor subtypes with different compositions and arrangements could be formed.98 Due 

to restrictions during the assembly of GABAA receptors, not all theoretically possible subtypes can 

actually form. It is probable that around 500 different subunits actually exist in the brain.94 In 

addition, only a few subunits are abundant in number. The majority of the subunits are comprised 

of alpha, beta, and gamma subunits. Occasionally, the gamma unit is replaced by either of delta, 

epsilon, or pi subunits.94 It is known that the GABAA receptors, which are modulated by  

benzodiazepine allosteric binding sites are located in the alpha, beta, and gamma ion channels, 

which contain two alpha, two beta and a gamma-units forming a hetero-pentameric receptor. In 

these receptors the four alternating alpha and beta (2 alpha + 2 beta) subunits are connected by a 

gamma unit in a ratio depicted here (α:β:γ = 2:2:1).90,99-103 Nonetheless, GABAA receptors are 

highly heterogeneous and are widely distributed throughout the brain. Despite its ubiquitous nature 

in the brain, each subunit has a distinct regional and cellular distribution. Often a special class of 

cells or tissues express a small sub-set of GABAA receptor subunits, preferentially.104 For example, 

α5β3γ2 subtypes are located primarily in the hippocampus of the CNS and a small amount in the 

spinal cord. 

In the synaptic cleft and within the pore of a GABAAR there are numerous binding sites. A number 

of ligands of various classes can bind to these sites and activate the GABAAR complex. These 

compounds include β-carbolines, barbiturates, ethanol, benzodiazepines, picrotoxin, as well as 

endogenous molecules such as neurosteroids.105,106 The synaptic cleft of the α1-6β1-3γ2 subunit, 

viewed from an  extracellular region is depicted in Figure 5. The αβαβγ subunits are arranged in a 

clockwise manner from such view point (Figure 5). GABA binding sites are located at the two α-

β+
 interfaces while benzodiazepines bind to the γ-α+ interface.107,108 Recent studies by Sieghart have 



14 
 

located a CGS 9895 binding site (termed PQ) at the β-α+ interface.109,110 In addition to these known 

ligands, a number of pyrroloquinolines also have been found to bind and activate this GABAAR 

site. 105,111 Additionally, neurosteroids and ethanol may also bind in the interior of the ion pore.9,112-

114,115,116  

 

 

Figure 5. Absolute subunit arrangement of the 122 GABAA receptor when viewed from the synaptic cleft.  

The GABA binding sites are located at the +- subunit interfaces and the Bz modulatory binding site is located 

at the +- subunit interface.  The part of the schematically drawn subunits marked by the + indicates loop C 

of the respective subunits (modified from the figures in Clayton, et al.7 and Ernst, et al.).8,9 
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Figure 6. Conformational impact of GABA binding to the α1β3γ2L GABAA receptor. a) Cryo-EM map of the 

PTX/GABA-bound α1β3γ2L receptor viewed from the extracellular space (left) and parallel to the membrane 

plane (right). b) One GABA-binding pocket viewed from the extracellular space. GABA is shown in ball-and-

stick representation with the atoms colored as follows: carbon, khaki; oxygen, red; nitrogen, blue. c) The cryo-

EM map of the α1β3γ2 GABA receptor in complex with diazepam (DZP, teal) viewed parallel to the membrane 

plane. d) Views of the benzodiazepine binding site at the α1+/γ2− interface showing  DZP binding mode (modified 

from the figure in Masiulis, et al.).10 PTX is picrotoxin, a channel blocker. 
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Figure 7. The cryo-EM structure of the human α5β3 GABAA receptor. a, b Surface views parallel to the plasma 

membrane (a) or from the extracellular space down the five-fold pseudo-symmetry axis (b) of the cryo-EM 

density map of the human α5β3 GABAA receptor in complex with Nb25 reveals a distinct assembly of one α 

(red) and four β subunits (purple), and three bound Nb25s (green). c, d The α5β3 GABAA receptor viewed 

parallel to the plasma membrane (c) or from the extracellular space down the five-fold pseudo-symmetry axis 

with three Nb25s bound (d). N-linked glycans are shown in ball and stick representation. e GABA-binding site 

at β( + )/α(−) interface with density at 3σ contour level. Dashed links indicate salt bridges or hydrogen bond. 

The residues in β( + ), α(−) and GABA are depicted in sticks. (modified from the figure in Liu, et al.)11 

 

 

In the present work ligands that bind to this α1β3γ2 site are not wanted, since this receptor site is 

known to mediate sedation, amnesia, ataxia, and anticonvulsant activity, as well as addiction, 

and/or dependence. The cryo-EM map of the α1β3γ2 receptor with the binding site of diazepam is 

illustrated in Figure 6.10  Depicted in Figure 7 is the cryo-EM map of the α5β3 receptor bound to 

Nb25s.11 However, there is no structure of diazepam in this binding site so that the Bz receptor is 

not illustrated here.  
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1.3 Benzodiazepines 

 

Diazepam (Valium), which is a traditional benzodiazepine (BZD), contains the pendent phenyl 

ring and binds non-selectively to the α1-3,5β1-3γ2 GABAA receptors7,107,108 at the BzR site. They 

(BZDs) bind at the interface between the α and γ2 subunits of the ion channel.104 Benzodiazepines 

(BZDs, see Figure 6) have been prescribed for various CNS disorders including anxiety, 

convulsions, and muscle relaxation117,118 for over 45 years. The BZDs allosterically enhance the 

action of GABA on the GABAA ion channel by increasing the frequency of channel opening. This 

means, BZDs do not cause any effect on their own and can only modulate an ongoing GABAAergic 

process.104 Thus, BZDs exhibit much less toxicity than other drugs. This class of compounds has 

several advantages including the ready absorption through the GI tract and they reach a maximum 

blood concentration within a short period of time after oral ingestion.119 In addition, BZDs can 

cross the blood brain barrier (BBB) within 20 to 30 minutes of administration and readily 

distributes throughout the brain. Some BZDs can reach high enough concentration in the brain 

within five minutes after iv administration which has made them suitable for treatment of status 

epilepticus.120-122 Unfortunately, the development of tolerance in humans after 3 – 5 days limits 

their use in emergency rooms, as a treatment for epilepsy. BZDs also cause a number of adverse 

effects, as mentioned, such as drowsiness, sedation, ataxia, dependence, withdrawal issues and 

tolerance to the anticonvulsant effects, which further limits their clinical use.104,106,123,124 These 

adverse effects are principally due to the positive modulation (PAM) of  α1β3γ2 GABAA-subunits, 

but some side effects can also be mediated by other Bz receptors including (in the CNS) the α4β3γ2 

receptors; certainly high doses of α3β3γ2 subtypes can also lead to some muscle relaxation. 

 



18 
 

 

Figure 8. Structures of some representative examples of BZDs: diazepam, chlordiazepoxide, the 

triazolobenzodiazepine alprazolam and imidazobenzodiazepine (IBZD) midazolam.  

 

The BZDs such as diazepam or flunitrazepam exhibit high affinity at α1β2/3γ2, α2β2/3γ2, α3β2/3γ2, 

and α5β2/3γ2 subtypes. These sites are termed diazepam sensitive (DS) sites. Other BZDs can also 

interact with α4β2/3γ2 or α6β2/3γ2 receptors, which are termed “diazepam insensitive” (DI) sites. The 

receptors containing γ1 or γ3 are present in very low abundance and their respective in vivo effects 

on benzodiazepine binding sites and on GABA processes is still unclear.13  

The α4 and α6 benzodiazepine binding sites are insensitive to benzodiazepines because in the 

binding site the lipophilic pocket (L3) is too small or nonexistent, consequently, the pendant phenyl 

ring will not fit in the pocket. This is due to the histidine (DS) to arginine switch (DI) in the 

Bz/GABA ion channel subunit.125 



19 
 

It is known that compounds of various classes can bind to the BZD binding site of the GABAAR.104 

When a ligand binds to the BZ site, it can influence the action of GABA to its receptor site  and 

hence can alter the chloride ion flow through the pore.126 A ligand can act as an agonist, antagonist, 

or inverse agonist. The binding of an agonist ligand results in an increase in the frequency of the 

opening of the chloride channel, which results in a net hyperpolarization of the neuron and a 

decrease in neuronal firing. This type of ligand is called a ‘Positive Allosteric Modulator (PAM) 

and illicits anxiolysis, sedation, and anticonvulsant effects. The opposite effect occurs when an 

inverse agonist binds to the BZD site, which decreases the flow of Cl- ions. These are called 

negative allosteric modulators (NAM) or inverse agonists. The NAMs exert an opposite action on 

GABA neurotransmitter actions on the GABAAR, i.e., they exhibit effects that include: anxiogenic, 

proconvulsant, convulsant, enhanced vigilance, as well as increased cognition and learning. There 

is one more type of allosteric modulator that, presumably, stabilizes the BZD antagonist 

conformational state, which does not have a major effect on the chloride ion-flux. As a result, these 

antagonists are nearly functionally silent on their own but can antagonize the effects of agonists or 

inverse agonists at BZD receptors. This type of ligand is termed an ‘antagonists’.104  

The efficacy of these allosteric modulators can be different. Full agonists or full inverse agonists 

exhibit maximum effects on their respective processes. Between these two efficacy extremes, there 

are partial agonists and partial inverse agonists, which elicit the same type of effects as their full 

versions but to a lesser extent. The allosteric efficacy of modulators are distinct at different receptor 

subtypes and as a result, a full agonist or inverse agonist at one receptor may be a partial agonist 

or partial inverse agonist at another. It is also possible for compounds to show efficacy in the 

opposite direction at different receptor subtypes; i.e., a partial agonist at one receptor can be an 

antagonist or inverse agonist (NAM) at another subtype. This illustrates the different spectrum of 
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efficacy of clinically used BZDs. In addition, a number of compounds may have similar affinity 

for an αxβ2/3γ2 subtype but their efficacy is usually different at these receptors, which can affect 

the spectrum of specific anxiolytic, antinociceptive, antidepressant, anticonvulsant, sedative, or 

muscle relaxant activity.104 Illustrated in Figure 6 is a schematic diagram of subunits and ligands 

that mediate effects via the of the GABA-BzR channel complex. 

 

 

 

Figure 9. Diagram of the benzodiazepine-GABA receptor-chloride channel complex (modified from the figure 

in Rallapalli, S.)12  

 

The pharmacological responses vary with the composition of the activated α1-6β1-3γ2-GABAAR. 

As mentioned above, benzodiazepines bind to the interface between the α and the γ subtypes. In 
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the mammalian nervous system there are 6 different α and 3 different γ subunits, which would 

result in 18 such possible sites for BZD binding. It is known that most BZDs are inactive or show 

very weak efficacy at receptors containing γ1 subunits.127 Furthermore, although BZDs show some 

activity at γ3, the very low abundance of γ3 containing receptors in the mammalian nervous system 

render the contribution from these receptors as insignificant in the overall efficacy of BZDs. 

Consequently, BZDs that are used currently for clinical practice, interact with GABAARs 

containing (DS) α1β2/3γ2, α2β2/3γ2, α3β2/3γ2, and α5β2/3γ2 subunits. The α4 and α6 subunits exhibit 

completely different pharmacology than most of the clinically used BZDs (e.g., diazepam, 

clonazepam, flunitrazepam etc.) because they do not bind or interact at these (DS) BZD receptor 

subtypes.  

The presence of different α subunits plays a major role. Single-point-knock-in mice have been 

used to identify the role of different α subunits located in the brain pioneered by Seeburg, Möhler, 

McKeinan, and Rudolph.128,129 The α1 containing GABAAR receptors have been associated with 

amnesia, motor impairment, sedation, ataxia, addiction, muscle relaxation and dependence, as well 

as anticonvulsant effects.130,131 The positive activation of α2 subunits mediates anxiolytic effects 

and anticonvulsant effects.132,133 On the other hand, activation of α3 subunit effects anxiolysis and 

muscle relaxation at higher concentrations.134,135 The α5 subunits influences cognition and spatial 

memory as well as schizophrenia, depression and asthma.136 The α4 and α6 subunits are diazepam 

insensitive (DI) sites. In the brain the α1 subtype of the GABAAR is the most abundant (40-

50%)135,137,138 followed by α2 and α3 (up to 35% and 14%, respectively)107. These are mainly 

located in the limbic region. The α5 receptors are the least abundant (~5%) and are present 

principally in the hippocampus139,140 and some in the spinal cord as mentioned.141  
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The two diazepam insensitive subtypes (α4 and α6 subtypes) correspond to a much smaller 

percentage of functional GABAAR than the diazepam sensitive (DS) subtypes. Some known 

imidazobenzodiazepines such as Ro15-4513, and Ro15-1788 (flumazenil) are known to interact 

with α4βγ2 and α6βγ2 subtypes but they also interact with α1βγ2, α2βγ2, α3βγ2, and α5βγ2 subtypes, 

making them non-selective BZD compounds. The α4 ion channels make up 6% of all subtypes142 

GABAA receptors are also expressed in the peripheral nervous system (PNS).143,144 There are both 

α4 and α6 subtypes in the CNS and periphery. Although GABAAergic drugs readily cross the BBB, 

the major quantity of administered BDZ drug is found in the periphery where they can cause side 

effects.73 But very very significant amounts of BZDs go through the BBB in 5-30 minutes. This 

makes them terrific anxiolytics. There is potential for using BZDs targeting the GABAARs 

(especially, the DI sites) expressed in the peripheral nervous system especially within the lungs 

(Emala et al.)145-147 and spleen.148,149 The α6β3γ2 subtypes are found largely in the cerebellum.150 

 

Although GABAA receptors are ubiquitously present in the CNS, limited studies have been done 

to find their distribution in the nonneuronal cells. The GABAA channels in the central part of the 

brain control the cholinergic outflow to the lung. Functional GABAA and GABAB receptors inhibit 

cholinergic activity and have been detected in the presynaptic sites of lung prostaglandin 

parasympathetic nerves. The presence of functional GABAB and GABAA receptors in the ASM of 

human and guinea pig was confirmed recently by Emala.151 Emala and Cook et al. also illustrated 

the relaxation of precontracted ASM (substance P or histamine) by selective agonism at the α5β3γ2 

receptor subtype. The overall outcome of their study was the finding that GABAA receptor 

subtypes especially α4 and α5β3γ2 subtypes relax the contraction of airway smooth muscle (ASM) 

by the selective GABAA agonist (gabazine) as well as α4 and α5 subtype selective ligands.151  
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Table 1. Action of benzodiazepines at CNS GABAA α1-6β1-3γ2 receptor subtypes. Presented at 

ASPET Annual Meeting at EB 2019152 

 

Subtype Associated Effect 
α1 Sedation, anterograde amnesia, some anticonvulsant action, ataxia, involved 

in development of tolerance, addiction 

α2 Anxiolytic, some anticonvulsant action, antihyperalgesia 

α3 Anxiolytic, antihyperalgesia action, may be some muscle relaxation at higher 

doses  
α4 Diazepam-insensitive site; asthma 

α5 Cognition, temporal and spatial memory, depression, schizophrenia, 

asthma  
α6 Diazepam-insensitive site; migraine, trigeminal orofacial pain, active in a 

model of Tourettes syndrome, PPI model 
Note: Effects in bold are effects found by pharmacologists using ligands from Milwaukee 

 

As found by Emala, Cook et al., airway smooth muscle (ASM) contains a restricted and conserved 

repertoire of α4 and α5-GABAA receptors and allosteric modulators of GABAA receptors enhanced 

the efficacy of GABA, which resulted in electrophysiological changes (effected by these ligands) 

in these two subtypes. Selective GABA agonists also augmented ASM relaxation by isoproterenol, 

as well as spontaneous relaxation of precontracted ASM by various contractile agents due to α4-

GABAA receptor activation.153 

The α4 and α5 receptor subunits have been identified in airway smooth muscle, airway epithelium, 

and inflammatory cells, and their ligand-mediated activation has been shown to reduce immune 
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response measures and reduce airway hyperresponsiveness (ex vivo and in vivo).151,154-158 In these 

studies, GABA dose-dependently reduced IL-12 and IL-6 production in LPS stimulated 

macrophages.157 GABA and muscimol also inhibited anti-CD3 and antigen specific T cell 

proliferation.159 Honokiol, a GABAAR agonist, reduced cardinal features of the asthma-like 

phenotype including inflammation (reduced airway eosinophilia), mucous cell metaplasia, 

collagen deposition, and airway hyperresponsiveness in acute and chronic ovalbumin-induced 

murine asthma models.160 However, nonselective GABAAR activation is associated with unwanted 

CNS effects161 and increased mucous production.158,162,163 

As mentioned earlier, the classical GABAA receptors with β3γ2 and one subunit of α1, α2, α3, or α5 

represent the diazepam sensitive (DS) sites where benzodiazepines usually bind. On the contrary, 

diazepam does not bind to the receptors corresponding to α4, and α6 subtypes, making these 

diazepam-insensitive (DI) sites of potential use with clinical significance since the sedation, ataxia, 

amnesia and dependence cannot be mediated by these two subunits.  

While, the functions of DS GABAAR are well understood in terms of the effects of classical 

benzodiazepines (Table 1 details) and certain properties can be directly linked to specific receptor 

subtypes such as sedation (α1), anxiolysis (α2), cognition (α5); the functions of the diazepam 

insensitive (DI) sites are still largely not understood. Previous studies in rodents reported, α6-

containing receptors were found in the cerebral membranes and granule cell cultures in a distinct 

anatomical distribution; around 25-30% of brain GABAA receptors in these brain regions. On the 

other hand, α4 containing receptors were less abundant (approximately 5% of the total GABAA 

population) and were primarily located in the hippocampus and thalamus.16  

Several classes of ligands which include imidazobenzodiazepines are known to bind to DI sites 

with moderate to high affinities (see Figure 10 for several examples). But these ligands do not 
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exhibit sufficient selectivity for DI over DS which explains some of their in vivo functions ascribed 

to DI sites. This represents a complexity in clear characterization of their physiological and 

pharmacological functions apart from DS receptors.16 

 

 

Figure 10. Some benzodiazepine receptor ligands for DI GABAA receptors 

Among the numerous ligands that have been investigated to date, imidazo [1,5-a][1,4] benzo-

diazepines are the most extensively studied and exhibited the highest selectivity towards the DI 

sites, as well. It was shown that alteration at the C-3 and C-8 positions of 6-oxo- imidazo [1,5-

a][1,4] benzodiazepines have profound effects on their DI-site selectivity, as compared to DS-

sites.16  
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2. Aims of this Research 

It is evident from the above discussion that there is a huge unmet demand for better treatments for 

asthma. The current options for treatment of asthma are neither sufficient nor up to the desired 

clinical level in regard to safety and convenience. The adverse CNS side effects, poor patient 

compliance and inconsistent dosage is due to several individual factors; frequent dosage as well as 

expense, improper use of inhalers, ineffective long term treatment, and unavailability of better 

medications are among the shortcomings of the current management of asthma. The aim of the 

current study was to develop a novel strategy for treatment of asthma by targeting the diazepam 

insensitive α4 GABAA receptor sites in the periphery, but to avoid untoward side effects that 

usually occur with some drugs in the CNS. It has been found that receptors in the lung, which is a 

part of peripheral nervous system (PNS), express functional GABAA receptors including the DI 

subtypes (i.e., α4). In addition, it was illustrated that an α4 GABAAR agonist effected relaxation in 

pre-contracted airway smooth muscle (ASM) by different contractile agents both in human and in 

guinea pig tissues.153 Expression of functional α4-GABAAR subunits was also confirmed in mouse 

lungs. The reduction of airway-hyperresponsiveness by α4-selective GABAA agonists or positive 

allosteric modulators (PAM) of the GABAA receptor was reported in mouse model, as well.15 

Furthermore, part of the immune system plays a key role in airway inflammation during asthmatic 

periods. Interestingly, immune and inflammatory cells (CD4 and T-helper cells) also express 

functional GABAA receptors including those of  the α4β2/3γ2 subtype. The α4-subtype selective 

GABAAR modulators have been shown to reduce both AHR and inflammation in a murine asthma 

model.15  
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To summarize, the useful effects of α4β2/3γ2 receptor subtypes as selective GABAAR allosteric 

modulators, which can mediate the efficacy of the functional GABAARs expressed in airway 

smooth muscle, as well as immune/inflammatory cells by removing contraction, reducing 

hyperresponsiveness or reducing and/or preventing inflammation by reducing eosinophilia count 

or mucous hypersecretion is important in regard to treatment strategies. These previously found 

important results provided important insight for a novel treatment of asthma by targeting the α4 

GABAAR receptors in the lung and in the immune cells. By avoiding the central part of the nervous 

system (CNS), this would provide asthma drugs, which would be ideal to avoid any off-target CNS 

side-effects. Since, α4-sites are diazepam insensitive sites activation (PAM) of α4-GABAAR 

subtypes would avoid effects corresponding to diazepam or other benzodiazepine adverse effects.  

By controlling the lipophilicity of the ligands, it should be possible to prevent them from travelling 

across the BBB, while maintaining optimal GABAAR efficacy in the peripheral target organ 

GABAA receptors. The ultimate goal of this research was to optimize the development of an α4-

subtype selective drug for treatment of asthma, using the imidazodiazepine lead ligand (XHE-III-

74), which has elicited α4-subtype selective GABAAR efficacy and showed promising results both 

in ASM and inflammatory cells. These results also indicated further improvement in terms of 

desired drug properties was required. In addition, increasing the in vivo stability (by fortifying 

metabolic sites) for a longer duration of action was needed. By incorporating the following 

properties into a drug candidate for treatment of asthma by targeting α4 (DI) subtype selective 

ligands in the PNS. 

i. Avoid CNS activity by retarding drug molecules from penetrating the BBB and avoid any 

sensorimotor effects 
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ii. Develop drugs with appropriate lipophilicity which will retard BBB-penetrability, as well as 

will be orally bioavailable 

iii. Develop ligands with a longer duration of action by improving metabolic stability to decrease 

frequency of dosage by the incorporation of deuterium at metabolically labile sites or by 

employing bioisosteric equivalents at the C-3 position to optimize drug properties. 

iv. Develop a drug capable of administration as an aerosol or as the alternative oral tablets. 
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3. Chemistry and Results 

3.1 Background 

Earlier in the search of a diazepam insensitive (DI) GABAA receptor ligands (α4β3γ2 and α6β3γ2), a 

series of 3- and 8- substituted 6-oxo-imidazo [1,5a] [1,4]-diazepines were prepared.  After a study 

of their SAR and receptor binding, it was found that CMD-45 and XHE-III-74 (Figure 11) 

exhibited potent binding affinity (with Ki values less than 1nM) and selectivity at DI subtypes 

(Table 2).16 The difference between these two ligands is in the ring size of the D ring. The outcome 

of this study with Emala et al.2 suggested that CMD-45 and XHE-III-74 were potential leads for 

further development in cases where DI ligands might exhibit unique biological activity. 

                                        

Figure 11. Structures of XHe-III-74 and CMD-45 

 

Table 2. In vitro binding affinity at αxβ3γ2 (values in nM)16   
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3.2 The Synthesis of CMD-45 and XHE-III-74  

 

Based on the earlier route of Fryer and Gu,3,16,17 the synthesis of XHE-III-74 7 began with the 

preparation of 5-methoxyanthranilic acid 2 (Scheme 1) from 5-methoxy-2-nitrobenzoic acid 1 by 

catalytic hydrogenation. The resulting anthranilic acid 2 was converted into isatoic anhydride 3 

with triphosgene. (Be very careful in working with triphosgene. After the completion of the 

reaction, be careful to remove and quench the remaining triphosgene or phosgene. To this 

end air or a gas was passed through the reaction flask into a scrubber flask which contained 

a solution of NaOH in water). The anhydride 3 was heated with L-proline in DMSO to generate 

the corresponding benzodiazepine 4. This compound was converted into the imidazodiazepine, 

XHE-III-74 ethyl ester 5. This ester was converted into the tert-butyl analog XHE-III-74 (7) with 

Li rod (small pieces) in tBuOH on multi-gram scale. CMD-45 was synthesized in Dr. Cook’s lab 

by Michael Stephen by using the same synthetic route with replacement of L-azetidine-2-

carboxylic acid for the L-proline in high overall yield.  

The last step of the synthesis of XHE-III-74 (7), i.e. the conversion from ethyl ester to tert-butyl 

ester was deemed problematic for several reasons. The reaction was extremely moisture sensitive 

and as a result a significant amount of the starting ethyl ester became saponified, which resulted 

in yield loss. In addition, reactions often fail to go to completion and the unreacted ethyl ester (if 

any) poses a hindrance to purification of the desired tert-butyl ester. This is because the polarity 

of these two esters are quite similar and often co-elute on chromatography or requires long, tenuous 

separations, which retard the pace of derivatization of XHE-III-74 (7). As an alternative, the 

carboxylic acid of XHE-III-74, which was also an important target ligand, was treated with DMF-

di-tertbutyl acetal in toluene at reflux.18 This resulted in a cleaner reaction to execute in which it 

was easy to isolate the desired product even if the reaction failed to go to completion. This 
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accelerated the process of making novel analogs of XHE-III-74 (7) which are potential drug 

candidates under the current hypothesis. 

Scheme 1. Synthesis of XHE-III-74 (7) and XHE-III-74 ethyl ester (5)3,16,17 
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Scheme 2. Alternative access to XHe-III-74 (7) on multigram scale18 

 

 

 

3.3 Comparative Biological Evaluation of CMD-45 and XHE-III-74 

To evaluate the effectiveness of these two ligands, their corresponding therapeutic potential, and 

to find out the best one of the two for further development, it was decided to compare their 

effectiveness in relaxing airway smooth muscle (ASM) in the laboratory of Dr. Charles Emala at 

Columbia University. Dr. Emala had recently discovered that α4β3γ2 and α5β3γ2 Bz/GABA(A)ergic 

subtypes were found in tissue from healthy transplantation donor lungs. His results were on the 

healthy part of the lung tissue. The same phenomenon was discovered in rodents including guinea 

pigs.151,153 This was an important breakthrough. 

 



33 
 

3.3.1 Oocyte Efficacy Study of XHE-III-74 and CMD-452  

In oocytes, which expressed each α subunit individually (along with β3 and γ2 subunits; α1-6β3γ2), 

both CMD-45 and XHe-III-74 produced a greater augmentation of GABA [EC3]-induced currents 

in oocytes which contained α4 or α6 subunits compared with the other α subunits at multiple 

concentrations (Figure 2; P < 0.01, n = 3–4). A higher value of the current at EC3 (Y-axis) implies 

better efficacy at that subunit at a particular concentration (X-axis). Illustrated in Figure 12 are 

both CMD-45 and XHE-III-74, which produced better augmentation of GABA-EC3 induced 

currents at α4 and α6 subtypes than others. Ligand XHE-III-74 induced more current at the α4 

subtype than at the α6 receptor up to the highest concentration of 30 μM and induced higher current 

(up to ~300% of the control), as compared to CMD-45. On the other hand, CMD-45 induced higher 

EC3 current at α4 subtypes at 1 μM but at 10 and 30 μM concentrations the current observed was 

greater at α6 than at α4 ion channels.  

Examination of additional studies in oocytes expressing the α4 subunit along with the delta subunit 

(α4β3δ) indicated no XHe-III-74–mediated augmentation of GABA ([EC3])–induced currents, even 

at the highest concentration of XHe-III-74 tested (10 µM; data not shown; n = 4). Similarly, at 10 

µM CMD-45 showed only a modest augmentation of GABA-induced currents (116±3% of current 

induced by a GABA EC3 concentration alone, P < 0.05, n = 4) at δ subtypes. The CMD-45 did not 

significantly augment GABA-induced currents at δ subtypes either at lower concentrations (data 

not shown). These studies demonstrate the selectivity of CMD-45 and XHe-III-74 for α4β3γ2 

subunit–containing receptors, and also demonstrate that they have very little to no activity at 

receptors containing the α4/δ subunit combination. This is an important result. 
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Figure 12. Augmentation of GABA-induced currents in oocytes expressing GABAARs of specified subunit 

composition. At multiple concentrations, both CMD-45 and XHe-III-74 led to significantly greater 

augmentation of GABAAR-mediated currents in oocytes expressing α4 or α6 subunits in combination with β3/γ2 

subunits (when each is compared with α1 as a reference in two-way repeated measures ANOVA with Bonferroni 

post test comparisons). Data are presented as a percent of current induced by a 3% maximal effective 

concentration (EC3) of GABA. This demonstrates the subunit selectivity of these novel, positive allosteric 

modulators of the GABAAR (*P < 0.05 for both α4 and α6 as compared with the α1 subtype by Bonferroni post 

hoc analysis; n = 3–4; mean ± SE). Modified from the figure in Yocum, et al.2 
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3.3.2 Mouse Tracheal Ring Organ Bath Studies on XHE-III-74 and CMD-452  

In ex vivo organ bath experiments carried out by Yocum and Emala, CMD-45 and XHE-III-74 

were evaluated for their ability to relax pre-contracted mouse tracheal rings. The treatment of ACh-

contracted WT (wild type) mouse tracheal rings with CMD-45 and XHe-III-74 led to a significant 

relaxation (Figure 13). The tracheal rings from GABAA receptor α4 knock out (KO) mice also 

exhibited a response to CMD-45 and XHe-III-74, which indicated relaxation, but was significantly 

less than in wild type (WT) mice for both ligands at multiple concentrations. This finding further 

confirmed that the α4 subtype GABAAR selectivity of these imidazoles and the mechanistic role 

of the α4 GABAAR activation in the relaxation of ASM. In these experiments too, XHE-III-74 was 

found to be more potent than CMD-45 in relaxation of pre-contracted mouse tracheal rings. This 

is consistent with the electrophysiological data presented previously here, which demonstrated a 

larger GABAAR-mediated current with exposure to XHe-III-74 as compared to that with CMD-45 

at equal concentrations (Figure 11). The prorelaxant effects of both compounds were reversible in 

WT tracheal rings at the highest doses tested (100 µM for CMD-45 and 50 µM for XHe-III-74) 

after repeated buffer changes. This was demonstrated by showing that both XHe-III-74– or CMD-

45–treated rings contracted with equal force to 80 mM KCl treated rings as compared with vehicle-

treated rings after these repeated buffer changes (data not shown). The data from these “wash 

out” experiments was significant. 
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Figure 13. Mouse tracheal ring contraction force in ex vivo organ bath preparations. (A and C) Representative 

muscle force tracings of acetylcholine (ACh)–contracted murine tracheal rings. (B) CMD-45 significantly 

relaxed precontracted wild-type (WT) murine tracheal rings but not rings from Gabra4 knockout (KO) mice, 

at 50 µM (n = 3) and 75 µM (n = 3), consistent with heightened selectivity for the Gabra4 subunit, as 

demonstrated in Figure 12. (D) XHe-III-74 led to significant relaxation of precontracted murine tracheal rings 

as compared with vehicle (0.1% DMSO) in both WT and Gabra4 KO mice at 10 µM (n = 5), 25 µM (n = 5), and 

50 µM (n = 3). At 25 µM XHe-III-74, tracheal rings from WT mice relaxed to a greater extent than rings from 

Gabra4 KO mice, consistent with the heightened Garbra4 selectivity. Contraction force is presented as percent 

of DMSO vehicle control for WT and Gabra4 KO tracheal rings (*P<0.05 in comparison to DMSO control, 
#P<0.05 in comparison to drug-exposed Gabra4 KO; ANOVA with Bonferroni post hoc comparison; mean ± 

SE). Modified from the figure in Yocum, et al.2 

 

 

 

 



37 
 

3.3.3 Effect of XHE-III-74 and CMD-45 on Human Airway Smooth Muscle2  

To further evaluate the pro relaxant properties of these two ligands, human tracheal airway smooth 

muscle (ASM) strips were used in ex vivo organ bath experiments. This work by Yocum and Emala 

employed healthy human tracheal rings that were part of a surgery resection. Both CMD-45 and 

XHe-III-74 led to a significant reduction in contractile force in ACh-contracted human ASM strips 

at 50 µM (n = 5) and 100 µM (n = 6, Figures 14A and 14B P < 0.05 for both compounds, as 

compared to vehicle control at 50 and 100 µM). In separate experiments low concentrations of 

both CMD-45 and XHe-III-74 (25 µM) potentiated the albuterol induced relaxation of human 

ASM contracted with ACh ex vivo, which led to a full log decrease in the albuterol EC50 (Figure 

14C; albuterol EC50 was 807.0 nM for DMSO, 69.3 nM for the CMD-45 treatment group, and 87.9 

nM for the XHe-III-74 treatment group; n = 4, P < 0.01 for change in albuterol EC50 compared 

with CMD-45 or XHe-III-74 to vehicle [DMSO]). 
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Figure 14. Human tracheal airway smooth muscle (ASM) strips in ex vivo organ bath preparations. (A) 

Representative muscle force tracings of the 100 µM CMD-45– and XHe-III-74–induced direct relaxation of 

ACh [EC50]–precontracted human tracheal ASM strips. (B) CMD-45 or XHe-III-74 (50 and 100 µM) induced 

significant relaxation of ACh-precontracted tracheal ASM strips compared with vehicle (0.2% DMSO) controls 

at 30 minutes (n for 0, 10, 25, 50, and 100 µM, respectively: CMD-45, 6, 6, 4, 5, and 6; XHe-III-74, 6, 4, 3, 5, 

and 6. *P<0.05 for both CMD-45 and XHe-III-74 as compared with vehicle control, ANOVA with Bonferroni 

post hoc comparison). (C) CMD-45 (short dashed line) and XHe-III-74 (long dashed line) at low dose (25 µM) 

both induced significant leftward shifts in the dose–response curve for albuterol (β2-adrenoceptor–selective 

agonist)-mediated human ASM relaxation as compared with the DMSO control (solid line). The EC50 

concentration of albuterol with coadministration of CMD-45 was 69.3 nM, and with coadministration of XHe-

III-74 was 87.9 nM as compared with 807.0 nM for DMSO (n = 4 per group; P<0.01 for leftward shift in EC50 

for both ligands compared with vehicle; mean ± SE). Modified from the figure in Yocum, et al.2 
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3.3.4 Effect of XHE-III-74 and CMD-45 on Resistance (in vivo) on the Mouse 

Respiratory System2
 

To evaluate the relaxant or respiratory system resistant potential of these ligands, when 

administered as an aerosol, the dose was applied by inhalation to an asthmatic subject (HDM 

sensitized WT-mouse model) before introducing the challenge. The better compound of the two 

ligands in the earlier experiments, XHe-III-74 (25 µl, 10 mM), when administered by inhalation 

10 minutes before a bronchoconstrictive challenge, led to a significant reduction in RRS, as 

measured by the forced oscillation technique (flexiVent) in asthmatic (HDM-sensitized) mice 

(Figure 15; area under the curve analysis, P<0.05, n = 3 for vehicle, 4 for XHe-III-74). This 

demonstrated the potential of this compound to be administered therapeutically by inhalation to 

treat bronchospasms. 

 

Figure 15. In vivo mouse respiratory system resistance (RRS) tests. Inhalation of XHe-III-74 10 minutes before 

a bronchoconstrictive challenge (methacholine) significantly reduced RRS in house dust mite antigen–sensitized 

WT mice (asthma model) as compared with inhaled vehicle control (*P<0.05 for area under the curve analysis; 

n = 3 for vehicle control, 4 for XHe-III-74; mean ± SE). Modified from the figure in Yocum, et al.2 
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3.3.5 Effect of XHE-III-74 and CMD-45 on ASM Calcium Dynamics2  

The pretreatment of human ASM cells with CMD-45 and XHe-III-74 inhibited histamine-induced 

increases in intracellular calcium concentrations in vitro, an effect that was lost when calcium was 

omitted from the extracellular buffer. This phenomenon suggests that inhibition of calcium influx 

due to alterations in plasma membrane potential may play a role in the mechanism of ASM 

relaxation. 

In in vitro studies using a fluorescent intracellular calcium indicator, the removal of calcium from 

the external buffer led to a 29.8% diminution in histamine-mediated increases in intracellular 

calcium in primary cultures of human ASM cells (P < 0.001 comparing 0 [n = 28] to 2 mM [n = 

14] external calcium in DMSO-pretreated and histamine-stimulated cells). In the absence of 

extracellular calcium, the addition of 100 µM CMD-45 (n = 17) or XHe-III-74 (n = 20) did not 

further augment this inhibition of the histamine-induced intracellular calcium response (Figure 

16A; P = not significant). However, in the presence of 2 mM external calcium, CMD-45 and XHe-

III-74 (25 and 50 µM) inhibited the histamine-mediated increase in intracellular calcium in 

cultured primary human ASM cells to an extent similar to removal of external calcium (25.0% and 

30.0% for 50 µM CMD-45 and XHe-III-74, respectively, P<0.05 and P<0.001, respectively; 

Figures 16B and 16C). This suggests that these two ligands lead to ASM relaxation by limiting the 

calcium influx from the extracellular space, likely as a result of altered plasma membrane potential. 
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Figure 16. In vitro primary human ASM cell calcium dynamics. (A) The increase in intracellular calcium 

concentrations ([Ca2+]i) in primary human ASM upon exposure to 10 µM histamine is inhibited 29% (P<0.05; 

n = 28) by the removal of extracellular calcium ([Ca2+]e; 0 mM). The addition of 100 µM XHe-III-74 (n = 20) or 

CMD-45 (n = 17) does not further inhibit histamine-induced increases in [Ca2+]i (P>0.05). (B and C) In contrast, 

in the presence of 2 mM external calcium, pretreatment with 25 or 50 µM CDM-45 or XHe-III-74 significantly 

inhibited subsequent histamine-induced increases in peak [Ca2+]i (n [DMSO, 10, 25, and 50 µM]: [B] (CMD-

45): 12, 9, 11, 9; [C] (XHe-III-74): 16, 10, 14, 14; human ASM cell lines established from three donor patients; 

data are presented as percent of average of simultaneously tested vehicle control wells; n = total plate wells; 

*P< 0.05, **P< 0.01, ***P< 0.001, ANOVA with Bonferroni post hoc comparison; mean ± SE). ∆F/Fo, peak 

change in fluorescence/baseline fluorescence; ns, not significant. Modified from the figure in Yocum, et al.2 

 

In in vitro experiments, CMD-45 and XHE-III-74 blocked the Ca2+ influx and inhibited the 

increase by 25-30% in intracellular [Ca2+]i concentration induced by histamine. However, in the 

absence of extracellular Ca2+ these ligands did not potentiate any inhibition which gave important 

mechanistic insight into the role of [Ca2+]i in regulating ASM tone. The effects of GABAAR 

modulators on ASM are likely via membrane potential since GABAAR is a chloride ion channel. 

In a resting ASM, the internal chloride concentration is higher and the activation of the GABAAR 
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is likely to result in depolarization of the membrane potential. The membrane potential of the ASM 

increases from a resting value (-50 to -60 mV) to a potential of -20 mV, which is predicted to be 

crossing the chloride equilibrium potential. This would result in opening of the chloride channel 

which favors chloride influx and relative hyperpolarization. These conditions may pose an 

inhibition of voltage-sensitive Ca2+ entry mechanisms. This is in agreement with the in vitro data 

of CMD-45 and XHE-III-74, which led to a significant retardant in raising the intracellular [Ca2+]i 

in histamine-exposed ASM. In addition, in the absence of extracellular Ca2+ these compounds do 

not further inhibit calcium intake even at higher concentrations (100 μM) which further reinforces 

the hypothesis of the mechanism of action of these compounds is via inhibition of calcium influx.  

 

3.3.6 The Outcome of the Comparative Studies on CMD-45 and XHE-III-74 

It was demonstrated that the two novel compounds, CMD-45 and XHe-III-74, are positive 

allosteric modulators of the GABAAR and have superior selectivity for receptors containing the 

α4/α6 subunit. Both compounds acutely relaxed ASM from mice and humans. These selective 

compounds offer the potential to treat bronchoconstriction via a novel therapeutic mechanism, 

while reducing or avoiding unwanted CNS side effects. 

Consideration of the inference from the experimental evidence, XHE-III-74 was deemed to be a 

better ligand (better selectivity, higher efficacy and more desirable properties) than CMD-45 and 

it was selected for further development and SAR studies. The logic behind this choice includes: 

1. It is known that human ASM also express α5 subunits of GABAARs.151 It was also purportedly 

demonstrated that α5-subtype selective PAM’s were responsible for memory impairment164 and 

post anesthesia cognitive impairment associated with upregulation of α5 GABAAR in the brain.2,165  
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In addition, activation of α2 and α5 in human airway epithelium was reported to increase mucus 

production.158 Since CMD-45 exhibited a much higher α5 subtype selectivity in addition to the 

useful α4 selectivity as compared to XHE-III-74, targeting only the α4 (i.e., XHE-III-74) GABAAR 

ion channel would avoid any potential undesired effects associated with α5 receptors. 

2. XHE-III-74 exhibited better properties than CMD-45 in the oocyte electrophysiology studies, 

in ex vivo organ bath studies (both murine and human), as well as in vitro human ASM calcium 

dynamics. 

3. Finally the materials required for the synthesis of CMD-45 were much more expensive, as 

compared to the materials for synthesis of XHE-III-74. This means XHE-III-74 was better suited 

for additional studies.  

The GABAAR plays a prominent role in inhibitory neurotransmission and off target binding of 

ligands to undesired GABAA receptors containing the α1, α2, or α5 subtypes may cause unwanted 

CNS effects, especially if the drug is administered intravenously (iv). To evaluate the potential of 

these compounds in the exhibition of such unwanted side-effects, the Savic group at the University 

of Vienna performed several experiments (see Appendix for details). The basket test was used to 

assess the effect of XHE-III-74 and CMD-45 on motor performance. Both ligands caused 

sensorimotor deficits in C57BL/6 mice at higher doses in Dr. Savic’s laboratory (30 mg/kg, 

Appendix, Table A1). To evaluate the anti-anxiety effects of XHE-III-74 and CMD-45, a step-

down test was performed on trained C57BL/6 mice (Appendix, Table A2). Neither of the ligands 

exhibited any hint of anti-anxiety properties in keeping with their activity at α4 diazepam 

insensitive subtypes. To further evaluate the effects of these two α4-preferring ligands on motor 

performance, the rotarod experiment was undertaken (Appendix, Table A3). Both XHE-III-74 and 

CMD-45 showed ataxia at higher doses [10 mg/kg (XHE-III-74) and 15 mg/kg (CMD-45) i.p. 
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administration]. In addition, locomotor activity was performed separately on adult male and female 

Wistar rats to access the sedative effects of the two ligands in consideration. Both showed 

pronounced sedative effects (Appendix, Table A4) at 10 mg/kg i.p. dose. Furthermore, the plasma 

and brain distribution of XHE-III-74 after iv administration (solution and nanoemulsion) was 

evaluated by pharmacokinetic studies. Significant concentrations of XHE-III-74 were detected in 

both brain and plasma up to 12 hours after iv administration (Appendix, Figure A1).  

 

3.4 Strategies for Further Optimization of the Lead Compound, XHE-III-74 (7) 

From the oocyte efficacy and organ bath experiments, it was clear that XHE-III-74, as mentioned, 

was better suited than CMD-45 for further development for the treatment of asthma by targeting 

the airway smooth muscle in the lung. This was a promising novel strategy for asthma 

management. However, the negative CNS side effects which were found in the evaluation of 

sedative effects by Savic et al. (unpublished result) was likely due to the brain penetration of these 

drugs. Since α1, α2, and α5 subunits are expressed in higher concentrations in the brain, the binding 

to the GABAA receptor containing these subunits would certainly evoke the negative undesired 

effects such as, sedation and ataxia that were observed by Savic et al. (unpublished results). By 

considering the outcome of all the experiments discussed above, the following strategy was taken: 

• Since the expression of the α4 subunit was more pronounced in lungs, which were also 

devoid of other subtypes (except α5) which caused the negative GABAAR-induced effects, 

XHE-III-74 should be further developed to deliver readily to the lung e.g. via an aerosol 

formulation. 
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• To inhibit brain penetration of XHE-III-74, this lead compound should be modified to 

increase polarity (reduced lipophilicity) while retaining α4 selectivity, which would retard 

BBB penetration. This would avoid adverse CNS side-effects exhibited by XHE-III-74 

itself. 

• Potential ligands should be synthesized only after consulting molecular modeling and the 

pharmacophore model to reduce the number of ligands to be synthesized. 

• A library of XHE-III-74 ligands with different substitution at C-3, C-4, and C-8 would be 

of high interest. 

Therefore, XHE-III-74 (7) was selected as the lead compound for further development based on 

the above hypothesis. Consequently, further improvements in this ligand were deemed beneficial 

in the search for better asthma drugs with the novel mechanism of action described above and with 

less CNS activity. 
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3.5 Novel XHE-III-74 Analogs Based on the Pharmacophore Model 

3.5.1 Molecular Modeling and the Pharmacophore Model13,14 

 

               

Figure 17. a) The pyrazolo[3,4-c]quinolin-3-one CGS-9896 (dotted line), diazepam (thick line), and planar 

diazadiindole (thin line) fitted to a schematic representation of the inclusive pharmacophore model for the BzR. 

The descriptors H1 and H2 designate hydrogen bond donor sites on the receptor protein while A2 represents a 

hydrogen bond acceptor site necessary for potent inverse agonist activity in vivo. L1, L2, L3, and LDi are four 

lipophilic regions in the binding pharmacophore. Agonist activity requires interaction with H1, H2, L1, L2, 

and/or L3. Receptor descriptors S1, S2, and S3 are regions of negative steric repulsion. Lp=lone pair electrons. 

[Modified from the review published in 2007 (Clayton et al)]13,14 b) A simplified representation of the interaction 

of XHE-III-74 inside the pharmacophore pocket according to the homology model.  

 

Molecular modeling is necessary to decrease the number of potential ligands to be synthesized. 

This strategy provides a list of potential ligands that fit the target receptor and should show higher 

binding affinity. The group in Milwaukee developed a unified and comprehensive pharmacophore 

model for benzodiazepine receptor site employing about 30 rigid planar ligands to map out the 

protein repulsive regions (S1, S2, S3). In Figure 16, this two-dimensional representation of the 
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pharmacophore model contains lipophilic pockets (designated L), steric regions of protein-ligand 

repulsion (designated S), and hydrogen bond donor sites (designated H) and acceptor sites 

(designated A). This model was employed to design new ligands. 

The substituents of varying lipophilicity or size at position C-8 could have a profound effect on 

receptor subtype selectivity since groups at this position can interact with the lipophilic pocket L2.  

The alkyl group of the esters at position C-3 were proposed to interact with the lipophilic pocket 

LDi in the pharmacophore model. Thus, variation of the alkyl substituents on this position could be 

profound in terms of efficacy and subtype selectivity, as well as effects on metabolism. 

The chiral center at C-4 was significant in the determination of affinity. The different 

stereochemistry at this position both 4(S) and 4(R) along with various ring sizes (4-6 membered 

rings) interact differently with the lipophilic pocket LDi thus resulting in very different effects on 

affinity.  

Consequently, analysis of the pharmacophore model revealed that these three positions are 

preferred for further variations to achieve a better α4 GABAAR agonist to treat asthma. The 

structure activity relationship (SAR) studies of the analogs at these positions would facilitate this 

process. 
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3.5.2 Proposed New Ligands17 
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3.6 Synthesis of Novel XHE-III-74 (7) Analogs 

3.6.1 Synthesis of Analogs at the C(3) Position of XHE-III-74 (7) 

The ethyl ester 5 was saponified to give the acid 9 and this was treated with thionyl chloride to 

make the corresponding acid chloride. The acid chloride was converted into the amides, esters and 

thioesters (11-19) by treating the acylchloride with suitable nucleophiles in the presence of 

triethylamine to scavenge the HCl which formed. The methyl ester 10 was formed by trans 

esterification in the presence of NaOMe in methanol. 

The chiral esters (20 and 21) were prepared via trans-esterification of the ethyl ester with (R) and 

(S)-2-butanol. The cyclopropyl ester 22 was prepared from the carboxylic acid 9 with cyclopropyl 

bromide and Cs2CO3 in DMF. The deuterated ethyl ester 23 was prepared from deuterated ethyl 

bromide and Cs2CO3 in DMF. 
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Scheme 3. Synthesis of C-3 analogs; see experimental for exact details 
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3.6.2 Synthesis of the Analogs of XHE-III-74 (7) at C(4) Position 

When the known16 isatoic anhydride 3 was heated with D-proline in DMSO, the corresponding 

benzodiazepine 4′ was obtained. This was converted into the imidazodiazepine following the 

reported procedure to provide the (R) enantiomer of XHE-III-74 ethyl ester 5ʹ. This material was 

converted into the (R) enantiomer of the tert-butyl analog of XHE-III-74 7ʹ with a Li rod in tBuOH 

on multi-gram scale. 

Scheme 4. Synthesis of C-4 analog 
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Figure 18. ORTEP representation of XHE-III-74EE(S isomer), 5 

 

 

 

Figure 19. ORTEP representation of XHE-III-74EE (R isomer), 5ʹ 
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3.6.3 Synthesis of Analog at the C(8) Position of XHE-III-74 (7) 

To optimize compounds for therapeutic use in patients, it is planned to increase metabolic stability 

in vivo and druggability. In addition, it is critical to understand the rate and mechanism of the 

overall clearance of the molecule. It is certainly more complex when the drug is metabolized by 

more than one metabolic pathway. As a result, it necessitates the knowledge of the extent of each 

metabolic pathway involved in the overall metabolism of the molecule. In addition, one would like 

to know the mechanism of the metabolic enzymes, and whether there should be a kinetic isotopic 

effect (KIE) in the rate of metabolism and clearance.166 Incorporation of deuterium into a molecule 

which exhibits low-to moderate clearance would increase both systemic exposure and 

bioavailability (half-life). In contrast, introduction of deuterium into a metabolically fragile 

molecule would only increase their systemic exposure but not the half-life.166 The carbon-

deuterium (C-D) bond is approximately 9 times stronger than carbon-hydrogen (C-H) bond.167 As 

a result, the metabolic stability of compounds which contain the C-D bond at a key metabolic 

position would be expected to be greater than that of compounds which contain a C-H bonds.166 

This does not hold true in every case, for sometimes blocking the metabolism with the C-D 

substituents leads to a different metabolic pathway and a toxic metabolite. The OCH3 group at C-

8 is susceptible to metabolic action; cleavage of the C-H bond would give the more polar phenolic 

(OH) ligand, which in turn could be excreted from the body via conjugation to the glucuronide on 

second pass metabolism and excretion.  Thus, replacing the OCH3 group with an OCD3 group 

would be expected to improve the pharmacokinetics of the potential drug for the treatment of 

asthmatics.  
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Figure 20. Retrosynthesis of C-8 deuterated analogs via demethylation followed by deutero methyl-alkylation 

 

In the case of the C-8 OCD3 analogs of XHE-III-74, it was felt it was more practical to incorporate 

the deuterated methoxy function into ring-A at the end of the synthetic route instead of carrying 

the OCD3 substituent through the entire route because of the expense of CD3I. Instead, the OCH3 

version was felt to be more appropriate if a facile method of conversion of the 8-methoxy group 

into a phenolic function was available. The methoxy function would be easily substituted for by 

the deuterated methoxy function simply by de-methylation of XHE-III-74 to give the phenol, 

followed by re-methylation of the phenol with CD3I (Figure 10). Although an aryl-methoxy 

function is a robust protecting group for phenols, numerous deprotection methods have been 

reported.168-170  

A number of methods were available and screened to find a suitable reagent for this essential 

transformation (Scheme 5). Surprisingly, most of the known reagents that have been reported as 

facile for this transformation either did not furnish the phenol or furnished it in trace amounts 

and/or accompanied by decomposition of the starting material.  

The lithium chloride-dimethylformamide combination (Krapcho conditions) has been used as a 

mild method for the demethylation of aryl-alkyl ethers.169,171-174 When the desired demethylation 

was attempted using LiCl in DMF under thermal and microwave irradiation, no product was 

detected. Introduction of additives such as NMP and p-TSA were not successful as well.  
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Boron tribromide (BBr3)-mediated demethylation of an aromatic methoxy function is the most 

common and popular method.175-177 Besides, BBr3 mediated demethylation is a milder condition 

and can be carried out in the presence of sensitive functional groups.169 This method has been 

employed in the total synthesis of a number of natural products.178-184  Consequently, BBr3 was 

employed to perform the desired transformation. It was realized, after numerous trials with BBr3 

under many different conditions that the OCH3 function in XHE-III-74 was surprisingly resistant 

to BBr3-mediated cleavage and this lead ligand failed to undergo the desired transformation. 

Scheme 5. Attempted demethylation of the C-8 OCH3 functional group under different 

conditions 

 

NR: No reaction, SM recovered; NR*: No reaction with decomposition 
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Demethylation of aryl methyl ethers using Lewis acids such as AlCl3 to furnish phenols have been 

well studied and reported.185-189 A number of phenolic natural products have been accessed 

employing this method of demethylation.189-191 Consequently, the desired transformation was 

attempted using aluminum chloride at low temperature and this was followed by heating to 

elevated temperature. Upon repeated attempts in refluxing toluene for longer times, the 

demethylation process failed to furnish any demethylated product. Only the starting methyl ether 

was recovered.  

Methyl magnesium iodide192-194 has been successfully employed in the total synthesis of several 

phenolic natural products for cleavage of aryl methyl ethers in high yields. Upon heating the aryl 

methyl ether starting material in the presence of MeMgI at 160 oC, this process failed to perform 

the desired transformation.  

Strong acids such as HI and HBr have been reported for the dealkylation of aryl alkyl 

ethers.169,170,195,196 Although such harsh conditions are not generally desired for most substrates 

these have been successfully employed in many cases.197 Using strong hydrogen halide acid such 

as HI may result in decomposition of most heterocyclic organic compounds. To avoid exposure of 

the substrate to a high concentration of HI, reagents that slowly release HI upon heating could be 

a useful way around problems with decomposition.195 Iodoalkanes are able to release HI slowly 

via an elimination process upon heating, which has been used to perform the desired demethylation 

in high yields in several cases.198-201 Iodocyclohexane in DMF under reflux conditions was 

reported to generate HI in situ and performed demethylation or aryl methyl ethers in high yield.195 

Consequently, the aryl methyl ether was heated in the presence of iodocyclohexane in DMF but 

this method failed to facilitate the desired transformation, as well. On the contrary, treatment with 

an excess of aqueous HBr195,202 both in the presence or absence of KI or NaI as an additive did 
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cleave the desired methyl ether but also cleaved the ester function, as well. This process was further 

complicated by the decomposition of the material since only trace amounts of demethylated 

phenolic carboxylic acid were isolated.  

Sodium ethanethiolate in aprotic solvents such as DMF has been reported to be an efficient 

dealkylating reagent for aryl alkyl ethers.169,203,204 Upon treatment of the methyl ether starting 

material with ethanethiol and sodium hydride in DMF at 0-100 oC. This process resulted in 

cleavage of the ether function, accompanied by the cleavage of the ester function. In addition, only 

a small amount of product could be isolated which turned out impractical for the synthesis of the 

desired phenol, as well.  

The combination of a hard acid with a soft nucleophile has been reported to be successful in an 

efficient deprotection of aryl methyl ethers.190,196,205-208 Aluminum chloride in the presence of 

ethanethiol is such a combination. If desired, the stench associated with low molecular weight 

thiols could be avoided by using long chain thiols such as 1-dodecanethiol.206 

Gratifyingly, at last, the mixture of aluminum chloride and ethanethiol was found to be the only 

effective method among the methods and reagents screened for this transformation on this 

particular substrate, to date. The mixture of AlCl3, EtSH in DCM at rt furnished the desired 

phenolic compound in >70% isolated yield (>85% based on recovered SM). 

After the successful demethylation of the aryl-methyl ether, re-alkylation with CD3I under standard 

conditions failed to furnish the 8-CD3 substituted analog 5a. For example, methylation of phenols 

with CH3I in the presence of K2CO3 or Cs2CO3 in DMF is well known. But in this case the reaction 

process with Cs2CO3 and CD3I in DMF provided only a trace amount of the analog, while K2CO3 

in DMF furnished the 8-OCD3 ligand only in a mediocre yield of 43% (Scheme 6). Other bases; 
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e.g., NaH, tBuOK and solvents e.g., DCM, THF, acetone were also attempted (Table 3). 

Gratifyingly, Cs2CO3 in DCM was found to be the best combination, which furnished the desired 

deuterated analog in a clean 84% yield ending a long-standing deadlock for the synthesis of this 

important 8-OCD3 ethyl ester target 5a. It was felt this deuterated analog 5a would have more 

desirable metabolic properties required for a better drug candidate for asthma. This was based on 

the long-standing research on the metabolism of aryl methoxy groups to phenols for later 

conjugation and excretion. 

 

Scheme 6. Successful access to the C-8 OCD3 variant of XHE-III-74EE 5a 

 

 

 

Table 3. Alkylation of the C-8 phenolic function of 8-hydroxy ethyl ester 6 under different 

conditions 

a: SM recovered; all reactions were carried out at rt 
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The ester 5a was converted into its tert-butyl analog 7a via trans esterification (Li rod in tBuOH) 

in good yield. Additionally, the corresponding methyl ester 10a was readily available in excellent 

yield by reacting 5a with NaOMe in methanol. The carboxylic acid 9a was also prepared from 5a 

by saponification and this was followed by acidification in excellent yield. The deuterated acid 9a 

was employed as the starting point for the synthesis of the corresponding deuterated versions (11a-

19a) of 11-19 employing the same procedure as described in Scheme 3 (Scheme 7). 

In addition, phenol 6 was also converted into its tert-butyl analog 8 via trans-esterification with 

lithium pieces in the presence of tert-butanol in THF at 50 oC (Scheme 8). 
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Scheme 7. Synthesis of C-8 deuterated analogs 10a-19a 
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Scheme 8. Preparation of C-8 phenolic XHE-III-74 (RJ-02-67, 8) 

 

 

 

3.7 Biological Evaluation of Analogs of XHE-III-74 Derivatives 

Earlier, Forkuo et al illustrated in ex vivo organ bath experiment that XHE-III-74 7 was capable of 

inducing relaxation in precontracted ASM in mice. In addition, in vivo aerosol administration of 

XHE-III-74 7 could reduce lung resistance in a house dust mite (HDM) mice model of asthma.2,15 

These encouraging results lead to further evaluation of XHE-III-74 7 including evaluation of in 

vitro and in vivo metabolic stability and ability in vivo to relax ASM in the lung.  

 

3.7.1 In vitro Microsomal Stability of XHE-III-74 (7) and XHE-III-74EE (5), 

and XHE-III-74A (9)15 

The metabolic stability of XHE-III-74 7 was investigated in vitro prior to the evaluation of its 

effectiveness in the reduction of methacholine-induced resistance in mouse lungs. The XHE-III-

74 7 and two related compounds XHE-EE 5, and XHE-acid 9 were incubated for 1 h with human 

liver microsomes (HLM) and mouse liver microsomes (MLM), the metabolism of which was 

monitored by mass spectroscopy on a LCMS. The metabolism of XHE-III-74 7 was much faster 
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in MLM, as you would expect, than HLM, which had 24.1% and 92.1% remaining after 1 hour, 

respectively. This corresponds to the half-life of XHE-III-74 7 in MLM to be less than 24 min. 

The ethyl ester version of XHE-III-74 (XHE-EE) 5 was much more stable than XHE-III-74 7 itself 

both in HLM (99.2% remaining after 1 h) and MLM (86.3%), as well as in the respective S9 liver 

fractions (95.6% and 98.4% in MLM and HLM S9, respectively). This corresponded to a predicted 

half-life of several hours (Table 4). The metabolite of XHE-III-74 was identified by mass 

spectroscopy as the corresponding carboxylic acid 9. Consequently, the carboxylic acid derivative 

XHE-III-74A 9 was also evaluated for microsomal stability against both HLM and MLM and their 

corresponding S9 liver fractions. Just like the parent ligand, in the case of XHE-III-74A 9 too 

species-specific metabolism was not observed and acid 9 was found to be metabolized faster than 

ester 5 both in HLM and MLM with the % remaining, after 1h of 56.1 ± 0.6 % and 51.3 ± 0.4 %, 

respectively (Table 4). The half-lives of acid 9 and ester 5 were 80.1 ± 10.1 min and 73.4 ± 6.5 

min in HLM and MLM, respectively. Similar metabolic stability was also observed in the 

corresponding S9 fractions. Interestingly, the acid 9 was metabolized faster than XHE-III-74 7 in 

HLM but in MLM the acid was twice as stable than XHE-III-74 7 (Table 4). Both ester 5 and acid 

9 were stable in blood plasma for at least one hour. To further confirm the metabolic stability of 

XHE-III-74EE in vivo, a single dose (5 mg/kg i.p. administration) pharmacokinetics study was 

performed in mice (Figure 21A).  
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Table 4. In Vitro Metabolic Stability of XHE-III-74 (7), XHE-III-74EE (5), and XHE-III-

74A (9)15 

 

 

 

3.7.2 Pharmacokinetic Profiles of XHE-III-74EE (5), and XHE-III-74A (9)15 

The ester 5 was rapidly absorbed and distributed in blood and lung with a Tmax of 10 and 3 min, 

respectively with a higher concentration in the blood [Cmax (blood)/Cmax (lung) > 2]; 

AUC(lung)/AUC(blood) = 0.6 (Figure 21A). These results confirm good absorption and distribution 

of ester 5 into the target organ for potential treatment of asthma (lungs). In addition, ester 5 was 

rapidly metabolized in lung as indicated by the half-life of only 17.6 min. Besides, there was a 

significant concentration of XHE-III-74EE 5 observed in brain [AUC(brain)/AUC(blood) = 0.79] with 

a longer half-life (36.7 min). This indicated that ester 5 was able to penetrate the BBB and exhibits 

higher relative stability in the brain. In order to distinguish between clearance (via conjugation) 

and metabolism of XHE-III-74EE in blood, lung, and brain, the metabolic product XHE-III-74A 

was quantified (Figure 21B). Interestingly, a quantifiable amount of XHE-III-74A 9 was present 

only in the blood AUC (74A)/AUC (74EE) = 0.75, which indicated that the rate of metabolism of 
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XHE-III-74EE 5 in blood is much faster than the rate of excretion of XHE-III-74A 9. Since, XHE-

III-74EE 5 is stable in blood plasma, the metabolism is likely to occur in the liver much like the 

anxiolytic ethyl ester XHE-III-053, as observed by BMS in human patients. On the other hand, 

since XHE-III-74A 9 was not found in a quantifiable amount in brain and lung, there may not be 

any metabolism of XHE-III-74EE 5 taking place in these organs. When a similar pharmacokinetic 

study (5 mg/kg) was performed on XHE-III-74A 9, it underwent a rapid absorption and distribution 

similar to XHE-III-74EE (Tmax 10 min, Figure 21C). Comparable AUC values of XHE-III-74A 9 

in blood and lung were observed, which indicated excellent distribution of XHE-III-74A 9 in lung 

tissue. In this case as well, the half-lives in lung and blood were 11.0 and 13.1 min, respectively, 

which indicates rapid clearance of XHE-III-74A 9 from both lung and blood. Unlike, XHE-III-

74EE 5, XHE-III-74A 9 was present at a very low concentration in the brain which indicated that 

XHE-III-74A 9 had poor BBB penetration. This negates potential CNS side effects. The high 

levels of XHE-III-74A 9 were detected in urine, as compared to the brain, upon quantification after 

30 min of administration (Figure 21D) as expected. A high concentration of XHE-III-74A 9 in the 

kidneys supports the hypothesis that most of acid 9 is excreted from the body chemically unaltered. 

On the other hand, the concentration of acid 9 in the liver was much lower (4% of blood conc.) 

than other organs which indicated the liver was the probable site of metabolism in this mice model. 
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Figure 21. Pharmacokinetic profile of XHE-III-74 EE and XHE-III-74A in mice brain, lung, and blood (N = 3). 

(A) Time-dependent distribution of XHE-III-74EE (5 mg/kg, i.p.). (B) Time-dependent distribution of 

metabolite XHE-III-74A given as XHE-III-74EE (5 mg/kg, i.p.). (C) Time dependent distribution of XHE-III-

74A (5 mg/kg, i.p.). (D) Distribution of XHE-III-74A (5 mg/kg, i.p.) at 30 min in different tissue and fluids (N 

=1). Modified from the figure in Gloria, et al.15 



68 
 

3.7.3 Oocyte Efficacies of XHE-III-74EE 5 and XHE-III-74A 915 

 

Ligand ester 5 is known as an α4β3γ2 subtype selective GABAAR allosteric modulator with weak 

activity at the α6β3γ2 GABAAR at >1 μM concentration.209 The efficacy of acid 9 was evaluated in 

oocytes individually expressing single α (α1-5) subunits in combination with β3 and γ2 subunits in 

comparison with XHE-III-74EE (Figure 22). Gratifyingly XHE-III-74A 9 showed significant 

positive modulatory effects only at the α4 and α5 GABAARs and was mostly inactive at the α1, α2, 

and α3 sites. XHE-III-74A showed selectivity biased to α4β3γ2 at a concentration of 3 μM, while it 

reached a plateau at α5β3γ2.  

 

 

Figure 22. GABAA receptor subtype selectivity. Dose-dependent modulation of GABA (EC3−5 concentration) 

elicited currents by XHE-III-74A (A) and XHE-III-74EE (EE) on Xenopus oocytes expressing GABAA receptor 

subtypes α1β3γ2, α2β3γ2, α3β3γ2, α4β3γ2, and α5β3γ2. Data points represent means ± SEM from 2−8 oocytes from 

two batches, normalized to control currents (100%) in the absence of compound. XHE-III-74EE modulation of 

a set of GABAAR subtypes has been published previously,27 and only α4β3γ2 and α5β3γ2 are shown here for 

comparison. XHE-III-74EE modulation of α5β3γ2 GABAAR was measured at GABA EC20. Modified from the 

figure in Gloria, et al.15 
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3.7.4 Sensorimotor Effects of XHE-III-74EE (5) and XHE-III-74A (9)15 

A rotarod experiment was performed to evaluate the possible CNS side-effects of XHE-III-74EE 

5 which results from its ability to cross the BBB (Figure 23). The XHE-III-74EE 5 did not show 

any motor sensory impairment at 20 mg/kg while the positive control diazepam induced significant 

impairment at 5 mg/kg. However, XHE-III-74EE 5 did exhibit motor impairing effects at 40 

mg/kg. On the other hand, XHE-III-74A 9 did not exhibit any sensory motor impairment at 20 

mg/kg, as expected, which confirms its inability to travel across the blood brain barrier. There was 

no loss of righting response as well. 

 

Figure 23. Effect of XHE-III-74EE and XHE-III-74A on sensorimotor coordination. The Balb/c mice were 

tested on a rotarod at 15 rpm for 3 min. Mice received a single i.p. injection of test compound or control 

compound. A fail was assigned to a mouse that fell from the rotarod prior to 3 min. The % success rate is 

expressed as mean ± SEM (N = 8). ∗∗, ∗∗∗ indicates p < 0.01, p < 0.001 significance compared to vehicle-treated 

mice. Modified from the figure in Gloria, et al.15  
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3.7.5 Effect of XHE-III-74EE (5) and XHE-III-74A (9) on Airway Hyperres-

ponsiveness15 

Based on the results from the previous experiments, the ligands 5 and 9 were evaluated for their 

effectiveness in the ovalbumin sensitized mouse asthma model. In this model of asthma, the mice 

are first sensitized by Ova to establish airway inflammation by i.p. administration, and this was 

followed by an intranasal challenge, which generated airway hyper-responsiveness (AHR), mucus 

hypersecretion, and airway inflammation. Both XHE-III-74EE 5 or XHE-III-74A 9 were 

administered i.p. to primed mice during the Ova challenge phase (chronic repeated dosing) or 40 

min (acute) before measuring AHR (Figure 24).  

The asthmatic mice exhibited a reduction in methacholine-induced airway hyper-responsiveness 

after 5 days treatment with XHE-III-74EE (twice daily) of 20 mg/kg doses (Figure 24A). A single 

dose (10 or 20 mg/kg), however did not reduce AHR (Figure 24B, 24C). Since it was known from 

previous experiments that XHE-III-74EE 5 is metabolized fast and XHE-III-74A 9 is cleared 

rapidly, a minipump was implanted surgically to administer the dose over 7 days which results in 

a steady blood concentration of 27.2 ± 2.7 ng/g on the day of AHR measurement. The pump 

delivery of XHE-III-74EE 5 was effective in reducing AHR for methacholine concentration up to 

6.25 mg/mL. However, at higher doses, no significant AHR reduction was observed (Figure 24D). 

A similar trend was also observed for the positive control and known anti-inflammatory drug 

dexamethasone (24E). In addition, acute (20 mg/kg, i.p. 40 min prior to measurement) 

administration of XHE-III-74A 9 did not result in reduction of methacholine-induced AHR (Figure 

24F). 
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Figure 24. Effect of XHE-III-74EE (EE) and XHE-III-74A (A) on airway hyperresponsiveness. Specific airway 

resistance (sRaw) to increasing doses of methacholine measured by DSI’s Buxco FinePointe noninvasive airway 

mechanics instrument. Balb/c mice were administered (A) XHE-III-74EE, two 20 mg/kg i.p. injections daily for 
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5 days; (B) XHE-III-74EE, single i.p. injection 10 mg/kg 40 min prior to analysis; (C) XHE-III-74EE, single i.p. 

injection 20 mg/kg 40 min prior to analysis; (D) XHE-III-74EE via osmotic pump, 20 mg/kg daily for 7 days; 

(E) DEX, single 4 mg/kg i.p. injection daily for 8 days; and (F) XHE-III-74A, single i.p. injection 20 mg/kg 40 

min prior to analysis. Data represent mean ± SEM from 4−7 mice in each group. ∗, ∗∗, and ∗∗∗ indicate p < 

0.05, p < 0.01, or p < 0.001 significance, respectively, compared to vehicle treated Ova S/C Balb/c mice. Modified 

from the figure in Gloria, et al.15 

 

3.7.6 Effects of ligands 5 and 9 on Mucus Hypersecretion15 

To evaluate and compare mucus hypersecretion in treated and untreated Ova sensitized mice, lung 

sections were stained with PAFS stain (Figure 25). A significant increase in mucus production was 

observed in Ova S/C mice. An 8-day treatment with dexamethasone (4 mg/kg, i.p. daily) 

significantly decreased mucous metaplasia in Ova S/C mice compared to vehicle treated mice 

whereas, XHE-III-74EE 5 and XHE-III-74A 9 did not induce a noticeable reduction in mucin 

production both in chronic repeated and acute doses. 

 

 

A 
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Figure 25. Effect of XHE-III-74EE (EE) and XHE-III-74A on mucin production. (A) Morphometric 

quantification of mucin volume density and (B) representative images of mucin (red) in the airway epithelium 

(green) with periodic acid fluorescent Schiff’s stain. Balb/c mice were administered once daily 4 mg/kg i.p. DEX 

(dexamethasone) injections for 8 days, a single 20 mg/kg i.p. injection of XHE-III-74EE 40 min prior to analysis, 

two XHE-III-74 EE 20 mg/kg i.p. injections daily for 5 days, 20 mg/kg XHE-III-74EE for 7 days via osmotic 

pump, XHE-III-74 EE single 20 mg/kg i.p. injection 40 min prior to analysis, or two XHE-III-74A 20 mg/kg i.p. 

injection daily for 5 days. Data represent % normalized mucin volume density relative to CTL and Ova S/C 

Balb/c mice from 5−7 mice in each group. ∗∗ indicates p < 0.01 significance compared to vehicle treated Ova 

S/C Balb/c mice. Scale bar represents 100 μm. Modified from the figure in Gloria, et al.15 

 

3.7.7 Effect of XHE-III-74EE (5) and XHE-III-74A (9) on Airway Eosino-

philia15 

Additionally, the immune response in the lungs of Ova S/C mice was quantified by collecting the 

bronchoalveolar lavage fluid (BALF), and this was followed by the quantification of eosinophils 

(Figure 26). 
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Figure 26. Effect of XHE-III-74EE (EE) and XHE-III-74A (A) on airway eosinophilia. (A) Quantification of 

airway eosinophilia and (B) representative images of Wright Giemsa stained slides. Balb/c mice were 

administered single 4 mg/kg i.p. DEX injection daily for 8 days, XHE-III-74 EE single 20 mg/kg i.p. injection 

40 min prior to analysis, two XHE-III-74 EE 20 mg/kg i.p. injections daily for 5 days, 20 mg/kg XHE-III-74 EE 

via osmotic pump for 7 days, XHE-III-74 EE single 20 mg/kg i.p. injection 40 min prior to analysis, and two 

XHE-III-74A 20 mg/kg i.p. injections daily for 5 days. Data represent % normalized eosinophils relative to 

CTL (negative control) and Ova S/C Balb/c mice (positive control) from 5−7 mice in each group. ∗ and ∗∗∗ 

indicate p < 0.05 and p < 0.001 significance compared to vehicle treated Ova S/C Balb/c mice. Modified from 

the figure in Gloria, et al.15 
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It is known that the Ova asthma model demonstrates mainly eosinophil driven inflammation in the 

lung.210 Treatment with the anti-inflammatory agent dexamethasone significantly decreased 

airway eosinophilia.211 However, treatment with XHE-III-74EE 5 did not effect any change in 

airway eosinophilia. In contrast, significant reduction in airway eosinophilia was observed in acute 

(40 min, i.p., 20 mg/kg) treatment with XHE-III-74A 9. Although, acid 9 is a metabolite of XHE-

III-74EE 5, the absence of any such effect in the case of acute treatment with XHE-III-74EE 5 was 

not observed probably because XHE-III-74EE 5 is metabolized in the blood but not in the lung. 

 

3.7.8 Modulation of Immune Response by XHE-III-74EE (5) and XHE-III-74A 

(9)15 

To further investigate the direct effect of XHE-III-74EE 5 and its metabolite XHE-III-74A 9 on 

immune cells, the effects on human Jurkat T-cells was investigated in vitro. The stimulation by 

phytohemagglutinin (PHA) and phorbol myristate acetate (PMA) resulted in a sudden increase in 

intracellular [Ca2+]i and a significant amount of IL-2 production, which can be used for measuring 

cell activation.212,213 The natural ligand of the GABAAR is known to depolarize Jurkat cell plasma 

membranes where different α-subunits which contain GABAARs (including α4) are expressed. The 

direct effect of GABA is the release of IL-2 in PMA and PHA stimulated Jurkat cells (Figure 27A). 

The GABA did decrease IL-2 production at 100 nM but was not effective at 1 nM concentration. 

The XHE-III-74A did reduce IL-2 secretion at 100 pM concentration while XHE-III-74EE did not 

show IL-2 reduction under the same conditions (Figure 27A).  
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Figure 27. Modulation of immune response. GABAAR ligands inhibit intracellular calcium spike and increased 

IL-2 production in PMA/PHA stimulated Jurkat cells. (A) IL-2 in the presence of different concentrations of 

GABA, XHE-74EE, and XHE-74A. (B, C, D) Decrease of [Ca2+]I concentration in Jurkat cells measured with 

a cell-permeable fluorescence probe Fluo-4 in the presence of different concentrations GABA, XHE-III-74A, 

and XHE-III-74EE. (E) Patch-clamped change of Jurkat current response in the presence of GABA. (F) Patch-

clamped change of Jurkat current response in the presence of 300 nM GABA and XHE-III-74A and XHE-III-

74EE. ∗∗∗ indicates p < 0.001 significance compared to vehicle treated activated Jurkat cells. Modified from 

the figure in Gloria, et al.15 

 

The increment in intracellular Ca2+ concentration by GABA and GABAergic ligands in response 

to PMA and PHA; the Ca2+ concentration peaked at 50 s after this PMA/PHA treatment. The 

GABA did decrease the [Ca2+]i in a dose-dependent manner and fully suppressed it at 150 mM 

GABA IC50 = 74 ± 3 mM (Figure 27B). In contrast, XHE-III-74A 9 significantly reduced 

PMA/PHA-induced [Ca2+]i increase at much lower concentrations, IC50 = 210 ± 122 nM (Figure 

27C). XHE-III-74EE, on the other hand, caused only partial inhibition of the PMA/PHA induced 

increase in [Ca2+]i, IC50 = 24.3 ± 9.8 nM (Figure 27D).  

GABA has been reported to depolarize human jurkat T-cells at 100 μM concentration. The GABA 

level showed a dose-dependent effect on jurkat cell membrane current with EC50 = 3.1 μM (Figure 

27E). In the presence of GABA (EC3 conc.) and the positive modulator XHE-III-74EE 5, a 

significant dose-dependent change of current was observed. A GABA-induced current potentiation 

of 734% and 808% was observed with XHE-III-74EE 5 (EC50 = 2.5 μM) and XHE-III-74A 9 (EC50 

= 0.7 μM, Figure 27F), respectively. 

3.7.9 Relaxation of Pre-Contracted Guinea Pig ASM by XHE-III-74 (7), XHE-

III-74EE (5), and XHE-III-74A (9)15 

In ex vivo organ bath experiments on pre-contracted (by substance P) guinea pig tracheal rings 

XHE-III-74 7, XHE-III-74EE 5, and XHE-III-74A 9 eicited relaxation of ASM (Figure 28).  
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Figure 28. Muscle force measurements in guinea pig tracheal rings. (A) Time-dependent change of muscle 

contraction in the presence of substance P and GABAergic compounds. (B) Force remaining 30 min after drug 

addition is shown. Tracheal rings were contracted with 1 μM substance P and at the peak of muscle contraction 

100 μM (in 0.1% DMSO) was added and the percent of remaining force was measured at 30 min. ∗∗∗ p < 0.001, 

∗∗ p < 0.01 compared to vehicle, n = 6 rings from three guinea pigs (GP). Modified from the figure in Gloria, et 

al.15 
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3.7.10 In vitro Liver Microsomal Stability of Deuterated and Non-Deuterated 

XHE-III-74 Analogs3 

In addition, a liver microsomal stability of HLM and MLM was investigated to identify 

metabolically labile compounds and deuterated compounds which should be more stable than their 

nondeuterated counterparts. The results of this study are summarized in Table 5. The parent 

compound XHE-III-74 (7) was metabolized rapidly by mouse liver microsomes with 16.2% 

remaining after 1 h (Table 5, Entry 4). The corresponding half-life was less than 24 minutes. 

However, ligand 7 was stable in the presence of human liver microsomes, similar to the majority 

of compounds investigated. Less than 80% of the parent compound was observed after 1 h for acid 

9; esters 11, 11a, 12a; and cyclopropyl amide 19 (Table 5, Entries 7, 11, 12, 14 and 27). For acid 

9 and amide 19, stability of the deuterated analogs (9a and 19a) was significantly increased (Table 

5, Entries 7, 8, 27, and 28). A smaller number of compounds were stable in the presence of mouse 

liver microsomes for 1 h. The most stable compounds (as judged by less than 20% loss at 1 h on 

microsomes) were esters 5, 5a; phenol 6, deuterated acid 9a, deuterated methyl ester 10a; amides 

16, 16a, 17a, 19, and 19a (Table 5, Entries 1, 2, 3, 8, 10, 21, 22, 24, 27, and 28). All compounds 

that exhibited good stability in mouse liver microsomes were also stable in the presence of human 

liver microsomes. Importantly, different metabolic rates for deuterated and non-deuterated 

compounds in the presence of mouse liver microsomes were observed for acid 9, esters 10, 11, and 

amide 17 and their corresponding deuterated analogs (Table 5, Entries 7-12, 23, 24).  
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Table 5. In vitro liver microsomal stability of XHE-III-74 analogs3 

 

Entry Compound 

Microsomal 

stability (human) 

% remaining after 

1 hour 

Microsomal 

stability (mouse) 

% remaining after 

1 hour 

1 5 99.1 ± 0.1 85.4 ± 0.3 

2 5a 92.8 ± 0.3 85.5 ± 0.3 

3 6 91.7 ± 0.2 91.1 ± 0.1 

4 7 92.1 ±  1.0 16.2 ± 0.2 

5 7a 91.9 ± 0.4 17.6 ± 0.2 

6 8 90.6 ± 0.2 46.6 ± 0.3 

7 9 56.1 ± 0.5 52.9 ± 0.5 

8 9a 84.6 ± 0.3 84.6 ± 0.2 

9 10 89.7 ± 0.2 70.3 ±  0.2 

10 10a 92.9 ± 0.2 85.9 ± 0.2 

11 11 77.8 ± 0.2 13.4 ± 0.9 

12 11a 78.7 ± 0.2 22.4 ± 0.3 

13 12 -a -a 

14 12a 77.1 ± 0.2 62.5 ± 0.3 

15 13 -a -a 

16 13a -a -a 

17 14 -a -a 

18 14a -a -a 

19 15 93.8 ± 0.3 54.3 ± 0.2 

20 15a 94.9 ± 0.2 56.8 ± 0.3 

21 16 92.4 ± 0.2 82.5 ± 0.3 

22 16a 96.3 ± 0.3 83.1 ± 0.2 

23 17 90.7 ± 0.3 50.1 ± 0.2 

24 17a 93.5 ± 0.2 94.8 ± 0.2 

25 18 92.8 ± 0.5 4.2 ± 0.2 

26 18a 95.6 ± 0.2 9.4 ± 0.4 

27 19 79.9 ± 0.2 91.3 ± 0.2 

28 19a 88.1 ± 0.2 94.1 ± 0.2 

 

a Compound was not soluble at 10 mM in PBS with 1% DMSO. Data were acquired by two 

independent experiments carried out in triplet. 
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3.7.11 Cytotoxicity Evaluation of XHE-III-74 Analogs3 

Further characterization of these compounds included the determination of their cytotoxicity using 

three different cell lines; HEK293 kidney cells, HepG2 liver cells, and BEAS2B lung epithelial 

cells (Table 6).  

Table 6. In vitro cytotoxicity of XHE-III-74 analogs3 

 

Entry Compound Toxicity in 

HEK293 (Kidney) 

LD50 (µM) a 

Toxicity in 

HEPG2 (Liver) 

LD50 (µM) a 

Toxicity in 

BEAS 2B (Lung) 

LD50 (µM) a 

1 5 >400 >400 >400 

2 5a >400 >400 >400 

3 6 >400 >400 >400 

4 7 >100 >400 >200 

5 7a >100 >400 >200 

6 8 >400 >400 >400 

7 9 >400 >400 >400 

8 9a >400 >400 >400 

9 10 >400 >400 >400 

10 10a >400 >400 >400 

11 11 >100 >200 >200 

12 11a >100 >200 >200 

13 12 >200 >400 >400 

14 12a >200 >400 >400 

15 13 >100 >100 >100 

16 13a >100 >100 >100 

17 14 18.8 ± 2.4 >100 >100 

18 14a 16.8 ± 2.0 >100 >100 

19 15 >100 >400 >400 

20 15a >100 >400 >400 

21 16 >400 >400 >400 

22 16a >400 >400 >400 

23 17 >400 >400 >400 

24 17a >400 >400 >400 

25 18 >200 >400 >400 

26 18a >200 >400 >400 

27 19 >200 >400 >400 

28 19a >200 >400 >400 
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a Compounds were incubated at different concentrations with specified cells for 48 h, followed by 

detection of viability using Cell-Titer Glo (Promega). The results were normalized using DMSO 

(negative) and 3-dibutylamino-1-(4-hexyl-phenyl)-propan-1-one (150 mM in DMSO final 

concentration, positive). Data were acquired by three independent experiments carried out in 

quadruplet. 

 

Most of the compounds exhibited no major cytotoxicity at the concentrations tested. The 

compounds with the most pronounced cytotoxicity were thioesters 13, 13a, 14, and 14a (Table 6, 

Entries 15-18). Among the compounds identified as stable in human and mouse liver microsomes, 

only cyclopropyl amide 19 and 19a showed any toxicity in HEK293 cells (Table 6, Entries 27 and 

28) and it was at a concentration much higher than a therapeutic dose.  

3.7.12 Sensorimotor Effects of Analogs of XHE-III-74 (7)3 

In addition, possible adverse CNS sensorimotor effects were evaluated using a rotarod apparatus 

(Figure 29).  

The Swiss Webster mice were injected i.p. with 40 mg/kg of the indicated compound. The 

sensorimotor test was carried out after 10, 30 and 60 min. All compounds, including the diazepam 

positive control, showed the greatest impairment of sensorimotor steadiness at 10 min, followed 

by 30 and 60 min. The compounds that caused the most severe motor impairment were esters 10a, 

11a; amides 15 and 18a. In addition, some of the esters and thioesters 11, 12, 12a, 13, 13a, 14 and 

14a were not soluble in the vehicle (50% PBS, 40% propylene glycol, 10% DMSO) and could not 

be tested. Similar rotarod data were published previously for ester 5 and acid 9, which indicated 

that ester 5 weakly induced sensorimotor impairment whereas acid 9 did not, this is likely due to 

the inability of the acid to penetrate the blood brain barrier.15 The lead 7 (XHE-III-74) induced 

sensorimotor impairment in rats at 15 mg/kg (unpublished results). Taken together, compounds in 
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this series that are stable in the presence of human and mouse liver microsomes and exhibited 

neither cytotoxicity nor sensorimotor impairment are phenol 6, acid 9a, amides 16, 16a, and 17a. 

 

Figure 29. Effect of compounds on sensorimotor coordination. Swiss Webster mice were tested on a rotarod at 

15 rpm for 3 min at 10, 30, and 60 min following compound exposure. Mice (N ¼ 10) received a single i.p. 

injection of test compound (40 mg/kg), diazepam (5 mg/kg), or vehicle (50% PBS, 40% propylene glycol, 10% 

DMSO). The time of fall was recorded if it occurred prior to 3 min. Data are expressed as mean ± SEM (N ¼ 

10). ** (p < 0.01) or *** (p < 0.001) significance compared to vehicle-treated mice. Compounds 11, 12, 12a, 13, 

13a, 14, 14a did not dissolve in the vehicle. Modified from the figure in Jahan, et al.3 
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From the above data dimethyl amide 16/16a showed the most promising performance of the 

nondeuterated/deuterated pairs of compounds.  

3.8 Further Evaluation of the Most Promising Analog, Dimethyl Amide 163 

The α4β3γ2 GABAAR subtype selectivity of 16 was confirmed by comparison of its GABA induced 

current potentiation with the α1β3γ2 GABAAR (Figure A2).  

At a concentration of 1 mM of amide 16, 161% potentiation was observed for the α1β3γ2 GABAAR 

in contrast to 319% potentiation for the α4β3γ2 GABAAR in the presence of a GABA EC20 

concentration. To investigate if amide 16, like other analogs of XHE-III-74, exhibited the ability 

to relax airway smooth muscle, an ex vivo assay, which employed tracheal rings precontracted 

with substance P (Figure 30), was carried out. 

Examination of the results indicated that amide 16 reduced the contractile force of substance P in 

guinea pig tracheal rings over a period of 1 hour. The greatest significance was observed after 30 

min with a p < 0.001. Consequently, amide 16 was able to relax airway smooth muscle consistent 

with other analogs of XHE-III-74.3,15 

In addition, it was investigated if amide 16 could reduce airway hyperresponsiveness in a mouse 

asthma model. To establish an asthma-like disease, model male BALB/c mice were sensitized with 

three i.p. injections of ovalbumin (2 mg/kg/d emulsified in 2 mg of alum on days 0, 7 and 14, in a 

total volume of 100 µL). This was followed by intra-nasal challenge (1.6 mg/kg/d ovalbumin for 

5 days on days 23-27). The control mice were sensitized with ovalbumin but challenged with 

saline.15 The separate groups of ovalbumin induced (S/C) BALB/c mice received a single 40 mg/kg 

i.p. dose of 16 at 40 minutes before the measurement or twice daily 40 mg/kg of 16 i.p. for a 
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duration of five days during the ovalbumin challenge period for chronic studies (Figure 31A and 

31B).  

 

 

 

 

Figure 30. Airway smooth muscle contractile force in guinea pig tracheal rings. Tracheal rings were contracted 

with 1 µM substance P and then treated with 50 µM of 16 (or the vehicle control 0.1% DMSO). The percent of 

remaining contractile force was measured at various time points and expressed as a percent of the initial 

substance P induced contractile force. N and p-values are given for each condition. Modified from the figure in 

Jahan, et al.3  
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Figure 31. Effect of amide 16 on airway hyperresponsiveness: Specific airway resistance (sRAW) to increasing 

doses of methacholine measured by DSI's Buxco® FinePointe non-invasive airway mechanics instrument. (A) 

Balb/c mice were administered 40 mg/kg of 16 single i.p. injection 40 min prior to analysis; (B) administration 

of 16 at 40 mg/kg i.p. injections daily for 5 days. Data represent mean ± SEM from 4 to 7 mice in each group. * 

indicates p < 0.05 significance compared to vehicle-treated mice. Modified from the figure in Jahan, et al.3 
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For animals treated with a single dose of ligand 16, no statistical significant specific airway 

resistance (sRAW) differences in comparison to the vehicle-treated group were observed at any of 

the methacholine concentrations tested. Importantly, significant reduction in sRAW (p < 0.05) was 

observed at the 12.5 mg/mL methacholine challenge for animals given amide 16 over a 5 day 

treatment course. 

In light of the observed partial in vivo efficacy of 16 in reducing airway hyperresponsiveness, a 

pharmacokinetic study to investigate the stability in vivo of amide 16 (Figure 32) was carried out. 
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Figure 32. Pharmacokinetic analysis. A) Concentration changes of compound 16 in mouse brain, lung, and 

blood over time when given as a 5 mg/kg, i.p. injection. B) Quantification of metabolite 15 in mouse blood at 

indicated time points. Modified from the figure in Jahan, et al.3 

 

The concentrations following an i.p. dose of 5 mg/kg, amide 16 were quantified in blood, brain, 

and lung at different time points (Figure 32A). the ligand 16 reached a maximum absorption within 

minutes (tmax = 3 min) but also was cleared very rapidly, with a half-life of 8.8 min. The overall 

exposure of amide 16 (AUC = 6205 ng*min/ml) was not very high. A markedly decreased 

distribution of  dimethyl amide 16 was observed in brain and lung. The amide 16 did penetrate the 

blood brain barrier but reached only a very low Cmax of 123 ng/g. The distribution in the lung was 

even less pronounced with an AUC of 764 ng*min/ml in comparison to an AUC = 6205 ng*min/ml 

in blood. The presence of two likely metabolites of dimethyl amide 16, principally methyl amide 

15 (formed by N-demethylation) and acid 9 (formed by peptidase-mediated hydrolysis or by 
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hydrolases) were then investigated. The metabolite 15 was observed in substantial amounts in 

blood after only 3 min after injection (Figure 32B). The peak blood concentration was higher than 

the parent compound and occurred later, as expected for a metabolite. Overall, the distribution of 

methyl amid 15 was superior to dimethyl amide 16 with an AUC of 64675 ng*min/ml. Acid 9 

however, which was shown previously to reduce airway hyperresponsiveness, was not detected in 

any blood samples.15 

 

3.9 Biological Evaluation of the XHE-III-74 Ethyl Ester with the Phenolic 

Hydroxyl Function at the C-8 Position (Ligand 6)4 

It has been shown previously that XHE-III-743 7 and XHE-III-74EE 5,15 can cross the blood−brain 

barrier (BBB) and induce CNS effects at higher concentrations. To reduce the compounds ability 

to travel across the BBB it was decided to reduce the lipophilicity of XHE-III-74EE and related 

derivatives. The C-8 methoxy substituted compounds XHE-III-74 7, XHE-III-74-EE 5, and XHE-

III-74A 9 could relax airway smooth muscle but all of them exhibited a poor pharmacokinetic 

profile. The analog XHE-III-74A 9 was devoid any CNS side-effects, while XHE-III-74 7 and its 

EE derivative 5 exhibited undesired CNS effects. More importantly, XHe-III-74 and XHe-III-

74EE reduced airway hyper-responsiveness but acid 9 did not show any AHR reduction. On the 

other hand, XHe-III-74A could reduce inflammation while XHe-III-74 and XHe-III-74EE did not 

exhibit any reduction of inflammation.15 This led to a further search for a GABAAR ligand which 

would show all of the desired properties: better microsomal stability, a good PK profile, no 

CNS effects, relaxation of ASM, reduction of AHR, and reduction of inflammation. The C-8 

phenol variant of XHE-III-74EE 6, which is in fact an intermediate for the synthesis of other 
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investigated derivatives above, might potentially have the desired properties. Consequently, 

phenol 6 was evaluated for the above-mentioned properties. 

3.9.1 Relaxation of Airway Smooth Muscle by Phenol 6 Analog4 

The airway smooth muscle relaxation capability of phenol 6 was investigated using two different 

ex vivo models (Figure 33). One of the models utilized substance P-induced guinea pig tracheal 

muscle constriction, which was mediated by Gq-coupled neurokinin receptors. The other one 

utilized the application of acetylcholine to human tracheal airway smooth muscle strips that affect 

the muscarine acetylcholine receptors (Gi and Gq-proteins).  

In the guinea pig ASM, phenol 6 effected significant attenuation of the substance P-induced 

contraction at 15, 30, 45, and 60 minutes (Figure 33A). Although, substance P-induced contractile 

force spontaneously decreased over a period of 1 h, ligand 6 exhibited significant reduction of the 

contraction at 50 μM at each time point and, in a dose dependent manner (Figure 33B).  
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Figure 33. Smooth muscle contractile force measurement in the presence of phenol 6 (compound 1). (A, B) 

Airway smooth muscle contractile force in guinea pig tracheal rings. Tracheal rings were contracted with 1 μM 

substance P and then treated with (A) 50 μM of 6 (or the vehicle control 0.1% DMSO). The percent of remaining 

contractile force was measured at various time points and expressed as a percent of the initial substance P 

induced contractile force (N = 4). (B) Tracheal rings were contracted with 1 μM substance P and then treated 

with 6 at different concentrations. The percent of remaining contractile force was measured at 30 min and 

expressed as a percent of the initial substance P induced contractile force as a percent of control (N = 3). 

Modified from the figure in Gloria, et al.4  

 

3.9.2 Distribution of Phenol 6 in Different Organs After Oral Administration in 

Mice4 

To ensure the delivery of the drug molecule 6 to the target organ or tissue at a pharmacologically 

active concentration, a pharmacokinetic profile was investigated. This would permit manipulation 

and further dose optimization to achieve the desired pharmacological effects. The pharmacokinetic 

profile of ligand 6 is illustrated in Figure 34. 
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Figure 34. Time dependent pharmacokinetic distribution of phenol 6 in mice blood, lungs, and brain (25 mg/kg 

via oral gavage). Modified from the figure in Gloria, et al.4 

 

The ligand 6 was absorbed within one hour after a 25 mg/kg oral dose. Excellent distribution in 

blood and lung (Tmax = 60 min, AUC = 2270.2 μg.min/g) was observed, as well. The ligand 6 was 

present in the blood at a higher concentration (Cmax 10.23 μg/g) than in the lung. The half-life of 

phenol 6 was higher in the lung (238 min) than in the blood and was detected in the lung even after 

8 hours (Figure 35). More importantly, the level of phenol 6 was rather insignificant in the brain. 

In addition, to evaluate any undesired CNS effects induced by a higher dose, 6 was administered 

orally at a 100 mg/kg dose. Ligand 6 did not induce any motor sensory impairment which was 

clear from the rotarod assay (Figure A3). In addition, phenol 6 exhibited low efficacy toward the 

α1β3γ2 GABAAR, which would mediate sedation and tolerance (Figure A4). 
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3.9.3 Anti-Inflammatory Properties of Phenol 64 

To evaluate the effect of ligand 6 on inflammatory cells, ova s/c BALB/c mice were treated with 

twice a day dose of 100 mg/kg for 5 days and the subsequent changes of inflammatory cells in 

bronchoalveolar lavage fluid was quantified using flow cytometry (Figure 35A-F). Ova s/c mice 

that usually exhibit asthma-like inflammation contained a significantly high amount of white blood 

cells in BALF. The 5-day oral treatment with phenol 6 showed an anti-inflammatory effect which 

was demonstrated by the reduced number of leukocytes in BALF (Figure 35A). To further confirm 

the anti-inflammatory properties of phenol 6, eosinophilia in BALF was quantified in ova s/c mice 

using Wright Geimsa stain (Figure 35B). A five-days b.i.d. treatment with ligand 6 showed 

significant reduction in eosinophil counts in mouse BALF. Similar studies were also performed on 

CCR3+, GR1+, CD4+, and CD11b+ immune cells. In all these cases ligand 6-treated mice exhibited 

a lower cell count compared to the untreated ova s/c mice (Figure 35C-F). In addition, the change 

in transmembrane current in the presence of phenol 6 in isolated CD4+ T cells (from the spleen of 

ova s/c mice) was determined using patch clamp. There was a dose-dependent increment in current 

caused by phenol 6 (Figure 35G). Overall, ligand 6 exhibited more pronounced electro-

physiological effects on CD4+ T cells than another clinical asthma drug candidate (MIDD-0301, 

Figure 35I).4 
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Figure 35. Effect of compounds 1 (phenol 6) and 2 (MIDD-0301, structure not shown) on inflammatory cells. 

Groups of 10 ova s/c BALB/c mice were administered dexamethasone i.p., 4 mg/kg daily for 8 days; compound 

1 via oral gavage, 100 mg/kg twice daily for 5 days, and compound 2 via oral gavage, 100 mg/kg twice daily for 

5 days. BALF was harvested from each animal and used for (A) quantification of total inflammatory cells. Cells 

were stained with mouse CD45 APC antibody, and samples were analyzed with BD FACS Calibur on high flow 

rate (60 μL/min) for 180 s. The gated positive events in the fourth channel (FL4) were used to calculate the total 

inflammatory cell count as cells/mL. (B) Quantification of Wright Giemsa stained airway eosinophils. Data 

represent % normalized eosinophil count relative to CTL (negative control) and ova s/c mice (positive control). 

(C−F) Quantification of specific leukocyte population. (C) CCR3+, (D) GR1+, (E) CD4+, and (F) CD11b+ cell 

populations were stained with specific antibodies and detected by flow cytometry. Data represent mean ± SEM 

from 10 mice in each group. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001 significance, respectively, 

compared to vehicle treated ova s/c BALB/c mice. (G) Current recordings in the presence of 600 nM GABA 

and increasing concentration of compound 1 applied together for 3 s using CD4+ T-cells isolated from ova s/c 

BALB/c mice spleen. (H) Current recordings in the presence of 600 nM GABA and increasing concentrations 

of compound 2 applied together for 3 s using CD4+ T-cells isolated from ova s/c BALB/c mice spleen. (I) 

Concentration-dependent current responses of CD4+ T-cells from ova s/c BALB/c mice spleen in the presence 

of 600 nM GABA and increasing concentration of compound 1 or 2. Current readings were normalized to 600 

nM GABA response set as 100% (n = 16). Modified from the figure in Gloria, et al.4  
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3.9.4 Alleviation of Airway Hyperresponsiveness by Phenol 64 

      

Figure 36. Effect of 6 on airway hyperresponsiveness. Specific airway resistance (sRaw) was measured at 

increasing dosages of methacholine by a DSI’s Buxco FinePointe noninvasive airway mechanics instrument. 

Ova s/c BALB/c mice were administered 6 via oral gavage, 100 mg/kg twice daily for 5 days. Data represent 

mean ± SEM from 10 mice in each group. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001 significance, 

respectively, compared to vehicle treated ova s/c BALB/c mice. Modified from the figure in Gloria, et al.4 

 

Airway hyperresponsiveness is characterized by the physiologic agitation of cholinergic agonists 

and is a primary aspect of the symptoms of asthma.214 The specific airway resistance (sRaw) in 

ova s/c mice was measured in the presence of an increasing amount of aerosolized methacholine 

to investigate the pharmacodynamic properties of phenol 6 after oral administration (Figure 36). 

Significant AHR was observed for methacholine at 6.25 and 12.5 mg/mL. After a 5-day treatment 

with ligand 6 (100 mg/kg, b.i.d. and 30 min before the measurement), this resulted in a significant 
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reduction in sRaw values for Cmethacoline = 3.13 and 6.25 mg/mL (Figure 26) which was in 

agreement with a previous report.15 In addition, ligand 6 did not cause significant mucous 

metaplasia after oral administration (Figure A5). 

In summary, phenol 6 demonstrated for the first time, the potential of this novel oral drug strategy 

for asthma by relaxing ASM, and alleviating AHR without mucous metaplasia. This novel asthma 

drug candidate will be further optimized for even better properties to combat AHR and airway 

inflammation which are responsible for the symptoms of asthma and perhaps COPD. In part, the 

method of administration might be the most important aspect of future research on phenol 6. 

 

3.10 The Synthesis of Heterocyclic Bioisosteres of XHe-III-74 at the C-3 Ester 

Position  

Isostere, as a concept, was first contemplated by Moir in 1909, which was later refined by Grimm 

and experimentally established by Langmuir.215-218 It was initially based on the octet theory of 

valence electrons. According to Langmuir, if two compounds or chemical species existed with the 

same number of atoms and electrons, they would arrange themselves in a similar manner and 

would exert similar properties.218 As predicted based on this concept, diazomethane would have 

physical properties similar to ketene. Bioisosteres, on the other hand, are structurally distinct 

compounds that have similar biological properties or are recognized similarly by biological 

systems. This concept was developed by Erlenmeyer and Landsteiner in the 1930s.217,219  Although 

the term “bioisostere” did not appear until 1950, when Friedman defined and distinguished 

between isosteres and bioisoteres.220 Isostereic compounds are not necessarily bioisosteric, and 

vice versa.217 Bioisosteres are generally not structural mimetics but biochemical mimetics. In the 
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design of bioisosteres factors that play key roles in molecular recognition and mimicry include 

size, shape, electronic distribution, lipophilicity, dipole moment, pKa, etc.217 In current medicinal 

chemistry and modern drug discovery strategies, bioisosteres have become a fundamental tactic in 

the design and development of drugs.215-217,221-223 The application of this strategy encompasses 

improving potency, increasing selectivity, reducing or altering metabolism, and acquiring 

intellectual property of the drug candidate.217 Although established initially for a medicinal 

chemistry context, this concept has found useful and productive applications in optimization and 

development of organocatalysts.224  

Classical bioisosteres can be as simple as the replacement of a hydrogen with a deuterium or 

fluorine atoms, an amine function with a hydroxyl function, etc. On the other hand, non-classical 

bioisosteres can range from a subtle to a sophisticated alteration of the molecule which may be 

completely different in terms of functionality, structure, and topology.217 For example, a 

benzothiazole225 moiety can be a bioisostere for a phenol function, a tetrazole function can be a 

carboxylic acid bioisostere,217,226 an oxadiazole for  an ester, a trifluoromethylamine function for 

an amide function, etc.217  

3.10.1 Synthesis of Bioisosteres of Ligands 24-26, 28, 29 and 31 

The ester function at C-3 was converted into a series of heterocyclic bioisosteres; 1,2,4-oxadiazoles 

with an alkyl substituent (Me, Et, iPr) at the C-3 position of the heterocycle.  

For the 1,2,4-oxadiazoles, oximes with appropriate alkyl substituents were first stirred with NaH 

in THF before the introduction of the ethyl ester 5 and the reaction mixture, which resulted, was 

stirred at room temperature until completion (usually 2 hours), as indicated on analysis by TLC 

(silica gel) to furnish the 3-alkyl-1,2,4-oxidiazoles (Scheme 9) in excellent yields.9 
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Scheme 9. Synthesis of 3-alkyl-1,2,4-oxadiazoles (24-26) 

 

 

 

Figure 37. ORTEP representation of oxadiazole 25 

 

 

Figure 38. ORTEP representation of oxadiazole 26 



99 
 

The oximes required for these transformations were prepared earlier by the reaction of 

hydroxylamine with the corresponding alkyl nitriles in aqueous methanol at elevated temperature 

(Scheme 10).9 

Scheme 10. Synthesis of the oximes9 

 

These three bioisosteres were analyzed for their potential cytotoxicity on HEK293, HEP2 and 

BEAS 2B lung cells (Appendix, Table A5, unpublished results). These bioisosteres were not 

cytotoxic at any concentration related to a therapeutic concentration of 24, 25, and 26 required for 

treatment of asthma. Moreover, importantly there was no cytotoxicity in lung cells.  

In addition to the 1,2,4-oxadiazoles, a 1,3-oxazole, which is not a usual bioisosteric replacement 

for an ester but has been used before,144 was also prepared as a bioisostere of the ester. The five-

membered heterocyclic ring in a 1,3-oxazole is comparable to a methyl ester in size but 

electronically more related to the oxadiazoles. It does have two sites of electron density (O, N) 

which can interact with the protein in similar fashion to the oxygen atoms of an ester function. 

The reaction of aldehyde 27 with TosMIC in the presence of potassium carbonate in methanol227 

furnished the oxazole KRM-II-68 28 in good yield, while the required aldehyde 27 was prepared 

from the ethyl ester 5 by reduction with DIBAL-H at -78 oC (Scheme 11). The synthesis of 

aldehyde 27 was further improved by using SDBBA (Figure 38).228,229 The SDBBA was prepared 

(Scheme 12) and used in situ from sodium tert-butoxide and DIBAL-H in excellent yield.228 The 

SDBBA mediated reduction of the ester was more facile because the reaction was carried out at 
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room temperature (not in –78 oC). In this process the aldehyde was formed quickly from the 

hindered hydride reagent and the reaction was stopped before the aldehyde could be reduced to the 

alcohol byproduct.  

Scheme 11. Synthesis of the aldehyde 27 and this was followed by conversion into the 1,3 

oxazole 28 at the C-3 position 

 

 

 

 

 

Figure 39. Structure of SDBBA 
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Figure 40. ORTEP representation of oxazole 28 

Scheme 12. Improved synthesis of the aldehyde 27 at the C-3 position from ester 5 with in 

situ formed SDBBA228,229 

 

 

 

The 1,3-oxazole 28 did not show any cytotoxicity at a concentration up to 400 µM in the three 

different cell lines; HEK293 kidney cells, HEP2 liver cells and BEAS2B lung epithelial cells (see 

Appendix, Table A6, unpublished results).  

In pre-contracted (with 1 mM substance P) guinea pig tracheal rings, oxazole 28 reduced the 

constriction of airway smooth muscle after 15 minutes for a period of at least 60 minutes 

(comparable with XHE-III-74; Appendix, Figure A6, unpublished results). The effect of oxazole 
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28 on sensorimotor gating at 40mg/kg was performed and it showed profound motor impairment 

beginning at 10 minutes all the way through 60 minutes on the rotorod (Appendix, Figure A7, 

unpublished results). 

Although 1,3-oxazole 28 was not cytotoxic and it exhibited the desired relaxation of ASM, it 

passed through the BBB which led to CNS side effects. Consequently, the more polar variant, the 

C-8 phenolic C-3 oxazole 29 (RJ-03-30) was prepared via the previously mentioned ethanethiol 

and ALCl3 mediated demethylation of oxazole 28 in excellent yield (Scheme 13). 

Scheme 13. Synthesis of C-8 phenolic C-3 oxazole 29229 

 

 

The phenolic, C-3 substituted oxazole 29 was very stable on both human and mouse liver 

microsomes (see Appendix, Table A7). The oxazole 29 did not show cytotoxicity at a 

concentration of 400 µM in HEK293 kidney cells and HEPG2 liver cells, as well (Appendix, Table 

A8). In addition, it was found to exhibit relaxation of guinea pig airway smooth muscle which 

began at 15 minutes, which was very promising (Appendix, Figure A8). As expected, ligand 29 

did not show any sensory motor impairment at 100 mg/kg in the rotarod assay, which indicated 

the lack of distribution in the brain because of the more polar nature, which, presumably,  

prevented it from traveling across the BBB (Appendix, Figure A9). Although oxazole 29 did not 
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show alleviation of airway hyper-responsiveness (Appendix, Figure A10), and did not modulate 

inflammatory cells in the preliminary experiments (Appendix, Figure A11), it evoked a very 

pronounced GABA induced current in electrophysiological measurement of CD4+ T lymphocytes 

(Appendix, Figure A12).229 Consequently, it is still a promising candidate for further development 

because of its desirable properties in other criteria. It is important that further biology be carried 

out on this molecule. 

It is known that 1,2,3,4-tetrazoles are excellent bioisosteres for carboxylic acids. The synthesis of 

tetrazole 31 (RJ-03-57) began from the XHE-III-74 ethyl ester 5 already in hand. The ethyl ester 

5 was first converted into the aldehyde 27 using SDBBA, and this was followed by conversion 

into the corresponding nitrile 30 by reaction of 27 with I2 in aqueous ammonia in excellent yield 

with no chromatography required for purification.228 Subsequently, the nitrile 30 was treated with 

sodium azide in the presence of zinc bromide at elevated temperature (refluxing THF) to furnish 

the desired tetrazole 31 (Scheme 14).230 
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Scheme 14. Synthesis of 1,2,3,4-tetrazole 31 from ester 5228-230 

 

Tetrazole 31 was much more stable than the acid 9 in the microsomal enzyme stability assay 

(Appendix, Table A7). In human liver microsomes 98.5 ± 0.2% of tetrazole 31 remained (acid 9 

was 56.1 ± 0.5%) after 1 hour, while in mouse liver microsomes 94.3 ± 0.1% remained (acid 9 was 

52.9 ± 0.5%) of 31 after 1 hour. It did not show cytotoxicity at a concentration of 400 µM in 

HEK293 kidney cells and HEPG2 liver cells at a therapeutic dose, as well (Appendix, Table A8).229 

As expected, tetrazole 31 did not show any sensorimotor impairments on the rotarod assay when 

dosed at 40 mg/kg (Appendix, Figure A9). But this compound could not reduce the constriction of 

guinea pig airway smooth muscle after 15 minutes for a period of at least 60 minutes (Appendix, 

Figure A8). Unfortunately, it also was not able to alleviate airway hyperresponsiveness (AHR) 

(Appendix, Figure A10). The pharmacokinetic profile of tetrazole 31 in mice blood, lungs, and 

brain, when administered at 25 mg/kg via oral gavage, indicated a moderate absorption and fast 
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clearance had occurred (Appendix, Figure A13).229 This was not suitable for treatment of asthma, 

it was felt.  

Subsequently, the phenolic ethyl ester 6 was saponified and this was followed by acidification to 

furnish the phenolic acid (RJ-03-90) 32, as shown in Scheme 15 below. 

Scheme 15. Synthesis of phenolic acid 32 from ester 6 

 

 

 

The phenolic acid 32 did not show any sedative effects on the rotarod at 100 mg/kg on oral dosing 

(Appendix, Figure A9). When the effect on inflammatory cells was performed, acid 32 did not 

modulate the numbers of inflammatory cells when ova s/c BALB/c mice were administered 32 at 

100 mg/kg twice daily for 5 days (Appendix, Figure A11).229 However, this is only preliminary 

data. It is hoped that this compound will be rescreened for AHR and anti-inflammatory 

properties in the near future. 
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Scheme 16. Synthesis of amides 33 and 34 from acid 9229 

 

 

Scheme 17. Synthesis of alkyl ethers 35-39 from phenol 6 
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Additionally, the carboxylic acid at C-3 was converted into methoxyamide 33 and cyanamide 34 

in cooperation with Dr. Michael Stephen. The carboxylic acid 9 was converted to corresponding 

acyl chloride by reaction with thionyl chloride and this was followed by the treatment of 

methoxylamine and cyanimide in the presence of triethylamine to furnish amides 33 and 34, 

respectively (Scheme 16). Furthermore, the phenolic function at C-8 of ester 6 was converted to 

alkyl ethers 35-39 for additional C-8 ether derivatives. The phenol function was alkylated by 

reaction with alkyl halides in the presence of cesium carbonate in DCM to convert them into their 

corresponding ethers (individually). The ester function was saponified subsequently to furnish the 

C-8 alkyl ether containing carboxylic acids 35-39 in good to excellent yield (Scheme 17).   

The biological evaluation of these promising α4-subtype selective GABAAR agonists is yet to 

be performed. It is hoped that these compounds will be screened in the near future. 
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4. Discussion 

There are only a limited number of options available for the long-term management of chronic 

asthma. The beta 2 adrenergic receptor (β2AR) agonists and inhaled anti-inflammatory 

corticosteroids have been the mainstays in ameliorating asthmatic symptoms in moderate to severe 

incessant asthma.4,231,232 In this case administration of the drugs through inhalation offers a more 

direct approach since it promises targeted delivery of the drug to the lung in high dosages, while 

avoiding undesirable adverse effects from systemic exposure. Despite this apparent advantage, 

prolonged use of corticosteroids may result in drug adherence and compliance issues.233,234 In 

addition, asthma therapeutics that offer the inhaler route may not be economically viable in many 

circumstances and have to be carried-with always.4,233 It is a considerable encumbrance for 

children and elderly asthma patients since improper technique of the inhaler use often causes 

incorrect dosage and poor efficacy of the drug. This ultimately contributes to the poor management 

of asthma and increased asthma related morbidity and mortality.4,233,234 On the contrary, 

administration through the oral route is widely accepted and can be supervised by relatives and 

caregivers. In addition, if the oral drug can be formulated into a slow-release form, it would ensure 

a long-lasting exposure of the drug and consequently, it will ensure pharmacological benefits 

around-the-clock. 

Esters and amides are common functional groups in many FDA approved drugs, although a 

number of such compounds are prodrugs that rely on endogenous enzymes such as peptidases to 

be activated. The lead XHE-III-74 7, has a tert-butyl ester function which was shown to be labile 

in the presence of mouse liver microsomes, while relatively stable in vitro in human liver 

microsomes. Nevertheless, XHE-III-74 7 reduces airway hyperresponsiveness when given by 

aerosol delivery in mice.2 Consequently, the stability of XHE-III-74 7 was sufficient in mice when 
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administered directly to the target organ. Other compounds with limited half-lives in the presence 

of mouse liver microsomes are 18 and 18a bearing a tert-butyl amide, 8 bearing a tert-butyl ester, 

and 11, 11a bearing a isobutyl ester.3 Therefore, it was found that esters and amides with longer 

and more branched carbon chains are metabolically less stable than their shorter carbon chain 

analogs. Another aspect of the SAR determined herein was the comparison of deuterated and non-

deuterated compounds. Overall, a trend, that deuterated compounds are equally or more stable than 

their corresponding non-deuterated analogs was found. This effect was very pronounced for acids 

9 and 9a, probably because a hydrolysable carboxylic ester or amide group inherent to other 

analogs in this series was missing.3 Thus, for 9 and 9a, oxidation of the methoxy group (deuterated 

or non-deuterated) to the corresponding hemiacetal followed by hydrolysis might be the rate-

determining step of metabolism. This specific route of metabolism can be species dependent. For 

instance, ethyl amides 17 and 17a had similar stability on human liver microsomes; however, in 

the presence of mouse liver microsomes the non-deuterated amide 17 was notably less stable.3 

Therefore, it was confirmed that small molecule metabolism was highly species dependent and 

involved many different metabolic reactions that are structure dependent. The cytotoxicity of 

XHE-III-74 analogs was not very pronounced. The analysis showed that 50% of all compounds 

have LD50 values greater than 400 µM for the sensitive HEK293 kidney cells. For the BEAS2B 

lung cells, 71% of the compounds were not toxic. The compounds with the highest toxicity were 

thioesters 14 and 14a.3 Interestingly, the deuterium protecting effect was less pronounced for 

cytotoxicity, although small differences were observed (Appendix, Figure A11). This is as 

expected, for if a molecule is cytotoxic as is, increasing the duration may well not decrease toxicity. 

The only way to affect cytotoxicity is to block metabolism to a toxic metabolite. Sensorimotor 

impairment is another important screen for unwanted side effects in a possible asthma drug. 
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Among the different GABAAR in the CNS, the α1β3γ2 GABAAR’s subtype is known to mediate 

sedation, which in turn compromises sensorimotor skills.3,235 Therefore, compounds with high 

efficacy toward this receptor subtype are expected to induce sedation in vivo, as seen for 

diazepam.209 However, due to the unique scaffold of XHE-III-74 and its analogs, low efficacy 

towards α1β3γ2 GABAAR and high efficacy towards α4β3γ2 GABAAR was shown, e.g. XHE-III-74 

7,2 XHE-III-74EE 5,209 and XHE-III-74A 9.15 Only a few of the compounds described herein 

induced sensorimotor effects comparable to diazepam; however, at concentrations that were eight 

times greater. At 40 mg/kg the deuterated analogs, in comparison to non-deuterated parents are 

more likely to impair sensorimotor abilities. This effect correlated with their better metabolic 

stability. For instance, 30% of methyl ester 10 was metabolically converted into the acid after 1 h, 

whereas only 15% of deuterated ester 10a was converted into the acid during the same time. 

Accordingly, ester 10 did not induce any sensorimotor impairment in contrast to deuterated ester 

10a. Thus, increasing the half-life of a drug candidate using deuterium substitution in the present 

case amplified not only the therapeutic effect but also potentiated possible side effects.3 The only 

compounds investigated herein that were stable in mouse and human liver microsomes and did not 

induce sensorimotor impairment were phenol 6, acid 9a, as well as amides 16, 16a, and 17a. Amide 

16, like other compounds in this series e.g. esters 5, 7, and acid 9,15 significantly reduced airway 

muscle constriction caused by substance P. Airway smooth muscle relaxation is an important 

hallmark of an efficacious asthma treatment and amide 16 mediated this effect within 15 min. In 

vivo, using ovalbumin S/C mice, ligand 16 reduced airway hyperresponsiveness at high 

methacholine challenge when given chronically.3 Similar effects were reported for ethyl ester 5 

when given repeatedly over five days.15 Both ligands (5 and 16) are metabolically stable in vitro 

and non-toxic, however, their effect was less pronounced in vivo probably due to sub-



111 
 

pharmacological concentrations. Ethyl ester 5 was shown to be absorbed and cleared slower with 

a t1/2 of 16.3 minutes instead of 8.8 minutes in comparison to dimethyl amide 16. Using the same 

dose, the AUC for lung exposure decreased from 4516 ng*min/ml for ester 5-to 764 ng*min/ml 

for amide 16.3 Finally, it was shown that ester 5 metabolized to acid 9 probably by mouse esterases 

and acid 9 decreased airway eosinophilia.15 In contrast, dimethyl amide 16 metabolized to methyl 

amide 15 (demethylation) but no hydrolysis took place to yield acid 9 was detected. Thus, the 

incremental weaker pharmacodynamic effects of amide 16, presumably is due in part by its short 

half-life and the inability to form the anti-inflammatory acid 9.3  

 

The common GABAAR positive allosteric modulators (PAMs) suffer from significant distribution 

in the brain which elicits undesirable side effects. In contrast, phenol 6, a novel PAM for GABAAR, 

demonstrated pharmacological effects to treat asthma, while maintaining an extremely low brain 

concentration. No detectable murine sensorimotor impairment at high doses in the rotarod assay 

confirmed the low brain exposure and no corresponding CNS adverse effects (Appendix, Figure 

A12).4 The active key chemical composition was realized by incorporating a hydrophilic function 

such as phenolic hydroxyl group attached to a well-established imidazobenzodiazepine scaffold 

(phenol 6) into the molecule. The improvement in hydrophilicity (pKa) resulted in reduction in 

brain distribution almost entirely. In addition, phenol 6 exhibited excellent pharmacokinetic 

properties with very high concentrations in blood and lung, as well as a longer in vivo half-life 

which would facilitate the management of asthma.4 It was demonstrated that a five day long oral 

b.i.d administration of ligand 6 during an ovalbumin challenge (following ovalbumin sensitization) 

could significantly diminish airway hyperresponsiveness (AHR) at low concentrations of 

methacholine. This observation was in accord with the results from a prior investigation with α4 
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subtype selective GABAAR PAM XHE-III-74EE 5.15 The in vivo effects of phenol 6 on ASM 

were similar to its positive effect on ex vivo ASM relaxation. In organ bath experiments on guinea 

pig tracheal smooth muscle (ex vivo), phenol 6 significantly relaxed substance P induced 

contraction.4 Other useful pharmacological properties of ligand 6 include the anti-mucogenic 

property for treatment of asthmatics.4 

To formulate a single compound that can mitigate both AHR and airway inflammation, GABAAR 

proteins expressed on immune/inflammatory cells were targeted, which would respond similarly 

to the effects of GABA on GABAARs expressed in the brain. It has been demonstrated that CD4+ 

T lymphocytes responded proportionately to phenol 6 in the presence of GABA. The lung 

eosinophilic inflammation due to ovalbumin allergen was attenuated, as well. Ligand 6 

demonstrated a significant decrease in CD4+ T cells in BALF and changed transmembrane current 

in a dose dependent manner, although the exact mechanism of transmembrane current mediated 

reduction in T-cell population is yet to be elucidated.4 

The 3-alkyl-1,2,4-oxadiazoles 24-26 were designed as bioisosteric replacements of the C-3 ester 

function since such alteration often results in superior drug properties which include longer in vivo 

duration of drug-action. These compounds showed promising results in a cytotoxicity assay on 

several cell-lines where none of them were cytotoxic anywhere near therapeutic dose for asthma. 

Gratifyingly, cytotoxicity was not observed in lung cells. The 1,3-oxazole 28, which is a non-

conventional ester bioisostere, did not exhibit any cytotoxicity up to 400 µM in three different cell 

lines. Although oxazole 28 showed significant sensorimotor impairment in a rotorod assay at high 

concentrations, it showed pronounced relaxation in pre-contracted guinea pig tracheal rings, which 

was comparable with XHE-III-74 7. As indicated by the CNS side effects, oxazole 28 could travel 

across the BBB. As inferred from this observation, a more polar derivative (i.e., higher 
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hydrophilicity) was designed. The C-8 phenolic C-3 1,3-oxazole 29 showed superior microsomal 

stability both on human and murine liver microsomes. The phenolic oxazole 29 was also not 

cytotoxic up to 400 µM in kidney and liver cells. As desired, oxazole 29 did not show any 

sensorimotor impairment in rotorod assay at a dose as high as 100 mg/kg, obviously due to low 

brain distribution, while showing promising relaxation in guinea pig ASM. Although in initial 

experiments, oxazole 29 did not show desired promise in alleviating AHR and modulating 

inflammatory cells, it evoked very strong GABA induced current in CD4+ T lymphocytes in 

electrophysiological measurements.229 It is hoped that oxazole 29 could be an excellent lead 

for further developments because of its promising properties in other useful criteria.  

Tetrazole 31 was designed as a carboxylic acid bioisostere. The tetrazole exhibited much better 

stability as compared to the parent carboxylic acid 9 both in human and mouse liver microsomes. 

It did not show any cytotoxicity in several cell lines and did not exhibit CNS side effects in the 

rotorod assay. Unfortunately, tetrazole 31 failed to show promising pharmacokinetic properties 

due to its rapid excretion after oral administration.229 
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5. Conclusion 

Classical benzodiazepines have demonstrated many useful clinical applications as evidenced by 

their presence in the market for the last five decades lacking a better replacement. Over the years, 

numerous promising candidates to treat asthma have appeared, but failed due to poor 

pharmacokinetic properties and adverse CNS effects. The primary goal of this research was to 

further develop the promising α4-subtype selective GABAAR ligand, lead compound XHE-III-74, 

for better subtype selectivity, efficacy, in vivo stability, as well as superior modulation of airway 

hyper-responsiveness, and effective and rapid relaxation of ASM constriction. All the while 

avoiding brain exposure to prevent CNS related adverse effects consequently, work toward 

development of novel asthma drug with an innovative mechanism of action. Specifically to find a 

new drug candidate for the treatment of asthma by targeting the GABAARs expressed in the lung 

airway smooth muscle (ASM) and inflammatory cells of the peripheral nervous system. This is a 

novel mechanism of action and has now shown promising developments toward a novel treatment 

to manage asthma. This approach should not only be economically more viable but would be a 

direct and sustainable approach.  

 

The relaxation of ASM and reduction of AHR by XHE-III-74 7 has been confirmed but it did not 

show any reduction in airway inflammation. In addition, poor microsomal stability and an inferior 

pharmacokinetic profile, as well as CNS side effects indicated the requirement for further 

modification and optimization of this drug candidate. Subsequently, the ethyl ester analog 5 (XHE-

III-74EE) elicited better microsomal stability, ASM relaxation, AHR reduction, and reduction of 

inflammation. However, it suffered from poor pharmacokinetic properties and CNS adverse 

effects. Fortunately, further modification at the same position (C-3) gave another good candidate, 
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the dimethyl amide 16 which did not show any CNS activity but also suffered from a poor PK 

profile and inability in mitigating airway inflammation. In continuation of the development 

process, the carboxylic acid derivative XHE-III-74A 9, while showing promise in microsomal 

stability, ASM relaxation, avoiding CNS exposure and reduction in inflammation, suffered from 

lack of AHR reduction and inferior PK properties. This led to the development of phenolic ethyl 

ester derivative of XHE-III-74 6, which has shown desirable properties in all the criteria for 

treatment of asthma since it has exhibited good metabolic stability, better pharmacokinetic 

properties, and no CNS activity. Furthermore, phenol 6 exhibited ASM relaxation, AHR mitigation 

properties, as well as reduction of airway inflammation. However, despite the fundamental 

successes with 6 and 3 other analogs to treat asthma modifications built on the results obtained 

thus far, may provide even better ligands to treat asthmatic patients.  

In addition, a number of other derivatives were prepared which include different C-8 alkyl 

substituents and ester as well as carboxylic acid bioisosteric moieties at C-3 still await their 

complete biological evaluation. It is hoped that those experiments would result in GABAAR 

ligands with superior drug properties in all aspects, or at the least, will provide important leads for 

further development of next generation asthma drug candidates using the current strategy. 

In conclusion, the goal of this research was not only to understand the chemical aspects of the 

GABAARs and the effects of subtype selective ligands on the GABAAR, but also to apply current 

knowledge in this area to design novel GABAAR ligands to address unmet clinical demands to 

treat asthmatic patients young and old. In terms of outcome, the purpose was to provide aid and a 

better treatment option to the individuals who live with asthmatic symptoms. It is felt some of the 

ligands developed here can do just that. It is expected that the framework of this research will lead 

toward those objectives. 
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6. Methods 

Reagents2 

Indomethacin, acetylcholine, N-vanillylnonanamide, histamine, and pyrilamine (Sigma; St. Louis, 

MO, USA); MK501 (Tocris Bioscience; Ellisville, MO, USA); tetrodotoxin (Calbiochem; San 

Diego, CA, USA); test compounds CMD-45 and XHe-III-74 (designed and synthesized by Dr. 

James Cook’s laboratory in the Department of Chemistry and Biochemistry, University of 

Wisconsin-Milwaukee); purified house dust mite (HDM) antigen (Greer Laboratories; Lenoir, NC, 

USA). 

Experimental Animals2 

All studies were approved by the Columbia University Institutional Animal Care and Use 

Committee. The 8 to 10 week old male mice with a global genetic deletion of the GABAAR α4 

subunit (gabra4 KO; originally a gift of Dr. Gregg Homanics, University of Pittsburgh)236 and/or 

their corresponding background wild type C57/Bl6 mice (WT) were utilized for all mouse studies. 

Prior to tissue harvests, all animals were euthanized with an overdose of intraperitoneal (i.p.) 

phenobarbital (100 mg/kg). For in vivo airway resistance testing, wild type C57/Bl6 mice 

underwent house dust mite (HDM) antigen sensitization to induce an asthmatic phenotype. Briefly, 

all mice were exposed to 30 Eg of intranasal purified HDM or vehicle (PBS) during isoflurane 

anesthesia daily for 3 weeks prior to airway resistance testing. 

Human Tissue2 

Human trachea and bronchi samples were collected from healthy donor lungs at the time of lung 

transplant surgery (surgical discards). All experiments using these tissues were deemed non-

human subjects research after review by Columbia University’s Institutional Review Board. 
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6.1 Oocyte Electrophysiological Studies (Dr. Margot Earnst at the Medical University of 

Vienna)2 

To generate the respective mRNAs, cDNAs of rat GABAA receptor subunits (each α subunit with 

β3 and γ2, or α4 with β3 and δ) were used, which were then injected into Xenopus laevis oocytes 

(Nasco, Fort Atkinson, WI, USA) as described previously.209 For electrophysiological recordings, 

oocytes were placed on a nylon-grid in a bath of Xenopus Ringer solution (XR, containing (in 

mM): 90 NaCl, 5 HEPES-NaOH (pH 7.4), 1 MgCl2, 1 KCl and 1 CaCl2). The oocytes were impaled 

with two microelectrodes (2-3 mʊ, filled with 2 mM KCl) for current measurements. The oocytes 

were constantly washed by a flow of 6 ml/min XR, which could be switched to XR containing 

GABA and/or ligands (CMD-45 or XHe-III-74). Both ligands were diluted into XR from DMSO-

solutions which resulted in a final concentration of 0.1% DMSO. The ligands, CMD-45 and XHe-

III-74 were pre-applied for 30 sec prior to the addition of GABA, which was co-applied with the 

drugs until a peak response was observed. As identical peak responses were observed after pre- 

applied ligand compared to co-applied ligand, the datasets were completed by co-application of 

GABA at EC3 with the ligand. To ensure full recovery from desensitization, between two 

applications, oocytes were washed in XR for up to 15 minutes. All recordings were performed at 

room temperature at a holding potential of -60 mV using a Dagan TEV-200A two electrode voltage 

clamp or a Dagan CA-1B Oocyte Clamp (Dagan Corporation, Minneapolis, MN). Data were 

digitized and recorded using a Digidata 1322A data acquisition system (Axon Instruments, Union 

City, CA, USA). 
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6.2 Mouse Tracheal Ring Organ Bath Experiments (Dr. Charles Emala at Columbia 

University)1,2 

Mouse tracheas were removed from WT and gabra4 KO mice and placed in modified Krebs- 

Henseleit (KH) buffer of the following composition in mM: 115 NaCl, 2.5 KCl, 1.91 CaCl2, 2.46 

MgSO4, 1.38 NaH2PO4, 25 NaHCO3, and 5.56 D-glucose at pH 7.4. The tracheas were then 

mounted on wire pins in a myograph system (DMT, Ann Arbor, MI) and held at a resting tension 

of 5 mN for one hour in buffer that was continuously bubbled with 95% O2/5% CO2 (buffer was 

exchanged every 15 minutes) at 37°C. By following this equilibration period, three acetylcholine 

(ACh) dose-response curves were constructed (100 nM-1 mM) with extensive buffer exchanges 

and a resetting of resting tension to 5 mN between dose-response challenges. After determining 

the ACh EC50 for each tracheal ring, the rings were contracted with their respective EC50 

concentration of ACh, their contraction force was allowed to plateau, and the rings were exposed 

to concentration ranges of CMD-45 (25 to 100 μM), XHe-III-74 (10 to 50 μM) or DMSO (0.2%; 

vehicle). The amount of residual contractile force was measured after 30 minutes and compared to 

the initial contractile force to determine the percent of relaxation. Each ring was only exposed to 

a single concentration of CMD-45, XHe-III-74, or DMSO once (multiple concentrations and/or 

compounds were not tested on the same ring). 

6.3 Human Airway Smooth Muscle Strip Organ Bath Experiments (Dr. Charles Emala at 

Columbia University)2 

Human ASM strips were dissected from trachea and mainstem bronchi samples and the epithelium 

was removed. Strips were suspended at 1.5 g resting tension in KH buffer with 10 EM 

indomethacin (to block endogenous release of prostanoids), as previously described (5-7). Briefly, 

strips were suspended in a water-jacketed, 2 ml glass organ baths at 37° C (Radnoti Glass 
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Technology, Inc., Monrovia, CA, USA) and attached to Grass FT03 force transducers (Grass 

Telefactor, West Warwick, RI) coupled to a computer using BioPac hardware and Acqknowledge 

7.3.3 software (Biopac Systems, Inc., Goleta, CA, USA). The KH buffer was continuously bubbled 

with 95% O2/5% CO2 and tissues were allowed to equilibrate at 1.5 g isotonic force for 1 hour with 

fresh KH buffer changes every 15 min.  

The ACh EC50 was calculated for each strip (based on three cycles of exposure to 100 nM-100 EM 

ACh). Tetrodotoxin (1 EM; antagonist of endogenous neuronal-mediated effects), pyrilamine (10 

EM; H1 histamine receptor antagonist), and MK571 (10 EM; leukotriene D4 antagonist) were then 

added to the buffer to eliminate potentially confounding effects of endogenous contractile 

mediators. Each strip was then contracted with its EC50 concentration of ACh. After the 

contractile force reached steady state, the strips were exposed to concentration ranges (10-100 μM) 

of CMD-45, XHe-III-74, or 0.2% DMSO. The amount of residual contractile force was measured 

after 30 minutes and compared to the initial contractile force to determine the percent of relaxation. 

Each strip was only exposed to CMD-45, XHe-III- 74, or DMSO once (multiple concentrations 

and/or compounds were not tested on the same strip). 

Separate human ASM organ bath experiments were conducted to determine if CMD-45 or XHe-

III-74 potentiated the relaxation induced by the β2-agonist albuterol (first-line asthma rescue 

therapy). In these studies, human ASM was contracted to a stable plateau of force with an EC50 

concentration of acetylcholine and then increasing concentrations of albuterol were added to each 

organ bath at 7 minute intervals (half-log increments 100 pM – 10 μM). Concurrent with the 500 

pM albuterol addition, a single exposure of CMD-45, XHe-III-74 (25 μM each) or vehicle (0.2% 

DMSO) was added to each bath. 
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6.4 In Vivo Mouse Respiratory System Resistances Testing (Dr. Charles Emala at Columbia 

University)2 

In vivo airway resistances were assessed using a flexiVent FX1 module with an in-line nebulizer 

(SciReq, Montreal, QC, Canada), as described previously,1,237 using HDM-sensitized WT mice. 

Briefly, the mice were anesthetized with pentobarbital (i.p., 50 mg/kg), paralyzed with 

succinylcholine (i.p., 10 mg/kg), and mechanically ventilated via a tracheostomy (tidal volume 

10mg/kg, 150 breaths/min). Mice were nebulized by XHe-III-74 (25 μl, 10 mM) or vehicle (25% 

ethanol in PBS) 10 minutes prior to measuring respiratory system resistances (RRS) by the forced 

oscillatory technique during a graded, nebulized methacholine challenge (0-50 mg/ml). 

Throughout the experiment EKG and temperature monitoring were performed. Lung resistance 

values for each mouse at each methacholine dose represent an average of three measurements. 

 

6.5 In Vitro Human Airway Smooth Muscle Cell Calcium Dynamics (Dr. Charles Emala at 

Columbia University)2 

Primary human airway smooth muscle cells (collected from healthy lung transplantation donor 

tissue)238 were grown to 80% confluence as monolayers in phenol red-free 50%/50% DMEM/F12 

media containing 10% FBS and 1X antibiotics/antimycotics on clear-bottomed, black-walled 96 

well plates. The cells were incubated in serum-free basal media for 48 hours, prior to each 

experiment. The cells were then washed with Hank’s balanced salt solution (HBSS) containing the 

following in mM: NaCl 138, KCl 5.3, CaCl2 2.5, MgSO4 0.4, MgCl2 0.49, Na2HPO4 0.34, NaHCO3 

4.2, KH2PO4 0.44, dextrose 5.5, hepes 20, pH 7.4. Cells were then incubated in HBSS containing 

the calcium indicator Fura‐2 AM (5 μM; Life Technologies, Grand Island, NY, USA) for 45 

minutes at 37°C. Following the dye loading, cells were washed with HBSS three times, pretreated 
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with concentration ranges (10-50 μM) of CMD-45, XHe-III-74, or DMSO (0.1%), and allowed to 

rest 15 minutes at 37°C. The cells were then continuously excited (alternatively at 340 and 380 

nm) every 4 seconds and the resultant emission at 510 nM was recorded using a FlexStation3 

microplate reader (Molecular Devices, Sunnyvale, CA) at 37°C during the addition of 10 μM 

histamine using the injection feature of the FlexStation3. In separate experiments, after dye 

loading, the cells were washed with Hank’s balanced salt solution containing no calcium. The cells 

remained in this buffer during pretreated with 100 μM CMD-45, XHe-III-74, or DMSO (0.1%) 

and during fluorescent recording with histamine exposure. 

Experimental animals3 

The 5-10 week old male BALB/c and Swiss Webster mice (Charles River Laboratory, WIL, MA) 

and adult (425-450 g) male Hartley guinea pigs (Charles River Laboratory, WIL, MA) were used 

for the experiments. The animals were housed under specific pathogen free conditions, under 

standard conditions of humidity, temperature and a controlled 12 h light and dark cycle and had 

free access to food and water. All animal experiments were in compliance with the University of 

Wisconsin, Milwaukee or Columbia University Institutional Animal Care and Use Committees 

(IACUC). 

6.6 Microsomal Stability Assay Procedure (Revathi Kodali at UWM)3 

The 4 μL of 1 mM test compound at a final concentration of 10 μM in DMSO were preincubated 

at 37°C for 5 minutes on a digital heating shaking dry bath (Fischer Scientific, Pittsburgh, PA) in 

a mixture containing 282 μL of water, 80 μL of phosphate buffer (0.5 M, pH 7.4) 20 μL of NADPH 

Regenerating System Solution A (BD Bioscience, San Jose, CA) and 4 μL of NADPH 

Regenerating System Solution B (BD Bioscience, San Jose, CA) in a total volume of 391.2 μL. 
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Following preincubation, the reaction was initiated by addition of 8.8 μL of either human liver 

microsomes (BD Gentest, San Jose, CA) or mouse liver microsomes (Life technologies, Rockford, 

IL) at a protein concentration of 0.5 mg/mL. Aliquots of 50 μL were taken at time intervals of 0 

(without microsomes), 10, 20, 30, 40, 50 and 60 minutes. Each aliquot was added to 100 μL of 

cold acetonitrile solution containing 1 μM of verapamil HCl as an internal standard. This was 

followed by sonication for 10 seconds and centrifugation at 10,000 rpm for 5 minutes. Then 100 

μL of the supernatant was transferred into Spin-X HPLC filter tubes (Corning Incorporated, NY) 

and centrifuged at 13,000 rpm for 5 minutes. The filtrate was diluted 100 fold and subsequently 

analyzed by LC-MS/MS with a Shimadzu LCMS 8040, (Shimadzu Scientific Instruments, 

Columbia, MD). The ratio of the peak areas of the internal standard and the test compound was 

calculated for every time point and the natural log of the ratio was  plotted against time to determine 

the linear slope (k). The metabolic rate (k*C0/C), half-life (0.693/k), and internal clearance (V*k) 

were calculated, where k is the slope, C0 is the initial concentration of test compound, C is the 

concentration of microsomes, and V is the volume of incubation in μL per microsomal protein in 

mg. All experiments were repeated three times in duplicates. 

6.7 Cytotoxicity Assay (Dr. Michael Stephen and Dr. Gloria Forkuo at UWM)3 

Human liver hepatocellular carcinoma (HEPG2), human embryonic kidney 293T (HEK293T) and 

human bronchial epithelial (BEAS 2B) cell lines were purchased (ATCC) and cultured in 75 cm2 

flasks (CellStar). Cells were grown in DMEM/High Glucose (Hyclone, #SH3024301) media to 

which non-essential amino acids (Hyclone, #SH30238.01), 10 mM HEPES (Hyclone, 

#SH302237.01), 5 x 106 units of penicillin and streptomycin (Hyclone, #SV30010), and 10% of 

heat inactivated fetal bovine serum (Gibco, #10082147) were added. Cells were harvested using 

0.05% Trypsin (Hyclone, #SH3023601), washed with PBS, and dispensed into sterile white, 
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optical bottom 384-well plates (NUNC, #142762). After three hours, small molecule solutions 

were transferred with a Tecan Freedom EVO liquid handling system equipped with a 100 nL pin 

tool (V&P Scientific). The controls were 3-dibutylamino-1-(4-hexyl-phenyl)-propan-1-one (25 

mM in DMSO, positive control) and DMSO (negative control). The cells were incubated for 48 

hours followed by the addition of CellTiter-Glo™, a luminescence-based cell viability assay 

(Promega, Madison, WI). All luminescence readings were performed on a Tecan Infinite M1000 

plate reader. The assay was carried out in quadruplet with three independent runs. The data was 

normalized to the controls and analyzed by nonlinear regression (GraphPad Prism). 

6.8 Rotarod Assay (Nicholas Zahn at UWM)3 

The swiss Webster mice were trained to maintain balance at a constant speed of 15 rpm on the 

rotarod apparatus (Omnitech Electronics Inc. Nova Scotia, Canada) until mice could perform for 

3 min at three consecutive time points. Separate groups of mice received intraperitoneal (i.p.) 

injections of vehicle (10% DMSO, 40% propylene glycol and 50% PBS) or test compounds. 

Diazepam was used as a positive control compound (5 mg/kg) in an approximate volume of 100 

ml. Ten minutes after each injection, mice were placed on the rotarod for 3 min. A fail was assigned 

for each mouse 

that fell from the rotarod prior to 3 min. Mice were rested two to three days before administration 

of another dose or a different compound. 
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6.9 Guinea Pig Airway Smooth Muscle Organ Bath (Dr. Charles Emala at Columbia 

University)3 

Guinea pigs were anesthetized with intraperitoneal pentobarbital (100 mg/kg). Their tracheas were 

then surgically removed and transected into cross-sectional sections containing two cartilaginous 

rings as described previously.15 The epithelium was removed with cotton swabs and the rings were 

suspended by two silk threads in 4 mL jacketed organ baths (Radnoti Glass Technology). One 

thread was attached to a Grass FT03 force transducer (Grass- Telefactor) coupled via Biopac 

hardware to a computer with Acknowledge 7.3.3 software (Biopac Systems) for continuous digital 

recording of muscle tension. The rings were bathed in 4 mL of KH buffer solution (composition 

in mM: 118 NaCl, 5.6 KCl, 0.5 CaCl2, 0.2 MgSO4, 25 NaHCO3, 1.3 NaH2PO4, 5.6 D-glucose) 

with 10 mM indomethacin (DMSO vehicle final concentration of 0.01%), which was continuously 

bubbled with 95% O2 and 5% CO2 at pH 7.4, at 37 OC. The rings were equilibrated at 1 g of 

isotonic tension for 1 h with new KH buffer added every 15 min. All rings were precontracted with 

10 mM N-vanillylnonanamide (capsaicin analog) and then two cycles of cumulatively increasing 

concentrations of acetylcholine (0.1-100 µM) with extensive buffer washes between and after 

those two cycles with resetting of the resting tension to 1.0 g. To eliminate the confounding effects 

of airway nerves and histamine receptors, tetrodotoxin (1 µM) and pyrilamine (10 µM) were added 

to the buffer. After a stable baseline tension of 1.0 g was established, tracheal rings were contracted 

with 1 µM substance P. After the peak contraction was reached, 50 µM of compound 16 (or the 

vehicle control 0.1% DMSO) was added to each bath. The percentage of initial contraction 

remaining at 15, 30, 45, and 60 min after compound exposure was compared between groups. 
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6.10 Human Airway Smooth Muscle Organ Bath (Dr. Charles Emala at Columbia 

University)4 

The human trachea were obtained from healthy donor lungs incidental to lung transplantations and 

airway smooth muscle strips were dissected from them. All the studies were reviewed by the 

Columbia University IRB and deemed not to be human subject research. The strips were suspended 

as above in organ baths in oxygenated KH buffer at 37 °C at 1.5g of resting tension. This was 

followed by equilibration for 1h with buffer exchanges every 15 min, after which the strips were 

contracted with 3 cycles of increasing concentrations of acetylcholine (100 nM - 1 mM) with 

extensive buffer exchanges between and after these pre-contractile challenges. Before each strip 

was contracted to its individually calculated EC50 concentration of acetylcholine MK571 (10 μM), 

pyrilamine (10 μM) and tetrodotoxin (1 μM) were added to the buffer. When a plateau in the 

increase in contractile force was achieved (typically 15 min), 100 μM of test compound or its 

vehicle (0.2% ethanol) was added to the buffer and the maintenance of contractile force was 

continuously measured over 1h. The remaining contractile force at 15, 30, 45 and 60 min was 

expressed as a percentage of the initial acetylcholine-induced contractile force. 

6.11 Assessment of Airway Hyper-Responsiveness (Dr. Gloria Forkuo at UWM)3 

Airway hyper-responsiveness to methacholine in conscious, spontaneously breathing animals was 

measured by DSI's Buxco® FinePointe Non-Invasive Airway Mechanics (NAM) instrument.15 

Before measurements were taken, mice were acclimated to the chamber for 15 min daily for 5 

days. The chambers were also calibrated each time before data collection. Briefly, the nasal 

chamber in combination with the thoracic chamber permits computation of Specific Airway 

Resistance (sRaw). The FinePointe software computes sRaw with all other ventilatory parameters 

derived by the NAM analyzer. Mice were exposed to aerosolized PBS (for the baseline 
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measurement) or methacholine (1.56-12.5 mg/mL) for 1 min and readings were taken and averaged 

for 3 min after each nebulization. Data obtained were presented as sRaw versus aerosolized 

methacholine concentration (mg/ml). Data analysis was carried out using 2way ANOVA repeated 

measures with Bonferroni post-test. Overall p-value was 0.0937 and F = 1.763. The Bonferroni 

post-test gave significance for 12.5 mg methacholine as indicated in Figure 30. 

 

6.12 Pharmacokinetic Study (Revathi Kodali at UWM)3 

The female Swiss Webster mice received i.p. injections of vehicle or each ligand formulated in 

DMSO/ propylene glycol/ PBS, 10:40:50, v/v/v) and injected at a dose of 5 mg/kg. At different 

time points, the blood (collected into heparinized tubes, 50 μL of 1 mg/mL heparin), lungs, and 

brain were harvested and the samples were stored in liquid nitrogen until analysis. 

Blood samples were thawed on ice, vortexed for 10 seconds, and a 100 μL aliquot was taken and 

added to 400 μL cold acetonitrile containing [20 nM] internal standard 1 (Hz166). Samples were 

vortexed for 30 seconds and centrifuged at 13,000 RPM for 3 minutes. The supernatant layer was 

then transferred to clean tubes and evaporated overnight. The residue was reconstituted with 300 

μL of mobile phase and spin-filtered through 0.22 μm nylon centrifugal filter units (Costar). After 

reconstitution, verapamil (internal standard 2) was added and 5 μL of the sample was injected into 

the LC–MS/MS. 

The brain and lung tissue samples were stored in liquid nitrogen prior to homogenization and 

extraction. The whole organs were thawed over ice, weighed, and homogenized directly into 500 

μL of ACN containing internal standard 1 (HZ166) using a Benchmark Scientific BeadBug 

Homogenizer with three 3.2mm stainless steel beads. Samples were homogenized for 30 seconds, 
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and centrifuged for 3 minutes at 13,000 RPM. This process was repeated for a total of three 

extractions. 

The supernatants were combined and prepared in the same manner as the blood samples for LC-

MS/MS analysis. 

High performance liquid chromatography (HPLC) was performed with Shimadzu Nexera X2 

LC30AD series pumps (Shimadzu, Kyoto, Japan) that include a 20A5R degassing unit, SIL 30AC 

autosampler and a 20A column oven. Analytes were separated by a Restek Ultra Biphenyl II 

column (2.1 mm × 50 mm, 5 um particle size, Restek, California, US) under gradient elution at a 

flow rate of 0.6 mL/min. The mobile phase was acetonitrile and water (both containing 0.1% 

formic acid). Time program: 10% B → 99% B (3 min), hold at 99% B (3.75 min), return to 10% 

B (4 min), hold (4.5 min). Column Temperature: 50°C. 

Analytes were monitored under positive mode on a Shimadzu 8040 triple quadrupole mass 

analyzer (Shimadzu, Kyoto, Japan) electrospray (ESI) and atmospheric pressure ionization (APCI) 

run in dual (DUIS) mode. The following transitions were monitored in multiple reaction 

monitoring (MRM) mode. Ion transition pairs for 17 are 340.85 > 296.00, 340.85 > 277.95, 340.85 

> 268.10 and 340.85 > 227.15. Transition pairs for HZ-166 are m/z 356.90 > m/z 311.15, m/z 

356.90 > m/z 283.15, and m/z 356.90 > m/z 282.15. Transition pairs for verapamil (internal 

standard) are 454.70 > 165.15, 454.70 > 150.20, and 454.70 > 303.30. Collision energy was 

optimized for each transition to obtain optimal sensitivity. The mass spectrometer was operated 

with the heat block temperature of 400°C, drying gas flow of 15 L/min, desolvation line 

temperature of  250 °C, nebulizing gas flow of 1.5 L/min, and both needle and interface voltages 

of 4.5 kV. The response acquisition was performed using LabSolutions software. 
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The sample preparation of calibration standards and quality control for LC–MS/MS: HZ-166 was 

chosen as an internal standard (I.S.) because it has a similar chemical structure as that of 17 and 

was therefore used to account for sample dilution, evaporation, and matrix effects. Verapamil was 

also used as a second standard to monitor instrumental variations. The stock solutions of all were 

prepared at a concentration of 2 mg/mL separately in ACN and stored in a −20 °C freezer, with 

the exception of the acid which was prepared in 80:20 ACN:water. The intermediate working 

solutions of each were prepared by serial dilution with mobile phase (80:20, ACN:water with 0.1% 

formic acid). Calibration curve cocktails were prepared at concentrations of 1, 5, 10, 15, 25, 50, 

75, 100, and 150 nM. 

The intra-run/within-run validation was performed at concentrations of 10, 25 and 75 nM with 

three replicates for each concentration. For separate validations, separate standard curves were 

freshly prepared. The standard curves were fitted by a linear regression and the validation samples 

were calculated back by the calibration curve of that day. The mean and the coefficient of variance 

(CV) were calculated accordingly. Accuracy was calculated by comparing calculated 

concentrations to corresponding nominal. 

Pharmacokinetic parameters were calculated with PK solutions software 2.0 and fitted to the 

following equation: c = A•e-at + B•e-bt. Due to the rapid absorption two phases could be identified 

as the distribution/absorption phase and the elimination phase. 
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6.13 Patch clamp assay (Amanda Neiman at UWM)3  

HEK293T stably expressing α1β3γ2 GABAAR or α4β3γ2 were maintained RPMI 1640 medium with 

L-glutamine supplemented with 10% (v/v) fetal bovine serum and 1% penicillin/streptomycin. 

Automated patch-clamp studies were conducted as described previously.15 Briefly, the IonFlux 

plate layout consists of units of 12 wells: two wells contain intracellular solution (ICS containing 

140 mM CsCl, 1 mM CaCl2, 1 mM MgCl2, 11 mM EGTA, 10 mM HEPES, pH 7.2 with CsOH), 

one contains cells diluted in extracellular solution (ECS containing 140 mM NaCl, 5.4 mM KCl, 

1 mM CaCl2, 10 mM D-glucose monohydrate, and 10 mM HEPES, pH 7.4 with NaOH), eight 

contain different concentration of amide 16 in the presence of GABA at 0.1% DMSO. Well 1 is 

for waste collection. The cells are captured from suspension by applying suction to microscopic 

channels in ensemble recording arrays. Once the array is fully occupied, the applied suction breaks 

the membranes of captured cells, which establishes the whole cell voltage clamp. For compound 

applications, pressure is applied to the appropriate compound wells, which introduces the 

compound into the extracellular solution rapidly flowing over the cells. For recording GABAAR 

induced currents, cell arrays were voltage clamped at a hyperpolarizing holding potential of −80 

mV. Prior to use on the automated patch clamp, cells were centrifuged at 380g for 5 minutes and 

resuspended gently in ECS. This was repeated two more times before the cells were dispensed into 

the plate. All compound applications were carried out for 3 seconds and this was followed by a 5 

second washout. 
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7. Experimental  

7.1 5-Methoxyanthranilic acid (2) 

A solution of 2-nitro-5-methoxybenzoic acid 1 (60.3 g, 306 mmol) in EtOAc (1.5 L) was degassed 

under reduced pressure and refilled with argon (repeated 3 times). Palladium (10% w/w on carbon, 

3.9g, 1.2 mol%) was added to the above solution. The reaction flask was evacuated under reduced 

pressure and refilled with H2 from a balloon (repeated 3-4 times to make sure that the solution was 

saturated with H2). The reaction mixture was stirred at rt for 6 h. After the completion of the 

reaction (TLC, silica gel), the solution was filtered over a bed of celite to remove the Pd. The solids 

were washed with ethyl acetate. The solvent was removed under reduced pressure to yield acid 2 

as a yellow solid in 97% (49.7 g) yield: M.p = 147-149 ˚C; 1H NMR (300 MHz, CDCl3) δ 3.66 (s, 

3H), 6.71 (d, 1H, J = 9.0 Hz), 6.94 (dd, 1H, J = 9.0 Hz, 3.0 Hz), 7.19 (d, 1H, J = 3.0 Hz), 8.40 (bs, 

2H). The spectral data matched the reported values16. This material was employed directly in the 

next step. 

7.2 5-Methoxyisatoic anhydride (3) 

The 5-methoxyanthranilic acid 2 (30 g, 179 mmol) was dissolved in a mixture of H2O (1.2 L) and 

conc HCl (15 mL), and this was followed by the addition of triphosgene (63.8 g, 215 mmol). The 

contents were stirred at rt for 3-4 h until the completion of the reaction (TLC, silica gel).  A white 

solid precipitated from the solution after completion. The solids were collected by filtration and 

washed with H2O (4 L). The solids were dried under vacuum to give pure anhydride 3 in 89% 

(30.7 g) yield: M.p = 237-239 ˚C; 1H NMR (300 MHz, CDCl3) δ 3.65 (s, 3H), 7.11 (d, 1H, J = 8.9 

Hz), 7.35 (dd, 1H, J = 8.9 Hz, 2.7 Hz), 7.19 (d, 1H, J = 2.7 Hz), 11.61 (bs, 1H). The spectral data 

were identical with the reported values16. This material was employed directly in the next step. 
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Triphosgene reacts to give toxic phosgene; care must be exercised. The phosgene itself smells 

like new mown hay. Do not breath it. 

7.3 (S)-2,3-Dihydro-7-methoxy-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dio-

ne (4)  

A mixture of 5-methoxyisotoic anhydride 3 (30.7 g, 158.9 mmol) and L-proline (20.2 g, 174.8 

mmol) in dry DMSO (300 mL) was heated with stirring at 160 ̊ C for 2 h. The white turbid reaction 

mixture, which resulted, became a clear brown solution as the temperature was increased to above 

80 ˚C. After the completion of the reaction, on examination by TLC (silica gel), the solution was 

cooled to rt. The mixture was poured into 250 mL of ice water to yield benzodiazepine 4 as a white 

solid. The solids were collected by vacuum filtration and washed with ice cold water (2 X 50 mL). 

The filtrate was extracted with ethyl acetate and the solvent was removed under reduced pressure 

to yield solid diazepine 4.  The combined solids were dried in a vacuum oven at 80 ˚C for 4 h. The 

yield of 4 was 96% (37.9 g): M.p = 214-216 ˚C; [α]D
25= +444.40 (c 1%, in CH2Cl2); 

1H NMR (300 

MHz, CDCl3) δ 1.82-2.01 (m, 3H), 2.50-2.51 (m, 1H), 3.40-3.49 (m, 1H), 3.56-3.63 (m, 1H), 3.78 

(s, 3H), 4.07-4.10 (m, 1H), 7.07 (d, 1H, J = 8.7 Hz), 7.13 (dd, 1H, J = 8.7 Hz, 3.0 Hz), 7.26 (d, 

1H, J = 3.0 Hz), 10.30 (bs, 1H). The spectral data were identical to the reported values16. This 

material was employed directly in the next step. 

7.4 (S)-Ethyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo-

[1,2-a][1,4]diazepine-1-carboxylate (5)  

A well dried reaction flask was evacuated completely and flushed with argon. The flask was then 

charged with diazepine 4 (37 g, 150.2 mmol) in dry THF (800 mL). The turbid solution was cooled 

to -20 ˚C. Potassium tert-butoxide (good material, 33.7 g, 300.4 mmol) was added to the flask and 



132 
 

the solution was stirred at rt for 1 h. Good diethyl chlorophosphate (43.4 mL, 300.4 mmol) was 

then slowly added to the reaction mixture at -20 ˚C and it was allowed to stir at rt over a period of 

2-3 h. The cloudy reaction mixture became a clear golden-brown solution. After complete 

consumption of the starting material 4 (TLC, silica gel), the reaction was cooled to -20 ˚C, after 

which ethyl isocyanoacetate (32.8 mL, 300.4 mmol) and potassium tert-butoxide (33.7 g, 300.4 

mmol) were added. The reaction mixture was stirred at rt for 8 h. The reaction was quenched with 

a saturated aq solution of NaHCO3 (80 mL). The THF was removed under reduced pressure and 

the aq layer was extracted with CH2Cl2 (300 mL X 3). The combined organic layer was separated 

and washed with brine (400 mL) and dried (Na2SO4). The CH2Cl2 was removed under reduced 

pressure and the dark brown pasty liquid residue, which resulted, was washed with ether to yield 

the crude ethyl ester 5. This crude solid was recrystallized from CH2Cl2 to yield ethyl ester 5 as a 

pure white solid in 60% (30.85 g) yield: M.p = 195-197 ˚C; (Lit. report: 175-176 ˚C)16; [α]D
25= 

+18.00 (c 0.5%, in CH2Cl2); 
1H NMR (300 MHz, CDCl3) δ 1.44 (t, 3H, J = 7.2 Hz),  2.15-2.31 (m, 

3H), 3.49-3.61 (m, 2H), 3.75-3.85 (m, 1H), 3.91 (s, 3H), 4.41 (q, 2H, J = 7.2 Hz), 4.75 (d, 1H, J = 

6.9 Hz), 7.15 (dd, 1H, J = 8.9 Hz, 3.0 Hz), 7.32 (d, 1H, J = 8.9 Hz), 7.59 (d, 1H, J = 3.0 Hz), 7.82 

(s, 1H); 13C NMR (75 MHz, CDCl3) δ 14.3, 24.3, 28.4, 46.6, 53.4, 55.8, 61.2, 114.5, 119.7, 124.6, 

126.0, 127.3, 130.6, 135.8, 137.6, 159.4, 162.6, 163.7; HRMS (ESI) (M+Na)+, calcd. for 

C18H19N3O4Na 364.1273; Found 364.1279. The spectral data were identical to the reported 

values16. This material was employed directly in the next step. 

7.5 (S)-Ethyl-7-hydroxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo-

[1,2-a][1,4]diazepine-1-carboxylate (6)  

In an oven dried round bottom flask, dry CH2Cl2 (50 ml) was added and it was cooled to 0 ˚C.  

Then AlCl3 (3 g, 22.8 mmol) and good ethanethiol (4.5 ml, 60.8 mmol) were added to the above 
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flask slowly at 0 ˚C. The ice bath was removed and the reaction was allowed to warm to rt. After 

the AlCl3 dissolved completely, ester 5 (2.6 g, 7.62 mmol) was added to the mixture at rt and the 

mixture was stirred for 24 h under Ar. The reaction time will vary with the scale of the reaction. 

After completion of the reaction (TLC, silica gel), the solution was poured onto ice and was 

acidified using an aq 2N HCl solution. The solution was extracted 7 times with CH2Cl2 and 4 times 

with EtOAc, separately. Since the product was soluble in water, the extraction procedure was 

carried out until there was no more product observed in the aq layer (TLC, silica gel). The 

combined organic layer was washed with brine and dried (Na2SO4). The solvent was removed 

under reduced pressure and the residue was purified by flash column chromatography on [silica 

gel, 4% MeOH in CH2Cl2] to furnish the phenolic ethyl ester 6 as a solid (2.1 g) in 84% yield: M.p 

= >260 ˚C (decomp.); 1H NMR (300 MHz, CDCl3) δ 1.44 (t, 3H, J = 7.1 Hz),  2.19-2.42 (m, 3H), 

3.55-3.64 (m, 2H), 3.81-3.89 (m, 1H), 4.42 (q, 2H, J = 7.1 Hz), 4.82 (d, 1H, J = 7.3 Hz), 7.13 (dd, 

1H, J = 8.7 Hz, 2.6 Hz), 7.27-7.31 (m, 1H), 7.85 (s, 1H), 7.91 (d, 1H, J = 2.6 Hz), 9.22 (s, 1H); 

13C NMR (75 MHz, CDCl3) δ 14.3, 24.4, 28.4, 46.9, 53.8, 61.2, 117.5, 120.8, 124.9, 125.2, 127.7, 

129.5, 136.0, 137.2, 157.6, 162.8, 164.6; HRMS (ESI) (M+H)+, calcd. for C17H18N3O4 328.1292; 

Found 328.1293. 

7.6 (S)-Ethyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]py-

rolo[1,2-a][1,4]diazepine-1-carboxylate (5a) 

To a solution of phenol 6 (1.5 g, 4.6 mmol) in CH2Cl2 (30 mL), Cs2CO3 (3 g, 9.2 mmol) was added 

and the mixture stirred at rt for 30 min. Then CD3I (2.3 ml, 36.8 mmol) was added slowly and the 

reaction mixture was stirred at rt for 24 h. After completion of the reaction (TLC, silica gel), the 

mixture was quenched with cold water and extracted with CH2Cl2. The combined organic layer 

was washed with brine and dried (Na2SO4). The solvent was removed under reduced pressure and 
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the residue was purified by flash column chromatography [silica gel, 2% CH3OH in CH2Cl2] to 

furnish ester 5a as a solid (1.36 g) in 86% yield: M.p = 195-196 ˚C; [α]D
25= +20.00 (c 0.5%, in 

CH2Cl2); 
1H NMR (300 MHz, CDCl3) δ 1.46 (t, 3H, J = 7.1 Hz),  2.17-2.36 (m, 3H), 3.54-3.63 

(m, 2H), 3.77-3.84 (m, 1H), 4.43 (q, 2H, J = 7.1 Hz), 4.77 (d, 1H, J = 7.3 Hz), 7.16 (dd, 1H, J = 

8.8 Hz, 2.8 Hz), 7.33 (d, 1H, J = 8.8 Hz), 7.60 (d, 1H, J = 2.8 Hz), 7.82 (s, 1H); 13C NMR (75 

MHz, CDCl3) δ 14.3, 24.3, 28.3, 46.5, 53.4, 61.1, 114.4, 119.7, 124.5, 126.0, 127.6, 130.5, 135.8, 

137.6, 159.3, 162.8, 163.7; HRMS (ESI) (M+H)+, calcd. for C18H17
2H3N3O4 345.1637; Found 

345.1635. The 13C-D signal was not observed due to the long relaxation time, line broadening, 

reduced NOE effect, and spin-spin coupling.  

7.7 (S)-tert-Butyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]py-

rolo[1,2-a][1,4]diazepine-1-carboxylate (7) 

A flame dried round bottom flask was charged with dry THF (30 mL) and lithium rod (excess, cut 

into small pieces) was added.  Dry tert-butanol (2.6 mL, 27.1 mmol) was added to the above flask 

at rt and the mixture which resulted was heated to 45-50 ˚C under Ar until the tert-butanol reacted 

completely. This freshly prepared lithium tert-butoxide solution was transferred carefully with a 

cannula to another flame dried round bottom flask charged with ester 5 (1.0 g, 2.71 mmol) and 

stirred at 50 ˚C under Ar for 30 min. After the completion of the reaction (TLC, silica gel), the 

flask was cooled to rt and the THF removed under reduced pressure. Ice water (10 mL) was added 

to the residue and it was then extracted with EtOAc. The organic layer was washed with water (2 

X 10 mL) and brine (15 mL). The solvent was removed under reduced pressure and the residue 

was purified by flash column chromatography [silica gel, EtOAc/hexane (7:3)] to yield tert-butyl 

ester (XHE-III-74) 7 as a solid ( 0.72 g) in 67% yield: M.p = 115-117 ˚C (119-121 ˚C)16; [α]D
25= 

+36.00 (c 0.5%, in CH2Cl2); 
1H NMR (300 MHz, CDCl3) δ 1.63 (s, 9H),  2.14-2.28 (m, 3H), 3.47-
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3.61(m, 2H), 3.74-3.81 (m, 1H), 3.90 (s, 3H), 4.73 (d, 1H, J = 6.9 Hz), 7.14 (dd, 1H, J = 8.8 Hz, 

3.0 Hz), 7.30 (d, 1H, J = 8.8 Hz), 7.57 (d, 1H, J = 3.0 Hz), 7.83 (s, 1H); 13C NMR (75 MHz, CDCl3) 

δ 24.3, 28.2, 28.3, 46.7, 53.4, 55.9, 81.9, 114.5, 119.7, 124.6, 126.1, 128.9, 130.5, 135.6, 136.5, 

159.4, 162.2, 163.8; HRMS (ESI) (M+Na)+, calcd. for C20H23N3O4Na 392.1586; Found 392.1574. 

The spectral data were identical to the reported values.17 

Alternative Synthesis: The acid 9a (0.1 g, 0.32 mmol) was suspended in dry toluene (15 ml) in 

an oven dried round bottom flask and the mixture which resulted, was heated to reflux. N,N-

dimethylformamaide di-tert-butyl acetal (0.3 ml, 1.28 mmol) was added dropwise to the above 

refluxing mixture. The mixture was refluxed until the reaction was complete (30 mins, confirmed 

by TLC, silica gel). After that, the reaction mixture was cooled to rt, and then quenched with an 

ice cold aq NaHCO3 solution followed by extraction with EtOAc (2x 10 mL). The combined 

organic layer was washed with brine and dried (Na2SO4). The solvent was then removed under 

reduced pressure and the residue was purified by flash column chromatography [silica gel, 

EtOAc/hexane (7:3)] to yield tert-butyl ester (XHE-III-74) 7 as a solid (0.07 g) in 60% yield. 

7.8 (S)-tert-Butyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]pyrolo[1,2-a][1,4]diazepine-1-carboxylate (7a) 

The tert-butyl ester 7a was prepared from ethyl ester 5a by following the same procedure 

employed for preparation of tert-butyl ester 7 in 67% yield: M.p = 114-115 ˚C; 1H NMR (300 

MHz, CDCl3) δ 1.65 (s, 9H),  2.15-2.34 (m, 3H), 3.50-3.63 (m, 2H), 3.77-3.84 (m, 1H), 4.75 (d, 

1H, J = 7.2 Hz), 7.15 (dd, 1H, J = 8.8 Hz, 2.8 Hz), 7.27-7.32 (m, 1H), 7.59 (d, 1H, J = 2.8 Hz), 

7.79 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 24.4, 28.2, 28.4, 46.7, 53.5, 81.8, 114.4, 119.8, 124.6, 

126.3, 129.3, 130.6, 135.7, 136.5, 159.3, 162.6, 163.8; HRMS (ESI) (M+H)+, calcd. for 

C20H21
2H3N3O4 373.1950; Found 373.1951.  
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7.9 (S)-tert-Butyl-7-hydroxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]py-

rolo[1,2-a][1,4]diazepine-1-carboxylate (8) 

 The tert-butyl ester 8 was prepared from phenolic ethyl ester 6 following the same procedure 

employed for the preparation of tert-butyl ester 7 in 65% yield:  M.p = 174-175 °C; 1H NMR (300 

MHz, CDCl3) δ 1.63 (s, 9H),  2.09-2.34 (m, 3H), 3.50-3.62 (m, 2H), 3.77-3.85 (m, 1H), 4.79 (d, 

1H, J = 7.1 Hz), 7.10 (dd, 1H, J = 8.6 Hz, 2.2 Hz), 7.23-7.28 (m, 1H), 7.77 (bs, 1H), 7.85 (s, 1H), 

9.75 (bs, 1H); 13C NMR (75 MHz, CDCl3) δ 24.4, 28.2, 28.3, 46.9, 53.7, 82.0, 117.4, 120.7, 124.9, 

125.1, 129.1, 129.6, 135.8, 136.2, 157.7, 162.3, 164.6; HRMS (ESI) (M+H)+, calcd. for 

C19H22N3O4 356.1605; Found 356.1615. 

7.10 (S)-7-Methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo[1,2-

a][1,4]diazepine-1-carboxylic acid (9) 

The ester 5 (2.12 g, 6.21 mmol) was dissolved in a mixture of EtOH (4 mL) and H2O (3 mL), after 

which solid NaOH (1.2 g, 31.0 mmol) was added to the solution. This reaction mixture was heated 

to 50 ̊ C for 15 min and the EtOH was removed under reduced pressure. The remaining aq solution 

was stirred at 0 ˚C for 10 min and then conc HCl was added dropwise to the solution until the pH 

was 3-4 (pH paper). A pale yellow precipitate which formed was left in the solution and the mixture 

was allowed to stir at rt for 2 h. The precipitate was collected by filtration, washed with cold water 

(2 X 5 mL), and the aq layer also was allowed to stand at rt for 10 h to obtain additional solid 9. 

The combined solids were dried in a vacuum oven at 80 ˚C for 7 h to get pure acid 9 in 80 % yield: 

M.p = 210-211 ˚C; [α]D
25= +8.00 (c 0.25%, in CH3OH); 1H NMR (300 MHz, DMSO) δ 2.03-2.16 

(m, 3H),  3.50-3.63 (m, 3H), 3.87 (s, 3H), 4.84 (d, 1H, J = 7.5 Hz), 7.31 (dd, 1H, J = 8.9 Hz, 3.0 

Hz), 7.41 (d, 1H, J = 3.0 Hz), 7.63 (d, 1H, J = 8.9 Hz), 8.21 (s, 1H); 13C NMR (75 MHz, DMSO) 

δ 24.9, 28.7, 47.3, 53.6, 56.8, 115.3, 119.9, 126.7, 127.0, 128.6, 131.0, 137.4, 137.5, 159.5, 164.0, 
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165.3; HRMS (ESI) (M+H)+, calcd. for C16H16N3O4 314.1141; Found 314.1141. The spectral data 

were identical to the reported values16. This material was employed directly in the next step. 

7.11 (S)-11,12,13,13a-Tetrahydro-7-(2H3)-methoxy-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c]-

[1,4]benzodiazepine-1-carboxylic acid (9a)  

The acid 9a was prepared from ester 5a following the procedure employed for the preparation of 

acid 9 in 82% yield: M.p = 210-212 ˚C; [α]D
25= +8.00 (c 0.25%, in CH3OH); 1H NMR (300 MHz, 

CDCl3) δ 2.17-2.34 (m, 3H), 3.48-3.83 (m, 3H), 4.72 (d, 1H, J = 7.1 Hz), 7.17 (dd, 1H, J = 8.7 Hz, 

2.3 Hz), 7.31-7.35 (m, 1H), 7.60 (d, 1H, J = 2.3 Hz), 7.82 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 

24.4, 28.5, 46.7, 53.2, 114.7, 119.8, 124.5, 125.7, 126.7, 130.8, 134.8, 137.5, 159.7, 161.5, 163.6; 

HRMS (ESI) (M+H)+, calcd. for C16H13
2H3N3O4 317.1324; Found 317.1328. This material was 

employed directly in a later step. 

7.12 (S)-Methyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyro-

lo[1,2-a][1,4]diazepine-1-carboxylate (10)  

To an oven dried two neck round bottom flask, ethyl ester 5 (0.30 g, 0.87 mmol) was added in dry 

methanol (10 mL) and then NaOMe (0.2g, 3.48 mmol) was added to the solution. The mixture was 

heated to reflux until the reaction was complete (~1h, confirmed by TLC, silica gel). Then the 

reaction mixture was quenched with an ice cold aq NaHCO3 solution. The solvent was removed 

under reduced pressure and the residue was dissolved in water and extracted with EtOAc (2x 20 

mL). The combined organic layer was then washed with brine and dried (Na2SO4). The solvent 

was removed under reduced pressure and the residue was purified by flash column 

chromatography [silica gel, EtOAc/hexane (1:1)] to yield pure methyl ester 10 as a solid (0.286 g) 

in 93% yield: M.p = 180-182 ̊ C; [α]D
25= +8.00 (c 0.25%, in CH2Cl2); 

1H NMR (300 MHz, CDCl3) 
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δ 2.16-2.35 (m, 3H), 3.52-3.61 (m, 2H), 3.75-3.81 (m, 1H), 3.91 (s, 3H), 3.94 (s, 3H), 4.75 (d, 1H, 

J = 6.9 Hz), 7.16 (dd, 1H, J = 8.7 Hz, 2.7 Hz), 7.34 (d, 1H, J = 8.7 Hz), 7.59 (d, 1H, J = 2.7 Hz), 

7.88 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 24.4, 28.4, 46.6, 52.2, 53.4, 55.9, 114.5, 119.8, 124.7, 

125.9, 126.9, 130.6, 135.9, 137.9, 159.5, 162.9, 163.7. HRMS (ESI) (M+Na)+, calcd. for 

C17H17N3O4Na 350.1117; Found 350.1125. 

7.13 (S)-Methyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]-

pyrolo-[1,2-a][1,4]diazepine-1-carboxylate (10a)  

The methyl ester 10a was prepared from acid 5a following the procedure employed for preparation 

of methyl ester 10 in 97% yield: M.p = 182-183 ˚C; 1H NMR (300 MHz, CDCl3) δ 2.17-2.37 (m, 

3H), 3.50-3.63 (m, 2H), 3.75-3.83 (m, 1H), 3.95 (s, 3H), 4.76 (d, 1H, J = 7.0 Hz), 7.17 (dd, 1H, J 

= 8.8 Hz, 2.9 Hz), 7.34 (d, 1H, J= 8.8 Hz), 7.60 (d, 1H, J = 2.9 Hz), 7.82 (s, 1H); 13C NMR (75 

MHz, CDCl3) δ 24.4, 28.4, 46.6, 52.2, 53.5, 114.5, 119.8, 124.6, 126.0, 127.3, 130.6, 135.9, 137.9, 

159.4, 163.2, 163.7. HRMS (ESI) (M+H)+, calcd. for C17H15
2H3N3O4 331.1480; Found 331.1486. 

7.14 General method for the synthesis of esters and amides (11, 11a- 19, and 19a) 

A mixture of acid (9 or 9a, 0.32 mmol) individually, thionyl chloride (5.12 mmol) and dry CH2Cl2 

(8 mL) was added to an oven dried round bottomed flask under argon. This suspension was allowed 

to reflux at 52 ˚C (the outside oil bath temperature was at 60 ˚C) for 1 h under an atmosphere of 

argon. The solution became a clear yellow color. The absence of the starting material was 

confirmed by the examination by TLC (silica gel). The organic solvent and excess thionyl chloride 

were removed under reduced pressure. This evaporation was repeated a couple of times with dry 

CH2Cl2 (5 mL) to remove excess thionyl chloride and any HCl. The yellow residue, which was 

obtained, was dissolved in dry CH2Cl2 (10 mL) and cooled to 0 ˚C for 10 min under argon. The 
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appropriate nucleophile (alcohol/thiol/amine, 3.2 mmol), followed by Et3N (1.6 mmol) was added 

to the reaction mixture at 0˚C and the mixture was then allowed to warm to rt and stirred for 2-7 

h. After the completion of the reaction (TLC, silica gel), the solvent was removed under reduced 

pressure. The residue was quenched with ice cold water (5 mL) and extracted with CH2Cl2 (8 mL 

X 2). The combined organic layer was washed with brine (5 mL). The solvent was removed under 

reduced pressure and the residue was purified by flash column chromatography (silica gel) to yield 

the corresponding pure esters, thioesters and amides whose properties are depicted below. Note: 

We observed in a control experiment that the mixture of dichloromethane plus thionyl 

chloride boils at 52 ˚C. 

7.15 (S)-Isobutyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyro-

lo[1,2-a][1,4]diazepine-1-carboxylate (11) 

The isobutyl ester 11 was prepared from acid 9 following the general procedure with dry isobutanol 

as the nucleophile. The crude residue was purified by flash column chromatography [silica gel, 

EtoAc/hexane (7:3)] to yield pure isobutyl ester 11 as a solid in 70% yield: M.p = 126-127 ˚C 

(104-106 ˚C)16;  1H NMR (300 MHz, CDCl3) δ 1.04 (d, 6H, J = 6.7 Hz), 2.13-2.37 (m, 4H), 3.49-

3.63 (m, 2H), 3.76-3.84 (m, 1H), 3.92 (s, 3H), 4.14 (d, 2H, J = 6.9 Hz), 4.76 (d, 1H, J = 6.9 Hz), 

7.17 (dd, 1H, J= 8.8 Hz, 2.9 Hz), 7.33 (d, 1H, J = 8.8 Hz), 7.60 (d, 1H, J = 2.9 Hz), 7.82 (s, 1H); 

13C NMR (75 MHz, CDCl3) δ 19.3, 24.4, 27.8, 28.4, 46.6, 53.5, 55.9, 71.2, 114.5, 119.8, 124.6, 

126.2, 127.8, 130.6, 135.9, 137.6, 159.4, 163.1, 163.8. HRMS (ESI) (M+Na)+, calcd. for 

C20H23N3O4Na 392.1586; Found 392.1594. The spectral data were identical to the reported 

values16. 
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7.16 (S)-Isobutyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]py-rrol-o[1,2-a][1,4]diazepine-1-carboxylate (11a)  

The isobutyl ester 11a was prepared from acid 9a following the general procedure with dry 

isobutanol as the nucleophile. The crude residue was purified by flash column chromatography 

[silica gel, EtOAc/hexane (7:3)] to yield pure isobutyl ester 11a as a solid in 61% yield: M.p = 

125-127 ˚C; 1H NMR (300 MHz, CDCl3) δ 1.03 (d, 6H, J = 6.7 Hz), 2.12-2.31 (m, 4H), 3.51-3.62 

(m, 2H), 3.76-3.82 (m, 1H), 4.14 (d, 2H, J = 6.9 Hz), 4.76 (d, 1H, J = 6.9 Hz), 7.16 (dd, 1H, J = 

8.8 Hz, 2.9 Hz), 7.32 (d, 1H, J = 8.8 Hz), 7.59 (d, 1H, J = 2.9 Hz), 7.81 (s, 1H); 13C NMR (75 

MHz, CDCl3) δ 19.1, 24.2, 27.6, 28.2, 46.4, 53.3, 71.0, 114.3, 119.5, 124.5, 125.9, 127.5, 130.4, 

135.7, 137.4, 159.2, 162.8, 163.5. HRMS (ESI) (M+H)+, calcd. for C20H21
2H3N3O4 373.1950; 

Found 373.1955. 

7.17 (S)-1,1,1,3,3,3-Hexafluoropropan-2-yl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-

benzo[e]-imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxylate (12)  

The hexafluoro isopropyl ester 12 was prepared from acid 9 following the general procedure with 

dry 1,1,1,3,3,3-hexafluoropropan-2-ol as the nucleophile. The crude residue was purified by flash 

column chromatography [silica gel, EtOAc/hexane (1:1)] to yield pure ester 12 as a solid in 95% 

yield: M.p = 204-205 ˚C; [α]D
25= +16.67 (c 0.3%, in CH2Cl2); 

1H NMR (300 MHz, CDCl3) δ 2.16-

2.29 (m, 3H), 3.38-3.40 (m, 1H), 3.52-3.62 (m, 1H), 3.79-3.85 (m, 1H), 3.92 (s, 3H), 4.77 (d, 1H, 

J = 7.3 Hz), 5.98-6.08 (m, 1H), 7.18 (dd, 1H, J = 8.8 Hz, 2.8 Hz), 7.33 (d, 1H, J = 8.8 Hz), 7.61 

(d, 1H, J = 2.8 Hz), 7.87 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 24.3, 28.3, 46.6, 53.4, 55.9, 66.7 

(sep, J = 34.5 Hz), 114.7, 119.9, 120.6 (q, J = 279 Hz), 124.3, 124.6, 125.6, 130.6, 136.8, 140.6, 

159.4, 159.7, 163.6; HRMS (ESI) (M+Na)+, calcd. for C19H15F6N3O4Na 486.0864; Found 

486.0875. 
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7.18 (S)-1,1,1,3,3,3-Hexafluoropropan-2-yl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-

9H-benzo[e]imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxylate (12a)  

The hexafluoro isopropyl ester 12a was prepared from acid 9a following the general procedure 

with dry 1,1,1,3,3,3-hexafluoropropan-2-ol as the nucleophile. The crude residue was purified by 

column chromatography [silica gel, EtOAc/hexane (7:3)] to yield pure ester 12a as a solid in 97% 

yield: M.p = 204-206 ˚C; 1H NMR (300 MHz, CDCl3) δ 2.15-2.34 (m, 3H), 3.38-3.42 (m, 1H), 

3.53-3.63 (m, 1H), 3.80-3.86 (m, 1H), 4.79 (d, 1H, J = 7.3 Hz), 5.98-6.10 (sep, 1H, J = 6.1 Hz), 

7.19 (dd, 1H, J = 8.8 Hz, 2.9 Hz), 7.34 (d, 1H, J = 8.8 Hz), 7.62 (d, 1H, J = 2.9 Hz), 7.89 (s, 1H); 

13C NMR (75 MHz, CDCl3) δ 24.3, 28.3, 46.6, 53.4, 66.7 (sep, J = 34.5 Hz), 114.6, 119.9, 120.6 

(q, J =  = 279 Hz), 124.3, 124.6, 125.6, 130.6, 136.8, 140.6, 159.5, 159.7, 163.6; HRMS (ESI) 

(M+Na)+, calcd. for C19H13
2H3F6N3O4 467.1228; Found 467.1230.  

7.19 (S)-S-Ethyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrr-

olo[1,2-a][1,4]diazepine-1-carbothioate (13) 

The thio ethyl ester 13 was prepared from acid 9 following the general procedure with dry 

ethanethiol as the nucleophile. The crude residue was purified by flash column chromatography 

[silica gel, EtOAc/hexane (8:2)] to yield pure thio ester 13 as a solid in 70% yield: M.p = 228-230 

˚C; [α]D
25= -14.29 (c 0.28%, in CH2Cl2); 

1H NMR (300 MHz, CDCl3) δ 1.35 (t, 3H, J = 7.4 Hz), 

2.14-2.25 (m, 3H), 3.00 (q, 2H, J = 7.4 Hz), 3.42-3.60 (m, 2H), 3.74-3.82 (m, 1H), 3.91 (s, 3H), 

4.71 (d, 1H, J = 7.2 Hz), 7.15 (dd, 1H, J = 8.8 Hz, 2.8 Hz), 7.31 (d, 1H, J = 8.8 Hz), 7.59 (d, 1H, 

J = 2.8 Hz), 7.79 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 14.6, 23.1, 24.4, 28.6, 46.5, 53.3, 55.9, 

114.5, 119.8, 124.5, 125.9, 130.6, 132.5, 134.6, 135.5, 159.5, 163.6, 188.1. HRMS (ESI) (M+Na)+, 

calcd. for C18H19N3O3SNa 380.1045; Found 380.1047. 
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7.20 (S)-S-Ethyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]pyrrolo[1,2-a][1,4]diazepine-1-carbothioate (13a) 

The thio ethyl ester 13a was prepared from 9a following the general procedure with dry ethanethiol 

as the nucleophile. The crude residue was purified by flash column chromatography [silica gel, 

EtOAc/hexane (8:2)] to yield pure thio ester 13a as a solid in 80% yield: M.p = 229-231 ˚C; 1H 

NMR (300 MHz, CDCl3) δ 1.36 (t, 3H, J = 7.4 Hz), 2.18-2.26 (m, 3H), 3.02 (q, 2H, J = 7.4 Hz), 

3.44-3.61 (m, 2H), 3.76-3.83 (m, 1H), 4.73 (d, 1H, J = 6.9 Hz), 7.17 (dd, 1H, J = 8.8 Hz, 2.9 Hz), 

7.33 (d, 1H, J = 8.8 Hz), 7.60 (d, 1H, J = 2.9 Hz), 7.81 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 14.6, 

23.1, 24.4, 28.6, 46.5, 53.4, 114.6, 119.8, 124.5, 125.9, 130.7, 133.6, 134.6, 135.5, 159.5, 163.6, 

188.1. HRMS (ESI) (M+H)+, calcd. for C18H17
2H3N3O3S 361.1408; Found 361.1405. 

7.21 (S)-S-tert-Butyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]-

pyrolo[1,2-a][1,4]diazepine-1-carbothioate (14)  

The thio tert-butyl ester 14 was prepared from acid 9 following the general procedure with dry 

tert-butyl mercaptan as the nucleophile. The crude residue was purified by flash column 

chromatography [silica gel, EtOAc/hexane (8:2)] to yield pure thio ester 14 as a solid in 82% yield: 

M.p = 130-132 ˚C; [α]D
27= -23.54 (c 0.17% in CH2Cl2); 

1H NMR (300 MHz, CDCl3) δ 1.57 (s, 

9H),  2.18-2.20 (m, 3H), 3.41-3.59 (m, 2H), 3.74-3.80 (m, 1H), 3.90 (s, 3H), 4.69 (d, 1H, J = 7.2 

Hz), 7.14 (dd, 1H, J = 8.9 Hz, 3.0 Hz), 7.29 (d, 1H, J = 8.9 Hz ), 7.58 (d, 1H, J = 3.0 Hz), 7.74 (s, 

1H); 13C NMR (75 MHz, CDCl3) δ 24.3, 28.5, 29.7, 46.4, 47.1, 53.3, 55.8, 114.4, 119.6, 124.5, 

125.9, 130.5, 134.2, 135.1, 159.3, 163.5, 188.7 ; HRMS (ESI) (M+H)+, calcd. for C20H24N3O3S 

386.1533; Found 386.1532. 
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7.22 (S)-S-tert-Butyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo-

[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carbothioate (14a)  

The thio tert-butyl ester 14a was prepared from 9a following the general procedure with dry tert-

butyl mercaptan as the nucleophile. The crude residue was purified by flash column 

chromatography [silica gel, EtOAc/hexane (1:1)] to yield pure thio ester 14a as a solid in 89% 

yield: M.p = 129-131 ˚C; 1H NMR (300 MHz, CDCl3) δ 1.52 (s, 9H),  2.11-2.20 (m, 3H), 3.31-

3.53 (m, 2H), 3.69-3.75 (m, 1H), 4.67 (d, 1H, J = 5.9 Hz), 7.08-7.13 (m, 1H), 7.26-7.30 (m, 1H), 

7.52 (d, 1H, J = 2.0 Hz), 7.72 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 24.4, 28.6, 29.8, 46.5, 47.1, 

53.4, 114.5, 119.7, 124.6, 126.0, 130.6, 134.3, 134.4, 135.2, 159.4, 163.6, 188.8 ; HRMS (ESI) 

(M+H)+, calcd. for C20H21
2H3N3O3S 389.1721; Found 389.1725.  

7.23 (S)-7-Methoxy-N-methyl-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]-

pyrolo[1,2-a][1,4]diazepine-1-carboxamide (15) 

The N-methyl amide 15 was prepared from acid 9 following the general procedure with a solution 

of methylamine (33 wt % in absolute ethanol, 3 mL) as the nucleophile. The crude residue was 

purified by flash column chromatography [neutral alumina, 1% MeOH in CH2Cl2] to yield pure 

amide 15 as a solid in 75% yield: M.p = 180-182 ˚C; [α]D
25= +3.70 (c 0.5%, in CH2Cl2); 

1H NMR 

(300 MHz, CDCl3) δ 2.12-2.25 (m, 2H), 2.30-2.41 (m, 1H), 2.98 (d, 1H, J = 4.6 Hz), 3.50-3.62 

(m, 1H), 3.73-3.89 (m, 2H), 3.91 (s, 3H), 4.73 (d, 1H, J = 7.8 Hz), 7.16 (dd, 1H, J = 8.6 Hz, 2.3 

Hz), 7.32 (d, 1H, J = 8.6 Hz), 7.59 (d, 1H, J = 2.3 Hz), 7.72 (brs, 1H), 7.91 (s, 1H); 13C NMR (75 

MHz, CDCl3) δ 24.5, 26.2, 28.7, 46.8, 53.5, 55.9, 114.7, 119.8, 124.7, 125.6, 128.5, 130.9, 134.2, 

135.6, 159.8, 161.3, 163.5. HRMS (ESI) (M+Na)+, calcd. for C17H18N4O3Na 349.1277; Found 

349.1300. 
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7.24 (S)-7-(2H3)-Methoxy-N-methyl-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]-pyrrolo[1,2-a][1,4]diazepine-1-carboxamide (15a) 

The N-methyl amide 15a was prepared from acid 9a following the general procedure with a 

solution of methylamine (33 wt % in absolute ethanol, 3 mL) as the nucleophile. The crude residue 

was purified by flash column chromatography [neutral alumina, 1% MeOH in CH2Cl2] to yield 

pure amide 15a as a solid in 92 % yield: M.p = 180-182 ˚C; 1H NMR (300 MHz, CDCl3) δ 2.12-

2.25 (m, 2H), 2.30-2.42 (m, 1H), 2.97 (d, 1H, J = 5.0 Hz), 3.50-3.60 (m, 1H), 3.74-3.91 (m, 2H), 

4.73 (d, 1H, J = 7.6 Hz), 7.14 (dd, 1H, J = 8.8 Hz, 2.9 Hz), 7.29 (d, 1H, J = 8.8 Hz), 7.48-7.54 

(bm, 1H), 7.58 (d, 1H, J = 2.9 Hz), 7.70 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 24.5, 25.8, 28.6, 

46.5, 53.4, 114.3, 119.4, 124.4, 126.2, 130.2, 130.6, 134.5, 134.9, 159.1, 162.8, 163.7. HRMS 

(ESI) (M+H)+, calcd. for C17H16
2H3N4O3 330.1640; Found 330.1637. 

7.25 (S)-7-Methoxy-N,N-dimethyl-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]pyrrolo[1,2-a][1,4]diazepine-1-carboxamide (16) 

 The N, N-dimethyl amide 16 was prepared from acid 9 following the general procedure with a 

solution of  N,N-dimethylamine (11% in ethanol, 5 mL) as the nucleophile. The crude residue was 

purified by flash column chromatography [neutral alumina, 5% MeOH in CH2Cl2] to yield pure 

dimethyl amide 16 as a solid in 70% yield: M.p = 186-188 ˚C; [α]D
25= +52.00 (c 0.25%, in 

CH2Cl2); 
1H NMR (300 MHz, CDCl3) δ 2.01-2.08 (m, 2H), 2.25-2.38 (m, 1H), 2.89-2.94 (m, 1H), 

3.08 (s, 3H), 3.14 (s, 3H), 3.63-3.82 (m, 2H), 3.91 (s, 3H), 4.73 (dd, 1H, J = 8.4, 3.0  Hz), 7.15 

(dd, 1H, J = 8.9 Hz, 2.9 Hz), 7.34 (d, 1H, J = 8.9 Hz), 7.57 (d, 1H, J = 2.9 Hz), 7.97 (s, 1H); 13C 

NMR (75 MHz, CDCl3) δ 23.9, 27.8, 35.3, 39.1, 47.2, 52.3, 55.8, 114.9, 119.7, 124.2, 126.1, 130.1, 

131.0, 132.0, 134.8, 159.1, 164.2, 165.7. HRMS (ESI) (M+Na)+, calcd. for C18H20N4O3Na 

363.1433; Found 363.1410. 
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7.26 (S)-7-(2H3)-Methoxy-N,N-dimethyl-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imida-

zo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxamide (16a)  

The N, N-dimethyl amide 16a was prepared from acid 9a following the general procedure with a 

solution of  N,N-dimethylamine (11% in ethanol, 5 mL) as the nucleophile. The crude residue was 

purified by flash column chromatography [neutral alumina, 5% MeOH in CH2Cl2] to yield pure 

amide 16a as a solid in 88% yield: M.p = 185-186 ˚C; 1H NMR (300 MHz, CDCl3) δ 2.01-2.10 

(m, 2H), 2.24-2.37 (m, 1H), 2.89-2.98 (m, 1H), 3.07 (s, 3H), 3.14 (s, 3H), 3.63-3.82 (m, 2H), 4.72 

(dd, 1H, J = 8.3 Hz, 2.9  Hz), 7.13 (dd, 1H, J = 8.7 Hz, 2.9 Hz), 7.29 (d, 1H, J = 8.7 Hz), 7.56 (d, 

1H, J = 2.9 Hz), 7.77 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 23.9, 27.9, 35.3, 39.1, 47.2, 52.3, 

114.9, 119.7, 124.2, 126.3, 130.1, 131.4, 132.0, 134.9, 159.0, 164.3, 166.1. HRMS (ESI) (M+H)+, 

calcd. for C18H18
2H3N4O3 344.1796; Found 344.1798. 

7.27 (S)-N-Ethyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyro-

lo[1,2-a][1,4]diazepine-1-carboxamide (17)  

The N-ethyl amide 17 was prepared from acid 9 following the general procedure with a solution 

of ethylamine (2.0 M in THF, 1 mL) as the nucleophile. The crude residue was purified by flash 

column chromatography [neutral alumina, EtOAc/hexane (8:2)] to yield pure ethyl amide 17 as a 

solid in 75% yield: M.p = 175-177 ˚C; [α]D
27=+8.33 (c 0.12%, in CH2Cl2); 

1H NMR (300 MHz, 

CDCl3) δ 1.25 (t, 3H, J = 7.3 Hz),  2.13-2.41 (m, 3H), 3.40-3.59 (m, 3H), 3.74-3.87 (m, 2H), 3.90 

(s, 3H), 4.72 (d, 1H, J = 7.8 Hz), 7.14 (dd, 1H, J = 8.7 Hz, 3.0 Hz), 7.28 (d, 1H, J = 8.7 Hz), 7.48-

7.50 (bm, 1H), 7.58 (d, 1H, J = 2.7 Hz), 7.69 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 14.9, 24.6, 

28.8, 34.0, 46.7, 53.6, 55.8, 114.4, 119.6, 124.5, 126.3,  130.3, 130.7, 134.5, 135.2, 159.3, 162.0, 

163.8; HRMS (ESI) (M+H)+, calcd. for C18H21N4O3 341.1608; Found 341.1601.  
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7.28 (S)-N-Ethyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]pyrrolo[1,2-a][1,4]diazepine-1-carboxamide (17a) 

The N-ethyl amide 17a was prepared from 9a following the general procedure with a solution of 

ethylamine (2.0 M in THF, 1 mL) as the nucleophile. The crude residue was purified by flash 

column chromatography [neutral alumina, EtOAc/hexane (8:2)] to yield pure amide 17a as a solid 

in 96 % yield: M.p = 176-177 ˚C; 1H NMR (300 MHz, CDCl3) δ 1.25 (t, 3H, J = 7.3 Hz),  2.12-

2.24 (m, 2H), 2.30-2.42 (m, 1H), 3.40-3.60 (m, 3H), 3.74-3.91 (m, 2H), 4.72 (d, 1H, J = 7.7 Hz), 

7.14 (dd, 1H, J = 8.8 Hz, 2.9 Hz), 7.29 (d, 1H, J = 8.8 Hz), 7.47-7.53 (bm, 1H), 7.58 (d, 1H, J = 

2.9 Hz), 7.70 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 14.9, 24.6, 28.8, 34.0, 46.7, 53.6, 114.4, 119.6, 

124.5, 126.4, 130.4, 130.7, 134.6, 135.2, 159.3, 162.1, 163.8; HRMS (ESI) (M+H)+, calcd. for 

C18H18
2H3N4O3 344.1796; Found 344.1797.  

7.29 (S)-N-(tert-Butyl)-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]pyrrolo[1,2-a][1,4]diazepine-1-carboxamide (18)  

The N-tert-butyl amide 18 was prepared from acid 9 following the general procedure with tert-

butyl amine as the nucleophile. The crude residue was purified by flash column chromatography  

[neutral alumina, EtOAc/hexane (8:2)] to yield pure amide 18 as a solid in 80 % yield: M.p = 152-

154 ˚C; [α]D
27= +170.00 (c 0.10%, in CH2Cl2); 

1H NMR (300 MHz, CDCl3) δ 1.47 (s, 9H),  2.11-

2.37 (m, 3H), 3.50-3.60 (m, 1H), 3.74-3.86 (m, 2H), 3.91 (s, 3H), 4.71 (d, 1H, J = 7.8 Hz), 7.14 

(dd, 1H, J = 8.7 Hz, 3.0 Hz), 7.26-7.29 (m, 1H), 7.45 (bs, 1H), 7.58 (d, 1H, J = 3.0 Hz), 7.77 (s, 

1H); 13C NMR (75 MHz, CDCl3) δ 24.5, 28.8, 46.7, 50.9, 53.6, 55.8, 114.4, 119.6, 124.6, 126.3, 

130.7, 131.2, 134.3, 134.9, 159.2, 161.5, 163.8; HRMS (ESI) (M+H)+, calcd. for C20H25N4O3 

369.1921; Found 369.1920. 
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7.30 (S)-N-(tert-Butyl)-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imida-

zo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxamide (18a)  

The N-tert-butyl amide 18a was prepared from acid 9a following the general procedure with tert-

butyl amine as the nucleophile. The crude residue was purified by flash column chromatography 

[neutral alumina, EtOAc/hexane (8:2)] to yield pure amide 18a as a solid in 85% yield: M.p = 153-

155 ˚C; 1H NMR (300 MHz, CDCl3) δ 1.49 (s, 9H),  2.12-2.39 (m, 3H), 3.51-3.61 (m, 1H), 3.75-

3.94 (m, 2H), 4.73 (d, 1H, J = 7.9 Hz), 7.14 (dd, 1H, J = 8.8 Hz, 2.9 Hz), 7.27-7.30 (m, 1H), 7.39 

(bs, 1H), 7.59 (d, 1H, J = 2.9 Hz), 7.68 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 24.6, 28.9, 46.7, 

50.9, 53.7, 114.4, 119.7, 124.5, 126.5, 130.7, 131.4, 134.3, 134.8, 159.3, 161.7, 163.8; HRMS 

(ESI) (M+H)+, calcd. for C20H21
2H3N4O3 372.2108; Found 372.2109.  

7.31 (S)-N-Cyclopropyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]py-rrolo[1,2-a][1,4]diazepine-1-carboxamide (19)  

The N-cyclopropyl amide 19 was prepared from acid 9 following the general procedure with dry 

cyclopropylamine as the nucleophile. The crude residue was purified by flash column 

chromatography [neutral alumina, EtOAc/hexane (1:1)] to yield pure amide 19 as a solid in 82% 

yield: M.p = 189-190 ˚C; [α]D
25= -6.67 (c 0.3%, in CH2Cl2); 

1H NMR (300 MHz, CDCl3) δ 0.54-

0.59 (m, 2H),  0.76-0.82 (m, 2H), 2.06-2.18 (m, 2H), 2.25-2.36 (m, 1H), 2.75-2.81 (m, 1H), 3.43-

3.53 (m, 1H), 3.68-3.81 (m, 2H), 3.84 (s, 3H), 4.65 (d, 1H, J = 8.1 Hz), 7.07 (dd, 1H, J = 8.7 Hz, 

2.8 Hz), 7.19-7.22 (m, 1H), 7.50 (bs, 1H), 7.52 (d, 1H, J = 2.8 Hz), 7.61 (s, 1H); 13C NMR (75 

MHz, CDCl3) δ 6.5, 6.6, 22.3, 24.6, 28.8, 46.6, 53.6, 55.8, 114.4, 119.6, 124.4, 126.3, 130.0, 130.7, 

134.5, 135.3, 159.3, 163.7, 163.8; HRMS (ESI) (M+Na)+, calcd. for C19H20N4O3Na 375.1433; 

Found 375.1440. 
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7.32 (S)-N-Cyclopropyl-7-(2H3)-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imida-

zo[5,1-c]pyrrolo[1,2-a][1,4]diazepine-1-carboxamide (19a)  

The N-cyclopropyl amide 19a was prepared from acid 9a following the general procedure with 

dry cyclopropylamine as the nucleophile. The crude residue was purified by column 

chromatography [neutral alumina, EtOAc/hexane (1:1)] to yield pure amide 19a as a solid in 86% 

yield: M.p = 189-190 ˚C; 1H NMR (300 MHz, CDCl3) δ 0.62-0.67 (m, 2H),  0.84-0.90 (m, 2H), 

2.12-2.26 (m, 2H), 2.33-2.46 (m, 1H), 2.83-2.89 (m, 1H), 3.51-3.60 (m, 1H), 3.75-3.93 (m, 2H), 

4.73 (d, 1H, J = 8.2 Hz), 7.15 (dd, 1H, J = 8.8 Hz, 2.9 Hz), 7.27-7.31 (m, 1H), 7.57-7.60 (m, 2H), 

7.69 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 6.5, 6.6, 22.3, 24.7, 28.8, 46.7, 53.6, 114.4, 119.7, 

124.5, 126.3, 130.1, 130.8, 134.6, 135.3, 159.3, 163.7, 163.8; HRMS (ESI) (M+H)+, calcd. for 

C19H18
2H3N4O3 356.1796; Found 356.1796. 

7.33 (S)-(2H3)--ethyl-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]-

pyrolo[1,2-a][1,4]diazepine-1-carboxylate (23) 

To an oven dried round bottom flask, acid 9 (0.6 g, 1.92 mmol) and Cs2CO3 (1.3 g, 3.8 mmol) 

were dissolved in dry DMF (5 mL) at rt. The 1,1-dideuterated bromoethane (0.2 ml, 2.9 mol) was 

added via a syringe in one portion and the reaction was stirred for 2 hr at rt. The reaction mixture 

was then filtered to remove precipitate (CsBr), and the solid was rinsed with EtOAc (2ml). The 

organic layers were combined, and the solvent was removed under reduced pressure. The residue, 

that resulted, was purified by flash chromatography (silica gel, 10% methanol in DCM) which 

provided pure C(3) substituted d2-ethyl ester 23 as a white solid (0.398 g) in 61% yield: 1H NMR 

(300 MHz, CDCl3) δ 7.81 (s, 1H), 7.59 (d, J = 2.9 Hz, 1H), 7.31 (t, J = 8.4 Hz, 1H), 7.16 (dd, J = 

8.8, 3.0 Hz, 1H), 4.75 (d, J = 7.0 Hz, 1H), 3.91 (s, 3H), 3.87 – 3.70 (m, 1H), 3.70 – 3.35 (m, 2H), 

2.50 – 2.03 (m, 3H), 1.43 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 163.8, 162.9, 159.4, 137.7, 135.9, 
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130.6, 127.7, 126.2, 124.6, 119.8, 114.5, 60.6 (quint), 55.9, 53.5, 46.6, 28.4, 24.4, 14.2. LCMS 

(ESI, m/z, relative intensity (ESI), calcd. for C18H17D2N3O4 (M+H)+ 343.37; Found 343.07. 

7.34 (S)-1-(3-isopropyl-1,2,4-oxadiazol-5-yl)-7-methoxy-11,12,13,13a-tetrahydro-9H-benzo-

[e]imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepin-9-one (24) 

The ethyl ester 5 (0.20 g, 0.58 mmol) was dissolved in dry THF (20 mL) under argon at rt. In a 

separate oven dried round bottom flask which contained 3Å molecular sieves, N'-

hydroxyisobutyrimidamide (0.24 g, 2.34 mmol) was dissolved in dry THF (20 mL) under argon 

and treated with sodium hydride (60% dispersion in mineral oil, 0.058 g, 1.46 mmol). The mixture, 

which resulted, was then stirred for 15 min at which point the solution of ethyl ester 5 was added. 

The reaction mixture, which resulted, was stirred at rt for 2h. After completion of the reaction 

(TLC, silica gel), the mixture was quenched with a saturated aq NaHCO3 solution (5 mL). Then 

water (30 mL) was added and the product was extracted with EtOAc (3 x 50 mL). The combined 

organic layer was then washed with brine and dried (Na2SO4). The solvent was removed under 

reduced pressure and the residue was purified by flash column chromatography [silica gel, 

EtOAc/hexane (1:1)] to yield pure isopropyl oxadiazole 24 as a solid (0.19 g) in 84% yield: 1H 

NMR (300 MHz, CDCl3) δ 7.93 (s, 1H), 7.58 (d, J = 2.8 Hz, 1H), 7.36 (d, J = 8.8 Hz, 1H), 7.16 

(dd, J = 8.8, 2.8 Hz, 1H), 4.82 (d, J = 7.7 Hz, 1H), 3.90 (s, 3H), 3.78 (dd, J = 14.6, 5.2 Hz, 1H), 

3.58 (dd, J = 19.4, 9.6 Hz, 2H), 3.17 (dt, J = 13.8, 6.9 Hz, 1H), 2.43 – 1.92 (m, 3H), 1.37 (d, J = 

6.3 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 175.2, 170.7, 163.7, 159.5, 137.3, 135.6, 130.5, 125.9, 

124.6, 122.1, 119.7, 114.7, 55.9, 53.1, 46.6, 28.1, 26.7, 24.2, 20.5; HRMS (ESI) (M+H)+, calcd. 

for C20H22N5O3 380.1717; Found 380.1710. 
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7.35 (S)-1-(3-Ethyl-1,2,4-oxadiazol-5-yl)-7-methoxy-11,12,13,13a-tetrahydro-9H-benzo[e]-

imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepin-9-one (25) 

The ethyl ester 5 (0.20 g, 0.58 mmol) was dissolved in dry THF (20 mL) under argon at rt. In a 

separate oven dried round bottom flask, which contained 3Å molecular sieves, N'-

hydroxypropionimidamide (0.21 g, 2.34 mmol) was dissolved in dry THF (20 mL) under argon 

and treated with sodium hydride (60% dispersion in mineral oil, 0.058 g, 1.46 mmol). The mixture, 

which resulted, was then stirred for 15 min at which point the solution of ethyl ester 5 was added. 

The reaction mixture which resulted was stirred at rt for 2h. After completion of the reaction (TLC, 

silica gel), the mixture was quenched with a saturated aq NaHCO3 solution (5 mL). Then water  

(30 mL) was added and the product was extracted with EtOAc (3 x 50 mL). The combined organic 

layer was then washed with brine and dried (Na2SO4). The solvent was removed under reduced 

pressure and the residue was purified by flash column chromatography [silica gel, EtOAc/hexane 

(1:1)] to yield pure ethyl oxadiazole 25 as a solid (0.09 g) in 42% yield: 1H NMR (300 MHz, 

CDCl3) δ 7.95 (s, 1H), 7.61 (d, J = 2.9 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.18 (dd, J = 8.8, 3.0 Hz, 

1H), 4.91 – 4.72 (m, 1H), 3.93 (s, 3H), 3.87 – 3.71 (m, 1H), 3.71 – 3.49 (m, 2H), 2.85 (q, J = 7.6 

Hz, 2H), 2.43 – 2.07 (m, 3H), 1.39 (t, J = 7.6 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 171.9, 170.9, 

163.8, 159.5, 137.3, 135.6, 130.5, 125.9, 124.6, 122.1, 119.8, 114.7, 55.9, 53.1, 46.7, 28.1, 24.2, 

19.7, 11.4. HRMS (ESI) (M+H)+, calcd. for C19H20N5O3 366.1561; Found 366.1566. 
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7.36 (S)-7-Methoxy-1-(3-methyl-1,2,4-oxadiazol-5-yl)-11,12,13,13a-tetrahydro-9H-benzo[e]-

imidazo[5,1-c]pyrrolo[1,2-a][1,4]diazepin-9-one (26) 

The ethyl ester 5 (0.20 g, 0.58 mmol) was dissolved in dry THF (20 mL) under argon at rt. In a 

separate oven dried round bottom flask, which contained 3Å molecular sieves, N'-

hydroxyacetimidamide (0.17 g, 2.34 mmol) was dissolved in dry THF (20 mL) under argon and 

treated with sodium hydride (60% dispersion in mineral oil, 0.058 g, 1.46 mmol). The mixture, 

which resulted, was then stirred for 15 min at which point the solution of ethyl ester 5 was added. 

The reaction mixture which resulted was stirred at rt for 2h. After completion of the reaction (TLC, 

silica gel), the mixture was quenched with a saturated aq NaHCO3 solution (5 mL). Then water 

(30 mL) was added and the product was extracted with EtOAc (3 x 50 mL). The combined organic 

layer was then washed with brine and dried (Na2SO4). The solvent was removed under reduced 

pressure and the residue was purified by flash column chromatography [neutral alumina, 5% 

CH3OH in CH2Cl2 ] to yield pure methyl oxadiazole 26 as a solid (0.15 g) in 69% yield: 1H NMR 

(300 MHz, CDCl3) δ 7.94 (s, 1H), 7.59 (d, J = 2.9 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 

8.8, 3.0 Hz, 1H), 4.91 – 4.75 (m, 1H), 3.91 (s, 3H), 3.77 (ddd, J = 10.5, 7.2, 3.0 Hz, 1H), 3.67 – 

3.44 (m, 2H), 2.47 (s, 3H), 2.37 – 1.93 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 171.0, 167.5,163.8, 

159.5, 137.3, 135.7, 130.5, 125.9, 124.6, 122.0, 119.8, 114.7, 55.9, 53.1, 46.7, 28.1, 24.2, 11.8. 

HRMS (ESI) (M+H)+, calcd. for C18H18N5O3 352.1404; Found 352.1400. 

Representative example: ethyl oxime “N'-hydroxypropionimidamide” 

Hydroxylamine hydrochloride (9.73 g, 0.14 mol) and potassium carbonate (41.5 g, 0.3 mol) were 

added into methanol (400 mL) and water (80 mL). The suspension, which resulted, was stirred at 

rt for 15 min after which it was heated to reflux. The propionitrile (7.1 mL, 0.1 mol) was added 

dropwise and the reaction, which resulted, was stirred at reflux for 16 h.  After that, the reaction 
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mixture was cooled to 0 oC and the precipitate which formed was filtered off. The solvent from 

the filtrate was removed under reduced pressure. The solid residue was dissolved in EtOAc and 

washed with water, brine, and dried (Na2SO4), after which the solvent was removed under reduced 

pressure to afford the ethyl oxime as a white solid (6.05 g, 69%): HPLC-MS (ESI) m/z (M+H) 

89.06. This material was used for the next step without further characterization. 

By following the same procedure with isobutyronitrile (6.49 mL, 72.3 mmol), this process 

furnished isopropyl oxime “N'-hydroxyisobutyrimidamide” (5.54 g, 75%). The same process with 

acetonitrile (12.7 mL, 0.24 mol) furnished the methyl oxime “N'-hydroxyacetimidamide (9.92 g, 

55%). 

7.37 (S)-7-hydroxy-1-(oxazol-5-yl)-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrr-

olo[1,2-a][1,4]diazepin-9-one (29) 

The DIBAL-H (1.2 M, 6.2 mL, 7.4 mmol) was added at 0 ˚C to a solution of NaOtBu (0.76 g, 7.9 

mmol) in 20 mL of dry THF. The mixture which resulted, was stirred for 1 h at rt under an argon 

atmosphere. The compound 5 (1.5 g, 4.4 mmol) was then added to the above solution at 0 ˚C and 

the mixture was stirred for 3 h (or until the complete consumption of 5) at room temperature under 

Ar. After completion of the reaction, excess DIBAL-H was quenched by careful addition of 

methanol (~ 15 mL), and this was followed by 5% aq HCl (20-30 mL) at 0 ˚C. After this the 

mixture, which resulted, was allowed to warm to rt. The aq layer was extracted with CH2Cl2 (2x 

50 mL). The combined organic layers were washed with brine and dried (Na2SO4). The solvent 

was removed under reduced pressure to afford the crude aldehyde 27. This residue was purified 

by flash chromatography (2:1 ethyl acetate/hexane) to afford the pure diazepine aldehyde 27 as a 

white solid, (3.325 g, 93%). 1H NMR (300 MHz, CDCl3)  10.05 (s, 1H), 7.91 (s, 1H), 7.61 (d, J 

= 3.0 Hz, 1H), 7.38 (d, J = 9.0 Hz, 1H), 7.19 (dd, J = 3.0, 9.0 Hz, 1H), 4.72 (d, J = 8.4 Hz, 1H), 
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3.93 (s, 3H), 3.78-3.86 (m, 1H), 3.51-3.61 (m, 1H), 3.41-3.45 (m, 1H), 2.14-2.34 (m, 3H). 13C 

NMR (75 MHz, CDCl3)  186.9, 163.5, 159.6, 137.3, 136.8, 134.7, 130.7, 125.6, 124.5, 119.8, 

114.8, 55.9, 53.0, 46.6, 28.8, 24.3; LCMS (ESI m/z) 298.35 (M+H)+. 

The toluenesulfonylmethyl isocyanide, TosMIC (3.28 g, 16.8 mmol), was placed in a dry two neck 

round bottom flask and dissolved in dry MeOH (40 mL) under an argon atmosphere. At rt, K2CO3 

(4.64 g, 33.57 mmol) was added, as well as the aldehyde 27 (3.325 g, 11.18 mmol) to the reaction 

and the mixture was heated to reflux for 3 h. After completion of the reaction, as indicated by TLC 

(silica gel), the reaction mixture was quenched with cold water. After this, 1/3 of the solvent was 

removed under reduced pressure and the remainder extracted with EtOAc (3x 20 mL). The 

combined organic layers were washed with water and brine successively and dried (Na2SO4). The 

solvent was then removed under reduced pressure and the residue was purified by silica gel flash 

chromatography to give the pure oxazole 28 as white solid (2.83 g, 75 %). M.p: 228-230 oC. 1H 

NMR (300 MHz, CDCl3)  8.03 (s, 1H), 8.00 (s, 1H), 7.60 (d, J = 2.7 Hz, 1H), 7.42 (s, 1H), 7.38 

(d, J = 8.7 Hz, 1H), 7.18 (dd, J = 3.0, 8.7 Hz, 1H), 4.82 (dd, J = 2.7, 8.1 Hz, 1H), 3.93 (s, 3H), 

3.62-3.81 (m, 2H), 2.64-2.72 (m, 1H), 2.22-2.35 (m, 1H), 1.94-2.04 (m, 2H). 13C NMR (75 MHz, 

CDCl3)  164.1, 159.1, 150.7, 145.5, 136.3, 131.9, 130.1, 126.3, 126.1, 124.4, 123.6, 119.7, 114.8, 

55.87, 52.5, 46.9, 27.8, 23.8; HRMS (ESI) (M+H)+, calcd. for C18H17N4O3 337.1301; found 

337.1299. 

In an oven dried round bottom flask, dry CH2Cl2 (50 mL) was added and then cooled to 0 ̊ C.  Then 

AlCl3 (3.33 g, 24.97 mmol) and ethanethiol (5.0 ml, 67.52 mmol) were added to the above flask 

slowly at 0 ˚C. The ice bath was removed and the reaction was allowed to warm to rt. After the 

AlCl3 dissolved completely, the oxazole 28 (2.8 g, 8.32 mmol; dissolved in DCM) was added to 

the mixture at rt and the mixture was stirred for 24h under Ar. After completion of the reaction 
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(TLC, silica gel) the solution was poured onto ice and the mixture was acidified using 2N aq HCl 

solution. The solution was extracted 5-7 times with CH2Cl2 and 3-4 times with EtOAc, separately. 

The combined organic layer was washed with brine and dried (Na2SO4). The solvent was removed 

under reduced pressure and the residue was purified by flash column chromatography [silica gel, 

4% MeOH in CH2Cl2] to furnish phenol 29 as a solid (2.36 g) in 88% yield: 1H NMR (500 MHz, 

CDCl3): δ 1.97-2.08 (m, 2H), 2.25-2.35 (m, 1H), 2.65-2.73 (m, 1H), 3.63-3.71 (m, 1H), 3.76-3.84 

(m, 1H), 4.84-4.88 (m, 1H), 7.10 (dd, 1H, J = 8.6, 2.2 Hz), 7.30 (d, 1H, J = 5.3 Hz), 7.40 (s, 1H), 

7.75 (d, 1H, J = 1.9 Hz), 7.95 (s, 1H), 8.02 (s, 1H), 9.85 (s, 1H); 13C NMR (125 MHz, CDCl3): δ 

23.9, 27.8, 47.2, 52.8, 117.6, 120.8, 123.5, 124.7, 125.3, 126.2, 129.3, 131.9, 136.5, 145.4, 150.9, 

157.5, 164.8; HRMS (ESI) (M+H)+, calcd. for C17H15N4O3 323.1139; found 323.1130. 

7.38 (S)-7-Methoxy-1-(1H-tetrazol-5-yl)-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-

c]pyrrolo[1,2-a][1,4]diazepin-9-one (31) 

The DIBAL-H (1.2 M, 6.2 mL, 7.4 mmol) was added at 0 ˚C to a solution of NaOtBu (0.76 g, 7.9 

mmol) in 20 mL of dry THF. The mixture which resulted, was stirred for 1 h at rt under an argon 

atmosphere. The ethyl ester 5 (1.5 g, 4.4 mmol) was then added to the above solution at 0 ˚C and 

the mixture was stirred for 3 h (or until the complete consumption of 5) at rt under Ar. Then, 

concentrated aq NH3 (28%, 20 mL) and I2 (4.57 g, 18.0 mmol) were added at 0 ˚C and the mixture 

which resulted, was stirred at rt for 3h. After complete disappearance of the aldehyde intermediate, 

the reaction mixture was treated with a saturated solution of sodium thiosulfate (~10 mL) and 

extracted with EtOAc (3x 30 mL). The combined organic layer was washed with brine, dried 

(Na2SO4) and the solvent was removed under reduced pressure. The residue was purified by silica 

gel flash column chromatography (70% EtOAc in hexanes) to furnish the nitrile 30 as a white 

solid, 1.22 g, 95%. At this point, to a solution of the nitrile 30 (0.295 g, 1.0 mmol) in 30 mL of 
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THF, ZnBr2 (0.34 g, 1.50 mmol) and NaN3 (78 mg, 1.20 mmol) were added and the mixture was 

heated to reflux for 36 h (or until complete consumption of 30, by TLC, silica gel). The solution 

was then treated with aq 1M HCl to dissolve the solid material and bring the pH of the solution to 

1 by pH paper. The solution, which resulted, was extracted with EtOAc (4x 40 mL). The solvent 

was evaporated under reduced pressure and the residue was passed through a short pad of silica 

gel with 7% MeOH in DCM to furnish 196 mg of 31, (yield,58 %). 1H NMR (300 MHz, DMSO-

d6): δ 1.96-2.14 (m, 2H), 2.23-2.40 (m, 1H), 3.40-3.50 (m, 1H), 3.5-3.66 (m, 1H), 3.89 (s, 3H), 

3.96-4.10 (m, 1H), 4.95 (d, 1H, J = 8.34 Hz), 7.31-7.38 (m, 1H), 7.43 (d, 1H, J = 2.8 Hz), 7.69 (d, 

1H, J = 8.8 Hz), 8.60 (s, 1H); 13C NMR (75 MHz, DMSO-d6): δ 24.7, 27.9, 46.6, 52.3, 56.3, 115.1, 

119.2, 123.5, 126.0, 126.5, 130.9, 137.7, 155.4, 159.3, 163.3; HRMS (ESI) (M+H)+, calcd. for 

C16H16N7O2 336.1360; found 336.1357. 

7.39 (S)-7-Hydroxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrolo[1,2-a]-

[1,4]di-azepine-1-carboxylic acid (32)  

The ester 6 (1.52 g, 4.6 mmol) was dissolved in a mixture of EtOH (4 mL) and H2O (3 mL), after 

which solid NaOH (1.0 g, 25.0 mmol) was added to the solution. This reaction mixture was heated 

to 50 ̊ C for 15 min and the EtOH was removed under reduced pressure. The remaining aq solution 

was stirred at 0 ˚C for 10 min and then conc HCl was added dropwise to the solution until the pH 

was 3-4 (pH paper). A pale-yellow precipitate, which formed, was left in the solution and the 

mixture was allowed to stir at rt for 2 h. Then the precipitate was collected by filtration, washed 

with cold water (2-5 mL) and the aq layer was allowed to stand at rt for 10 h to obtain additional 

solid acid 32. The combined solids were dried in a vacuum oven at 80 ˚C for 7 h to get pure dry 

32 in 65% yield: 1H NMR (300 MHz, CD3OD): δ 2.14-2.29 (m, 3H), 3.50-3.63 (m, 2H), 3.70-3.78 

(m, 1H), 4.95 (d, 1H, merged with solvent peak), 7.15 (d, 1H, J = 8.7 Hz, 3.0 Hz), 7.38-7.43 (m, 
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1H), 7.53 (d, 1H, J = 8.76 Hz), 8.48 (m, 1H); 13C NMR (75 MHz, CD3OD) δ 24.0, 27.7, 46.2, 

53.4, 116.2, 119.8, 124.5, 125.4, 128.4, 130.2, 136.2, 137.5, 158.2, 162.5, 164.4; HRMS (ESI) 

(M+H)+, calcd. for C15H14N3O4 300.0979; found 300.0990. 

7.40 (S)-N,7-Dimethoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrolo-

[1,2-a][1,4]diazepine-1-carboxamide (33) 

A mixture of acid 9 (0.15 g), thionyl chloride (1 mL) and dry CH2Cl2 (8 mL) was added to an oven 

dried round bottomed flask under argon. This suspension was allowed to reflux at 52 ºC (the 

outside oil bath temperature was at 60 ºC) for 1 h under an atmosphere of argon. The solution 

became a clear yellow color. The absence of the starting material was confirmed by the 

examination of the solution by TLC (silica gel). The organic solvent and excess thionyl chloride 

were removed under reduced pressure. This flash evaporation with dry DCM was repeated two 

times with dry CH2Cl2 (5 mL) to remove excess thionyl chloride and any HCl. The yellow residue, 

which was obtained, was dissolved in dry CH2Cl2 (10 mL) and cooled to 0 ºC for 10 min under 

argon. Then methyl hydroxylamine hydrochloride (2.5 eq), followed by Et3N (5 eq) was added to 

the reaction mixture at 0 ºC and the mixture was then allowed to warm to rt and stirred for 4 h. 

After the completion of the reaction (TLC, silica gel), the solvent was removed under reduced 

pressure and acetone (4 mL) was added to the residue. The salt was removed by filtration and the 

solvent was removed under reduced pressure to provide MRS-III-87 in 70 % yield: 1H NMR (300 

MHz, CDCl3) δ 2.14-2.22 (m, 2H), 2.30-2.39 (m, 1H), 3.08-3.10 (m, 1H), 3.51-3.57 (m, 1H), 3.75-

3.80 (m, 1H), 3.88 (s, 3H), 3.91 (s, 3H), 4.72 (d, 1H, J = 8.0 Hz ), 7.14 (dd, 1H, J = 8.8 Hz, 2.7 

Hz), 7.28 (d, 1H, J = 8.8 Hz), 7.58 (d, 1H, J = 2.7 Hz), 7.69 (s, 1H), 9.84 (bs, 1H); LCMS (ESI, 

m/z, relative intensity (ESI), calcd. For C17H17N4O4 (M-H)+ 341.35; Found 341.00. 
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7.41 (S)-N-Cyano-7-methoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]py-

rrolo[1,2-a][1,4]diazepine-1-carboxamide (34) 

A mixture of acid 9 (0.15 g), thionyl chloride (1 mL) and dry CH2Cl2 (8 mL) was added to an oven 

dried round bottomed flask under argon. This suspension was allowed to reflux at 52 ºC (the 

outside oil bath temperature was at 60 ºC) for 1 h under an atmosphere of argon. The solution 

became a clear yellow color. The absence of the starting material was confirmed by the 

examination of the solution by TLC (silica gel). The organic solvent and excess thionyl chloride 

were removed under reduced pressure. This evaporation was repeated a couple of times with dry 

CH2Cl2 (5 mL) to remove excess thionyl chloride and any HCl. The yellow residue, which was 

obtained, was dissolved in dry CH2Cl2 (10 mL) and cooled to 0 ºC for 10 min under argon. The 

methyl cyanamide (2.5 eq), followed by Et3N (5 eq.) was added to the reaction mixture at 0 ºC and 

the mixture was then allowed to warm to rt and stirred for 5 h. After the completion of the reaction 

(TLC, silica gel), the solvent was removed under reduced pressure and acetone (4 mL) was added 

to the residue. The salt was filtered off and the solvent was removed under reduced pressure to 

obtain MRS-III-90 in 70% yield. 1H NMR (300 MHz, DMSO-d6) δ 2.10-2.13 (m, 2H), 3.34-3.58 

(m, 3H), 3.88 (s, 3H), 3.91 (s, 3H), 4.73 (d, 1H, J = 7.5 Hz, major rotamer 83%), 4.84 (d, J = 7.5 

Hz, minor rotamer, 17%), 7.27-7.29 (m, 1H, major rotamer), 7.31-7.33 (m, minor rotamer), 7.38 

(d, 1H, J = 2.0 Hz, major rotamer), 7.41 (d, J = 2.5 Hz, minor rotamer), 7.57 (d, 1H, J = 8.5 Hz, 

major rotamer), 7.64 (d, J = 9.0 Hz, minor rotamer), 8.00 (s, 1H, major rotamer), 8.21 (s, minor 

rotamer), 9.49-10.11 (bs, 1H); LCMS (ESI, m/z, relative intensity (ESI), calcd. for C17H14N5O3 

(M-H)+ 336.33; Found 336.00. 
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7.42 General method for the synthesis of alkyl ethers at the C-8 position (35-39) 

To a solution of phenol 6 (0.15 g) in CH2Cl2 (5 mL), Cs2CO3 (0.3 g) was added and the mixture 

was stirred at rt for 30 min. Then the alkyl halide [ethyl iodide; ethyl iodide-d5; cyclopropyl 

bromide;  isopropyl iodide or t-butyl bromide (0.5 mL)] was added (individually) slowly and the 

reaction mixture was stirred at rt for 24 h. After completion of the reaction (TLC, silica gel) the 

mixture was quenched with cold water and extracted with CH2Cl2. The combined organic layer 

was washed with brine and dried (Na2SO4). The solvent was removed under reduced pressure and 

the solid residue (ester) was used directly for the next step. The ester [from first step], was 

dissolved in a mixture of EtOH (4 mL) and H2O (3 mL), after which solid NaOH (5 eq) was added 

to the solution. This reaction mixture was heated to 50 ºC for 15 min and then the EtOH was 

removed under reduced pressure. The remaining aq solution was stirred at 0 ºC for 10 min and 

then conc. HCl was added dropwise to the solution until the pH was 3-4 (pH paper). A pale yellow 

precipitate, which formed, was left in the solution and the mixture was allowed to stir at rt for 2 h. 

The precipitate was collected by filtration, washed with cold water (2 X 5 mL) and the aq layer 

also was extracted with CH2Cl2 (2 to 3 X). The combined organic layer was washed with brine and 

dried (Na2SO4). The solvent was removed under reduced pressure to provide additional amounts 

(individually) of acids 35-39.  

 

7.43 (S)-7-Ethoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo[1,2-a]-

[1,4]diazepine-1-carboxylic acid (35) 

70 % yield: 1H NMR (500 MHz, DMSO-d6) δ 1.38 (t, 3H, J = 7.0 Hz), 2.06-2.16 (m, 3H), 3.30-

3.32 (m, 1H), 3.42-3.46 (m, 1H), 3.59-3.62 (m, 1H), 4.15 (q, 2H, J = 7.0 Hz), 4.86 (d, 1H, J = 7.5 
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Hz), 7.30 (dd, 1H, J = 9.0 Hz, 3.0 Hz), 7.39 (s, 1H), 7.64-7.66 (m, 1H), 8.77-8.89 (bs, 1H); LCMS 

(ESI, m/z, relative intensity (ESI), calcd. for C17H16N3O4 (M-H)+ 326.33; Found 326.00  

7.44 (S)-7-(2H5)Ethoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo-

[1,2-a][1,4]diazepine-1-carboxylic acid (36) 

65 % yield: 1H NMR (500 MHz, DMSO-d6) δ 2.04-2.17 (m, 2H), 3.42-3.46 (m, 4H merged with 

DMSO+H2O peak), 4.83(d, 1H, J = 7.5 Hz), 7.29 (dd, 1H, J = 9.0 Hz, 3.0 Hz), 7.37-7.38 (m, 1H), 

7.61 (d, 1H, J = 9.0 Hz), 8.20 (s, 1H); 2H NMR (500 MHz, DMSO, number of scans =128) δ 1.25 

(3D) and 4.04 (2D). LCMS (ESI, m/z, relative intensity (ESI), calcd. for C17H13D5N3O4 (M+H)+ 

333.37; Found 333.25. 

7.45 (S)-7-Cyclopropoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo-

[1,2-a][1,4]diazepine-1-carboxylic acid (37) 

30 % yield: 1H NMR (500 MHz, CDCl3) δ 2.19-2.29 (m, 3H), 3.35-3.57 (m, 1H), 3.68-3.71 (m, 

1H), 3.77-3.81 (m, 1H), 4.61- 4.69 (m, 2H), 4.72 (d, 1H, J = 7.0 Hz), 5.35 (d, 1H, J = 13.5 Hz), 

5.46 (d, 1H, J = 13.5 Hz), 6.02-6.10 (m, 1H), 7.19 (dd, 1H, J = 8.5 Hz, 2.3 Hz), 7.31-7.33 (m, 1H), 

7.61 (d, 1H, J = 2.3 Hz), 7.78 (s, 1H); LCMS (ESI, m/z, relative intensity (ESI), calcd. for 

C18H18N3O4 (M+H)+ 340.35; Found 340.20.  

7.46 (S)-7-Isopropoxy-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo-

[1,2-a][1,4]diazepine-1-carboxylic acid (38) 

70 % yield: 1H NMR (500 MHz, CDCl3) δ 1.38 (d, 3H, J = 6.3 Hz),  1.40 (d, 3H, J = 6.3 Hz),  

2.19-2.26 (m, 3H), 3.51-3.57 (m, 1H), 3.65-3.68 (m, 1H), 3.77-3.80 (m, 1H), 4.66-4.74 (m, 2H), 

7.13-7.16 (m, 1H), 7.39 (bs, 1H), 7.57 (d, 1H, J = 2.5 Hz), 7.89 (bs, 1H); LCMS (ESI, m/z, relative 

intensity (ESI) calcd. for C18H20N3O4  (M+H)+  342.36; Found 342.30. 
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7.47 (S)-7-(tert-Butoxy)-9-oxo-11,12,13,13a-tetrahydro-9H-benzo[e]imidazo[5,1-c]pyrrolo-

[1,2-a][1,4]diazepine-1-carboxylic acid (39) 

65 % yield: 1H NMR (500 MHz, CDCl3) δ 1.43 (s, 9H),  2.20-2.29 (m, 3H), 3.51-3.57 (m, 

1H),3.67-3.69 (m, 1H), 3.76-3.80 (m, 1H), 4.74 (d, 1H, J = 7.0 Hz ), 7.23 (dd, 1H, J = 8.7 Hz, 2.2 

Hz), 7.30 (d, 1H, J = 8.7 Hz), 7.72 (d, 1H, J = 2.2 Hz), 7.39 (s, 1H), 7.83 (bs, 1H); LCMS (ESI, 

m/z, relative intensity (ESI), calcd. for C19H22N3O4 (M+H)+ 356.39; Found 356.25. 
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1. Introduction 

Type A γ-aminobutyric acid receptors (GABAA) is the primary target receptor for GABA, which 

is the major inhibitory neurotransmitter of the central nervous system.94,227 These systems are 

ligand-gated chloride ion pores that are transmembrane hetero-pentameric in structure. Since it is 

the principal target receptor for its indigenous ligand (GABA), GABAA receptors regulate a wide 

range of functions within the brain and the across the central nervous system.239 A variety of 

GABA-ergic ligands can positively or negatively modulate different subtypes of GABAA receptors 

and thus can exert various CNS effects (see Part I, Table 1). As described earlier in part I, 

benzodiazepines (BZDs) are a class of drugs that binds to GABAARs and exerts allosteric effects 

on GABAR efficacy.227,239 It is known that classical BZDs such as diazepam bind to the 

extracellular region at the interface between the α+γ- protein subunits and acts as a positive 

modulator (PAM) at α1-3,5βγ2 subtypes of the GABAARs.13,227,239,240 BZDs have been used in clinic 

for more than five decades, although these drugs exhibit various undesired adverse CNS 

effects.227,239 Diazepam, for instance, though among the very limited options available for CNS 

disorders including anxiety, convulsions and insomnia, can evoke side effects such as sedation, 

ataxia, amnesia, and addiction.132,239,241-243 Moreover, it is not effective in all patients and has a 

limited long-term application as a prescription drug due to some of these adverse effects. On the 

other hand, due to the absence of suitable replacements in terms of better subtype selectivity and 

efficacy that are devoid of the undesired effects, they are still among the mainstays for treatment 

of CNS disorders.227,239,243 

A large number of studies suggest that the development of novel α2β2/3γ2 and α3β2/3γ2 subtype 

selective GABAAR ligands is a promising avenue for the development of better agnostic efficacy. 

These subtype selective agents would exert anxiolytic, antinociceptive, and anticonvulsant 
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activity, while avoiding the undesired effects, which stem from efficacy at α2β2/3γ2.
132,227,239,244-

251,252,253 According to the recent literature this class of α2/3 subtype selective GABAAR allosteric 

modulators are believed to be better treatments for seizures,235,254 antihyperalgesia,255,256 and 

anxiety132-134 without causing sedation, amnesia, ataxia, addiction and dependence, as well as 

tolerance.257-259 As a consequence of rigorous studies and development in this vein, a number of 

promising drug candidates227,235,244,248,260,261 have appeared, but most of them failed to remain in 

the development process due to poor pharmacokinetic properties227,262 and/or adverse CNS 

effects.227,244,263,264 As a consequence, due to the unmet demands for drugs with superior α2/3 

subtype efficacy, which lack the undesired CNS side effects from efficacy at α1 subtypes, there is 

a need to develop novel selective GABAA ligands for various disorders.  

 

2. Background 

The continued research over the last decade resulted in a series of α2/3 subtype selective 

imidazodiazepine (IBZ) GABAAR ligands (agonists), designed and synthesized based on the 

unified pharmacophore model.13,227,239,265 Among the initial lead compounds which contained the 

“privileged” IBZ scaffold were XHe-II-053 1, Hz-166 2, and JY-XHe-053 3,  (see Figure 1). They 

have been characterized for their selectivity towards α2/3 subtypes over α1.
227,252 It has been 

illustrated that Hz-166 (ligand 2) can evoke anxiolytic effects without causing sedation associated 

with non-selective PAMs such as diazepam.246,253 It is evident that the presence of an acetylene 

function at the C(8) position of these ligands was the reason behind the diminished binding affinity 

and efficacy at the sedating α1β3γ2 ion channels.13,239,265 Ligand Hz-166 2 has shown antiseizure 

activity in mice and rats both from oral and i.p. administrations in a subcutaneous metrazole-
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induced seizure (scMET) test.266 Moreover it did not develop tolerance to the anticonvulsant 

effects; a very special Bz/GABAR ligand.252 Furthemore, in primate studies with rhesus monkeys, 

Hz-166 2 engendered non-sedating anxiolytic effects in the Geller-Seifter conflict assay at 1 mg/kg 

dose.246 In addition, Hz-166 2 showed a dose dependent antihyperalgesic effect in inflammation 

and neuropathic pain models without causing sedation, sensorimotor impairment nor tolerance 

unlike the commonly used antinociceptive molecules morphine, diazepam and gabapentin.255 

Ligand Hz-166 2, although stable enough on human liver microsomes (HLMs), was rapidly 

metabolized in mouse liver microsomes (MLMs). The labile nature of the ester function at C(3) in 

the presence of microsomal enzymes (especially in the liver) was responsible for the hydrolysis to 

the carboxylic acid which retarded the ability of the ligand to cross the blood brain barrier (BBB) 

and achieve the desired effects. The metabolite (the acid) was excreted to rapidly form the 

system.267 Similar results were also observed for XHe-II-053 1 and JY-XHe-053 3.227 This limited 

the ADME toxicity studies in rodents and is a concern because poor pharmacokinetic profiles are 

one of the major reasons for the failure of promising drug candidates in the development process. 

As a result, strategies were undertaken to develop new ligands, which would retain the anxiolytic 

properties of Hz-166 2 while achieving better stability on liver microsomes to increase plasma and 

brain exposure.227 The prevention of the ester from being metabolized by blocking its metabolic 

site at C(3) was deemed necessary. 
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Figure 1. Initial lead compounds which contain the “privileged” IBZ scaffold 

Bioisosteric alteration of labile functional groups has been key among the modern strategies for 

generating novel compounds that are similar in activity despite being different structures. They 

are, however, recognized similarly by the biological systems. It follows that a bioisostere should 

retain the biological properties, while being structurally different and devoid of activity toward the 

common metabolic pathways that motivated ligand Hz-166.217 Accordingly, a bioisosteric 

replacement of the ester function, which is more stable under enzymatic metabolism would be a 

logical strategy. The 1,2,4-oxadiazole and 1,3-oxazole are known to be ester bioisosteres, which 

are more stable metabolically, although the latter is less-commonly used. As a result, conversion 

of the ester function at C(3) into an 1,2,4-oxadiazole or 1,3-oxazole would increase their stability 

and would increase plasma and brain exposure for the desired efficacy.9,217 Moreover, the 1,3-

oxazole is not a normal bioisostere for an ethyl ester and increased the strength of IP protection. 

Alternatively, incorporation of deuterium to block a primary site of oxidative metabolism of the 

ethyl esters (1-3) by replacing the -CH2- function with a -CD2- should also increase their stability 

through the kinetic isotopic effect.227 
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3. Aims of this Work 

As indicated, from the in vitro and in vivo studies, bioisosteric replacement of the ester function 

is more likely to be a better strategy to design novel α2/α3 subtype selective ligands for the 

treatment of various CNS disorders. Further modification of the newly achieved lead compounds 

would result in ligands with even better drug like properties. A series of ester bioisosteres with 

suitable functional groups at different substituents on the heterocyclic ester bioisostere moiety, as 

well as incorporation of deuterium at the key metabolic sites should also be explored further. In 

addition, improvement of the current synthetic route to these ligands would also be highly desired.  

 

4. Chemistry and Results 

As discussed above, HZ-166 2, the initial lead ligand possessed all the desired biological properties 

except metabolic stability in rodents. Although it was stable on human liver microsomes (HLM), 

it was comparatively labile in mouse, and rat liver microsomes (MLM and RLM) due to the effect 

of enzymes which converted it into the carboxylic acid 4.239,267 Since the carboxylic acid was more 

hydrophilic, it was less able to cross the BBB, and effect the desired CNS effects in brain.239 As a 

result, the potential ligand did have low plasma and brain exposure. Accordingly, it was felt that 

by increasing the metabolic stability of the ester function at C(3), while retaining its biological 

properties would  be the key step in achieving the next generation of α2/α3 stable subtype selective 

ligands for CNS disorders.  

In accordance with this hypothesis, several ester bioisosteres were synthesized and evaluated for 

their in vitro and in vivo metabolic stability, as well as general anxiolytic effects. Among the newly 

designed ligands, MP-III-80 7 and KRM-II-81 9 were found to possess superior drug stability, 
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pharmacokinetic profiles and anxiolytic efficacy, as well as the absence of significant sensorimotor 

impairment, which is indicative of CNS side-effects.227 The 1,2,4-oxadiazoles (ligands 6, 7) were 

less potent (EC50 = 5.15 and 3.02 µM, respectively) than the corresponding 1,3-oxazoles (8-10, 

EC50 = 0.94 µM) towards α3β3γ2 GABAAR over α1β3γ2 (EC50 > 20 µM for all ligands) in the FLIPR 

assay.227  

 

Figure 2. Representative examples of the new generation of α2/α3 subtype selective GABAAR ligands 
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The 2ʹ-F (in the pendant phenyl ring) ligands 3 and 10 exhibited EC50s in the nanomolar range 

(EC50 = 29 and 11 nM, respectively) while the deuterated ester 5 showed potency similar to the 

non-deuterated counterpart 2.227 Due to their lack of efficacy at the α1β3γ2 site, these compounds 

were expected to be devoid of tolerance and dependence.257-259 As expected, the carboxylic acid 4 

which was hydrophilic, did not travel across the BBB in appreciable amounts and thus was not 

detected in the brain in PK studies when administered as the acid 4 itself or as a metabolite of the 

esters 2 and 5.  

 

Figure 3. Comparison between the efficacies at various subtypes (α1-α6) GABAARs determined in HEK cells by 

GABA induced EC3 currents at 100 nM concentrations of ligands. This is work of Janet Fischer at the 

University of South Carolina. Presented at ASPET Annual Meeting at EB, Orlando, April 9, 2019.268 

 

1 2 3 4 5 6
0

100

200

300

KRM-II-81

KRM-II-18B

MP-III-80

KRM-II-82

HZ-166

Diazepam

%
 r

e
s
p

o
n

s
e
 t

o
G

A
B

A
 a

lo
n

e



169 
 

Illustrated in Figure 3, Hz-166 2, MP-III-80 7 and KRM-II-81 9 are more efficacious at α2 and α3 

over α1 subtypes ion channels while typical benzodiazepines such as diazepam elicit efficacy at α1 

(and α5) subtypes, as well. While all three ligands show similar efficacy at α2/α3 subtypes, KRM-

II-81 9 exhibited the highest efficacy at these sites (Figure 3). Both MP-III-80 7 and KRM-II-81 9 

exhibited lower efficacies at α1 subtypes compared to diazepam and the parent ligand HZ-166 2. 

In addition, their efficacies at α2/α3 subtypes were higher (or similar to) than that of Hz-166 2, 

while the efficacy at α5 subtypes was poorer than at HZ-166 2. This indicates MP-III-80 7 and 

KRM-II-81 9 are new generation GABAAR PAMs with better or similar α2/α3 efficacies over α1 

(and α5) efficacy, which is highly desired to avoid sedation, tolerance, dependence and related 

CNS side-effects.  

In the evaluation of metabolic stability as expected, the incorporation of deuterium at the key 

metabolic sites indeed resulted in increased stability in HLM, MLM. In addition, the heterocyclic 

ester bioisosteres were more stable in liver microsomes, as well. The overall outcome of these 

studies was the identification of KRM-II-81 9 as a unique and promising lead compound with 

desirable α2/α3 GABAAR selectivity, low molecular weight (MW = 351), superior lipophilicity 

(clogP = 2.3), good solubility at pH 7, excellent plasma and brain exposure (26 and 18%, 

respectively), as well as in vivo anxiolytic activity in a rodent model.227 It is hoped these ligands 

will soon be evaluated further in models of epilepsy and neuropathic pain. Likewise, MP-III-080 

7 exhibited marked improvement in pharmacokinetic properties over the parent compound HZ-

166 2, as well.227 In a mouse marble burying assay, which is a model of anxiety, MP-III-080 7 at 

10 mg/kg, significantly reduced marble burying activity, which indicated its potent anxiolytic 

activity (Figure 4). Ligand 7 also showed effective anticonvulsant effects versus GABAA NAM 

pentylenetetrazole (PTZ)-induced seizures with very mild sedation at 30 mg/kg i.p. dosage.227 The 
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effect of these compounds on sensory motor ability via the rotarod assay was performed using the 

same mice used for the marble burying assay. At 30 mg/kg dosage all compounds showed minor 

motor impairment except for KRM-II-81 9 (Figure 5). 

 

 

Figure 4. Assessment of anxiolytic-like activity of ligands 2 and 6−10 in the marble burying assay. Male NIH 

Swiss Webster mice (n = 10) were injected ip with vehicle or a test compound (10 or 30 mg/kg) 30 min prior to 

testing. Data were analyzed using ANOVA. Dunnett’s test: (∗) P < 0.05 vs vehicle; (a) mild sedation-like 

behavior observed at 30 mg/kg. (modified from the Figures in Poe et al.)227 
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Figure 5. Assessment of ataxic effects of ligands 2 and 6−10 in the rotarod assay. Mice, as treated in the marble 

burying assay, were placed on a rotarod set at 4 rpm, and the testing time was 2 min. Mice not falling off during 

the test were given a “Success” designation, while mice that fell once were assigned a “Partial” designation. 

Mice falling twice during the 2 min time period failed the test (modified from the Figures in Poe et al.).227 

 

In the Vogel conflict assay in rats, imidazo[1,5-a][1,4] diazepine esters were inactive due to their 

low bioavaiabilities.251 This result is consistent with the previous observation by Poe et al.227 Both 

oral and i.p. dosing resulted in low drug exposures,227 which explained their inactivity in in vivo 

experiments. On the other hand, ligand 7 exhibited profound efficacy in this anxiolytic-detecting 

assay without affecting non-punished responding (Figure 6), i.e. no sedation. 
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Figure 6. Effects of MP-III-080 (7) on punished (unfilled circles) and non-punished (filled circles) drinking of 

rats. Each point represents the mean ± S.E.M. of 8 rats/dose condition. Chlordiazepoxide (20 mg/kg, i.p.) was 

studied as a comparator. Data were analyzed by ANOVA followed by post-ho c Dunnett's test. *: p < 0.05. Non-

punished responding: F3,28 = 2.4, p =0.1.1. Punished responding: F3,2 = 8.7, p < 0.001. *p < 0.05 by post-hoc 

Dunnett's test (modified from the Figures in Witkin et al.).251 

 

It has been illustrated previously by Poe et al. that ester bioisosteres effected pronounced 

improvement in plasma and brain exposures as compared to the parent esters.227 Although direct 

dose/exposure comparisons are not available, data document that both the MP-III-80 (7, anxiolytic 

active) and the oxazole KRM-II-82 (8, anxiolytic inactive) exhibited high exposure in both brain 

and plasma of rats after i.p. dosing.251 

The distinctive nature of oxadiazole 7 and oxazole 8 in behavioral effects was deemed to be due 

to a yet to be determined ancillary action of oxadiazole 7 that supplemented its effects at GABAA 

α2/3 receptors. The oxazole 8 exhibited anti-depressant activity as compared to oxadiazole 7, while 

oxazole 8 was safe but more cytotoxic than oxadiazole 7 in human embryonic kidney cells 

(HEK293T).227,251  



173 
 

Alcohol abuse and alcohol (ethanol) use disorder (AUD) have consequences on global public 

health. According to WHO, alcohol related health problems represent the 5th largest factor for 

premature death and disability.269 Currently available treatment options are only partially effective 

and the global concern of alcohol abuse and use related complications are still prevalent even with 

decades of research.270 As a result there is an unment demand for novel treatment options and 

further research for discovery and development of improved treatment options for alcohol abuse 

related behavioral effects, as well as understanding the neuropharmacological mechanisms 

involved in alcohol abuse. 

 

It is known that ethanol induces its abuse-related effects, in part, by potentiating the activity of γ-

aminobutyric acid at GABAA receptors.271 Genetic studies in humans and preclinical studies with 

mutant mice indicated that  α2 and/or α3 GABAA receptors play a role in the effects of ethanol. 

Consequetly, the design and synthesis of novel GABAAR PAMs with α2 and α3 efficacies would 

permit evaluation of the effects of these subtypes in preclinical models of discriminative stimulus 

and reinforcing effects of ethanol use in primates by Platt et al.269 

In a recent study by Berro et al, it has been illustrated that there is a key role for α2 GABAA and/or 

α3 GABAA receptors in the reinforcing effects of ethanol. Investigation on a series of functionally 

selective PAMs at α2 and α3 GABAA receptors (HZ-166 2, XHe-II-053 3, YT-III-31, YT-III-271) 

indicated the enhancement in ethanol intake at doses that did not alter sucrose intake (Figures 7 

and 8).269 

 

  



174 
 

                          

Figure 7. Effects of α2GABAA and α3GABAA Receptor-Preferring PAMs. All α2/α3 GABAA receptor ligands 

reproduced the discriminative stimulus effects of ethanol (Figure 7a), engendering dose-dependent increases in 

ethanol-lever responding that were significantly different from that engendered by vehicle [L-838, 417: F(4,12) 

= 14.68, p<0.001; Bonferroni t-tests, p<0.05 vs. vehicle; HZ-166: F(4,9) = 14.47, p<0.001; Bonferroni t-tests, 

p<0.05 vs. vehicle; YT-III-31: F(3,9) = 120.45, p<0.001; Bonferroni t-tests, p<0.05 vs. vehicle]. L-838,417 

(functionally selective PAM at α2GABAA, α3GABAA, and α5GABAA receptors), HZ-166 (functionally selective 

PAM at α2GABAA and α3GABAA receptors) as well as YT-III-31 (functionally selective PAM at α3GABAA 

receptors) induced almost exclusive responding on the ethanol-paired lever over the dose ranges tested, 

generating 97%, 84% and 99% ethanol-lever responding, respectively. None of these compounds significantly 

altered average rates of responding when compared to average rates following vehicle administration (Figure 

7b). Modified from the Figures in Berro et al.269 
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Figure 8. The effects of pretreatments with different doses of α2GABAA and α3GABAA receptor-preferring 

compounds on ethanol and sucrose intake. Daily pretreatment with the functionally selective PAMs at 

α2GABAA and α3GABAA receptors XHe-II-053 [group X dose: F(3,24) = 7.20, p<0.005] and HZ-166 [group X 

dose: F(3,24) = 5.39, p<0.01] resulted in significant increases in ethanol intake at 1 mg/kg without affecting 

sucrose intake (Bonferroni t-tests, p<0.05; Figure 8A and Figure 8B). Modified from the Figures in Berro et 

al.269 

 

 

As suggested by these results, the parent lead compound Hz-166 2 metabolized fast in rodents. 

Bioisosteric modification of the ester function in Hz-166 2 into 1,3-oxazole 9 and 1,2,4-

oxaidiazole 7 resulted in novel α2/α3 subtype selective positive allosteric modulators (PMAs) of 

GABAARs and are stable in human, mouse, rat, and dog live microsomes.227,239 These desired 

results suggest further evaluations of oxazole 9 and oxadiazole 7 in animal models of epilepsy, 

neuropathic pain, anxiety, and respiration in rodents, as well as in primates. These animal studies 

would require these ligands in gram quantities. 

From a synthetic point of view, Hz-166 2 is a key ligand which is not only a primary lead itself 

but also serves a as a key precursor for several potential drug candidates such as the 1,2,4-

oxadiazoles and 1,3-oxazoles.239 A sustainable supply of Hz-166 2 is a prerequisite for availing 

gram quantities of the newly designed ligands MP-III-080 7 and KRM-II-81 9. The ethyl 
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oxadiazole (MP-III-80 7) was previously synthesized in 40-71% yields from ester 2 (Hz-

166).227,252,253 More importantly, the oxazole 9 was available only in a mere 28% yield on a 3g 

scale process, which posed a major drawback in its synthesis.227 In addition, very low overall yields 

toward Hz-166 (17% in a five step process) also posed a major hurdle in a robust supply of the 

desired ligands.252,239 Consequently, an improved synthetic strategy was desired for accessing the 

ligands in deca-gram quantities for animal and pre-clinical studies.  

An optimized route for the total synthesis of HZ-166 2 is depicted in Scheme 1, as developed 

recently by Li et at.239 After numerous modifications and fine-tuning in each of the five steps, the 

optimized route furnished the target compound Hz-166 2 in a 56% overall yield from the 

beginning, while the previously available route provided Hz-166 2 in a mere 17% overall yield.239 

First, acylation of the aniline 11 with bromoacetyl bromide resulted in synthesis of the acylated 

aniline 12, which could be used in the subsequent reaction without purification. The treatment of 

the crude 12 with dry methanol saturated with ammonia gas at 0 oC was followed by gradual 

heating to reflux to furnish the 1,4-benzodiazepine 13 in 78% yield over two steps. Both of these 

steps could be performed on hundred-gram scales. The 1,4-benzodiazepine amide 13 could be 

purified by recrystallization instead of chromatographic purification. The imidazole top was 

attached via the modified procedure.272 the amide 13 was stirred with potassium tert-butoxide and 

this was followed by diethylchlorophosphate at -50 oC in THF for an hour. Afterwards, the mixture 

was allowed to warm to 0 oC. After stirring for an additional couple of hours at 0 oC, the reaction 

was cooled to -78 oC and treated with ethyl isocyano acetate followed by another equivalent of 

potassium tert-butoxide to furnish the imidazodiazepine scaffold 14 in 81% yield. This step could 

be executed on 80 gram scales and the impurities were removed by washing with 10% EtOAc in 

hexanes. The Heck-type Sonogashira coupling of trimethylsilyl acetylene with the bromo-arene  
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incorporated the acetylene function into 14 in 92% yield. The Hz-166 2 was furnished in 96% 

yield simply by de-silylation of the protected acetylene 15 (TBAF˟H2O). The pure target 

compound Hz-166 2 could be obtained by recrystallization of the crude solid from hot methanol.  

Scheme 1. Optimized synthetic Scheme for the synthesis of Hz-166 2 in 56% yield form 

aniline 11 by Li et al.239 

 

 

 

The 1,2,4-oxadiazole bioisostere, MP-III-80 7 of the ethyl ester 2 is a promising anxiolytic, 

anticonvulsant, as well as antinociceptive ligand. As a consequent, a steady supply of this ligand 

is required for further pre-clinical studies. The previous method for preparing this 1,2,4-oxadiazole 

7 from the ethyl ester 2 suffered from inconsistent yields, harsher conditions or extra steps.273 

Consequently, the optimization of this process by Li et al. by treating the ethyl ester 2 with 

amidoxime and sodium hydride at room temperature in the presence of 3Å molecular sieves to 
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push the reaction further by capturing the released water furnished the 3-ethyl-1,2,4-oxadiazole 7 

in 88% yield.  

Scheme 2. Synthesis of the 1,2,4-oxadizole 7 from ethyl ester 2239 

 

 

 

 

               

Figure 9. Structure and oocyte efficacy data of isopropyl oxadiazole 16. Concentration curve of oxadiazole 16 

on GABAA receptors using an EC3 GABA concentration (n = 3), as reported in Namjoshi, et al.274 

  

It has been illustrated previously, that isopropyl oxadiazole 16 in Figure 9, could significantly 

increase metabolic stability as compared to Hz-166 2.267 In contrast, isopropyl oxadiazole 16 lost 

efficacy at the α2 subtype, while it remained potent at α3 subtypes. This loss of efficacy at α2 
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suggested that replacement of the ethyl function at C(3) with an isopropyl oxadiazole moiety had 

a negative impact on the efficacy profile.267 Consequently, the corresponding cyclopropyl 

oxadiazole was synthesized, and awaits biological testing. 

Scheme 3. Synthesis of the cyclopopyl 1,2,4-oxadizole 17 from ethyl ester 2 

 

 

 

In addition, as hypothesized, incorporation of deuterium at a key metabolic site would increase the 

metabolic stability of a drug candidate. Consequently, the d3-version of MP-III-080 18 was 

prepared. In addition, the d3-deuterated methyl ester version of the parent compound Hz-166 20 

was also prepared since metabolic instability of Hz-166 2 was its only drawback. By refluxing 

MP-III-80 7 in d4-methanol in the presence of potassium carbonate, this resulted in the 

incorporation of deuterium at four different positions in the IBZ scaffold (Scheme 4).275 On stirring 

the d4-MP-III-80 19 in methanol and this was followed by evaporation (5-6 cycles) of CH3OH 

under reduced pressure the acetylene (C-D) proton was replaced back by C-H and this resulted in 

the desired d3-MP-III-80 18 (>98% d). The extent of the deuterium incorporation was confirmed 

by NMR spectroscopic analysis (Figure 10). The same process on the ethyl ester Hz-166 effected 

the exchange of the same protons with deuterium. The ethyl ester was trans-esterified with the 
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solvent CD3OD to furnished d3-Hz-166-OCD3 ester 20 (Scheme 5). On the other hand, the 

carboxylic acid of Hz-166 4 when reacted under the same conditions, gave the d5-version of 4 

(23). The carboxylic acid deuterium proton was exchanged back to the acid proton by stirring it in 

CH3OH to furnish the d3-HZ-166 acid 22 (Scheme 6). In all cases, the extent of deuterium 

incorporation was at least 98%.  

Scheme 4.  Synthesis of d3-MP-III-80 (18)275 

 

 

 

Scheme 5.  Synthesis of d3-HZ-166-OCD3 ester 20275 
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Scheme 6.  Synthesis of d3-Hz-166 Acid 22275 

 

 

 

Figure 10. Typical 1H NMR (CDCl3) of deuterium exchange reaction of MP-III-80 (δ 8.7-4.0). 
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The d3-MP-III-80 18 was investigated for its stability in both acidic (near stomach pH) and alkaline 

(more than gut pH) pH and was found stable in both acidic and alkaline solutions (Tables 1 and 

2). This is an important experiment to illustrate the applicability of d3-MP-III-80 18 in oral dosage. 

Results indicated that d3-MP-III-80 18 is stable enough in both stomach and gut pH, which infers 

that incorporation of deuterium would be beneficial towards improving metabolic stability in vivo. 

Table 1. Stability of d3-MP-III-080 (18) at the pH 2 of the stomach275 

 

pH 2.2 buffer study: 

The preparation of the pH 2.2 buffer solution: The buffer solution was prepared according to the 

previous procedure. 

Procedure: 5 mg of d3-MP-III-080 was dissolved in a minimum amount of methanol and 5 mL of 

above buffer solution was added. The solution was kept stirring at the desired temperature for 6 

hours. At different time intervals 0.3 ml of the solution was collected, diluted with 0.3 ml H2O and 

extracted with EtOAc (2x0.5 ml) and the combined organic layer were washed with brine and used 

for LC-MS analysis. 

Results: 

Compound LC-MS m/z [M + H]+ peaks 

MP-III-080 7 381 major 

Deuterated d3-MP-III-080 18 384 (d3) 

 At room temperature At 37 °C 

After 1 h After 6 h After 1 h After 6 h 

Deuterated d3-MP-III-080 in pH 

2.2 buffer solution 

384 major 

(d3) 

384 major 

(d3) 

384 major 

(d3) 

384 major 

(d3) 

 

Inference: d3-MP-III-080 is stable in acidic solution (pH near the stomach pH)  
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Table 2. Stability of d3-MP-III-080 at pH 9.7-9.9; much more alkaline than gut (around 8.5-

9)275 

 

The pH 9.7-9.9 buffer solution preparation: buffer solution was prepared according to the previous 

procedure. 

Procedure: 5 mg of d3-MP-III-080 was dissolved in a minimum amount of methanol and 5 mL of the above 

buffer solution was added. The solution was stirred at the desired temperature for 6 hours. At different time 

intervals 0.3 ml of the solution was collected, diluted with 0.3 ml H2O and extracted with EtOAc (2x0.5 

ml) and the combined organic layer were washed with brine and used for LC-MS analysis. 

Results: 

Compound LC-MS m/z [M + H]+ peaks 

MP-III-080 381 major 

Deuterated d3-MP-III-080 384 (d3) 

 At room temperature At 37 °C 

After 1 h After 6 h After 1 h After 6 h 

Deuterated d3-MP-III-080 in pH 

2.2 buffer solution 

384 major 

(d3) 

384 major 

(d3) 

(~10% of 

383 peak 

present) 

384 major 

(d3) 

384 major 

(d3) 

(~10% of 

383 peak 

present) 

 

Inference: d3-MP-III-080 was stable in this basic condition. 
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5. Conclusion 

The strategic implication of the bioisosteric alteration of the ester functional group in the initial 

α2/α3 subtype selective GABAAR PAM lead compound HZ-166 2 resulted in a new better 

generation of lead compounds with 1,2,4-oxadilxole or 1,3-oxazole moieties at C(3). These novel 

ligands retaining the desired efficacies at α2/α3 receptor subtypes of GABAARs, which avoided the 

CNS adverse effects associated with efficacies at α1, as well as improved metabolic stability. 

Among the newly achieved lead compounds, the 3-ethyl-1,2,4-oxadiazole MP-III-80 7 exhibited 

anxiolytic and antinociceptive properties. In recent investigations, it has been illustrated that α2/α3 

subtype selective GABAAR PAMs might have important applications in alcohol use and alcohol 

abuse disorders. Incorporation of deuterium at key metabolic sites of the lead compounds MP-III-

80 7, HZ-166 2, and Hz-166-acid 4 furnished new derivatives of the PAMs, which would be more 

bioavailable due to better metabolic stability. Preliminary experiments have indicated the viability 

of this strategy. In addition, further derivatization of the lead compounds resulted in several newer 

ligands which are felt to be promising novel compounds. Although, most of the newly designed 

and synthesized ligands await full biological evaluation including pharmacokinetic profiles, this 

new set of GABAA PAMs with improved efficacies at the desired α2/α3 subtypes will add to the 

arsenal of imidazodiazepine drugs for the treatment of various CNS disorders. These ligands 

should meet the unmet need for better psychopharmaceutics which may be applicable in all 

patients including the elderly. These anxiolytic, anticonvulsant and antinociceptive ligands should 

be better for long term treatment and avoid adverse complications. It is hoped that the newly 

synthesized compounds will be evaluated by our collaborators in the near future. Especially d3-

MP-III-080 18.   
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6. Methods 

6.1 Marble Burying (CRO)227  

Mice were tested in the marble burying assay using methods previously described (Li, et al., Life 

Sci., 2006, 78, 1933 – 1939). Mice were dosed i.p. with either vehicle (1% carboxymethyl 

cellulose) or a test compound 30 min prior to testing. Mice were placed in a 17 x 28 x 12 cm high 

plastic tub with 5 mm sawdust shavings (Harlan Sani-Chips, HarlanTeklad, Indianapolis, IN) on 

the floor that were covered with 20 blue marbles (1.5 cm diameter) placed in the center. Mice were 

left in the tub for 30 min. The number of marbles buried (2/3 covered with sawdust) were counted 

and recorded. 

6.2 Rotarod (CRO)227 

Male NIH Swiss mice (Harlan Sprague-Dawley, Indianapolis, IN) were tested in the rotarod assay 

in a dimly lit testing room according the general methods previously described (Li, et al., Life Sci., 

2006, 78, 1933 – 1939). After being acclimated to the experimental room for one hour, the mice 

(n = 10 per group) were dosed i.p. 30 min prior to testing with either vehicle (1% CMC) or 

compound (10 or 30 mg/kg). Mice were placed on a rotarod (Ugo Basile 7650) operating at 4 rpm 

and observed for falling for 2 min. Mice that did not fall during the 2 min of testing were given a 

“Success” designation. Mice that fell once were given a “Partial” score, while the mice that fell 

twice failed the test. After rotarod testing, the mice were tested immediately in the marble-burying 

assay.  
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6.3 Vogel Conflict Behavior (CRO)251 

 
Day 1, animals are moved from colony room into test room and put into operant chambers with 

water available, white noise, and houselight on (program title Vogel train). A timer starts when the 

first lick is made. For the first 3 min after the first lick, data is recorded as unpunished licks. After 

3 min, the second component becomes active for 3 min. All licks in the second component are 

recorded as punished licks. At the end of the 6 min, the chamber goes dark. Animals are removed 

and returned to home cages. After all groups of animals have been exposed to the chambers, water 

is made available in the home cage for 30 min. After 30 min, water is removed and animals are 

transported back to colony room. Data for both components is recorded as the number of licks. 

Sometime data for day 1 and day 2 is not recorded due to operant chambers being used for other 

testing protocols. Data is always recorded for day 3. 

Day 2 conditions were identical to day one training. On day 3, animals were randomly assigned to 

dose groups and drugged according to route and pre-treatment times recorded below. Animals are 

run on program Vogel FR20, which is identical to Vogel training with the exception of during the 

2nd component (punished), every 20th lick is shocked. Data for both components is recorded as 

the number of licks. Shock intensity = 0.5 mA, duration = 100 ms. Shock is delivered through the 

water sipper tube. Chlordiazepoxide (CDAP) 20 mg/kg, i.p., 30 min pre-session is used as a 

positive control. Injection volume is 1 ml/kg unless otherwise noted. 
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6.4 Ethanol or Sucrose Self-Administration (Dr. Donna Platt at University of 

Mississippi Medical Center)269 

Drinking sessions occurred 5 d/wk in the animal’s home cage, as previously described (Sawyer et 

al., 2014). Each session lasted 3 hours. Animals were trained to drink either ethanol (2%, w/v; 

n=5) or sucrose solution (0.3 or 1%, w/v, depending on the animal; n=5) using an operant drinking 

panel mounted on the side of the home cage. The ethanol concentration was chosen because it 

maintained intake significantly above water levels and is on the ascending limb of the 

concentration-effect curve (see Ruedi-Bettschen et al., 2013), thus allowing us to detect either 

increases or decreases in drinking after pretreatment administration. The sucrose concentrations 

were chosen because they maintained approximately equivalent levels of intake to ethanol (EtOH) 

under baseline conditions (Ruedi-Bettschen et al., 2013; Sawyer et al., 2014). 

The drinking panel contained two retractable sippers (Med Associates) connected with tygon 

tubing to stainless steel reservoirs mounted outside of the cage. A response lever (Med Associates) 

was positioned below each sipper, and a set of colored lights were positioned above. Each lever 

press resulted in an audible click and served as a response. In these experiments, only 1 side of the 

panel was active. Illumination of white lights signaled the start of the session and ethanol or 

sucrose availability. Every 10 responses (FR 10) resulted in a switch from illumination of the white 

light to illumination of a red light and extension of the drinking spout for 30 seconds. Depression 

of the spout during extension resulted in fluid delivery, continuing as long as the sipper was both 

depressed and extended. Thus, both the actual duration (up to 30 seconds) and volume of intake 

were controlled by the subject. A brief (1 second) timeout followed each spout extension, in which 

all stimulus lights were dark and responding had no programmed consequences. Responses were 
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recorded and outputs controlled by a software program (MedPC; Med Associates). At the end of 

each session, reservoirs were drained and the amount of liquid consumed (ml) measured. 

XHe-II-053 (0.3-3 mg/kg), HZ-166 (0.3-3 mg/kg), YT-III-31 (0.1-3 mg/kg) or YT-III-271 (0.1-1 

mg/kg) were administered intramuscularly 10 minutes before the start of a self-administration 

session. Each dose of each compound was studied for a minimum of 5 consecutive sessions and 

until intake was stable, which was defined as no upward or downward trend in amount consumed 

(ml) over 3 consecutive days (i.e., for each 3-day period, intake could not be consistently 

increasing or decreasing across the consecutive days). Following evaluation of each dose, monkeys 

were returned to baseline self-administration conditions (i.e., with no pretreatment injection) until 

intake stabilized again. Doses were randomized within each treatment condition, and all doses of 

a particular compound were generally completed before beginning a new compound. 
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7. Experimental Section 

7.1 7-Bromo-5-(pyridin-2-yl)-1H-benzo[e][1,4]diazepin-2(3H)-one (13) 

The 2'-pyridyl ketone 11 (120 g, 433.2 mmol) was dissolved in dry DCM (1.4 L) in a 3-neck round 

bottom flask and was stirred with an overhead mechanical stirrer for 15 min to obtain a 

homogenous solution. Then solid NaHCO3 (72.8 g, 866.4 mmol) was added to the solution with 

vigorous stirring to avoid clogging of the stirrer, and the mixture was cooled to 0 °C using an ice 

bath. The bromoacetyl bromide (144.9 g, 714.8 mmol) was dissolved in dry DCM (200 mL) and 

was then added dropwise at 0 °C with an addition funnel. The reaction mixture was allowed to 

warm to rt and stirred overnight until the starting material was consumed as monitored on analysis 

by TLC (silica gel, EtOAc/hexane, 1:1). The reaction mixture was quenched with ice-water (500 

mL) and stirred at rt for 30 min. The organic layer was then separated, and the aq layer was 

extracted with DCM (3 x 250 mL). The organic layers were combined, as well as washed (200 mL 

each) sequentially with a saturated aq solution of NaHCO3, water, 10% HCl, brine and then dried 

(Na2SO4). The combined organic layer was then concentrated to 1/4th of its original volume under 

reduced pressure. The intermediate 12, which was prepared, was used for the next step without 

further purification. 

Methanol (1.4 L) was cooled to 0 °C using an ice-water cooling bath and saturated with anhydrous 

ammonia gas. The DCM solution of intermediate 12 was added to the solution of saturated 

MeOH/NH3 at 0 °C. The mixture was allowed to warm to rt and slowly heated to reflux with 

caution (mild exotherm observed) until the starting material was consumed on analysis by TLC 

(silica gel) in 12 h. The reaction mixture was then cooled to rt and the solvent was removed under 

reduced pressure. The solid which remained was filtered and washed with water (3 x 150 mL), 

cold EtOAc (3 x 50 mL) and DCM (3 x 50 mL). The crude solid was dissolved in MeOH (600 
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mL) and DCM (100 mL) at 60 °C, and the solution was concentrated to 1/4th of its original volume. 

The amide 13 was recrystallized at rt and filtered, after which it was washed with DCM to obtain 

the majority of the pure amide 13 as white crystals. The filtrate was combined and concentrated 

under reduced pressure to an oily residue, which was further purified by flash chromatography on 

silica gel (EtOAc/hexane, 1:1 and 1% of TEA) to afford additional amide 13 (108.6 g, 78% yield 

over the two steps): M.p = 228-229 °C; Rf = 0.4 (EtOAc-hexane, 1:1 and 1% of TEA); 1H NMR 

(300 MHz, DMSO-d6) δ 10.63 (s, 1H), 8.55 (d, J = 4.1 Hz, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.93 (d, 

J = 7.4 Hz, 1H), 7.69 (d, J = 8.6 Hz, 1H), 7.54-7.44 (m, 1H), 7.42 (s, 1H), 7.18 (d, J = 8.7 Hz, 1H), 

4.23 (s, 2H);  13C NMR (75 MHz, DMSO-d6) δ 170.34, 168.10, 156.30, 148.85, 139.28, 137.55, 

134.40, 134.15, 127.92, 125.37, 123.91, 123.57, 114.51, 57.56. HRMS (ESI/IT-TOF) [M + H]+ 

calcd for C14H11BrN3O 316.0080; found 316.0076. 

 

7.2 Ethyl-8-bromo-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate 

(14) 

The amide 13 (80 g, 253.2 mmol) was suspended in dry THF (1.5 L), and cooled to -35 °C using 

a dry ice bath, after which potassium t-butoxide (34.1 g, 303.8 mmol) was added in one portion. 

The reaction mixture was stirred until it reached 0° C and then stirred for 0.5 h at 0 °C. The mixture 

was then cooled to -50 °C, after which diethyl chlorophosphate (61.2 g, 354.5 mmol) was added 

dropwise with an addition funnel. The dry ice bath was removed to allow the temperature to rise 

to 0 °C, after which it was allowed to stir for 2 h with an ice-water bath. The solution was then 

cooled to -78 °C with a dry-ice bath and ethyl isocyanoacetate (40.1 g, 354.5 mmol) was added, 

immediately followed by a second portion of potassium t-butoxide (34.1 g, 303.8 mmol). This 

solution was allowed to stir overnight, during which period it was allowed to warm to rt. The 
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reaction was completed after 14 h on analysis by TLC (silica gel, EtOAc/hexanes/DCM, 2:2:1, 

and 1% TEA). The reaction mixture was quenched by addition of a cold saturated aq solution of 

NaHCO3 (500 mL) and extracted with EtOAc. The organic layers were combined and washed with 

brine (2 x 200 mL), and dried (Na2SO4). The solvent was removed under reduced pressure to obtain 

a dark brown solid residue. The solid was washed with Et2O/EtOAc (9:1) to remove most of the 

impurities and further recrystallized from EtOAc and hexane (1:4), followed by washing the solid 

with cold Et2O to afford the majority of the pure ethyl ester 14. The remaining filtrate was 

combined and purified by flash chromatography to obtain additional ethyl ester 14 (silica gel, 

EtOAc/ hexanes/DCM 2/2:1 and 1% TEA) as an off-white solid (84.2 g, 81% yield): M.p = 212-

213 °C; Rf = 0.3 (EtOAc-hexane-DCM, 2:2:1 and 1% of TEA); 1H NMR (300 MHz, CDCl3) δ 

8.60 (d, J = 4.4 Hz, 1H), 8.11 (d, J = 7.9 Hz, 1H), 8.00 (s, 1H), 7.86 (td, J = 8.0, 1.7 Hz, 1H), 7.80 

(dd, J = 8.6, 2.2 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.41 (dd, J = 7.1, 5.2 

Hz, 1H), 6.13 (d, J = 10.4 Hz, 1H), 4.51 – 4.33 (m, 2H), 4.17 (d, J = 11.6 Hz, 1H), 1.44 (t, J = 7.1 

Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 167.04, 162.89, 156.17, 148.67, 138.39, 136.90, 135.27, 

134.95, 134.53, 134.45, 129.33, 128.50, 124.86, 124.28, 123.94, 120.51, 60.75, 45.00, 14.42. 

HRMS (ESI/IT-TOF) [M + H]+ calcd for C19H16BrN4O2 411.0451; found 411.0454. 

 

7.3 Ethyl-6-(pyridin-2-yl)-8-((trimethylsilyl)ethynyl)-4H-benzo[f] imidazo[1,5a]-[1,4]diaze-

pine-3-car boxylate (15) 

The ethyl ester 14 (63.8 g, 155.1 mmol) was dissolved in TEA (400 mL) and dry CH3CN (600 

mL) in a 3-neck round bottom flask with a reflux column attached. The solution was then degassed 

three times under vacuum and argon. Trimethylsilylacetylene (22.9 g, 232.7 mmol) and 

bis(triphenyl phosphine)-palladium (II) acetate (6.4 g, 8.53 mmol) were added to the solution 
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under argon, and the mixture was degassed for four times (as above). The reaction mixture was 

then heated to reflux under argon and allow to stir overnight. The reaction process was completed 

in 15 h as monitored on analysis by TLC (silica gel, EtOAc/hexanes, 7:3, and 1% TEA). The 

reaction mixture was then cooled to 0 °C, and filtered through celite. This was followed by washing 

with EtOAc, and drying (Na2SO4). The filtrate was concentrated under reduced pressure. The black 

residue, which resulted, was loaded on a silica plug (4 g of silica/1 g of the product, 

EtOAc/hexanes, 1:1 with 1% TEA) to remove the baseline impurities and the material was 

recrystallized from EtOAc. The crystals were filtered and washed with Et2O to afford pure 

trimethylsilyl ethyl ester 15. The filtrate was purified by flash chromatography to afford additional 

ester 15 as an off-white solid (61.1 g, 92% yield): M.p = 203-204 °C; Rf = 0.5 (EtOAc-hexane, 1:1 

and 1% of TEA); 1H NMR (300 MHz, CDCl3) δ 8.56 (d, J = 4.1 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 

7.90 (s, 1H), 7.78 (t, J = 7.7 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.51 (d, J = 9.2 Hz, 2H), 7.34 (t, J 

= 5.9 Hz, 1H), 6.08 (d, J = 9.2 Hz, 1H), 4.47 – 4.31 (m, 2H), 4.10 (d, J = 6.9 Hz, 1H), 1.41 (t, J = 

7.0 Hz, 3H), 0.21(s, 9H); 13C NMR (75 MHz, CDCl3) δ 167.80, 162.92, 156.55, 148.79, 138.47, 

136.79, 135.67, 135.15, 135.05, 134.50, 129.26, 127.03, 124.71, 123.97, 122.72, 122.24, 102.79, 

97.05, 60.71, 45.03, 14.42, -0.23. HRMS (ESI/IT-TOF) [M + H]+ calcd for C24H25N4O2Si 

429.1741; found 429.1747. 

 

7.4 Ethyl-8-ethynyl-6-(pyridin-2-yl)-4H-benzo [f]imidazo [1,5-a][1,4] diazepine-3-car-

boxylate   (HZ-166, 2) 

The trimethylsilyl ethyl ester 15 (50 g, 116.8 mmol) was dissolved in THF (1 L) and cooled to -78 

°C. Tetrabutylammonium fluoride hydrate (1 M solution in THF, 175.1 mmol) was added to the 

solution, and this was followed by water (50 mL). The reaction mixture was stirred at -78 °C until 
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the starting material was consumed in 0.5 h, as analyzed by TLC (silica gel). The reaction mixture 

was allowed to warm to 0 °C and quenched by a slow addition of water (500 mL). The organic 

layer was separated and the aq layer was extracted EtOAc (5 x 300 mL). The combined organic 

layers were washed with brine (2 x 400 mL), and dried (Na2SO4). The solvent was removed under 

reduced pressure and the residue, which resulted, was dissolved in the mixture of DCM (100 mL) 

and MeOH (400 mL) at 50 °C and the solution was concentrated to 1/3rd of its original volume. 

The majority of the ethyl ester 2 was recrystallized at rt with a seed crystal added, and the solid 

was further washed with cold MeOH. The filtrate was combined and purified by a wash column 

(silica gel, EtOAc/hexane/DCM 8:1:2, and 1% TEA) to afford additional ethyl ester 2 as a white 

powder (37.8 g, 96% yield): M.p = 243-244 °C; Rf = 0.4 (EtOAc-hexane-DCM, 8:1:2 and 1% of 

TEA); 1H NMR (300 MHz, CDCl3) δ 8.59 (d, J = 4.6 Hz, 1H), 8.08 (d, J = 7.9 Hz, 1H), 7.96 (s, 

1H), 7.83 (td, J = 7.8, 1.6 Hz, 1H), 7.77 (dd, J = 8.4, 1.7 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.38 (dd, J 

= 7.0, 5.3 Hz, 1H), 6.12 (d, J = 10.6 Hz, 1H), 4.56 – 4.27 (m, 2H), 4.16 (d, J = 10.2 Hz, 1H), 3.17 

(s, 1H), 1.44 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 167.59, 162.82, 156.17, 148.62, 

138.38, 137.12, 136.18, 135.42, 135.38, 134.57, 129.23, 127.01, 124.92, 124.14, 122.92, 121.30, 

81.64, 79.58, 60.86, 44.99, 14.43. HRMS (ESI/IT-TOF): [M + H]+ calcd for C21H17N4O2 

357.1346; found 357.1344. 

 

7.5 3-Ethyl-5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)-1,2-

,4-oxadiazole (MP-III-080, 7) 

The ethyl ester 2 (4.4 g, 12.4 mmol) was dissolved in dry THF (200 mL) at rt under argon. In a 

separate flask that contained 3Å molecular sieves, N-hydroxypropionimidamide (4.35 g, 19.4 

mmol) was dissolved in dry THF (50 mL) under argon and then treated with sodium hydride (60% 
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dispersion in mineral oil, 360 mg, 14.8 mmol). The mixture was allowed to stir for 15 min and was 

then added dropwise to the solution of ethyl ester 2. The reaction was completed in 3 h as analyzed 

by TLC (silica gel). The reaction mixture was quenched with a saturated aq NaHCO3 solution (10 

mL) extracted with EtOAc (3 x 250 mL). The organic layers were combined, washed with brine, 

and dried (Na2SO4) The solvent was removed under reduced pressure. The solid, which resulted, 

was purified by flash chromatography (silica gel, EtOAc/hexanes 4:1 and 1% TEA) to afford pure 

1,2,4-oxadiazole 7 as a white powder (4.1 g, 88% yield):  M.p = 204-205 °C; Rf = 0.6 (EtOAc-

hexane, 4:1 and 1% of TEA); 1H NMR (500 MHz, CDCl3) δ 8.58 (d, J = 4.3 Hz, 1H), 8.07 (d, J = 

8.0 Hz, 1H), 8.05 (s, 1H), 7.83 (dd, J = 11.8, 4.4 Hz, 1H), 7.78 (dd, J = 8.4, 1.3 Hz, 1H), 7.61 (d, 

J = 8.3 Hz, 1H), 7.57 (d, J = 1.0 Hz, 1H), 7.38 (dd, J = 6.7, 5.3 Hz, 1H), 6.16 (d, J = 11.4 Hz, 1H), 

4.29 (d, J = 11.2 Hz, 1H), 3.19 (s, 1H), 2.85 (q, J = 7.6 Hz, 2H), 1.44 (t, J = 7.6 Hz, 3H); 13C NMR 

(126 MHz, CDCl3) δ 171.9, 170.7, 167.9, 156.3, 148.7, 137.1, 136.3, 136.1, 135.9, 135.5, 135.2, 

127.1, 125.0, 124.8, 124.1, 122.9, 121.4, 81.6, 79.7, 44.9, 19.8,  11.6. HRMS (ESI/IT-TOF) [M + 

H]+ calcd for C22H17N6O 381.1458; found 381.1461. 

 

7.6 3-Cyclopropyl-5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-

yl)-1,2,4-oxadiazole (17) 

The ethyl ester 2 (0.5 g, 1.40 mmol) was dissolved in dry THF (50 mL) at rt under argon. In a 

separate flask that contained 3Å molecular sieves, N'-hydroxycyclopropanecarboximidamide (0.2 

g, 2.10 mmol) was dissolved in dry THF (10 mL) under argon and then treated with sodium hydride 

(60% dispersion in mineral oil, 2.8 mg, 1.7 mmol). The mixture was allowed to stir for 15 min and 

was then added dropwise to the solution of ethyl ester 2. The reaction was completed in 3 h as 

analyzed by TLC (silica gel). The reaction mixture was quenched with a saturated aq NaHCO3 
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solution (2 mL) extracted with EtOAc (3 x 100 mL). The organic layers were combined, washed 

with brine, and dried (Na2SO4) The solvent was removed under reduced pressure. The solid, which 

resulted, was purified by flash chromatography (silica gel, EtOAc/hexanes 4:1 and 1% TEA) to 

afford pure 1,2,4-oxadiazole 17 as a white powder (0.43 g, 78% yield): 1H NMR (300 MHz, 

CDCl3) δ 8.59 (d, J = 4.8 Hz, 1H), 8.06 (d, J = 7.9 Hz, 1H), 8.03 (s, 1H), 7.84 (td, J = 7.8, 1.6 Hz, 

1H), 7.78 (dd, J = 8.4, 1.7 Hz, 1H), 7.58 (dd, J = 7.2, 5.0 Hz, 2H), 7.43 – 7.34 (m, 1H), 6.10 (s, 

1H), 4.28 (s, 1H), 3.18 (s, 1H), 2.28 – 2.03 (m, 1H), 1.10 (dd, J = 23.7, 15.5 Hz, 4H); 13C NMR 

(126 MHz, CDCl3) δ 172.7, 170.5, 167.7, 156.1, 148.6, 137.2, 136.3, 136.1, 135.9, 135.5, 135.3, 

127.0, 124.8, 124.1, 122.9, 121.5, 81.6, 79.7, 44.9, 7.8, 6.9. HRMS (ESI/IT-TOF) [M + H]+ calcd 

for C23H16N6O 393.4127; found 393.1458. 

Representative example: ethyl oxime “N'-hydroxypropionimidamide” 

Hydroxylamine hydrochloride (9.73 g, 0.14 mol) and potassium carbonate (41.5 g, 0.3 mol) was 

added in methanol (400 mL) and water (80 mL). The suspension which resulted was stirred at rt 

for 15 min after which it was heated to reflux. Propionitrile (7.1 mL, 0.1 mol) was added dropwise 

and the reaction, which resulted, was stirred at reflux for 16 h.  After that, the reaction mixture was 

cooled to 0 oC and the precipitate which formed was filtered. The solvent from the filtrate was 

removed under reduced pressure. The solid residue was dissolved in EtOAc and washed with 

water, brine, and dried (Na2SO4), after which the solvent was removed under reduced pressure to 

afford the ethyl oxime as a white solid (6.05 g, 69%): HPLC-MS (ESI) m/z (M+H) 89.06. This 

material was used for the next step without further characterization. 

By following the same procedure with Cyclopropanecarbonitrile (6.49 mL, 72.3 mmol), this 

process furnished cyclopropyl oxime “N'-hydroxycyclopropanecarboximidamide” (5.54 g, 75%).  
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7.7 3-Ethyl-5-(1,4,4-deutero-8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]dia-

zepin-3-yl)-1,2,4-oxadiazole (18) [d3-MP-III-80] 

The 1,2,4-oxadiazole 7 (200 mg, 0.526 mmol) was taken in a clean and dry round bottom flask. 

K2CO3 (363 mg, 2.63 mmol) and CH3OD (3 ml) were added to the above flask and the suspension 

which resulted was refluxed for 3 h. After that the reaction mixture was cooled to rt and the CH3OD 

was evaporated under reduced pressure. Then 5 mL of distilled dry EtOAc was added to the white 

residue and it was sonicated for 5 min to dissolve the product completely. The suspension was 

then passed through a pad of celite to filter out the insoluble K2CO3 and the celite pad was washed 

with additional EtOAc (5x3 mL). The eluent was evaporated under reduced pressure. The residue 

was dissolve in dry CH3OH and evaporated by rotary evaporator. This process was repeated 5-6 

cycles to furnish completely protonated acetylene. The % deuterium incorporation was confirmed 

by NMR spectroscopy. Finally, the colored impurity was removed by re-crystallization to furnish 

the tri-deuterated MP-III-080 18 (189 mg, 94%). 1H NMR (300 MHz, CDCl3) δ 8.57-8.55 (m, 1H), 

8.07-8.04 (m, 1H), 7.80 (td, J = 7.8, 1.7 Hz, 1H), 7.76 (dd, J = 8.3, 1.8 Hz, 1H), 7.59 (brd, J = 8.3 

Hz, 1H), 7.56 (d, J = 1.8 Hz, 1H), 7.37-7.34 (m, 1H), 3.18 (s, 1H), 2.84 (q, J = 7.6 Hz, 2H), 1.39 

(t, J = 7.6 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 171.88, 170.73, 167.89, 156.38, 148.76, 136.88, 

136.35, 136.06, 135.35, 135.19, 127.10, 124.85, 124.73, 123.96, 122.76, 121.39, 81.58, 79.62, 

19.74, 11.50; HRMS (LCMS-IT-TOF) calc. for C22H14D3N6O (M + H)+ 384.1647, found 

384.1622. 
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7.8 Trideuteromethyl-1,4,4-trideutero-8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5- 

a][1,4]diazepine-3-carboxylate (20) [d3-Hz-166-OCD3 ester]  

The ethyl ester 2 (100 mg, 0.28 mmol) and K2CO3 (38 mg, 0.28 mmol) were placed in a round 

bottom flask. Dry CD3OD (5 mL) was added to the mixture under an argon atmosphere at rt. The 

reaction mixture was allowed to stir for 2 h under reflux. After 2 h TLC was taken. The excess 

solvent was removed under reduced pressure and the compound further purified by flash 

chromatography (silica gel, hexane and ethyl acetate) to afford compound 21 as a white solid (76 

mg, 78% yield). The d7-ligand 21 was dissolved in dry CH3OH (10 mL) and was added to the 

mixture under an argon atmosphere at rt. The reaction mixture was allowed to reflux for 3 h. The 

excess solvent was removed under reduced pressure to afford d6-methyl ester ligand 20 as a white 

solid (89 mg, 89% yield). d7-ligand 21: 1H NMR (300 MHz, CDCl3) δ 8.59 (bs, 1H), 8.08 (d, J = 

8 Hz, 1H), 7.83-7.76 (m, 2H), 7.58-7.55 (m, 2H), 7.38 (t, J = 6 Hz, 1H); LC-MS calcd for 

C20H8D7N4O2 350 found 350. d6-ligand 20 TLC; Rf = 0.35 (EtOAc:Hexane 3:1 and 1% of each 

MeOH and TEA) on silica gel plate; d6-ligand 20: 1H NMR (300 MHz, CDCl3) δ 8.58 (bs, 1H), 

8.07 (d, J = 8 Hz, 1H), 7.84-7.75 (m, 2H), 7.58-7.55 (m, 2H), 7.38 (t, J = 6 Hz, 1H), 3.17 (s, 1H); 

Compound 20 LC-MS calcd. for C20H9D6N4O2 (M + H)+ 349 found 349; HRMS (ESI) calcd. For 

C20H9D6N4O2 (M + H)+ 349.1572, found 349.1552. 

 

7.9 1,4,4-Deuteroro-8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3- 

carboxylic acid (22) [d3-Hz-166-Acid] 

The acid 4 (200 mg, 0.609 mmol) was placed in a clean and dry round bottom flask. Then K2CO3 

(421 mg, 3.046 mmol) and CH3OD (3 ml) was added to the above flask and the suspension that 

resulted was refluxed for 5 h under argon. After that, the reaction mixture was allowed cool to rt 
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and the solvent CH3OD was removed under reduced pressure. The white solid which resulted was 

then dissolved in D2O (3 ml) and cooled to 0°C in an ice bath. Then deuterium chloride (2M in 

D2O) was added dropwise until the pH reached 4. The precipitate that formed was then filtered 

and washed with D2O (2x1 mL). The white solid was dried at rt for 2 h and then at 45°C for 12h 

to furnish the tri-deuterated compound 22 (188 mg, 93%); 1H NMR (300 MHz, CDCl3): δ 8.62-

8.52 (m, 1H), 8.11 (d, J = 7.7 Hz, 1H), 7.94-7.80 (m, 1H), 7.79-7.71 (m, 1H), 7.71-7.59 (m, 1H), 

7.58-7.46 (m, 1H), 7.44-7.33 (m, 1H), 3.16 (s, 1 H); HRMS (ESI) calcd. for C19H10D3N4O2 (M + 

H)+ 332.1221, found 332.1201. 
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III. Appendix (Part I) 

Basket Test: The Basket test is useful in assessing motor coordination and sensorimotor deficits 

in rodent models of CNS disorders. An animal is placed in the center of the basket and the basket 

is inverted. The animal is allowed to climb down the walls of the wire basket into its home cage. 

The time it takes for the animal to complete the task is scored. This test is used to evaluate novel 

chemical entities for their effect on motor performance. 

I. BASKET TEST 

Study: pilot ______________________________ 

Group: C57BL/6 mice, male ______________________________TAPE #:  

Age: 6 months ______________________________ DATE: April 1, 2015 

Table A1 

  MOUSE # 

 

GROUP Trial 1 (s) Trial 2 (s) Trial 3 (s) Mean (s) 

    1  

10 mg/kg DZP  

4 14 3 7,0 

    2 23 55 28 35,3 

    3 13 12 10 11,7 

    4 30 mg/kg 

CMD-45  

 

180 180 30 130,0 

    5 16 44 49 36,3 

    6 106 180 178 154,7 

    7 30 mg/kg 

XHE-III-74  

 

61 180 168 136,3 

    8 60 22 10 30,7 

    9 17 33 8 19,3 

   10 25 22 10 19,0 
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Comments: 

Men values per group: 

10 mg/kg DZP: 15,0 s (highly incapacitating) 

30 mg/kg CMD-45: 107,0 s (moderately incapacitating) 

30 mg/kg XHE-III-74: 51,3 s (clearly incapacitating) 

Hence, when administered at high doses of 30 mg/kg, both alpha4-selective ligands diminished 

the capability of male C57BL/6 mice to perform the basket test, pointing to the effect of motor 

impairment, possibly connected with neuromuscular strength and/or motor coordination. The 

effect was more pronounced with XHE-III-74. 

Step-down Test: The Passive Avoidance step-down cage, for mice or immature rats, is based on 

the stepdown scheme in which the animal is dropped on an elevated platform. The grid 

surrounding the base will start vibrating and the latency (time on the platform) will be measured. 

Animals will be trained for this study. This test is used to evaluate novel chemical entities for 

their effect on anti-anxiety behavior. 

II. STEP-DOWN TEST 

Study: pilot ______________________________ 

Group: C57BL/6 mice______________________________TAPE #:  

Age: 6 months ______________________________ DATE: April 1, 2015 

Table A2 

  MOUSE # 
 

GROUP LATENCY TO STEP 
    DOWN (s) 

    1  
10 mg/kg DZP  

2 

    2 180 

    3 2 

    4 30 mg/kg CMD-45  
 

180 

    5 180 

    6 180 

    7 30 mg/kg XHE-III-74  
 

180 

    8 180 

    9 180 

   10 180 
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Comments: 

The experiment was performed under bright light, which promotes anxious reaction and helps 

reveal anti-anxiety potential of a treatment.  

Mice dosed with 10 mg/kg DZP showed a clear tendency of decreased anxiety, while two 

alpha4-preferring ligands were devoid of any hint of anti-anxiety action. 

Rotarod: At least two weeks of training are needed to ensure that all subjects have learned the 

task to the same degree. In the fixed rotation protocol, the animals are placed on a rod which 

constantly rotates at 20 rpm. A trial is complete when the animal falls or the time period ends 

(180 s); This test is used to evaluate novel chemical entities for their effect on motor 

performance. 

III. ROTAROD TEST 

Study: pilot ______________________________ 

Group: Wistar rats, male ______________________________TAPE #:  

Age: 10 weeks ______________________________ DATE: April 1-3, 2015 

Table A3 

  RAT # 
 

GROUP Time until fall (s) 

    1 SOL 163 

    2 DZP (5mg/kg) 1 

    3 CMD-45 (15 mg/kg) 31 

    4 XHE-III-74 (15 mg/kg) 2 

    5 CMD-45 (10 mg/kg) 15 

    6 CMD-45 (10 mg/kg) 180 

    7 XHE-III-74 (10 mg/kg) 7 

    8 XHE-III-74 (10 mg/kg) 52 

    9 CMD-45 (5 mg/kg) 180 

Comments: 

During two consecutive days, 16 rats were trained to keep balance while on the rotating rod (20 

rpm, fixed velocity). On the third day, 9 of 6 animals satisfied the cut-off criterion of balancing 

without any fall during 180 s. 

During testing (20 min after i.p. administration), diazepam at 5 mg/kg and XHE-III-74 at 15 

mg/kg were exceptionally incapacitating. XHE-III-74 dosed at 10 mg/kg was still incapacitating 
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and we did not find the no-observed-effect-level of XHE-III-74. On the other hand, CMD-45 was 

incapacitating at 15 mg/kg and less so at 10 mg/kg, while 5 mg/kg appeared to be the dose close 

to the no-observed effect level of CMD-45. 

Hence, ataxia is a dose-dependent effect of both alpha4-preferring ligands. Nonetheless, the 

ataxic potential of XHE-III-74 is more pronounced. 

  

Table A4 LOCOMOTOR ACTIVITY TEST in adult male Wistar rats 2 months old (Any-maze 
software) 
 
The animals were recorded during 45 min, beginning 20 min after i.p. administration of 
treatment  
 

 Total distance travelled (m) 

 Treatment    N  Mean  SD SE Data  

 sol   6 22.6427 ±3.0003 ±1.2248 25.712, 22.019, 23.710, 23.290, 

17.028, 24.097 

 XHe III 74  10 mg/kg   6 12.0625 ±2.8401 ±1.1595 10.088, 

15.450, 9.999, 10.566, 15.978, 

10.294 

 CMD 45 10 mg/kg   6 12.1652 ±5.6081 ±2.2895 7.570, 6.207, 15.374, 9.883, 12.574, 

21.383 

 

 ANOVA :  F(2,15) = 13.7099   p = 0.000 

 Tukey test  

 sol vs. XHe III 74  10 mg/kg                              q(15,3) = 6.4443 p = 0.001 

 sol vs. CMD 45 10 mg/kg                              q(15,3) = 6.3817 p = 0.001 

 XHe III 74  10 mg/kg vs. CMD 45 10 mg/kg q(15,3) = 0.0625 p = 0.999 

 

 

 Total time mobile (s) 

 Treatment    N  Mean  SD SE Data  

 sol   6 1878.10 ±375.37 ±153.24 1587.2, 1999.2, 2251.4, 1913.5, 

2225.6, 1291.7 

 XHe III 74  10 mg/kg   6 1096.38 ±252.38 ±103.03 755.4, 

1506.5, 949.8, 1074.5, 1086.4, 

1205.7 

 CMD 45 10 mg/kg   6 1104.83 ±294.22 ±120.11 709.8, 873.4, 1521.8, 1023.1, 1261.8, 

1239.1 

 

 ANOVA:  F(2,15) = 12.4579   p = 0.001 

 Tukey test  

 sol vs. XHe III 74  10 mg/kg                              q(15,3) = 6.1464 p = 0.002 
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 sol vs. CMD 45 10 mg/kg                              q(15,3) = 6.0799 p = 0.002 

 XHe III 74  10 mg/kg vs. CMD 45 10 mg/kg q(15,3) = 0.0664 p = 0.999 

 

 Total distance travelled (m) 

  

Figure 1. Total distance travelled. The data analysed has been limited in the following 

way: Treatment = sol, XHe III 74  10 mg/kg or CMD 45 10 mg/kg. 

 

 

 Total time mobile (s) 

  

Figure 2. Total time mobile. The data analysed has been limited in the following way: 

Treatment = sol, XHe III 74  10 mg/kg or CMD 45 10 mg/kg. 
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 Total distance travelled (m) 

  

Figure 1. Total distance travelled. The data analysed has been limited in the following 

way: Treatment = sol, XHe III 74  10 mg/kg or CMD 45 10 mg/kg  

 Total time mobile (s) 

  

Figure 2. Total time mobile. The data analysed has been limited in the following way: 

Treatment = sol, XHe III 74  10 mg/kg or CMD 45 10 mg/kg  

Comment: Both, XHe III 74 and CMD 45 dosed at 10 mg/kg were clearly sedative in 

locomotor activity test. The effect appeared to be robust and replicable without any doubt. 
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V. LOCOMOTOR ACTIVITY TEST in adult female Wistar rats 4 month old, weighing 350 g 
and more (Any-maze software) 

-Pilot experiment- 
 
The animals were recorded during 30 min, beginning 20 min after i.p. administration of 

treatment 

 

 Total distance travelled (m), female Wistar rat 

 Treatment    N  Mean  SD Data 

 CMD 45 30 mg/kg   2 0.1010 ±0.0665 0.054, 0.148 

 XHe III 74   30 mg/kg   2 0.0000 ±0.0000 0.000, 0.000 

 SOL   2 1.5775 ±1.1391 2.383, 0.772 

 DZP  10 mg/kg   2 0.3090 ±0.3550 0.560, 0.058 

 

 ANOVA:  F(3,4) = 3.0001   p = 0.158 

 

 Total time mobile (s), female Wistar rat 

 Treatment    N  Mean  SD Data  

 CMD 45 30 mg/kg   2 32.55 ±10.54 40.0, 25.1 

 XHe III 74   30 mg/kg   2 0.35 ±0.07 0.4, 0.3 

 SOL   2 308.75 ±168.64 428.0, 189.5 

 DZP  10 mg/kg   2 50.65 ±55.79 90.1, 11.2 

 

 ANOVA :  F(3,4) = 5.0931   p = 0.075 

 Comment:  

When dosed at 30 mg/kg, both, XHe III 74 and CMD 45 were exceptionally sedative in 

locomotor activity test in adult female rats. The effect may be even more pronounced than that 

obtainable with diazepam dosed at 10 mg/kg. Notably, the effect of XHe III 74 dosed at 30 

mg/kg was so pronounced that it cannot be distinguished – by the used method – from possible 

anesthetic action of this ligand. 

 

From all this CNS study it is obvious that both ligands are sedative and some test shows that 

XHe-III-74 is somewhat more sedative than CMD-45. But for better activity, potency and 

selectivity towards alpha 4 GABAA receptor, it was chosen as the lead compound.  

In the meanwhile, Dr. Savic’s group have done the pk study on XHe-III-74. 

Pharmacokinetic studies 

Experiment I 

In order to determine pharmacokinetic profile of XHe-III-4 rats were divided in two groups, each 

containing 18 animals i.e. three animals per one time point. The rats from group I received XHe-

III-74 nanoemulsion and rats from group II received XHe-III-74 solution into the tail vein, via 
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infusion pump,  both at doses of 2 mg/kg. At predetermined time intervals, that is, 10, 20, 40, 60, 

180 and 720 min after dosing, rats were sacrificed to collect blood samples and brains. 

 

 

 
 

Figure A1. Plasma and brain concentration–time profiles of XHe-III-74 after intravenous 

administration of solution (a) and nanoemulsion (b) (n = 3, mean ± SEM). 
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Table 4. 

Plasma and brain concentrations of XHe-III-74 after intravenous administration of solution and 

nanoemulsion (n = 3, mean ± SEM). 

 

Time 

(min) 

Nanoemulsion (2 mg/kg) Solution (2 mg/kg) 

Plasma (nmol/L) Brain (nmol/kg) Plasma (nmol/L) Brain (nmol/kg) 

5 1876.19 ± 738.68 1276.79 ± 554.75 4218.76 ± 502.24 12364.14 ± 2664.42 

20 1537.01 ± 449.72 1180.64 ± 444.06 2338.58 ±215.26 1745.17 ± 128.02 

40 791.06 ± 251.02 561.91 ± 193.30 656.30± 120.39 412.24 ± 125.15 

60 599.22 ± 110.53 310.77 ± 71.32 453.15 ± 150.90 220.84 ± 88.29 

180 35.90 ± 3.99 9.79 ± 1.77 325.24 ± 26.73 69.17 ± 29.92 

720 107.27 ± 106.02 2.30 ± 0.44 4.41 ± 1.05 16.65 ± 6.05 

Experiment II 

Additional pharmacokinetic experiment was performed in order to determine brain and plasma 

concentration, as well as to calculate free brain and plasma levels of XHe-III-74 dosed at 10 

mg/kg, 20 min after intravenous infusion. 

 

 Total conc. Free conc. 

Plasma 

(nmol/l) 

Nanoemulsion  6530.84±854.12 756.27±98.90635 

Solution 13752.82±2375.53 1586.27±275.09 

Brain 

(nmol/l) 

Nanoemulsion  5608.33±953.93 590.00±100.35 

Solution 12364.14±2664.42 1300.71±280.30 

 

 

Table 5. Total and estimated free concentrations of XHe-III-74 (dosed at 10 mg/kg)  in plasma 

and brain samples after 20 min (n = 3, mean±SEM) 

 

Experiment III 

XHe-III-74 nanoemulsion (concentration 2 mg/ml) was injected into the tail vein at dose of 20 

mg/kg (the dose used in LOOR experiment). At predetermined time intervals, that is, 5, 10, 20, 

40, 180 and 720 min after dosing rats were sacrificed to collect blood samples and brains. 

 

 

Time 

(min) 

Plasma concentration Brain concentration 

nmol/l ng/ml nmol/kg ng/g 

5  

73904.63 ± 3777.95 

 

27301.11 ± 1395.61 

 

69041.67 ± 3898.48 

 

25504.68 ± 

1440.14 

 

10  

52424.80 ± 3134.74 

 

19366.25 ± 1158.00 

 

52375.26 ± 6423.55 

 

19347.94 ± 

2372.92 

 

20 40393.56 ± 2681.59 

 

14921.76 ± 990.61 

 

34335.14 ± 1471.47 

 

12683.74 ± 543.58 

 

40 23889.09  ± 4652.03 8824.87 ± 1718.506 19638.77 ± 3552.36 7254.76 ± 1312.28 
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60  16311.87 ± 1811.01 

 

6025.77 ± 669.00 

 

25361.54 ± 2486.93 

 

9368.81 ± 918.70 

 

180 3623.02 ± 344.13 

 

1338.38 ± 127.12 

 

3589.57 ±595.43 

 

1326.02 ± 219.6 

 

720 28.69 ± 11.54 

 

10.60 ± 4.26 

 

799.76 ± 75.71 

 

295.44 ± 27.97 

 

 

Table 6. Plasma and brain concentration of XHe-III-74 after intravenous administration of  

nanoemulsion (n = 3, mean±SEM) 
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Figure A2. The α4β3γ2 GABAAR subtype selectivity of 16 was confirmed by comparison of its 

GABA induced current potentiation with the α1β3γ2 GABAAR 

 

 

Figure A3 (related to Figure 34). Effect of 1 and 2 on sensorimotor coordination. Swiss Webster 

mice received a single intra-gastric gavage of test compound (100 mg/kg) or diazepam (5 mg/kg 

ip) and placed on a rotarod at 15rpm for 3 minutes after 10, 30 and 60 minutes of drug 

administration. A fail was assigned to a mouse having fallen twice prior to 3 minutes. The latency 

to fall is expressed as mean ± SEM from 9 mice in each group. Vehicle and diazepam was used as 

negative and positive control respectively. 
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Figure A4 (related to Figure 34). Automated patch clamp with compound 1 (phenol 6). A) 

Concentration-dependent negative current responses in the presence of EC20 concentration of 

GABA and increasing concentration of compound 1 applied together for 3 seconds using α1β3γ2 

or α4β3γ2 GABAAR expressing HEK293T cells. Negative current readings were normalized to 

EC20 concentration of GABA response set as 100% (n = 16). B) Current recordings in the presence 

of EC20 concentration of GABA and increasing concentrations of compound 1 applied together 

for 3 seconds using α4β3γ2 expressing HEK293T cells. C) Current recordings in the presence of 

EC20 concentration of GABA and increasing concentrations of compound 1 applied together for 

3 seconds using α1β3γ2 expressing HEK293T cells. 

 

Figure A5. Effect of 1 and 2 on mucous production Morphometric quantification of mucin volume 

density and B) representative images of mucin (red) in the airway epithelium (green) with periodic 

acid fluorescent Schiff’s stain. Ova s/c BALB/c mice were administered 1 via oral gavage, 100 

mg/kg twice daily for 5 days or 2 via oral gavage, 100 mg/kg twice daily for 5 days. Data represent 

mean ± SEM mucin volume density from 6 mice in each group. Scale bar represents 100 μm. 
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Table A5. Cytotoxicity of oxadiazoles (24,25,26) determined in the presence of human kidney, 

liver and lung cells 

 

 

Table A6. Cytotoxicity of oxazole 28 determined in the presence of human kidney, liver and lung 

cells 
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Figure A6. Airway smooth muscle relaxation in guinea pig tracheal ring by oxazole 28 

 

Figure A7. Sensorimotor impairment of 28 
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Table A7. Microsomal stability of compounds was tested with human and mouse liver 

microsomes.  

Compound HLM % remaining 

after 60 min 

MLM % remaining 

after 60 min 

RJ-03-57, 31 94.3 ± 0.1 98.3 ± 0.2 

RJ-02-67 90.6 ± 0.2 46.6 ± 0.3 

RJ-03-30, 29 91.8 ± 0.2 80.0 ± 0.3 

 

Table A8.  Cytotoxicity of compounds determined in the presence of human kidney and liver cells. 

None of the investigated compounds induced cytotoxicity up to a concentration of 100 µM. For 

the majority of compounds no toxicity was observed at a concentration of 400 µM.  

 

Compound LD50 HEK293 (µM) 

(Kidney) 

LD50 HEPG2 (µM) 

(Liver) 

RJ-03-57, 31 >200 >200 

RJ-02-50 >400 >400 

RJ-02-67 >400 >400 

RJ-03-30, 29 >400 >400 

 

 

A 

 

B 

 

 

Figure A8. Airway smooth muscle contractile force in guinea pig tracheal rings. Tracheal rings 

were contracted with 1 mM substance P and then treated with 50 mM of compounds or vehicle 

control (0.1% DMSO). The percent of remaining contractile force was measured at various time 
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points and expressed as a percent of the initial substance P induced contractile force. (N > 6) A 

2way ANOVA was used to calculate significance with *(p <0.05), ** (p < 0.01) or *** (p < 0.001) 

p-values are given for each condition. All investigated compounds except RJ-03-57 reduced the 

constriction of airway smooth muscle after 15 minutes for a period of at least 60 minutes.  

 

 

Figure A9. Effect of compounds on sensorimotor coordination. Swiss Webster mice were tested 

on a rotarod at 15 rpm for 3 min at 10, 30, and 60 min following compound exposure. Mice (N = 

10) received a single injection (i.p. or p.o.) of test compound. The time of fall was recorded if it 

occurred prior to 3 min. Data are expressed as mean ± SEM (N = 10). Student t-test was used to 

calculate significance: *(p <0.05), ** (p < 0.01) or *** (p < 0.001) significance compared to 

vehicle-treated mice. None of the investigated compounds induced any sensorimotor impairments 

at the concentration tested. 
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A 

 

B 

 

 

Figure A10. Compound effects on airway hyperresponsiveness Specific airway resistance (sRaw) 

was measured at increasing dosages of methacholine by a DSI’s Buxco FinePointe non-invasive 

airway mechanics instrument. Ova s/c BALB/c mice were administered all compounds via oral 

gavage, 100 mg/kg twice daily for 5 days. Data represent mean ± SEM from 10 mice in each group. 

∗, ∗∗, and ∗∗∗ indicate p < 0.05, p < 0.01, p < 0.001 significance, respectively, compared to vehicle 

treated ova s/c BALB/c mice. Compounds RJ-03-57, RJ-03-30 were not able to alleviated airway 

hyperresponsiveness. 

A 

 

B 

 

C 

 

 

Figure A11. Effect of compounds on inflammatory cells. Groups of 10 ova s/c BALB/c mice were 

administered compounds at 100 mg/kg twice daily for 5 days. BALF was harvested from each 

animal and used for (A) quantification of total inflammatory cells; (B) eosinophils; (C) CD4+ T 

cells. Cells were stained with mouse CD45+ APC antibody, and samples were analyzed with BD 

FACS Calibur on high flow rate (60 μl/min) for 180 s. The gated positive events in the fourth 
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channel (FL4) were used to calculate the total inflammatory cell count as cells/ml. Quantification 

of specific leukocyte population (B) eosinophils (C) CD4+ T cell populations were stained with 

specific antibodies and detected by flow cytometry. Data represent mean ± SEM from 10 mice in 

each group. *, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001 significance, respectively, 

compared to vehicle treated ova s/c BALB/c mice. Compounds GL-II-43, RJ-03-30, RJ-03-90 did 

not modulated the numbers of inflammatory cells. However, RJ-02-50 and GL-II-93 did reduce 

the numbers of eosinophils and CD4+ T cells in the asthmatic mouse lung. SH-053-2F’F-R-CH3-

Acid reduced the numbers of eosinophils but not CD4+ T cells.  

 

 

 

Figure A12. Current recordings in the presence of 600 nM GABA and increasing concentrations 

of compounds applied together for 3 s using CD4+ T-cells isolated from ova s/c BALB/c mice 

spleen. The concentration-dependent current responses of CD4+ T-cells in the presence of 600 nM 

GABA and increasing concentration of compounds were carried out with an N of 16 and 

normalized to the current response of 600 nM GABA. Compound RJ-02-50 potentiated the 

GABA-induced membrane current more than SH-053-2F’F-R-CH3-Acid. Importantly, GL-II-93 

and RJ-03-30 evoked a very pronounced GABA-induced transmembrane current.  
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Figure A13. Pharmacokinetic profile of tetrazole 31 in mice blood lungs, and brain. Time-

dependent systemic distribution of compounds administered at 25 mg/kg via oral gavage. RJ-03-

57 has a moderate absorption and fast clearance.   
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Figure A14. Cytotoxicity assay results of XHE-III-74 analogs on human liver hepatocellular 

carcinoma (HEPG2), human embryonic kidney 293T (HEK293T) and human bronchial epithelial 

(BEAS 2B) cell lines. 
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X-ray Crystal Data for XHE-III-74EE (S isomer), 5  

Table A9. Crystal data and structure refinement for XHe-III-74EE 5. 

Identification code  cook115x 

Empirical formula  C18H19N3O4 

Formula weight  341.36 

Temperature  150(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 8.8015(3) Å = 90°. 

 b = 12.3627(5) Å = 90°. 

 c = 14.6328(5) Å  = 90°. 

Volume 1592.20(10) Å3 

Z 4 

Density (-123ºC) 1.424 Mg/m3 

Absorption coefficient 0.846 mm-1 

F(000) 720 

Crystal size 0.639 x 0.537 x 0.372 mm3 

θ range for data collection 4.682 to 68.183°. 

Index ranges -9<=h<=10, -14<=k<=14, -16<=l<=17 

Reflections collected 9325 

Independent reflections 2738 [R(int) = 0.2000] 

Completeness to θ = 67.679° 98.1 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7438 and 0.6141 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2738 / 0 / 229 

Goodness-of-fit on F2 1.085 

Final R indices [I>2σ(I)] R1 = 0.0507, wR2 = 0.1390 

R indices (all data) R1 = 0.0508, wR2 = 0.1392 

Absolute structure parameter -0.1(3) 

Extinction coefficient 0.022(2) 

Largest diff. peak and hole 0.375 and -0.315 e.Å-3 
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Table A10. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

N(1) 9167(3) 5590(2) 4986(2) 21(1) 

C(2) 8942(3) 5685(2) 5865(2) 21(1) 

N(3) 8473(3) 6697(2) 6104(2) 19(1) 

C(4) 8043(3) 7014(2) 7014(2) 20(1) 

C(5) 7231(3) 6282(2) 7532(2) 20(1) 

C(6) 6814(3) 6521(2) 8427(2) 22(1) 

C(7) 7204(3) 7528(2) 8786(2) 21(1) 

O(7) 6819(2) 7870(2) 9650(1) 28(1) 

C(7A) 5844(4) 7188(3) 10161(2) 34(1) 

C(8) 8046(3) 8252(2) 8271(2) 22(1) 

C(9) 8479(3) 8008(2) 7382(2) 19(1) 

C(10) 9481(3) 8813(2) 6907(2) 20(1) 

O(10) 10460(2) 9317(2) 7336(1) 26(1) 

N(11) 9259(2) 8968(2) 6009(2) 20(1) 

C(12) 10175(3) 9740(2) 5477(2) 24(1) 

C(13) 9608(3) 9573(3) 4507(2) 25(1) 

C(14) 7944(3) 9253(2) 4650(2) 22(1) 

C(15) 8008(3) 8489(2) 5463(2) 19(1) 

C(16) 8381(3) 7301(2) 5310(2) 20(1) 

C(17) 8810(3) 6598(2) 4624(2) 20(1) 

C(18) 8915(3) 6674(2) 3612(2) 21(1) 

O(18) 9603(3) 6028(2) 3153(1) 31(1) 

O(19) 8143(2) 7511(2) 3267(1) 26(1) 

C(20) 8162(4) 7610(3) 2279(2) 28(1) 

C(21) 7671(4) 8745(3) 2049(2) 36(1) 

________________________________________________________________________________
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Table A11. Bond lengths [Å] and angles [°] for 5. 

_____________________________________________________ 

N(1)-C(2)  1.306(4) N(1)-C(17)  1.391(4) 

C(2)-N(3)  1.363(4) C(2)-H(2A)  0.9500 

N(3)-C(16)  1.384(4) N(3)-C(4)  1.440(4) 

C(4)-C(5)  1.380(4) C(4)-C(9)  1.395(4) 

C(5)-C(6)  1.392(4) C(5)-H(5A)  0.9500 

C(6)-C(7)  1.394(4) C(6)-H(6A)  0.9500 

C(7)-O(7)  1.375(3) C(7)-C(8)  1.385(4) 

O(7)-C(7A)  1.417(4) C(7A)-H(7AA)  0.9800 

C(7A)-H(7AB)  0.9800 C(7A)-H(7AC)  0.9800 

C(8)-C(9)  1.389(4) C(8)-H(8A)  0.9500 

C(9)-C(10)  1.500(4) C(10)-O(10)  1.235(3) 

C(10)-N(11)  1.341(4) N(11)-C(12)  1.472(4) 

N(11)-C(15)  1.484(3) C(12)-C(13)  1.519(4) 

C(12)-H(12A)  0.9900 C(12)-H(12B)  0.9900 

C(13)-C(14)  1.532(4) C(13)-H(13A)  0.9900 

C(13)-H(13B)  0.9900 C(14)-C(15)  1.521(4) 

C(14)-H(14A)  0.9900 C(14)-H(14B)  0.9900 

C(15)-C(16)  1.521(4) C(15)-H(15A)  1.0000 

C(16)-C(17)  1.381(4) C(17)-C(18)  1.487(4) 

C(18)-O(18)  1.206(4) C(18)-O(19)  1.336(4) 

O(19)-C(20)  1.450(3) C(20)-C(21)  1.506(5) 

C(20)-H(20A)  0.9900 C(20)-H(20B)  0.9900 

C(21)-H(21A)  0.9800 C(21)-H(21B)  0.9800 

C(21)-H(21C)  0.9800 

 

C(2)-N(1)-C(17) 105.1(2) N(1)-C(2)-N(3) 112.4(3) 

N(1)-C(2)-H(2A) 123.8 N(3)-C(2)-H(2A) 123.8 

C(2)-N(3)-C(16) 107.4(2) C(2)-N(3)-C(4) 124.5(2) 

C(16)-N(3)-C(4) 127.9(2) C(5)-C(4)-C(9) 120.6(3) 

C(5)-C(4)-N(3) 117.8(3) C(9)-C(4)-N(3) 121.6(2) 

C(4)-C(5)-C(6) 120.9(3) C(4)-C(5)-H(5A) 119.5 

C(6)-C(5)-H(5A) 119.5 C(5)-C(6)-C(7) 118.6(3) 

C(5)-C(6)-H(6A) 120.7 C(7)-C(6)-H(6A) 120.7 

O(7)-C(7)-C(8) 115.6(3) O(7)-C(7)-C(6) 124.1(3) 

C(8)-C(7)-C(6) 120.3(3) C(7)-O(7)-C(7A) 116.8(2) 

O(7)-C(7A)-H(7AA) 109.5 O(7)-C(7A)-H(7AB) 109.5 

H(7AA)-C(7A)-H(7AB) 109.5 O(7)-C(7A)-H(7AC) 109.5 

H(7AA)-C(7A)-H(7AC) 109.5 H(7AB)-C(7A)-H(7AC) 109.5 

C(7)-C(8)-C(9) 121.0(3) C(7)-C(8)-H(8A) 119.5 

C(9)-C(8)-H(8A) 119.5 C(8)-C(9)-C(4) 118.5(3) 

C(8)-C(9)-C(10) 116.8(2) C(4)-C(9)-C(10) 124.6(3) 

O(10)-C(10)-N(11) 121.8(3) O(10)-C(10)-C(9) 120.6(2) 

N(11)-C(10)-C(9) 117.6(2) C(10)-N(11)-C(12) 122.1(2) 

C(10)-N(11)-C(15) 125.3(2) C(12)-N(11)-C(15) 112.4(2) 

N(11)-C(12)-C(13) 103.1(2) N(11)-C(12)-H(12A) 111.1 

C(13)-C(12)-H(12A) 111.1 N(11)-C(12)-H(12B) 111.1 

C(13)-C(12)-H(12B) 111.1 H(12A)-C(12)-H(12B) 109.1 

C(12)-C(13)-C(14) 102.8(2) C(12)-C(13)-H(13A) 111.2 

C(14)-C(13)-H(13A) 111.2 C(12)-C(13)-H(13B) 111.2 

C(14)-C(13)-H(13B) 111.2 H(13A)-C(13)-H(13B) 109.1 

C(15)-C(14)-C(13) 103.4(2) C(15)-C(14)-H(14A) 111.1 

C(13)-C(14)-H(14A) 111.1 C(15)-C(14)-H(14B) 111.1 

C(13)-C(14)-H(14B) 111.1 H(14A)-C(14)-H(14B) 109.0 

N(11)-C(15)-C(14) 101.6(2) N(11)-C(15)-C(16) 107.7(2) 



253 
 

Table A11. (continued). 

_____________________________________________________ 

 

C(14)-C(15)-C(16) 119.5(2) N(11)-C(15)-H(15A) 109.2 

C(14)-C(15)-H(15A) 109.2 C(16)-C(15)-H(15A) 109.2 

C(17)-C(16)-N(3) 104.7(2) C(17)-C(16)-C(15) 140.7(3) 

N(3)-C(16)-C(15) 114.2(2) C(16)-C(17)-N(1) 110.4(2) 

C(16)-C(17)-C(18) 134.6(3) N(1)-C(17)-C(18) 115.0(3) 

O(18)-C(18)-O(19) 123.9(2) O(18)-C(18)-C(17) 122.9(3) 

O(19)-C(18)-C(17) 113.2(2) C(18)-O(19)-C(20) 115.9(2) 

O(19)-C(20)-C(21) 107.4(3) O(19)-C(20)-H(20A) 110.2 

C(21)-C(20)-H(20A) 110.2 O(19)-C(20)-H(20B) 110.2 

C(21)-C(20)-H(20B) 110.2 H(20A)-C(20)-H(20B) 108.5 

C(20)-C(21)-H(21A) 109.5 C(20)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 C(20)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)-H(21C) 109.5 

_____________________________________________________________

  

Table A12. Anisotropic displacement parameters (Å2x 103) for 5. The anisotropic 

displacement factor exponent takes the form: -22[h2a*2U11 + ... + 2 h k a* b* U12] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

N(1) 23(1)  14(1) 27(1)  -2(1) -2(1)  2(1) 

C(2) 25(1)  10(1) 27(1)  2(1) -3(1)  2(1) 

N(3) 21(1)  13(1) 22(1)  -1(1) -2(1)  1(1) 

C(4) 20(1)  16(1) 23(1)  3(1) -2(1)  3(1) 

C(5) 22(1)  12(1) 26(1)  1(1) -4(1)  -2(1) 

C(6) 22(1)  17(2) 26(1)  7(1) 0(1)  -2(1) 

C(7) 23(1)  19(1) 23(1)  3(1) 1(1)  3(1) 

O(7) 36(1)  21(1) 26(1)  -2(1) 8(1)  -4(1) 

C(7A) 45(2)  24(2) 31(2)  -1(1) 8(1)  -9(1) 

C(8) 24(1)  15(1) 26(1)  -2(1) 0(1)  1(1) 

C(9) 19(1)  14(1) 24(1)  0(1) -4(1)  0(1) 

C(10) 20(1)  13(1) 26(1)  -7(1) 1(1)  2(1) 

O(10) 27(1)  21(1) 29(1)  -1(1) -3(1)  -9(1) 

N(11) 20(1)  13(1) 27(1)  -1(1) 0(1)  -2(1) 

C(12) 22(1)  16(1) 34(2)  4(1) 3(1)  -2(1) 

C(13) 28(1)  17(1) 31(1)  5(1) 7(1)  1(1) 

C(14) 24(1)  14(1) 28(1)  -2(1) 1(1)  4(1) 

C(15) 17(1)  14(1) 27(1)  -2(1) -1(1)  0(1) 

C(16) 17(1)  17(1) 25(1)  0(1) -2(1)  -1(1) 

C(17) 17(1)  18(1) 25(1)  1(1) -2(1)  -1(1) 

C(18) 22(1)  14(1) 27(1)  -3(1) -1(1)  -2(1) 

O(18) 39(1)  27(1) 27(1)  -2(1) 4(1)  10(1) 

O(19) 36(1)  21(1) 23(1)  -1(1) -1(1)  6(1) 

C(20) 33(2)  27(2) 24(1)  1(1) 0(1)  -2(1) 

C(21) 45(2)  30(2) 32(2)  6(2) -4(1)  1(2) 

______________________________________________________________________________
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Table A13. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for 5 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(2A) 9089 5113 6289 25 

H(5A) 6953 5605 7274 24 

H(6A) 6274 6009 8786 26 

H(7AA) 5649 7515 10760 50 

H(7AB) 6327 6481 10243 50 

H(7AC) 4882 7097 9833 50 

H(8A) 8332 8927 8530 26 

H(12A) 11272 9573 5527 29 

H(12B) 9998 10492 5683 29 

H(13A) 10181 8990 4195 31 

H(13B) 9692 10246 4144 31 

H(14A) 7310 9894 4787 27 

H(14B) 7531 8883 4103 27 

H(15A) 7037 8545 5815 23 

H(20A) 7458 7079 2001 34 

H(20B) 9197 7472 2041 34 

H(21A) 7713 8849 1385 54 

H(21B) 8352 9263 2348 54 

H(21C) 6629 8861 2263 54 

________________________________________________________________________________
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Table A14. Torsion angles [°] for 5. 

________________________________________________________________ 

C(17)-N(1)-C(2)-N(3) -0.6(3) N(1)-C(2)-N(3)-C(16) 0.4(3) 

N(1)-C(2)-N(3)-C(4) 175.7(2) C(2)-N(3)-C(4)-C(5) -38.7(4) 

C(16)-N(3)-C(4)-C(5) 135.6(3) C(2)-N(3)-C(4)-C(9) 138.7(3) 

C(16)-N(3)-C(4)-C(9) -47.0(4) C(9)-C(4)-C(5)-C(6) 0.7(4) 

N(3)-C(4)-C(5)-C(6) 178.2(2) C(4)-C(5)-C(6)-C(7) 1.4(4) 

C(5)-C(6)-C(7)-O(7) 178.1(3) C(5)-C(6)-C(7)-C(8) -2.7(4) 

C(8)-C(7)-O(7)-C(7A) 174.5(3) C(6)-C(7)-O(7)-C(7A) -6.3(4) 

O(7)-C(7)-C(8)-C(9) -178.8(2) C(6)-C(7)-C(8)-C(9) 2.0(4) 

C(7)-C(8)-C(9)-C(4) 0.2(4) C(7)-C(8)-C(9)-C(10) -175.8(2) 

C(5)-C(4)-C(9)-C(8) -1.5(4) N(3)-C(4)-C(9)-C(8) -178.9(2) 

C(5)-C(4)-C(9)-C(10) 174.1(2) N(3)-C(4)-C(9)-C(10) -3.2(4) 

C(8)-C(9)-C(10)-O(10) 35.6(4) C(4)-C(9)-C(10)-O(10) -140.1(3) 

C(8)-C(9)-C(10)-N(11) -143.6(2) C(4)-C(9)-C(10)-N(11) 40.7(4) 

O(10)-C(10)-N(11)-C(12) 0.6(4) C(9)-C(10)-N(11)-C(12) 179.9(2) 

O(10)-C(10)-N(11)-C(15) -173.0(2) C(9)-C(10)-N(11)-C(15) 6.2(4) 

C(10)-N(11)-C(12)-C(13) 175.7(3) C(15)-N(11)-C(12)-C(13) -9.9(3) 

N(11)-C(12)-C(13)-C(14) 31.0(3) C(12)-C(13)-C(14)-C(15) -41.5(3) 

C(10)-N(11)-C(15)-C(14) 158.6(3) C(12)-N(11)-C(15)-C(14) -15.6(3) 

C(10)-N(11)-C(15)-C(16) -75.0(3) C(12)-N(11)-C(15)-C(16) 110.8(3) 

C(13)-C(14)-C(15)-N(11) 34.4(3) C(13)-C(14)-C(15)-C(16) -83.8(3) 

C(2)-N(3)-C(16)-C(17) 0.1(3) C(4)-N(3)-C(16)-C(17) -175.1(3) 

C(2)-N(3)-C(16)-C(15) -174.7(2) C(4)-N(3)-C(16)-C(15) 10.1(4) 

N(11)-C(15)-C(16)-C(17) -109.8(4) C(14)-C(15)-C(16)-C(17) 5.2(5) 

N(11)-C(15)-C(16)-N(3) 62.2(3) C(14)-C(15)-C(16)-N(3) 177.3(2) 

N(3)-C(16)-C(17)-N(1) -0.4(3) C(15)-C(16)-C(17)-N(1) 172.1(3) 

N(3)-C(16)-C(17)-C(18) 177.0(3) C(15)-C(16)-C(17)-C(18) -10.5(6) 

C(2)-N(1)-C(17)-C(16) 0.6(3) C(2)-N(1)-C(17)-C(18) -177.3(2) 

C(16)-C(17)-C(18)-O(18) 164.8(3) N(1)-C(17)-C(18)-O(18) -17.9(4) 

C(16)-C(17)-C(18)-O(19) -16.6(4) N(1)-C(17)-C(18)-O(19) 160.7(2) 

O(18)-C(18)-O(19)-C(20) 0.4(4) C(17)-C(18)-O(19)-C(20) -178.2(2) 

C(18)-O(19)-C(20)-C(21) -163.0(2) 

________________________________________________________________ 

 

Table A15. Hydrogen bonds for 5 [Å and °]. 

____________________________________________________________________________ 

        D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 C(2)-H(2A)...O(10)#1 0.95 2.27 3.173(3) 157.5 

 C(6)-H(6A)...N(1)#2 0.95 2.67 3.573(4) 158.3 

 C(7A)-H(7AB)...N(1)#2 0.98 2.62 3.445(4) 141.3 

 C(12)-H(12A)...N(1)#3 0.99 2.66 3.602(4) 158.1 

 C(14)-H(14B)...O(19) 0.99 2.16 2.960(4) 136.7 

 C(20)-H(20A)...O(10)#4 0.99 2.65 3.413(4) 134.2 

____________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+2,y-1/2,-z+3/2    #2 -x+3/2,-y+1,z+1/2    #3 x+1/2,-y+3/2,-z+1  

#4 x-1/2,-y+3/2,-z+1  
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X-ray Crystal Data for XHE-III-74EE (R isomer), 5ʹ 

 

Table A16. Crystal data and structure refinement for 5′ (RJ-01-17). 

Identification code  cook129 

Empirical formula  C18H19N3O4 

Formula weight  341.36 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 8.8045(5) Å = 90°. 

 b = 12.3701(9) Å = 90°. 

 c = 14.6254(10) Å  = 90°. 

Volume 1592.89(18) Å3 

Z 4 

Density (-123ºC) 1.423 Mg/m3 

Absorption coefficient 0.102 mm-1 

F(000) 720 

Crystal size 0.465 x 0.279 x 0.156 mm3 

θ range for data collection 2.156 to 29.131°. 

Index ranges -10<=h<=12, -16<=k<=16, -20<=l<=18 

Reflections collected 14196 

Independent reflections 4250 [R(int) = 0.0327] 

Completeness to θ = 25.000° 99.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4250 / 0 / 228 

Goodness-of-fit on F2 0.997 

Final R indices [I>2σ(I)] R1 = 0.0314, wR2 = 0.0729 

R indices (all data) R1 = 0.0355, wR2 = 0.0749 

Absolute structure parameter 0.3(3) 

Largest diff. peak and hole 0.255 and -0.199 e.Å-3 
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Table A17. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 5′. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

N(1) 1523(2) 3304(1) 8896(1) 15(1) 

C(2) 1052(2) 4319(1) 9134(1) 17(1) 

N(3) 831(2) 4410(1) 10014(1) 18(1) 

C(4) 1185(2) 3401(1) 10378(1) 16(1) 

C(5) 1616(2) 2696(1) 9693(1) 14(1) 

C(6) 1993(2) 1514(1) 9537(1) 15(1) 

C(7) 2054(2) 745(1) 10353(1) 18(1) 

C(8) 395(2) 429(1) 10500(1) 22(1) 

C(9) -175(2) 261(1) 9524(1) 20(1) 

N(10) 741(2) 1033(1) 8993(1) 16(1) 

C(11) 518(2) 1185(1) 8094(1) 16(1) 

O(11) -458(1) 681(1) 7665(1) 22(1) 

C(12) 1518(2) 1988(1) 7618(1) 15(1) 

C(13) 1953(2) 1746(1) 6730(1) 18(1) 

C(14) 2796(2) 2471(1) 6213(1) 17(1) 

O(14) 3181(2) 2130(1) 5351(1) 24(1) 

C(14A) 4155(2) 2814(1) 4840(1) 31(1) 

C(15) 3185(2) 3478(1) 6572(1) 18(1) 

C(16) 2769(2) 3720(1) 7464(1) 16(1) 

C(17) 1955(2) 2988(1) 7990(1) 15(1) 

O(18) 400(2) 3971(1) 11848(1) 28(1) 

C(18) 1085(2) 3324(1) 11386(1) 17(1) 

O(19) 1856(2) 2490(1) 11733(1) 23(1) 

C(20) 1839(2) 2388(1) 12722(1) 24(1) 

C(21) 2337(3) 1252(2) 12953(1) 32(1) 

________________________________________________________________________________
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Table A18. Bond lengths [Å] and angles [°] for 5′. 

_____________________________________________________ 

N(1)-C(2)  1.3676(18) N(1)-C(5)  1.3888(18) 

N(1)-C(17)  1.4330(19) C(2)-N(3)  1.306(2) 

C(2)-H(2A)  0.9500 N(3)-C(4)  1.3924(19) 

C(4)-C(5)  1.382(2) C(4)-C(18)  1.480(2) 

C(5)-C(6)  1.5158(19) C(6)-N(10)  1.4843(19) 

C(6)-C(7)  1.528(2) C(6)-H(6A)  1.0000 

C(7)-C(8)  1.527(2) C(7)-H(7A)  0.9900 

C(7)-H(7B)  0.9900 C(8)-C(9)  1.527(2) 

C(8)-H(8A)  0.9900 C(8)-H(8B)  0.9900 

C(9)-N(10)  1.4713(19) C(9)-H(9A)  0.9900 

C(9)-H(9B)  0.9900 N(10)-C(11)  1.3416(19) 

C(11)-O(11)  1.2333(18) C(11)-C(12)  1.499(2) 

C(12)-C(13)  1.387(2) C(12)-C(17)  1.4045(19) 

C(13)-C(14)  1.389(2) C(13)-H(13A)  0.9500 

C(14)-O(14)  1.3707(18) C(14)-C(15)  1.394(2) 

O(14)-C(14A)  1.417(2) C(14A)-H(14A)  0.9800 

C(14A)-H(14B)  0.9800 C(14A)-H(14C)  0.9800 

C(15)-C(16)  1.387(2) C(15)-H(15A)  0.9500 

C(16)-C(17)  1.388(2) C(16)-H(16A)  0.9500 

O(18)-C(18)  1.2089(19) C(18)-O(19)  1.3350(19) 

O(19)-C(20)  1.4513(17) C(20)-C(21)  1.510(2) 

C(20)-H(20A)  0.9900 C(20)-H(20B)  0.9900 

C(21)-H(21A)  0.9800 C(21)-H(21B)  0.9800 

C(21)-H(21C)  0.9800 

 

C(2)-N(1)-C(5) 107.60(12) C(2)-N(1)-C(17) 124.48(12) 

C(5)-N(1)-C(17) 127.72(12) N(3)-C(2)-N(1) 111.98(13) 

N(3)-C(2)-H(2A) 124.0 N(1)-C(2)-H(2A) 124.0 

C(2)-N(3)-C(4) 105.45(12) C(5)-C(4)-N(3) 110.50(13) 

C(5)-C(4)-C(18) 134.28(14) N(3)-C(4)-C(18) 115.16(13) 

C(4)-C(5)-N(1) 104.47(12) C(4)-C(5)-C(6) 141.07(14) 

N(1)-C(5)-C(6) 114.14(12) N(10)-C(6)-C(5) 107.74(12) 

N(10)-C(6)-C(7) 101.26(11) C(5)-C(6)-C(7) 119.38(12) 

N(10)-C(6)-H(6A) 109.3 C(5)-C(6)-H(6A) 109.3 

C(7)-C(6)-H(6A) 109.3 C(8)-C(7)-C(6) 103.63(12) 

C(8)-C(7)-H(7A) 111.0 C(6)-C(7)-H(7A) 111.0 

C(8)-C(7)-H(7B) 111.0 C(6)-C(7)-H(7B) 111.0 

H(7A)-C(7)-H(7B) 109.0 C(9)-C(8)-C(7) 102.58(13) 

C(9)-C(8)-H(8A) 111.3 C(7)-C(8)-H(8A) 111.3 

C(9)-C(8)-H(8B) 111.3 C(7)-C(8)-H(8B) 111.3 

H(8A)-C(8)-H(8B) 109.2 N(10)-C(9)-C(8) 103.04(13) 

N(10)-C(9)-H(9A) 111.2 C(8)-C(9)-H(9A) 111.2 

N(10)-C(9)-H(9B) 111.2 C(8)-C(9)-H(9B) 111.2 

H(9A)-C(9)-H(9B) 109.1 C(11)-N(10)-C(9) 121.85(13) 

C(11)-N(10)-C(6) 125.27(13) C(9)-N(10)-C(6) 112.59(12) 

O(11)-C(11)-N(10) 122.02(14) O(11)-C(11)-C(12) 120.50(14) 

N(10)-C(11)-C(12) 117.48(13) C(13)-C(12)-C(17) 118.49(14) 

C(13)-C(12)-C(11) 116.99(13) C(17)-C(12)-C(11) 124.39(14) 

C(12)-C(13)-C(14) 121.24(13) C(12)-C(13)-H(13A) 119.4 

C(14)-C(13)-H(13A) 119.4 O(14)-C(14)-C(13) 115.75(13) 

O(14)-C(14)-C(15) 124.09(14) C(13)-C(14)-C(15) 120.16(14) 

C(14)-O(14)-C(14A) 116.83(12) O(14)-C(14A)-H(14A) 109.5 

O(14)-C(14A)-H(14B) 109.5 H(14A)-C(14A)-H(14B) 109.5 

O(14)-C(14A)-H(14C) 109.5 H(14A)-C(14A)-H(14C) 109.5 
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Table A18. (continued). 

_____________________________________________________ 

 

H(14B)-C(14A)-H(14C) 109.5 C(16)-C(15)-C(14) 118.88(14) 

C(16)-C(15)-H(15A) 120.6 C(14)-C(15)-H(15A) 120.6 

C(15)-C(16)-C(17) 121.09(13) C(15)-C(16)-H(16A) 119.5 

C(17)-C(16)-H(16A) 119.5 C(16)-C(17)-C(12) 120.08(14) 

C(16)-C(17)-N(1) 118.14(12) C(12)-C(17)-N(1) 121.72(13) 

O(18)-C(18)-O(19) 123.49(14) O(18)-C(18)-C(4) 122.99(14) 

O(19)-C(18)-C(4) 113.50(13) C(18)-O(19)-C(20) 116.18(12) 

O(19)-C(20)-C(21) 107.53(13) O(19)-C(20)-H(20A) 110.2 

C(21)-C(20)-H(20A) 110.2 O(19)-C(20)-H(20B) 110.2 

C(21)-C(20)-H(20B) 110.2 H(20A)-C(20)-H(20B) 108.5 

C(20)-C(21)-H(21A) 109.5 C(20)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 C(20)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)-H(21C) 109.5 

_____________________________________________________________ 
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Table A19. Anisotropic displacement parameters (Å2x 103) for 5′. The anisotropic 

displacement factor exponent takes the form: -22[h2a*2U11 + ... + 2 h k a* b* U12] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

N(1) 19(1)  13(1) 13(1)  0(1) -2(1)  1(1) 

C(2) 21(1)  14(1) 17(1)  0(1) -3(1)  1(1) 

N(3) 22(1)  15(1) 17(1)  -1(1) -3(1)  2(1) 

C(4) 16(1)  15(1) 16(1)  0(1) -3(1)  -1(1) 

C(5) 14(1)  14(1) 14(1)  2(1) -2(1)  -1(1) 

C(6) 15(1)  14(1) 15(1)  0(1) -1(1)  1(1) 

C(7) 24(1)  14(1) 16(1)  2(1) 0(1)  3(1) 

C(8) 27(1)  18(1) 20(1)  4(1) 6(1)  2(1) 

C(9) 19(1)  17(1) 23(1)  2(1) 5(1)  -1(1) 

N(10) 17(1)  14(1) 16(1)  1(1) 0(1)  -3(1) 

C(11) 17(1)  13(1) 17(1)  -3(1) 1(1)  1(1) 

O(11) 24(1)  22(1) 20(1)  -4(1) -3(1)  -7(1) 

C(12) 16(1)  14(1) 15(1)  1(1) -3(1)  0(1) 

C(13) 20(1)  16(1) 18(1)  -2(1) -2(1)  1(1) 

C(14) 21(1)  17(1) 13(1)  0(1) 0(1)  2(1) 

O(14) 34(1)  21(1) 16(1)  -3(1) 8(1)  -3(1) 

C(14A) 43(1)  27(1) 21(1)  0(1) 10(1)  -9(1) 

C(15) 21(1)  16(1) 16(1)  4(1) -1(1)  0(1) 

C(16) 20(1)  13(1) 17(1)  1(1) -3(1)  -1(1) 

C(17) 17(1)  15(1) 13(1)  -1(1) -2(1)  1(1) 

O(18) 36(1)  28(1) 19(1)  -2(1) 3(1)  10(1) 

C(18) 18(1)  17(1) 17(1)  -1(1) -1(1)  -3(1) 

O(19) 33(1)  23(1) 13(1)  1(1) -1(1)  6(1) 

C(20) 31(1)  26(1) 13(1)  2(1) -1(1)  -2(1) 

C(21) 44(1)  30(1) 22(1)  7(1) -4(1)  3(1) 

______________________________________________________________________________
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Table A20. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for 5′. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(2A) 902 4890 8709 21 

H(6A) 2963 1459 9184 18 

H(7A) 2684 103 10214 22 

H(7B) 2472 1111 10900 22 

H(8A) 311 -245 10862 26 

H(8B) -174 1012 10811 26 

H(9A) 3 -490 9317 24 

H(9B) -1272 428 9474 24 

H(13A) 1668 1072 6471 21 

H(14A) 4407 2465 4258 46 

H(14B) 5088 2946 5187 46 

H(14C) 3641 3502 4721 46 

H(15A) 3725 3989 6212 21 

H(16A) 3047 4398 7718 20 

H(20A) 803 2523 12960 28 

H(20B) 2539 2920 13000 28 

H(21A) 2338 1158 13619 48 

H(21B) 3363 1128 12715 48 

H(21C) 1633 733 12676 48 

________________________________________________________________________________
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Table A21. Torsion angles [°] for 5′. 

________________________________________________________________ 

C(5)-N(1)-C(2)-N(3) -0.17(18) C(17)-N(1)-C(2)-N(3) -175.44(14) 

N(1)-C(2)-N(3)-C(4) 0.34(19) C(2)-N(3)-C(4)-C(5) -0.39(19) 

C(2)-N(3)-C(4)-C(18) 177.28(13) N(3)-C(4)-C(5)-N(1) 0.28(17) 

C(18)-C(4)-C(5)-N(1) -176.76(16) N(3)-C(4)-C(5)-C(6) -172.35(18) 

C(18)-C(4)-C(5)-C(6) 10.6(3) C(2)-N(1)-C(5)-C(4) -0.07(16) 

C(17)-N(1)-C(5)-C(4) 175.00(15) C(2)-N(1)-C(5)-C(6) 174.86(13) 

C(17)-N(1)-C(5)-C(6) -10.1(2) C(4)-C(5)-C(6)-N(10) 109.6(2) 

N(1)-C(5)-C(6)-N(10) -62.57(16) C(4)-C(5)-C(6)-C(7) -4.9(3) 

N(1)-C(5)-C(6)-C(7) -177.11(13) N(10)-C(6)-C(7)-C(8) -34.66(14) 

C(5)-C(6)-C(7)-C(8) 83.28(15) C(6)-C(7)-C(8)-C(9) 41.62(14) 

C(7)-C(8)-C(9)-N(10) -31.17(14) C(8)-C(9)-N(10)-C(11) -175.94(13) 

C(8)-C(9)-N(10)-C(6) 9.86(16) C(5)-C(6)-N(10)-C(11) 75.46(17) 

C(7)-C(6)-N(10)-C(11) -158.45(13) C(5)-C(6)-N(10)-C(9) -110.57(13) 

C(7)-C(6)-N(10)-C(9) 15.51(15) C(9)-N(10)-C(11)-O(11) -0.4(2) 

C(6)-N(10)-C(11)-O(11) 173.00(14) C(9)-N(10)-C(11)-C(12) -179.81(13) 

C(6)-N(10)-C(11)-C(12) -6.4(2) O(11)-C(11)-C(12)-C(13) -35.6(2) 

N(10)-C(11)-C(12)-C(13) 143.75(14) O(11)-C(11)-C(12)-C(17) 140.14(16) 

N(10)-C(11)-C(12)-C(17) -40.5(2) C(17)-C(12)-C(13)-C(14) -0.2(2) 

C(11)-C(12)-C(13)-C(14) 175.81(14) C(12)-C(13)-C(14)-O(14) 178.75(14) 

C(12)-C(13)-C(14)-C(15) -2.0(2) C(13)-C(14)-O(14)-C(14A) -174.56(15) 

C(15)-C(14)-O(14)-C(14A) 6.2(2) O(14)-C(14)-C(15)-C(16) -178.11(14) 

C(13)-C(14)-C(15)-C(16) 2.7(2) C(14)-C(15)-C(16)-C(17) -1.2(2) 

C(15)-C(16)-C(17)-C(12) -0.9(2) C(15)-C(16)-C(17)-N(1) -178.11(14) 

C(13)-C(12)-C(17)-C(16) 1.7(2) C(11)-C(12)-C(17)-C(16) -174.05(15) 

C(13)-C(12)-C(17)-N(1) 178.72(14) C(11)-C(12)-C(17)-N(1) 3.0(2) 

C(2)-N(1)-C(17)-C(16) 38.5(2) C(5)-N(1)-C(17)-C(16) -135.76(16) 

C(2)-N(1)-C(17)-C(12) -138.58(16) C(5)-N(1)-C(17)-C(12) 47.1(2) 

C(5)-C(4)-C(18)-O(18) -165.19(17) N(3)-C(4)-C(18)-O(18) 17.9(2) 

C(5)-C(4)-C(18)-O(19) 16.5(3) N(3)-C(4)-C(18)-O(19) -160.49(14) 

O(18)-C(18)-O(19)-C(20) 0.0(2) C(4)-C(18)-O(19)-C(20) 178.31(13) 

C(18)-O(19)-C(20)-C(21) 163.09(15)

 ________________________________________________________________ 

 

 

Table A22. Hydrogen bonds for 5′ [Å and °]. 

____________________________________________________________________________ 

       D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 C(2)-H(2A)...O(11)#1 0.95 2.27 3.1672(19) 157.5 

 C(7)-H(7B)...O(19) 0.99 2.17 2.9608(18) 136.3 

 C(9)-H(9B)...N(3)#2 0.99 2.67 3.604(2) 158.2 

 C(14A)-H(14C)...N(3)#3 0.98 2.66 3.444(2) 137.3 

 C(15)-H(15A)...N(3)#3 0.95 2.67 3.5742(19) 158.3 

 C(20)-H(20B)...O(11)#4 0.99 2.65 3.419(2) 134.2 

____________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x,y+1/2,-z+3/2    #2 x-1/2,-y+1/2,-z+2    #3 -x+1/2,-y+1,z-1/2  

#4 x+1/2,-y+1/2,-z+2  
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X-ray Crystal Data for oxadiazole (RJ-03-13), 25 

Table A23. Crystal data and structure refinement for oxadiazole 25 (RJ-03-13). 

Identification code  cook157 

Empirical formula  C19H19N5O3 

Formula weight  365.39 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 8.7093(7) Å = 90°. 

 b = 12.3887(9) Å = 90°. 

 c = 15.9890(13) Å  = 90°. 

Volume 1725.2(2) Å3 

Z 4 

Density (-123ºC) 1.407 Mg/m3 

Absorption coefficient 0.099 mm-1 

F(000) 768 

Crystal size 0.788 x 0.639 x 0.611 mm3 

θ range for data collection 2.548 to 29.128°. 

Index ranges -11<=h<=11, -16<=k<=16, -21<=l<=21 

Reflections collected 15536 

Independent reflections 4595 [R(int) = 0.0245] 

Completeness to θ = 25.000° 99.8 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4595 / 0 / 244 

Goodness-of-fit on F2 1.107 

Final R indices [I>2σ(I)] R1 = 0.0326, wR2 = 0.0841 

R indices (all data) R1 = 0.0332, wR2 = 0.0849 

Absolute structure parameter -0.12(15) 

Largest diff. peak and hole 0.260 and -0.366 e.Å-3 
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Table A24. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 25.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

O(1) 4484(1) 9376(1) 7665(1) 24(1) 

C(1) 5460(2) 8857(1) 8056(1) 17(1) 

N(2) 5665(1) 8991(1) 8884(1) 17(1) 

C(3) 4724(2) 9757(1) 9367(1) 21(1) 

C(4) 5229(2) 9551(1) 10268(1) 24(1) 

C(5) 6920(2) 9233(1) 10168(1) 21(1) 

C(6) 6922(1) 8514(1) 9389(1) 16(1) 

C(7) 6587(1) 7330(1) 9499(1) 16(1) 

C(8) 6229(2) 6608(1) 10128(1) 17(1) 

N(9) 5914(1) 5592(1) 9802(1) 20(1) 

C(10) 6092(2) 5693(1) 8992(1) 20(1) 

N(11) 6500(1) 6725(1) 8772(1) 16(1) 

C(12) 6924(2) 7059(1) 7948(1) 16(1) 

C(13) 7767(2) 6340(1) 7463(1) 19(1) 

C(14) 8168(2) 6590(1) 6642(1) 20(1) 

C(15) 7744(2) 7591(1) 6312(1) 19(1) 

O(15) 8124(1) 7930(1) 5523(1) 27(1) 

C(15A) 9051(2) 7225(1) 5033(1) 28(1) 

C(16) 6884(2) 8307(1) 6791(1) 20(1) 

C(17) 6466(2) 8056(1) 7611(1) 17(1) 

C(18) 6231(2) 6721(1) 11033(1) 18(1) 

O(19) 5415(1) 5984(1) 11468(1) 22(1) 

N(20) 5640(2) 6239(1) 12328(1) 24(1) 

C(21) 6553(2) 7067(1) 12302(1) 21(1) 

N(22) 6962(2) 7400(1) 11508(1) 22(1) 

C(22) 7165(2) 7593(1) 13073(1) 30(1) 

C(23) 7247(2) 8816(2) 12996(1) 39(1) 

________________________________________________________________________________
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Table A25. Bond lengths [Å] and angles [°] for 25. 

_____________________________________________________ 

O(1)-C(1)  1.2351(16) C(1)-N(2)  1.3458(16) 

C(1)-C(17)  1.5037(17) N(2)-C(3)  1.4717(16) 

N(2)-C(6)  1.4830(16) C(3)-C(4)  1.5277(19) 

C(3)-H(3A)  0.9900 C(3)-H(3B)  0.9900 

C(4)-C(5)  1.533(2) C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 C(5)-C(6)  1.5318(17) 

C(5)-H(5A)  0.9900 C(5)-H(5B)  0.9900 

C(6)-C(7)  1.5053(16) C(6)-H(6A)  1.0000 

C(7)-C(8)  1.3827(17) C(7)-N(11)  1.3851(15) 

C(8)-N(9)  1.3896(16) C(8)-C(18)  1.4536(17) 

N(9)-C(10)  1.3104(17) C(10)-N(11)  1.3722(16) 

C(10)-H(10A)  0.9500 N(11)-C(12)  1.4296(16) 

C(12)-C(13)  1.3903(18) C(12)-C(17)  1.4060(16) 

C(13)-C(14)  1.3926(18) C(13)-H(13A)  0.9500 

C(14)-C(15)  1.3971(17) C(14)-H(14A)  0.9500 

C(15)-O(15)  1.3697(15) C(15)-C(16)  1.3916(18) 

O(15)-C(15A)  1.4256(18) C(15A)-H(15A)  0.9800 

C(15A)-H(15B)  0.9800 C(15A)-H(15C)  0.9800 

C(16)-C(17)  1.3949(17) C(16)-H(16A)  0.9500 

C(18)-N(22)  1.3004(18) C(18)-O(19)  1.3497(16) 

O(19)-N(20)  1.4252(15) N(20)-C(21)  1.2989(19) 

C(21)-N(22)  1.3808(17) C(21)-C(22)  1.4926(19) 

C(22)-C(23)  1.522(2) C(22)-H(22A)  0.9900 

C(22)-H(22B)  0.9900 C(23)-H(23A)  0.9800 

C(23)-H(23B)  0.9800 C(23)-H(23C)  0.9800 

 

O(1)-C(1)-N(2) 121.66(12) O(1)-C(1)-C(17) 120.29(11) 

N(2)-C(1)-C(17) 118.05(11) C(1)-N(2)-C(3) 121.43(11) 

C(1)-N(2)-C(6) 125.70(11) C(3)-N(2)-C(6) 112.50(10) 

N(2)-C(3)-C(4) 103.12(10) N(2)-C(3)-H(3A) 111.1 

C(4)-C(3)-H(3A) 111.1 N(2)-C(3)-H(3B) 111.1 

C(4)-C(3)-H(3B) 111.1 H(3A)-C(3)-H(3B) 109.1 

C(3)-C(4)-C(5) 102.78(11) C(3)-C(4)-H(4A) 111.2 

C(5)-C(4)-H(4A) 111.2 C(3)-C(4)-H(4B) 111.2 

C(5)-C(4)-H(4B) 111.2 H(4A)-C(4)-H(4B) 109.1 

C(6)-C(5)-C(4) 103.61(11) C(6)-C(5)-H(5A) 111.0 

C(4)-C(5)-H(5A) 111.0 C(6)-C(5)-H(5B) 111.0 

C(4)-C(5)-H(5B) 111.0 H(5A)-C(5)-H(5B) 109.0 

N(2)-C(6)-C(7) 107.99(10) N(2)-C(6)-C(5) 102.12(10) 

C(7)-C(6)-C(5) 118.10(10) N(2)-C(6)-H(6A) 109.4 

C(7)-C(6)-H(6A) 109.4 C(5)-C(6)-H(6A) 109.4 

C(8)-C(7)-N(11) 104.33(10) C(8)-C(7)-C(6) 139.44(11) 

N(11)-C(7)-C(6) 116.10(10) C(7)-C(8)-N(9) 110.94(11) 

C(7)-C(8)-C(18) 131.42(12) N(9)-C(8)-C(18) 117.50(11) 

C(10)-N(9)-C(8) 105.15(11) N(9)-C(10)-N(11) 111.87(11) 

N(9)-C(10)-H(10A) 124.1 N(11)-C(10)-H(10A) 124.1 

C(10)-N(11)-C(7) 107.70(10) C(10)-N(11)-C(12) 124.87(10) 

C(7)-N(11)-C(12) 127.06(10) C(13)-C(12)-C(17) 119.93(11) 

C(13)-C(12)-N(11) 117.73(10) C(17)-C(12)-N(11) 122.29(11) 

C(12)-C(13)-C(14) 121.01(12) C(12)-C(13)-H(13A) 119.5 

C(14)-C(13)-H(13A) 119.5 C(13)-C(14)-C(15) 119.17(12) 

C(13)-C(14)-H(14A) 120.4 C(15)-C(14)-H(14A) 120.4 

O(15)-C(15)-C(16) 116.16(11) O(15)-C(15)-C(14) 123.83(12) 

C(16)-C(15)-C(14) 120.01(12) C(15)-O(15)-C(15A) 117.07(11) 
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O(15)-C(15A)-H(15A) 109.5 O(15)-C(15A)-H(15B) 109.5 

H(15A)-C(15A)-H(15B) 109.5 O(15)-C(15A)-H(15C) 109.5 

H(15A)-C(15A)-H(15C) 109.5 H(15B)-C(15A)-H(15C) 109.5 

C(15)-C(16)-C(17) 121.02(12) C(15)-C(16)-H(16A) 119.5 

C(17)-C(16)-H(16A) 119.5 C(16)-C(17)-C(12) 118.83(12) 

C(16)-C(17)-C(1) 116.75(11) C(12)-C(17)-C(1) 124.31(11) 

N(22)-C(18)-O(19) 113.23(12) N(22)-C(18)-C(8) 130.16(12) 

O(19)-C(18)-C(8) 116.52(11) C(18)-O(19)-N(20) 105.96(10) 

C(21)-N(20)-O(19) 103.16(11) N(20)-C(21)-N(22) 115.08(12) 

N(20)-C(21)-C(22) 122.46(13) N(22)-C(21)-C(22) 122.41(13) 

C(18)-N(22)-C(21) 102.55(11) C(21)-C(22)-C(23) 112.58(14) 

C(21)-C(22)-H(22A) 109.1 C(23)-C(22)-H(22A) 109.1 

C(21)-C(22)-H(22B) 109.1 C(23)-C(22)-H(22B) 109.1 

H(22A)-C(22)-H(22B) 107.8 C(22)-C(23)-H(23A) 109.5 

C(22)-C(23)-H(23B) 109.5 H(23A)-C(23)-H(23B) 109.5 

C(22)-C(23)-H(23C) 109.5 H(23A)-C(23)-H(23C) 109.5 

H(23B)-C(23)-H(23C) 109.5 

_____________________________________________________________ 
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Table A26. Anisotropic displacement parameters (Å2x 103) for 25. The anisotropic 

displacement factor exponent takes the form: -22[h2a*2U11 + ... + 2 h k a* b* U12] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

O(1) 23(1)  23(1) 25(1)  5(1) -3(1)  6(1) 

C(1) 17(1)  14(1) 21(1)  3(1) 0(1)  0(1) 

N(2) 17(1)  14(1) 20(1)  1(1) -1(1)  2(1) 

C(3) 20(1)  16(1) 26(1)  -1(1) 4(1)  2(1) 

C(4) 28(1)  19(1) 24(1)  -3(1) 4(1)  -1(1) 

C(5) 26(1)  14(1) 22(1)  -2(1) -3(1)  -4(1) 

C(6) 16(1)  13(1) 18(1)  1(1) -2(1)  -2(1) 

C(7) 15(1)  14(1) 17(1)  0(1) -3(1)  0(1) 

C(8) 20(1)  15(1) 18(1)  0(1) -3(1)  0(1) 

N(9) 27(1)  14(1) 20(1)  1(1) -4(1)  -3(1) 

C(10) 26(1)  14(1) 20(1)  1(1) -4(1)  -3(1) 

N(11) 21(1)  12(1) 16(1)  1(1) -3(1)  -1(1) 

C(12) 19(1)  14(1) 16(1)  1(1) -3(1)  -1(1) 

C(13) 24(1)  14(1) 21(1)  1(1) -2(1)  1(1) 

C(14) 23(1)  16(1) 20(1)  -1(1) -1(1)  0(1) 

C(15) 23(1)  19(1) 16(1)  1(1) -1(1)  -2(1) 

O(15) 40(1)  22(1) 18(1)  3(1) 6(1)  2(1) 

C(15A) 39(1)  28(1) 18(1)  -2(1) 2(1)  2(1) 

C(16) 24(1)  16(1) 19(1)  2(1) -2(1)  1(1) 

C(17) 18(1)  14(1) 18(1)  1(1) -3(1)  1(1) 

C(18) 18(1)  15(1) 20(1)  2(1) -1(1)  2(1) 

O(19) 24(1)  22(1) 19(1)  3(1) -1(1)  -2(1) 

N(20) 27(1)  27(1) 17(1)  2(1) 1(1)  3(1) 

C(21) 25(1)  21(1) 18(1)  -1(1) 0(1)  6(1) 

N(22) 28(1)  21(1) 16(1)  -1(1) -2(1)  -1(1) 

C(22) 33(1)  38(1) 20(1)  -8(1) -2(1)  5(1) 

C(23) 39(1)  38(1) 39(1)  -16(1) -1(1)  -8(1) 

______________________________________________________________________________
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Table A27. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for 25. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(3A) 3616 9608 9294 25 

H(3B) 4938 10511 9198 25 

H(4A) 4627 8960 10525 28 

H(4B) 5121 10210 10614 28 

H(5A) 7574 9878 10085 25 

H(5B) 7291 8831 10664 25 

H(6A) 7917 8603 9085 19 

H(10A) 5956 5121 8603 24 

H(13A) 8076 5668 7695 23 

H(14A) 8722 6086 6311 24 

H(15A) 9244 7554 4485 42 

H(15B) 10031 7100 5319 42 

H(15C) 8517 6535 4957 42 

H(16A) 6577 8978 6557 23 

H(22A) 8206 7308 13189 36 

H(22B) 6500 7403 13553 36 

H(23A) 7654 9122 13515 58 

H(23B) 7922 9009 12529 58 

H(23C) 6216 9103 12893 58 

________________________________________________________________________________
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Table A28. Torsion angles [°] for 25. 

________________________________________________________________ 

O(1)-C(1)-N(2)-C(3) 0.55(19) C(17)-C(1)-N(2)-C(3) -179.83(11) 

O(1)-C(1)-N(2)-C(6) -171.93(12) C(17)-C(1)-N(2)-C(6) 7.69(18) 

C(1)-N(2)-C(3)-C(4) 174.18(11) C(6)-N(2)-C(3)-C(4) -12.42(14) 

N(2)-C(3)-C(4)-C(5) 32.02(13) C(3)-C(4)-C(5)-C(6) -40.37(12) 

C(1)-N(2)-C(6)-C(7) -74.14(15) C(3)-N(2)-C(6)-C(7) 112.80(11) 

C(1)-N(2)-C(6)-C(5) 160.67(12) C(3)-N(2)-C(6)-C(5) -12.39(13) 

C(4)-C(5)-C(6)-N(2) 32.12(12) C(4)-C(5)-C(6)-C(7) -86.09(13) 

N(2)-C(6)-C(7)-C(8) -114.16(18) C(5)-C(6)-C(7)-C(8) 0.9(2) 

N(2)-C(6)-C(7)-N(11) 60.81(14) C(5)-C(6)-C(7)-N(11) 175.87(11) 

N(11)-C(7)-C(8)-N(9) -0.69(15) C(6)-C(7)-C(8)-N(9) 174.65(14) 

N(11)-C(7)-C(8)-C(18) 174.87(14) C(6)-C(7)-C(8)-C(18) -9.8(3) 

C(7)-C(8)-N(9)-C(10) 0.66(16) C(18)-C(8)-N(9)-C(10) -175.60(12) 

C(8)-N(9)-C(10)-N(11) -0.35(16) N(9)-C(10)-N(11)-C(7) -0.07(16) 

N(9)-C(10)-N(11)-C(12) 173.42(12) C(8)-C(7)-N(11)-C(10) 0.46(14) 

C(6)-C(7)-N(11)-C(10) -176.17(11) C(8)-C(7)-N(11)-C(12) -172.85(13) 

C(6)-C(7)-N(11)-C(12) 10.52(18) C(10)-N(11)-C(12)-C(13) -36.60(19) 

C(7)-N(11)-C(12)-C(13) 135.63(13) C(10)-N(11)-C(12)-C(17) 140.87(13) 

C(7)-N(11)-C(12)-C(17) -46.90(19) C(17)-C(12)-C(13)-C(14) -0.19(19) 

N(11)-C(12)-C(13)-C(14) 177.34(12) C(12)-C(13)-C(14)-C(15) 1.6(2) 

C(13)-C(14)-C(15)-O(15) 177.77(13) C(13)-C(14)-C(15)-C(16) -2.4(2) 

C(16)-C(15)-O(15)-C(15A) 177.80(13) C(14)-C(15)-O(15)-C(15A) -2.3(2) 

O(15)-C(15)-C(16)-C(17) -178.41(12) C(14)-C(15)-C(16)-C(17) 1.7(2) 

C(15)-C(16)-C(17)-C(12) -0.3(2) C(15)-C(16)-C(17)-C(1) -176.54(12) 

C(13)-C(12)-C(17)-C(16) -0.49(19) N(11)-C(12)-C(17)-C(16) -177.91(12) 

C(13)-C(12)-C(17)-C(1) 175.48(12) N(11)-C(12)-C(17)-C(1) -1.93(19) 

O(1)-C(1)-C(17)-C(16) 34.08(17) N(2)-C(1)-C(17)-C(16) -145.55(12) 

O(1)-C(1)-C(17)-C(12) -141.97(14) N(2)-C(1)-C(17)-C(12) 38.40(18) 

C(7)-C(8)-C(18)-N(22) -22.2(2) N(9)-C(8)-C(18)-N(22) 153.11(14) 

C(7)-C(8)-C(18)-O(19) 161.44(14) N(9)-C(8)-C(18)-O(19) -23.23(18) 

N(22)-C(18)-O(19)-N(20) 0.93(15) C(8)-C(18)-O(19)-N(20) 177.89(11) 

C(18)-O(19)-N(20)-C(21) -0.68(14) O(19)-N(20)-C(21)-N(22) 0.26(16) 

O(19)-N(20)-C(21)-C(22) -177.36(13) O(19)-C(18)-N(22)-C(21) -0.74(15) 

C(8)-C(18)-N(22)-C(21) -177.19(13) N(20)-C(21)-N(22)-C(18) 0.27(17) 

C(22)-C(21)-N(22)-C(18) 177.90(13) N(20)-C(21)-C(22)-C(23) -141.74(16) 

N(22)-C(21)-C(22)-C(23) 40.8(2) 

________________________________________________________________ 

 

 

 

Table A29. Hydrogen bonds for 25 [Å and °]. 

____________________________________________________________________________ 

      D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 C(5)-H(5B)...N(22) 0.99 2.25 3.1223(17) 146.7 

 C(6)-H(6A)...O(19)#1 1.00 2.40 3.3934(17) 170.7 

 C(10)-H(10A)...O(1)#2 0.95 2.26 3.1520(16) 155.9 

 C(13)-H(13A)...N(20)#3 0.95 2.68 3.4894(18) 143.6 

 C(15A)-H(15C)...N(9)#3 0.98 2.69 3.5091(19) 141.0 

____________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 x+1/2,-y+3/2,-z+2    #2 -x+1,y-1/2,-z+3/2    #3 -x+3/2,-y+1,z-1/2  
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X-ray Crystal Data for oxadiazole (RJ-03-14), 26 

Table A30. Crystal data and structure refinement for 26. 

Identification code  cook156 

Empirical formula  C18H19N15O4 

Formula weight  509.48 

Temperature  150(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 4.4720(2) Å = 90°. 

 b = 18.7822(7) Å = 90°. 

 c = 20.5765(7) Å  = 90°. 

Volume 1728.30(12) Å3 

Z 4 

Density (-123ºC) 1.958 Mg/m3 

Absorption coefficient 1.259 mm-1 

F(000) 1056 

Crystal size 0.543 x 0.216 x 0.172 mm3 

θ range for data collection 3.186 to 68.149°. 

Index ranges -5<=h<=4, -22<=k<=21, -24<=l<=22 

Reflections collected 9038 

Independent reflections 3041 [R(int) = 0.0443] 

Completeness to θ = 67.679° 99.1 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7530 and 0.6333 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3041 / 3 / 253 

Goodness-of-fit on F2 1.070 

Final R indices [I>2σ(I)] R1 = 0.0335, wR2 = 0.0899 

R indices (all data) R1 = 0.0337, wR2 = 0.0900 

Absolute structure parameter 0.12(6) 

Extinction coefficient 0.0143(10) 

Largest diff. peak and hole 0.276 and -0.233 e.Å-3 
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Table A31. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 26. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 7331(4) -289(1) 5776(1) 20(1) 

O(1) 8428(4) -889(1) 5830(1) 28(1) 

N(2) 6606(4) 105(1) 6296(1) 19(1) 

C(3) 6815(5) -180(1) 6962(1) 22(1) 

C(4) 5925(5) 453(1) 7382(1) 23(1) 

C(5) 3772(5) 871(1) 6956(1) 22(1) 

C(6) 5047(4) 797(1) 6267(1) 19(1) 

C(7) 7182(4) 1352(1) 6024(1) 18(1) 

C(8) 8576(5) 1967(1) 6228(1) 20(1) 

N(9) 10402(4) 2238(1) 5742(1) 23(1) 

C(10) 10108(5) 1802(1) 5255(1) 22(1) 

N(11) 8197(4) 1255(1) 5394(1) 19(1) 

C(12) 7147(4) 731(1) 4940(1) 20(1) 

C(13) 6624(5) 951(1) 4302(1) 24(1) 

C(14) 5587(5) 473(1) 3849(1) 26(1) 

C(15) 5019(5) -232(1) 4025(1) 23(1) 

O(15) 3929(4) -658(1) 3546(1) 30(1) 

C(15A) 2955(6) -1351(1) 3721(1) 34(1) 

C(16) 5598(5) -457(1) 4655(1) 22(1) 

C(17) 6687(4) 20(1) 5118(1) 20(1) 

C(18) 8416(5) 2369(1) 6836(1) 21(1) 

O(19) 10023(5) 2969(1) 6845(1) 45(1) 

N(20) 9516(7) 3279(1) 7466(1) 45(1) 

C(21) 7715(5) 2838(1) 7745(1) 24(1) 

C(22) 6558(6) 2966(1) 8413(1) 29(1) 

N(22) 6998(4) 2254(1) 7373(1) 26(1) 

O(1S) 8556(4) -2087(1) 4992(1) 37(1) 

________________________________________________________________________________
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Table A32. Bond lengths [Å] and angles [°] for 26. 

_____________________________________________________ 

C(1)-O(1)  1.233(2) C(1)-N(2)  1.341(3) 

C(1)-C(17)  1.500(3) N(2)-C(3)  1.476(2) 

N(2)-C(6)  1.476(2) C(3)-C(4)  1.521(3) 

C(3)-H(3A)  0.9900 C(3)-H(3B)  0.9900 

C(4)-C(5)  1.520(3) C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 C(5)-C(6)  1.533(3) 

C(5)-H(5A)  0.9900 C(5)-H(5B)  0.9900 

C(6)-C(7)  1.499(3) C(6)-H(6A)  1.0000 

C(7)-C(8)  1.378(3) C(7)-N(11)  1.386(2) 

C(8)-N(9)  1.388(3) C(8)-C(18)  1.463(3) 

N(9)-C(10)  1.300(3) C(10)-N(11)  1.367(3) 

C(10)-H(10A)  0.9500 N(11)-C(12)  1.435(2) 

C(12)-C(13)  1.396(3) C(12)-C(17)  1.401(3) 

C(13)-C(14)  1.375(3) C(13)-H(13A)  0.9500 

C(14)-C(15)  1.395(3) C(14)-H(14A)  0.9500 

C(15)-O(15)  1.360(2) C(15)-C(16)  1.388(3) 

O(15)-C(15A)  1.420(3) C(15A)-H(15A)  0.9800 

C(15A)-H(15B)  0.9800 C(15A)-H(15C)  0.9800 

C(16)-C(17)  1.396(3) C(16)-H(16A)  0.9500 

C(18)-N(22)  1.293(3) C(18)-O(19)  1.336(3) 

O(19)-N(20)  1.421(2) N(20)-C(21)  1.290(3) 

C(21)-N(22)  1.375(3) C(21)-C(22)  1.487(3) 

C(22)-H(22A)  0.9800 C(22)-H(22B)  0.9800 

C(22)-H(22C)  0.9800 O(1S)-H(1SA)  0.869(12) 

O(1S)-H(1SB)  0.865(12) 

 

O(1)-C(1)-N(2) 121.93(18) O(1)-C(1)-C(17) 120.75(18) 

N(2)-C(1)-C(17) 117.30(16) C(1)-N(2)-C(3) 121.72(15) 

C(1)-N(2)-C(6) 124.72(16) C(3)-N(2)-C(6) 112.69(15) 

N(2)-C(3)-C(4) 103.15(15) N(2)-C(3)-H(3A) 111.1 

C(4)-C(3)-H(3A) 111.1 N(2)-C(3)-H(3B) 111.1 

C(4)-C(3)-H(3B) 111.1 H(3A)-C(3)-H(3B) 109.1 

C(5)-C(4)-C(3) 103.98(16) C(5)-C(4)-H(4A) 111.0 

C(3)-C(4)-H(4A) 111.0 C(5)-C(4)-H(4B) 111.0 

C(3)-C(4)-H(4B) 111.0 H(4A)-C(4)-H(4B) 109.0 

C(4)-C(5)-C(6) 104.53(16) C(4)-C(5)-H(5A) 110.8 

C(6)-C(5)-H(5A) 110.8 C(4)-C(5)-H(5B) 110.8 

C(6)-C(5)-H(5B) 110.8 H(5A)-C(5)-H(5B) 108.9 

N(2)-C(6)-C(7) 108.93(16) N(2)-C(6)-C(5) 102.62(15) 

C(7)-C(6)-C(5) 118.87(16) N(2)-C(6)-H(6A) 108.7 

C(7)-C(6)-H(6A) 108.7 C(5)-C(6)-H(6A) 108.7 

C(8)-C(7)-N(11) 104.31(17) C(8)-C(7)-C(6) 140.27(18) 

N(11)-C(7)-C(6) 115.42(16) C(7)-C(8)-N(9) 110.77(17) 

C(7)-C(8)-C(18) 132.15(19) N(9)-C(8)-C(18) 117.07(17) 

C(10)-N(9)-C(8) 105.30(17) N(9)-C(10)-N(11) 112.15(18) 

N(9)-C(10)-H(10A) 123.9 N(11)-C(10)-H(10A) 123.9 

C(10)-N(11)-C(7) 107.48(16) C(10)-N(11)-C(12) 125.80(17) 

C(7)-N(11)-C(12) 126.27(16) C(13)-C(12)-C(17) 120.20(18) 

C(13)-C(12)-N(11) 117.65(17) C(17)-C(12)-N(11) 122.14(17) 

C(14)-C(13)-C(12) 120.09(18) C(14)-C(13)-H(13A) 120.0 

C(12)-C(13)-H(13A) 120.0 C(13)-C(14)-C(15) 120.33(18) 

C(13)-C(14)-H(14A) 119.8 C(15)-C(14)-H(14A) 119.8 

O(15)-C(15)-C(16) 124.38(19) O(15)-C(15)-C(14) 115.81(18) 

C(16)-C(15)-C(14) 119.80(19) C(15)-O(15)-C(15A) 117.75(16) 
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Table A32. (continued). 

_____________________________________________________ 

 

O(15)-C(15A)-H(15A) 109.5 O(15)-C(15A)-H(15B) 109.5 

H(15A)-C(15A)-H(15B) 109.5 O(15)-C(15A)-H(15C) 109.5 

H(15A)-C(15A)-H(15C) 109.5 H(15B)-C(15A)-H(15C) 109.5 

C(15)-C(16)-C(17) 120.55(18) C(15)-C(16)-H(16A) 119.7 

C(17)-C(16)-H(16A) 119.7 C(16)-C(17)-C(12) 118.96(18) 

C(16)-C(17)-C(1) 115.78(17) C(12)-C(17)-C(1) 125.24(18) 

N(22)-C(18)-O(19) 113.07(18) N(22)-C(18)-C(8) 131.98(19) 

O(19)-C(18)-C(8) 114.95(18) C(18)-O(19)-N(20) 105.81(17) 

C(21)-N(20)-O(19) 103.75(17) N(20)-C(21)-N(22) 114.12(19) 

N(20)-C(21)-C(22) 121.70(19) N(22)-C(21)-C(22) 124.17(19) 

C(21)-C(22)-H(22A) 109.5 C(21)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22B) 109.5 C(21)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22C) 109.5 H(22B)-C(22)-H(22C) 109.5 

C(18)-N(22)-C(21) 103.23(17) H(1SA)-O(1S)-H(1SB) 107.3(19) 

_____________________________________________________________ 
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Table A33. Anisotropic displacement parameters (Å2x 103) for 26. The anisotropic 

displacement factor exponent takes the form: -22[h2a*2U11 + ... + 2 h k a* b* U12] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(1) 24(1)  17(1) 20(1)  1(1) -4(1)  -1(1) 

O(1) 46(1)  16(1) 22(1)  0(1) -4(1)  7(1) 

N(2) 25(1)  14(1) 17(1)  2(1) -3(1)  0(1) 

C(3) 29(1)  20(1) 18(1)  4(1) -2(1)  -3(1) 

C(4) 25(1)  25(1) 20(1)  0(1) 5(1)  -2(1) 

C(5) 20(1)  23(1) 24(1)  -2(1) 4(1)  -3(1) 

C(6) 18(1)  16(1) 22(1)  -2(1) -2(1)  1(1) 

C(7) 20(1)  16(1) 17(1)  2(1) -2(1)  5(1) 

C(8) 24(1)  16(1) 20(1)  2(1) -2(1)  2(1) 

N(9) 29(1)  18(1) 22(1)  3(1) -2(1)  -1(1) 

C(10) 26(1)  18(1) 21(1)  3(1) 0(1)  1(1) 

N(11) 24(1)  15(1) 16(1)  -1(1) -1(1)  1(1) 

C(12) 24(1)  16(1) 18(1)  -1(1) -2(1)  1(1) 

C(13) 34(1)  16(1) 21(1)  2(1) 0(1)  1(1) 

C(14) 38(1)  23(1) 17(1)  3(1) -4(1)  1(1) 

C(15) 29(1)  22(1) 19(1)  -3(1) -2(1)  0(1) 

O(15) 46(1)  24(1) 19(1)  -2(1) -6(1)  -8(1) 

C(15A) 52(1)  25(1) 26(1)  -2(1) -7(1)  -8(1) 

C(16) 30(1)  16(1) 21(1)  0(1) -1(1)  0(1) 

C(17) 25(1)  17(1) 19(1)  1(1) -1(1)  3(1) 

C(18) 28(1)  13(1) 23(1)  1(1) -5(1)  -1(1) 

O(19) 78(1)  32(1) 24(1)  -9(1) 12(1)  -31(1) 

N(20) 84(2)  32(1) 21(1)  -11(1) 6(1)  -26(1) 

C(21) 32(1)  17(1) 22(1)  0(1) -6(1)  -1(1) 

C(22) 41(1)  23(1) 25(1)  -6(1) 0(1)  -2(1) 

N(22) 35(1)  19(1) 24(1)  -4(1) 1(1)  -3(1) 

O(1S) 37(1)  27(1) 46(1)  -13(1) -5(1)  2(1) 

______________________________________________________________________________
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Table A34. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for 26. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(3A) 8877 -338 7062 27 

H(3B) 5426 -584 7026 27 

H(4A) 4933 293 7786 28 

H(4B) 7693 744 7496 28 

H(5A) 3698 1377 7090 27 

H(5B) 1731 668 6980 27 

H(6A) 3346 758 5954 23 

H(10A) 11107 1857 4851 26 

H(13A) 6985 1431 4181 29 

H(14A) 5256 623 3414 31 

H(15A) 2191 -1597 3335 52 

H(15B) 1364 -1315 4047 52 

H(15C) 4639 -1620 3902 52 

H(16A) 5251 -939 4771 27 

H(22A) 7615 3370 8607 44 

H(22B) 6883 2540 8679 44 

H(22C) 4413 3071 8393 44 

H(1SA) 10210(50) -2330(13) 5009(16) 55 

H(1SB) 8750(70) -1730(11) 5254(13) 55 

________________________________________________________________________________
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Table A35. Torsion angles [°] for 26. 

________________________________________________________________ 

O(1)-C(1)-N(2)-C(3) -5.8(3) C(17)-C(1)-N(2)-C(3) 172.78(18) 

O(1)-C(1)-N(2)-C(6) -174.34(18) C(17)-C(1)-N(2)-C(6) 4.2(3) 

C(1)-N(2)-C(3)-C(4) 177.59(18) C(6)-N(2)-C(3)-C(4) -12.6(2) 

N(2)-C(3)-C(4)-C(5) 30.0(2) C(3)-C(4)-C(5)-C(6) -36.80(19) 

C(1)-N(2)-C(6)-C(7) -73.5(2) C(3)-N(2)-C(6)-C(7) 117.05(18) 

C(1)-N(2)-C(6)-C(5) 159.64(18) C(3)-N(2)-C(6)-C(5) -9.8(2) 

C(4)-C(5)-C(6)-N(2) 28.39(18) C(4)-C(5)-C(6)-C(7) -91.8(2) 

N(2)-C(6)-C(7)-C(8) -115.8(3) C(5)-C(6)-C(7)-C(8) 1.2(3) 

N(2)-C(6)-C(7)-N(11) 64.1(2) C(5)-C(6)-C(7)-N(11) -178.98(16) 

N(11)-C(7)-C(8)-N(9) -0.3(2) C(6)-C(7)-C(8)-N(9) 179.6(2) 

N(11)-C(7)-C(8)-C(18) 178.3(2) C(6)-C(7)-C(8)-C(18) -1.8(4) 

C(7)-C(8)-N(9)-C(10) 0.3(2) C(18)-C(8)-N(9)-C(10) -178.51(17) 

C(8)-N(9)-C(10)-N(11) -0.2(2) N(9)-C(10)-N(11)-C(7) 0.1(2) 

N(9)-C(10)-N(11)-C(12) 172.76(18) C(8)-C(7)-N(11)-C(10) 0.1(2) 

C(6)-C(7)-N(11)-C(10) -179.75(17) C(8)-C(7)-N(11)-C(12) -172.51(17) 

C(6)-C(7)-N(11)-C(12) 7.6(3) C(10)-N(11)-C(12)-C(13) -35.6(3) 

C(7)-N(11)-C(12)-C(13) 135.8(2) C(10)-N(11)-C(12)-C(17) 143.6(2) 

C(7)-N(11)-C(12)-C(17) -45.1(3) C(17)-C(12)-C(13)-C(14) 1.5(3) 

N(11)-C(12)-C(13)-C(14) -179.33(19) C(12)-C(13)-C(14)-C(15) 0.7(3) 

C(13)-C(14)-C(15)-O(15) 178.4(2) C(13)-C(14)-C(15)-C(16) -2.2(3) 

C(16)-C(15)-O(15)-C(15A) 8.6(3) C(14)-C(15)-O(15)-C(15A) -172.0(2) 

O(15)-C(15)-C(16)-C(17) -179.3(2) C(14)-C(15)-C(16)-C(17) 1.3(3) 

C(15)-C(16)-C(17)-C(12) 0.9(3) C(15)-C(16)-C(17)-C(1) -177.93(19) 

C(13)-C(12)-C(17)-C(16) -2.3(3) N(11)-C(12)-C(17)-C(16) 178.59(18) 

C(13)-C(12)-C(17)-C(1) 176.37(19) N(11)-C(12)-C(17)-C(1) -2.7(3) 

O(1)-C(1)-C(17)-C(16) 38.3(3) N(2)-C(1)-C(17)-C(16) -140.3(2) 

O(1)-C(1)-C(17)-C(12) -140.4(2) N(2)-C(1)-C(17)-C(12) 41.0(3) 

C(7)-C(8)-C(18)-N(22) 2.9(4) N(9)-C(8)-C(18)-N(22) -178.5(2) 

C(7)-C(8)-C(18)-O(19) -177.1(2) N(9)-C(8)-C(18)-O(19) 1.4(3) 

N(22)-C(18)-O(19)-N(20) -1.0(3) C(8)-C(18)-O(19)-N(20) 179.0(2) 

C(18)-O(19)-N(20)-C(21) 0.0(3) O(19)-N(20)-C(21)-N(22) 0.9(3) 

O(19)-N(20)-C(21)-C(22) -179.1(2) O(19)-C(18)-N(22)-C(21) 1.5(2) 

C(8)-C(18)-N(22)-C(21) -178.5(2) N(20)-C(21)-N(22)-C(18) -1.6(3) 

C(22)-C(21)-N(22)-C(18) 178.5(2) 

________________________________________________________________ 
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Table A36. Hydrogen bonds for 26 [Å and °]. 

____________________________________________________________________________ 

        D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 C(4)-H(4A)...O(15)#1 0.99 2.43 3.255(3) 140.8 

 C(4)-H(4B)...O(15)#2 0.99 2.64 3.344(3) 128.1 

 C(5)-H(5A)...N(22) 0.99 2.29 3.094(3) 137.8 

 C(13)-H(13A)...N(9)#3 0.95 2.60 3.446(3) 148.2 

 C(13)-H(13A)...O(19)#3 0.95 2.55 3.194(3) 125.4 

 C(16)-H(16A)...O(1S) 0.95 2.65 3.407(3) 136.6 

 C(22)-H(22A)...O(1)#4 0.98 2.53 3.477(3) 161.8 

 O(1S)-H(1SA)...O(1S)#5 0.869(12) 1.855(12) 2.7223(18) 175(3) 

 O(1S)-H(1SB)...O(1) 0.865(12) 1.980(12) 2.836(2) 170(3) 

 C(13)-H(13A)...N(9)#3 0.95 2.60 3.446(3) 148.2 

 C(13)-H(13A)...O(19)#3 0.95 2.55 3.194(3) 125.4 

 C(16)-H(16A)...O(1S) 0.95 2.65 3.407(3) 136.6 

 O(1S)-H(1SA)...O(1S)#5 0.869(12) 1.855(12) 2.7223(18) 175(3) 

 O(1S)-H(1SB)...O(1) 0.865(12) 1.980(12) 2.836(2) 170(3) 

____________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1/2,-y,z+1/2    #2 -x+3/2,-y,z+1/2    #3 x-1/2,-y+1/2,-z+1  

#4 -x+2,y+1/2,-z+3/2    #5 x+1/2,-y-1/2,-z+1  
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X-ray Crystal Data for oxazole (KRM-II-68), 28 

Table A37. Crystal data and structure refinement for 28 (KRM-II-68). 

Identification code  cook136 

Empirical formula  C18H16N4O3 

Formula weight  336.35 

Temperature  150(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 10.8051(3) Å = 90°. 

 b = 20.3413(8) Å = 90°. 

 c = 7.0384(3) Å  = 90°. 

Volume 1546.97(10) Å3 

Z 4 

Density (-123ºC) 1.444 Mg/m3 

Absorption coefficient 0.836 mm-1 

F(000) 704 

Crystal size 0.493 x 0.399 x 0.207 mm3 

θ range for data collection 4.347 to 68.135°. 

Index ranges -12<=h<=12, -23<=k<=24, -7<=l<=8 

Reflections collected 8881 

Independent reflections 2708 [R(int) = 0.0603] 

Completeness to θ = 67.679° 97.2 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7530 and 0.5955 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2708 / 0 / 228 

Goodness-of-fit on F2 1.101 

Final R indices [I>σ(I)] R1 = 0.0431, wR2 = 0.1196 

R indices (all data) R1 = 0.0432, wR2 = 0.1197 

Absolute structure parameter 0.05(11) 

Extinction coefficient 0.0039(8) 

Largest diff. peak and hole 0.580 and -0.259 e.Å-3 
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Table A38. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) 

for 28. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

N(1) 2313(2) 563(1) 11013(4) 28(1) 

C(2) 1313(3) 228(1) 10607(5) 25(1) 

N(3) 906(2) 349(1) 8803(4) 21(1) 

C(4) -137(2) 50(1) 7911(4) 19(1) 

C(5) -316(3) -618(1) 8160(4) 23(1) 

C(6) -1392(3) -925(1) 7530(4) 23(1) 

C(7) -2301(3) -547(1) 6665(4) 24(1) 

O(7) -3429(2) -771(1) 6121(4) 37(1) 

C(7A) -3672(3) -1458(2) 6351(5) 35(1) 

C(8) -2092(3) 120(1) 6345(4) 24(1) 

C(9) -1014(3) 424(1) 6917(4) 20(1) 

C(10) -913(3) 1150(1) 6519(4) 21(1) 

O(10) -1851(2) 1498(1) 6501(3) 29(1) 

N(11) 206(2) 1404(1) 6132(3) 20(1) 

C(12) 373(3) 2111(1) 5750(5) 25(1) 

C(13) 1753(3) 2208(2) 5918(5) 34(1) 

C(14) 2284(3) 1556(1) 5227(4) 26(1) 

C(15) 1399(2) 1040(1) 6060(4) 20(1) 

C(16) 1700(2) 800(1) 8010(4) 20(1) 

C(17) 2571(3) 920(1) 9384(4) 22(1) 

C(18) 3663(3) 1349(1) 9311(4) 23(1) 

O(19) 4670(2) 1139(1) 8255(3) 30(1) 

C(20) 5524(3) 1625(2) 8479(5) 31(1) 

N(21) 5171(3) 2101(1) 9524(4) 33(1) 

C(22) 3970(3) 1926(1) 10083(5) 29(1) 

________________________________________________________________________________
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Table A39. Bond lengths [Å] and angles [°] for 28. 

_____________________________________________________ 

N(1)-C(2)  1.309(4) N(1)-C(17)  1.386(4) 

C(2)-N(3)  1.366(4) C(2)-H(2A)  0.9500 

N(3)-C(16)  1.374(4) N(3)-C(4)  1.426(4) 

C(4)-C(5)  1.383(4) C(4)-C(9)  1.402(4) 

C(5)-C(6)  1.392(4) C(5)-H(5A)  0.9500 

C(6)-C(7)  1.388(4) C(6)-H(6A)  0.9500 

C(7)-O(7)  1.357(4) C(7)-C(8)  1.395(4) 

O(7)-C(7A)  1.430(4) C(7A)-H(7AA)  0.9800 

C(7A)-H(7AB)  0.9800 C(7A)-H(7AC)  0.9800 

C(8)-C(9)  1.378(4) C(8)-H(8A)  0.9500 

C(9)-C(10)  1.507(3) C(10)-O(10)  1.238(3) 

C(10)-N(11)  1.343(4) N(11)-C(12)  1.475(3) 

N(11)-C(15)  1.487(3) C(12)-C(13)  1.509(4) 

C(12)-H(12A)  0.9900 C(12)-H(12B)  0.9900 

C(13)-C(14)  1.525(4) C(13)-H(13A)  0.9900 

C(13)-H(13B)  0.9900 C(14)-C(15)  1.536(4) 

C(14)-H(14A)  0.9900 C(14)-H(14B)  0.9900 

C(15)-C(16)  1.493(4) C(15)-H(15A)  1.0000 

C(16)-C(17)  1.372(4) C(17)-C(18)  1.467(4) 

C(18)-C(22)  1.336(4) C(18)-O(19)  1.385(3) 

O(19)-C(20)  1.361(4) C(20)-N(21)  1.275(4) 

C(20)-H(20A)  0.9500 N(21)-C(22)  1.402(4) 

C(22)-H(22A)  0.9500 

 

C(2)-N(1)-C(17) 104.9(3) N(1)-C(2)-N(3) 112.1(3) 

N(1)-C(2)-H(2A) 124.0 N(3)-C(2)-H(2A) 124.0 

C(2)-N(3)-C(16) 107.2(2) C(2)-N(3)-C(4) 125.9(2) 

C(16)-N(3)-C(4) 126.8(2) C(5)-C(4)-C(9) 120.1(3) 

C(5)-C(4)-N(3) 118.3(2) C(9)-C(4)-N(3) 121.5(2) 

C(4)-C(5)-C(6) 121.2(3) C(4)-C(5)-H(5A) 119.4 

C(6)-C(5)-H(5A) 119.4 C(7)-C(6)-C(5) 118.8(3) 

C(7)-C(6)-H(6A) 120.6 C(5)-C(6)-H(6A) 120.6 

O(7)-C(7)-C(6) 125.0(3) O(7)-C(7)-C(8) 115.3(3) 

C(6)-C(7)-C(8) 119.7(3) C(7)-O(7)-C(7A) 117.4(2) 

O(7)-C(7A)-H(7AA) 109.5 O(7)-C(7A)-H(7AB) 109.5 

H(7AA)-C(7A)-H(7AB) 109.5 O(7)-C(7A)-H(7AC) 109.5 

H(7AA)-C(7A)-H(7AC) 109.5 H(7AB)-C(7A)-H(7AC) 109.5 

C(9)-C(8)-C(7) 121.7(3) C(9)-C(8)-H(8A) 119.1 

C(7)-C(8)-H(8A) 119.1 C(8)-C(9)-C(4) 118.3(3) 

C(8)-C(9)-C(10) 116.5(3) C(4)-C(9)-C(10) 125.1(2) 

O(10)-C(10)-N(11) 121.0(2) O(10)-C(10)-C(9) 120.2(2) 

N(11)-C(10)-C(9) 118.7(2) C(10)-N(11)-C(12) 121.5(2) 

C(10)-N(11)-C(15) 126.5(2) C(12)-N(11)-C(15) 111.9(2) 

N(11)-C(12)-C(13) 103.5(2) N(11)-C(12)-H(12A) 111.1 

C(13)-C(12)-H(12A) 111.1 N(11)-C(12)-H(12B) 111.1 

C(13)-C(12)-H(12B) 111.1 H(12A)-C(12)-H(12B) 109.0 

C(12)-C(13)-C(14) 103.5(2) C(12)-C(13)-H(13A) 111.1 

C(14)-C(13)-H(13A) 111.1 C(12)-C(13)-H(13B) 111.1 

C(14)-C(13)-H(13B) 111.1 H(13A)-C(13)-H(13B) 109.0 

C(13)-C(14)-C(15) 103.8(2) C(13)-C(14)-H(14A) 111.0 

C(15)-C(14)-H(14A) 111.0 C(13)-C(14)-H(14B) 111.0 

C(15)-C(14)-H(14B) 111.0 H(14A)-C(14)-H(14B) 109.0 

N(11)-C(15)-C(16) 108.7(2) N(11)-C(15)-C(14) 102.3(2) 

C(16)-C(15)-C(14) 116.0(2) N(11)-C(15)-H(15A) 109.9 
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Table A39. (continued). 

_____________________________________________________ 

 

C(16)-C(15)-H(15A) 109.9 C(14)-C(15)-H(15A) 109.9 

C(17)-C(16)-N(3) 105.2(2) C(17)-C(16)-C(15) 137.7(3) 

N(3)-C(16)-C(15) 117.1(2) C(16)-C(17)-N(1) 110.6(2) 

C(16)-C(17)-C(18) 129.3(3) N(1)-C(17)-C(18) 120.1(3) 

C(22)-C(18)-O(19) 107.1(3) C(22)-C(18)-C(17) 135.0(3) 

O(19)-C(18)-C(17) 117.9(2) C(20)-O(19)-C(18) 104.3(2) 

N(21)-C(20)-O(19) 114.6(3) N(21)-C(20)-H(20A) 122.7 

O(19)-C(20)-H(20A) 122.7 C(20)-N(21)-C(22) 104.2(3) 

C(18)-C(22)-N(21) 109.8(3) C(18)-C(22)-H(22A) 125.1 

N(21)-C(22)-H(22A) 125.1 

_____________________________________________________________ 

 

Table A40. Anisotropic displacement parameters (Å2x 103) for 28. The anisotropic 

displacement factor exponent takes the form: -22[h2a*2U11 + ... + 2 h k a* b* U12] 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

N(1) 26(1)  29(1) 28(1)  2(1) -4(1)  -2(1) 

C(2) 22(1)  27(1) 26(2)  7(1) -2(1)  1(1) 

N(3) 16(1)  22(1) 24(1)  2(1) -2(1)  2(1) 

C(4) 18(1)  21(1) 20(1)  0(1) 1(1)  2(1) 

C(5) 21(1)  23(1) 25(1)  0(1) 0(1)  4(1) 

C(6) 27(2)  21(1) 23(1)  -1(1) 2(1)  -2(1) 

C(7) 23(1)  28(1) 22(1)  1(1) -1(1)  -5(1) 

O(7) 33(1)  33(1) 45(2)  11(1) -16(1)  -16(1) 

C(7A) 40(2)  33(2) 32(2)  3(1) -4(2)  -17(1) 

C(8) 23(1)  28(1) 22(1)  5(1) -3(1)  -1(1) 

C(9) 19(1)  22(1) 19(1)  2(1) 3(1)  -1(1) 

C(10) 21(1)  21(1) 21(1)  4(1) 0(1)  1(1) 

O(10) 21(1)  27(1) 39(1)  8(1) -1(1)  3(1) 

N(11) 21(1)  18(1) 22(1)  3(1) 1(1)  1(1) 

C(12) 31(2)  17(1) 28(2)  2(1) -1(1)  -2(1) 

C(13) 37(2)  30(2) 35(2)  1(1) 0(2)  -7(1) 

C(14) 23(1)  29(1) 26(2)  1(1) 2(1)  -4(1) 

C(15) 18(1)  22(1) 21(1)  -2(1) 2(1)  1(1) 

C(16) 16(1)  20(1) 25(1)  -1(1) 3(1)  1(1) 

C(17) 20(1)  22(1) 24(1)  -1(1) -1(1)  1(1) 

C(18) 17(1)  28(1) 24(1)  -1(1) -4(1)  3(1) 

O(19) 21(1)  35(1) 34(1)  -8(1) 0(1)  -3(1) 

C(20) 22(2)  38(2) 33(2)  4(1) -4(1)  -5(1) 

N(21) 29(1)  31(1) 40(2)  5(1) -5(1)  -6(1) 

C(22) 25(1)  27(1) 33(2)  0(1) -4(1)  0(1) 

______________________________________________________________________________
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Table A41. Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x 103) for 28. 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(2A) 917 -64 11465 30 

H(5A) 306 -871 8771 28 

H(6A) -1502 -1385 7690 28 

H(7AA) -4515 -1555 5923 53 

H(7AB) -3587 -1577 7694 53 

H(7AC) -3080 -1712 5593 53 

H(8A) -2709 372 5717 29 

H(12A) -76 2382 6695 30 

H(12B) 78 2227 4461 30 

H(13A) 1996 2296 7251 41 

H(13B) 2037 2577 5109 41 

H(14A) 3137 1490 5706 31 

H(14B) 2292 1535 3822 31 

H(15A) 1326 659 5169 24 

H(20A) 6318 1610 7903 37 

H(22A) 3453 2180 10891 34 

________________________________________________________________________________
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Table A42. Torsion angles [°] for 28. 

________________________________________________________________ 

C(17)-N(1)-C(2)-N(3) -0.1(3) N(1)-C(2)-N(3)-C(16) -0.7(3) 

N(1)-C(2)-N(3)-C(4) 178.2(2) C(2)-N(3)-C(4)-C(5) -42.3(4) 

C(16)-N(3)-C(4)-C(5) 136.3(3) C(2)-N(3)-C(4)-C(9) 133.2(3) 

C(16)-N(3)-C(4)-C(9) -48.2(4) C(9)-C(4)-C(5)-C(6) -3.6(4) 

N(3)-C(4)-C(5)-C(6) 172.0(2) C(4)-C(5)-C(6)-C(7) -1.0(4) 

C(5)-C(6)-C(7)-O(7) -174.6(3) C(5)-C(6)-C(7)-C(8) 3.7(4) 

C(6)-C(7)-O(7)-C(7A) -4.0(4) C(8)-C(7)-O(7)-C(7A) 177.6(3) 

O(7)-C(7)-C(8)-C(9) 176.5(3) C(6)-C(7)-C(8)-C(9) -1.9(4) 

C(7)-C(8)-C(9)-C(4) -2.6(4) C(7)-C(8)-C(9)-C(10) -178.9(3) 

C(5)-C(4)-C(9)-C(8) 5.3(4) N(3)-C(4)-C(9)-C(8) -170.1(3) 

C(5)-C(4)-C(9)-C(10) -178.7(3) N(3)-C(4)-C(9)-C(10) 5.9(4) 

C(8)-C(9)-C(10)-O(10) 30.9(4) C(4)-C(9)-C(10)-O(10) -145.2(3) 

C(8)-C(9)-C(10)-N(11) -147.2(3) C(4)-C(9)-C(10)-N(11) 36.8(4) 

O(10)-C(10)-N(11)-C(12) 2.6(4) C(9)-C(10)-N(11)-C(12) -179.3(3) 

O(10)-C(10)-N(11)-C(15) -178.5(3) C(9)-C(10)-N(11)-C(15) -0.4(4) 

C(10)-N(11)-C(12)-C(13) 165.4(3) C(15)-N(11)-C(12)-C(13) -13.7(3) 

N(11)-C(12)-C(13)-C(14) 32.3(3) C(12)-C(13)-C(14)-C(15) -39.3(3) 

C(10)-N(11)-C(15)-C(16) -66.2(3) C(12)-N(11)-C(15)-C(16) 112.8(3) 

C(10)-N(11)-C(15)-C(14) 170.6(3) C(12)-N(11)-C(15)-C(14) -10.4(3) 

C(13)-C(14)-C(15)-N(11) 30.1(3) C(13)-C(14)-C(15)-C(16) -88.0(3) 

C(2)-N(3)-C(16)-C(17) 1.1(3) C(4)-N(3)-C(16)-C(17) -177.8(2) 

C(2)-N(3)-C(16)-C(15) -176.6(2) C(4)-N(3)-C(16)-C(15) 4.6(4) 

N(11)-C(15)-C(16)-C(17) -112.5(4) C(14)-C(15)-C(16)-C(17) 1.9(5) 

N(11)-C(15)-C(16)-N(3) 64.1(3) C(14)-C(15)-C(16)-N(3) 178.6(2) 

N(3)-C(16)-C(17)-N(1) -1.2(3) C(15)-C(16)-C(17)-N(1) 175.7(3) 

N(3)-C(16)-C(17)-C(18) 178.3(3) C(15)-C(16)-C(17)-C(18) -4.8(6) 

C(2)-N(1)-C(17)-C(16) 0.8(3) C(2)-N(1)-C(17)-C(18) -178.8(3) 

C(16)-C(17)-C(18)-C(22) 107.7(4) N(1)-C(17)-C(18)-C(22) -72.8(4) 

C(16)-C(17)-C(18)-O(19) -73.8(4) N(1)-C(17)-C(18)-O(19) 105.6(3) 

C(22)-C(18)-O(19)-C(20) -0.3(3) C(17)-C(18)-O(19)-C(20) -179.2(3) 

C(18)-O(19)-C(20)-N(21) -0.1(4) O(19)-C(20)-N(21)-C(22) 0.5(4) 

O(19)-C(18)-C(22)-N(21) 0.6(3) C(17)-C(18)-C(22)-N(21) 179.2(3) 

C(20)-N(21)-C(22)-C(18) -0.7(4) 

________________________________________________________________ 

Table A43. Hydrogen bonds for 28 [Å and °]. 

____________________________________________________________________________ 

        D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 C(2)-H(2A)...O(19)#1 0.95 2.60 3.513(4) 160.8 

 C(13)-H(13B)...O(10)#2 0.99 2.50 3.478(4) 168.0 

 C(14)-H(14A)...O(19) 0.99 2.54 3.451(4) 152.1 

 C(20)-H(20A)...O(10)#3 0.95 2.22 3.170(4) 175.7 

____________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1/2,-y,z+1/2    #2 x+1/2,-y+1/2,-z+1    #3 x+1,y,z  
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