
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

April 2019

A Hierarchical, Fuzzy Inference Approach to Data
Filtration and Feature Prioritization in the
Connected Manufacturing Enterprise
Phillip Matthew LaCasse
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
LaCasse, Phillip Matthew, "A Hierarchical, Fuzzy Inference Approach to Data Filtration and Feature Prioritization in the Connected
Manufacturing Enterprise" (2019). Theses and Dissertations. 2090.
https://dc.uwm.edu/etd/2090

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F2090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2090&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=dc.uwm.edu%2Fetd%2F2090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2090?utm_source=dc.uwm.edu%2Fetd%2F2090&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 
 

A HIERARCHICAL, FUZZY INFERENCE APPROACH TO DATA FILTRATION AND 

FEATURE PRIORITIZATION IN THE CONNECTED MANUFACTURING ENTERPRISE 

 

by 

Phillip M. LaCasse 

 

 

 

 

A Dissertation Submitted in  

Partial Fulfillment of the 

Requirements for the Degree of 

 

Doctor of Philosophy 

in Engineering 

 

at 

The University of Wisconsin – Milwaukee 

May 2019



ii 
 

ABSTRACT 

A HIERARCHICAL, FUZZY INFERENCE APPROACH TO DATA FILTRATION AND 
FEATURE PRIORITIZATION IN THE CONNECTED MANUFACTURING ENTERPRISE 

 
by 

Phillip M. LaCasse 

The University of Wisconsin – Milwaukee, 2019 
Under the Supervision of Professor Wilkistar Otieno 

 

The current big data landscape is one such that the technology and capability to capture and 

storage of data has preceded and outpaced the corresponding capability to analyze and interpret 

it. This has led naturally to the development of elegant and powerful algorithms for data mining, 

machine learning, and artificial intelligence to harness the potential of the big data environment. 

A competing reality, however, is that limitations exist in how and to what extent human beings 

can process complex information. The convergence of these realities is a tension between the 

technical sophistication or elegance of a solution and its transparency or interpretability by the 

human data scientist or decision maker. This dissertation, contextualized in the connected 

manufacturing enterprise, presents an original Fuzzy Approach to Feature Reduction and 

Prioritization (FAFRAP) approach that is designed to assist the data scientist in filtering and 

prioritizing data for inclusion in supervised machine learning models. A set of sequential filters 

reduces the initial set of independent variables, and a fuzzy inference system outputs a crisp 

numeric value associated with each feature to rank order and prioritize for inclusion in model 

training. Additionally, the fuzzy inference system outputs a descriptive label to assist in the 

interpretation of the feature’s usefulness with respect to the problem of interest.  Model testing is 

performed using three publicly available datasets from an online machine learning data 
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repository and later applied to a case study in electronic assembly manufacture. Consistency of 

model results is experimentally verified using Fisher’s Exact Test, and results of filtered models 

are compared to results obtained by the unfiltered sets of features using a proposed novel metric 

of performance-size ratio (PSR).  
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CHAPTER 1: INTRODUCTION 

 

1.1 The Connected Enterprise 

Rockwell Automation, a global manufacturing and consultation corporation 

headquartered in Milwaukee, WI, employs a term, The Connected Enterprise (CE), to describe 

its strategy of corporate shared vision for the future of industrial automation [1]. CE strategies 

address the problem of disconnect by linking people, equipment, and processes for real-time 

learning of enterprise status in order to enable informed, adaptive, and proactive decisions [2].  

The term “big data” may be loosely defined as information such that the size, structure, 

or variety strain the capability of traditional software or database software tools to capture, store, 

manage, and analyze it [3], [4]. Not only does big data pose a challenge to software systems and 

tools, but the volume of data also challenges the ability of human operators, analysts, and leaders 

to grasp, consume, and understand the critical pieces. Research in fields as diverse as psychology 

[5], economics [6], and literature [7] have identified limitations in human ability to process, 

visualize, and synthesize meaning from data. George A. Miller observes that, in a study for 

which subjects were asked to quickly count the number of dots as they were flashed on a screen, 

the subjects’ performance on fewer than seven dots so starkly contrasted with performance on 

more than seven dots that it was given a special name. With fewer than seven dots, subjects 

“subitized” whereas with above seven dots, subjects “estimated”[5], [8].  Herbert A. Simon 

observes that information requires attention, and as information increases it necessarily requires 

the consumer of that information to engage in prioritization, ranking, or filtering in order to 

digest it. He also observed that human beings are essentially “serial” creatures, capable of 
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focused attention on only one thing at a time [6]. Finally, the iconic Mortimer J. Adler, in the 

second edition of How to Read a Book, laments the evolution of a society with vast quantities of 

knowledge but little depth of understanding [7]. It is interesting to note that these gentlemen 

wrote their pieces in 1956, 1971, and 1970, respectively. The exploding volume of data captured  

by modern systems exacerbates this challenge to a degree likely not conceived of at that time [9]. 

From the definition of big data and the strategies for CE, it is clear that big data can be 

seen both as an enabler of the CE as well as an impediment. It is an impediment in that, by 

definition, it requires innovation and effort to truly harness; it is an enabler in that the successful 

capture, consumption, and application of big data are precisely the necessary prerequisites to 

harness the power of the CE to its full potential. The balance between big data as a challenge 

versus an enabler is illustrated by the “less is more” or “more is less” paradigm. In one sense, the 

goal is to extrapolate trends from a sample of data, with the smaller the sample the better. Too 

much data can run the risk of overfitting a model. On the other hand, reducing the data down to a 

small sample is only a good idea if there is a clear sense of what to be looking for. In the quest 

for latent factors of interest, this strategy may not be advisable. Paradoxically, it may require vast 

quantities of data in order to train models to identify the narrow sliver of highly valuable 

information [10]. This is particularly true for highly unbalanced datasets such as defects in a 

mature manufacturing process. If a small number of key features can be identified to capture the 

critical information for the decision of interest, then monitoring those key features in the steady 

state can address the large volume of data [11]. 

The purpose of this document is to describe and explain a proposed hierarchical data 

filtration approach for specific application to the connected manufacturing enterprise but general 

application to any big data context. Chapter 2 contains literature review. Chapter 3 describes 
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research objectives and proposed methodology to attain those objectives. Chapter 4 provides 

background on the concepts underlying the framework. Chapter 5 provides a detailed description 

of the proposed framework. Chapter 6 contains application to three diverse datasets. Chapter 7 

contains an applied case study in the CE, and Chapter 8 provides concluding remarks and 

directions for future research. This framework contributes to the big data problem by providing a 

mechanism to identify value-added features for the problem of interest and, most importantly, 

quantify the usefulness of those features. At a high level, the framework reduces the number of 

features to consider by applying a series of filters that first identify poor features to discard and 

then highlight quality features to retain.  

1.2 Trends and Terminology in Manufacturing and Industry 

In exploring recent advancements in manufacturing and industry, interested practitioners 

and researchers might find themselves deciphering a series of seemingly related, sometimes 

interchangeable, but distinct terms that mean different things to different parties in different 

contexts. In some cases, specific terminology might be used in one part of the world whereas 

another term is employed elsewhere. Seven terms, in particular, are of interest: The Connected 

Enterprise, Industry 4.0 (Germany), Industrial Internet of Things (IIoT), Smart Manufacturing, 

China Manufacturing 2025 (China), Manufacturing Innovation 3.0 (S. Korea), Usine du Futur 

(France). Overall, these strategies tend to focus on fostering industry agility to increase 

productivity, increase safety, reduce risk, reduce time to market, lower cost of resource 

utilization, optimize asset management and drive toward a customer-centric organizational 

culture.  

“Industry 4.0” , a term most commonly used in German-speaking contexts, follows 

logically from mechanization (“Industry 1.0”), electrical energy (“Industry 2.0”), and digitization 
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(“Industry 3.0”), and has been referred to as a fourth industrial revolution [12].  It therefore 

refers to a range of topics exhibiting common fundamental concepts, which may include [12]: 

• Smart Manufacturing 

• Cyber-physical systems 

• Self-organization 

• New systems for distribution, procurement, and development of products and services 

• Adaptability 

• Corporate social responsibility 

The IIoT, a term initially coined by General Electric (GE) in 2012, refers to a network of 

industry devices connected by communications technologies for the purposes of monitoring, 

collection, exchange, analysis, and delivery of insights to drive smarter, faster business decisions 

[13]. The IIoT is typically used as a generic term, whereas Industry 4.0 is a specific, conceptually 

different paradigm for manufacturing [14]. The vision for Industry 4.0 is one of global networks 

that connect machinery, factories, and warehousing facilities and cyber-physical systems to 

connect, control, and share information to enhance decision-making [14]. IIoT is a subset of 

Internet of Things (IoT), a broad term for connected devices. IoT be can subdivided into 

Consumer IoT and IIoT. Examples of Consumer IoT would be household appliances 

interconnected via smart phone app for diagnostic monitoring or control. 

IIoT has potential for greater impact than Consumer IoT because it carries the potential to 

bring entirely new infrastructures to the most critical and impactful societal systems [15]. 

Examples of consortia of companies targeting the IIoT include the Industrial Internet Consortium 

(IIC) [16], Industry 4.0, and the OpenFog Consortium [17].  
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Smart Manufacturing is a general term for the use of sensors and wireless technologies to 

capture data in all stages of production or product lifecycle. Examples include vehicle engines 

collecting and transmitting diagnostic information or optical scanners detecting defects in printed 

circuits [18]. 

The terms discussed are interrelated but not synonymous. Smart manufacturing is a 

component of Industry 4.0 and the Connected Enterprise. Similar technological enablers such as 

sensor technology and wireless networks enable the IIoT. Industry 4.0 is a specific, applied 

paradigm of the IIoT, and the Connected Enterprise is an enterprise-wide extension of Industry 

4.0. 

The final term to discuss is the CE, upon which this dissertation is grounded. CE is a term 

coined by Rockwell Automation [1] to describe a strategy of corporate shared vision for the 

future of industrial automation. As Lyman Tschanz, Rockwell Automation VP of Connected 

Enterprise External Affairs Operations in an interview in May 2018, “The CE strategy was an 

organic development of the industrial controls evolution.”  Following the discovery of electricity, 

relays in combination with other electro mechanical provided the means for industrial process 

control. This gave way to programmable logic controllers (PLCs) and Programmable 

Automation Controllers (PACs), which enabled reliable digitized control of manufacturing 

processes and fault diagnostics mostly within a single machine. Subsequently, network 

architectures (hardware and software) enabled machine to machine (M2M) interaction though 

communication of several PLCs without direct human intervention.  Modern industries have 

distributed control systems (DCS) and Supervisory Control and Data Acquisition (SCADA) 

architectures that enable further integration of information and operation technologies (IT & 

OT). This integration enables the interaction between manufacturing process data, people, and 
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the business enterprise to optimize the Key Performance Indicators of at organization at all levels 

of the organization: factory level, enterprise level and global supply chain level.  Figure 1 is a 

pictorial representation of the CE strategy that enables the seamless convergence of the 

information and operation functions of an enterprise. 

 

Figure 1: The Connected Enterprise Strategy - Enabling IT-OT Convergence 

The Connected Enterprise therefore, is one of: [2]:  

• enterprise-wide visibility and collaboration 

• interconnected people, equipment, and processes  

• real-time learning of enterprise status 

• organizational agility by means of increased information to make informed, adaptive, 

proactive decisions 

A true Connected Enterprise requires three components: network infrastructure, working 

data capital, and security. Network infrastructure links manufacturing and operations with the 

larger enterprise; working data capital refers to information that is gathered across the spectrum 

of operations and is distributed to allow employees to do their jobs better; and security refers to 
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the culture of threat management policy and practice that is necessary for the networked 

environment [19].   

This research concentrates on a specific key enabler to the Connected Enterprise in 

manufacturing: big data. Especially relevant enabling technologies for information capture, 

storage, analysis, and sharing in the Connected Enterprise, specifically edge analytics and cloud 

computing, will be the focus.  Edge analytics emphasizes automated data acquisition and 

analysis at the end device level, primarily to sustain and preserve process privacy, reduce latency 

and ensure a reliable and robust system that can withstand connection outages. Edge-level 

analytics looks at device-level data comprising sensor, PLC, and drive to perform near real-time 

analysis and data synthesis. Edge-level analytics would happen in a multi-tier framework on 

premise, where different levels of data are aggregated and mixed to enable immediate analysis 

that can be used to close the loop with the machine or process under control. A benefit of this 

edge computing is a more robust system that can continue to perform calculations while 

withstanding connection outages. Cloud computing on the other hand, moves software 

applications to an off-premise or off-site data center and frees the IT footprint to reduce 

maintenance and energy costs. Additional benefits of cloud computing include reduction of 

overall IT costs associated with managing and maintaining IT systems, scalability, business 

continuity, and collaborative efficiency [20]. Other enablers of information management, which 

will not be the focus of this dissertation, include mobility, which allows users to access 

manufacturing data on a variety of smart devices and not be tied down to physical location, and 

virtualization and digital twinning, which untether hardware from its operating system and 

reduce dependency on physical servers [19], [21]. 
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CHAPTER 2: LITERATURE REVIEW 

 This chapter contains content extracted from, “A Survey of Feature Set Reduction 

Approaches for Predictive Analytics in the Connected Manufacturing Enterprise”, a systematic 

review that was submitted for publication in the Special Issue New Industry 4.0 Advances in 

Industrial IoT and Visual Computing for Manufacturing Processes of Applied Sciences. The 

manuscript was submitted in 9 January 2019, accepted for publication on 22 February 2019, and 

published on 27 February 2019 [22].  

2.1 Purpose 

The purpose of this literature review is to survey and discuss representative examples 

along the spectrum of existing research into a specific key enabler to the Connected Enterprise in 

manufacturing: big data. A good working definition of a “big data” environment is one such that 

the size, structure, or variety of information strains the capability of traditional software or 

database tools to capture, store, manage, and analyze it [3], [4].  Big data is clearly both an 

enabler to the CE and an obstacle. It is an obstacle in that, by definition, it requires innovation to 

truly harness; it is an enabler in that it is precisely the availability of vast untapped data that 

undergirds the enormous potential of the CE. Bollier (2010) explores this duality in big data for 

The Aspen Institute in [10]. 

Three related factors provide the motivation for this research. First, the rapid advent of 

technology to capture and store manufacturing data without the parallel development of 

corresponding analytical capabilities has resulted in the circumstance by which vast quantities of 

data are collected but not effectively analyzed or interpreted [18]. Second, the dual nature of big 

data as both an enabler and an obstacle to the CE perpetuates the state of affairs by which 
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manufacturers do not have a clear picture as to what manufacturing data, of the vast volumes 

collected, is truly valuable versus what can be discarded. This lack of clarity is due to disjoint or 

“siloed” data analytics capabilities within the organization [23] and by “where-to-start” paralysis 

brought on by the sheer volume of data and underdeveloped capability to visualize it [24]. 

Finally, it has been well established that limitations exist in how and to what extent the human 

analyst can process complex information [5], [6], [8]. The astounding development of the 

capabilities of automated analytical and artificial intelligence tools prompts interest in steps that 

can be taken to make them more palatable and digestible to human analysts and decision makers. 

The objective of this literature survey is to determine whether, among the extensive body 

of knowledge on big data in the manufacturing environment, there is room for research into 

mechanisms or frameworks for feature filtration and prioritization when building applied 

machine learning models for predictive analytics. The interest is not so much in technology or 

architecture, which has been explored elsewhere ([25]–[28]), but rather in the human factor and 

how enablers to individual competencies can address the enterprise-level motivations for this 

research. It is true that certain machine learning algorithms can accommodate high 

dimensionality in input data, at the risk of potential issues such as overfitting. However, simply 

incorporating every potential feature into the model because it can algorithmically handle the 

calculations can shortchange the organization out of potentially useful information about the data 

at its disposal. The optimal subset problem is NP-Hard, which makes it impractical to iterate 

through all possible subsets of features to find the best subset for model training. For this reason, 

there is practical benefit in identifying how analysts and data scientists in manufacturing 

organizations decide how to select features for model inclusion and if that process is algorithmic 

and generalizable or if it is ad hoc, tailored to the specific problem of interest. 
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 The remainder of the chapter breaks down as follows. Section 2.2 provides the 

methodology employed in identifying which articles to review and how to group them. Section 

2.3 contains the body of reviewed literature, with each article receiving short commentary and 

consolidated observations and commentary following each sub-section. Section 2.4 provides 

overall observations from the body of reviewed literature, and Section 2.5 draws conclusions. 

2.2 Methodology 

2.2.1 Data Collection 

Articles cited in this review can be broadly categorized into two groups. The first group 

consists of featured articles that receive analysis and discussion as pertaining to the motivations 

and / or objective of this research. The second group consists of background or supporting work 

that provides context to the introduction, justification to the motivations, or theoretical 

foundations to techniques or algorithms referenced in the first group. 

The process of identifying articles for the first group began with broad queries into 

databases of scholarly literature using a series of topically relevant keywords. The following 

keywords were used, typically in pairs but sometimes in groups of three or more: [“big data”], 

[“smart manufacturing”], [manufacturing], [“machine learning”], [deep learning], [“deep 

learning”], [“fault detection”], [“fault prediction”], [“fault diagnosis”], [“data reduction”], 

[“feature selection”], [“feature reduction”], [“instance selection”], and [“instance reduction”]. 

Quotation marks indicate that the phrase was searched in its entirety. Thus, the keyword [“deep 

learning”] would not return the phrase “deep neural network learning” but the keyword [deep 

learning] would. 
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Academic or scholarly databases searched include ScienceDirect, IEEE, Taylor & 

Francis, SpringerLink, Google Scholar, and the University of Wisconsin – Milwaukee (UWM) 

library system. Time parameters were set for 2008 through 2018. 

The keywords employed in database searches were selected to initially catch a wide 

scope of articles and then converge towards articles focusing more directly on the motivations 

and objective of the review. 

A second means of identifying articles was to survey citations in articles identified in the 

database searches. For example, if a database search identified a survey paper on the use of 

machine learning for smart manufacturing, it would be possible that the articles cited therein 

might pose some relevance. The intent is not to duplicate work but rather to complement it. 

Returning to the previous example, a list of articles analyzed from an algorithmic perspective on 

which machine learning technique was employed could be relevant to this review by seeing how 

those same papers approach the human dimension of the project.  

To identify citations in the second category of articles, the process was ad hoc and 

tailored to the specific algorithm or technique that warranted additional background. This 

category made no restrictions to time window because many techniques employed today have 

their theoretical foundations in decades past. For example, much of the initial, exploratory 

research into human limitations in processing information took place decades ago. 

2.2.2 Data Analysis 

The first layer of analysis consisted of broadly categorizing or organizing the reviewed 

articles. In keeping with the general search methodology, this resulted in three general groups, 
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selected for their intuitive sense in logically flowing from a broad, high-level search and then 

converging on the motivations and objective for the review.  

• The first category explores big-data models for general industrial applications, 

specifically those featuring machine learning or deep learning.  

• The second category focuses specifically on big data analyses and frameworks as applied 

to scenarios specific to smart manufacturing. Two sub-topics emerged in the search 

results: fault detection and fault prediction.  

• The third category addresses data reduction tools and techniques. 

The three categories listed above came about partly by design and partly post hoc. From 

the beginning, the question of interest was data reduction, specifically feature filtration and 

prioritization. Upon conducting a high-level analysis of articles captured by queries described in 

Section 2.2.1, it became clear that it would be appropriate to organize by papers explicitly 

focused on data reduction and those not. Clearly, a paper that is explicitly on the topic of data 

reduction will cover the subject. However, this review is also interested in how articles approach 

the topic of data reduction as a step contained within some problem of interest, when the paper is 

not explicitly about data reduction. This would have resulted in two categories. It subsequently 

became clear upon examination that, of the papers not explicitly focused on data reduction, they 

could be subdivided into those focused on a specific manufacturing application and those 

focused on general applications independent of a specific problem type. This yielded the three 

categories that ultimately form the organization of Section 2.3. 

The second layer of analysis consisted of identifying which articles merit discussion and 

how to organize that discussion. 
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The predominant theme for analyzing articles in the first category, general industrial 

applications, was the degree to which the article focused on enterprise capabilities that enable 

organizational competencies versus approaches or methodologies that relate to human 

competencies. The first two motivations for this research are predominantly organizational 

competencies that are developed by a combination of high-level, enterprise capabilities and low-

level, individual competencies. Of interest to this review was whether the reviewed articles gave 

treatment to the research motivations and, if so, whether that treatment focused on the 

organizational or the individual competencies. 

The focus for analyzing articles in the second category, specific manufacturing 

applications, was the extent to which data reduction was explicitly performed and, if so, the 

extent to which that reduction step received treatment in terms of analysis or generalizability. 

The working hypothesis was that most research would be focused on a specific application or 

problem of interest, with the input data treated in secondary fashion, being a means to some end 

and not as potentially an end unto itself. The reasoning behind the working hypothesis is that 

practitioners and researchers alike have priorities of work; solving the problem of interest is 

typically Priority #1. Time-constrained efforts to complete the task at hand can sometimes cause 

both researchers and practitioners alike to miss valuable nuggets of insight that could provide 

useful in subsequent future work. 

The focus for the third category was the context for the data reduction and the type of 

data reduction performed. If the context was outside of the manufacturing realm, the question 

was if it would be possible to extend the technique to manufacturing contexts. If already 

contextualized within manufacturing, the question was how generalizable it might be to other 

contexts or if the technique was unique to the specific scenario or case study. 
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Within each section, individual articles receive commentary in isolation. Each section 

concludes with observations and discussion on themes contained in more than one paper therein. 

Finally, Section 2.4 provides consolidated observations and discussion for the entire set of 

reviewed literature, providing a lead to the problem definition and research objectives in Chapter 

3. 

2.3 Literature Survey 

2.3.1 Big Data Approaches for General Industrial Applications 

Existing research into big data utilization for general industrial applications may be 

broadly generalized to contain valuable work and insight into the state of technology, current 

challenges, and methodologies or high-level frameworks for big-data analytical projects. The 

following section contains examples that, while not intended to be exhaustive, are representative 

of the body of literature on the subject. These examples are reviewed with specific interest in 

how they treat the research motivations from the human versus the architectural or technological 

dimension. 

Wuest et al. (2016) present an overview of machine learning in manufacturing, focusing 

specifically on advantages, challenges, and applications [29]. Of particular interest is a summary 

of several recent studies ([30]–[33]) on the key challenges currently faced by the larger global 

manufacturing industry, with agreement on the following key challenges: 

• Adoption of advanced manufacturing technologies 

• Growing importance of manufacturing of high value-added products 

• Utilizing advanced knowledge, information management, and AI systems 

• Sustainable manufacturing (processes) and products 

• Agile and flexible enterprise capabilities and supply chains 
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• Innovation in products, services, and processes 

• Close collaboration between industry and research to adopt new technologies 

• New manufacturing paradigms. 

It is interesting to observe, in addition to what is listed, what is not listed. Specifically, 

these recent studies did not identify data utility as a key challenge. In other words, there is 

recognition that voluminous manufacturing data is collected. However, there is not universal 

agreement that this is a problem that needs to be addressed on the front end [29]; rather, 

employment of various machine learning techniques is proposed as a means to deal with data 

[34], with methods towards this end dating as far back as the 1970s [35]. 

Additionally, a summary of various machine learning techniques is offered, organized by 

their suitability for various manufacturing applications. Already discussed is the dimensionality 

problem, or the ability to handle data sets with a large number of features. However, employment 

of machine learning algorithms to deal with the problem of high dimensionality can lead the 

analyst directly into one of the main challenges associated with machine learning that the paper 

identifies, which is that interpretation of results can be difficult. Especially when the model is 

intended to support real-time monitoring of parameters with respect to proximity to some 

threshold, the practical usefulness of the model is diminished when large numbers of irrelevant 

or redundant features are input into the model simply because the machine learning algorithm 

can accommodate them. 

Alpaydin (2014) provides a comprehensive overview of machine learning, with specific 

techniques that apply to each of the needs described above [36]. It is pointed out, however, that 

existing applications of machine learning tend to narrowly focus on the problem at hand or on a 

specific process [37] and not holistically on the manufacturing enterprise or on generalizing the 
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results to other processes. This observation is noteworthy, as it relates tangentially to the purpose 

of this literature review. One reason for the willingness to select machine learning algorithms 

that can handle high dimensionality may be a ‘prisoner-of-the-moment’ mentality. Analysts and 

data scientists perform real-world analyses to solve real-world problems, usually on a deadline 

imposed beyond their control. That deadline may be imposed by supervisors or it may be a 

function of outside constraints. Circumstances may not afford the luxury to step back, after 

completing the initial project, and thoroughly comb through the data to draw secondary 

conclusions about the nature of the input data. Rather, it is on to the next problem. 

Wang  et al. (2018) unpack the benefits and applications of deep learning for smart 

manufacturing, identifying benefits that include new visibility into operations for decision-

makers and the availability of real-time performance measures and costs [38]. The authors 

provide, in addition to this practical information, a useful discussion on deep learning as a big-

data analytical tool. In particular, they compare deep learning with traditional machine learning 

and offer three key distinctions between the two. Those distinctions are summarized in Table 1.  

Table 1: Distinction between Traditional Machine Learning and Deep Learning 

 Feature Learning Model construction Model training 
Traditional 
Machine 
Learning 

Features are identified, 
engineered, and extracted 
manually through domain 
expert knowledge. 

Models typically have 
shallow structures (few 
hidden layers) and are data-
driven using selected 
features. 

Modules are 
trained step by 
step. 

Deep 
Learning 

Features are learned by 
transforming the data into 
abstract representations. 

Models are end-to-end, high 
hierarchies with nonlinear 
combinations of numerous 
hidden layers. 

Model parameters 
are trained jointly. 

 

Note the distinction in feature learning. Deep learning models do not explicitly engineer 

and extract features. Rather, they are learned abstractly. This is both an advantage and a tradeoff. 
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The blessing is that model performance is typically superior. The tradeoff is in the transparency, 

traceability, and front-end verifiability of results.  

The authors make an interesting observation, in that deep learning has shown itself to be 

most effective when it is applied to limited types of data and well-defined tasks [38]. This is 

notable in that conventional wisdom sometimes holds more data is better. Reducing the large 

data set to the most relevant subset of predictors may actually improve performance. This speaks 

directly to the motivation for this review and demonstrates the importance of the question. Not 

only does the capability to reduce a feature set to only the most relevant features enable an 

organization to build and increase institutional knowledge about the data at its disposal, but it 

also may lead to superior model performance. 

Closely related, Tao et al. (2018) provide a comprehensive look at data-driven smart 

manufacturing, providing a historical perspective on the evolution of manufacturing data, a 

development perspective on the lifecycle of big manufacturing data, and a framework 

envisioning the future of data in manufacturing [39].  

The broad framework outlined by Tao et al. (2018) contains four modules:  

1. Manufacturing module. The manufacturing module contains conventional manufacturing 

activities, with the inputs being raw materials and the outputs being the finished product. 

During this stage, data is collected from a variety of sources that may include manual 

collection (human operators), production equipment, information systems, or industrial 

networks. 

2. Data driver module. This module takes place in cloud-based data centers. Inputs are the 

data from the manufacturing module, and outputs from the analysis are explicit 

information and actionable recommendations for the diverse array of actions such as 

product design, production planning, and manufacturing execution that take place in the 

manufacturing module.  
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3. Real-time monitoring module. The real-time monitoring module performs precisely what 

its name implies, with the larger purpose being the assurance of process and product 

integrity. The data driver module is what enables this module to analyze the real-time 

running status of manufacturing facilities and allows leaders to make adjustments to the 

manufacturing process as needed in response to machine idleness or product quality 

defects. 

4. Problem processing module. This final module exists to harness data and advanced 

analytical techniques to identify and predict emerging faults, diagnose root causes, 

highlight possible solutions, compute key performance indicators or metrics, perform 

what-if analysis, and other related functions that transform an operation from reactive to 

proactive or predictive. This module is grounded in data from both the real-time 

monitoring module and the data drive module. 

It should be noted that this framework is general, not tailored to any specific 

manufacturing type. It is arguable that this is extendable to any industry or industry group that 

engages in data-driven decision-making and finds itself in the position to capture big data or 

metadata that it previously did not have at its disposal. The four modules do not operate in series 

but rather concurrently, with the utility from the problem processing module likely varying the 

most drastically when applied from one industry to another. The more resources that an 

organization can dedicate to the activities of anticipating and solving future problems, the better 

the results that the organization will reap from this framework.  

An observation is that Tao et al. (2018) also identify a gap and promising future research 

direction that aligns indirectly with the focus of this literature review. Specifically, edge 

computing is identified as a promising direction for future research in incorporating into the 

proposed framework [39]. Edge computing is precisely one of the promising options in the 

problem of whittling down the volumes of production data into the core pieces that are truly 

meaningful and align with the key performance indicators (KPIs) of interest. Edge computing 
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allows data to be analyzed at the “edge” of a network before being sent to a data center or cloud 

[40]. A related term, fog computing, was introduced by Cisco systems in 2014 and extends the 

cloud to be closer to devices that produce and act on IIoT data [41]. The distinction between the 

two concepts, as well as other emerging paradigms such as Mobile Edge Computing (MEC) and 

Mobile Cloud Computing (MCC) are not fully mature and are subject to overlap [42]. The 

commonality is that they represent means for an organization to operationalize the individual 

competencies that are the focus of this review. 

A slightly different application but keeping with the theme of harnessing the new 

technologies available in the big data and connected manufacturing environment, Andreadis 

(2015) proposes a framework for social media incorporation into the manufacturing process. In 

this framework, social network solicitations prompt feedback from subject matter experts in 

order to inform the product design process media in the form of live-streaming subject-matter 

expertise. Subsequently, social media in the form of live-streaming opinions and practical 

experiences from external experts informs process planning such as the selection of cutting 

conditions (a process in the case study) [43]. The point being to harness emerging technologies 

and using them to facilitate the exchange of ideas, opinions, and experiences between a virtually 

limitless pool of experts or consumers with respect to a specific product, thereby bringing in 

customer insight into the manufacturing process. For additional treatment of the use of 

technology to provide useful tools for the productive management of enterprise information, see 

[44]–[47].  

A final framework for general industrial application of big data is presented by Flath and 

Stein (2017), specifically in the form of a data science “toolbox” for manufacturing prediction 

tasks. The objective is to bridge the gap between machine learning research and practical needs. 
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Feature engineering is identified as an important step that must take place prior to deriving useful 

patterns from the input data, and a case study employs Kullback-Leibler divergence to reduce 

968 numeric features to 150 and 2140 categorical features to 27. The framework offered is a 

five-phase procedure [48]. 

• The first phase, data collection, is self-explanatory and may result in both structured and 

unstructured data; pre-processing or clean-up of data may be necessary. 

• The second phase, exploratory data analysis, is necessary to identify properties of the 

dataset, eliminate duplicates, and further explore both the features and the processes 

involved. It may require employment of unsupervised machine learning techniques to 

identify the low-information features of the dataset. 

• The third phase is to identify an appropriate metric for the specific problem at hand. It is 

certainly possible that this phase may be done out of sync, although doing so would 

prevent dataset characteristics such as data imbalance from being taken into 

consideration. 

• The fourth phase is to select the learning algorithm, which will depend on the specific 

task (i.e. regression versus classification) and the metric(s) selected in the previous phase. 

• The final phase is model execution, which may involve any number of steps to include 

model training, incorporation of new features, cross-validation, and interpretation of 

results. 

The preceding literature, summarized in Table 2 below, shows high-level analysis of 

trends and challenges. It also provides examples of methodologies and frameworks for applied 

big data analytics in manufacturing.  

A first observation is that there is not uniform agreement with regard to the question of 

dimensionality. On one extreme, the question is treated as a non-issue, to be handled by the 

machine learning algorithm selected. Other articles addressed the question at a high-level as 
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important but always within the context of the larger problem-solving approach and not to the 

level of detail that would be useful to the data scientist. 

A second observation is that the approaches for predictive analytics in this section are 

geared less towards the detailed steps that an analyst might perform and more towards the 

infrastructure, architecture, and general data landscape that an organization should possess in 

order to have the capability to perform applied predictive analytics projects. This is not entirely 

unexpected, as the articles in this section are selected specifically for their high-level, broad 

outlook. The expectation is that articles in Section 2.3.2 and 2.3.3 will provide greater detail on 

the subject because articles reviewed in those sections focus more precisely on contexts that 

align better to activities at the level of the analyst or data scientist. 

A third observation is gap identified by more than one researcher, which is the lack of 

holistic generalization of results beyond the specific, local problem under examination. This is 

related to manufacturers’ limited knowledge of the relative utility or value contained among the 

different elements of the vast volumes of data that they collect in a somewhat mutually-

reinforcing way. A lack of knowledge regarding the data landscape makes it difficult to 

generalize a dataset’s utility from one application to the next. On the same token, not taking 

incremental steps to analyze projects after the fact for relevance and generalizability to other 

contexts perpetuates the deficiency in institutional knowledge. 

Table 2: Summary - Big Data for General Industrial Applications 

Author(s) Focus 
Wuest et al. [29] Key challenges for global manufacturing industry 
Alpaydin [36] Machine learning overview 
Wang et al. [38] Deep learning for smart manufacturing 
Tao et al. [39] Data-driven smart manufacturing 
Andreadis [43] Social media and the manufacturing process 
Flath and Stein [48] Data science “toolbox” for industrial analytics 
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2.3.2 Big Data Frameworks for Specific Manufacturing Applications 

This section moves from the higher level of general industrial or manufacturing 

applications to approaches geared towards specific smart manufacturing applications. The 

following literature instances fall into one of two sub-categories: fault detection and fault 

prediction. Fault detection and fault prediction are important areas of interest, and it is not 

surprising that predictive analytics projects gravitate to those topics. Predictive analytics in any 

the context will naturally gravitate to the dominant interests or challenges facing decision makers 

in that context, and, for manufacturers, KPIs associated with cost, quality, and time are 

negatively influenced by faults in machinery or output. Most manufacturing processes involve 

some form of creation or assembly at a given stage followed by some manner of inspection or 

validation before moving on to the next stage. Components are assembled into some final 

product, which itself undergoes functional testing prior to distribution to the customer. Machine 

downtime for unscheduled maintenance will negatively impact cycle time and, by extension, 

cost. Undetected malfunctions or nonconformities in machinery can lead to defective products 

escaping from one stage of manufacture to the next. There is an ever-present need to reduce 

defective products, which creates a natural partnership between smart manufacturing and 

predictive analytics. It is therefore unsurprising that much of the literature in predictive analytics 

in the manufacturing context will be applied to case studies in either fault detection or fault 

prediction.  

It will be observed that different publications employ different frameworks, techniques, 

models, or methodologies to address specific manufacturing applications, often addressing 

specialized sub-problems or challenges. The focus in the ensuing section is how, from the human 

data scientist perspective, these analyses approach the challenge posed by big data. Is the big 
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data challenge one of an excessive number of diverse features that may contain hidden predictive 

potential? Is the challenge one of data volume, with exceedingly large numbers of records 

produced? Neither? Both? Additionally, this review will analyze the ensuing articles with an eye 

towards knowledge management, or the extent to which there is opportunity to generalize 

beyond the specific problem of interest.  

2.3.2.1. Fault Detection 

In [49], a MapReduce framework is proposed and applied to the fault diagnosis problem 

in cloud-based manufacturing under the circumstance of a heavily unbalanced dataset. An 

unbalanced dataset is one in which a large number of examples but another class is represented 

by comparatively far fewer [50], [51]. In terms of features for use in model training, each record 

of input data contains 27 independent variables and one fault type. There is no explicit discussion 

of reducing the 27 input variables to a smaller subset or what steps might be taken to do so for a 

scenario with higher dimensionality. 

A hybridized CloudView framework is proposed in [52] for analyzing large quantities of 

machine maintenance data in a cloud computing environment. The hybridized framework 

contrasts with a global or offline approach [53] and a local or online approach [54], providing the 

advantage of being able to analyze sensor data in real-time while also predicting faults in 

machines using global information on previous faults from a large number of machines [52]. 

Feature selection is discussed at a high level, but the illustrative case study employs only three 

data inputs. The purpose of the case study is simply to illustrate the case-based reasoning applied 

and not apparently to address a specific situation. 
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In [55], Tamilselvan and Wang employ deep belief networks (DBN) for health state 

classification of manufacturing machines, with IIoT sensor data employed for model inputs. 

Specifically, data from seven different signals out of a possible 21 were selected for model 

training. Selection of which signals to include for model training was made based on literature 

and not on a specific methodological approach. 

Deep belief networks are compared favorably to support vector machines (SVM), back-

propagation neural networks (BNN), Mahalanobis distance (MD), and self-organizing maps 

(SOM) [55]. The deep belief network structure consists of a data layer, a network layer, and 

some number of hidden layers in between. This particular framework structures its hidden layers 

as a stacked network of restricted Boltzmann machines (RBMs) [56], with the hidden layer of the 

nth RBM as the data layer of the (n+1)th RBM.  

A similar machine learning methodology is employed by Jia et al. (2016) for fault 

characterization of a rotating machinery in an environment characterized by massive data using 

deep neural networks (DNNs) [57]. A DNN is similar to the DBN, except that the layers are not 

constrained to be RBM. For an extensive overview of deep learning in neural networks, see [58]. 

In a case study in fault diagnosis of rolling element bearings, a total of 2400 features are 

extracted from 200 signals using fast Fourier transform (FFT); no explicit reduction step is 

performed or discussed. Rather, the full dataset is input into the DNN.  

The DNN model achieves impressive results when compared with a BNN, with correct 

classification rates over 99% compared to 65-80% for the BNN [57]. This indicates that the 

specific algorithm employed can have a non-trivial impact on the results, depending on the 

problem under study. 
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A framework for fault signal identification is proposed by Banerjee et al. (2010) in [59] 

using short term Fourier transforms (STFT) to separate the signal and SVM to classify it, and 

Banerjee and Das (2012) extend the approach in [60]. An explicit discussion on data preparation 

or feature filtration is absent due to the manageable feature set used for model training. However, 

the approach to extract features from signal data can lead to an excessive number of potential 

features, making such a step value-added. 

Note also that this framework is a hybrid of several techniques, taking sensor data into 

the SVM after it has already been processed by signal processing and the time-based model. This 

is in contrast to frameworks relying exclusively on SVM [61], [62] or exclusively on time series 

analysis [63].  

Probabilistic frameworks for fault diagnosis grounded in Bayesian networks (BN) and the 

more generalized Dempster-Shafer theory (DST) are examined in [64] and [65], respectively. For 

background and additional information on DST, see [66]. The challenge explored by Xiong et al. 

(2016) in [65] is that of conflicting evidence, with the observation that, in practice, sensors are 

often disturbed by various factors. This can result in a conflict in the obtained evidence, 

specifically in a discrepancy between the observed results and the results obtained by fusion 

through Dempster’s combination rule. This challenge reveals the need to reprocess the evidence 

using some framework or methodology prior to fusing it. Xiong et al. (2016) propose to do so 

with an information fusion fault diagnosis method based on the static discounting factor, and a 

combination of K-nearest neighbors (KNN) and dimensionless indicators [65].  

Just as in Jia et al. (2016), Xiong et al. (2016)’s method is applied to fault diagnosis 

among rotating machinery in a large-scale petrochemical enterprise. 
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Khakifirooz et al. (2017) employ Bayesian inference to mine semiconductor 

manufacturing data for the purposes of detecting underperforming tool-chamber at a given 

production time. The authors use Cohen’s kappa coefficient to eliminate the influence of 

extraneous variables [67].  

The tool-chamber problem examined in [67] is relevant to this review in that it employs a 

large number of binary input variables in its model, one for each tool and each step, equal to 1 if 

the tool-chamber feature was used in a step and equal to 0 if not. The feature filtration approach 

employed is a two-fold application of Cohen’s kappa coefficient, once for pairwise comparison 

of the features against each other and once for features against the target. Features exhibiting 

high agreement with each other are wrapped with peers into a group; feature exhibiting low 

agreement with the target are removed from the model, with 0.20 as the threshold for removal. 

This method is appropriate when features and the target are both binary; a limitation is 

the method is not suitable for data in other forms. This requires the target to be transformed from 

a continuous yield percentage to a categorical classification. A second possible limitation is that 

each variable is tested independently of the others, with no consideration for interaction. It is 

logically possible that a feature could have a poor Cohen’s kappa coefficient but could interact 

with other features to produce an overall better model. An advantage of the approach, though not 

specifically discussed in the article, is that Cohen’s kappa coefficient scores for each feature may 

be preserved from one analysis to the next and analyzed to see if they harbor latent relationships 

that might point to root causes of inadequate tool-chamber and not simply forecast it. 

The final framework for fault detection that this literature review will explore is a cyber-

physical system (CPS) architecture proposed by Lee (2017) for fault detection and classification 

(FDC) in manufacturing processes for vehicle high intensity discharge (HID) headlight and cable 
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modules [68]. For additional background and exploration of CPS, see [69]–[72]. Although much 

of the article is devoted to material outside the scope of this review, such as network and 

database architecture, the manufacturing process explored is notable because it involves multiple 

sub-processes, some of which are performed in-house and some of which are outsourced to 

external parties. Furthermore, although there is a small set of main defects that may be observed 

(shorted cable, cable damage, insufficient soldering, and bad marking), those faults are not 

directly traceable to a single sub-process. Rather, any number of different sub-processes may 

result in any fault type.  The impact, when performing fault detection and classification, is that 

the cause-effect relationships and the backwards tracing of faults to diagnoses must take place 

beforehand. 

The input data for the case study consists of eight signals, three from torque sensors and 

five from proximity sensors, and three learning models are explored: support vector regression 

(SVR), radial bias function (RBF), and deep belief learning-based deep learning (DBL-DL). In 

the SVR and RBM models, no additional step in data filtration or feature extraction is performed; 

in the DBL-DL model, features are extracted in the form of two hidden layers. Unsurprisingly, 

the DBL-DL model outperforms the other two, with a classification error rate of 7% as compared 

to 8% for SVR and 9% for RBM [68]. 

2.3.2.2. Fault Prediction 

In [73], Wan et al. (2017) present a manufacturing big data approach to the active 

preventive maintenance problem, which includes a proposed system architecture, analysis of data 

collection methods, and cloud-level data processing. The paper mainly focuses on data 

processing in the cloud, with pseudocode provided for a real-time processing algorithm. Two 

types of active maintenance are proposed as necessary: a real-time component to facilitate 
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immediate responses to alarms and an offline component to analyze historic data to predict 

failures of equipment, workshops or factories. 

Of interest to this review is to note that the aforementioned approach is in the context of 

an organization’s ability to perform active preventive maintenance and not in the context of how 

a data scientist goes about performing his or her analysis. For example, ‘data collection’ in the 

context that Wan et al. (2017) describe refers to the required service-oriented architecture to 

integrate data from diverse sources. To the data scientist, ‘data collection’ is the employment of 

that architecture in identifying and obtaining specific data elements for model inclusion. 

Munirathinam & Ramadoss (2014) apply big data predictive analytics to proactive 

semiconductor production equipment maintenance. Beginning with a review of maintenance 

strategies, the researchers present advantages and disadvantages for each of four different 

maintenance strategies: run to failure (R2F), preventive, predictive, and condition-based. 

Following this background, an approach for predictive maintenance is presented as follows [74]: 

• Collect raw fault detection and classification (FDC), equipment tracking (ET), and 

metrology data 

• Perform data reduction using a combination of Principal Component Analysis (PCA) and 

subject matter expertise. This step, in the semiconductor case study, reduces the set of 

possible parameters from over 1000 to precisely 16 

• Train model 

• Display output to dashboard with a Maintenance / No Maintenance status 
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Two immediate observations are apparent when considering the data reduction step 

employed in this model. First, the use of PCA is effective but it carries with it the loss of 

interpretability after the fact. This limits the options associated with the dashboards created for 

visualization of model results. If there were an alternative to PCA that retains interpretability, it 

may be possible to identify specific thresholds in the input data that are triggers for required 

maintenance and then track proximity to those thresholds in a dashboard. A second observation 

is that PCA requires linearity among the parameters because it relies on Pearson correlation 

coefficients. It also assumes that a feature’s contribution to variance in the data relates directly to 

its predictive power [75]. It is not clear that this is always an appropriate assumption.  

Ji and Wang (2017) present a big-data analytics-based fault prediction approach for shop 

floor scheduling. This application of the big data problem focuses less on the availability of 

machining resources and more on the problem of potential errors after scheduling [76]. 

Specifically, it is observed that task scheduling using traditional techniques considers currently 

available equipment, with time and cost saving as the main objectives. Missing from 

consideration is the condition prediction of the machines and their states. In other words, 

scheduling is made absent of any information on the expected condition of the machines during 

the production process. In the proposed framework, tasks are represented by a set of data 

attributes, which are then compared to fault patterns mined through big data analytics. This 

information is then used to assign a risk category to tasks based on generated probabilities. The 

model provides the opportunity for prediction of potential machine-related faults such as 

machine error, machine fault, or maintenance states based on scheduling patterns. This 

knowledge can lead to better machine utilization. 
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It should be noted that this particular framework, while creative, was not tested on actual 

data but rather on hypothetical datasets due to data proprietorship policy [76], hence providing 

clear opportunities for future research. 

Artificial Neural Networks (ANN) are applied to recognize lubrication defects in a cold 

forging process, [77] predict ductile cast iron quality [78], optimize micro-milling parameters 

[79], predict flow behavior of aluminum alloys during hot compression [80], and predict 

dimensional error in precision machining [81]. Finally, a process approach is taken to improve 

reliability of high speed mould machining [82]. 

It was seen in the preceding models featuring ANN that data reduction plays a role of 

minimal importance because the neural network accomplishes feature creation and selection in 

the hidden layers. In [77], a total of 20 features are selected for model input with no explicit data 

reduction step. Nor was any reduction step performed in [78], where the dataset was relatively 

small, consisting of only 700 instances of 14 independent variables in the training set. In [79] and 

[80], only three features are input into the ANN. In [81], an extension of a simulation and 

process planning approach in [82], [83], the number of input variables is five. 

An observation across the set of articles reviewed in Section 3.2 is that a specific data 

reduction step is rarely utilized, either because the feature set was small to begin with or because 

the machine learning technique could accommodate. The exceptions used either statistical 

measures (Cohen’s kappa) or PCA to reduce the feature set. The article using the former 

technique did not report how many features the case study began with and how many were 

ultimately used for model training. It is, therefore, not clear the extent to which the technique is 

useful. In the case of PCA with subject matter expertise, a feature set of 1000 reduced to 16. 

Additional discussion and possible extension will be included in Section 4. 
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A second observation is that, as in Section 3.1, variation exists in the frame of reference 

for which different articles approach the topic of predictive analytics. Some articles focus on the 

organizational capability to perform predictive analytics. These incorporate robust discussion on 

technology-centric elements such as architecture for data capture, storage, and extraction or at 

which levels different analyses may be performed (cloud, edge, real-time, offline, etc.). These 

typically featured commercially available technologies such as Hadoop or MapReduce and 

address some of the prerequisites for building organizational competencies in this area. Other 

articles, on the other hand, employed the term ‘framework’ to refer to a problem-solving 

approach or methodology, a sequence of actions to be performed by the analyst or data scientist. 

These articles more directly align with the objective of this literature review, but it is important 

to distinguish between the two perspectives as each are important. Indeed, the organizational 

capability for data capture, storage, and migration must necessarily precede any in-house 

capability to analyze smart manufacturing data or use it to train a machine learning model.  

Table 3 provides a summary of the foregoing studies that approach big data analytics 

applied to specific manufacturing use cases. The table summarizes whether the paper focuses on 

organizational capabilities, methodological approaches for the analyst, case studies, or some 

combination. For case studies, the machine learning algorithm used is listed. 

Table 3: Big data approaches for specific industrial applications 

Authors(s) Focus Explicit Data 
Reduction Step 

Kumar et al. [49] Enterprise-level architecture; methodology to 
address class imbalance 

No 

Bahga and Madiseti [52] Enterprise-level architecture No 
Tamilselvan and Wang [55] Case study: Machine health states – DBN No 
Jia et al. [57] Case study: Fault characterization – DNN No 
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Banerjee et al. [59] Case study: Fault signal identification – SVM Discussed, not 
implemented 

Xiong et al. [65] Methodology: Information fusion to reconcile 
conflicting evidence in fault detection  

No 

Khakifirooz et al. [67] Case study: Yield enhancement – Bayesian 
inference 

Yes 

Lee [68] Enterprise-level architecture;  
Case study: Fault detection and classification – 
SVR, RBF, DBL-DL 

No 

Wan et al. [73] Enterprise-level architecture;  
Methodology: Real-time and offline components;  
Case study: Fault prediction – Neural Network 

No 

Munirathinam & Ramadoss 
[74] 

Enterprise-level architecture Yes 

Ji and Wang [76] Enterprise-level architecture; Simulated proof of 
concept case study: Fault prediction for shop 
floor scheduling 

No 

Rolfe et al. [77] Case study: Lubrication defects in cold forging 
process – NN  

No 

Perzyk and Kochanski [78] Ductile cast iron quality - NN No 
Kilickap et al. [79] Micro-milling parameter optimization - NN No 
Changqing et al. [80] Alloy flow behavior - NN No 
Arnaiz-Gonzalez et al. [81] Dimensional error in precision machining – NN  No 

 

2.3.3 Data Reduction 

The third and final category of literature that this review will examine focuses on 

techniques or approaches specifically for data reduction, which includes feature 

reduction/selection and instance reduction/selection. There exists a substantial body of influential 

data preprocessing algorithms for missing values imputation, noise filtering, dimensionality 

reduction, instance reduction, and treatment of data for imbalanced processing [84]. Specific 

algorithms for feature selection include Las Vegas Filter/Wrapper [85], Mutual Information 

Feature Selection [86], Relief [87], and Minimum Redundancy Maximum Relevance (mRMR) 

[88]. Specific algorithms for instance reduction include condensed nearest neighbor (CNN) [89], 
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edited nearest neighbor (ENN) [90], decremental reduction by ordered projections (DROP) [91], 

and iterative case filtering (ICF) [92].  

The interest in the ensuing articles reviewed in this section is in their suitability for 

application to the CE. To this end, the domain in which the articles implement any applied case 

studies is also examined. It will be observed that the reviewed articles contain tasks that fall 

within Step 3 of the data source selection methodology outlined in [93] and broadly fall into one 

of three categories: sampling reduction, feature reduction, or instance reduction. Sampling 

reduction applies to contexts such as optical inspection or reengineering, where there is a need to 

obtain information for an entire component or surface. If that information may be obtained using 

fewer samples, then benefits in cost or efficiency follow. Instance reduction applies to contexts 

in which large numbers of data points are collected for a relatively smaller set of attributes or 

features. Feature selection is the process of reducing the number of attributes or columns to be 

input into a machine learning model for training. 

Habib ur Rehman, et al. (2016) propose an enterprise-level data reduction framework for 

value creation in sustainable enterprises, which, while not contextualized to manufacturing, is 

easily extendable to this domain. The framework considers a traditional five-layer architecture 

for big data systems and adds three data reduction layers [94].  

The first layer for local data reduction is intended for use in mobile devices to collect, 

preprocess, analyze, and store knowledge patterns. This physical layer can easily be conceptually 

translated to the CE. The second layer, for collaborative data reduction, is situated prior to the 

cloud level, with edge computing servers executing analytics to identify knowledge patterns. 

Note that “edge computing” may be referred to as “fog computing” in some cases [95]. This step 

will exist in varying degrees in the CE depending on the maturity of the process or organization. 
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In the context of user Internet of Things (IoT) mobile data, as initially presented in the paper, 

there exists a body of data that must automatically be discarded in accordance with external 

constrains such as privacy laws. This brings a practical purpose to this initial filtration layer. In 

smart manufacturing, the physical layer represents IIoT machine or production data, all of which 

might theoretically harbor some purpose. It may not be prudent to automatically discard chunks 

of data until it has been definitively determined that there is little risk in doing so. Finally, a layer 

for remote data reduction is added to aggregate the knowledge patterns from edge servers that 

are then distributed to cloud data centers for data applications to access and further analyze [94]. 

It should be noted that this framework is at the institutional level and not at the level of 

the data scientist. The data reduction layers are presented as automated processes applied to the 

raw source data and not dependent on a specific project or problem of interest.  

At the data scientist level, a second point-based data reduction scenario is presented in 

[96], in which Ma and Cripps (2011) develop a data reduction algorithm for 3D surface points 

for use in reverse engineering. In reverse engineering, data is captured from an existing surface 

on the order of millions of scanned points. There are challenges associated with volume of data, 

and there are challenges in the form of increased error associated with removing data. The data 

reduction algorithm is based on Hausdorff distance and works by first collecting a set of 3D 

point data from a surface using an optical device such as a laser scanner, iterating through the set 

of points, and determining if a point can be removed without causing the local estimation of 

surface characteristics to fall out of tolerance. This is done by comparing shape pre- and post-

removal.  The procedure is tested on an idealized aircraft wing but is extendable to any manner 

of reverse engineering that employs 3D measurement data. It is possible that this could also be 

extended to inspection-type applications, but the challenge is that the end-state number of 
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required data points will be dependent on the nature of the surface. Additionally, it is not certain 

that Hausdorff distance would be the appropriate metric for other contexts such as automated 

optical inspection.   

Considering data reduction with respect to the set of features to be used for model 

training, Jeong et al. (2016) propose a feature selection approach based on simulated annealing 

and apply it to a case study for detecting denial of service attacks [97]. This approach is similar 

to [98], which uses the same data set but a different local search algorithm.  

The model starts with a randomly-generated set of features to include, trains a model on 

that set of features, and tests it by way of some pre-designated machine learning technique. The 

case study is a classification problem, and so examples used include SVM, multi-layer 

perceptron (MLP), and naïve Bayes classifier (NBC). After obtaining a solution and measure of 

performance using some cost function, neighborhood solutions are obtained and tested. Superior 

solutions are retained, and inferior solutions are either discarded or retained based on a 

probability calculation. This ability to retain an inferior solution allows the simulated annealing 

algorithm to “jump” out of a local extrema [99]. The intrusion detection case study employed 41 

factors, which reduced to 14, 16, and 19 factors when using MLP, SVM, and NBC respectively. 

A limitation to this approach is that it requires model training at every iteration of the simulated 

annealing. This may limit the options for which machine learning technique to select; preference 

should be given to algorithms that quickly converge. Again, for only 41 factors, this is less of an 

issue. If there are hundreds or thousands, then this approach may be impractical.  

Lalehpour, Berry, and Barari (2017) propose an approach for data reduction for 

coordinate measurement of planar surfaces for the purposes of reducing the number of samples 

required to adequately validate that a part has been build according to design specifications 
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[100]. The larger context for this approach is manufacturing, but the applicability is narrowly 

scoped to an inspection station along an assembly line. Thus, this approach could be used in 

programming firmware for an optical inspection machine so that it can diagnose defective 

components as efficiently as possible. However, it would not be useful in performing root cause 

analysis to find the source of the defects or predict future occurrences.  

 

Ul Haq, Wang, and Djurdjanovic (2016) develop a set of ten features that may be 

constructed from streaming signal data from semiconductor fabrication equipment. 

Technological developments allow the collection of inline data at ever increasing sampling rates. 

This has resulted in two effects, the first being an increase in the amount of data required to 

store, and the second being the ability to discern features that were previously not discernible 

[101]. Specifically, high sampling rates allow information to be gleaned from transient periods 

between steady signal states. This enables the extraction of features from the signal that could 

not be calculated with lower sampling rates. 

The approach can be extended to any signal-style continuous data source from which 

samples are taken, although the implication is that the lower the sampling rate, the less likely that 

these new features will provide value. These constructed features are applied to case studies of 

tool and chamber matching and defect level prediction. A reasonable extension might be to apply 

the approach to machine diagnostic information for active preventive maintenance. 

From a feature selection or dimensionality perspective, which is of most interest to this 

review, the ten features are calculated every time the signal transitions from one steady state to 

another. For relatively static signals, this will result in a manageable feature set; for more 
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dynamic signals or for large time windows, the number of calculated features may become 

prohibitively large. This could be alleviated by adding an additional layer of features that employ 

various means to aggregate the values of the ten calculated features over the entire span of time. 

Continuing on the topic of feature selection, Christ, Kempa-Liehr, and Feindt (2016) propose an 

algorithm for time series feature extraction, TSFRESH, that not only generates features but also 

employs a feature importance filter to screen out irrelevant features [102]. This framework, 

illustrated in Figure 2, begins by extracting up to 794 predefined features from time series data. 

Subsequently, the vector representing each individual feature is independently tested for 

significance against the target. This produces a vector of p-values with the same cardinality as 

the number of features. Finally, the vector of p-values is evaluated to decide which features to 

keep. The method for evaluating the vector of p-values is to control the false discovery rate 

(FDR) using the Benjamini-Hochberg procedure [103]. A case study using data from the UCI 

Machine Learning Repository [104] reduced an initial set of 4764 features to 623 [105]. 

 

 

Figure 2: High-level TSFRESH process, adapted from [102] 
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For instance reduction, Wang et al. (2016) employ a framework based on two clustering 

algorithms, affinity propagation (AP) and KNN, to extract “exemplars”, or representations of 

some number of actual data points [106]. A clustering algorithm is employed to cluster the data 

instances into similar groups; an exemplar is then defined to represent the group. The context is 

in network security, specifically anomaly detection. The idea is that records for http traffic and 

network data under normal circumstances can be grouped or aggregated into representations of 

those conditions, which can produce cost savings in data storage. The technique is potentially 

extendable to other areas of manufacturing, although for mature processes there may not be the 

desire to perform aggregation of records because the “easy” relationships have already been 

discovered. Rather, a large number of records may be necessary to identify hidden structures or 

correlations in sub-groups that might otherwise, in smaller sample sizes, be considered outliers 

[107], [108]. 

A second instance reduction, by Nikolaidis, Goulermas, and Wu (2010), draws a 

distinction between instances close to class boundaries and instances farther away from class 

boundaries [109]. The reasoning is that instances farther away from class boundaries are less 

critical to the classification process and are therefore more “expendable” from an instance 

reduction standpoint. The four-step framework first uses a filtering component such as ENN to 

smooth class boundaries and then classifies instances as “border” and “non-border”. Following a 

pruning step for the border instances, the non-border instances are clustered using mean shift 

clustering (MSC). 

Table 4: Frameworks for data reduction 

Author(s) Focus 
Habib ur Rehman, et al. [94] High level / Institutional framework 
Jeong et al. [97] Feature selection meta-heuristic (simulated annealing) 
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Lalehpour, Berry, and Barari [100] Sample reduction 
Ma and Cripps [96] Shape preservation with data reduction for 3D surface points 
Ul Haq, Wang, and Djurdjanovic 
[101] 

Feature extraction from streaming signal data 

Christ, Kempa-Liehr, and Feindt 
[102] 

Feature extraction and selection from time series data 

Wang et al. [106] Clustering algorithms to extract representative data instances 
Nikolaidis, Goulermas, and Wu [109] Instance reduction based on distance from class boundaries 

 

As previously indicated, the reviewed articles from the Section 2.3.3, summarized in 

Table 4, cover reductions in the number of samples required to obtain a satisfactory result, 

techniques to reduce the number of instances or records, and techniques to reduce the number of 

features or attributes. 

Of greatest interest to this review is the second category, feature selection, and two 

approaches seen in this section merit further discussion in relation to each other. The first 

approach, the TSFRESH approach, generates a list of up to 794 features from a single time series 

and, using statistical independence as the test, reduces the feature set by eliminating the features 

that do not exhibit a significant statistical dependence with the response. Using this approach, a 

model with N time series inputs would have 794N features extracted by TSFRESH. Even if 

TSFRESH then filters out 50% of the features, there still could remain many hundreds of 

features in the model. This could be an excessive number of features that strains the capacity of 

the analyst to truly grasp what is going on or pinpoint the critical relationship(s) of interest. 

Extending the approach to include subsequent filter(s) could be a step in remedying this 

challenge. 

The second approach of interest is the use of optimization heuristics to obtain a near-

optimal subset of features for the problem at hand. It might be a reasonable extension to 
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TSFRESH to incorporate a second filter that seeks to better optimize the feature set with respect 

to the objective function, possibly using a heuristic such as simulated annealing. This would also 

add the dimension of feature interaction, which is currently not present in the TSFRESH 

statistical independence filter. 

A final observation from the third category of reviewed literature is that the set of 

literature on reducing or filtering the features that might go into a machine learning model is 

reasonably robust but is relatively less so concerning the prioritization of the remaining features. 

This implies a gap in terms of approaches to quantitatively or qualitatively stack features against 

each other. An alternative explanation is that such approaches exist but were simply not 

employed in the reviewed literature. This seems unlikely, as, the benefit of such capability would 

be to see how a particular feature of interest fares in its utility from one problem to the next. In 

smart manufacturing, the same features of data are continually collected and used repeatedly in 

different analyses. It may be of interest to know which of those features tend to be valuable in 

harboring predictive power and which ones tend not to. 

2.4 Observations and Discussion  

This chapter reviewed existing research into frameworks or approaches for big-data 

analytics as applied to three levels of projects, with increasing degrees of precision or detail. The 

first level reviewed was a high-level look at frameworks for general industrial applications. The 

second level focused specifically and local, lower-level smart manufacturing applications of fault 

detection and fault prediction. Finally, the third and most specialized level looked at approaches 

specifically oriented towards data reduction. 
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In each section, articles were discussed individually as they pertain to the motivation for 

this research and their applicability to the CE. At the end of each section, discussion followed to 

summarize any observations across the set of articles within the section and relate them to each 

other. The final level of discussion is to look at the full picture and identify any observations, 

trends, or commonalities that span the three levels. 

The first observation is that there is a dichotomy in how the same verbiage can be applied 

to different contexts. Terms like ‘framework’, ‘big data’, and ‘predictive analytics’ in some cases 

are contextualized as architecture required to build organizational competencies and in other 

cases as approaches or methodologies to build individual competencies.  

In the context of organizational competencies for big data analytics, much consideration 

is made as to the architecture for where the data exists, how it moves from one location to the 

next, and at which level or echelon the analysis takes place. In general, there is some layer or 

module at which the initial data is generated or collected. At that point, there are different 

options for what to do with the collected data. One option is to migrate the data to a cloud-based 

data center for analysis in a consolidated location. Another option is to perform data analysis at 

local nodes. Whether to analyze at the edge or in the cloud will typically be a function of 

resources and of the time window available to perform corrective action. Actions that require 

real-time processing for quick action might not be performed at the cloud level because, by the 

time data is captured, cleaned, pre-processed, and run through a model, the window to correct an 

identified fault may have already passed. On the other hand, if there is sufficient time between 

the data collection point and the decision point, such as a manufacturing process in which there 

might be a gap of hours or days between assembly line procedures and testing, then analysis at 

the cloud level might be suitable. 
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It should be noted that, from an organizational competency perspective, the infrastructure 

is a prerequisite to the development of individual competencies in the form of data scientist best 

practices. However, it is those data scientists’ best practices that become contributing factors to 

other organizational competencies such as knowledge management and decisions on long term 

data retention. There is an iterative and cyclic relationship such that organizational competencies 

produce individual competencies which then build and reinforce other organizational 

competencies. 

A second observation across the three sections of reviewed literature is that there was a 

conspicuous absence of any discussion of the generalization of results beyond the specific 

problem of interest. This is true on both the ‘front’ end and the ‘back’ end of the articles 

reviewed. In other words, upon conclusion of the experiment or analysis, there was no discussion 

in any reviewed article of knowledge management or steps to generalize results from an input 

data perspective. There was certainly discussion about future research opportunities in 

generalizing an overall approach or algorithm, but in no cases did that discussion manifest itself 

the form of practical reflection on a feature set’s utility for the problem of interest and prospects 

for utility in other scenarios. Similarly, during model formulation, there was no discussion of 

institutional knowledge that might play a role in feature selection. Only one reviewed paper 

referenced a data screening decision that was made based on prior work. The context in that 

situation was 21 possible signals to use as model inputs, of which seven were selected based on 

reviewed literature. 

This observation is not intended as a negative criticism of any past work. It is quite 

natural to expect that this might be the case because finite resources drive priorities, and in a fast-

paced world there is often little time to breathe between the completion of one project and the 
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start of another. Given this reality, there appears to be value in anything that can facilitate the 

creation and preservation of institutional knowledge in this domain. 

A third observation is that feature selection approaches in most cases were performed 

using a single technique at a single point in the model building process. Feature filtration using 

Kullback-Leibler divergence reduced features sets of 1460 and 1460 to 198 and 175, 

respectively. Feature filtration using Cohen’s kappa was stated as a step in one case study, but no 

results were provided as to how many features were filtered out. A combination of PCA and 

subject matter expertise reduced a feature set of 1000 to 16, although it was not clearly identified 

how many of those features were reduced from PCA and how many from subject matter 

expertise. In the case of TSFRESH, statistical hypothesis tests for independence filter out 

features that are statistically independent, reducing 4764 features to 623. 

A natural next step for any of these techniques is to explore the possibility to layer one 

technique after another depending on how many features remain after a given filter. In the case 

of 1000 features reduced to 16, it is possible to successively iterate through all 65536 subsets of 

features to arrive at an optimal subset with minimal effort. In the case of 4764 features reduced 

to 623, however, this is computationally impractical. It is unlikely that the optimal subset of the 

623 remaining features would be all 623 of those features; a layered approach to continue to 

weed out features would be a value-added step to analyses with large numbers of features 

remaining. This is especially true if there is the desire for the model and its results to be 

understandable and digestible on the human side of the enterprise. Furthermore, what is 

understandable and digestible to the data scientist may be neither understandable nor digestible 

to the decision maker. Communication and visualization are critical components to the human 
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element, particularly for decision makers who may not have background in the technical aspects 

of data science. 

2.5 Conclusions and Proposed Contribution 

The papers reviewed are not intended to represent an exhaustive list of all existing 

research on the subject. However, it is believed that the reviewed examples do provide a 

representative sample of the sort of research currently performed in this discipline.  

A conclusion that may be drawn from the first general observation in Section 2.4 is that 

there is value in having a standard set of terminology when speaking about the big data 

environment in order to distinguish when one is referring to organizational capabilities or 

individual competencies. In the reviewed literature, terms like ‘framework’ or ‘data collection’ 

carried wide variance in their meaning depending on the context. It is likely that standard terms 

will be settled on over time, either bottom-up from common use or top-down from professional 

organizations in industry, academia, or government. At this point, it may suffice simply to be 

aware of the different contexts in which the topic may be broached. Attention to detail is always 

a good rule of thumb in any endeavor, and that may be a good temporary solution for now. 

A second conclusion, following from the second general observation in Section 2.4, is 

that a generalized approach to provide clarity as to what input data is valuable and what input 

data is not valuable, perhaps with both a quantitative and qualitative dimension, can shape 

analysis decisions in the big-data environment. Those decisions might be localized to the 

problem of interest, as in deciding which features to include in the model. Those decisions might 

also extend to larger, resource-oriented decisions, such as start-up priorities for transitioning 

from a legacy manufacturing facility to a CE. From a knowledge management standpoint, there 
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is value in building institutional knowledge regarding features that perform poorly as well as 

features that perform well. Knowing which features tend to habitually appear in good solutions 

and which features habitually appear in bad solutions, if such knowledge exists, would be 

tremendously helpful in long term data capture and storage decisions. 

Finally, the third general observation in Section 2.4 lends itself to the conclusion that 

there is room for additional research into practical means for feature filtration and prioritization. 

On the surface, there appears to be no reason why the single-layer filtration techniques employed 

in the reviewed articles cannot be extended into a series of hierarchical filters. One possible 

limitation would be that several of the techniques employ similarly-themed filters that may 

produce only limited improvement when performed in sequence. For example, filtering once by 

Cohen’s kappa and then by testing for statistical independence might not produce substantial 

improvement. However, following the initial filtration by way of Cohen’s kappa with an 

optimization heuristic such as simulated annealing or genetic algorithm to find an optimal or 

near-optimal subset of features might be a promising avenue to explore. 

It is also worth exploring, from a knowledge management standpoint, feature reduction 

and selection techniques that preserve as much interpretability as possible. It has already been 

discussed that PCA is a common approach, but the reduction in dimensions from M to K, where 

K < M, will necessarily take away the physical meaning from those K features. Techniques in 

feature reduction that preserve the nature of the original features are a value-added contribution 

to this question. 

The preceding observations and their corresponding conclusions provide the conceptual 

domain in which the research objectives in Chapter 3 will reside. The literature review has 

identified the opportunity for research into feature reduction and selection techniques that not 
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only retain interpretability to the greatest extent possible but also include a qualitative 

component that can be used to facilitate knowledge management beyond the local problem of 

interest. Such an approach would allow any machine learning project to serve a dual purpose, 

with the first purpose being to answer the immediate problem and the second purpose being to 

add to the organization’s institutional knowledge regarding the data at its disposal.  
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CHAPTER 3: RESEARCH OBJECTIVES 

Given the research gap identified in the preceding literature review, the following 

objectives are proposed for this dissertation. 

Objective #1: Conceptualize and develop a high-level, hierarchical feature selection method 

Discussion:  The first step in a generalizable model that identifies which features are important 

and which are not is to create the conceptual architecture for precisely modeling how one feature 

will be scored or rated against another. This research selects two previously-reviewed works, 

[102] and [97], each employing a different discipline and theoretical underpinning, and integrates 

them in a way previously not seen in the body of literature. The contribution is twofold: the 

innovative application of existing techniques and the superior result that ensues. 

Objective #2: Conceptualize and develop a Fuzzy Inference System (FIS) to quantify the relative 

value of features against each other and provide qualitative depth of knowledge regarding the 

individual features in the dataset 

Discussion: The FIS developed in this research represents original content, from the selection of 

fuzzy input membership functions, rules, fuzzy output membership function, and linguistic labels 

applied to the output. The contribution is in the application of fuzzy systems to this specific 

scenario and in providing a crisp, quantified output to each feature that is not dependent on 

sequence as in techniques such as forward propagation or backward propagation. 

Objective #3: Execute the hierarchical feature selection and labeling architecture on a diverse 

array of machine learning datasets. 
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Objective #4: Execute the hierarchical feature selection and labeling architecture on an applied 

case study in manufacturing using real-world, current smart manufacturing data. 

Discussion: Objective 3 and Objective 4 are related but represent escalating levels of model 

validation and contribution. Objective 3 provides assurances as to model validity and sensitivity 

analysis, and Objective 4 provides assurances as to its practicality. This research, at its heart, is 

applied and not theoretical in nature.  

Objective #5. Lay the groundwork for operationalization of the proposed framework in the 

smart, connected manufacturing enterprise. 

Discussion: This objective continues the contribution of Objective 4 by taking the next step from 

the theoretical to the practical realm. The scope of this objective is limited to activities that 

precede those high-level programming functions typically performed by data scientists and 

software developers. Creation of functional models and migrating those models to platforms 

commonly employed by commercial manufacturers are within the scope of this objective, as is 

the creation of Unified Modeling Language (UML) diagrams to communicate relevant 

information to software development teams. 
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CHAPTER 4: BACKGROUND CONCEPTS 

The proposed framework integrates four diverse concepts: machine learning, statistical 

measures of association, applied metaheuristics, and fuzzy inference systems (FIS). 

4.1 Machine Learning 

Machine learning, as a discipline, intersects several other academic disciplines, most 

notably computer science, engineering, statistics, and mathematics, with applications in fields as 

diverse as manufacturing, biology, finance, medicine, and chemistry [110], [111].  

It is not the intent of this section to provide a comprehensive overview or tutorial on 

machine learning, but rather simply to note that the proposed data filtration framework is 

inextricably linked to the execution of some particular machine learning algorithm in order to 

solve some particular problem of interest, initially in the arena of smart manufacturing but not 

restricted to that discipline.  

Specifically relevant to this research are supervised machine learning algorithms for 

classification or regression. In supervised learning, a set of data exists with known outcomes 

provided. This data set, called a training set, is then used by the algorithm to develop 

generalizations or identify patterns in the independent variables to predict the dependent 

variable. Those generalizations or patterns are then validated using a test set and the model is 

judged based on appropriate metrics depending on whether the goal is classification (categorical 

response variable) or regression (continuous response variable).  

4.2 Statistical Measures of Association 

Statistical measures of association attempt to quantify the strength of relationship 

between sets of data. Four cases are relevant to this dissertation, indicated in Table 5. 
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Table 5: Relevant Cases for Statistical Measures of Association 

 Predictor Response 
Case 1: Categorical Categorical 
Case 2: Categorical Continuous 
Case 3: Continuous Categorical 
Case 4: Continuous Continuous 

 

The first case is encountered when both the predictor and response variables are 

categorical. In this circumstance, the test that immediately comes to mind is Pearson’s Chi-

Square Test [112]. This hypothesis test computes a test statistic by computing the squared 

deviation between observed and expected frequencies and then dividing by the expected 

frequency. This quantity, summed over all possible groups, follows the Chi-square distribution 

and may be tested using conventional hypothesis test procedures.  

Pearson’s Chi-Square Test, however, is based on the assumption that, within every group, 

the sample frequencies are normally distributed about the expected population value [113]. 

Because observed frequencies are nonnegative quantities, small values in any group cast doubt 

on the validity of the normality assumption. For this reason, Fisher’s Exact Test [114], [115] may 

be preferable to Pearson’s Chi-Square Test when low frequencies are expected in one or more 

groups. For additional discussion, [116] surveys the development and usage of exact inferential 

methods for contingency tables. 

In the second and third cases, the Kolmogorov-Smirnov Test [117] is used to test whether 

the distribution of the continuous variable at each level of the categorical variable is the same. In 

Case 2, the null hypothesis is that the distribution of the response variable is the same when 

conditioning on each possible level of the predictor. Case 3 uses similar reasoning except that it 

transposes the target and feature for the purposes of the test. The continuous predictor serves as 

the target, with its conditional distribution determined at each level of the categorical response. 
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Finally, in the case of a continuous predictor and a continuous response, Kendall’s rank test 

[118] is applied. For a more in-depth treatment of the preceding discussion, as well as 

application to features extracted from time series data, see [102].  

4.3 Applied Metaheuristics 

The question of how to select the best subset of features to apply to a model is an 

application of the optimal subset problem, which is NP-hard [119] because the number of 

possible subsets grows proportionally to the size of the domain. For this reason, it is necessary to 

explore heuristic-based techniques that attempt to achieve good, if not optimal, solutions.  

At the most basic level, a local search can be performed. This can be summarized by the 

following “hill-climbing” process: 

1. Generate a feasible solution and associated cost function 

2. Generate neighborhood solution and associated cost function 

3. If cost function improves, store current solution 

4. Repeat Step 2 and Step 3 until stopping criteria is achieved 

Most simply, the initial feasible solution and neighborhood solutions may be computed 

randomly. Alternatively, neighborhood solutions may be computed by slightly perturbing one or 

more elements of the feasible solution. For example, given an initial feasible solution that 

includes some number of features out of a large number of possible features, the neighborhood 

solution might keep all but one feature, drop one feature, and add one feature not previously 

included.  

Clearly, the process described above is crude and, while leading to iteratively-improving 

feasible solutions, is susceptible to stopping at mediocre solutions found at local optima. Three 
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options to achieve superior results are Tabu Search, Simulated Annealing, and Genetic 

Algorithm. 

4.3.1 Tabu Search 

Tabu search extends hill-climbing methods by intentionally allowing for the selection of 

worse solutions when a local optima is obtained, with the incorporation of short-term memory to 

ensure that previously-visited solutions are not repeated [120]. For detailed background and 

theory, see [121]–[124]. The following procedure, outlined in [122], describes a simple Tabu 

search. Key is the establishment of a set of “off limits” moves that prevent the algorithm from 

selecting a recently-selected solution.  

Notation: 

• Let f be the cost function and f* be the best-known objective function value 

• Let x be the current solution 

• Let x* be the best-known solution,  

• Let S(x) be the set of all neighborhood solutions about x 

• Let T be the set of prohibited moves, known as the tabu list. 

Procedure: 

1. As in the hill-climbing process, begin with an initial feasible solution, 𝑥𝑥0, and associated 

cost function, 𝑓𝑓(𝑥𝑥0). Initially define x* = x = 𝑥𝑥0 and f* = 𝑓𝑓(𝑥𝑥0). 

2. Generate neighborhood solutions, S(x) and select the best cost function from the set S(x) 

– T. 

3. If the cost function improves, define x* = x; if not, no change to x* 

4. Update T 
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5. Repeat Step 2 through Step 4 until stopping criteria is achieved. 

Note that there is nothing in the algorithm about local optima. If the best cost function 

attainable from the neighborhood solutions in Step 2 is worse than the best known cost function 

at x = x*, then the algorithm simply generates a new set of neighborhood solutions and continues 

until the stopping criteria occurs. Stopping criteria might be some fixed number of iterations, 

some consecutive number of iterations without an improvement, or some predefined threshold 

value for the objective function to attain.  

Additionally, it should be noted that Tabu search provides significant flexibility to the 

modeler with respect to how T and S(x) are defined. The neighborhood structure and tabu list 

structure can heavily influence the algorithm’s performance. In particular, a neighborhood 

structure should attempt to move the solution in an intuitively correct direction [120]. 

4.3.2 Simulated Annealing 

A second option for achieving superior results to a traditional hill-climbing heuristic is 

simulated annealing, a term coined for its parallelism with the annealing process in metallurgy. 

In metallurgy, the process of annealing is a heat treatment procedure by which the alloy is first 

heated, then held at a certain temperature called the annealing temperature, and then cooled in a 

controlled manner [125]. The purpose of annealing is to relieve internal stresses, soften, and 

transform the grain structure of the metal into a more stable state [125]. 

In simulated annealing, the heuristic allows an inferior solution to be retained according 

to some probabilistic determination. This helps reduce the risk of converging at a local optimum. 

As the number of iterations increases, the probability of accepting an inferior solution decreases. 

The high-level procedure for simulated annealing is as follows [126]. 
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Notation: 

• Let f be the cost function and f* be the best-known objective function value 

• Let x be the current solution 

• Let x* be the best-known solution,  

• Let S(x) be the set of all neighborhood solutions about x 

• Let k be the index of the current iteration 

• Let T(k) be a temperature parameter 

• Let p be a random number on the interval (0, 1) 

Note that T(k) is a function of the number of iterations that have taken place. In keeping 

with the analogy towards metallurgical annealing, T begins at a high temperature and gradually 

decreases over time. A higher T corresponds to a relatively higher probability of accepting an 

inferior solution.  

Procedure: 

1. Similar to the Tabu Search algorithm, begin with an initial feasible solution, 𝑥𝑥0, and 

associated cost function, 𝑓𝑓(𝑥𝑥0). Initially define x* = x = 𝑥𝑥0 and f* = 𝑓𝑓(𝑥𝑥0). Initialize k = 

0. 

2. Generate neighborhood solutions, 𝑥𝑥𝑘𝑘+1, from 𝑆𝑆(𝑥𝑥𝑘𝑘) and the associated 𝑓𝑓(𝑥𝑥𝑘𝑘+1). As 

previously, the manner of generating neighborhood solutions will likely have a 

significant effect on the quality of results and the speed of convergence. 

3. If 𝑓𝑓(𝑥𝑥𝑘𝑘+1) improves from the previous iteration, then x* = 𝑥𝑥𝑘𝑘+1 and f* = 𝑓𝑓(𝑥𝑥𝑘𝑘+1). 

4. If 𝑓𝑓(𝑥𝑥𝑘𝑘+1) does not improve from the previous iteration: 

a. Compute p = random(0,1) 
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b. If 𝑝𝑝 < 𝑒𝑒𝑥𝑥𝑝𝑝�
𝑓𝑓�𝑥𝑥𝑘𝑘�−𝑓𝑓(𝑥𝑥𝑘𝑘+1)

𝑇𝑇(𝑘𝑘) �, then x* = 𝑥𝑥𝑘𝑘+1 and f* = 𝑓𝑓(𝑥𝑥𝑘𝑘+1). 

5. Increment k = k + 1 and update T accordingly. 

6. Repeat Step 2 through Step 5 until stopping criteria is achieved. 

Note that the above procedure assumes a minimization problem, so that an improvement 

to f from 𝑥𝑥𝑘𝑘 to 𝑥𝑥𝑘𝑘+1 implies that 𝑓𝑓(𝑥𝑥𝑘𝑘+1) < 𝑓𝑓(𝑥𝑥𝑘𝑘). Thus, in Step 4, 𝑓𝑓(𝑥𝑥𝑘𝑘+1) > 𝑓𝑓(𝑥𝑥𝑘𝑘) because 

𝑓𝑓(𝑥𝑥𝑘𝑘+1) does not improve on the previous iteration. This makes the quantity 𝑓𝑓(𝑥𝑥𝑘𝑘) − 𝑓𝑓(𝑥𝑥𝑘𝑘+1) 

negative, which is necessary for the parallelism with metallurgical annealing to hold – higher 

values of T(k) result in higher probabilities that an inferior solution will be selected; lower values 

of T(k) result in lower probabilities. 

Simulated annealing has been the subject of extensive research, both theoretical and 

applied. For additional reading on the theory and application of simulated annealing, see [127], 

[128]. For textbooks on the subject, see [129], [130]. 

4.3.3 Genetic Algorithms 

Genetic algorithms, so named because they employ terminology and techniques that are 

based on principles of natural selection and genetics, are search methods that evaluate a group of 

candidate solutions and then evolve subsequent solutions based on the observed attributes in the 

individual member solutions. The desire is to select and pass on attributes from better solutions 

and discard the poor solutions and the latent attributes that they carry [131].  

Terms and Definitions: 

• Candidate solutions are referred to as chromosomes, and are analogous to the feasible 

solutions discussed in previous heuristics 
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• Elements or sub-components of the chromosomes are referred to as genes, and the values 

assigned to genes are called alleles.  

• Selection refers to the process by which candidate solutions with better fitness values are 

assigned preference, imposing a survival-of-the-fittest mechanism to the algorithm.  

• Recombination refers to the generation of new candidate solutions by merging select 

elements of two or more solutions identified as having traits conducive to fitness. 

Solutions designated by the selection process as good are then designated as parent 

solutions to be combined to produce offspring or child solutions.  

• Mutation refers to the process by which the algorithm will randomly modify a child 

solution by slightly altering one or more of its elements.  

Procedure: 

1. Begin with an initial population of feasible candidate solutions. The starting population is 

typically obtained randomly, although it is possible to use a more guided method.  

2. Evaluate each candidate solution using some predefined cost function or measure.  

3. Select a subset of the population with superior fitness to serve as parent solutions to 

create the next population of candidate solutions. A number of possible selection 

strategies exist [132], including but not limited to: 

a. Select the best n candidate solutions 

b. Randomly select n candidate solutions, where the probability that a specific 

candidate solution is selected is proportional to its fitness.  

c. Randomly select n groups of k candidate solutions. In each group, the k solutions 

are compared and the most fit solution is selected. 
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4. Perform recombination on the selected candidate solutions to generate the next 

population of candidate solutions. As with selection, there are a number of recombination 

strategies [133], two of which described below and illustrated in Figure 3. 

a. Select a crossover point. The offspring takes on gene values (alleles) from Parent 

A (B) for all genes on one side of the crossover point and alleles from Parent B 

(A) for all genes on the other side of the cross-over point. Two parents produce a 

total of two offspring. 

b. Uniform crossover [134]. For each gene, randomly select whether to pass the 

allele from Parent A or Parent B to the first offspring. The allele from the parent 

not selected is passed to the second offspring.   

5. Add variation to the new population through mutation.  

6. Replace the current population of candidate solutions with the newly-generated 

population. 

7. Repeat Step 2 through Step 6 until stopping criteria is achieved. 

It could be asked why Step 3(b) and Step 3(c) are options, as they might select inferior 

candidate solutions to be parents. The reason is simply for the purposes of maintaining genetic 

variety and maximizing diversity in the gene pool. Additionally, different selection techniques 

may offer benefits in terms of performance, time to convergence, or computational complexity 

[132]. 
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Figure 3: Illustration of recombination methods, taken from [131] 

4.4 Fuzzy Inference Systems 

A fuzzy inference system (FIS) is a nonlinear mapping from a given input to a given 

output established using fuzzy logic and fuzzy set theory [135]. A fuzzy set, in contrast to a crisp 

set, is a set such that membership is defined along some spectrum or degree [136]. An example 

of a crisp set might be pregnancy status. A person is either pregnant or not pregnant, and there is 

no continuum between the two. An example of a fuzzy set might be height status. A person can 

be considered tall, short, average height, or some other label. Furthermore, a specific individual’s 

height, such as 5’- 6”, might be considered tall in some contexts, short in some contexts, or 

average in some contexts. A kindergartner who is 5’- 6” tall would be considered tall; a 

professional basketball player that height would be considered short. 

A Mamdani FIS [137] typically contains four elements: fuzzification, rules, inferencing, 

and defuzzification [138]. 
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Fuzzification is the process by which a membership function is applied to a crisp input in 

order to determine the degree of membership in a fuzzy set. For notation purposes, 𝜇𝜇𝐴𝐴(𝑥𝑥) 

denotes the degree of membership in fuzzy set A and is represented by a value between 0 and 1. 

Consider a simple example. Suppose that one wishes to use a FIS to label the comfort 

level of a room. Two important input variables are identified, temperature and humidity, where 

each can be set at two fuzzy linguistic descriptors: LOW and HIGH. Suppose that the output is 

the room’s comfort level, which can also be categorized as LOW and HIGH. 

The first step would be to define appropriate membership functions for the predictor 

variables. There are a number of different options for membership functions [139], including 

uniform, triangular, trapezoidal, or Gaussian. See Figure 4 for hypothetical membership 

functions for this example. 

 

Figure 4: Membership functions 
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In Figure 4, the membership function for temperature is trapezoidal, where a temperature 

of 40 degrees or less represents full membership in LOW and no membership in HIGH. A 

temperature of 80 degrees or higher represents full membership in HIGH and no membership in 

LOW. Temperatures between 40 and 80 vary the degree of membership linearly between LOW 

and HIGH. A similar interpretation applies to humidity. The response variable, comfort level, is 

evaluated on a scale from 0 to 100, with a triangular membership function. 

Suppose that it is of interest to assign a comfort level to 73 degrees and 65% humidity. 

Using the above membership functions, fuzzification maps a crisp temperature input of 73 

degrees to 0.825 membership in HIGH and 0.175 membership in LOW. A humidity of 65% 

maps to 0.75 in HIGH and 0.25 in LOW.  

Rules are statements in if-then form that relate the input variables to the output variable. 

For example, a rule might be: 

“If the temperature is HIGH and the humidity is HIGH, then the comfort level of the room is 

LOW”  

A second rule might be:  

“If the temperature is LOW and the humidity is LOW, then the comfort level of the room is 

HIGH” 

Inferencing is the application of rules to determine degree of membership in the output. 

Fuzzy inference systems use logical operators such as AND, OR, or NOT, with different options 

for how to interpret them. In this example, the operator AND will be defined as the minimum of 

the two degrees of membership, and OR will be defined as the maximum of the two degrees of 

membership.  
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 Considering the first rule in our example, the temperature has a degree of membership of 

0.825 in HIGH and humidity has a degree of membership of 0.75 in HIGH. This gives the 

comfort a degree of membership of 0.75 in LOW. Applying the second rule takes the minimum 

of 0.175 (the temperature’s degree of membership in LOW) and 0.25 (the humidity’s degree of 

membership in LOW) and assigns it to the degree of membership in HIGH comfort. Figure 5 

contains a plot of the membership function of the output variable that accounts for the two rules. 

 Defuzzification is a process that takes the fuzzy output and translates it back to a single 

crisp value. Depending on the context or specific problem of interest, defuzzification may or may 

not take place. A number of different defuzzification techniques exist [140]. In this example, the 

centroid technique will be used. The centroid technique computes the center of gravity of the 

output distribution function and outputs the x-coordinate.  

 

Figure 5: Membership function for output based on model rules 

Note that the distributions for each level overlap. Aggregation of rules is typically performed as 

an OR operation, as illustrated in Figure 6. Figure 6 also inserts the crisp output based on 

defuzzification as a vertical line. 
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Figure 6: Aggregated output membership with defuzzified result 

 In our example, the crisp output following defuzzification via the centroid technique is 

approximately 36.87 out of 100, designated by the vertical line in Figure 6. This maps to a 

degree of membership of approximately 0.63 in LOW comfort. 

 It should be pointed out that the number 36.87 has little meaning in isolation. The 

contrived example sets an arbitrary scale from 0 to 100 for comfort level. The value would be in 

comparing the metric derived by 73 degrees and 65 humidity with the metric derived by a 

different temperature and humidity combination.   
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CHAPTER 5: PROPOSED FILTRATION APPROACH 

Chapter 5 and Chapter 6 content is contained within, “A Hierarchical, Fuzzy Inference 

Approach to Data Filtration and Feature Prioritization in the Connected Manufacturing 

Enterprise”, submitted for publication in Journal of Big Data on 1 October 2018, accepted for 

publication on 13 November 2018, and published on 19 November 2018 [141]. 

The starting point for the proposed framework, shown in Figure 7, is a problem of 

interest and the existence of a population of available data for use both as feature(s) and 

response(s).   

 

Figure 7: Proposed framework for data reduction and feature labeling 

Step 1. Data analysis and preprocessing 

The first step is initial data analysis and preprocessing. Of primary interest in this step is 

the initial identification of a base set of features to apply to the problem of interest. This 

necessarily involves a high degree of human, subject matter expert involvement. There may 

Step 1: Data Analysis and Preprocessing

Step 2: Initial Filtration - Individual tests for 
statistical independence

Step 3: Machine Learning Problem 
Formulation

Step 4: Subsequent Filtration - Feature 
membership in solution sets

Step 5: Feature Categorization - Fuzzy 
inference
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arrive a point at which automated processes anticipate future questions and define their own 

future problems of interest, but, at this point, the initial formulation of the base problem and base 

set of features is difficult to separate from the human element.  

Additional activities during this step may include putting data in a desired format, 

screening out features based on subject matter expertise, consolidating data from multiple 

sources, or extracting features of interest from predictor variables. For example, identification of 

whether any predictor information is time series and extracting time series features would be 

appropriate for this stage. The algorithm TSFRESH [102], [105] is an excellent tool for 

extracting features from time series data.  

An additional action that may be necessary to perform in this stage is the identification 

and encoding of data containing categorical features. Different machine learning tools have 

degrees to which they are compatible with categorical features; some require that each level of 

the categorical feature be converted to a numeric quantity.  

Options exists for how to encode categorical variables, and different techniques have 

different advantages and disadvantages. A few examples include one-hot encoding, label or 

ordinal encoding, target mean encoding, and leave-one-out encoding. One-hot encoding replaces 

N levels with N-1 binary features equal to 1 if the categorical features is at that level and 0 if not. 

Label or ordinal encoding replaces each level with an integer. Target mean encoding replaces 

each level with its proportion of occurrence in the target categories. For example, if the 

categorical variable is gender (M, F) and the response is binary (0, 1), then M and F would be 

replaced by the proportion of time each gender equals one. Leave-one-out encoding is similar to 

target mean encoding except that it leaves out the specific record when calculating the 

proportions.  



65 
 

The output of Step 1: Data Analysis and Preprocessing is a data set that satisfies the 

preconditions for whichever algorithm or tool is to be applied to the problem of interest.  At this 

point, most frameworks for applied machine learning proceed to identifying the appropriate 

technique, developing the model, tuning the hyperparameters if necessary, obtaining the model’s 

results, and then scoring the model using whichever metrics happen to be of interest.  

In this case, however, the “problem of interest” is not the only “problem” of “interest”. 

We are also interested in the data itself and how useful each piece of data is with respect to 

obtaining the ultimate solution. For this reason, the proposed framework inserts filters that 

successively eliminate factors from consideration for use in model training. 

Step 2. Filter #1: Individual Strength of Association 

The first filter is to apply strength of association hypothesis tests between each feature 

under consideration and the response variable. This filter individually tests each feature against 

the response, where the null hypothesis is that the two variables are statistically independent, 

having no relationship to each other. The hypothesis tests will each produce a p-value, which is 

then compared to the Benjamini-Hochberg threshold [103]; features whose p-values are in 

tolerance are retained and features whose p-values are not in tolerance are discarded.  

The Benjamini-Hochberg test controls the false discovery rate (FDR) at a predefined 

threshold. The FDR is simply the rate by which random chance allows for the hypothesis test to 

indicate a significant relationship when there is none. For example, suppose that patients are 

tested for a disease, where the test has a significance level of .05. If 100 patients known to be 

disease-free are given the test, then by virtue of randomness one would expect approximately 5 
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patients to be erroneously flagged as ill. It is not possible to completely eliminate Type I error, 

but the Benjamini-Hochberg procedure controls the rate by which it occurs. 

                                                                                     𝑝𝑝𝐵𝐵𝐵𝐵 =
𝑟𝑟𝑖𝑖
𝑛𝑛
∗ 𝑄𝑄                                                           (1) 

Equation (1) contains the formula for the Benjamini-Hochberg threshold, where 𝑟𝑟𝑖𝑖 is the rank of 

the p-value associated with feature i, n is the number of tests performed, and Q is the required 

FDR, typically .05.  

Alternative criteria for determining a threshold p-value do exist, such as the Bonferroni 

adjustment. The Bonferroni adjustment seeks to control the familywise error rate by 

proportionately reducing the p-value threshold based on the number of tests performed [142]. If a 

familywise error rate of .05 is desired, and five tests are to be performed, then each test is 

independently performed with a p-value of .01. This is different from Benjamini-Hochberg in 

that it controls the probability that at least one test will produce a false discovery, in contrast to 

controlling the rate of false discovery. As a result, the Bonferroni adjustment is more restrictive 

than Benjamini-Hochberg, allowing fewer features to pass forward. Benjamini-Hochberg is 

selected for use in this framework because the presence of a second filter makes it less damaging 

for one or more poor features to be mistakenly lumped in with good features. 

Step 3. Machine Learning Problem Formulation 

Up to this point, the specific problem of interest has received only superficial treatment. 

In Step 1, subject matter expertise was employed to shape the initial set of features, and the data 

was prepared for use. Step 2 is agnostic to the larger problem of interest or machine learning 

technique to employ, rather focusing exclusively on any statistical dependence that may exist 

between an individual feature and the response variable.  
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At this point, it is necessary to formulate with some degree of specificity the machine 

learning model to apply to the problem of interest. This includes, at a minimum, designating the 

machine learning technique and specifying the metrics by which it will be scored. Some 

techniques, such as random forest, contain hyperparameters that may require tuning.  

This step is technically outside the scope of this dissertation’s primary interest but is 

included in the framework as a necessary prerequisite to the next filter. There is a substantial 

body of literature on formulating machine learning problems, and additional reading on the 

subject is left for the reader to explore as needed.  

Step 4. Filter #2: Membership in Solution Groups 

After initially testing each feature in isolation against the response variable to determine 

if there is a statistical dependence between the two, a second filter is applied to the remaining 

features that examines performance as a member of a collective group. A subset of features is 

selected, either randomly or according to some intentional process, and used as input for the 

machine learning algorithm selected in the previous step. The selected features may yield a high-

quality solution or a low-quality solution, with quality measured according to those 

predetermined metrics of interest identified in Step 3. This process is then repeated some number 

of times until there exists a sufficiently substantial body of high-quality solutions and low-

quality solutions to make inferences regarding the specific features that tend to appear in each 

group.  

There are at least two potentially desirable outcomes from this step. One might simply be 

to obtain a high quality solution to the problem of interest. If the set of available features is large, 

the undertaking becomes non-trivial, as the problem to obtain an optimal subset is NP-Hard. In 
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this case, it may be advisable to employ a metaheuristic such as Tabu search, Simulated 

Annealing, or Genetic Algorithm to allow the solutions to evolve and improve. This approach 

might best apply when the problem of interest is relatively self-contained and there is not the 

expectation to extensively generalize its results. If the set of available features is not especially 

large, it may be economical simply to enumerate every possible combination of features and then 

select the combination that produces the best result. 

A second outcome, more directly aligning with the purpose of this framework, is to make 

a quantified statement of knowledge regarding how useful each remaining feature is with respect 

to its contribution to the model. For this outcome, achieving a near-optimal subset presents only 

a partial picture. Suppose, for example, that application of Genetic Algorithm in this step 

produces an optimal or near-optimal subset of features. A feature’s presence in or absence from 

that single superior subset does not tell us the same thing about its general usefulness as would 

the observation that that feature habitually appears in subsets that tend to be good versus subsets 

that tend to be bad. There will always be the nagging uncertainty as to whether a feature is in the 

superior subset because it is broadly useful or because its interaction with the other members of 

the subset produces a uniquely outstanding result. 

Step 5. Feature Categorization through Fuzzy Inference 

At this point, the initial set of features has been reduced once by eliminating all features 

with strong evidence of statistical independence from the response variable. The reduced set of 

features has subsequently been the population from which sampling with replacement has 

created a large number of subsets, which have been used as inputs into a machine learning model 

as appropriate for the problem of interest. As each model is scored by some quality metric, there 
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is a one to one mapping from each feature subset to a scoring metric. For the sake of illustration, 

suppose that classification accuracy is the metric of interest. 

Step 5 groups the subsets based on their scoring, quantifies each feature’s membership in 

the various groups, and employs that crisp value as an input to a FIS for the purpose of 

generating a label. This label, applied to each feature, will qualitatively describe the usefulness 

of the feature. Two sets of output labels are proposed for consideration, the first being general 

and the second being more detailed. The first set of labels is as follows: 

• Strong Utility 

• Moderate Utility 

• Weak Utility 

The strength of this set of labels is in its simplicity and applicability to relatively 

straightforward decisions. For example, the decision may be whether to migrate data from a 

particular feature to cloud storage for long term preservation and analysis. Features classified as 

Strong or Moderate would perhaps make the cut, while Weak features would not. Figure 8 

illustrates the output membership function using these labels. 
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Figure 8: Membership function, 3-level output 

The second set of labels provides additional descriptive information: 

• Level 1 (L1). This label is for features which produce high quality solutions in single-

variable models. Other features receiving this highest level would be those appearing 

consistently in high-quality solutions but exhibit low or nonexistent membership in low-

quality solutions. 

• Level 2 (L2). This label is for features that exhibit strong membership in high-quality 

solutions but also exhibit some non-trivial membership in low-quality solutions. This is 

an indicator that the value contributed by these features is in their interaction with other 

features in producing a high-quality result. 

• Level 3 (L3). This label is for features tending not to appear in the best solutions but also 

tending not to appear in the worst solutions. Rather, these features tend to appear in the 

“squishy middle”, the subsets of features producing generally unremarkable results.  
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• Level 4 (L4). This label is for features that exhibit strong membership in low-quality 

solutions but exhibit non-trivial membership in high-quality solutions. 

• Level 5 (L5): This label is for features that perform poorly regardless of circumstance, 

exhibiting strong membership in low-quality solutions and low or nonexistent 

membership in high-quality solutions. These features only contribute to non-poor 

solutions when they happen to be combined with especially high-performing features. 

The strength of this set of labels is in the information it provides. It may be useful to 

distinguish between features that perform well in isolation and features that only perform well 

when interacting with other features. Figure 9 contains a plot of the membership function for the 

more descriptive, 5-level output. 

 

Figure 9: Membership function, 5-level output 

The FIS in this step follows the following procedure. 
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(1) Identification of inputs 

(2) Definition of input membership functions 

(3) Definition of rules 

(4) Fuzzification 

(5) Activation of rules to create output distribution 

(6) Defuzzification 

FIS Step (1): Identification of Inputs 

It is proposed to employ two fuzzy input variables for each metric of interest. One of the fuzzy 

input variables will be the feature’s membership in feature subsets producing high quality results 

and the other fuzzy input variables will be the feature’s membership in feature subsets producing 

low quality results. For example, suppose that the metrics of interest for a classification problem 

are precision and recall. This FIS would require four fuzzy input variables, as indicated by Table 

6. 

Table 6: Example fuzzy input variables 

Fuzzy Input Description 
𝑋𝑋1 Feature’s membership in High Precision group  
𝑋𝑋2 Feature’s membership in Low Precision group 
𝑋𝑋3 Feature’s membership in High Recall group 
𝑋𝑋4 Feature’s membership in Low Recall group 

 

There is a relationship between the definition of a feature’s membership in a group and 

the formulation of its membership function in Step (2). In some cases, the fuzzy input variable 

denotes something familiar, such as temperature or humidity, as in the example in Section 4.4. In 

those circumstances, the feature’s crisp input can reasonably follow the appropriate familiar 

convention. 
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In the case of creating a quantified input for a feature’s membership in a group, there is 

flexibility because this quantity does not create automatic associations in the mind of the reader. 

A reasonable convention is to create a quantity between 0 and 1 for group membership, with 1 

being perfect membership and 0 being no membership at all.  

                                                                                     𝑥𝑥𝑖𝑖
(𝑗𝑗) =

∑ 𝐼𝐼𝑘𝑘
(𝑗𝑗)

𝑘𝑘

𝐾𝐾𝑖𝑖
                                                                           (2) 

The proposed convention for computing a crisp quantity for feature membership in a 

group is presented in Equation (2), where 𝑥𝑥𝑖𝑖
(𝑗𝑗) represents the membership of feature 𝑗𝑗 in fuzzy 

input 𝑋𝑋𝑖𝑖, 𝐾𝐾𝑖𝑖 represents the number of subsets in group 𝑖𝑖, and 𝐼𝐼𝑘𝑘
(𝑗𝑗) represents an indicator function 

equal to 1 if feature 𝑗𝑗 is contained in subset 𝑘𝑘, where 𝑘𝑘 = 1 …𝐾𝐾𝑖𝑖 and 0 if it is not.  

FIS Step (2): Definition of Input Membership Functions 

Fuzzy input variables require membership functions, which take the crisp inputs 

computed in Equation (2) and convert them into degrees of membership in linguistic labels. For 

this framework, two linguistic labels are proposed: Strong and Weak. One or more middle-

ground labels could certainly be considered, but they are omitted because the extra labels add 

unnecessary complexity to the rule generation step, as will be illustrated below. 

  As discussed in Section 4.4, analysts have a host of different membership functions from 

which to choose. It is proposed to use trapezoidal membership functions, where membership in 

Low (High) equals one (zero) for 𝑥𝑥𝑖𝑖
(𝑗𝑗) < 0.25 and equals zero (one) for 𝑥𝑥𝑖𝑖

(𝑗𝑗) > 0.75. Figure 10 

illustrates for a generic, 2-level fuzzy input. 
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Figure 10: Membership function, 2-level input 

The trapezoidal membership function is selected because it is reasonable to declare a 

feature as definitively weak or strong when its crisp input is outside of certain parameters.  

FIS Step (3): Definition of Rules 

The rules definition stage is arguably the most important piece of the FIS because the 

rules drive the construction of the output distribution. As discussed in Section 4.4, rules take the 

IF – THEN form and use logical operators such as AND, OR, and NOT. Table 7 contains the 

conventions to be employed for the fuzzy logical operators. 

Table 7: Fuzzy logical operator conventions 

Logical Operator Convention 
AND min (𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)) 
OR max (𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜇𝜇𝐵𝐵(𝑥𝑥)) 
NOT 1 − 𝜇𝜇𝐴𝐴(𝑥𝑥) 
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In Table 7, 𝜇𝜇𝐴𝐴(𝑥𝑥) refers to the degree of membership of fuzzy input variable A given a 

crisp input x.  

Suggested rules for general outputs of Strong, Moderate, and Weak are as follows. 

1. If (Metric=High) is STRONG and (Metric=Low) is NOT STRONG, then Utility is STRONG 

2. If (Metric=High) is WEAK and (Metric=Low) is NOT WEAK, then Utility is WEAK 

3. If (Metric=High) is STRONG and (Metric=Low) is STRONG, then Utility is MODERATE 

4. If (Metric=High) is WEAK and (Metric=Low) is WEAK, then Utility is MODERATE 

Suggested rules for the five-level output labels are as follows. 

1. If (Metric=High) is STRONG and (Metric=Low) is WEAK, then Utility is Level 1 

2. If (Metric=High) is STRONG and (Metric=Low) is NOT WEAK, then Utility is Level 2 

3. If (Metric=High) is WEAK and (Metric=Low) is WEAK, then Utility is Level 3 

4. If (Metric=High) is NOT STRONG and (Metric=Low) is NOT WEAK, then Utility is Level 

4 

5. If (Metric=High) is WEAK and (Metric=Low) is STRONG, then Utility is Level 5 

FIS Step (4): Fuzzification 

The proposed framework imposes no constraints regarding fuzzification. Fuzzification 

should be implemented as per established FIS conventions as described in Chapter 4.0.4. 

FIS Step (5): Activation of Rules 

The proposed framework imposes no constraints regarding activation of rules to generate 

the output distribution. Activation of rules should take place as per established FIS conventions 

as described in Chapter 4.0.4. 
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FIS Step (6): Defuzzification 

The proposed framework imposes no constraints regarding defuzzification. Selection of 

defuzzification technique should take place as per established FIS conventions as described in 

Chapter 4.0.4. 

 In conclusion, the approach discussed in the preceding chapter has been coined and will 

be referred to as the Fuzzy Approach to Feature Reduction and Prioritization (FAFRAP) for 

conciseness. The following chapters will explore the FAFRAP approach as applied to a diverse 

array of machine learning datasets.  
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CHAPTER 6: FAFRAP APPROACH IMPLEMENTATION 

 This chapter contains three applications of the FAFRAP method on three datasets. The content in 

this chapter appears in, “A Hierarchical, Fuzzy Inference Approach to Data Filtration and Feature 

Prioritization in the Connected Manufacturing Enterprise” by LaCasse, et al., published in the Journal of 

Big Data, December 2018, Volume 5, Issue 1.   

6.1 Example #1: Robot Execution Failures  

Description of Data 

The FAFRAP approach will be illustrated using a multivariate time series dataset that 

contains force and torque measurements on a robot after failure detection, obtained via the 

University of California Machine Learning Archive (https://archive.ics.uci.edu/ml/machine-

learning-databases/robotfailure-mld/robotfailure.data.html) [104].  The dataset consists of fifteen 

instances for each of six different time series variables. There is a variable for force and a 

variable for torque in each of the x-, y-, and z- directions. The response variable is whether the 

failure detection turned out to be an actual failure or turned out to be nothing wrong. Out of 88 

failures detected, there are 21 false alarms and 67 actual faults. 

Step 1: Data Analysis and Preprocessing 

For this dataset, it is necessary to address two elements. The first element is that the data 

is divided into two sources, a source for the time series data and a source for the outcome. The 

second element is that time series data requires an initial step of feature extraction. The Python 

TSFRESH library is used to extract features from time series data. The algorithm allows for a 

total of 794 potential features [105] to be extracted from a single time series. For detailed 

discussion and definitions of potential extracted features, the reader is referred to TSFRESH 

documentation (https://media.readthedocs.org/pdf/tsfresh/latest/tsfresh.pdf). For this example, 

https://archive.ics.uci.edu/ml/machine-learning-databases/robotfailure-mld/robotfailure.data.html
https://archive.ics.uci.edu/ml/machine-learning-databases/robotfailure-mld/robotfailure.data.html
https://media.readthedocs.org/pdf/tsfresh/latest/tsfresh.pdf
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TSFRESH extracts a total of 4764 features from the six different time series. The 88 records for 

each of the new 4764 features are then linked to the corresponding 88 instances of the response 

variable and then split into training and test sets. 

Because the extracted features are all numerical values, it is not necessary to encode any 

categorical variables. 

Step 2: First Filter 

Initial filtration through testing each feature individually for statistical dependence with 

the response variable and then applying the Benjamini-Hochberg threshold reduces the available 

features from 4764 to 441. This is a reduction of more than 90% in terms of the raw number of 

features and a reduction of approximately 80% in terms of the size of the data. As for feature 

extraction, the Python TSFRESH library has user-friendly functionality to quickly cycle through 

the hypothesis tests in this step [105]. 

Step 3: Machine Learning Problem Formulation 

At this point, the dataset containing the 88 records for the reduced set of features could be 

used to train a classification model. For the proposed framework, formulation of the machine 

learning problem is a necessary precondition to applying the second filter. 

Our example of attempting to predict robot execution failures is a classification problem 

with a binary response variable. Somewhat arbitrarily, support vector machines (SVM) is 

selected as the technique, with the software engine being Python’s “sklearn” [143] library and 

the “svm” package.  Because the proposed framework is concerned with features’ relative value 

compared to each other, there was no attempt made in this example to tune or optimize 

hyperparameters; rather, default settings were used. In sklearn, the kernel function defaults to 



79 
 

radial bias function (RBF) and a kernel coefficient of 1 / (# features) [144]. The 88 records were 

divided 80% into the training set and 20% into the test set. Due to rounding, this translates to 70 

records in the training set and 18 records in the test set. 

Step 4: Second Filter 

The number of features remaining after the first filter in Step 2 is 441, a number that is 

prohibitively large if the desire is to obtain the optimal subset of features. The number of subsets 

that could be generated by a set of this size is approximately 5 x 10133. If it were possible to 

check one million subsets every second, it would still take approximately 1.8 x 10119 years to 

iterate through every possible subset. 

A total of N = 1,000 subsets of size K = 5 each were randomly generated and used to 

train the machine learning algorithm described in Section 4.2.3. Applying the trained model to a 

test set and scoring the results in each of the 1,000 subsets using Cohen’s Kappa, subsets were 

either designated as “High Quality”, “Low Quality” or discarded. High Quality solutions were 

defined as those with a Cohen’s Kappa statistic greater than 0.85. Low Quality solutions were 

defined as those with a Cohen’s Kappa statistic less than 0.15. Out of 1,000 subsets, 58 were 

placed in the High Quality group and 446 were placed in the Low Quality group. The remaining 

496 subsets scored between 0.15 and 0.85 and were not placed in either group. Crisp inputs for 

each feature in each group were obtained using Equation (2).  

Due to the high number of subsets in the two groups, one adjustment was necessary to 

Equation (2). The large 𝐾𝐾𝑖𝑖 for each group resulted in very small values for the 𝑥𝑥𝑖𝑖
(𝑗𝑗). In order to 

reward the better-performing features, the value obtained in Equation (2) was normalized by 

dividing each one by the highest 𝑥𝑥𝑖𝑖
(𝑗𝑗) attained, as indicated by Equation (3).  
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                                                                              𝑥𝑥′𝑖𝑖
(𝑗𝑗) =

𝑥𝑥𝑖𝑖
(𝑗𝑗)

max (𝑥𝑥𝑖𝑖
(𝑗𝑗))

                                                                     (3) 

This adjustment better allows the crisp inputs to map to intuitive fuzzy labels in the FIS 

stage of the framework.  

Fuzzy Inference System 

The FIS for this problem contains two input variables. High Quality group membership 

and Low Quality group membership. For each variable, a 2-level membership function was 

employed as indicated by Figure 8. The crisp input for each input variable is calculated using 

Equation (4).  

The output variable is denoted as Value and uses five levels as described in Chapter 5. 

Figure 11 contains an extract from a Microsoft Excel spreadsheet of the FIS crisp inputs, degrees 

of membership determined by fuzzification, rule results, crisp output calculated in the 

defuzzification step using the centroid method, and finally a degree of membership for the crisp 

output based on the aggregated output distribution generated by the FIS.  

 

Figure 11: FIS Results for Robot Failure example 

Consider the output for Row 2, corresponding to Feature 0. Out of the 58 subsets in the 

High Group, exactly two contained Feature 0. The highest number of subsets in which any of the 
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441 features appears is five, giving a normalized crisp input of 0.4. Applying the trapezoidal 

membership function for the High Group fuzzy input, degrees of membership of 0.7 in WEAK 

and 0.3 in STRONG are obtained and found in cells C2 and D2 respectively. 

Similar reasoning and calculations give the values in cells E2, F2, and G2. For cell E2, 

Feature 0 is present in 4 out of 446 Low Group subsets; this value is normalized by dividing by 

the maximum number for any feature, which happens to be 15 in this case.  

Cells H2, I2, J2, K2, and L2 give the outputs for each rule applied to Feature 0. To 

illustrate, consider cell H2 for Rule 1. Rule 1 takes the minimum of the feature’s degree of 

membership in High_STRONG (0.3) and Low_WEAK (0.967) and applies it to the L1 label as 

defined in Chapter 5. This applies a value of 0.3 to the output distribution for the L1 label. 

Similar application of rules two through five gives the remaining values. 

Column M provides the crisp, defuzzified output, calculated using the centroid technique. 

The centroid technique computes the center of mass of the output distribution and returns the 

coordinate for the horizontal axis. For this model, defuzzification was performed using Python’s 

skfuzzy [145] package, a fuzzy toolkit for the scikit-learn [143] library. 

Finally, Column N gives the degree of membership of the crisp output in the output 

distribution. Let 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜  be the output degree of membership. If this value is less than one, then 

the interpretation is to apply it to whichever label is indicated by the output distribution. In this 

problem, the output membership function is defined such that not more than two labels will 

overlap. It is possible to interpret the quantity 1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜 as be the degree of membership in the 

other label. However, caution should be applied when doing so because this could result in 

conflict with one or more rule results. Figure 12 illustrates for Feature 0. 
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Figure 22: Output distribution and crisp output for Feature 0 in Robot Failure example 

The black vertical line represents the crisp output, and its point of intersection with the 

L3 label boundary corresponds to a value of approximately 0.5237 on the vertical axis, as 

indicated in Cell N2 of Figure 11.  

Note that the highlighted portions of the output distribution correspond to the rule 

outputs, with overlaps defaulting to the higher value. In this case, it is not advisable to interpret 

Feature 0 as having a degree of membership of 0.5237 in L3 and 0.4763 in L2 because that 

would conflict with Rule 2, which applies a value of only 0.033 to the output distribution for L2. 

Stated differently, because Rule 2 prohibits Feature 0 from having a degree of membership in L2 

that exceeds 0.033, we cannot infer a degree of membership of 0.4763 from the defuzzified 

output. 

Results 

Out of 441 features, the model categorizes 15 at Level 1, or features of the highest value. 

The model categorizes 76 features at either Level 5 or Level 4, the two lowest-value labels. 

Table 8 summarizes the results. 
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Table 8: Feature Classification Summary for Robot Failure example 

Label Number of Features 
Level 1 (highest value) 15 
Level 2 2 
Level 3 348 
Level 4 76 
Level 5 (lowest value) 0 

  

Discussion 

The first immediate observation from this example is that none of the 441 features were 

classified as L5 and only two are classified as L2. This may be a sound result or it may be 

indicative of an anomaly or suboptimal element in the FIS. It is possible that sampling only 

1,000 subsets was not a sufficient number to ensure that the features are appropriately distributed 

across the output labels. This hypothesis may be supported by the large number of features in the 

“squishy middle”, showing neither strong membership in the High Quality group nor weak 

membership in the Low Quality group. To test this, the model was run again, this time taking 

200,000 random subsets instead of the initial 1,000. Results are displayed in Table 9 and are not 

substantially different from those obtained in Table 8, the most noticeable difference being a 

number of features shifted from Level 3 to Level 4. 

Table 9: FIS Results (200,000 subsets) 

Label Number of Features 
Level 1 (highest value) 13 
Level 2 2 
Level 3 312 
Level 4 114 
Level 5 (lowest value) 0 

 

A second possible explanation is that a 2-level fuzzy input variable is not sufficiently 

descriptive to give adequate treatment to one or more rules. For example, Rule 2 attempts to 

capture the situation by which a feature shows strong presence in high quality solutions and a 
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not-weak presence in low quality solutions. However, with only two labels for the fuzzy input 

variables, a not-weak presence in low quality solutions is not distinguishable from a strong 

presence in low quality solutions.  

Figure 13 contains an alternative membership function for the two fuzzy input variables, 

this time containing three levels: STRONG, MODERATE, and WEAK.   

 

Figure 33: Membership function, 3-level fuzzy input variable 

Table 10 contains model results for the modified FIS, generated using 1,000 subsets. 

Table 10: Modified FIS Results, using 3-level input membership function 

Label Number of Features 
Level 1 (highest value) 2 
Level 2 13 
Level 3 181 
Level 4 245 
Level 5 (lowest value) 0 

 

This small change to the FIS results in a marked improvement in the results from a 

plausibility perspective. It is entirely reasonable to expect that the smallest number of features 

will reside at the extremes; in this case, two features are designated Level 1 and no features are 
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designated Level 5. It is also reasonable to expect that most features would not be especially 

useful. Considering the Pareto principle ([146]–[148]) – if most variation can truly be explained 

by a relatively small number of variables, then it is natural to expect increasing numbers of 

features to be classified in the lower value categories. 

A second point of discussion is the sensitivity analysis. It has already been demonstrated 

that increasing the number of randomly generated subsets from 1,000 to 200,000 does not 

substantially change the numbers of features assigned to each level of value. However, upon 

closer examination, it is revealed that the two scenarios do not necessary flag the same features 

in the same way. Put in different words, it is not clear the extent to which model replications 

consistently assign the same labels to the same features. Table 11 lists the top 15 features for 

each scenario, rank ordered by their defuzzified crisp outputs. 

Table 11: Comparison of best feature categorization, 2-level input membership functions 

 Scenario 1: 1,000 
Subsets 

Scenario 2: 200,000 
Subsets 

Rank 
Order 

Feature 
 

Crisp Output Feature 
 

Crisp Output 

1 15 0.891666667 22 0.881925144 
2 95 0.891666667 21 0.874986572 
3 182 0.891666667 4 0.869815795 
4 22 0.881298879 417 0.863758421 
5 330 0.881298879 42 0.863278371 
6 108 0.813182504 156 0.858847362 
7 129 0.733510773 12 0.846923559 
8 138 0.733510773 95 0.845564336 
9 370 0.733510773 6 0.829632339 
10 68 0.711872842 47 0.814060738 
11 107 0.711872842 230 0.753711779 
12 159 0.711872842 125 0.73260824 
13 169 0.711872842 82 0.707993795 
14 226 0.711872842 201 0.69445375 
15 386 0.711872842 28 0.684691585 
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Table 11 shows that there is almost no overlap between the top fifteen features in each 

scenario, with only one feature, Feature 22, appearing in both lists. One possible culprit might, 

again, be the number of subsets in the two samples. Perhaps, for 441 features to consider, 1,000 

subsets is too few to generate consistent results. 

To test this hypothesis, the model was run n = 10 times with k = 10,000 subsets each run. 

Figure 14 contains an extract of Microsoft Excel output with the top performing features in each 

run and the aggregated results.  

 

Figure 44: Highest Ranked FIS Output for 10 runs, 10,000 subsets per run 

Columns L and M give the feature index and the aggregated counts for how many times 

the feature appears in the Top 15 performing features, summed over the ten runs. Out of 441 

features, 427 appear fewer than three times, and only five features appear seven or more times. 

Those five features, which consistently score highly in the FIS, are candidates to retain.  

A third point of discussion follows directly from the sensitivity analysis. Example #1 

started with 4,764 features, reduced to 441 following Filter #1, and has been potentially reduced 

to five at the culmination of the proposed framework. However, this reduction is only acceptable 

if the remaining features produce acceptable solutions to the problem of interest. 
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Two questions are necessary to answer. The first is if solutions produced by the final, 

reduced set of features will generate comparable results to the solutions produced by the full set 

of features. The second is if those solutions are acceptable to be used for their intended decision-

making purposes.  

The full model, using all 441 features, performs extremely poorly in this case. Likely due 

to overfitting, a model trained on 80% of the dataset and tested on 20% of the dataset makes the 

same prediction for all records in the test set. Table 12 contains the confusion matrix. 

Table 12: Confusion matrix using all 441 features 

Actual (Down) \ Predicted 
(Across) 

0 1 

0 11 0 
1 7 0 

  

In contrast, Table 13 contains the confusion matrix for a model generated using the top 

five features from Figure 12: Features 4, 21, 22, 42, and 95. The refined model perfectly 

classifies the 18-record test set. 

Table 13: Confusion matrix using best-rated features from FIS 

Actual (Down) \ Predicted 
(Across) 

0 1 

0 11 0 
1 0 7 

 

It should be clarified that, for this example, support vector machines was selected as the 

machine learning algorithm to use not because it is ideal or performs especially well, but rather 

to illustrate the contrast between model performance with the full set of features versus the 

reduced set of features. Had an alternative technique been chosen, such as classification trees or 

random forest, the contrast would have been less pronounced.  
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A final point of discussion will be the introduction of a novel metric to quantify the 

relationship between relative performance and relative size of the different models generated by 

the various stages and filters in the framework.  

                                    𝑃𝑃𝑆𝑆𝑃𝑃 =
𝐷𝐷𝑀𝑀𝑀𝑀𝑒𝑒𝑀𝑀 𝑃𝑃𝑒𝑒𝑀𝑀𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑒𝑒 𝑃𝑃𝑒𝑒𝑟𝑟𝑓𝑓𝑀𝑀𝑟𝑟𝑃𝑃𝑅𝑅𝑛𝑛𝑃𝑃𝑒𝑒

𝐷𝐷𝑀𝑀𝑀𝑀𝑒𝑒𝑀𝑀 𝑃𝑃𝑒𝑒𝑀𝑀𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑒𝑒 𝑆𝑆𝑖𝑖𝑆𝑆𝑒𝑒
=  
𝐷𝐷𝑖𝑖

𝐷𝐷0
�

𝑆𝑆𝑖𝑖
𝑆𝑆0�

                                                       (5) 

This metric, denoted as PSR, is the Performance-Size Ratio for a given model at some 

stage in the framework. In Equation (5), 𝐷𝐷𝑖𝑖 represents the performance of the model after Step i 

in the proposed framework, 𝐷𝐷0 represents the performance of the base model with no feature 

reduction, 𝑆𝑆𝑖𝑖 represents the size of the model after Step i, and 𝑆𝑆0 represents the size of the base 

model with no reduction. The PSR will be applied to Example #2 in Section 6.2. 

6.2 Example #2: Single Proton Emission Computed Tomography (SPECT) Images     

Description of Data 

A second example illustrates the FAFRAP method on a dataset describing the diagnosing 

of cardiac SPECT images, obtained from the University of California Machine Learning Archive 

(http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECT.names) [104].  The 

dataset consists of 267 SPECT image sets, each image set corresponding to a single patient. The 

response variable is a binary classification of normal (0) or abnormal (1). A total of 22 binary 

feature patterns serve as the initial set of predictor variables.  

Of the 267 SPECT image sets, 55 are classified as normal and 212 are classified as 

abnormal. The breakdown of data by classification after splitting the data into training and test 

sets is provided in Table 14. 

 

http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECT.names
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Table 14: Composition of SPECT data for Example #2 

Class Training Set Test Set Full Set 
0 42 13 55 
1 171 41 212 
Total 203 54 267 

 

Problem Formulation 

For Step 1: Data Analysis and Preprocessing, this dataset requires relatively little action. 

There is no time series component, requiring no feature extraction step. Likewise, there are no 

categorical features, requiring no encoding of categorical variables.  

For Step 3, classification trees are selected as the machine learning technique, with 

default Python sklearn.tree.DecisionTreeClassifier() settings applied.  

For Step 4, classification accuracy was employed as the metric for determining whether a 

subset falls into the High Quality group or the Low Quality group. Classification accuracy is 

defined as the number of correctly predicted test set records divided by the total number of test 

set records. 

  For 1,000 subsets containing five features per subset, the range of classification 

accuracies was approximately 0.6 to 0.85. Given these values, a threshold of 0.75 was set, where 

subsets whose solution’s classification accuracy exceed 0.75 were placed in the High Quality 

group and those not were placed in the Low Quality group.  

For Step 5, ten runs of N = 1,000 subsets with k = 5 features per subset were run, and the 

top five scoring features were recorded. This is largely the same as in Section 6.1, with the 

exception that the top 15 features in that example were truncated due to the large number of 

features remaining. FIS parameters such as membership functions and rules were unchanged. 
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Figure 15 contains a screen shot of a Microsoft Excel spreadsheet summarizing the 

results. 

 

Figure 55: Consolidated FIS results 

Summary of Results 

Filter #1 reduced the initial set of 22 features to 15. After applying Filter #2 and FIS 

classification, six features stood out predominantly as consistently being scored by the FIS as 

among the top five features. Those six features are Features 6, 9, 10, 12, 13, and 14. 

Table 15 summarizes the model performance for each of three cases: the original model 

with no feature reduction, the reduced feature set after Filter #1, and the final reduced feature set 

following the FIS. 

Table 15: Summary of Model Performance 

Model Number 
of 

Features 

Classification 
Accuracy 

Relative 
Size 

Relative 
Performance 

PSR 

Original 22 0.7778 1 1 1 
Filter #1 15 0.7222 0.6818 0.9285 1.3618 
Final 6 0.8148 0.2727 1.0476 3.8416 

  



91 
 

Using the original, unfiltered model as a baseline, Table 15 shows that the model, after 

applying Filter #1, displays a slight degradation in performance regarding classification accuracy 

but ends up with a higher PSR due to the reduced size required in the model. The final model 

produces a superior classification accuracy with 0.2727 the input size, resulting in a PSR of 

approximately 3.8416. 

6.3 Example #3: Single Proton Emission Computed Tomography Image Features 

(SPECTF)     

Description of Data 

A third example uses the SPECTF dataset (http://archive.ics.uci.edu/ml/machine-

learning-databases/spect/SPECTF.names), obtained using the same 267 SPECT images from 

Section 6.2. The difference being that, in this case, 44 continuous features instead of 22 binary 

features are extracted from each image. No change to the response variable. The SPECT image 

data that provides the source of the features in Section 6.2 and 6.3 was collected as part of an 

effort to semi-automate the diagnostic process associated with myocardial perfusion [149]. 

Problem Formulation 

For Step 1: Data Analysis and Preprocessing, this dataset requires relatively little action. 

There is no time series component, requiring no feature extraction step. Likewise, there are no 

categorical features, requiring no encoding of categorical variables.  

For Step 3, random forest is selected as the machine learning technique, with default 

Python sklearn.ensemble.RandomForestClassifier() settings applied. As with the previous two 

examples, the specific machine learning technique is not central to the model. Any algorithm for 

classification could have been chosen. 

http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECTF.names
http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECTF.names
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For Step 4, classification accuracy was again employed as the metric for determining 

whether a subset falls into the High Quality group or the Low Quality group.  

  For 1,000 subsets of five features per subset, the range of classification accuracies was 

approximately 0.62 to 0.87. Given these values, a threshold of 0.75 was set, where subsets whose 

solution’s classification accuracy exceeds 0.75 are placed in the High Quality group and those 

not are placed in the Low Quality group.  

For Step 5, ten runs of N = 1,000 subsets with k = 5 features per subset were run, and the 

top five scoring features were recorded. FIS parameters such as membership functions and rules 

are unchanged from the previous two examples. 

Summary of Results 

Filter #1 reduced the initial set of 44 features to 18. After applying Filter #2 and FIS 

classification, five features stood out predominantly as consistently being scored by the FIS as 

among the top five features. Those six features are Features 4, 5, 7, 9, 11, and 17. 

Table 16 summarizes the model performance for each of three cases: the original model 

with no feature reduction, the reduced feature set after Filter #1, and the final reduced feature set 

following the FIS. 

Table 16: SPECTF Example Results 

Model Number 
of 
Features 

Classification 
Accuracy 

Relative 
Size 

Relative 
Performance 

PSR 

Original 44 0.8148 1 1 1 
Filter #1 18 0.7407 0.4091 0.9091 2.2222 
Final (Keep 
Best) 

6 0.8703 0.1364 1.0681 7.8308 

Final (Drop 
Worst) 

10 0.8333 0.2273 1.0227 4.5 
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Using the original, unfiltered model as a baseline, Table 16 illustrates that the model after 

applying Filter #1 displays a slight degradation in performance. This is similar to the results 

observed in the SPECT example in Section 6.2. Examining the confusion matrices produced by 

the original model and the model after applying Filter #1, the difference amounts to four 

additional misclassified records. This near-attaining of the performance of the original model 

happens at an almost 60% reduction in the size of the feature set.  

Two “final” models are defined and scored. The first keeps the best features, as identified 

by the FIS. This final model produces a slightly improved classification accuracy of 0.8703 with 

0.1364 the input size, resulting in a PSR equal to approximately 7.8308. A second way to 

determine the final feature set to retain is to drop the worst-performing features as ranked by the 

FIS. This model produces a slightly superior classification accuracy of 0.8333, although the PSR 

is comparatively lower. This is an improvement over both the original feature set and equal to 

the performance of the set of best-performing FIS features. The PSR for the two “final” models 

favors the model obtained by keeping the best-performing features by virtue of the smaller size 

of its feature set. This result also demonstrates, for this dataset, that there is a middle-ground 

subset of features that are not classified as “worst” by the FIS but offer no added value to the 

overall scoring of the solution. 
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CHAPTER 7: APPLIED CASE STUDY 

This chapter describes, implements, and discusses an applied machine learning case study 

to satisfy Research Objective #4 in the smart manufacturing environment, specifically in the 

context of electronic assembly of printed circuit boards (PCBs) as presented by Figure 16. 

Content from this chapter was incorporated into, “Predicting Contact-Without-Connection 

Defects on Printed Circuit Boards Employing Ball Grid Array Package Types: A Data Analytics 

Case Study in the Smart Manufacturing Environment”, submitted to International Journal of 

Data Science and Analytics in March 2019. 

 

Figure 66: PCB assembly process, graphics adapted from [150] 

 

 

7.1. Introduction to the Case Study 

In PCB manufacture, a surface mount technology (SMT) line consists of several machines 

arrayed in series, with each machine performing either a mechanical step or an inspection 

function. The process begins with the application of solder paste to a clean PCB, employing a 

prefabricated stencil to ensure that correct quantities of solder paste are deposited in the correct 

places. Figure 17 (not to scale) illustrates a cross-section of this process, with solder paste wiped 

flush against the overlaid stencil.  
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Figure 17: Solder Paste Application to PCB 

After the stencil is removed, the solder paste deposits remain and a solder paste inspection 

(SPI) machine performs a visual inspection of the solder paste deposits, takes measurements of 

predefined parametric quantities, and compares those measurements against specifications that 

are particular to the type of PCB that is being produced. PCBs that meet specification continue 

along the line; PCBs failing to meet specification require a human operator to verify the data 

measurements and make the decision to advance the boards or reprocess them. Reprocessed 

boards are either reprinted or are removed from the line, washed, and reinserted at the start of the 

process. Time and cost associated with rework of defects identified at SPI are minimal, relative 

to those identified downstream in the production process. The time required to wash each board 

is a matter of seconds, and the cost associated with the lost solder paste is trivial. Figure 18, also 

not to scale, shows the same PCB cross-section, with the stencil removed and solder paste 

deposits remaining. 

 

Figure 18: PCB and Solder Paste Deposits, After Removal of Stencil 

 

Solder PasteStencil

PCB

Solder Paste

PCB
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After SPI, the boards move to a pick-and-place (P&P) machine that affixes components to 

the wet solder paste on the PCBs. Depending on the configuration of the line, there may be 

several P&P machines in series. After P&P, the boards moves to a reflow oven. The reflow oven 

activates flux to clean oxides and melts the solder spheres to form the mechanical and electrical 

connection between the components and PCBs.  

The final station on the SMT line is an automated optical inspection (AOI) machine that 

checks quality of assembly and identifies visible defects such as missing or misaligned parts, 

solder volume, solder bridge, or insufficient solder. For a thorough orientation to SMT history, 

terminology, processes, and technology, see [151]. 

Boards passing AOI are designated as GOOD, while boards flagged for potential defects 

require a human operator to inspect. Those boards deemed acceptable by the operator are 

designated as PASS and advance indistinguishably from the GOOD boards. Boards deemed as 

defective are designated as FAIL and require rework to repair them. The time and cost associated 

with an AOI defect are typically orders of magnitude greater than those associated with an SPI 

defect. Whereas the time to correct an SPI-identified defect might be measured in seconds, it 

could take anywhere from minutes up to an hour of operator time to rework the failed board after 

the AOI stage depending on the complexity. This is because, by this point, the board has already 

passed through reflow and therefore cannot simply be reprinted or wiped clean and restarted. 

After AOI, the boards move off the SMT line and are placed in a queue for in-circuit 

testing (ICT), which verifies electrical connectivity. Boards passing ICT are moved to final 

assembly (FA) and functional testing while boards not passing are troubleshot, diagnosed, 

reworked, and retested. As might be expected, the cost associated with a defect escaping from 

AOI to ICT could be orders of magnitude that what it might be had it been caught at AOI. 
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From a cost and rework perspective, it is always preferable to identify and repair defects 

as early in the process as possible, and the old military adage “bad news doesn’t get better with 

age” [152] is especially relevant for PCB manufacture. In one case study by Zarrow (1999), the 

cost associated with an undetected defect at downstream assembly stages was found to increase 

from $0.40 to $45.  Figure 19 shows the cost increase as well the defect percentage at each PCB 

processing stage.  The cost of defects increased by as much as 375% from SPI to AOI and 

another 3000% for a defect that escapes from AOI to FA [153]. Though dated, it is the only case 

study that was found that gives this cost estimation. 

 

Figure 19: Cost and Percentage of Undetected Defects 

The purpose of this research is to describe, implement, and discuss an applied machine 

learning case study in the smart manufacturing environment. The objective is to determine 

whether parametric data obtained by the optical SPI machine harbors hidden relationships that 

are indicators of downline defects at ICT. The scope of the case study is limited to ball grid array 

(BGA) package types. BGA packaging affixes components such as microprocessors to the PCB. 

Pins arrayed in a grid deposit small solder balls on the component that match a corresponding 

grid of solderable pads on the PCB. After connecting the component to the PCB at the P&P stage 

using the wet solder paste as an adhesive, as illustrated in Figure 20, the assembly passes through 
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a temperature profile in the reflow oven to activate the fluxes, melt the solder spheres, and form 

mechanical and electrical connection between the component and PCB. 

 

Figure 20: PCB with BGA Package, Prior to Reflow 

BGA package types are of interest because, once the PCB has passed through reflow, it 

can be costly and require a higher skilled operator to rework defective components [154]. An 

especially challenging circumstance is the so-called “contact-without-connection” defect such as 

“head-in-pillow”, in which there is enough contact for the unit to pass optical inspection and 

sufficient electrical connectivity for the component to function. Such a defect would pass AOI 

and may or may not fail ICT.  However, throughout the life of the assembly, the component 

lacks mechanical strength and is high-risk to fail when encountering mechanical or thermal 

stress. In the worst-case scenario, these failures occur after distribution to the external customer.  

Industry practitioners have explored the various potential contributing factors for BGA 

defects such as package warpage ([155], [156]), PCB and stencil printing parameters ([157], 

[158]), and solder paste or solder alloy composition ([156], [159], [160]). 

In this case study, the process is a well-established, mature operation with defect rates far 

lower than one percent on average (M. Cvijetinovic, Senior Process Engineer, personal 

communication, November 29, 2018). As processes become increasingly mature with fewer and 

fewer defects, it becomes increasingly less cost effective to achieve reductions in the defect rate 

in terms of the resources required to lower the rates of defect occurrence. Machine learning 

Solder Paste

PCB

BGA Package
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provides an opportunity to identify and harness previously unknown relationships to predict and 

preempt occurrences of downline defects. These relationships may then be utilized to establish a 

level of automation to help decision makers accelerate the discovery of core issues in the 

manufacturing process, while reducing the amount of resources in preparing datasets and 

infrastructure. The challenge herein presented conveys both academic and industrial interest.  

The motivation for this case study, from an industry perspective, is the potential for cost 

savings in preempting ICT defects in BGA package types at the SPI stage. The broader impact of 

this work would enable practitioners to extend the results to correlate ICT defects to warranty 

returns, a case study for which will be presented in a subsequent research project.  

There is also a purely academic benefit that is derived from this case study. As this 

chapter describes an exploratory case study, the collective body of knowledge is benefitted 

regardless of the result. A positive result is obviously preferable, for the practical benefits 

described above as well as for the potential to other researchers and practitioners to extend upon 

and improve the results. A negative result, however, is informative as well in that it identifies 

approaches not to pursue in future exploration of this important problem. Additionally, the 

chapter employs a novel modeling approach to extract features of interest to be used for model 

training that will be discussed in detail in Section 7.3. This adds a second academic interest in 

the outcome; any opportunity to employ a novel approach or extend an application beyond the 

context for which it was initially conceived adds to the collective body of knowledge and is 

worth exploring. 

Two model formulations are contained in this chapter. The first formulation is a traditional 

machine learning approach, by which each solder paste deposit is treated as an individual record. 
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The second formulation aggregates all solder paste deposits on a single PCB location and 

analyzes them holistically.  

The first formulation, described in Section 7.2, is focused primarily on the relative 

performance of models trained using FAFRAP-generated feature sets versus models trained 

using the full set of available features. It is less concerned with the standalone performance 

particular to defect prediction. In other words, if the full feature set produces a poor model but 

the FAFRAP-reduced feature set produces a slightly less poor model, then that result is pertinent 

to Section 5.1. 

The second formulation, described in Section 7.3, employs an innovative approach to 

holistically analyze all solder paste deposits in a single location by applying a tool initially 

created for time series feature extraction to the arrays of solder paste parametric data. The focus, 

therefore, is twofold: to compare full and reduced feature set models; also, to analyze the utility 

of the novel modeling approach in predicting downline defects based on SPI parametric data. 

7.2 Background and Related Work 

It is believed that attempting to correlate SPI parametric data with downline electrical-

testing defects has not previously been undertaken, and a brief survey of literature related to 

SMT manufacture of PCBs using BGA package types was conducted to confirm or deny this 

belief, with a specific focus on those that incorporate SPI data. 

7.2.1 Survey Methodology 

Keyword searches for relevant terms such as “BGA”, “ball grid array”, “SPI”, “solder 

paste inspection”, and “defect” were entered into academic databases ScienceDirect (SD), 

SpringerLink (SL), Engineering Village (EV), and Wiley (W). Search parameters were restricted 
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to journal articles or conference proceedings. Ten years was the rule of thumb for recency. Table 

17 summarizes the searches with terms, source, total number of results, number of dated or 

irrelevant results, and number of discussed results. 

Table 17: Search Summary 

Index Source Search Terms Total 
Results 

Dated or 
Irrelevant Results 

Relevant 
Results 

S01 SD “BGA”, “SPI” 0 0 0 
S02 SD “BGA”, “defect” 12 7 5 
S03 SD “SPI”, “defect” 41 41 0 
S04 SD “BGA”, “defect”, “head-in-pillow” 0 0 0 
S05 SD “solder paste inspection”, “defect” 1 0 1 
S06 SL “BGA”, “defect”, “solder paste inspection” 4 0 4 
S07 SL “BGA”, “defect”, “ball grid array” 9 6 3 
S08 SL “solder paste inspection”, “ball grid array” 0 0 0 
S09 EV “BGA”, “SPI”, “defect” 1 0 1 
S10 EV “BGA”, “defect”, “head-in-pillow” 14 7 7 
S11 EV “solder paste inspection”, “ball grid array” 7 7 0 
S12 W “ball grid array” “solder paste inspection”, “defect” 1 1 0 

 

7.2.2 Relevance Criteria 

Table 1 lists counts for articles that were deemed either dated or irrelevant and articles that 

were selected for brief discussion to illustrate the nature of the related work. In some cases, 

articles were deemed irrelevant because the acronyms “BGA” and “SPI” contain more than one 

meaning. Search S03 is an example, where none of 41 results were deemed relevant because the 

“SPI” search criteria gathered results for “Salmonella pathogenicity island”, “slow positron 

implantation spectroscopy”, “soy-protein insulate”, and the ETS transcription factors subfamily 

“SPI” in genetics. Search S05 modifies S03 by spelling out “solder paste inspection”, with a total 

of one search result. 

In deciding relevance, of primary consideration was any article directly attempting to 

correlate SPI parametric data with downline PCB defects. A secondary consideration was made 
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for articles discussing BGA defects and whether the context was in their identification, repair, or 

preemption.  

7.2.3 Discussion of Related Work 

Out of 21 articles deemed relevant from the 12 academic database searches, only one 

directly attempted to employ SPI parametric data with downline defects, using ANOVA-style 

statistical analysis to correlate SPI and PCB attribute data with defects identified at the AOI 

station [161]. The distinction between [161] and this research is that this research is concerned 

with ICT defects, not AOI defects. Additionally, the SPI data explored in this research is not 

attributional but rather parametric. Attributional SPI data might be information such as stencil 

thickness, solder paste type, or supplier. SPI parametric data is the body of measurements taken 

from the individual solder paste deposits. 

The second type of articles considered was those discussing BGA defects in any manner 

whatsoever. Of the 20 articles in this group, eight focused on x-ray or other optical technology to 

detect existing defects ([162]–[169]), four explored the metallurgical properties of the solder 

([156], [160], [170], [171]), three involved somewhat specific subsets of the BGA package type 

([172]–[174]), three involved rework of BGA defects ([154], [155], [175]), and two focused on 

the stencil-printing process ([158], [176]). Table 18 summarizes the reviewed articles. 
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Table 18: Summary of Articles 

Author(s) Article Title Remarks 
Harter et al. (2016) Comprehensive correlation of inline inspection data for the evaluation of 

defects in heterogeneous electronic assemblies [161] 
SPI data to predict AOI defects 

Bernard & Krastev 
(2008) 

Modern 2D X-ray Tackles BGA Defects [162] X-ray inspection for defect detection 

Peng & Nam (2012) Void defect detection in ball grid array X-ray images using a new blob 
filter [163] 

X-ray inspection for void defect detection 

Wang et al. (2014 Optik Microfocus X-ray printed circuit board inspection system [164] X-ray inspection for select defect 
detection 

Castellanos et al. 
(2014) 

Head-in-Pillow X-ray Inspection [165] X-ray inspection for head-in-pillow 
defect detection 

Sumimoto et al. (2005) Detection of defects of BGA by topography imaging [166] X-ray inspection for BGA defect 
detection 

Hui & Pang (2009) Solder paste inspection using region-based defect detection [167] Optical SPI inspection 
Kuo et al. (2006) Construction of 3D solder paste surfaces using multi-projection images 

[168] 
Alternative to scanning to obtain SPI data 

Chu & Pang (2007) Solder paste inspection by special LED lighting for SMT manufacturing of 
printed circuit boards [169] 

SPI technique 

Scalzo (2009) Addressing the challenge of head-in-pillow defects in electronics assembly 
[156] 

Causes of BGA head-in-pillow defects 

Pandher et al. (2010 Head-in-pillow defect – Role of the solder ball alloy [160] Relation of solder properties to BGA 
head-in-pillow defects 

Li et al. (2011) Solder volume effects on the microstructure evolution and shear fracture 
behavior of ball grid array structure Sn-3.0Ag-0.5Cu solder interconnects 
[170] 

Relation of solder metallurgical 
properties to BGA defects 

Yang et al. (2014) IMC growth and shear strength of Sn-Ag-Cu/Co-P ball grid array solder 
joints under thermal cycling [171] 

Relation of solder metallurgical 
properties to BGA defects 

Chiou et al. (2008) The feature extraction and analysis of flaw detection and classification in 
BGA gold-plating areas [172] 

Specific subset of BGA package type 

Lee et al. (2017) Temporal and frequency characteristic analysis of margin-related failures 
caused by intermittent nano-scale fracture of the solder ball in a BGA 
package device [173] 

Specific subset of BGA package type 

Lee & Park (2015) Prediction enhancement of the J-lead interconnection reliability of land 
grid array sockets [174] 

Specific subset of BGA package type 

Wetterman (2017) Top 5 BGA challenges to overcome [154] BGA defect rework 
Zhao et al. (2015) Effects of package warpage on head-in-pillow defect [155] BGA defect rework 
Chen et al. (2014) Characterization of after-reflow misalignment on head-in-pillow defect in 

BGA assembly [175] 
BGA defect rework 

Tsai & Liukkonen 
(2016) 

Robust parameter design for the micro-BGA stencil printing process using 
a fuzzy logic-based Taguchi method [158] 

Stencil-printing process 

Yang & Tsai (2004) A neurofuzzy-based quality-control system for fine pitch stencil printing 
process in surface mount assembly [176] 

Stencil-printing process 

 

A reasonable conclusion from the reviewed articles is that BGA defects are a known topic 

of interest among industry practitioners and that nearly all existing research on the topic is in 

detecting and reworking defects. Preempting these defects is largely unexplored, and the use of 

SPI parametric data to preempt electrical testing defects is an approach not previously attempted 

far as the authors can determine. The likely reason for the absence of research exploring the use 
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of SPI parametric data to preempt ICT defects is simply that the data may not be available. The 

data for this case study is available only due to a circa-2017 Industrial Internet of Things (IIOT) 

capability enhancement project at the manufacturing facility from which the data is obtained. 

7.3 Model Formulation #1 – By Solder Paste Deposit 

7.3.1 Description of Data 

The data for this case study consists of 16 features and three binary response variables, 

corresponding to the three inspection stations that a PCB must pass through: AOI, ICT, and FA. 

The fifteen features are a mixture of continuous and categorical data types. Table 17 provides an 

overview and description of each of the 16 features. 

Table 19: Feature descriptions 

Feature Data Type Description 
F00 Categorical Barcode – Unique designator associated with a single panel, upon 

which several PCB modules might exist, each module to be 
manufactured into a single PCB 

F01 Categorical Location reference ID for each specific location on a single PCB 
F02 Integer Designator for a module on a panel; the combination of F00, F01, and 

F02 allow precise mapping of SPI parametric data with defect(s) 
identified at AOI, ICT, and FA 

F03 Categorical Component pin number – Designates a specific pin and solder paste 
deposit or joint 

F04 Integer Component pin size (x-axis) 
F05 Integer Component pin size (y-axis) 
F06 Float Solder paste offset (x-axis) – Deviation of solder paste deposit from 

target location as per specifications; parametric data 
F07 Float Solder paste offset (y-axis) – Same as F06 but considering the y-axis 
F08 Integer Pad stencil height 
F09 Float Solder paste deposit volume, as a percentage of component-specific 

benchmark 
F10 Float Solder paste deposit height 
F11 Float Solder paste deposit area, as a percentage of component-specific 

benchmark 
F12 Categorical Component part number – A unique designator for any component 

placed on PCB 
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F13 Float Stencil surface area ratio 
F14 Categorical PCB name – A unique designator for type of PCB produced; not a unit 

serial number designation 
F15 Categorical Package type – Identifier for specific BGA package employed 
R01 Integer Binary response variable equal to 1 if an AOI defect is discovered on 

the F00-F01-F02 combination and 0 if it is not 
R02 Integer Binary response variable equal to 1 if an ICT defect is discovered on 

the F00-F01-F02 combination and 0 if it is not 
R03 Integer Binary response variable equal to 1 if a FA defect is discovered on the 

F00-F01-F02 combination and 0 if it is not 
 

Six models were created and run using six different datasets, with datasets formed by 

conditioning upon the levels of feature F14 and using R02 as the response variable. This was due 

to the sparsity of defect data available in R01 and R03. Summary information for each dataset is 

provided in Table 20. Note that the counts for records and defects denote individual solder paste 

deposits. This means that the counts in the three defects columns are not indicative of the number 

of defective products but rather the number of solder deposits that are present on a defective 

product. This topic will receive additional treatment in Section 7.3.3 Result and Discussion. 

Table 20: Dataset summary information 

Index Number of 
Records 

ICT Defects 

DS01 187264 2144 
DS02 1058852 9811 
DS03 1146089 153431 
DS04 1004748 15332 
DS05 1114966 53270 
DS06 1070664 22000 

 

7.3.2 Model Formulation  

Random Forest models were created, using Python’s sklearn RandomForestClassifier() 

[143] default settings with the exception that the number of trees in each forest was raised to 20 
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from the default setting of 10. Categorical features were encoded using Ordinal Encoding with 

Python’s category encoders library1.  

Because of the applied nature of this case study, it is preferable for metrics of interest to 

have seamless interpretation that requires little modification or translation when briefed to 

decision makers at various levels of the organization. For this reason, four metrics are worth 

considering: accuracy, precision, recall, and f1 score.  

Table 21: Confusion Matrix Template 

 Actual – Non-Defective Actual – Defective 
Predicted – Non-Defective A B 

Predicted – Defective C D 
 

To illustrate the distinction between the various metrics, consider the confusion matrix 

template in Table 21. Quantity A refers to those records which are correctly classified as 

defective. Quantity B represents records incorrectly classified as non-defective. A record in this 

category can be thought of as an “escape”, where the model fails to predict that a defect is 

present. These records incur a cost, as discussed in Section 7.1.  

Quantity C represents records that the model classifies as defective but are not defective. 

A record in this category might be thought of as a “false alarm”, which incurs unnecessary costs 

from the parts and labor associated with diagnosing, troubleshooting, or replacing defects. 

Finally, Quantity D represents records that are correctly classified by the model as defective.  

Accuracy is the proportion of correctly classified records and is computed using Equation 

(4). If the dataset is highly unbalanced, with only a tiny fraction of records exhibiting a defect, 

                                                           
1 For documentation and definitions of encoding techniques, see http://contrib.scikit-learn.org/categorical-
encoding/ 
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then accuracy may not be the ideal metric because the model may simply predict all records to be 

non-defective.  

                                                         𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑟𝑟𝑅𝑅𝑃𝑃𝐴𝐴 =  
𝐴𝐴 + 𝐷𝐷

𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐷𝐷
                                                         (4) 

Precision is accuracy conditioned upon a specific prediction and, for defective records, is 

computed using Equation (5). If the cost associated with a false alarm is prohibitive, then 

precision might be an appropriate metric.  

                                                           𝑃𝑃𝑟𝑟𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑀𝑀𝑛𝑛 =  
𝐷𝐷

𝐵𝐵 + 𝐷𝐷
                                                             (5) 

Recall is a metric that quantifies the proportion of total defects that the model flags; a 

high recall score indicates that the model does a good job of preventing escapes. As escapes 

typically incur increasing levels of cost the longer that they are undetected, recall is an important 

metric to consider. Recall is computed using Equation (6). 

                                                           𝑃𝑃𝑒𝑒𝑃𝑃𝑅𝑅𝑀𝑀𝑀𝑀 =  
𝐷𝐷

𝐶𝐶 + 𝐷𝐷
                                                             (6) 

The decision to use precision or recall boils down to the relative cost associated with an 

escape versus a false alarm. 

Finally, f1 score is computed by calculating the harmonic mean of precision and recall. If 

the desire is to keep both escapes and false alarms to a minimum, then f1 score is a possible 

metric as it captures the elements of precision and recall in a single metric. 
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7.3.3 Results and Discussion  

In all six scenarios, the models produced using the feature reduction and prioritization 

framework produced results comparable to models produced using the full feature set. Table 22 

summarizes each model’s performance.  

Table 22: Summary of results 

Dataset Relative f1 
score 

Relative Size Top FAFRAP Features 

DS01 1.0144 0.556 F02, F03, F07, F09, F10 
DS02 1.0237 0.875 F01, F03, F09, F10, F11, F12, F15 
DS03 2.201 0.625 F03, F05, F07, F13, F15  
DS04 0.9083 0.40 F01, F03, F09, F10 
DS05 0.9632 0.3636 F01, F07, F09, F11 
DS06 0.9268 0.3846 F07, F09, F10, F11, F12 

 

As indicated in Table 22, all FAFRAP models have an f1 score of at least 0.90 of the f1 

score obtained by the full model, with that performance achieved using no more than 0.875 the 

full-size model. In three models, the f1 score improves with the reduced set of features, and in 

three models the f1 score is slightly degraded. The tradeoff for the reduced model performance is 

in the model size.  

As previously discussed, this research is not explicitly geared towards answering the 

underlying question of what if any predictive power lies in SPI parametric data to predict 

downline defects. Rather, it is to make an apples-to-apples comparison of models produced by 

the FAFRAP framework versus models produced by the full set of available features. 

The initial results indicate at least the possibility that underlying relationships exist that 

can be exploited to reduce solder, process, or testing defects. Notably, the models consistently 

prioritize parametric data associated with solder paste offset, solder paste height, and solder paste 
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area or volume. This is consistent with subject matter expert expectations. With this initial 

insight, one can foresee an automated application to generate early-process recommendations 

which would guide the operators to make the necessary corrective actions on the process in real-

time. 

A limitation of the first model formulation is in the unbalanced nature and the potential 

for the model’s predictive power to be exaggerated due to the data records being generated by 

solder paste deposit and not by panel. For example, DS01 shows 2144 ICT Defects in Table 18; 

this does not mean that 2144 printed circuit boards in DS01 had an ICT defect. Rather, it means 

that there were 2144 solder paste deposits on printed circuit boards that went on to have an ICT 

defect identified. Likely, there were no more than a handful of PCBs with an identified defect. 

The reason for this formulation is the desire to identify hidden relationships within this highly 

mature process, where state-of-the art test machines cannot reach with optical inspection. The 

caution is simply not to forget that model results and corrective actions must include an added 

step to translate the by-solder-paste-deposit results back to the PCB level. This step is outside the 

scope of this section but is certainly crucial from an application and automation standpoint. 

7.4 Model Formulation #2 – By PCB Location 

7.4.1 Description of Data 

 The data for this formulation consists of five parametric features measured at SPI and 

defect data extrapolated from ICT. The five features of interest are: 

• X01: Deviation of solder paste deposit from target location (x-direction). 

• X02: Deviation of solder paste deposit from target location (y-direction). 

• X03: Solder paste deposit volume, as a percentage of component-specific benchmark. 
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• X04: Solder paste deposit height. 

• X05: Solder paste deposit area, as a percentage of component-specific benchmark. 

Defect data consists of a binary response variable, equal to 1 if a defect is detected at ICT 

and 0 of not. 

To organize the data, the following additional features were collected but not 

incorporated into any predictive models as input variables: 

• F01: Unique barcode designator associated with a single panel, upon which several PCB 

modules might exist. Each module on a panel will be manufactured into the same style 

PCB. 

• F02: Location reference ID for modules on a panel. 

• F03: Location reference ID for component location on a PCB.  

• F04: Unique designator for a specific component pin, which creates a specific solder 

paste deposit. This feature is used for sorting purposes in organizing the data for model 

inclusion. 

The concatenation of each unique F01_F02_F03 combination provides a distinct location 

for a component, within a certain module, at a certain position on the panel. This information 

allows a specific defect to be mapped to specific records of the five parametric features. 

Two datasets were collected, each containing data for a single type of PCB Assembly. 

The first dataset, DS01, contains smart manufacturing data collected from an approximately six-

month period from April 2018 through September 2018. This circuit board is not sold as a 

standalone unit but rather mates to several other circuit boards in the final assembly.  

DS01 was selected for this research because it is a high-volume product, which hopefully 

affords sufficient records to train a predictive model. It is not a foregone conclusion that SPI 
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parametric data harbors any predictive relationship whatsoever; the best chances for extracting 

such a relationship, if it exists, is in higher-volume datasets. 

The second dataset, DS02, represents a different PCB assembly. This product is the only 

board in the final assembly product, but it merges with other components in final assembly. As 

with the PCB assembly in DS01, this this PCB assembly is not sold as a standalone unit. Data in 

DS02 was obtained in the same time window as DS01.Table 23 summarizes the two datasets. 

Table 23: Data Summary 

Name Records Total 
Defects 

Training 
Set Non-
Defect 

Training 
Set 

Defects 

Test Set 
Non-

Defect 

Test Set 
Defects 

DS01 4421 233 3359 177 829 56 
DS02 6916 41 5500 32 1375 9 

 

As shown in Table 23, each dataset is highly unbalanced, with a fraction of the overall 

records exhibiting an identified defect. This presents the immediate concern that there may not 

be sufficient defect data for model training. Of the two datasets, DS01 might have the better 

prospects at first glance due to the higher proportion of defective records. 

7.4.2 Model Approach 

The nature of the available data presents some challenges associated with a traditional 

modeling approach in that defect information is available only to the precision of the PCB 

location, but SPI parametric data is available to the precision of the BGA pin level. This means 

that there could be scores or even hundreds of records associated with a single defect. The 

concern from a data perspective is that solder paste deposits that are fully within specification 

would be assigned a defective outcome in the training set if they reside in the same PCB location 
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as an identified defect. This would be incorrect and could lead to confusion with interpretation of 

model results.  A second concern, this time from a process perspective, is that a test already 

exists to test the individual solder paste deposits for conformity to specifications; the traditional 

approach to model line by line at the record level would be redundant, unless the goal is to 

validate the specifications, which is a different analysis altogether. Finally, and most concerning, 

the traditional approach of examining each record in isolation fails to capture the interaction 

between parametric data from different pins on the same location.  

An alternative approach, employed in this model formulation, is to consider all pins in a 

location simultaneously by creating an array and sorting it in some fixed manner for each of the 

five features. The model is indifferent to the method of sorting, so long as the arrays are sorted in 

the same way every time. The default for this case study was to sort by F04 alphanumerically.  

Using this approach, each record would be assigned a label of 0 or 1 depending on 

whether a defect was identified at that location, and that label would map to five arrays, one for 

each of the five parametric SPI features. The uniqueness of this approach is in applying the 

TSFRESH time series feature extraction algorithm to each of the five arrays, thus generating up 

to 794 * 5 = 3970 features for each record. Even though TSFRESH is designed with time series 

in mind, there is no reason why the features that it generates could not be applied to problems in 

other contexts. The FAFRAP framework would then be applied to those 3970 features.  

Decision trees were selected as the machine learning algorithm to provide the maximum 

clarity to the interpretation of results. If model results are encouraging, then decision trees 

present the greatest flexibility to clearly identify rules or thresholds to track or visualize as PCBs 

are run through the SMT lines in real time.  
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7.4.3 Results and Discussion 

 Results from this case study fall into two domains of interest. The first domain is the 

bottom-line, direct answer to the defect prediction question. The second domain is the 

application of FAFRAP to the case study and any framework-specific lessons that might be 

learned. 

Table 24 summarizes the confusion matrices for each dataset at each level of filtration in 

the FAFRAP framework. The results indicate comparable results from one level of the 

framework to the next, suggesting that the features being removed make little to no contribution 

to the overall model.  

Table 24: Aggregated model predicted results 

Dataset FAFRAP 
Filtration 

Level 

Number 
of 

Features 

Correctly 
Predicted 

Non-
Defective 

Incorrectly 
Predicted 

Non-
Defective 
(Escape) 

Correctly 
Predicted 
Defective 

Incorrectly 
Predicted 
Defective 

(False 
Alarm) 

DS01 None 3970 808 32 24 21 
DS01 Filter #1 2210 810 33 23 19 
DS01 Final 15 807 34 22 22 
DS01 Best Accuracy 9 817 21 35 12 
DS01 Best Precision 9 821 29 27 8 
DS01 Best Recall 7 805 21 35 24 
DS01 Best F1 9 817 21 35 12 
DS02 None 3970 1370 6 3 5 
DS02 Filter #1 901 1372 7 2 3 
DS02 Final 15 1371 5 4 4 
DS02 Best Accuracy 8 1375 4 5 0 
DS02 Best Precision 8 1375 4 5 0 
DS02 Best Recall 7 1367 3 6 8 
DS02 Best F1 8 1375 4 5 0 
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Table 25 contains scoring metrics, selected because they each carry a clear physical 

interpretation. Any one of them may be the metric of choice depending on the situation. The four 

metrics described in Section 7.3.2 are calculated and displayed: accuracy, precision, recall, and 

F1 score. 

Table 25: Model comparison at FAFRAP levels 

Dataset Filter Level Number of 
Features 

Accuracy Precision Recall F1 
Score 

DS01 None 3970 0.9401 0.5333 0.4286 0.4752 
DS01 Filter #1 2210 0.9412 0.5476 0.4107 0.4694 
DS01 Final – Top 

15 
15 0.9367 0.5 0.3929 0.44 

DS01 Best 
Accuracy 

9 0.9627 0.7447 0.6250 0.6796 

DS01 Best Precision 9 0.9582 0.7714 0.4821 0.5934 
DS01 Best Recall 7 0.9492 0.5932 0.625 0.6087 
DS01 Best F1 9 0.9627 0.7447 0.6250 0.6796 
DS02 None 3970 0.9921 0.375 0.3333 0.3529 
DS02 Filter #1 901 0.9928 0.4 0.2222 0.2857 
DS02 Final – Top 

15 
15 0.9935 0.5 0.4444 0.4706 

DS02 Best 
Accuracy 

8 0.9971 1.0 0.5556 0.7143 

DS02 Best Precision 8 0.9971 1.0 0.5556 0.7143 
DS02 Best Recall 7 0.9921 0.4286 0.6667 0.5217 
DS02 Best F1 8 0.9971 1.0 0.5556 0.7143 

Note that the number of features in the ‘best’ rows are subsets of the 15 features in the 

Final – Top 15 row. The final step in the FAFRAP framework, after identifying some number of 

top performing features, is to combinatorically iterate through all possible subsets of the final 

list. Note the optimal subset of features is not necessarily the same for every metric. For DS01, 

the same optimal subset gives the best accuracy and F1, but a different subset gives the best 

precision and the best recall. For DS02, the same subset of features gives optimal values for all 

metrics except for recall. 
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The first point of discussion is that the exploratory nature of this problem has revealed 

that there do appear to be relationships hidden within SPI parametric data that can be harbingers 

of downline ICT defects. The use of the TSFRESH package to extract as diverse a feature set as 

possible resulted in models that achieve encouraging results. For DS01, the top accuracy 

achieved was 0.9627, the best precision achieved was 0.7714, the best recall achieved was 0.625, 

and the best f1 score achieved was 0.6796. For DS02, results are comparable and slightly 

superior for each metric. 

While these initial results are encouraging, the limited scope of this initial case study 

makes it necessary to build and run models on increasingly diverse datasets before broad 

conclusions can be drawn. This will produce two benefits. The first benefit is continued 

validation or confirmation of the featured modeling approach. The second benefit is added depth 

of knowledge regarding which of the 3,970 TSFRESH features continue to be selected for the 

best producing models. It is not known if the underlying relationships correlate to only a few 

TSFRESH features or many of them. If subsequent model results continue to gravitate towards 

the same set of best features, then those features can possibly be the centerpiece for development 

of metrics for data tracking and visualization. 

A second, related point, is that the specific features calculated by TSFRESH and retained 

in the final models require additional analysis and interpretation by subject matter experts. 

Because these features were extracted by a tool initially conceptualized for time series, the 

physical interpretation of the features will likely have little direct transfer to this manufacturing 

process. If a detailed drill-down can be made into those specific features, it will inform decisions 

as to how best to proceed regarding utilization of these model results in a practical sense. If there 

is no direct connection between any element of the physical process, it may be best for practical 
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application of this model simply to extract the features real-time as boards come through the SPI 

machine and execute the trained models to obtain a prediction. If, however, there is a direct 

connection to some tangible physical piece, then there are more options. Metrics can be created 

and visualized via some dashboard or other means. Then, instead of executing a trained model, 

the metric is simply monitored, with corrective action taken if it exceeds the identified threshold. 

A final point relevant to the first domain is that, depending on the continued performance 

of this modeling approach, the decision on how to apply the results requires exploration into the 

nontrivial question of where, architecturally, to perform this analysis with respect to the data 

infrastructure. In smart manufacturing, it is possible to perform analysis offline, at the local 

machine level, at the cloud level, or at some intermediate edge level. In this case study, there is a 

sharp increase in the cost associated with rework after the board passes through reflow. For this 

reason, it is ideal for model predictions to be made prior to that stage. The best-case scenario is 

for model predictions to be made before the board enters the P&P machine. This, however, gives 

a window of approximately 30 seconds to five minutes for an analysis container to receive the 

SPI parametric data, extract the TS features, and execute the trained model using the appropriate 

feature subset before the board enters the P&P machine. This necessitates edge-level computing 

because by the time data migrates to the cloud level and predictions are routed back, the window 

of opportunity to take corrective action will have likely passed.  

With respect to the second domain, the results are encouraging and consistent with 

previous validation tests in [141]. The filtration mechanisms in FAFRAP worked as intended and 

consistent with what might be expected from this case study. Because the TSFRESH features 

were initially conceived to be extracted in a time-series context, there was the expectation that 

many of the extracted features would have little or no relationship to ICT defects. However, the 
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question that the case study explored was if there were underlying or hidden factors that were 

systemically contributing to defects. If that is the case, then it is natural to expect that that factor 

might appear in the behavior of at least one of the 794 features extracted by the software. 

Given these expectations, the FAFRAP filter results make intuitive sense. In DS01, the 

first filter reduced the feature set from 3970 to 2210. It is unlikely that all 2210 features 

individually exhibiting statistical dependence with ICT defect identification do so based on a 

factor that is distinct from all the others. Rather, some underlying factor might be manifesting 

itself in many or all those 2210 features. The final feature set bears this out because the model 

produced by the final feature set scores comparably to the models at previous filtration levels for 

each of the metrics computed. In some cases, the reduced feature set performed better. Similar 

reasoning may be applied to the DS02 results 

It is also of value to consider the input data required to make defect predictions and 

associated follow-on decisions. Models involving large datasets require more time to train than 

models involving smaller datasets, and the difference in time required might be the difference 

between performing the calculations at the edge or the cloud computing level. This can translate 

to decisions regarding what data is designated for long-term cloud storage and what data can be 

discarded.  The FAFRAP framework can assist analysts in making decisions regarding the 

capture and storage of smart manufacturing data based on its relative value in answering the 

important analytical questions facing the organization. 
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CHAPTER 8: CONCLUDING REMARKS AND FUTURE RESEARCH 

The novel Fuzzy Approach to Feature Reduction and Prioritization (FAFRAP) approach 

presented in this dissertation attempts to rank and classify potential predictor variables according 

to their value for use in training machine learning models for some particular problem of interest. 

It provides a quantitative metric that is suitable for feature ranking and it also provides a 

qualitative description that assists human data scientists and decision makers in understanding 

the nature of the feature’s usefulness. This information has immediate value in building problem-

specific models and it also possesses a knowledge management value that, when developed, can 

inform long term decisions in data capture, storage, and retention. 

This research contributes to the body of knowledge by integrating the diverse techniques 

and disciplines of statistical independence tests, applied machine learning, and fuzzy inference 

systems in such a way that, as yet, has not been undertaken previously.  Additionally, the applied 

case study described in Chapter 7 contributes twofold: it validates the FAFRAP method in a real-

world context and it employs the novel problem approach by treating the arrays of SMT-SPI 

parametric data as time series for the purpose of feature extraction. To the knowledge of the 

author, this is a unique approach to the problem of defect prediction in electronic assembly 

manufacture. 

The approach employed in this research to model SPI parametric data holistically by PCB 

location and extract features using a Python library initially intended for time series has been 

shown to produce results that merit continued exploration of the approach. Additionally, the use 

of the FAFRAP algorithm to reduce and prioritize features performed as intended. From these 

perspectives, the case study might cautiously be deemed a tentative success, while leaving room 

for scalability to other manufacturing case examples. 
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However, additional work is necessary to truly harness the possible benefits from this 

approach, and additional knowledge is needed to maximize the potential of the FAFRAP. Thus, 

future research may be compartmentalized into that which applies specifically to the SPI case 

study and that which applies specifically to the FAFRAP. 

With respect to the applied case study, the first area of additional work is in the 

interpretation of results. This study intentionally employed decision trees because they provide 

clear interpretability. Splits in the trees can be programmed into data tracking or visualization 

tools, and dashboards that correspond to the model can be created and monitored in lieu of 

continually computing the extracted features and running the models. However, the tradeoff in 

using decision trees is that they typically underperform other algorithms such as random forest or 

deep neural networks. This is a known, intentional limitation and tradeoff in the approach taken 

in this dissertation. 

Therefore, it is necessary to analyze the specific features highlighted by FAFRAP, identify 

their physical interpretations as applied to time series problems, and determine what if any 

physical interpretation can be extended to manufacturing. This will inform subsequent decisions 

on how to use these models, any KPIs that may be necessary to create, or any existing KPIs to 

track.  

The second area of additional work is in generalizability of results. The study should be 

performed again on additional datasets with a different mix of PCBs. Not only would it be value 

added to use additional classes (models) of PCBs, but there are reasons to condition datasets on 

factors other than PCB type. For example, each PCB contains a variety of components. 

Conditioning on component part number instead of PCB ID may allow better generalizability of 

the results. 
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With respect to FAFRAP, a known area of future research is the tuning of its 

hyperparameters, as alluded to in Chapter 5. This study revealed an area of potential 

improvement associated with the hyperparameters related to grouping the features into high-

performing and low-performing solutions. There is no known technique to determine the 

minimum number of subsets to generate so that there is sufficient representation of each feature 

for the FIS to effectively rank it. Up to this point, the analyst’s discretion has been used, with the 

rule of thumb being that every feature should appear in at least 20 subsets and the bottom-line 

model result being the discriminant. However, additional knowledge would speed up the process 

and free the data scientist from performing redundant work. 

A second hyperparameter for which a general principle would be helpful is where to set 

the threshold for what constitutes a “top” feature. In this case study, there were 2210 features that 

survived the first filter and were input into the FIS. The threshold was tested at different values 

such as 50, 100, or 200, with the guiding principle being within the top 10%.  

Finally, continued replication of the study is necessary to identify if the same features 

highlighted by FAFRAP will continue to be prioritized in subsequent models using different 

PCBs or component parts. If the true underlying factor is not directly calculated by any of the 

time-series-style features, which is a reasonable working hypothesis, then it is possible that the 

algorithm will have many different “final” feature sets that all achieve comparable results. 

In conclusion, the approach outlined in the preceding section could be whimsically 

described as a “poor analyst’s deep learning”, where the TSFRESH-extracted features operate 

conceptually similarly to a single hidden layer of neurons. Like deep learning models, this 

approach transforms the input features into some number of new features. Unlike deep learning 

models, those new features can be identified and interpreted precisely because they correspond to 
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some known calculation or physical interpretation. Also, unlike deep neural networks, model 

training is relatively straightforward and the lack of successive nonlinear transformations 

between hidden layers gives weaker prospects for uncovering hidden relationships in the data. 

The tradeoff between the two approaches is one of model performance for interpretability.  
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