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ABSTRACT 

TWO ESSAYS ON CUSTOMER-SUPPLIER NETWORK AND TRADE SECRETS 

by 

Yi Liu 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Valeriy Sibilkov 

This dissertation investigates two important topics: idiosyncratic shock 

aggregation in customer-supplier network and impacts of trade secret litigations on stock 

performance. The first essay studies the underlying factors for stock returns comovement 

between customer and supplier firm. The investigation further explores the idiosyncratic 

shocks propagation and aggregation in the network. The second essay documents the 

stock market reactions to trade secret lawsuit outcomes and its economic meanings to the 

industry. 

The first essay, Idiosyncratic Shocks Aggregation in Customer-Supplier Network, 

is inspired by Acemoglu, et al. (2012)’s theoretical work and Cohen and Frazzini 

(2008)’s empirical study. Traditional theory regarding idiosyncratic shocks suggest 

diversification effect averages out microeconomic shocks within each sector of an 

interconnected network. However, more and more recent study shows that idiosyncratic 

shocks may translate into aggregate shocks if the interconnected system is asymmetric. 

Empirical research in customer-supplier network shows that the stock returns of a 

customer and a supplier firms comove strongly. Idiosyncratic information and earnings 

news are the key drivers of the stock return comovement induced by the establishment of 

the customer-supplier relationship. By studying the return connections between customer 

and supplier firms, I find idiosyncratic shocks propagate and aggregate in this network. A 

new risk factor formed by aggregating idiosyncratic returns of customer firms is 

evidently priced in suppliers’ returns. This study builds on existing customer-supplier 

network research and contribute to the literature by pinpointing the information channels 
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and contents that drive stock return comovement and document a new risk factor in 

customer-supplier network. 

The second essay, Economic Outcomes of Corporate Espionage, uses a unique 

hand collected trade secret lawsuit dataset, and documents strong stock market reactions 

to trade secret lawsuit outcomes. Trade secret lawsuit data including file date, plaintiffs 

and defendants, and court rulings are manually collected from Lexis-Nexis database and 

carefully screened to determine the directions of court rulings. The empirical results 

indicate stock market reacts to court outcomes not only at firm level, but also at industry 

level. Further regression and difference-in-differences analysis suggest strong intellectual 

properties protection system encourages firms’ R&D investment and future growth 

opportunities. 
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Abstract 

Using customer-supplier networks, we document a strong increase in stock return 

comovement between customer and supplier after the establishment of their relationship. This 

increase in comovement is mainly associated with cash flow news and firm-specific information. 

The idiosyncratic shocks to customers diffuse through the customer-supplier network and 

aggregate into a systematic risk, which affects suppliers’ expected returns. Using a long-short 

portfolio based on exposure to aggregated customer risk, we realize an annual excess return of 

3.1% (value-weighted) and 6.11% (equal-weighted), respectively. The customer risk factor 

cannot be explained by market, size, book-to-market or momentum factor. 
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Introduction 

On Jan, 3rd 2019, Apple stock tumbled 8.99% in a single day, triggered by a public letter 

released from Cupertino, California warning lower revenue guidance for the first quarter of 

2019. On the same day, the S&P 500 index dropped 1.52%, and Nasdaq closed 1.86% lower. 

Although Apple was the second largest corporation by market valuation, it did not seem to 

justify the vast evaporation of the total US market value because the amount disappeared is 

similar to the total market capitalization of Apple. But if we consider the large number of 

companies connected to Apple, the impact on Apple can be amplified through its connected 

economic networks and the shocks to its suppliers accumulate in massive market fluctuations. As 

in this anecdotal case, it is possible that market-wide shock could originate from an individual 

company if it is linked to many firms through economic networks. 

A large strand of literature in asset pricing have attempted to understand how individual 

shocks aggregate into market-wide fluctuation. Granular network theory offers a micro-

foundation: the aggregation of individual risk becomes a risk at the market-level. Gabaix (2011) 

and Acemoglu et al. (2012) provide theoretical frameworks that idiosyncratic shocks will 

aggregate into systematic shocks in the granular network. More evidence is accumulated in 

recent empirical studies. Kelly, Lustig, and Nieuwerburgh (2013) show that consistent to 

granular network theory, firm size distribution is a key determinant of firm-level volatility and 

volatility comovement in the network. Ahern (2013) explores the industry network and finds that 

industries placed more central in the network exhibit higher risks and returns. These papers only 

show less direct implications which would hold at the equilibrium level.  

In this paper, we fill this gap by studying the propagation of firm-specific shocks through 

customer-supplier networks and how firm-specific shocks become a systematic risk. Motivated 
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by both theoretical groundwork and the availability of data, we comprehensively investigate the 

channels of idiosyncratic shocks propagation and the pricing of these shocks in customer-

supplier links.  Specifically, when firms are connected to other firms along the supply chain, 

stock returns of these linked firms become more comoving. As a customer is more connected, 

the shocks to these customers are propagated throughout the connections. The aggregation of 

idiosyncratic shocks to these customers is a systematic risk factor which does not overlap with 

existing risk factors. Thus, suppliers with greater exposure to this customer risk factor have 

higher stock returns.  

The customer-supplier relationship is an integral part of companies. For customer firms, 

supply chain management is an important part of operations and critical to the success of the 

company. In accordance with their importance, not only does the information pass through this 

channel, but also the shocks spread to the connected companies. We use the customer-supplier 

relationship of individual firms as the backbone of granular networks. As a filing requirement, 

suppliers must declare their principal customers who account for more than 10% of their total 

sales. We identify these customers for each supplier and construct the complete network using 

each identified customer-supplier pair. Our sample records a sizable turnover in customer-

supplier relationships. Over the thirty-five years sample period, we document over 18,000 

customer-supplier pairs consists of 6,492 suppliers and 2,902 customers. More than half of the 

relationships last for less than two years. The average duration of links is 6.3 years.  

We first examine the stock return comovement between customer and supplier firms. 

Customer-supplier link (hereafter, CSL) return comovement has been documented in several 

studies (Cohen and Frazzini, 2008 and Cen, Hertzel, and Schiller, 2017). Contrast to the lead-lag 

comovement recorded in the previous studies, we document strong contemporaneous return 
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comovement between customers and suppliers using our up-to-date CSL sample. We show that 

the return comovement between two firms increases significantly since the establishment of 

CSL.  

To confirm that the baseline results are not biased, we match each supplier firm 

(customer firm) with a pseudo-customer (supplier) within the same industry and the same size 

quintile. The randomly matched pairs have no economic links to each other. However, we still 

detect a significant degree of return comovement between these pseudo pairs because a 

substantial amount of CSLs is formed in the same industry, or between related industries. The 

customer and supplier firms exhibit strong stock prices correlation due to the similarity in their 

core business and the business cycle.  The essential difference is that the return comovement of 

pseudo pairs does not increase at all during the pseudo linked period, suggesting that increases in 

return comovement come from the information propagation within the customer-supplier 

relationship. 

We then examine which component of stock returns contributes to increment in return 

comovement. We decompose customer’s returns into cash flow news and discount rate news 

using a method proposed by Chen, Da, and Zhao (2013, CDZ hereafter).  Using decomposed 

quarterly return data,1 we find that cash flow news mainly contributes to the increase in 

comovement, not the discount rate news, especially between the firms who have maintained a 

long-term relationship. When changing customers’ cash flow expectations, investors revise the 

cash flow expectations of linked suppliers. 

We corroborate the comovement in cash flow expectation by examining comovement in 

earnings surprises, as earnings surprise contains information about the cash flow of the company. 

                                                           
1 Although conservative, quarter return decomposition is much more reliable and trustworthy than monthly return 
decomposition because analyst earnings forecasts are disclosed on a quarterly basis. 
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Forecasting errors obtained from seasonal random-walk models and cumulative post-

announcement abnormal returns are used as measures of earnings surprises. We find that the 

comovement in earnings surprises only exists when CSL is formed, which confirms the vital role 

of the cash flow channel in a customer-supplier relationship. The comoving earnings surprises 

suggest that the cash flow channel transmits not only market information, but also firm-specific 

operating uncertainty because firm-specific information is embedded in earnings news. 

According to the literature on return comovement, there could be two possible causes of 

return comovement. First, comovement results from the alignment of firms’ fundamentals. For 

instance, a customer or supplier firm may be forced to share its profits with its business partner if 

the partner firm possesses bargaining power. The findings of the synchronous revision in the 

cash flow expectations for customers and suppliers support this argument. Second, return 

comovement can be driven by investors’ behaviors (Barberis, Shleifer, and Wurgler, 2005; 

Pirinsky and Wang, 2006). Investors of these stocks can follow similar investment patterns and 

moves the price of these stocks in the same direction.  

A detailed investigation of customer and supplier firms’ fundamentals comovement and 

the underlying determinants of their return comovement is necessary for us to understand the 

nature of the phenomenon. We find that profitability measures such as profit margin and return 

on assets comove alongside the return comovement. It confirms that return comovement comes 

from aligning firms’ fundamentals. Next, we examine the determinants of return comovements. 

Sales concentration is a major driver for return comovement. A supplier with more concentration 

shows a greater return comovement for the customer.  We also find that comovement becomes 
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stronger if the customer’s size is larger. Trade credits, link duration, and common institutional 

ownership all leads to the greater comovements.2 

Next, we raise the question whether the increment in comovement comes from the 

increased correlation of firm-specific risk or increased exposure on systematic risk factors. The 

evidence so far indicates that an increase in return comovement for a customer-supplier 

relationship is due to idiosyncratic information. Firm-specific risks are predominantly 

transmitted to connected companies, but a change in systematic risk exposure can be followed 

when the link is established. For example, suppliers can increase relation-specific investment, 

which leads to higher exposure to market beta. Our further investigation employs the Fama-

French three-factor model in addition to industry returns and decomposes customer and supplier 

firms’ monthly returns into idiosyncratic and systematic components. The result shows that most 

of the changes in return comovement are caused by firm-specific risk propagation.  

From granular network theory, the idiosyncratic risks of individual firms will aggregate 

into the systematic risk in an asymmetric network. On the other hand, from the canonical risk 

factor models, idiosyncratic risks should be diversified away and do not have a risk premium. 

We empirically examine whether aggregated firm-specific risks are priced. Particularly, we 

aggregate idiosyncratic shocks to customers which have many suppliers. These customers are 

located more central in the granular network and their firm-specific shocks are more easily 

propagated and impact other companies, and thus become systematic. We first estimate the 

                                                           
2  Interestingly, we find the difference in bargaining power between customer and supplier firms reduces the 
comovement, supported by the effect of ROE and leverage on comovements. Higher ROE of customers or suppliers 
would imply that they have more bargaining power and do not share their profits with opposite party. Higher 
leverage is a well-known proxy for bargaining power. If the firms do not share their profits with connected firms, 
their fundamentals would less comove, resulting in lower return comovement. 
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supplier firms’ exposure to aggregate customer risks. It shows that supplier’s exposure to 

customer risk is directly related to the complexity of its connections to customers. The more 

customers a supplier has, the higher its risk exposure, which proves that idiosyncratic shocks do 

aggregate through the network.  

To analyze the risk-return relationship of customer risks, we adopt Fama-Macbeth 

regressions and show that the risk premium of aggregate customer risk is significantly positive. 

Suppliers’ returns increase monotonically with the beta of aggregate customers’ idiosyncratic 

returns. Put it differently, suppliers with greater exposure to aggregate customer risks are 

perceived as riskier and their stock returns are higher. In turn, we show that firm-specific risks of 

customers with many suppliers become systematic risks and have a positive risk premium. As a 

falsification test, we aggregate the idiosyncratic return of customers with less than three 

suppliers, which is less likely to become systematic in the granular network. Consistently, the 

risk premium of the pseudo-risk factor does not exist. 

We construct the long-short portfolio of suppliers sorted by quintiles on the basis of 

customer betas. We rebalance the portfolio monthly by buying the supplier stock with the highest 

customer betas and shorting the supplier firms with the lowest customer betas. The portfolio 

generates annual excess returns of 3.1% (value-weighted) and 6.11% (equal-weighted), 

respectively, suggesting that aggregate customer risk cannot be explained by Fama-French three 

factors or momentum factor.  

The first contribution of this paper is to stock return comovement literature. Existing 

theories suggest return comovement can be driven either by the alignment in firms fundamentals 

or by investors’ behaviors. Recent evidence is more favorable to the latter explanation. For 

example, comovement in commodity prices is best explained by investors’ herding behavior 
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(Pindyck and Rotemberg, 1988). Barberis, Shleifer, and Wurgler (2005) also show that 

comovement among S&P 500 index firms is driven not by fundamental but by friction or 

sentiment.3 Our paper links comovement to information channel and risk propagation in a 

business network. Return comovement between linked firms appears to be the result of the 

fundamental adjustment of both firms.  

This paper also contributes to the traditional portfolio theory. Idiosyncratic shocks 

through an economic network aggregate into systematic shocks. Consistent with Ahern (2013), 

in a business network, the centrality of the firm is directly linked to its exposure to aggregate 

risk. The excess returns generated by the long-short portfolio in this paper show that investors 

view centrality as greater exposure to systematic risk. 

Our paper is most closely related to the literature studying the customer-supplier return 

comovement. Cohen and Frazzini (2008) construct a customer momentum investment strategy 

designed to exploit investors’ inattention to this subtle yet valuable information network. 

Although the excess returns from such a strategy have diminished in the past decade in a general 

way, they still exist among customer-supplier relationships where information diffuses slowly 

(Cen, Hertzel, and Schiller, 2017), or if information of the companies is costly to obtain 

(Veldkamp, 2006). With an extended CSL dataset and solid theoretical supports, we dissect and 

analyze the customer-supplier linkage more in-depth and reveal the specific shock propagation, 

the channels it is passing through, and eventually the pricing of aggregated idiosyncratic shock. 

The rest of the paper is organized as follows. Section II describes the data and tablets the 

summary statistics. Section III presents the baseline results. Section IV investigates the 

                                                           
3 Stocks with similar price levels also comove due to category restriction (Green and Hwang, 2009). Local investors’ 
investment pattern (Pirinsky and Wang, 2006), analyst coverage (Hameed, Morck, Shen, and Yeung, 2015; Guan, 
Wong, and Zhang, 2015), and joint institutional ownership (Anton and Polk, 2014) each play a critical role in return 
comovement. 
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information flow through the cash flow channel. Section V delves into the fundamental drivers 

of return comovement. Section VI prices customer firm’s idiosyncratic return. Section VII 

concludes the paper. 

Data 

Firm’s disclosure about segments of an enterprise and related information, also known as 

FASB statement No. 131, requires the company to report customers accounting for more than 

10% of its total annual sales. We extract customer segments data from Compustat, and our 

customer-supplier link (CSL) dataset covers the period from 1980 to 2015.4 Some customer 

names are either presented as abbreviations of the company names or artificially ambiguous due 

to reporting firms’ convenient record keeping. We use computer programs to generate a series of 

potential matched customers for each equivocal customer name. We then manually identify the 

real match by cross-referencing using various sources including but not limited to 

CRSP/Compustat database, company’s official website, Bloomberg company files, and 

Hoover’s. We are purposely stringent on the matches, and we only keep those without any 

ambiguity.  Our analysis focuses on the common stocks on NYSE, Nasdaq, and AMEX. We 

drop firms with stock prices lower than $5 to avoid the impact from the microstructure. Utility 

firms and financial institutions are also excluded. For each firm in our final sample, we retrieve 

its return data from CRSP and firm characteristics from the Compustat database.  

Table I summarize the CSL data set. The full sample contains 18,088 unique customer-

supplier links, across the 35 years. The number of suppliers is more than the double of the 

number of customers, which is expected given the average size of customers is ten times as large 

as that of suppliers. Customer firms are also more connected than supplier firms. Customer firms 

                                                           
4 We expand the CSL samples of Cohen and Frazzini (2008) by extending sample period to 2015 and matching 
customers more accurately. 
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have an average of 6.2 suppliers, comparing to only 2.6 customers per supplier. The most 

connected customer firm in our sample is Walmart. The company has reported a total of 450 

suppliers over a span of 35 years. The most connected supplier, Highwoods Properties Inc., on 

the other hand, has only reported 36 customers in the same period. In 2976 pairs, linked firms 

(customer and supplier) come from the same industry. We use Fama-French 48 industries 

classifications. 

Link duration is among the key variables in our primary analysis. Mean duration is 6.3 

years, and the most enduring link is almost as extensive as the whole sample period. One fact  to 

note is that the distribution of the link durations is right-skewed. More than 50% of the links 

(9873 to be exact) last for less than two years, while the long-term links (duration longer than 

five years) account for more than 25% of the full sample. Our empirical evidence in the main 

analysis supports the prediction that a long-term supplier-customer relationship affects a firm’s 

characteristics and operations more substantially and persistently than a short-term one.  

Our baseline comovement tests use weekly returns ending on Wednesdays. We believe 

that weekly returns are more suitable for our study than daily or monthly returns for two reasons: 

first, it avoids nonsynchronous trading consequences associated with daily stock returns; second, 

weekly returns offer more observations comparing to monthly returns. It is critical in our panel 

regression because more than half of our final sample consists of customer-supplier links that last 

for less than two years and thus have short time-series. It is imperative to preserve as many 

observations as possible before and after the CSL announcement to maintain a balanced panel 

dataset. 

One of the primary interests of this paper is to reveal the information channels that 

connect customer and supplier firms. In general, financial information channels can be classified 
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into two categories: cash flow news and discount rate news.  We use implied cost of capital 

(ICC) approach proposed by Chen, Da, and Zhao (2013, CDZ hereafter) to decompose the 

returns. Extreme values are inevitable by-product of CDZ’s return decomposition methodology 

because they use direct cash flow forecasts by analysts which contain substatial noise. We 

winsorize cash flow news and discount rate news to 5 and 95 percentiles to minimize the side 

effect. In table I, we see that the distribution of discount rate news is much more dispersed than 

that of cash flow news. It is not surprising since the cash flow news in CDZ’s decomposition is 

simply the analysts’ earnings forecast and discount rate news has to absorb all other information.  

The cross-sectional statistics of our customer-supplier link sample (panel C of table I) 

allow us to evaluate the complexity of the network. The majority of the firms report only 1 or 2 

customers every year. It is expected because firms are only required to report their principal 

customers. More than 50% of the customer-supplier links last no more than two years in the 

sample based on the firm's report. Long-term links, which last longer than five years by our 

definition, account for a little over 10% of the full sample. Although this does not seem like 

much, the long-term links are the mainstay of our study because the comovement investigation 

requires a substantial length in the time-series dimension.  

Customer-Supplier Comovement and the Information Channels 

Our core analysis estimates the following regression: 

𝑆𝑅𝐸𝑇௜,௧ =  𝛼 +  𝛽௖𝐶𝑅𝐸𝑇௜,௧ +  𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ +  𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶𝑅𝐸𝑇௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇௜,௧ + 𝛽ூே஽𝐼𝑁𝐷௜,௧ +  𝜖௜,௧   (1) 

SRET is a supplier firm’s stock return over the estimation period. CRET is a 

corresponding customer’s stock returns. Link is a dummy variable which takes the value of 1 if 

two firms have been reported as customer and supplier at the time of observation (linked period), 

and 0 otherwise (unlinked period). MKT is value-weighted market returns, and IND is the 
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supplier’s corresponding industry’s value-weighted returns. Both indices exclude corresponding 

supplier firms. We follow Fama and French (1992) industry classification to form 48 industry 

portfolios. We select value-weighted market and industry indices in response to the massive firm 

size differences between supplier and customer firms. In an unreported robustness check, we 

replace the value-weighted index with equal-weighted ones. All the results stay highly 

consistent, and all the references remain unchanged. 

We analyze information channel directly using customer-supplier pairs instead of 

aggregating suppliers’ news for a customer or customers’ news for a supplier because more than 

50% of the customer-supplier links are short-lived. If we form a customer portfolio for a supplier 

firm, the underlying companies within the portfolio change drastically from one report date to 

the next, resulting in disorganized and unbalanced customer portfolio. Also, constructing a 

customer portfolio is useless for a large number of suppliers with only one customer. Moreover, 

customer portfolio formation artificially creates observation gaps5.  

Table II presents the baseline results of this paper. The return regressions use weekly 

returns. In our robustness check, We use monthly returns to rerun all the return comovement 

tests. All results stay highly consistent, and no changes in the inferences are spotted. Link 

duration varies across the final sample links. To both fit our regression model with a balanced 

panel dataset, we analyze the comovement using subsets with different link durations. The 

different duration subsets allow us to examine the impact of link duration on the comovements. 

We test the return comovement in three subsets: CSLs with minimum link duration of two, three, 

                                                           
5 E.g., firm A reported one customer, firm B, in 1980, and another customer, firm C, in 1985. Our study considered 
them as two independent links. However, firm A’s customer portfolio, in this case, doesn’t offer economic meanings, 
nor helps reveal the information channels. 
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and five years.6 We maintain a balanced panel dataset for all three subsets. For example, the 

unlinked period for the five-year subset is (t-84, t-24) months and the linked period is (t, t+60) 

months from the cutoff point. The cutoff point is the earliest date when a CSL is reported. The 

two-year gap in between unlinked and linked period is to address the concern that a customer-

supplier relationship exists before it is acknowledged by the public because companies are only 

required to report their principal customers who contribute to at least 10% of their sales. 

The return comovement factors of customer-supplier relationship can be classified into 

three categories. First, market (systematic) influences such as GDP growth, inflation, 

employment rate, and economic healthiness affect all stocks. Although these factors move stock 

prices in a general way, their impact is lower than those of industries. The second category, 

industry impact, accommodates much richer information including but not limited to the 

proximity of operations and core business among firms, industrial growth opportunities, intra-

industry information flow and networking, and industry oriented institutional investing. The final 

category is customer-supplier link specific information, which is also the primary interest of this 

paper, consists of the closeness of a link, link duration, common institutional ownership, and 

firm characteristics. 

The empirical evidence supports our claims. Panel A of Table II shows the industry’s 

influence on stock returns is not only eight times as large as the market’s, but much more 

significant. It is critical for us to control both market and industry interference to highlight the 

designated information channels that transmit news along the supply chain. 

Even after controlling for market and industry returns, we still cannot claim the 

comovement between customer and supplier firms is directly driven by such a relationship. We 

                                                           
6 The subsets are not mutually exclusive. The subset with three-year link duration are always a part of subset with 
two-year link duration. 
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want to discover the information channels specifically associated with the customer-supplier 

relationship. Customer and supplier firms’ returns may covary before their relationship begins 

due to the proximity in their core business and main operations. Only the differences in 

comovement between the linked and unlinked period give us the insight of channels that host 

link-specific information. Information never stops flowing between firms, especially if two 

companies are within the same industry. Twenty-five percent of our customer-supplier pairs 

come from the same industry, and more come from related industries. Market and industry 

influences are unlikely to change suddenly due to an announcement of the customer-supplier link 

because such a message is firm-specific information, not systematic. If additional comovement is 

detected following the disclosure, it is mainly related to this economic link. And the associated 

information channel is exclusive to the customer-supplier relationship. 

Our panel regression model is very similar to those used in the difference-in-differences 

analysis. The core difference is that we only have one dummy variable. We are interested in the 

comovement purely induced by customer-supplier link information and the information channel 

through which this information passes. 

The baseline results reveal that return comovement between supplier and customer firms 

are highly significant across the sample. For every 1% increase in customer firm’s return, the 

supplier’s return increases about 0.08% even when they are not linked. After the public has 

acknowledged the relationship, the comovement increases by approximately 20%.  Apparently, 

there is an information channel connecting supplier and customer firms. Panel A shows that a 

substantial portion of the return comovement between supplier and customer firms in our sample 

is driven by various market and industry factors, and some unobservable factors. The 
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comovement exists prior to the customer-supplier relationship, but the link increases 

comovement to a significantly higher level. 

Undeniably, there is more than one way to categorize information channels. However, the 

building block of financial valuation models relies on two elements: cash flow and discount rate. 

Recent studies have been debating the importance of cash flow news relative to discount rate 

news in stock prices movement (Goyal and Welch 2008; Larrain and Yogo 2008; Chen, Da, and 

Priestley 2012). Coincidentally, researchers are discussing the effects of investor’s behavior 

comparing to firms’ fundamentals when explaining return comovement.  

Building upon the intuitions and insights of existing literature, the total comovement 

between supplier and customer should be driven by both cash flow and discount rate news. 

However, it is unclear what is driving the increase in comovement induced by the establishment 

of the customer-supplier link. Cohen and Frazzini (2008) show customer portfolio’s return can 

predict corresponding supplier’s return for up to a month because of investor’s inattention to this 

important economic links. Nonetheless, investor’s attention is supposed to eliminate the 

information lag, instead of driving the comovement increase. A more plausible explanation is 

that the boost in the comovement is driven by the cash flow news of customer and supplier firms. 

No rational investment patterns, nor diversification needs will urge investors to buy or sell both 

customer and supplier firms simultaneously.  

To further investigate, we use a return decomposition approach proposed by Chen, Da, 

and Zhao (CDZ) (2013) and decompose customer’s returns into cash flow news and discount 

rates news. The approach extracts prevailing analyst earnings forecasts from IBES as direct 

measures of a firm’s expected future cash flows, to back out the implied cost of capital (ICC). 

The CDZ return decomposition singles out the cash flow news and allow us to explicitly 
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examine the relationship between firms’ fundamentals and the increase in CSL return 

comovement. In panel B and C of Table II, we test the comovement between the supplier’s 

returns and these two components of the customer’s return: 

𝑆𝑅𝐸𝑇௜,௧ =  𝛼 +  𝛽௖𝐶_𝐶𝐹௜,௧ +  𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ +  𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶_𝐶𝐹௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇_𝐶𝐹௜,௧ + 𝛽ூே஽𝐼𝑁𝐷_𝐶𝐹௜,௧  +  𝜖௜,௧   (2) 

𝑆𝑅𝐸𝑇௜,௧ =  𝛼 +  𝛽௖𝐶_𝐷𝑅௜,௧ +  𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ +  𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶_𝐷𝑅௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇_𝐷𝑅௜,௧ + 𝛽ூே஽𝐼𝑁𝐷_𝐷𝑅௜,௧  +  𝜖௜,௧  (3) 

  C_CF is a customer’s cash flow news, and C_DR is a customer’s discount rate news. 

MKT_CF/MKT_DR is the market-wide value weighted cash flow news/discount rate news, and 

IND_CF/IND_DR is the industry value-weighted cash flow news/discount rate news. We find 

customer’s discount rate news affect supplier’s returns across the whole sample. However, we do 

not detect any change in comovement after two firms become business partners or the link is 

known to the public. It suggests that the increases in comovement we document in Panel A are 

not driven by the information related to the discount rate. CSL changes both firms’ fundamentals 

and investor’s expectations of the future cash flows. A successful long-term customer-supplier 

relationship reduces the volatility in supplier’s cash flows and the business risk of both sides, 

resulting in stronger comovement due to the cash flow news, and such a claim is solidly 

supported by empirical evidence. In this sense, the return comovement through the customer-

supplier link is distinguished from the comovement among S&P500 firms (Barberis, Shleifer, 

and Wurgler, 2005) or geographically close firms (Pirinsky and Wang, 2006). 

Panel B and C of Table II definitely point out, for all CSLs that last longer than five 

years, the increase in comovement from CSL establishment is solely driven by customer’s cash 

flow news. The information channel that connects supplier and customer firms always exists, 

even before they cooperate. The business partnership leads to additional cash flow news passage 

between the participating companies. Such cash flow news could contain information about 
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mutual extra earnings or savings in the business operations, or comovement in some other 

fundamental variables. It takes an abiding partnership to allow this implicit cash flow news to 

aggregate to a level where it is powerful enough to align stock returns. Our results shed light on 

the empirical return comovement researches where scholars tend to find the importance of 

investor’s behaviors dominates that of the firm’s fundamentals. 

The insight of (CDZ, 2013) is that cash flow news is more important than discount rate 

news if accumulated over a long investment horizon. Discount rate news is rather transitory. 

Over time, its return driving power will deteriorate and eventually be outweighed by cash flow 

news, which is fundamentals related. The baseline return decomposition is revised quarterly 

based on analyst earnings forecasts. Nevertheless, the model can be altered to estimate monthly 

cash flow news and discount rate news. As a robustness check, we rerun panel B and pane C in 

Table II using monthly CDZ decomposition. Although the significance of some results 

decreases, the overall implications of the results are the same. 

Previously we claim that market and industry factors drive a significant portion of return 

comovement between supplier and customer stocks. Also, we state the economic connection 

after CSL establishment primarily induces the increase in comovement. To validate these 

propositions, we test the return comovement among pseudo-customer-supplier pairs. For each 

customer (supplier) firm in the sample, we randomly identify a matched company within the 

same stock exchange, the same size quintile classified by NYSE common stock breakpoints, and 

the same industry categorized by Fama-French 48 industry classification. When identifying the 

matches, we make sure each matched pair has never had a real economic connection.  

Table III estimate the following model: 

𝑆𝑅𝐸𝑇௜,௧ =  𝛼 +  𝛽௖𝑃𝐶𝑅𝐸𝑇௜,௧ +  𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ +  𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝑃𝐶𝑅𝐸𝑇௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇௜,௧ + 𝛽ூே஽𝐼𝑁𝐷௜,௧ +  𝜖௜,௧      (4) 
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𝑃𝑆𝑅𝐸𝑇௜,௧ =  𝛼 +  𝛽௖𝐶𝑅𝐸𝑇௜,௧ +  𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ +  𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶𝑅𝐸𝑇௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇௧ + 𝛽ூே஽𝐼𝑁𝐷௝,௧ +  𝜖௜,௧       (5) 

PCRET (PSRET) is the return of a pseudo-customer (pseudo-supplier) over the linked 

and unlinked period. The tests in Table III are identical to those conducted in Table II. In 

addition to stock returns comovement analysis, we decompose customer and pseudo customer’s 

returns into cash flow news and discount rate news and run the model (2) and (3) for the pseudo 

pairs we form. 

The coefficients of PCRET and CRET in Table III suggest a strong correlation in stock 

returns between these pseudo pairs even if there are no real business connections. Since the 

pseudo-customer and pseudo-supplier are selected from the same stock exchange and the same 

industry, we can safely assume market and industry factors are driving the comovement in these 

pseudo pairs. More importantly, we do not observe any increase in comovement in any analysis 

or any subset during the linked period. Cash flow and discount rate component analysis suggest 

the same inferences.  

Comovement and Idiosyncratic Information 

The baseline result indicates that cash flow channel is vital to the customer-supplier 

relationship. However, it remains to consider what information is transmitted through this 

channel and leads to greater return comovement. Although the a customer-supplier relationship 

makes the firms to engage in relation-specific investments, which generates more synchronous 

cash flows between these firms, we cannot rule out the possibility that increased exposure to the 

systematic risks may induce a greater comovement. To further investigate the channnel, we 

decompose both customer and supplier’s returns into idiosyncratic and systematic components. 

Table IV tests the comovement of both idiosyncratic and systematic monthly returns of 

linked firms. Idiosyncratic and systematic returns are estimated using regression model (6).  
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𝑅௜,௧ =  𝛼 +  𝛽ெ௄்𝑀𝐾𝑇௜,௧ +  𝛽ௌெ஻𝑆𝑀𝐵௜,௧ +  𝛽ுெ௅𝐻𝑀𝐿௜,௧ +  𝛽ூே஽𝐼𝑁𝐷௜,௧ + 𝜀௜,௧ (6) 

We use Fama-French three factors and industry returns to decompose the firm’s excess 

returns. Excess returns are calculated by subtracting the U.S. T-bill rates from stock returns. 

Monthly factors and risk-free rate data are retrieved from WRDS. We also add industry value-

weighted return to the regression to control the substantial industry influence on customer-

supplier return comovement. We calculate the industry value-weighted return of each firm and 

the corresponding firm is excluded . We employ 60-month rolling windows, i.e. (t-59, t) months, 

to estimate the coefficients of the four independent variables. Then we predict the stock return in 

the month (t+1 month) following estimation window using the estimated coefficients as well as 

Fama-French three factors (MKT, SMB, HML) and industry value-weighted return in (t+1) 

month. The predicted return is the systematic component, and the prediction error is the 

idiosyncratic return. This return decomposition method relies on regression predictability. To 

make sure the robustness of the results, we also decompose the return using daily returns. We 

verify the idiosyncratic and systematic return comovement using these daily decomposed return, 

and all the results remain the same. 

The regressions in Table IV resemble the tests in Table II and III. The differences are, in 

Table IV, the dependent variable is the supplier’s idiosyncratic/systematic return. The 

independent variable CRET represents the customer’s idiosyncratic/systematic return. Link is a 

dummy variable which takes the value of 1 if two firms have been reported as customer and 

supplier at the time of observation (linked period), and 0 otherwise (unlinked period). MKT is 

market-wide value-weighted idiosyncratic/systematic return, and IND is industry-wide indices.  

Table IV unambiguously indicates that CSL-induced return comovement is determined 

by the firm-specific information flow between the linked customer-suppler firms. For the CSLs 
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longer than three years, the comovement in idiosyncratic returns becomes double during the 

linked period. The idiosyncratic return comovement increases almost triple for the subset of 

CSLs with 8 year link duration. We find strong comovement between supplier and customer’s 

systematic returns, but, the systematic comovement in the linked period does not differ from that 

in the unliked period. 

The results imply that supplier and customer firm’s idiosyncratic returns are more 

correlated after the start of their cooperation. There is no increase in exposure to common 

systematic risks induced from the formation of the customer-supplier link. The investors are 

sophisticated enough to incorporate the idiosyncratic information of customers into the stock 

prices of suppliers of the CSL. The low r-squares in the regression for idiosyncratic return 

comovement should not be surprising because idiosyncratic shock are orthogonal to systematic 

ones and technically needs to be orthogonal to idiosyncratic shock of the other company. It is 

important to note that these idiosyncratic shocks to customers and suppliers may not be from the 

separate correlated events. The key is that, if there is an unique event to either customer and 

supplier, the shock of one company is transferred to other company and moves their stock price 

in the same direction. 

The importance of idiosyncratic return for the stock return dynamics draw a lot of 

researchers’ attention since Campbell, Lettau, Malkiel, and Xu (2001) documented the up-trend 

in firm-level idiosyncratic volatility in the recent decades. Numerous attempts have been made to 

explain the idiosyncratic volatility puzzle. Some find a negative relationship between expected 

stock returns and idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang 2006 & 2009; 

Stambaugh, Yu, and Yuan 2015). The others argue that there is no significant relationship 

between expected stock returns and idiosyncratic volatility (Bali and Cakici, 2008; Guo, Kassa, 
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and Ferguson 2014).7 These firm-specific returns and volatility is closely related to earnings 

information (Jiang, Xu, and Yao 2009; Zhang, 2010). Following the existing evidence, earnings 

surprises would contain more idiosyncratic cash flow news than discount rate news. . 

In Table V, we examine comovement between long-term supplier and customer’s 

earnings surprises using four different measures of earnings surprises. The first two measures, 

RET5 and RET21, are 5 trading day and 21 trading day post-earnings announcement cumlative 

abnormal returns (CAR). The CARs of supplier and customer are calculated from the customer’s 

earnings announcement date in each reporting quarter if the annoucement dates of the linked 

firms are different.  We also utilize standardized unexpected earnings (SUE1), which is 

calculated based on a rolling seasonal random walk model (Livnat and Mendenhall, 2006) 

and  standardized unexpected earnings  accounting for the exclusion of special items (SUE2). 

We  do not use earnings surprises from analysts’ forecasts because they can follow Non-GAAP 

standards, and carry a different form of mispricing (Livnat and Mendenhall, 2006), which is not 

desired in this study. The analysts' subjectivities can introduce additional noise to earnings 

surprises. Our study focuses on the movements in firms’ stock returns, along with operations and 

fundamentals.  

Table V shows significant increases in the comovement between customer’s and 

supplier’s 5-day CAR (RET5) and 21-day CAR (RET21) across all three subsamples. The 

increases in return comovement are not surprising given our baseline results, but the magnitude 

of the increases is noteworthy. The increases in comovement are more prominent during the 

event periods than normal times. There is no significant correlation between the customer and 

supplier’s 5-day cumulative returns (RET5), when an economic linkhas not been established. 

                                                           
7 Fu (2009) exceptionally documents a positive relationship between expected stock returns and idiosyncratic 
volatility. 
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Although the 21-day cumulative returns (RET21) of customer and supplier comove before the 

linked period, the comovement becomes almost triple during the linked period.  It appears that 

the 21-day cumulative returns include the effects from  industry factors as it shows relatively 

stronger correlations between RET21 and industry returns. The earnings news of customer firms 

has a ripple effect to their suppliers’ earnings surprises. 

Standardized unexpected earnings (SUE1 and SUE2) offer more direct examination for 

the comovement of earnings shocks in the firm operations. Derived from a seasonal random walk 

model, SUE1 and SUE2 are supposed to be randomly distributed. However, in 2-year and 3-year 

link duration subsample, we find almost same degree of comovement in earnings surprises 

before and after the CSLs establishment. For the 5-year link duration subsample, we observe  the 

increases in earnings surprises comovement. 

As a next, we investigate whether the increases in comovement of stock return and 

earnings surprises are associated with changes in firms’ fundamentals.The long-term customer-

supplier relationship is different from a short-term one when we consider the relationship as 

intangible asset of the firm. In particular, committed long-term customers are valueless assets of 

the suppliers because business risks can be reduced and shared by these customers. Cooperation 

does not necessarily align customer and supplier’s revenue, but it can also save business 

networking costs and improve the quality of the profits on both sides. On the other hand, the 

relationship can be more entranched if the relationship becomes longer. We predict that 

alignment in fundamentals would be more apparent in longer duration CSLs. 

In Table VI, we analyze the comovement in two fundamental variables: profit margin and 

return on assets (ROA). Similar to equation (1), we replace returns with profit margin and ROA 
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of both dependent (supplier’s) and independent variables (customer’s). We control the market 

and industry value-weighted profit margin and ROA.  

𝑆_𝑃𝑀௜,௧ = 𝛼 +  𝛽௖𝐶_𝑃𝑀௜,௧ +  𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ +  𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶_𝑃𝑀௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇_𝑃𝑀௧ +  𝛽ூே஽𝐼𝑁𝐷_𝑃𝑀௝,௧ +  𝜖௜,௧  (7) 

𝑆_𝑅𝑂𝐴௜,௧ = 𝛼 + 𝛽௖𝐶_𝑅𝑂𝐴௜,௧ + 𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ + 𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶_𝑅𝑂𝐴௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇_𝑅𝑂𝐴௧ + 𝛽ூே஽𝐼𝑁𝐷_𝑅𝑂𝐴௝,௧ +  𝜖௜,௧ (8) 

Quarterly and annual fundamental data are retrieved from Compustat. Profit margin is 

defined as the firm’s net income divided by revenue. ROA is defined as the total of income 

before extraordinary items, interests, and related expenses scaled by total assets. Annual data is 

more reliable due to the seasonality in accounting variables. Table VI shows that customer and 

supplier firms have no correlations in the fundamentals when economic links are not formed. 

After their relationship begins, their profit margins and return on assets become to comove 

strongly. Profit margins and return on assets are not only the snapshots of a firm’s operation but 

also the indicator of the healthiness of the firm’s financials. The comoving fundamentals of 

customer and supplier firms affirms the existence of the cash flow channel between customer and 

supplier firms.  

Cross-Sectional Determinants of Customer-supplier Return Comovement 

In this subsection, we examine the determinants of return comovement between customer 

and supplier. We regress supplier’s weekly returns on customer’s weekly returns directly during 

the linked period and obtain the betas (β). In the second stage regression, we regresses the betas 

from first stage on a collection of industry, firm, and link characteristics:  

I. Industrial comovement, the comovement between supplier’s and customer’s 

corresponding industries value-weighted returns. 
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II. Common institutional ownership, a dummy variable which takes the value of 1 if 

a customer-supplier pair has at least one common institutional investor, and 0 

otherwise.  

III. Link duration, the natural log of link duration in months. 

IV. Sales concentration, CSL sales divided by supplier/customer’s revenue. 

V. Accounts payable, the ratio of accounts payable to revenue 

VI. Accounts receivable, the ration of accounts receivable to revenue 

VII. Size, the natural log of the firm’s market capitalization. 

VIII. Leverage, firm’s total debt scaled by total assets.  

IX. Market to book ratio, defined as (total assets + market value of common equity – 

book value of common equity) / Total assets.  

X. ROE, return on equity (net income over equity).  

XI. Size difference, the ratio of the supplier firm’s market capitalization to customer 

firm’s. 

All firm characteristics are from Compustat quarterly file, and institutional ownership 

data is from CDA/Spectrum. Firm characteristic variables are averaged over the linked period 

and year fixed effect is applied to the cross-sectional regressions. The revenue, total assets, and 

common equity which are used forscaling other variables are from the previous fiscal year-end.  

In Table VII, we again confirm that a substantial portion of CSL return comovement 

results from the comovement in industry returns. The evidence among long-term links appears to 

be strong. Interestingly, common institutional ownership has an explanatory power for the 

comovement. However, its ability becomes weaker when we control for supplier’s firm size. The 

institutional investors are sophisticated investors, who make the market more efficient. Their 
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trades make the information of one party of CSL incorporated into the stock price of the other 

party.  But for the large supplier, there is less private information left for institutional investors to 

exploit, hence the common ownership contribute little to the comovement. However, the 

institutional investors play an essential role in the return comovement between small supplier 

and customer. 

Link duration is a unique variable in CSL comovement study. Influences from some 

determinants such as investors’ behavior are transitory, while others associated with fundamental 

changes are more permanent. In an unreported subsample analysis, we find the effect of link 

duration on return comovement is discontinuous. The return comovement is much stronger 

among long-term links than short-term links.  

The first three determinants arerelation specific variables. The rest of the determinants 

are charicteristics of customers and suppliers. Sales concentration measures the closeness of a 

customer-supplier relationship. From the supplier’s point of view, the transactions are revenues, 

but they are costs for customers. Our empirical results indicate that customer purchase 

concentration is the most dominant driver of the comovement, while supplier sales concentration 

is not significant in most tests. Given the asymmetric nature of customer-supplier network, that 

size of customer is much larger than size of supplier and customers have more number of CSL 

than suppliers, customers have more bargaining power than suppliers. When customers can not 

replace their supplier with another supplier, they have less bargaining power and must share their 

profits, which leads to more comovement in fundamentals. In unreported results, we find the 

average supplier sales concentration is around 12%, while the average customer sales 

concentration is only 0.56%. In a customer-supplier relationship, customers are more likely to 

take control.  
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Trade credit is valuable information to companies in the supply chain. It tightens the 

relationship between  customer and supplier by linking some of their financial obligations. We 

find customer’s accounts payable and supplier’s account receivable are important determinants 

of return comovement. Customer’s accounts payable is more critical for short-term links, and 

supplier’s accounts receivable are essencial to CSLs of any duration.  

Leverage, particularly customer’s leverage, provides interesting insights. Leverage 

represents business risk and financing costs of the company. In table VII, we find that significant 

coefficient of the supplier’s leverage disappears when the size of the supplier is controlled. 

However, customer’s leverage is negatively associated with return comovement.  We argue that 

the leverage of customers allows them to have greater bargaining power against suppliers, but 

that of suppliers has less effect, because suppliers are more easily replaced by another and thus 

threatening channels do not work. 

In summary, CSL return comovement is greater if the customer and supplier firms are 

more closely related in terms of their businesses. The proximity of their industries, common 

institutional ownership, and smaller size differences make them more closely associated. They 

become more connected to each other if they cooperate for a long-run with substantial sales.  

The Aggregation of Idiosyncratic Shocks Through Customer-Supplier Links 

Research on idiosyncratic information has received little attention because of the 

diversification argument. Nevertheless, Campbell, Lettau, Malkiel, and Xu (2001)’s discovery of 

trending aggregated idiosyncratic volatility in recent decades spotlights the topics and numerous 

following studies have related the anomaly to various causes (Wei and Zhang 2006, Irvine and 

Pontiff, 2008, Fink et al. 2009), and delivered different asset pricing implications (Ang, Hodrick, 

Xing, and Zhang, 2006 and 2009, Han and Lesmond, 2011, Stambaugh, Yu, and Yuan, 2012). 
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These papers show that idiosyncratic shocks not only play a critical role in valuating 

corporations which are connected in complex ways, but also affect investors’ expectations of 

firms’ risk. 

Both theoretical works (Gabaix, 2011, Acemoglu et al., 2012, Kelly, Lustig, and 

Nieuwerburgh, 2013) and previous empirical results unambiguously suggest the aggregation of 

idiosyncratic shocks into systematic shock in the customer-supplier network. First of all, 

customer-supplier network is an asymmetric network. Customers do not hold a business with all 

their suppliers for the same amount.. Moreover, customers on average are much larger and more 

powerful than the suppliers, and some customers or suppliers have more businesses with many 

other firms. Second, our comovement study reveals rich information flows through the links, 

including earnings news, operating information, and other firm-specific information. These 

information flows align firms’ fundamentals and drive stock return comovement. Idiosycratic 

shocks to customers should aggregate and become a substantial force that drive the stock prices 

of their suppliers. 

Given the structure of the customer-supplier network, we aim to test if aggregated 

customers’ idiosyncratic shocks are priced in suppliers’ returns. We employ Fama and Macbeth 

two-stage regressions. Customer’s idiosyncratic returns are residual in the regression model (6). 

We include  market, size, book-to-market factors, and value-weighted industry return.We 

aggregate customers idiosyncratic returns by averaging idiosyncratic returns of all customers that 

have more than three suppliers and generate the customer factor.We first relate the network 

centrality of the supplier firms and their exposure on customer factor as Ahern (2013) show the 

importance of centrality in inter-industry network for explaining industry returns.  Note that we 

rule out the industry effects on customer factors by including industry return in the first stage 
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regression to get idiosyncratic return. We first use the number of customers as a proxy for a 

supplier’s network centrality(additional test on the alternative centrality measure is presented in 

the appendix). We obtain beta of customer factor from the regression of suppliers’ returns on 

customer factor, as well as Fama and French three factors. We then sort companies into six 

groups by the number of customers of each supplier: suppliers with 1, 2, 3, 4, 5, and more than 5 

customers, respectively. Equal-weighted and value-weighted customer betas are calculated for 

each group. 

In Table VIII, we observe that customer betas increase monotonically as the connections 

of a supplier increase. For suppliers’ with only one customer, the value-weighted customer beta 

is indistinguishable from zero, although the equal-weighted customer beta is statistically 

significant. When a supplier is in the peripheral of the network, their exposure to aggregated 

idiosyncratic shock to the customers  will be minimal. When a supplier firm is placed more in the 

center of the customer-supplier network, the correlation between its returns and the customer 

factor increases extensively. Consistently, for suppliers with more than one customer, both 

equal-weighted and value-weighted averages of customer betas are highly significant. For 

suppliers with more than 5 customers, every 1% increase in customer factor will lead to more 

than 1% increases in their stock returns. The results are consistent with the graunalar network 

theory. If the firm-specific shocks to customers are not aggregated into systematic shocks rather 

diversified away, we would not find any exposure of supplier’s return to customer factor. 

Moreover, the pattern that the beta of customer factor increases as the number of supplier’s 

connection would only be observed in the graunalar network. For suppliers with multiple 

customers, the customer idiosyncratic shocks do aggregate instead of being diversified. 
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Table IX reports the second stage of Fama-MacBeth regression results. First, we regress 

suppliers’ returns on value-weighted market returns and customer factor and obtain market betas 

and customer betas using 36-month rolling windows. Next, we run Fama-MacBeth regression of 

suppliers’ returns on customer beta, market beta, as well as four supplier firms’ characteristics 

variables: logged market capitalizations (log(size)), book to market ratio (BM), lagged monthly 

returns (lag(ret)), and lagged annual returns (lag(ret_1year)), in the month immediately after the 

36-month rolling window. We use these firm characteristic variables to control for size, book-to-

market, short-term reversal, and momentum effect. Column 1 shows that the coefficient of beta 

of customer factors is significantly positive. When suppliers are more exposed to customer 

factors, the return on supplier stocks are significantly higher.  One standard deviation increase in 

beta of customer factor would result in 0.51% increase for average return of supplier. The result 

implies that aggregate customer risk is not hedgeable to investors and requires a positive risk 

premium.  

In falsification tests (columns 2 and 3), we replace customer factor with aggregated 

peripheral customers idiosyncratic returns and aggregated market idiosyncratic returns, and find 

no evidence of pricing. We define peripheral customers as those customer firms with less than 

three suppliers. Both peripheral customers’ Idiosyncratic returns and market Idiosyncratic returns 

are equal-weighted factors. Not all idiosyncratic returns are  aggregated into systematic risks. 

Non-aggregated idiosyncratic shocks through the customer-supplier network are not priced. The 

falsification tests once again confirms the shock aggregation through the customer-supplier 

network. They prove that our results are not driven by the sample biases. In column 4, we 

include betas for customer factor,  peripheral customer factor, and market Idiosyncratic returns at 

the same time, but only customer factor appears to be priced in the market. In our robustness 
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check, we rerun table IX by using beta of SMB, HML, and UMD as control variables instead of 

firm characteristics. The results are highly consistent with those reported.  

In the appendix, we exmaine the asset pricing implication of network centrality measure. 

The beta of customer factor is a direct measure of exposure to customer risks for suppliers.  

However, we can proxy the exposure using the summary statsitic from the structure of the 

network. We use network centrality concepts to capture the exposure on customer risk. As in 

Ahern (2013), we use eigenvector centrality of the supplier firms.8 Eigenvector centrality is 

defined as the first eigenvector of the customer-supplier network’s adjacency matrix.9 Centrality 

is not significantly positive, but  its magnitude is  still economically strong and positive as the 

theory predicts. Because of the large amount of noise in the customer-supplier network at firm-

level data, the centrality measure cannot capture tightly the exposure to customer risk. In 

addition to Fama-MacBeth regression results, we construct a long-short portfolio based on beta 

of customer factor. We sort suppliers into quintiles according to their customer betas. Quintile 1 

includes the suppliers with the lowest customer betas, while quintile 5 consists of those with 

highest customer betas. For the long-short portfolio, we buy suppliers with the highest customer 

betas and sell suppliers with the lowest customer betas simultaneously at the beginning of each 

month. The portfolio is rebalanced monthly. If we ignore transaction costs and taxes, the long-

short portfolio generates annualized equal-weighted alpha of 3.1% and value-weighted alpha of 

6.11%, respectively. Our result is more robust for the large suppliers than small suppliers. It is 

                                                           
8 Our customer-supplier network is massive and asymmetric. Eigenvector centrality accounts for the importance of 
a node (firm) for the connectivity in the whole network. 
9 We make the customer-supplier network adjacency matrix using sales number between each firm pair and make 
the undirectional matrix. For robustness check, we also form an adjacency matrix using dummies to indicate the 
connections: 1 if two firms are connected and 0 if not. The results from the two methodologies are identical. 
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less subject to issues on market-microstructures. It shows that investors do get rewarded by 

bearing customer risk and the return difference is quite sizable.   

Conclusion 

We scrutinize stock return comovement in customer-supplier relationship.  CSL return 

comovement results from various factors: market influence, industry factors, and investor’s 

attention. The establishment of a customer-supplier relationship amplifies the existing 

comovement between the two firms. The increase in comovement is primarily due to the cash 

flow information transmitting between the linked firms. Consistent with the efficient market 

hypothesis, at least for the long-term customer-supplier relationship, fudamental changes in both 

firms drives increase in comovement rather than investor’s behavior.. Abiding and committed 

customer-supplier relationships align both firms’ fundamentals. 

Interestingly, return comovement in CSL comes from idiosyncratic information, instead 

of the systematic information. Unlike diversification argument, idiosyncratic shocks are 

propagated through the CSL and stay within the network.  The connections and network among 

firms  provide the channel for idiosyncratic shocks to transmit and the power for them to 

aggregate. The aggregated idiosyncratic shocks eventually become part of the systematic risk of 

the firms in the network. 

The excess returns generated from the long-short portfolio we constructed cannot be 

explained by Fama and French three factors or momentum factor. It shows that idiosyncratic 

shocks to the central customers are not diversified away, but are aggregated into the systematic 

risks. Our result complies with efficient market hypothesis as the customer risk are priced in the 

market. The risk premium is quite substantial, cannot be ignored when we use any portfolio 

strategy. Our work provides a important insight of return comovement in the connected firms 
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within the input-output network, and contributes to understanding of the rise of the systematic 

risk.  
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Table I 
CSL Dataset and CDZ Decompositions Summary Statistics 

This table shows the summary statistics of our customer-supplier links (CSL) collection. The dataset includes all the principal customers reported by 
supplier firms. The sample comprises of common stocks listed at NYSE, NASDAQ, and AMEX. Utility firms and financial institutions are excluded 
as well as ADRs. We also exclude micro stocks whose prices are lower than $5. The sample period spans from 1980 to 2015. Quarterly return 
decomposition uses the approach proposed by Chen, Da, and Zhao (CDZ, 2013). The model use analyst earnings forecasts as direct measures of 
expected cash flows (CF) to backs out the discount rate (DR) estimates. Both CF news and DR news are winsorized to 5 and 95 percentiles.  
 

Panel A: Link Summary 

Number of suppliers   6492   

Number of customers   2902   

Number of links   18088   

Number of links in the same industry   2976   

Panel B: Link and CDZ Decompositions Statistics 

  MIN MAX MEAN MEDIAN STD 

Number of suppliers per year 389 1215 978.3 1029 175.7 
Number of customers per year 344 1069 828.0 920 186.5 
Number of links per year 617 2514 1801.8 1949 497.3 
Number of links in the same industry per year 42 394 254.0 288 101.6 
Link durations (years) 1 34 6.3 5 5.2 
Number of customers per supplier 1 36 2.6 2 2.4 
Number of suppliers per customer 1 450 6.2 1 18.8 
Customer size (in millions, USD) 5.81 724773.40 37106.19 10336.55 67148.99 
Supplier size (in millions, USD) 2.44 275006.06 2330.90 285.03 11093.95 
Customer returns (weekly, %) -83.76 130.70 0.89 0.56 5.29 
Supplier returns (weekly, %) -61.17 91.67 1.21 0.55 7.27 
Returns (Excluding Dividends) -96.85% 315.46% 2.32% 2.03% 18.29% 
CF News -42.78% 45.03% 1.01% 0.66% 18.29% 
DR News -119.99% 358.24% 1.20% 0.52% 24.25% 

Panel C: CSL's Cross-Sectional Statistics 

Number of suppliers per customer per year 1 2 3 4 5 

Count 10424 2875 1484 945 654 
Percentage 57.63% 15.89% 8.20% 5.22% 3.62% 

Number of customers per supplier per year 1 2 3 4 5 

Count 10160 4271 1986 645 252 
Percentage 56.17% 23.61% 10.98% 3.57% 1.39% 

Link Duration 1-year 2-year 3-year 5-year 8-year 

Count 6832 3314 2175 990 371 
Percentage 37.77% 18.32% 12.02% 5.47% 2.05% 

Link Duration >=1 year >=2 year >=3 year >=4 year >=5 year 

Count 18088 11229 7890 4260 1985 
Percentage 100.00% 62.08% 43.62% 23.55% 10.97% 
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Table II 
Pair-wise Changes in Co-movement of Supplier and Customer 

We estimate the following model: 
𝑆𝑅𝐸𝑇௜,௧ =  𝛼 +  𝛽௖𝐶𝑅𝐸𝑇௜,௧ + 𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ + 𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶𝑅𝐸𝑇௜,௧ +  𝛽ெ௄்𝑀𝐾𝑇௧ + 𝛽ூே஽𝐼𝑁𝐷௝,௧ +  𝜖௜,௧ 

The dependent variable SRETi,t is returns of suppliers. CRETi,t is a corresponding customer’s weekly returns. Linki,t is dummy variable which takes the value of 1 if two firms are linked as customer 
and supplier at the time of observation, and 0 otherwise. We impose a two-year gap between linked and unlinked period. Link*CRETi,t is the interaction term. We estimate a balanced panel model for 
each link duration subset. E.g., for all links last longer than 2 years, (t-208, t-104) weeks is the unlinked period while (t, t+104) weeks is the linked period. MKTt is the value-weighted weekly market 
returns and INDj,t is value weighted weekly returns of supplier’s corresponding industry, defined by Fama and French 48 industry classification. Both indices exclude the corresponding supplier firm. 
This sample comprises of common stocks listed at NYSE, NASDAQ, and AMEX, with prices no less than $5. Utility firms, financial institutions, and ADRs are excluded. Sample period spans from 
1980 to 2015. T-stats are presented in parentheses and are adjusted by industry clustered standard errors. CF news and DR news are decomposed quarterly returns of customer firms. Quarterly return 
decomposition uses the approach proposed by Chen, Da, and Zhao (CDZ, 2013). Both CF news and DR news are winsorized to 5 and 95 percentiles. 
 

Changes in Comovement 

CRET Panel A: Returns  Panel B: CF News  Panel C: DR News 

Link Duration 2-year 3-year 5-year  2-year 3-year 5-year  2-year 3-year 5-year 

CRET 0.078*** 0.080*** 0.080***  0.064*** 0.048*** 0.007  0.061** 0.066** 0.090*** 

 (9.22) (8.86) (6.80)  (4.26) (3.36) (0.58)  (2.46) (2.64) (5.04) 
Link -0.000** -0.000 -0.000**  -0.008 -0.004 -0.011*  -0.019** -0.016** -0.015** 

 (-2.42) (-1.40) (-2.06)  (-1.61) (-0.87) (-1.72)  (-2.31) (-2.37) (-2.24) 
Link_CRET 0.022*** 0.018** 0.021**  -0.020 -0.004 0.046***  0.000 -0.021 -0.028 

 (2.93) (2.18) (2.18)  (-1.31) (-0.21) (3.29)  (0.00) (-0.80) (-1.39) 
MKT 0.112*** 0.112*** 0.133***  -0.034 -0.032 -0.080  0.285*** 0.275*** 0.269*** 

 (3.13) (2.90) (3.29)  (-0.54) (-0.52) (-1.15)  (5.23) (5.23) (5.27) 
IND 0.908*** 0.894*** 0.868***  -0.157** -0.150** -0.137**  0.533*** 0.517*** 0.503*** 

 (21.22) (20.37) (20.24)  (-2.47) (-2.40) (-2.15)  (13.07) (13.03) (12.47) 
Constant -0.000 -0.000** -0.000  0.059*** 0.055*** 0.062***  0.034*** 0.034*** 0.035*** 

 (-1.56) (-2.29) (-1.30)  (9.76) (8.69) (8.39)  (4.06) (4.95) (5.06) 

            
Observations 679,572 773,304 752,984  76,863 72,360 59,257  76,863 72,360 59,257 

Adjusted R2 0.182 0.180 0.183  0.004 0.004 0.005  0.164 0.161 0.169 

Industry Clustered Yes Yes Yes   Yes Yes Yes   Yes Yes Yes 
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Table III 
Pair-wise Changes in Co-movement of Real Supplier (Pseudo Supplier) and Pseudo Customer (Real Customer) 

We estimate the following model: 
Panel A: 𝑆𝑅𝐸𝑇௜,௧ =  𝛼 + 𝛽௖𝑃𝐶𝑅𝐸𝑇௜,௧ + 𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ +  𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝑃𝐶𝑅𝐸𝑇௜,௧ + 𝛽ெ௄்𝑀𝐾𝑇௧ + 𝛽ூே஽𝐼𝑁𝐷௝,௧ + 𝜖௜,௧ 
Panel B: 𝑃𝑆𝑅𝐸𝑇௜,௧ =  𝛼 + 𝛽௖𝐶𝑅𝐸𝑇௜,௧ + 𝛾௟௜௡௞𝐿𝑖𝑛𝑘௜,௧ + 𝛽௅஼𝐿𝑖𝑛𝑘 ∗ 𝐶𝑅𝐸𝑇௜,௧ + 𝛽ெ௄்𝑀𝐾𝑇௧ + 𝛽ூே஽𝐼𝑁𝐷௝,௧ + 𝜖௜,௧ 

For each customer (supplier) firm in the CSL dataset, we randomly identify a matched firm within the same stock exchange, the same size quintile categorized by NYSE common stock breakpoints, and the same industry 
defined by Fama and French 48 industry classification. The dependent variable SRETi,t is returns of suppliers. PCRETi,t is a corresponding pseudo customer’s weekly returns. CRETi,t is a customer’s returns. PSRETi,t is a 
corresponding pseudo supplier’s weekly returns. Linki,t is dummy variable which takes the value of 1 if two firms are linked as real customer and supplier at the time of observation, and 0 otherwise. We impose a two-year 
gap between linked and unlinked period. We estimate a balanced panel model for each link duration subset. E.g., for all links last longer than 2 years, (t-208, t-104) weeks is the unlinked period while (t, 
t+104) weeks is the linked period.  MKTt is the value-weighted weekly market returns and INDj,t is value weighted weekly returns of supplier’s corresponding industry, defined by Fama and French 48 industry 

classification. Both indices exclude the corresponding supplier firm. This sample comprises of common stocks listed at NYSE, NASDAQ, and AMEX, with prices no less than $5. Utility firms, 
financial institutions, and ADRs are excluded. Sample period spans from 1980 to 2015. T-stats are presented in parentheses and are adjusted by industry clustered standard errors. CF news and DR 
news are decomposed quarterly returns of customer firms. Quarterly return decomposition uses the approach proposed by Chen, Da, and Zhao (CDZ, 2013). Both CF news and DR news are 
winsorized to 5 and 95 percentiles. 

Psuedo Customer 

CRET Returns (Weekly)  CF News (Quarterly)  DR News (Quarterly) 

Link Duration 2-year 3-year 5-year  2-year 3-year 5-year  2-year 3-year 5-year 

CRET 0.067*** 0.058*** 0.064***  0.026 0.054** 0.017  0.044** 0.044** 0.042** 

 (9.39) (5.36) (7.50)  (1.23) (2.61) (0.55)  (2.64) (2.56) (2.64) 
Link -0.000* -0.001*** -0.001***  -0.005 0.004 -0.011**  -0.003 0.002 0.002 

 (-1.97) (-4.29) (-3.02)  (-1.32) (0.87) (-2.16)  (-0.93) (0.63) (0.26) 
Link_CRET -0.011 -0.009 -0.013*  0.017 -0.013 0.032  -0.028 -0.016 -0.019 

 (-1.68) (-0.87) (-1.76)  (0.53) (-0.46) (1.04)  (-1.39) (-1.27) (-1.29) 
MKT 0.173*** 0.180*** 0.175***  -0.041 0.003 -0.049  0.203*** 0.197*** 0.215*** 

 (6.83) (5.60) (5.33)  (-0.58) (0.05) (-0.70)  (4.50) (4.29) (4.42) 
IND 0.755*** 0.774*** 0.743***  -0.146*** -0.178*** -0.171***  0.450*** 0.448*** 0.438*** 

 (20.83) (20.87) (22.39)  (-2.76) (-3.52) (-2.95)  (10.30) (8.59) (9.45) 
Constant 0.000 0.000 0.000  0.054*** 0.044*** 0.060***  0.037*** 0.033*** 0.031*** 

 (0.47) (0.15) (1.53)  (11.45) (8.58) (9.86)  (8.70) (10.84) (5.88) 

            
Observations 403,896 449,759 453,336  35,107 31,220 26,705  35,669 32,156 26,403 

Adjusted R2 0.162 0.172 0.164  0.004 0.005 0.006  0.145 0.147 0.148 

Industry Clustered Yes Yes Yes   Yes Yes Yes   Yes Yes Yes 
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Psuedo Supplier 

CRET Returns (Weekly)  CF News (Quarterly)  DR News (Quarterly) 

Link Duration 2-year 3-year 5-year  2-year 3-year 5-year  2-year 3-year 5-year 

CRET 0.045*** 0.049*** 0.050***  0.045** 0.066** 0.050**  0.004 -0.002 0.011 

 (5.81) (5.18) (5.10)  (2.50) (2.61) (2.23)  (0.26) (-0.11) (0.52) 
Link -0.001** -0.000 -0.001***  0.001 -0.004 -0.012**  0.001 -0.001 -0.008* 

 (-2.24) (-0.47) (-3.04)  (0.14) (-0.74) (-2.26)  (0.36) (-0.14) (-1.72) 
Link_CRET -0.011 0.002 0.004  0.004 -0.027 -0.008  -0.008 -0.007 -0.010 

 (-1.26) (0.38) (0.47)  (0.24) (-1.12) (-0.33)  (-0.62) (-0.51) (-0.57) 
MKT 0.197*** 0.177*** 0.195***  0.049 0.082 0.041  0.145*** 0.137*** 0.143*** 

 (5.65) (5.58) (6.74)  (0.62) (0.89) (0.41)  (4.14) (3.76) (4.82) 
IND 0.810*** 0.800*** 0.774***  -0.169*** -0.176*** -0.166***  0.491*** 0.539*** 0.510*** 

 (17.53) (19.86) (23.20)  (-2.87) (-3.19) (-2.80)  (13.57) (14.60) (13.40) 
Constant -0.000 -0.000*** -0.000  0.044*** 0.048*** 0.056***  0.030*** 0.032*** 0.039*** 

 (-1.52) (-3.53) (-0.67)  (8.62) (8.17) (9.50)  (9.46) (8.37) (8.89) 

            
Observations 318,968 373,543 406,323  34,094 30,780 27,058  32,234 29,938 26,194 

Adjusted R2 0.186 0.178 0.174  0.005 0.004 0.004  0.156 0.172 0.156 

Industry Clustered Yes Yes Yes   Yes Yes Yes   Yes Yes Yes 
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Table IV 
 Idiosyncratic and Systematic Returns Comovement 

We decompose both customer and supplier’s monthly excess returns into idiosyncratic and systematic components using Fama and French three-factor model, plus controlling for value weighted 
industry returns. Excess returns are calculated by subtracting the U.S. T-bill rate. Our model uses the 60-month rolling window to regress a firm’s monthly returns on the Fama and French three 
factors (MKTRF, HML, and SMB) as well as its corresponding industry’s value-weighted returns to predict its next month’s return. The predicted return is the systematic return and the prediction 
error is the idiosyncratic return. The dependent variable is supplier’s idiosyncratic/systematic return, and CRET is customer’s idiosyncratic/systematic return. Link is a dummy variable which takes 
the value of 1 if two firms are linked as real customer and supplier at the time of observation, and 0 otherwise. We estimate a balanced panel model for each link duration subset. E.g., for all links last 
longer than 2 years, (t-48, t-24) months is the unlinked period while (t, t+24) months is the linked period.  MKT is the value-weighted market idiosyncratic/systematic returns and IND is value 
weighted idiosyncratic/systematic returns of supplier’s corresponding industry, defined by Fama and French 48 industry classification. Both indices exclude the corresponding supplier firm. This 
sample comprises of common stocks listed at NYSE, NASDAQ, and AMEX, with prices no less than $5. Utility firms, financial institutions, and ADRs are excluded. Sample period spans from 1980 
to 2015. T-stats are presented in parentheses and are adjusted by industry clustered standard errors. 
 

Idiosyncratic and Systematic Returns Comovement 

CRET IdioRet  SysRet 

Link Duration 2-year 3-year 5-year  2-year 3-year 5-year 

CRET 0.058*** 0.038*** 0.039***  0.138*** 0.134*** 0.118*** 

 (3.30) (2.71) (3.36)  (4.20) (4.40) (3.59) 
Link -0.001 -0.000 -0.001  0.001 0.000 0.001 

 (-0.43) (-0.24) (-0.77)  (1.07) (0.68) (1.28) 
Link_CRET 0.008 0.038*** 0.031***  -0.001 -0.009 0.015 

 (0.48) (3.11) (3.22)  (-0.07) (-0.52) (1.13) 
MKT 1.196*** 1.275*** 1.225***  0.465*** 0.449*** 0.416*** 

 (4.95) (5.61) (6.41)  (4.88) (5.17) (5.29) 
IND 0.018 0.029 0.145*  0.621*** 0.625*** 0.631*** 

 (0.19) (0.32) (1.69)  (9.09) (10.53) (11.49) 
Constant -0.004*** -0.005*** -0.005***  0.002** 0.002** 0.001** 

 (-4.01) (-4.98) (-4.84)  (2.53) (2.55) (2.49) 

        
Observations 125,033 148,621 160,917  125,033 148,621 160,917 

Adjusted R2 0.003 0.004 0.004  0.486 0.491 0.507 

Industry Clustered Yes Yes Yes   Yes Yes Yes 
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Table V  
Comovement in Earnings Surprises 

This table presents the comovement between supplier and customer firm’s earnings surprises. We use four earnings surprises measurement: Ret5 and Ret21 respectively are post-earnings 
announcement 5-day and 21-day returns. We match supplier’s earnings announcement date to its customer’s in each reporting quarter. Sue1 is earnings surprises measured using a rolling seasonal 
random walk model (Livnat and Mendenhall, 2006). Sue2 is Sue1 accounting for the exclusion of special items. The dependent variable is supplier’s earnings surprises, the ES is customer’s earnings 
surprises. Link is a dummy variable which takes the value of 1 if two firms are linked as real customer and supplier at the time of observation, and 0 otherwise. We estimate a balanced panel model for each link 
duration subset. E.g., for all links last longer than 5 years, (t-84, t-24) months is the unlinked period while (t, t+60) months is the linked period.  MKT is the value-weighted market earnings surprises and 

IND is value weighted earnings surprises of supplier’s corresponding industry, defined by Fama and French 48 industry classification. Both indices exclude the corresponding supplier firm. This sample comprises of 
common stocks listed at NYSE, NASDAQ, and AMEX, with prices no less than $5. Utility firms, financial institutions, and ADRs are excluded. Sample period spans from 1980 to 2015. T-stats are 
presented in parentheses and are adjusted by industry clustered standard errors. 

ES Measure Ret5   Ret21   Sue1   Sue2 

  2-year 3-year 5-year  2-year 3-year 5-year  2-year 3-year 5-year  2-year 3-year 5-year 

ES 0.016 -0.012 -0.001  0.071** 0.056** 0.083***  0.080*** 0.058** 0.020  0.090*** 0.068*** 0.031* 

 (0.42) (-0.42) (-0.04)  (2.52) (2.67) (4.54)  (3.72) (2.46) (1.02)  (4.36) (3.15) (1.95) 

Link -0.003 -0.005** -0.002  -0.004 -0.009*** -0.003  -0.002 -0.002 -0.003***  -0.001 -0.001 -0.002*** 

 (-1.22) (-2.45) (-0.83)  (-1.58) (-3.15) (-0.98)  (-1.33) (-1.37) (-3.27)  (-1.13) (-1.33) (-2.86) 

Link_ES 0.051 0.091** 0.109***  0.137*** 0.143*** 0.106***  -0.042 -0.009 0.061***  -0.047** -0.021 0.049** 

 (1.10) (2.57) (3.29)  (3.05) (3.61) (2.90)  (-1.57) (-0.40) (3.44)  (-2.21) (-1.02) (2.35) 

MKT_ES 0.813*** 0.639*** 0.690***  0.354*** 0.328*** 0.356**  0.680*** 0.594** 0.614***  0.418* 0.431** 0.418** 

 (3.27) (2.81) (3.40)  (3.47) (2.75) (2.39)  (2.88) (2.53) (2.95)  (1.98) (2.20) (2.56) 

IND_ES 0.660*** 0.644*** 0.531***  0.839*** 0.789*** 0.652***  0.730*** 0.714*** 0.671***  0.762*** 0.740*** 0.696*** 

 (4.47) (4.67) (4.72)  (9.92) (7.95) (4.91)  (6.58) (6.10) (7.71)  (6.53) (6.74) (10.84) 

Constant 0.003 0.004* 0.004  -0.001 0.001 0.001  0.000 0.000 0.001  0.000 0.000 0.001 

  (1.18) (1.87) (1.49)  (-0.36) (0.41) (0.31)  (0.12) (0.06) (1.43)  (0.15) (0.11) (1.37) 

Observations 47,908 48,578 42,319  47,833 48,508 42,270  55,528 56,875 49,910  55,615 56,970 49,984 

Adjusted R2 0.045 0.042 0.041  0.199 0.183 0.161  0.036 0.035 0.039  0.035 0.036 0.040 

Industry Clustered Yes Yes Yes   Yes Yes Yes   Yes Yes Yes   Yes Yes Yes 
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Table VI 

Comovement in Fundamentals 
We estimate the comovement in profit margin (PM) and return on total assets (ROA). PM is net income scaled by firm’s revenue. ROA is the total of 
income before extraordinary items and interests and related expenses divided by lagged total assets. Fundamentals date comes from Compustat’s 
annual update database. We regress suppliers’ fundamental variables on customers’. C_Var is a corresponding customer’s PM and ROA. Link i,t is 
dummy variable which takes the value of 1 if two firms are linked at the time of observation, and 0 otherwise. We estimate a balanced panel model 
for each link duration subset. E.g., for all links last longer than 5 years, (t-84, t-24) months is the unlinked period while (t, t+60) months is the linked 
period. MKT_Var is the value-weighted quarterly marketwide PM and ROA, and IND_Var is value weighted annual PM and ROA of supplier’s 
corresponding industry, defined by Fama and French 48 industry classification. This sample comprises of common stocks listed at NYSE, NASDAQ, 
and AMEX, with annual sales no less than $10 million. Utility firms, financial institutions, and ADRs are excluded. Sample period spans from 1980 
to 2015. T-stats are presented in parentheses and are adjusted by industry clustered standard errors. 

 
 

Comovement in Fundamentals 

  2-year   3-year   5-year 

Var PM ROA   PM ROA   PM ROA 

C_Var -0.078 -0.058  -0.132*** -0.057  -0.086* -0.082 

 (-0.96) (-0.87)  (-3.34) (-0.98)  (-1.90) (-1.26) 
Link -0.018** -0.021***  -0.025*** -0.022***  -0.011 -0.023*** 

 (-2.15) (-3.88)  (-3.77) (-4.66)  (-1.12) (-4.36) 
Link*C_Var 0.214*** 0.112**  0.288*** 0.116***  0.138** 0.099** 

 (3.96) (2.03)  (7.01) (3.23)  (2.28) (2.08) 
MKT_Var 0.072 0.093  -0.323 -0.064  -0.591 -0.057 

 (0.30) (0.52)  (-0.90) (-0.47)  (-1.45) (-0.35) 
IND_Var 1.517*** 1.272***  1.461*** 1.263***  1.351*** 1.159*** 

 (8.03) (6.40)  (6.25) (5.28)  (5.41) (5.19) 
Constant -0.003 -0.013  0.043 0.007  0.067** 0.021 

 (-0.12) (-1.00)  (1.38) (0.55)  (2.17) (1.51) 
Number of observations 13,300 11,103   12,130 10,220   9,310 7,973 
Adjusted R2 0.215 0.140  0.204 0.145 

 
0.184 0.137 

Industry Clustered Yes Yes   Yes Yes   Yes Yes 
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Table VII  
Firm Characteristics Determinants of Comovement 

This table investigates the determinants of CSL comovement. The dependent variable is the direct comovement between supplier and customer firms 
during the linked period. Industry comovement is the comovement between supplier and customer’s industries, defined by Fama and French 48 
industry classifications. Institutional ownership overlap is a dummy variable that takes a value of 1 if customer and supplier firms see more than one 
common institutional investor, and 0 otherwise. Link duration is the natural log of the link duration in months. Size is the natural log of firm’s market 
capitalizations. Sales concentration is CS sales divided by the revenue of either supplier or customer firm. Payable is accounts payable to revenue 
ratio. Receivable is accounts receivable to revenue ratio. Leverage is total debt scaled by firm’s total assets. Market to book ratio is market value of 
the total assets divided by book value of firm’s total assets. ROE is net income scaled by market value of the equity. Size difference is supplier’s size 
scaled by customer’s size. All independent variables are averaged over the duration of the linked period. This sample includes common stocks listed 
at NYSE, NASDAQ, and AMEX, with prices no less than $5. Utility firms, financial institutions, and ADRs are excluded. Sample period spans from 
1980 to 2015. T-stats are presented in parentheses and year fixed effect are applied to all regressions. 

  Panel A: Full Sample   Panel B: Long-term Links 

Model 1 2 3 4  1 2 3 4 

Industry Comovement 0.095*** 0.096*** 0.136*** 0.134***  0.293*** 0.244*** 0.277*** 0.253*** 

 (8.32) (6.96) (8.67) (9.49)  (11.50) (8.65) (10.04) (9.92) 
Inst. Ownership Overlap 0.040*** 0.009 0.024* 0.059***  0.039*** 0.003 0.013 0.049*** 

 (3.46) (0.69) (1.76) (4.98)  (2.65) (0.19) (0.84) (3.38) 
Link Duration 0.014*** 0.013** 0.007 0.019***  0.028** 0.017 0.006 0.065*** 

 (2.76) (2.43) (1.19) (3.73)  (2.07) (1.11) (0.37) (4.77) 
C_sales concentration 0.988***  0.537**   1.483***  0.958*  

 (4.76)  (2.15)   (3.39)  (1.86)  
C_payable 0.242***  0.251*** 0.202**  0.146  0.231* 0.183 

 (2.97)  (2.58) (2.30)  (1.28)  (1.84) (1.58) 
C_size 0.034***  0.029***   0.040***  0.034***  

 (13.58)  (9.55)   (11.32)  (8.85)  
C_leverage -0.190***  -0.210*** -0.159***  -0.199***  -0.238*** -0.211*** 

 (-7.15)  (-6.80) (-5.66)  (-5.10)  (-5.54) (-5.46) 
C_mb 0.008**  0.010** 0.011***  -0.007  -0.004 -0.005 

 (2.37)  (2.51) (3.14)  (-1.04)  (-0.55) (-0.83) 
C_roe -0.039**  -0.046** -0.009  -0.028  -0.019 0.052** 

 (-2.00)  (-2.05) (-0.45)  (-1.14)  (-0.74) (2.36) 
S_sales concentration  0.078** -0.007    -0.001 -0.057  

  (1.98) (-0.16)    (-0.02) (-1.07)  
S_receivable  0.066** 0.070** 0.090***   0.166*** 0.109** 0.107*** 

  (2.33) (2.30) (3.35)   (3.31) (2.21) (2.60) 
S_size  0.034*** 0.029***    0.025*** 0.021***  

  (13.98) (11.02)    (8.71) (7.10)  
S_leverage  -0.012 0.015 0.043**   0.037 0.060** 0.099*** 

  (-0.67) (0.80) (2.51)   (1.41) (2.28) (4.13) 
S_mb  0.002 0.002 0.001   0.009*** 0.011*** 0.009*** 

  (1.38) (1.48) (0.53)   (2.60) (3.07) (2.61) 
S_roe  -0.032*** -0.041*** -0.019**   -0.063*** -0.062*** -0.041*** 

  (-3.95) (-4.72) (-2.40)   (-5.75) (-5.75) (-4.24) 
Size difference    -0.025***     -0.027*** 

    (-4.62)     (-3.12) 
Constant -0.122*** -0.024 -0.260*** 0.191***  -0.369*** -0.138* -0.380*** -0.098 

 (-2.96) (-0.72) (-5.13) (5.76)  (-4.58) (-1.74) (-4.25) (-1.32) 

          
Observations 5,321 3,816 3,297 4,409  2,222 1,868 1,748 2,210 

Adjusted R2 0.064 0.068 0.125 0.051  0.128 0.110 0.188 0.095 
Year FE Yes Yes Yes Yes   Yes Yes Yes Yes 
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Table VIII 

One-way Sorted Customer Betas 

This table presents one-way sort portfolios based on customer betas (betas of aggregated customer idiosyncratic returns). Customer idiosyncratic 
returns are the residuals backed out from a customer firm’s monthly excess return using a model controlling for Fama and French 3 factors (MKTRF, 
SMB, and HML) in addition to its corresponding value weighted industry mean returns. We group the customer betas into 6 groups by the number of 
customers of each supplier firm. Group 1-5 are supplier firms with 1-5 customer firms, respectively. Group 6 hosts supplier firms with more than 5 
customer firms. Customer betas are estimated in the first step of Fama-Macbeth methodology using 36-month rolling windows. This first step regress 
supplier firms’ returns on aggregated customer idiosyncratic returns, as well as Fama and French three factors. Both equal-weighted and value-
weighted customer betas are shown in the table. The sample includes common stocks listed at NYSE, NASDAQ, and AMEX. Utility firms, financial 
institutions, microcap stocks (stock prices lower than $5), and ADRs are excluded.  

Group: Number of Customers Customer Beta EW Customer Beta VW 

1 24.1*** 1.23 

 (13.6) (0.74) 
2 49.12*** 17.09*** 

 (17.41) (4.93) 
3 26.21*** 20.23*** 

 (7.95) (4.92) 
4 48.24*** 54.87*** 

 (8.17) (11.54) 
5 101.76*** 86.57*** 

 (6.6) (5.49) 
6 105.02*** 120.93*** 
  (9.61) (10.5) 
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Table IX 

Customer Risk Factor 

This table includes the test results on whether the customer factor is priced in supplier’s stock returns. Customer factor is monthly 
aggregated idiosyncratic returns of all customers in our sample. Idiosyncratic returns are the residuals backed out from a firm’s 
monthly excess return using a model controlling for Fama and French 3 factors (MKTRF, SMB, and HML) in addition to its 
corresponding value weighted industry mean returns. Peripheral customers are customer firms with less than 3 suppliers in our 
sample. Size is a firm’s market capitalization in the previous month. BM is calculated as current fiscal year’s book equity to the 
firm’s market equity in June. All stock returns are matched with BM from previous fiscal year. The regressions also controls for 
lag monthly (lag(RET)) and annual returns (Lag(RET_1Year)). The regressions follow Fama-Macbeth methodology. Betas of 
each independent variable are first estimated using the 36-month rolling window in the first step. The second step runs cross-
sectional regression of supplier returns on each as well as all betas in the months immediately following the rolling windows. The 
sample includes common stocks listed at NYSE, NASDAQ, and AMEX. Utility firms, financial institutions, microcap stocks 
(stock prices lower than $5), and ADRs are excluded.  

Customer Factor 0.0616***           0.0507*** 

 (3.19)      (2.77) 

Peripheral Customers Idiosyncratic Returns   -0.314    0.0853 

 
  (-0.82)    (1.53) 

Market Idiosyncratic Returns     0.0170  0.0237 

 
    (0.75)  (1.09) 

 
       

MKTRF -0.126  0.0790  -0.112  -0.132 

 (-0.80)  (0.32)  (-0.71)  (-0.85) 

Log(Size) -0.114***  0.0349  -0.0933***  -0.124*** 

 (-3.45)  (0.24)  (-2.69)  (-3.63) 

BM 0.250  2.320  0.268  0.0826* 

 (1.49)  (1.04)  (1.53)  (1.82) 

Lag(RET) -3.430***  -1.500  -3.760***  -3.910*** 

 (-5.74)  (-0.64)  (-6.64)  (-6.87) 

Lag(RET_1Year) 0.459*  1.420  0.390**  0.362** 

  (1.96)   (1.25)   (2.00)   (2.01) 

Constant 1.410***   -1.030   1.210***   1.570*** 

 (4.04)  (-0.41)  (3.14)  (4.49) 

Number of Observations 180960   180960   180960   180960 

Adjusted R2 0.072   0.072   0.072   0.083 
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Table X 

Long-short Portfolio 

We construct a long-short portfolio to profit from customer-supplier network risk propagation. This table presents the excess 
returns from our long-short portfolio strategy. Supplier firms are first sorted into quintiles based on their customer betas: 1 being 
the lowest customer beta group and 5 being the highest beta group. The dependent variable of the long-short portfolio is the 
differences in supplier returns between group 5 and group 1. RetEW and RetVW are simply the equal-weighted and value-
weighted stock returns of the supplier firms in each quintile. We employ Fama and French 4-factor model to evaluate the risk 
compensation. AlphaEW and AlphaVW are intercepts from regressions of equal-weighted and value-weighted supplier returns 
on the 4 factors (MKTRF, SMB, HML, and UMD). The sample includes common stocks listed at NYSE, NASDAQ, and AMEX. 
Utility firms, financial institutions, microcap stocks (stock prices lower than $5), and ADRs are excluded. 

Customer Beta Quintiles RetEW RetVW AlphaEW AlphaVW 

1 1.23*** 0.83*** 0.21** -0.14 

 (3.91) (2.65) (2.08) (-0.9) 

2 1.24*** 0.96*** 0.18** 0.07 

 (4.9) (4.36) (2.21) (0.65) 
3 1.26*** 0.91*** 0.23*** 0.05 

 (5.09) (4.07) (3.38) (0.48) 

4 1.39*** 0.98*** 0.35*** 0.16 

 (5.18) (3.34) (4.33) (1.07) 

5 1.51*** 1.3*** 0.47*** 0.37** 

 (4.55) (3.75) (4.31) (2.17) 

Long-Short Portfolio 0.28** 0.47** 0.26* 0.51** 

 (2.18) (2.17) (1.95) (2.28) 

Annualized Alpha 3.34** 5.68** 3.1* 6.11** 

  (2.18) (2.17) (1.95) (2.28) 
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Abstract 

This paper investigates the economic outcomes of corporate espionage (also known as 

trade secrets) lawsuits. Utilizing 137 hand-collected trade secret cases, we find significantly 

positive (negative) abnormal returns for the favorable (unfavorable) court decisions up to 5 days 

around the court decision dates. Our findings are consistent with two hypotheses: information 

leaking before the event and investor overreaction/underreaction on and after the event days. Our 

analysis on firm fundamentals show that the consequences of losing trade secret lawsuits are 

long-lasting. The findings indicate that the punishment incorporated by the market is more severe 

for the losing firms.  
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Introduction 

The stock market is susceptible to companies’ involvement in legal confronts. Corporate 

litigations are expensive, and affect a firm’s stock market performance as well as corporate 

decisions. Karpoff et al.  (2008a) show that a firm’s reputational damage from financial 

misrepresentation can be 7.5 times as large as the nominal penalty from the law enforcement 

order. Moreover, the managers personally must pay the price for cooking the book (Karpoff et al. 

2008b). Extensive studies have focused on the consequences of firms’ malpractice, which is 

against public interests (Becker, 1968; Alexander, 1999; Karpoff et al. 2008a, 2008b; Karpoff et 

al. 2005; Karpoff et al. 2014). Nevertheless, little attention has been paid to the economic 

outcomes of legal battles over sensitive corporate issues, such as corporate espionage, between 

companies. Corporate espionage, emerged from intense market competition and intended to steal 

the trade secrets from competing firms, implies lucrative opportunities and dramatic conflicts of 

interests (Fink, 2003; Fitzpatrick, 2003; Fitzpatrick et al., 2004). The resolutions of such 

corporate espionage cases have important economic implications.  

In this paper, we seek to fill this gap by examining the financial outcomes of firms 

embattled in corporate trade secret lawsuits. Corporate espionage activities are widely studied in 

legal and ethical areas (Boni, 1999; Maher and Thompson, 2002; Almeling et al., 2009, 2010), 

but little has been explored on the business side. Thus, the purpose of this paper is to supplement 

the trade secret research with insights from the financial market.  

Using hand-collected trade secret lawsuits from the LexisNexis database for the period of 

1992 to 2012, we find that when a court decision is favorable (unfavorable) to a firm, the firm’s 

market-adjusted returns are significantly positive (negative). The abnormal returns last for a five-

day event window (-2, 2). The results shed lights on the trading behavior of investors. Anecdotal 
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evidence shows that active investors attempt to dig the leaking information and trade 

accordingly. Moreover, Eastwood and Nutt (1999) and Chan (2003) show that investors 

overreact to good news and underreact to bad news. The empirical evidence we document 

supports both information leaking and investor overreaction/underreaction hypotheses. We 

further show that the impacts of the trade secret lawsuits are long-lasting, especially for firms 

losing the case.  The evidence indicates that the punishment borne by the market is more 

substantial for firms losing the litigations. 

Our paper makes several contributions to the literature. First, our study contributes to the 

legal research in the financial market. Karpoff et al. (2008a, 2008b) show that the costs of firms 

cooking the books are enormous, including reputational loss and direct penalty. We provide 

evidence on the economic consequences of trade secret lawsuits. We add to the literature by 

analyzing how the court decisions of legal combats over corporate trade secret activities affect 

investors’ expectation of the firms in the short run.  

Second, our work also contributes to documenting how the court decisions influence a 

firm’s corporate activities in the long run. Gurun and Kominers (2014) show that intellectual 

rights lawsuits, such as patent trolls, discourage future innovation activities of the target firms. 

We add to the literature by showing that this discouragement is not only for patent troll cases. In 

addition, we find that firms losing the trade secret cases tend to be more conservative in their 

corporate activities with fewer intangible assets, lower capital expenditures, and less use of debt.  

The rest of the paper is organized as follows. Section 2 describes data and methodology. Section 

3 presents the empirical results of the event study. Section 4 illustrates the implications for 

corporate policies. Section 5 concludes the paper. 

Data and Methodology 
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The data used in this paper is composed of hand-collected trade secret cases from 

LexisNexis Academic. Cases in our sample generally go through at least two court trials before 

they conclude. Since our paper investigates the economic outcomes, we exclude cases with no 

public firms involved. Our initial sample consists of 213 cases for the period of 1992 to 2012. 

The 213 cases cover 569 trials.  We collect a set of information for each trial including names, 

GVKEYs, and CUSIPs of both plaintiff and defendant companies. We then match the firms with 

the data in CRSP and Compustat. For each trial in each case, we also identify the favorability of 

the court rulings to both parties. There are trials deemed as non-material, which are thus 

excluded in later analysis. Reasons to classify the non-material cases are summarized in detail in 

Appendix Table A1.  

Table 1 presents the summary of the cases collected. One lawsuit case goes through 

roughly five trials before it concludes. Most cases conclude after two trials. After excluding trials 

with non-material court decisions and those without available return data, our final sample is 

composed of 137 cases that cover 312 trials. 

All trials in the final sample are categorized into two groups: 1) plaintiff group, which are 

in pursuit of recovering their damages actively; 2) defendant group, which fights to secure their 

benefits. The trials in each group are further assigned to three categories based on court 

decisions: favorable, unfavorable, or non-material. As shown in Table 1, we identify 57 trials 

that favor plaintiffs, 68 favor defendants, 31 against plaintiffs, 58 against defendants, and 98 

non-material decisions. This hand-collected dataset allows us to observe the stock market 

reactions to material court decisions from one side of the lawsuits because either the return data 

for the other side is not available or the other side is not a public company.  
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We follow Karpoff et al. (2009) and conduct an event study on the market reaction to 

trade secret lawsuit decisions. Abnormal returns are estimated based on the market model during 

short-term event windows around material decision announcement dates. We compute the 

cumulative raw returns (CRET) and the cumulative abnormal returns (CAR) on the event day 

(0), one (-1, 1), and two trading days (-2, 2) around the decision announcement dates.  

Empirical Results 

Prior studies document significantly positive returns around good news events, such as 

earnings announcements and earnings surprises (La Porta et al., 1986; DeFond et al., 2007). 

Thus, we expect to observe positive price reaction to favorable court decisions. On the other 

hand, when they receive unfavorable court rulings, firms are expected to experience negative 

stock price movement (Karpoff et al., 2008). In addition, firms experience reputation loss when 

they have product recalls (Jarrell and Peltzman, 1985), defense procurement fraud (Karpoff et 

al., 1999), and environmental violations (Karpoff, et al., 2005).  

Table 2 reports the stock market reaction around the court decision dates in our sample. 

We form six categories: Plaintiffs (Favorable), Plaintiffs (Unfavorable), Defendants (Favorable), 

Defendants (Unfavorable), Plaintiffs (Non-material), and Defendants (Non-material). As 

reported in Panel A of Table 2, the mean CAR ranges from -1.739% to 2.284% for the six 

categories. When plaintiffs receive favorable court decisions, 85.96% out of the 57 firms 

experience positive abnormal returns. In the case of Plaintiffs (Favorable), the average CAR is 

2.284% with a Patell’s t value of 4.30. Similarly, when the court decisions for defendants are 

favorable, the abnormal returns are also significantly positive (2.171%). Both results are 

consistent with prior studies and our predictions that firms benefit from favorable court rulings, 

resulting in positive stock market reaction. In contrast, the mean event day CAR is significantly 
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negative when court rulings are unfavorable for both plaintiffs and defendants with values of -

1.365% and -1.739%, respectively. Unfavorable decisions discourage investors’ confidence, 

which further reduces a firm’s market valuation. The mean CAR is marginally significant and 

negative when defendants receive non-material court decisions. We also extend the event 

windows to (-1, 1) and (-2, 2), as reported in Panel B and Panel C of Table 2. The abnormal 

returns are spanned over a longer window than those of the decision announcement dates. The 

findings are consistent with the results for the event day (0) abnormal returns. 

Investors, especially institutional investors and insiders, have the incentive, motivation, 

and resources to obtain and process information (Brunnermeier, 2005). Thus, investors might 

trade on the private information before the court decisions are announced, leading to significant 

turbulence in stock prices before the decision dates. On the other hand, investors may overreact 

or underreact to the court decisions (Bondt et al., 1987). As a result, the significant cumulative 

abnormal returns over the longer event windows can also be a result of investors’ irrational 

trading activities. To disentangle the two types of trades, we test abnormal stock returns for the 

following two event windows: (-2, -1) and (1, 2). The results are reported in Table 3. As shown 

in Panel A, before the decisions are announced, the mean CAR is significantly positive with a 

value of 1.508% for Plaintiffs (Favorable). Whereas, the pre-event average CAR is -1.964% (t-

value=-2.55) when the outcomes are unfavorable for plaintiffs. We do not observe significant 

results for defendants. The findings are not surprising since plaintiff firms are actively seeking 

resolutions while defendants are holding ground.  A more interesting implication of such results 

is that they are in line with information leaking hypothesis. In order to fully illustrate this point 

of view, we need to combine the results in both panel A and panel B of Table 3.  
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Panel B of Table 3 presents the results for post-event abnormal returns. In the cases of 

Plaintiffs (Favorable), we do not observe significant market reaction after the event day. One 

explanation is that the information content of the decisions on plaintiffs has been substantially 

explored by investors and incorporated into stock prices before and on the decision 

announcement dates. In comparison, the defendant favorable group shows no evidence of 

significant CAR before the decision announcement dates due to investors holding around. 

However, the mean CAR is 0.391% and significant for Defendants (Favorable) during the post- 

event window of (1, 2). Investors do not discriminate against defendant firms when they intend 

to profit from private information. Information leaking hypothesis solely is far from enough to 

fully explain the differences in CAR between plaintiff and defendant group, as well as the 

differences in CAR between pre and post-event windows for both groups. The findings suggest 

that investors also overreact to good news while they are digging for private information. For 

both unfavorable decision groups, there is no significant market reaction after the decision dates. 

The combined results are consistent with Eastwood and Nutt (1999) and Chan (2003), which 

conclude that investors overreact to good news and underreact to bad news. In summary, the 

evidence also supports the investors’ irrational reaction hypothesis.  

Long-term Corporate Decisions 

Extensive studies have documented the consequences when firms are charged with 

misconduct. In addition to the legal penalties that firms are responsible for (Karpoff et al., 2008a; 

Karpoff et al., 2005), reputational losses are even more substantial (Karpoff et al., 2008b). 

Similarly, firms will also have to face loss in their future investment and growth opportunities 

(Karpoff et al., 2013). Essentially, the punishments to firms would be imposed more by the 

market in the long run.  
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We next examine the long-term effects of the trade secret lawsuits. We employ a 

difference-in-difference multivariate regression analysis for a ten-year event window (Event year 

-5 to Event year -1, and Event year +1 to Event year +5). For each firm in the sample, the 

industry average of the same event year is constructed as the control group. The variable Lawsuit 

is a dummy variable that takes the value of 1 if a firm is in our sample, and 0 if it is the industry 

average. Post is an indicator with the value of 1 for the post-lawsuit fiscal year and 0 otherwise. 

The interaction of these two indicators is also introduced to compare the different effects of the 

lawsuits before and after the decision announcement dates. The description of each variable is 

summarized in Appendix Table A2. Panel A of Table 4 shows that firms receiving favorable 

court decisions do not seem to obtain many benefits in the long run, except for higher cash 

holdings. Nevertheless, with respect to unfavorable outcomes in Panel B of Table 4, the 

consequences seem to be more long-lasting. Specifically, firms receiving unfavorable court 

decisions conduct fewer R&D activities, spend less on capital expenditures, lose more intangible 

assets, and hold less cash. In addition, these firms also become more conservative in weighing 

debts after the lawsuits. The lower leverage used by firms losing the lawsuits can be due to 

precautionary reasons because the actual economic outcomes of the loss are uncertain until they 

eventually realize the loss. It is also likely that the reputation loss gives them less access to debt 

financing. In addition, these firms continue to have a lower-than-before market-to-book ratio 

after the lawsuit. In Appendix Table A3, we also compare the industry-adjusted firm 

fundamentals the year before and after the decision announcement dates. It seems that firms with 

favorable outcomes improve their fundamentals immediately after the court decisions. In 

summary, while firms winning the cases seem to benefit from the lawsuits, most of the positive 

effects are temporary. In comparison, firms with unfavorable court announcements suffer more 
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from the legal events in the longer term. As an extension of prior studies, the results imply that 

the punishment borne by the market is more substantial for firms losing the litigations. 

Conclusion 

This paper studies how a firm’s involvement in a trade secret lawsuit and the following 

court decision favorability affect the firm’s market valuation and corporate policies. Using 137 

trade secret cases with 312 trials, we find that stock prices of firms respond to favorable 

(unfavorable) court decisions with positive (negative) abnormal returns during a five-day 

window (-2, 2) relative to the court decision announcement dates. The abnormal returns around 

the event days are consistent with the investors trading behavior that they dig information 

leaking and overreact/underreact to good/bad news. We further find that the effects from the 

trade secret court decisions can be long-lasting, especially for firms losing the cases during the 

process. Overall, our studies indicate that the market is incline to punish firms that lose the 

litigations in the long run instead of rewarding winning ones.  
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Table 1 Summary Statistics 

 

This table reports the descriptive statistics for 213 trade secret cases in which at least one public 
company is involved. Cases cover the period of 1992 to 2012. Case data is hand collected from 
LexisNexis database, and companies present in the trials are merged with CRSP and 
COMPUSTAT database. The whole sample is divided into plaintiffs group and defendants 
group. Each group contains three subsets based on the court decisions.  

 

All Cases with Public Firms  

Number of Cases     213     

 Mean Median Mode Max Min 

Number of Trials within a Case 4.83 3 2 34 2 

Final Sample (Trials with Return Data Available) 

Number of Cases  137 

Number of Trials  312 

Court Decisions Obs. for Each Decision Group 

Favorable to Plaintiffs   57     

Unfavorable to Plaintiffs   31 
  

Favorable to Defendants   68 
  

Unfavorable to Defendants   58 
  

Non-material Trials from Plaintiffs Group   57 
  

Non-material Trials from Defendants Group     41     
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Table 2 Stock Market Reaction around Decision Dates 

 

This table reports the stock market reaction around the decision dates for the 6 decision groups 
during the period of 1992 to 2012. The event windows include Event Day (0), (-1, 1), and (-2, 2). 
The stock market reaction is measured using cumulative raw returns (CRET) and cumulative 
abnormal returns (CAR) over the event windows. We estimate beta by regressing a firm’s daily 
stock returns on the market returns over the 5-year period ending on the trading day before the 
event window. The estimated beta is then used to calculate the stock predicted returns during the 
event windows. We measure abnormal returns as the difference between actual stock returns and 
the predicted returns. The table presents the number of observations (N), the average of 
cumulative raw returns (Mean CRET), the average of cumulative abnormal returns (Mean CAR), 
the median of cumulative abnormal returns (Median CAR), the percentage of positive abnormal 
returns, and Patell's t value.  

 

Panel A: Event Day (0) Abnormal Returns 

Court Decisions N Mean CRET Mean CAR Median CAR % of +AR Patell's t 

Plaintiffs (Favorable) 57 2.021% 2.284% 1.133% 85.96% 4.30 

Plaintiffs (Unfavorable) 31 -1.160% -1.365% -0.736% 32.26% -2.13 

Defendants (Favorable) 68 2.464% 2.171% 1.166% 82.35% 6.12 

Defendants (Unfavorable) 58 -1.618% -1.739% -0.917% 17.24% -3.70 

Plaintiffs (Non-material) 57 0.808% 0.627% -0.142% 40.35% 1.58 

Defendants (Non-material) 41 -0.700% -0.591% -0.470% 34.15% -1.73 

Panel B: Event Window (-1, 1) Abnormal Returns 

Court Decisions N Mean CRET Mean CAR Median CAR % of +AR Patell's t 

Plaintiffs (Favorable) 57 3.500% 3.568% 1.858% 71.93% 4.30 

Plaintiffs (Unfavorable) 31 -1.823% -2.029% -2.149% 32.26% -2.27 

Defendants (Favorable) 68 3.221% 2.766% 1.517% 75.00% 6.18 

Defendants (Unfavorable) 58 -2.475% -2.675% -1.090% 31.03% -3.00 

Plaintiffs (Non-material) 57 1.383% 1.096% -0.144% 49.12% 1.71 

Defendants (Non-material) 41 0.131% -0.361% -0.848% 26.83% -1.38 

Panel C: Event Window (-2, 2) Abnormal Returns 

Court Decisions N Mean CRET Mean CAR Median CAR % of +AR Patell's t 
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Plaintiffs (Favorable) 57 4.058% 4.306% 2.489% 68.42% 3.93 

Plaintiffs (Unfavorable) 31 -2.455% -2.477% -2.716% 32.26% -1.85 

Defendants (Favorable) 68 3.096% 2.872% 1.463% 64.71% 4.53 

Defendants (Unfavorable) 58 -1.820% -1.854% -1.167% 34.48% -1.83 

Plaintiffs (Non-material) 57 2.110% 1.834% 0.516% 56.14% 2.18 

Defendants (Non-material) 41 0.998% 0.306% 0.172% 53.66% -0.28 
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Table 3 Pre- and Post- Decision Announcement Dates Abnormal Returns 

 

This table reports the stock market reaction around the decision dates for the 6 decision groups 
during the period of 1992 to 2012. The event windows include (-2,-1) and (1,2). The stock 
market reaction is measured using cumulative raw returns (CRET) and cumulative abnormal 
returns (CAR) over the event windows. We estimate  beta by regressing a firm’s daily stock 
returns on the market returns over the 5-year period ending on the trading day before the event 
window. The estimated beta is then used to calculate the stock predicted returns during the event 
window. We measure abnormal returns as the difference between actual stock returns and the 
predicted returns. The table presents the number of observations (N), the average of cumulative 
raw returns (Mean CRET), the average of cumulative abnormal returns (Mean CAR), the median 
of cumulative abnormal returns (Median CAR), the percentage of positive abnormal returns, and 
Patell's t value.  

 

Panel A: Event Window (-2, -1) Abnormal Returns 

Court Decisions N Mean CRET Mean CAR Median CAR % of +AR Patell's t 

Plaintiffs (Favorable) 57 1.310% 1.508% 0.971% 63.16% 2.38 

Plaintiffs (Unfavorable) 31 -1.982% -1.964% -1.515% 16.13% -2.55 

Defendants (Favorable) 68 0.205% 0.304% 0.126% 57.35% 0.40 

Defendants (Unfavorable) 58 0.160% -0.045% -0.276% 41.38% -0.11 

Plaintiffs (Non-material) 57 1.031% 0.797% -0.018% 49.12% 1.95 

Defendants (Non-material) 41 0.270% 0.040% -0.378% 39.02% -0.38 

Panel B: Event Window (1, 2) Abnormal Returns 

Court Decisions N Mean CRET Mean CAR Median CAR % of +AR Patell's t 

Plaintiffs (Favorable) 57 0.536% 0.486% 0.284% 56.14% 0.75 

Plaintiffs (Unfavorable) 31 0.657% 0.899% 0.215% 51.61% 1.17 

Defendants (Favorable) 68 0.456% 0.391% -0.041% 48.53% 2.41 

Defendants (Unfavorable) 58 -0.334% -0.067% -0.455% 43.10% -0.16 

Plaintiffs (Non-material) 57 0.369% 0.398% -0.078% 49.12% 0.37 

Defendants (Non-material) 41 1.450% 0.853% 0.732% 58.54% 1.16 
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Table 4 Difference-in-Difference Regression Analysis 

This table reports the difference-in-difference regression analysis for a ten-year event window 
(Event year -5 to Event year -1, and Event year +1 to Event year +5). For each firm in the 
sample, the industry average of the same event year is constructed and included as a control 
group. The variable Lawsuit is a dummy variable that takes the value 1 if a firm is in our sample, 
and 0 if it is the industry average. Post is an indicator with the value 1 for the post-lawsuit fiscal 
year and 0 otherwise. The definitions of all other variables are described in Appendix Table A2. 
We control for the year and industry fixed effects. t-values are reported in parentheses. Statistical 
significance is denoted by *, **, and *** at the 10%, 5%, and 1% levels, respectively. 

 

 

 

Panel A: Favorable Firms 

  (1) (2) (3) (4) (5) (6) 

Variable R&D CAPEX Intangible Q Cash Debt 

Lawsuit -0.123*** -0.068*** -0.091*** -20.728*** -0.368*** 0.009 

 
(-6.91) (-6.15) (-2.88) (-7.10) (-7.97) (1.08) 

Post -0.021 -0.01 -0.039 -7.587** -0.142** 0.011 

 
(-0.91) (-0.71) (-0.96) (-1.99) (-2.32) (1.04) 

Lawsuit*Post 0.026 0.007 0.031 2.928 0.158** 0.002 

 
(1.02) (0.42) (0.69) (0.71) (2.42) (0.18) 

Obs. 867 1,141 1,170 1,151 1,205 1,447 

R-squared 0.131 0.119 0.039 0.11 0.111 0.023 

Panel B: Unfavorable Firms 

  (1) (2) (3) (4) (5) (6) 

Variable R&D CAPEX Intangible Q Cash Debt 

Lawsuit -0.097*** -0.041* -0.063 -12.244*** -0.358*** -0.181** 

 
(-3.49) (-1.78) (-1.11) (-3.42) (-4.11) (-2.55) 

Post 0.109*** 0.157*** 0.178** 5.282 0.136 0.204** 

 
(3.16) (5.09) (2.36) (1.12) (1.15) (2.13) 

Lawsuit*Post -0.131*** -0.108*** -0.221*** -18.750*** -0.204* -0.175* 

 
(-3.49) (-3.35) (-2.81) (-3.78) (-1.68) (-1.77) 

Obs. 726 894 901 885 945 947 

R-squared 0.161 0.15 0.102 0.158 0.115 0.067 
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Appendix (Essay 1) 

Centrality 

This table adds one additional control variable to Table IX: eigenvector centrality of the supplier firms in the customer-supplier 
network. Eigenvector centrality is the first eigenvector of the customer-supplier network’s adjacency matrix. We form the 
customer-supplier network matrix using sales number. Customer factor is monthly aggregated idiosyncratic returns of all 
customers in our sample. Idiosyncratic returns are the residuals backed out from a firm’s monthly excess return using a model 
controlling for Fama and French 3 factors (MKTRF, SMB, and HML) in addition to its corresponding value weighted industry 
mean returns. Peripheral customers are customer firms with less than 3 suppliers in our sample. Size is a firm’s market 
capitalization in the previous month. BM is calculated as current fiscal year’s book equity to the firm’s market equity in June. All 
stock returns are matched with BM from previous fiscal year. The regressions also controls for lag monthly (lag(RET)) and 
annual returns (Lag(RET_1Year)). The regressions follow Fama-Macbeth methodology. Betas of each independent variable are 
first estimated using the 36-month rolling window in the first step. The second step runs cross-sectional regression of supplier 
returns on each as well as all betas in the months immediately following the rolling windows. The sample includes common 
stocks listed at NYSE, NASDAQ, and AMEX. Utility firms, financial institutions, microcap stocks (stock prices lower than $5), 
and ADRs are excluded. 

Customer Factor 0.0563***           0.0515*** 

 (3.02)      (2.70) 

Peripheral Customers Idiosyncratic Returns   0.0893    0.0690 

 
  (1.65)    (1.32) 

Market Idiosyncratic Returns     0.0117  0.0215 

 
    (0.51)  (0.95) 

Centrality 2.780  2.330  2.500  2.380 

 (1.31)  (1.12)  (1.18)  (1.16) 

MKTRF -0.0707  -0.0968  -0.0880  -0.109 

 (-0.46)  (-0.62)  (-0.58)  (-0.73) 

Log(Size) -0.0719*  -0.0931**  -0.0645*  -0.0958*** 

 (-1.92)  (-2.58)  (-1.71)  (-2.67) 

BM 0.335*  0.161***  0.335*  0.144** 

 (1.75)  (2.60)  (1.81)  (2.39) 

Lag(RET) -4.100***  -4.190***  -4.210***  -4.430*** 

 (-7.04)  (-7.14)  (-7.24)  (-7.41) 

Lag(RET_1Year) 0.355*  0.282  0.355*  0.319* 

  (1.76)   (1.48)   (1.81)   (1.72) 

Constant 0.941**   1.200***   0.880**   1.240*** 

 (2.30)  (3.25)  (2.12)  (3.46) 

Number of Obs. 143980   143980   143980   143980 

Adjusted R2 0.085   0.085   0.085   0.099 
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Appendix (Essay 2) Table A1 Summary Statistics for Non-material Trials 

 

This table reports the descriptive statistics for non-material trials. Case data is hand collected 
from LexisNexis database. Court decisions are categorized into three categories for both 
plaintiffs and defendants groups: favorable, unfavorable, and non-material. Cases cover the 
period of 1992 to 2012. Reasons and the number of non-material trials are presented. 

 

Reasons for Non-Material Decisions Obs 

Motion to seal opinions 3 

Appeal court affirmed previous decisions 11 

Motive to gain access to sealed documents 5 

Bankruptcy cases 8 

Neutral statements 33 

Fought over legal expenses less than $100,000 6 

Court requested for more information 14 

Motions were brought up by non-party 4 

Motion to consolidate 4 

Motion to compel arbitration 10 

Total 98 
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Appendix (Essay 2) Table A2 Variable Definitions 

 

Variable  Definition Data Source 

R&D  XRD/AT Compustat 

Capital  CAPX/AT Compustat 

Debt (DLTT+DLC)/AT Compustat 

Intangible INTAN/AT Compustat 

Cash CH/AT Compustat 

Q (AT+PRCC_F*CSHO-CEQ)/AT Compustat 

      

 

Appendix (Essay 2) Table A3 Short-term Difference in Firm Characteristics between 

Sample and Industry 

This table reports the univariate results of a firm’s industry-adjusted fundamentals the fiscal year 
before and after the lawsuit court decision announcement dates. The industry that a firm belongs 
to is identified using the four-digit SIC code. The definitions of all the variables are described in 
Appendix Table A2. We calculate a firm’s industry-adjusted fundamentals by comparing a 
firm’s fundamentals with firms within the same industry during the same fiscal year. We then 
take the average of each variable across the sample.  For each variable, t-values are reported for 
both pre- and post- announcement groups. Besides, t-values for the difference between the pre- 
and post-event windows are also reported. Panel A and Panel B report the univariate results for 
firms with favorable court decisions and unfavorable court decisions, respectively. 

Panel A: Firms with Favorable Outcomes 

Variables Observation Year Mean Median Std t-value t-value (Post-Pre) 

R&D  
Pre-announcement -0.1317 -0.0038 0.4765 -11.52 

3.89 
Post-announcement -0.0750 0.0000 0.3607 -8.35 

CAPEX 
Pre-announcement -0.0534 0.0120 0.3132 -10.03 

4.89 
Post-announcement -0.0212 0.0033 0.1544 -7.10 

Debt 
Pre-announcement -0.1737 0.0000 0.7409 -12.00 

4.56 
Post-announcement -0.0863 0.0000 0.6211 -6.93 
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Intangible  
Pre-announcement -0.0451 0.0022 0.5439 -4.49 

4.19 
Post-announcement 0.0123 0.0086 0.4009 1.45 

Cash 
Pre-announcement -0.3742 -0.0179 1.5926 -14.15 

3.89 
Post-announcement -0.2504 -0.0326 0.9529 -14.12 

Q 
Pre-announcement -8.8685 0.1920 51.8485 -9.61 

1.01 
Post-announcement -7.5636 0.2956 44.8469 -8.36 

Panel B: Firms with Unfavorable Outcomes 

Variables Observation Year Mean Median Std t-value t-value (Post-Pre) 

R&D  
Pre-announcement -0.1410 -0.0067 0.5504 -11.90 

0.09 
Post-announcement -0.1394 0.0079 0.6238 -10.62 

CAPEX 
Pre-announcement -0.0427 -0.0044 0.2892 -8.33 

-5.09 
Post-announcement -0.0802 -0.0096 0.3018 -15.11 

Debt 
Pre-announcement -0.1256 0.0000 0.6414 -9.68 

0.23 
Post-announcement -0.1212 0.0000 0.7160 -9.04 

Intangible  
Pre-announcement -0.0103 0.0000 0.7897 -0.70 

-7.08 
Post-announcement -0.1630 0.0000 0.8656 -10.47 

Cash 
Pre-announcement -0.3972 -0.0290 1.8552 -12.18 

-3.56 
Post-announcement -0.6000 -0.0073 2.6891 -13.09 

Q 
Pre-announcement -5.8670 -0.2823 34.9396 -9.06 

-4.31 
Post-announcement -10.8198 0.1117 51.9118 -11.59 
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“Aggregation of Idiosyncratic Shocks in Customer-Supplier Network”  
I investigate the channels of information diffusion along the supply chain after 

documenting strong contemporaneous return comovement between customer and supplier 
firms. Using Cen, Da, and Zhao’s (CDZ, 2013) methodology, I decompose customer’s returns 
into cash flow and discount rate components. The evidence suggests information transmit 
through both channels. Nevertheless, the establishment and revelation of the economic links 
induce additional cash flow news passage, and the aggregated cash flow news drives the 

comovement higher. Further examinations reveal the cash flow channel tunnels firm-specific 
information including earnings, and the trade credits influences flow through discount rate 
channel. The study contributes to both financial information channels research and stock 
return comovement literature. Revealing information channels carries critical messages and 
implications to not only professional investors, but also the whole market. 

 

“Economic Outcomes of Corporate Espionage” 
This study investigates financial outcomes of trade secret lawsuits through stock market 

reactions to court decisions, using hand-collected case data from LexisNexis database. We 
depict the big pictures of the legislative process and examine possible explanations for the 

abnormal returns from information leak and overreaction/underreaction perspectives. The 
firm-level difference-in-differences study suggests the lawsuit outcomes both encourage 
R&D investment and disturb firm’s capital expenditure, communicating implications for 
corporations' employment and investment policies. 

 
“Investing Precautionary Cash Reserve” 
 This paper investigates how quickly and effectively corporations invest the cash 
raised from equity and debt financing for precautionary purposes. Using a cash half-life 
measure, we find it takes firms about 4 to 6 years to invest the cash reserve. Precautionary 
cash reserve raised from both equity and debt financing is used to fund capital expenditure 

and retire existing liabilities. The evidence reveals the rationale and effectiveness of 
manager’s decision to raise precautionary cash reserve. Precautionary cash is raised when 
the market interest rate is lower, or when managers foresee future investment opportunities.  
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