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ABSTRACT 

WAVELET TRANSFORM BASED METHODS FOR FAULT DETECTION AND 

DIAGNOSIS OF HVDC TRANSMISSION SYSTEMS 

 

by 

Zhonxguan Li 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Professor Lingfeng Wang 

 

High-voltage direct current (HVDC) is a key enabler in power system. HVDC offers a 

most efficient means of transmitting large amount of power. Applications of HVDC can 

improve the operation security, reliability performance and economy of power systems. Due to 

factors inside and outside the HVDC system, the system will experience various faults, which 

have infected HVDC system. VSC-HVDC is a HVDC transmission based on IGBT and PWM. 

VSC-HVDC direct current transmission has broad application prospects in new energy grid-

connected and grid-connected transformation. In this research, aiming at the fault diagnosis of 

VSC-HVDC, the fault diagnosis and fault detection are studied. 

In this research, a VSC-HVDC was simulated in MATLAB Simulink, and an adjusted 

VSC-HVDC model was built. The models were applied to simulate the basic operation of VSC-

HVDC and main faults on AC and DC side in the VSC-HVDC system. Take line current on 

AC or DC side as input data, the result data after wavelet processing was applied in HVDC 

faults diagnosis. To verify the function of fault detection, DC faults at different locations were 

set in the adjusted model. Wavelet entropy was applied in fault diagnosis and detection to gather 

accurate results. 

According to the simulation results, wavelet transform exhibits a good performance in 
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HVDC fault diagnosis and detection.   
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Chapter 1 Introduction 

1.1 Background  

When facing the increasing demand of electricity, higher requirements for reliable 

operation of power systems is needed. HVDC technology is important in the trend of 

increasingly interconnecting of AC grids and the integration of renewable energy.[1] 

The world's earliest HVDC transmission system was built 65 years ago. From there 

worldwide HVDC transmission capacity growth rapidly. The transformer capacity grew 

from 3000MVA to 7500MVA (increased by more than 100 per cent) between 2016 and 

2017. The growth of 800kV HVDC was greater, which reached 7820 MVA at this period 

[2]. 

 
Fig 2.1 Growth of HVDC Transformer Capacity (MVA) [2] 
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Fig 1.2 Growth of Transmission Line Length (ckt.km) [2] 

 

AC transmission is the preferred system in electrical transmission area for since 

the electricity became the main source of energy in human society. However, AC 

transmission system does exist limitations when applied in high voltage area, for 

instance, the transmission length and the transmission capacity limitations. The 

Frequency conversion between AC systems with different frequency remain a 

uneconomical solution. Main applications of the HVDC is as a connection between two 

AC systems of different frequencies.[3]  

As an important part in power transmission system, when operated in long distance, 

the point-to-point HVDC system has less investment cost and loss than the traditional 

system[4] Although the cost of the high-voltage DC conversion equipment in the 

terminal station in the HVDC system is relatively high, the construction cost of total 

line in HVDC on DC side is lower.[5] The potential for long-distance transmission 

exists. Using HVDC systems in switchgear increases system stability and improves the 

power quality of the system. For environmental benefits, compared with the AC 

transmission system, the HVDC system does not have an induced electromagnetic field 
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generated by the commutation during transmission, and there is no skin effect. The use 

of cables in HVDC systems reduces losses during transmission and has negligible 

impact on the surroundings.[6] 

1.2 Research motivations and objectives 

HVDC has gradually replaced AC systems in long-distance transmission. The 

efficiency of HVDC is increasing and the system is more complex. Due to factors inside 

and outside the HVDC system, the system will experience various faults, which have 

horrible inflect on HVDC system, causing a losing of features.  

The aim of HVDC faults analysis is to complete the diagnose various HVDC faults 

fast and accurately, provide necessary guidance for the operation of the system, improve 

the reliability, safety and effectiveness of system operation, reduce the fault loss to a 

minimum level, and through fault analysis, provide data and information for system 

structure modification and optimization design. In a HVDC system, HVDC line faults 

on AC and DC sides are common.  

Some serious failure also causes damage to the equipment and economic losses. 

In severe cases, HVDC faults cause casualties and serious social impact. Therefore, the 

fast and accurate HVDC fault analyzing technologies are necessary to the HVDC 

reliable operation. Therefore, HVDC fault analysis technology including faults 

classification and faults detection is needed.  

Signal processing techniques is considered as a reliable method in HVDC faults 

analysis. Currently the mean methods used in HVDC faults analysis include wavelet 
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transform, artificial neural network, fuzzy logic and etc. Among these methods, wavelet 

transform is a very effective method for fault diagnosis. Considering signals with that 

multiple frequencies are generated when a HVDC fault occurs, applying wavelet, as a 

signal processing method that can analyze both time domain information and frequency 

domain information, in HVDC faults analysis is a correct choose. In this research 

wavelet is used for fault analysis in VSC-HVDC system, and it is proved that wavelet 

has very great results in the diagnosis of faults, which make it possible to use wavelet 

transform for fault analysis. 

1.3 Research contributions and developments 

According to the objectives mentioned above, this research has led to the following 

contributions and developments: 

1) In Chapter2 literature review, the general classification of HVDC system, HVDC 

system configurations and fault diagnosis and detection technology are introduced. 

2) In this research wavelet transform is used in VSC-HVDC faults analysis, the result 

shows the consequent of wavelet transform in HVDC faults analysis is good. 

Wavelet transform can judge the HVDC faults types and detect the location fast ad 

accurately. 

3) AC faults in VSC-HVDC has been detected successfully using both haar wavelet 

and db4 wavelet. 

4) DC faults in VSC-HVDC has been detected successfully using both haar wavelet 

and db4 wavelet. 
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5) Using db4 wavelet at 5th level to detection DC line to line faults at different location 

on DC line successfully. 

6) Using db4 wavelet at 5th level to detection DC line to ground faults at different 

location on DC line successfully. 

7) For gathering more accurate results, wavelet entropy is considered in faults 

classification and detection. 

8) Compared between wavelet based method and PF based method in HVDC faults 

analysis, the results shows the advantages of wavelet transform in HVDC faults 

analysis. 

1.4 Outline of the thesis 

1) Introduction  

Background of HVDC in power system, the motivations, contributions and 

developments, HVDC model and measurements will be discussed. 

2) Literature review 

General aspects of HVDC is introduced, including VSC-HVDC, LCC-HVDC and 

MMC-HVDC. Fault analysis in HVDC and summary of HVDC fault diagnosis 

methods will be discussed. 

3) Wavelet transform theory 

In this chapter, the theory of wavelet transform will be discussed, including the 

definition of wavelet transform, DWT, CWT, wavelet entropy will be discussed, which 

is applied in HVDC fault diagnosis and detection in Chapter 5 and Chapter 6. 
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4) VSC-HVDC simulation 

Simulation of VSC-HVDC in Simulink will be discussed. The simulation includes 

normal situation and HVDC under different kinds of faults (5 kinds of AC fault and 3 

kinds of DC faults) 

5) Faults diagnosis in HVDC using wavelet transform 

The VSC-HVDC simulation model is applied in simulate different kind of HVDC 

faults on AC and DC side, including AC short circuit fault, AC grounding fault, DC 

line to line fault and DC line to ground fault. Transmission line current is applied which 

are input data in wavelet transform.  

Results of WT under different HVDC faults will be used to explain how WT works 

in faults diagnosis in HVDC. 

6) Fault (different locations) detection in HVDC using wavelet transform 

An adjusted model of VSC-HVDC is introduced, the model is applied to simulate 

HVDC fault at different locations on DC transmission lines. To judge whether the 

model is suitable for the real HVDC system, an equivalence test of the adjusted 

simulation model is considered, the result illustrates the model work well in simulating 

the HVDC fault at different locations.  

The results of WT under faults in different locations in HVDC will be used to 

explain how WT works in faults detection in HVDC. 

7) Comparison between wavelet method and particle filter method 

In this chapter, fault diagnosis using particle filter will be discussed and compared 

with wavelet transform. 
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The result show that although PF can achieve the classification on some HVDC 

faults, PF based method still perform not as good as wavelet-based method. 
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Chapter 2 Literature review 

To face the increasing power transmission, HVDC system is a reliable electronic 

technology designed for decreasing the transmission losses and increasing the 

efficiency in long distance power transmission. 60 years have passed since the first 

HVDC system was built, HVDC systems have a great improvement. As an alternative 

method of power transmission in a long distance, HVDC system has some negligible 

advantages compared with traditional system. 

In a HVDC the converter has high influences on reliable operation and rated power 

of HVDC systems [8]. The HVDC currently used in the field of power transmission 

mainly includes LCC-HVDC, VSC-HVDC and MMC-HVDC. Each of these 

technologies has its application and unique advantages. 

2.1 General classification of HVDC system 

A. LCC HVDC 

The thyristor-based Line Commutated Converter (LCC) was developed at 

1970s[9]. The low loss of 0.7% per converter make LCC a good choice for HVDC 

system[9]. However, LCC is not perfect, there still exists some drawbacks that can’t be 

ignored. One main disadvantage of LCC system is that both requires reactive power 

consumptions. It is also needed to install an AC voltage source at every ending to 

achieve with commutation which increased the cost of system design and construction. 

Besides, in the LCC converter the voltage is leading the current, which makes the 
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converters consume reactive power[10]. In the LCC, the converters absorb reactive 

power which value equals 50% to 60% of active power. All those drawbacks all make 

the LCC need to improve to make the demand of power transmission using HVDC 

system. 

An LCC-HVDC is shown in fig 2.1. 

 
Fig 2.1 The 12-pulse LCC–HVDC system [12] 

B. VSC-HVDC 

With the continuous expansion of the use of renewable energy [13], inherent 

dispersion, smallness, and long distance from the load center makes the use of AC 

transmission technology or traditional current source converter type DC transmission 

technology networking uneconomical. Therefore, it is necessary to apply a more 

economical and environmentally friendly transmission means to solve the problems 

from the traditional HVDC system. Researches on power electronics and control 

technology, IGBT, IGCT and other components are need to form a voltage source 

converter (VSC) [15]. Since the late 1990s, foreign companies represented by ABB 

have developed HVDC Light technology [16]. It uses a voltage source converter based 

on a turn-off device and PWM technology for DC power[17]. Compared to LCC, the 
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semiconductor used by VSC can transfer current in any direction. And VSC stores 

energy capacitively. To get a more specific comparison, the table 2.1 shows the pros 

and cons of LCC and VSC. [18]. 

 

Table 2.1 Pros and cons of LCC-HVDC and VSC-HVDC 

 

At present, 2 level VSC and 3 level VSC now are applied as voltage source 

converters in flexible DC transmission projects. Fig 2.2 shows the topology of 2 level 

VSC, 3 level T-type VSC and 3-level NPC VSC. 

In 2 level VSC, two bridge arms per phase. IGBT and diode are applied in the 

three phases. The amount of series is controlled by inverter voltage level, and the flow 

capacity and compressive strength of the power electronic switching device. The IGBTs 

on 3 phases are turned on in turn, output DC voltage ��� 2⁄  and −��� 2⁄ , and 

LCC-HVDC VSC-HVDC 

Strong AC systems is needed Can operated in a weak AC system 

Harmonic distortion generation 

AC & DC harmonic filters are needed 

Little harmonic generation 

Bad in reactive power control Better than LCC-HVDC 

Higher losses Less losses 

Higher cost Lower cost 

Change polarity of the converters to 

reverse power 

Chang current flow direction to reverse 

power 
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approximates a sine wave by PWM. Two-level VSC has certain defects in large-

capacity and high-voltage transmission. The main reason is that the voltage and current 

that the switching device can withstand is limited. The voltage can only be increased 

by increasing the series connection of the switching devices. Excessive series 

connection will cause it. 

The difference between a 3 level VSC and a two-level VSC is that a DC capacitor 

is shared between the bridge arms, so that a level of 0 V can be output. With the same 

switching device, the DC voltage of 3 level VSC converter is doubled, contrasted to the 

2 level VSC, and voltage level increases. However, since the voltage is still required to 

directly connect the switching devices, the problem of capacitor voltage equalization 

and large harmonic content cannot be effectively solved. 
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     a) 2-level VSC                         b) 3-level T-type VSC 

 
c) 3-level NPC 

Fig 2.2 Topologies of VSC [19] 

C. MMC-HVDC 

When the number of VSC output levels is large, the required floating capacitance 

will increase sharply, which will bring great difficulties to system control and 

equipment assembly. To face the problem Modular Multilevel Converter (MMC) has 

received more attention. Compared with VSC-HVDC, MMC-based HVDC (MMC-

HVDC) systems have obvious advantages in reducing switching losses, fast faults 

recovery, capacity upgrades, electromagnetic compatibility, and fault management[20].  

The modular multilevel converter (MMC) is shown in fig2.3. There are 

submodules in every arm and a series reactor instead of switching devices. 
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Fig 2.3 Structure of MMC [23] 

Fig 2.4 shows curve configuration of sub modular and status of MMC. MMC 

adjust the status of the sub modular through T1 and T2 to achieve multiple outputs: 0, 

Uc and Isolated. 
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Fig 2.4 The curve configuration of sub modular and status of MMC [23] 

In the MMC inverter circuit, the more sub-modules there are, the output waveform 

is approximate to the sine wave. Comparing the switching frequency, it can be observed 

that of the frequency of VSC converter is much bigger than the frequency of MMC 

converter, and the loss of the converter is also greatly improved. However, as the 

transmission voltage increases, a large number of modular units are needed, which 

increases the design and implementation difficulty of the control system. 

2.2 HVDC system configurations 

To satisfy the effective function, there are several configurations that is identified. 

When choosing the HVDC configuration, the function and location of the converter 

station are two main bases of the selection. At present, the main structures include 
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monopolar HVDC system, bipolar HVDC system, back-to-back HVDC system and 

multi-terminal HVDC system. 

A. Monopolar HVDC 

A monopolar HVDC system is indicated in Fig 2.5. Unipolar system has a wire 

that uses the earth or ocean as the return line. Metal lines can also be used when 

considering harmonic interference or radiation problems. In DC cable applications 

(such as lightweight HVDC), a return cable is required. Since the corona effect of the 

negative connection wire is lighter than that of the positive connection wire, the 

unipolar system usually operates with the negative electrode[26]. The monopolar link 

is not much in use nowadays. 

 
Fig 2.5 Monopolar HVDC  

B. Bipolar HVDC 

A bipolar system has two wires, one positive wire the negative wire. At each end 

of the DC side, there are two sets of inverters with the same rating. The tie line between 

the two sets of inverters is grounded through a short wide electrode line. Since the two 

poles have the same current under normal conditions, the ground current is zero. 

Unipolar operation can be employed in the first phase of implementing a bipolar system. 

Also, in the event of an inverter failure, a metal wire can be temporarily used as a return 
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line through a suitable switch[26]. The bipolar HVDC is indicated in Fig 2.6. 

 
Fig 2.6 Bipolar HVDC  

C. Back-to-Back HVDC 

In modern transmission system, Back-to-Back HVDC is a solution to realize the 

interconnection of different Grids when power grids and power system aren’t in 

synchronization with other grid or systems. A Back-to-Back HVDC is indicated in 

figure 2.7. The Back-to-Back HVDC is mainly used for networking or power 

transmission between two asynchronous power systems[27]. By using the Back-to-

Back HVDC, the system is adjusted to desired frequency. Two systems can be 

connected without losing stability.  

 
Fig 2.7 Back-to-Back HVDC  

 

D. Multi-terminal HVDC (MTDC) 

When a DC system is connected to two or more than two AC grid, forming a 
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MTDC system[30]. In multi-terminal system, the UDC is revised by one converter and 

the power flow is determined by the others [31]. 

 
Fig 2.8 Multi-terminal HVDC  

 

2.3 Fault diagnosis and detection technology 

Any fault occurs in HVDC system will lead to a unique change of parameters 

which make it possible to use the signals processing technology in faults diagnosis and 

detection in HVDC system. These changing parameter values carry the information of 

faults which is the aim of HVDC fault diagnosis and detection. To distinguish fault 

types and find the location of the fault, two general mechanisms are considered: on the 

one hand, make a comparison between the actual and theoretical values. When the faults 

occur, in general a significant deviation will exist between actual and theoretical values. 

On the other hand, the appearance of HVDC faults will expressed in a certain pattern, 

therefore in HVDC faults diagnosis, the detection of these patterns is meaningful[32]. 

Fig. 2.9 shows a flowchart of fault diagnosis of an MMC-HVDC. 
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Fig 2.9 Flowchart of fault diagnosis of an MMC-HVDC [32] 

 

When achieving HVDC fault diagnosis, some step should be followed: 

a) Sampling at important locations (HVDC transmission lines, converters, inverters 

and etc.) of the HVDC system in every sampling period and send the relative 

signals values (Grid voltage, DC side positive and negative voltage, DC voltage, 

Three-phase voltage, Three-phase current, grid current arm current, active power, 

reactive power and etc.) to interface to finish the follow steps. 

b) Compare the detection signal value with the reference signal value and contrast 

signal changes to determine if a particular mode of failure has occurred.  

c) Data processing methods may be used to process the detected signals data: filtering, 

normalize, extraction and etc. 

d) Gather the key information which express the types of the faults. In this step plenty 

of signals processing technologies could be considered (Fourier analysis [33], 
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wavelet analysis[34], ANN[41] and etc.). 

The main faults in HVDC system need to be analyzed quickly. Many kinds of 

faults occur on HVDC system on both DC and AC side.  

In HVDC, DC transmission lines are one of the components that the faults occur. 

The two main types of DC fault in HVDC are grounding fault and short-circuit fault. 

The abovementioned faults are the most basic faults in HVDC. 

2.3.1 Line to ground fault 

Research shows that there is no overhead DC line has been installed in any VSC-

HVDC and most VSC-HVDC system is connected through the underground cables[44], 

which makes the line to ground fault common. In general, reason of the grounding fault 

is the occurrence of the damaged insulation of the underground cables. When insulation 

failure causes damage on DC cables, the DC-side capacitor will discharge to generate 

a large overcurrent. 

 
Fig 2.10 DC line to ground fault 

2.3.2 Line to line fault 

Compared with grounding fault, line to line fault is a rare fault in HVDC system. 

Insulation failure between the transmission lines results in line to line fault. When such 

faults occurs, AC system will three phase short currented at the fault point in DC side. 
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Fig 2.10 Fig 2.10 DC ling to line fault 

2.3.3 AC faults 

AC faults also occur in HVDC transmission system. Research shows that common 

AC faults include AC two-line short circuit fault, AC single line grounding faults, three 

phases short circuit fault. These faults could cause huge damage which are tried to avoid. 

Therefore, AC faults in HVDC system need to be studied. 

Wavelet transform has been widely used in several areas, which is a time domain-

frequency domain analysis[45]. Compared with other signal processing technology, 

wavelet has its unique advantages: 

1) The frequency and time axis can be observed simultaneously, with good sensitivity 

to time under high frequency conditions and good sensitivity to frequency under 

low frequency conditions. 

2) In wavelet theory, you can approximate a function with fewer wavelet coefficients. 

3) When the signal is denoised or compressed, there is no significant damage to the 

signal. 

4) The detailed information is separately saved[46]. 

The research on wavelet transform in fault diagnosis has proved to be effective. 

Fast and reliable fault diagnosis is preferred in HVDC system. therefore, wavelet 
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transform is used for fault diagnosis with its unique advantages. In [47], author picks 

up the key information from vibration signals from a machine which represent that 

wavelet analysis preforms good in signal processing and extraction. Author in [48] 

establishes a VSC-HVDC model and wavelet analysis is adopted to pick up the feature 

of the fault signals. Author in [35] introduces a high speed HVDC fault analysis method 

based on wavelet technology. In the research, the protection can judge the types of 

HVDC faults well. Yuhong in [49] study a commutation failure detection method based 

on wavelet analysis, the result represents that using DWT by Daubechies wavelet 

function in HVDC fault diagnosis is very effective. 

Combining wavelet transform with other data processing methods is also 

considered to be an effective method for HVDC fault diagnosis. Author in [50] adopts 

the neural network with wavelet packet in the research of HVDC line fault detection, 

result indicates that the algorithm can find the location of HVDC transmission line fault 

accurately. In [51] a HVDC short circuit fault analysis method using wavelet analysis 

combined with fuzzy system is introduced. To detect faults in a multi-terminals HVDC 

systems, author in [52] proposes a wavelet-fuzzy logic-based protection algorithm. 
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Chapter 3 Wavelet transform theory 

3.1 Wavelet transform 

WT is proposed facing the deficiency of traditional data processing method. 

Wavelet overcomes the shortcomings of Fourier and windowed Fourier transform, and 

can analyze the local characteristics of time-varying signals. In principle, problems that 

can be analyzed by Fourier transform is replaced by wavelet transform, which is 

expressed by the following equation: 

��	, �� = � �������,������� �                   (3.1) 

When the function ���� ∈ �����  can described as � ������ = 0���� , the 

����is called mother wavelet. 

The commonly used wavelet mother functions are mainly considered as the 

following:  

(1) Classic wavelet: Harr wavelet, Morlet wavelet and Gaussian wavelet. 

(2) Orthogonal wavelet: Daubechies wavelet, Symlets wavelet and Coiflets 

wavelet. 

(3) Biorthogonal wavelet 

3.1.1 Continues wavelet transform (CWT) 

Mathematical definition of continuous wavelet transform of is described as 

follows: 

� !�", �� = #$#
√� � ����� &'��� ( ������" ∈ ��, ) ∈ �                                                        (3.2) 
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The daughter wavelet ��,����  is the stretching and translating of a mother 

wavelet  ����. In the formula, parameter y shows degree of the scaling, and parameter 

z shows degree of the translation. Parameters x, y, z are continuous variables.  

3.1.2 Discrete wavelet transform (DWT) 

When performing CWT, if you want to perform calculations on various scales, it 

will lead to excessive calculation and reduce computational efficiency. To solve this 

problem, DWT is applied. In DWT, y and z also represent the degree of scaling and 

translation, the difference is that in DWT sampling of the two key parameters y and z 

of continuous wavelets is applied, which is generally sampled at base 2. 

DWT (Discrete wavelet transform) is defined as: 

* !�", )� = $
√� � ����� &'��� ( ������" = 2+ , ) = ,2+ , �,, -� ∈ .�                                        (3.3) 

3.2 Comparison between Fourier transform (FT) and Wavelet transform (WT) 

FT does not reflect frequency that changes over time, that is, for a certain 

frequency is detected, when it is generated can’t be determined from Fourier transform. 

The Fourier transform lacks the local signal analytical ability. It can be observed from 

Fig3.1. 

Facing this drawback, Translation and expansion are a feature of wavelet 

transform. Therefore, various signals can be analysed in different frequency ranges and 

different time positions. Through this multi-resolution analysis, a good time sensitivity 

is obtained in high-frequency signals. Good sensitivity to time and frequency at 
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different frequencies of wavelet solve the disadvantages of FT applications and non-

stationary signals. The FT lost the time information of the original signal.  

 

 
Fig 3.1 FT of signals with same frequency 

Equation (3.4) and (3.5) is the definition of FT and WT from where shows the 

difference between FT and WT[54]. 

��/� = $√�0 � ��1�2�+34�1���                   (3.4) 

 ��	, �� = � ��1��5,6 &4�65 ( , 	, � ∈ �, 	 ≠ 0 �            (3.5) 

In (3.5), �5,6�1�  is continuous wavelet, translated and scaled from mother 

wavelet, as shown in (3). 

Ψ5,6�1� = |	|�$/�� &4�65 ( , 	, � ∈ �, 	 ≠ 0           (3.6) 



25 
 

3.3 Wavelet entropy 

Apply wavelet transform in processing signal, the wavelet transform decomposes 

the signal into two components Di(x) and Ai(x) at parameter x and i. Di(x) and Ai(x) 

respectively represent the different frequency parts of the entire signal: 

;*<���: >2�<�$�?, 2�<�?@A<���: >0, 2�<�$�?@  �B = 1,2,3, ⋯ , F�           (3.7) 

As the wavelet tree show in Fig 3.2, the previous decomposition is performed by 

decomposing the signal into components of different frequencies Di(n-1) and Ai(n-1), 

and then the low frequency component Ai(n-1) is again decomposed into components 

of different frequencies in next stage, where Ai(n) contains the information missing by 

the Di(n) after the decomposition of Di(n-1). 

G�H� = *$�H� + A$�H� = *$�H� + J*��H� + A��H�K = *$�H� + *��H� +
J*L�H� + AL�H�K = ⋯ = ∑ *<�H� + A<�H�<<N$           (3.8) 

 

 

Fig 3.2 Wavelet tree 

Define mathematical expectations as the entropy H(X) of the information source: 

O�P� = QJR��<�K = QJ−STU5V<K = − ∑ V<STU5V<W<N$          (3.9) 
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Combining the wavelet with entropy as a reference in HVDC fault diagnosis and 

detection. 

In this research Shannon entropy is applied in classification of HVDC faults and 

fault detection. The calculation of wavelet Shannon entropy is as follows: 

Q+ = − ∑ Q<'STUQ<'X                       (3.10) 

Q<' = |*<���|�                        (3.11) 

After a normal system experiences a fault, the characteristics of the observed 

signal will change. The Shannon entropy will also change accordingly. This entropy 

will give the ‘energy information’ of the signal. The Shannon entropy E can be 

calculated from the equation 

Q�Y� = − ∑ Y<�log �Y<��+                      (3.12) 

si is the coeff. of details or approximation of signal s after WT, which is 

perpendicular to the base s. The advantage of using Shannon entropy is, it will store 

more energy of the waveform. Shannon entropy can be used for a feature pickup and 

generate characteristic vector. 
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Chapter 4 VSC-HVDC simulation 

4.1 VSC-HVDC simulation 

A VSC-HVDC simulation is applied as the model. The VSC-HVDC represents a 

200 MVA, ±100 kV voltage source converter as the interconnection of a 230 kV (phase 

to phase), 2000 MVA AC system and another AC system. 

 

Fig 4.1 VSC-HVDC model[55] 

In the VSC-HVDC model the signal output includes the following:  

Vdc - DC side positive and negative voltage 

Uabc - Three-phase voltage 

Iabc - Three-phase current 

Idc - DC line current 

When the VSC-HVDC operates without any failure, the simulation results are 

indicated as following. The simulation is set 3s.  
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a) Idc on VSC1 side 

 

b) Idc on VSC2 side 

 

c) Vdc 

 

d) Uabc 

 

e) Iabc 

Fig 4.2 Signals from VSC-HVDC 
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4.2 HVDC faults simulation 

In this research faults on system level are considered. Considering the practical 

reality that if the system experiences a DC cable open circuit fault, the normal operation 

must be interrupted. Open circuit faults of the DC cable are not considered in this 

research. Based on this assumption.  

4.2.1 AC side faults in VSC-HVDC 

In this research, 5 kinds of faults on AC side is considered. The system is under 

normal condition before 2.0s. When the system experiences a line to ground (LG, LLG, 

LLLG) fault, the signals fluctuation at the VSC1 side is shown in Fig 4.3. From the 

time period 1.5 to 1.9 second the normal value of Idc is 0.5 pu. the system experiences 

a fault at 2 to 2.1s. Idc decreases with significant fluctuations. As for Uabc and Iabc, when 

the fault occurs, the fault has little effect on Uabc at Bus 1 side, and the voltage of the 

ground phase reduced to zero. Circuit in ground phase didn’t change, although circuit 

in other phase has a big fluctuation in bus 2 side. Iabc in bus 1 side gradually decreases 

as grounding lines increases 

A. Grounding fault 

If system experiences a single line grounding fault (LG) fault after 2.0s in this 

simulation, the fault has a significant impact on Idc, Uabc and Iabc. When the fault begins 

at 2.0s, negative peak value of the Idc reaches 0 pu, and positive peak value of the 

waveform reaches 0.9 pu. 
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a) Idc on VSC1 side 

 

b) Iabc 

 

c) Uabc 

Fig 4.3 Signals from VSC-HVDC (LG) 

When the system experiences a double line grounding fault (LLG) after 2.0s in 

this simulation, the impact of the fault on Idc is the same expect the value. Negative 

peak value of the Idc reaches -0.3 pu, and positive peak value reaches 0.9 pu. 
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a) Idc on VSC1 side 

 

b) Iabc 

 

c) Uabc 

Fig 4.4 Signals from VSC-HVDC (LLG) 
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When the system experiences a triple line grounding fault (LLLG) after 2.0s in 

this simulation, the impact of the fault on Idc is the same expect the value. When the 

fault begins at 2.0s, negative peak value of the Idc reaches -0.5 pu, and positive peak 

value of the waveform reaches 1.1 pu. 

 

a) Idc on VSC1 side 

 

b) Iabc 
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c) Uabc 

Fig 4.5 Signals from VSC-HVDC (LLLG) 

B. Two phases short circuit fault (LL) 

When this fault occurs between two phases, there is almost no change in value of 

Udc but fluctuation is obvious. Vdc in both sides increase slightly with fluctuation. Uabc 

change obvious and Ua and Ub decrease to half and Ia and Ib increased to 2 pu. 

 

a) Idc on VSC1 side 
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b) Iabc 

 

c) Uabc 

Fig 4.6 Signals from VSC-HVDC (LL) 

C. Three phases short circuit fault (LLL) 

When the system experiences this kind of fault, compared with the two phase 

grounding fault, Udc has a bigger change, which increased to 1.25 pu. Iabc decreased to 

0.2 pu in bus 1 side. Udc decreased to 0 and Iabc has a little increase from to 1.5 pu. 
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a) Idc on VSC1 side 

 

b) Iabc 

 

c) Uabc 

Fig 4.7 Signals from VSC-HVDC (LLL) 
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4.2.2 DC side faults in VSC-HVDC 

A. Line to ground fault (DCLG) 

From time period 2.0s. The normal value of the three phases current is 1.0 pu. 

Then the fault occurred at 2 second. During this time period the current increases to 

4.0pu with significant fluctuations. During the whole period three phase voltage 

increases to 1.8 pu with significant fluctuations. Idc reaches 5 pu and decreases to 1pu, 

after that the Idc increases to 6 pu with significant fluctuations. 

 

a) Idc on VSC1 side 

 

b) Iabc 
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c) Uabc 

Fig 4.8 Signals from VSC-HVDC (DCLG) 

B. Line to line fault (DCLL) 

The last case studies the DCLL fault. From the time period 2.0s. The normal value 

of the three phases current is 1.0 pu. Then the fault occurred at 2 second. During this 

time period the current increases to 4.0pu. Again from 2.4 second onwards current is 

maintained to 2.0pu as shown in figure. During the whole period three phase voltage 

decreases to 0.8 pu. Idc has a huge increase when the fault begins at 2.0s which value 

reaches to 5.5pu, then Idc decreases rapidly to 0. 

 

a) Idc on VSC1 side 
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b) Iabc 

 

c) Uabc 

Fig 4.9 Signals from VSC-HVDC (DCLL) 

Compare with the normal status, the line to ground fault has some influences: 

For Bus 1 side: 

(1) When the occurrence of fault is detected, the positive voltage of DC 

decreases to 0 and negative voltage increases from -1 pu to -2 pu with a more 

dramatic fluctuation  

 (2) there is no difference in P and Q, no matter whether the fault is generated or 

not, and P and Q fluctuate during the whole fault period. 
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(3) The absolute value of max value of the three-phase voltage is slightly 

increased to 1.5 pu, the harmonic components in the three-phase voltage are also rich 

in harmonic components. When the fault occurs, three-phase current reaches 2 pu in 

process of fault, and distortion is severe. 

Bus 2 side: 

Bus 2 side has the same trend as Bus 1 side but the trend is more varied. 
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Chapter 5 Faults diagnosis using wavelet transform 

5.1 Faults diagnosis in HVDC using Haar wavelet  

Haar wavelet the earliest one applied in research. It is seen as a db wavelet. Haar 

is also called Daubechies1 wavelet. Db1 proposed an orthogonal function system in 

1990[56]. The definition of mother wavelet function��t�is[58]: 

��t� = _̀̂
_a 1 , 0 b 1 c 12

−1, 12 b 1 c 1
0, T1d2efBY2

 

This is the simplest orthogonal wavelet[57]: 

g ��t���t − n��� = 0, H = i1, i2, …��
��  

 
Fig 5.1 the Haar wavelet [61] 

Take the data of three phases circuit of the fault line as input. The 11th level 

coefficients shows a clear distinction. 

5.1.1 Haar wavelet analysis under ACLG 

In the case a single line grounding fault is stared at 2.0s to 2.1s. From this analysis 

it is observed that the max value of the approximation reached 1.08 pu and -2.06 pu. 
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Fig 5.2 11th wavelet coefficients of Ia for ACLG 

5.1.2 Haar wavelet analysis under ACLLG 

In the 2th case a double line grounding fault is occurs at 2.0s to 2.1s. From this 

analysis it is observed that the max value of the approximation reached 1.33 pu and -

1.09 pu.. 

 
Fig 5.3 11th wavelet coefficients of Ia for ACLLG 

5.1.3 Haar wavelet analysis under ACLLLG 

In the 3th case the HVDC system experiences a triple line grounding fault from 

2.0s to 2.1s. From this analysis it is observed that the max value of the approximation 
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reached 1.01 pu and -0.7 pu. 

 
Fig 5.4 11th wavelet coefficients of Ia for ACLLLG 

5.1.4 Haar wavelet analysis under ACLL 

In the 4th case two phases short circuit fault is occurs at 2.0s to 2.1s. From this 

analysis it is observed that the max value of the approximation reached 0.59 pu and -

0.45 pu. 

 
Fig 5.5 11th wavelet coefficients of Ia for ACLL 

5.1.5 Haar wavelet analysis under ACLLL 

In the 5th case, the system experiences an AC triple phase short circuit fault from 
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2.0s to 2.1s. From this analysis it is observed that the max value of the approximation 

reached 0.35 pu and -0.7 pu. 

 
Fig 5.6 11th wavelet coefficients of Ia for ACLLL 

5.1.6 Haar wavelet analysis under DCLG 

In the DC line to ground fault initiated at 2.0s, from this analysis it is observed that 

the max value of the approximation reached 1.25 pu and -0.72 pu. 

 
Fig 5.7 11th wavelet coefficients of Ia for DCLG 

5.1.7 Haar wavelet analysis under DCLL 

In the DCLL fault initiated at 2.0s, from this analysis it is observed that the max 
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value of the approximation reached 2.52 pu and -0.63 pu. 

 
Fig 5.8 11th wavelet coefficients of Ia for DCLL 

When HVDC faults occur, data after Haar wavelet analysis shows different results 

i. This can be used in HVDC faults detection and classification.  

 

Table 5.1 wavelet entropy 

 

Judging from the appearance, faults can be divided into three categories: AC 

grounding fault, AC short circuit fault and DC fault.  

 Fault Entropy 

AC 

LG -4.011E+03 

LLG -6.183E+03 

LLLG -6.574E+03 

LL -6.735E+03 

LLL -6.563E+03 

DC 

LG -8.922E+03 

LL -1.784E+04 
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Judging from entropy, -the entropy of ACLG is 4.01E+03, -the entropy of DCLG 

is -8.92E+03, the entropy of DCLL is -1.78E+04. the entropy of other faults is about -

6.5E+04. 

Judging from entropy combined with coefficients, max coef. of ACLLG is about 

4 times as much as normal, max coef. of ACLLLG is about 3 times as much as normal 

situation, max coef. of ACLL is slightly larger than normal, the positive max value of 

ACLLL is approximately equal to normal situation and absolute value of negative max 

value is 4 times as much as absolute value of positive max value. 

5.2 Faults diagnosis in HVDC using Daubechies wavelet analysis 

Meyer wavelet [59], Daubechies wavelet, Mexican Hat wavelet[60] as the main 

choice are used in many reasreach. In this chapter Daubechie 4 (db4) wavelets is used 

in wavelet analysis which is found most commonly in power signal analysis. The db4 

wavelet will give the transient behavior of fault more accurately. It is effective for the 

detection of fast and short transient disturbances [61]. The Daubechie, “db4” wavelet 

function was adopted to perform the wavelet, because it is having larger energy 

distribution of the decomposition levels [62]. 
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Fig 5.9 Daubechies 4 tap wavelet 

5.2.1 Db4 wavelet analysis under ACLG 

In the first case the HVDC system experiences an AC single line grounding fault 

from 1.5s to 2s. The corresponding wavelet coefficients of the DC line current in the 

9th level is as follow. It indicates the detection capability of wavelet transform.  

 
Fig 5.10 9th wavelet coefficients of Idc for ACLG 

5.2.2 Db4 wavelet analysis under ACLLG 

In 2nd case a double line grounding fault is occurred at 2.2s, the fault lasted foe 

0.2s. The corresponding 9th level wavelet coefficients of DC line current are plotted in 
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Fig. 5.10. 

 
Fig 5.11 9th wavelet coefficients of Idc for ACLLG 

5.2.3 Db4 wavelet analysis under ACLLLG 

In 3rd case a triple line grounding fault is stared at 2.2s. The corresponding 9th 

level wavelet coefficients of DC line current are plotted in Fig. 5.11. 

 
Fig 5.12 9th wavelet coefficients of Idc for ACLLLG 

5.2.4 Db4 wavelet analysis under ACLL 

In next case the system experiences a two phases short circuit fault from 2.2s to 

2.4s. The corresponding 9th level wavelet coefficients of DC line current are plotted in 
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Fig. 5.12. 

 
Fig 5.13 9th wavelet coefficients of Idc for ACLL 

5.2.5 Db4 wavelet analysis under ACLLL 

In next case a ACLLL fault occurred at 2.2s and ended at 2.4s. The corresponding 

9th level wavelet coefficients of DC line current are plotted in Fig. 5.13. 

 
Fig 5.14 9th wavelet coefficients of Idc for ACLLL 

5.2.6 Db4 wavelet analysis under DCLG 

In other case line to ground fault of DC side is initiated at 2.2s to 2.4s. The 

corresponding 9th level wavelet coefficients of DC line current are plotted in Fig. 5.14. 
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Fig 5.15 9th wavelet coefficients of Idc for DCLG 

5.2.7 Db4 wavelet analysis under DCLL 

In the last case, the system experiences a DCLL fault from 2.2s to 2.4s. The 

corresponding 9th level wavelet coefficients of DC line current are indicated in the 

following figure. 

 
Fig 5.16 9th wavelet coefficients of Idc for DCLL 

 

Table 5.2 Wavelet entropy 

 

Fault ACLG ACLLG ACLLLG ACLL 

Wavelet entropy -1.9886e+04 -1.7733e+04 -1.6825e+04 -2.8344e+04 
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5.3 Conclusion 

In this research, the classification of both HVDC DC faults on transmission lines 

and HVDC AC faults at convertor side and invertor side using wavelet transform is 

achieved. 

The results illustrate that the absolute value of wavelet coefficients and entropy 

differ from each other when system experiences different fault. Based on this result, in 

HVDC faults diagnosis, wavelet coefficients and entropy could be analyzing conditions. 

  

Fault ACLLL DCLG DCLL Normal 

Wavelet entropy -2.6753e+04 -4.0734e+06 -5.9006e+04 -2.0986e+04 
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Chapter 6 Fault detection using wavelet transform 

The detection of the occurrence of faults is not enough to make sure HVDC works 

normally and efficiently. After classification the HVDC fault using wavelet transform, 

determining the specific location of the fault is also a necessary aim of fault analysis in 

HVDC system. 

In this chapter, faults simulation model will be adjusted based on the aim of fault 

detection in HVDC power systems. HVDC DC fault will be set with different parameter 

to simulate different fault locations in operation of HVDC systems. In this chapter 

DCLG faults and DCLL faults set at different locations on the DC transmission line 

will be tested.  

6.1 Simulation model of fault detection in HVDC system 

 
Fig 6.1 Adjusted VSC-HVDC fault simulation model 

 

The VSC-HVDC simulation model in Simulink mentioned in Chapter 4 simulate 

different kind of faults in VSC-HVDC system without the location information. To 

achieve the simulation with HVDC faults at different location, a adjustment in VSC-

HVDC model is adopted. To adjust the location of HVDC fault in DC transmission 

lines, 2 separate cables are connected in series instead of the original cable structure. 

The purpose of setting up two separate cables is to simulate the different location of 
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HVDC fault. Each cable represents the cable on both sides of the fault point. The length 

of the cable can be adjusted freely and the sum of the length equals 75km which is the 

length of the cable in the model of Chapter 4. Other parameters are consistent with the 

origin model. 

In this research, 7 different locations of HVDC DCLG fault and 3 different 

locations of HVDC DCLL fault are set to complete the simulation. Location 

information are set as following. 

 

Table 6.1 VSC-HVDC DCLG fault locations 

 

Table 6.2 VSC-HVDC DCLL fault locations 

 

6.2 Equivalence test of the adjusted simulation model 

This test is set to study whether the adjusted model still can represent the actual 

operation of HVDC system. Run both the original model and the adjusted model 

without any HVDC fault. And IDC data is used to compare to verify whether the adjusted 

model and original model are equivalence. The DC current of adjusted model and 

VSC-HVDC DCLG fault locations 

Distance 

from 

VSC(km) 

5 15 25 35 45 55 

Total 

length(km) 
75 75 75 75 75 75 

VSC-HVDC DCLL fault locations 

 

Distance from 

VSC(km) 
15 35 65 

Total length(km) 75 75 75 
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original model are indicated in Fig 6.2. 

 
Fig 6.2 IDC of adjusted model and original model 

It is observed that DC currents have the same waveform before and after 

adjustment. The only difference of the two current is that using the adjusted model 

increases DC current slightly which is considered can be ignored. The equivalence test 

indicates the adjusted HVDC preform good in simulating the operation of HVDC 

system. 

6.3 Fault detection using wavelet transform in VSC-HVDC DCLG fault 

In the following experiment the VSC-HVDC experiences DC line to ground faults 

(DCLG) at various location. In the 1st case a DC LG fault occurred at 5km from VSC1 

side. The fault stars at 2.0s. The DC current data is taken as the input data of wavelet 

transform, Fig 6.3 shows the 5th level wavelet coefficient. 
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Fig 6.3 coef. of 5th db4 wavelet transform of DC line current (DCLG -5km) 

In 2nd case a DC LG fault occurred at 2.0s. DC line current coefficients is shown 

in Fig 6.4. In this case the fault occurred at 15km away from VSC1 side. The maximum 

value is 62.99. 

 

Fig 6.4 coef. of 5th db4 wavelet transform of DC line current (DCLG -15km) 

In 3rd case a DC LG fault occurred at 2.0s. DC line current coefficients is shown 

in Fig 6.5. In this case the fault occurred at 25km away from VSC1 side. The maximum 

value is 55.06. 
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Fig 6.5 coef. of 5th db4 wavelet transform of DC line current (DCLG -25km) 

In the 4th case a DC LG fault initialed at 2.0s. The fault is set at 35km away from 

VSC1. The coef. is plotted in Fig 6.6, where maximum value is 49.61. 

 

Fig 6.6 coef. of 5th db4 wavelet transform of DC line current (DCLG-35km) 

In the 5th case a DC LG fault 45km away from VSC1 side stared at 2.0s. The coef. 

current is shown in Fig 6.7. Max coef. is 47.95. 

 

Fig 6.7 coef. of 5th db4 wavelet transform of DC line current (DCLG-45km) 

In the 6th case a DC LG fault 55km away from VSC1 occurred at 2.0s. The coef. 
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of DC line current is observed in Fig 6.8. The max coef. of DC line current is 44.39. 

 

Fig 6.8 coef. of 5th db4 wavelet transform of DC line current (DCLG-55km) 

 
Fig 6.9 coef. of 5th db4 wavelet transform of DC line current (line to ground) 

Table 6.3 shows the absolute value of coef. of the DC line current under faults with 

different locations on the transmission line. These ranges of coefficients value can be 

used for the detection of the fault. The change of the DC L-G fault location has an 

obviously influence on coefficients. coefficients are different at different fault location. 

coefficients decrease as the distance increases. 

 

Table 6.3 Absolute value of coef. of the DC line current under faults with different  

locations on the transmission line 

Location 5 15 25 35 45 55 

Max value of coefficients 75.32 62.99 55.06 49.61 47.95 44.39 
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But for more accurate detection wavelet entropy principle analyses can be carried 

out for further analysis. Table 6.4 show the wavelet entropy of 5th db4 wavelet of the 

DC line current under faults with different location. 

 

Table 6.4 The wavelet entropy of 5th db4 wavelet of the DC line current under faults 

with different location. 

 

 

It can be observed that when a DC fault happens at 5 km from VSC1, the entropy 

is - 2.68E+07. With the changing of the fault location, there are obvious changes on the 

wavelet entropy. From the table it is clear that if the fault distance is increasing from 

rectifier side the entropy is increased.  

6.4 Fault detection using wavelet transform in VSC-HVDC DC LL fault 

In the following experiment the VSC-HVDC experiences DCLL faults at various 

location. In this research the fault locations are set at 15km, 35km and 65km away from 

VSC1 side. 

In 1st case a DCLL fault occurred at 15km from the VSC1. The fault is set starting 

at 2.0s The DC current data is taken as the input data of wavelet transform., the coef. 

Location 5 15 25 

Wavelet entropy -2.683E+07 -1.696E+07 -1.278E+07 

Location 35 45 55 

Wavelet entropy -9.554E+06 -7.378E+06 -6.002E+06 
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of DC current is plotted in Fig 6.10. 

 

Fig 6.10 coef. of 5th db4 wavelet transform of DC line current (DCLL-15km) 

In the 2nd case, change the location of DCLL fault from 15km to 35km away from 

VSC1. The starting time is set the same as case 1. coef. of IDC is indicated, where 

maximum value is 5.99. 

 

Fig 6.11 coef. of 5th db4 wavelet transform of DC line current (DCLL -35km) 

In the 3rd case, a DCLL fault started 2.0s after the simulation begins, which is set 

65km away from the VSC1. The coef. of DC current is shown in Fig. 6.12. the max 

coef. is 5.91. 
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Fig 6.12 coef. of 5th db4 wavelet transform of DC line current (DCLL -65km) 

 
Fig 6.13 coef. of 5th db4 wavelet transform of DC line current (line to line) 

Table 6.5 and Table 6.6 show the coef. of the DC line current and the wavelet 

entropy of 5th wavelet of the DC line current and wavelet entropy of 5th db4 wavelet of 

the DC line current under faults with different location. The result analysis can prove 

the conclusion from the fault detection using wavelet transform in VSC-HVDC DC line 

to ground fault. 

With increasing of distance from VSC1, max value of coefficients and wavelet 

entropy change significantly. With increasing faults distance from 15km to 65 km, max 

value of coefficients is 6.08 at 15km, 5.91 at 35km and 5.51 at 65km which decreases 

with the increasing distance. Wavelet entropy are -9.8235e+04 at15km, -5.7382e+04 at 
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35km and -3.5559e+04 at 65km which increasing with the increasing distance. 

 

Table 6.5 The absolute value of coef. of the DC line current under line to line faults 

with different locations on the transmission line 

 

Table 6.6 The wavelet entropy of 5th db4 wavelet of the DC line current under line to 

line faults with different location. 

  

Location 65 35 15 

Max value of coefficients 5.51 5.91 6.08 

Location 15 35 65 

Wavelet entropy -9.8235e+04 -5.7382e+04 -3.5559e+04 
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Chapter 7 Comparison between wavelet method and 

particle filter method 

Data analysis and processing of nonlinear, non-Gaussian stochastic systems have 

practical applications in the fields like statistics, image processing, computer vision, 

machine learning and automatic control. 

7.1 Introduction 

In the past, due to the requirements of signal processing and computational storage, 

recursive filtering algorithms are usually used to solve such problems, namely the so-

called Kalman filtering theory. The basic idea is to approximate the nonlinearity of the 

system by parameterized analytical expression to obtain needed estimation accuracy. 

However, the extended Kalman filter is only suitable for the case where the filtering 

deviation and the prediction deviation are not big. The extended Kalman filtering of the 

modified gain is improved by the gain matrix. Correspondingly, the estimation 

performance of the state covariance is improved, but it has certain limitations on the 

measurement error. If the measurement error is large, convergence accuracy of the 

algorithm is not good. And convergence time and stability are not ideal. And both of 

the two filters only use the first-order partial derivative part of the nonlinear function 

Taylor expansion (ignoring the high-order term), which often leads to large deviations 

in the estimation, affecting the performance of the filtering algorithm. In short, 

theoretically, a linear system with measurement noise are Gaussian, Kalman filtering 

can obtain the optimal state estimation; when the above conditions are not met, the 
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filtering and prediction accuracy will be difficult to guarantee. Therefore, for a 

nonlinear, non-Gaussian state model, if it is still simply like the Kalman filter theory, 

only using the mean and variance to represent the state probability distribution will 

result in poor filtering performance. 

Particle filtering is a statistical filtering method. According to empirical situation 

of system, group of random samples is generated to become the initial simples in space. 

These samples are called particles; then the weight and position are revised after 

observation, and the original empirical condition distribution is corrected by the 

information of the adjusted particles. Particle filter is considered as a good method 

when facing nonlinear problem 

Particle filters have been applied in current researches in system fault diagnosis. 

In [64], an nonlinear and no gaussian system is studied, and particle filter is applied in 

this research on fault detection. In [65] the author studied fault detection of an nonlinear 

system, in this research a particle filter based method is introduced. 

7.2 Fault analysis using PF 

In this research, basic particle filter-based method is considered in VSC-HVDC 

fault analysis, the results are used to compared with the results from wavelet analysis-

based method in HVDC faults analysis. 

Table 7.1 PF based HVDC fault anlysis 

 Normal ACLG ACLLG ACLLLG 

Max xpart(i) -13.57 9.774 -13.73 -13.74 

Min xpart(i) -16.13 -12.2002 -15.17 -15.12 

Particle filter 

RMS error 
1.6033 7.1725 1.1409 0.51606 
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7.3 Conclusion 

Analysis the results, this particle filter based VSC-HVDC fault analysis method is 

not as good as wavelet based HVDC faults analysis method. When HVDC system 

experience an HVDC fault, we can judge the occurrence of HVDC system faults from 

the results of max xpart(i), min xpart(i) and the root mean square (RMS) error. When 

no HVDC fault occurs, the max and min xpart(i) and RMS error are -13.57, -16.13 and 

1.6033. When AC single line to ground fault occurs, RMS error has a significant 

increase to 7.1725. When other HVDC faults (ACLLG, ACLLLG, ACLL, ACLLL, 

DCLL, DCLG) occurs, RMS error of these faults have a significant decrease, where the 

result of AC two lines to ground fault is reduced to around 1, the result of DCLL fault 

is reduced to around 2, results of other faults are reduced around 0.5. From this result, 

RMS error can be used in judging the occurrence of HVDC system faults especially 

AC single line grounding fault, AC double line grounding fault and DCLL fault. 

However, when a fault other than the above three faults occurs, particle filter based 

HVDC fault analysis method can diagnose the occurrence of a fault but cannot 

determine the specific fault type. In this respect, wavelet based HVDC fault analysis 

 ACLL ACLLL DCLG DCLL 

Max xpart(i) -13.74 -14.04 -14.09 -11.39 
Min xpart(i) -15.12 -15.70 -15.61 -15.14 
Particle filter 

RMS error 
0.51606 0.4567 0.45943 1.9642 



64 
 

method has obvious advantages over particle filters. 
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Chapter 8 Conclusion and future work 

To diagnose HVDC faults fast and accurately, when HVDC system experiences 

various faults, this research has proved that wavelet transform based HVDC faults 

analysis method is a feasible and efficient fault analysis technology. 

The wavelet transform can detection the changes in HVDC signals. WT is applied 

to analyze HVDC faults. Classification of both HVDC DC faults on transmission lines 

and HVDC AC faults at convertor side and invertor side using wavelet transform is 

achieved. 

Based on the achievement of HVDC faults classification, this research studied on 

DCLL fault and DCLG fault at various location. Db4 wavelet at 5th level has been 

applied in DC faults detection. The results proved that wavelet transform can detect the 

location of DC faults. 

For more accurate results, wavelet entropy has been applied in this research. The 

results indicate that wavelet entropy changes with the changes of location of HVDC 

DC faults on DC line, which is useful as a reference in detecting HVDC fault locations.  

In the future, more detailed research and some other aspects of fault detection and 

diagnosis in HVDC need to be studied. 

1) This research focus on VSC-HVDC system. However, only study VSC-HVDC is 

not enough to achieve the stable operation of all HVDC system, for LCC-HVDC 

and MMC-HVDC are still been applied in power system. in future study, wavelet 

based HVDC fault diagnosis and detection research will be study in LCC-HVDC 
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and MMC-HVDC. 

2) In this research AC and DC faults at system level are considered. However, in the 

operation of HVDC system, there are other faults that need to be study like 

convertor, invertor, submodular fault in HVDC, etc. in future study, the type of 

fault being diagnosed will expand. 

3) In future study, wavelet transform will be combined with other methods for fault 

analysis in HVDC. 
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