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ABSTRACT 

USE OF TEXT DATA IN IDENTIFYING AND PRIORITIZING POTENTIAL DRUG 
REPOSITIONING CANDIDATES 

 
by 

Majid Rastegar-Mojarad 
 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Susan McRoy 

New drug development costs between 500 million and 2 billion dollars and takes 10-15 years, with 

a success rate of less than 10%. Drug repurposing (defined as discovering new indications for 

existing drugs) could play a significant role in drug development, especially considering the 

declining success rates of developing novel drugs. In the period 2007-2009, drug repurposing led 

to the launching of 30-40% of new drugs. Typically, new indications for existing medications are 

identified by accident. However, new technologies and a large number of available resources 

enable the development of systematic approaches to identify and validate drug-repurposing 

candidates with significantly lower cost. A variety of resources have been utilized to identify novel 

drug repurposing candidates such as biomedical literature, clinical notes, and genetic data. In this 

dissertation, we focused on using text data in identifying and prioritizing drug repositioning 

candidates and conducted five studies.  

In the first study, we aimed to assess the feasibility of using patient reviews from social media to 

identify potential candidates for drug repurposing. We retrieved patient reviews of 180 

medications from an online forum, WebMD. Using dictionary-based and machine learning 

approaches, we identified disease names in the reviews. Several publicly available resources were 

used to exclude comments containing known indications and adverse drug effects. After manually 

reviewing some of the remaining comments, we implemented a rule-based system to identify 
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beneficial effects. The dictionary-based system and machine learning system identified 2178 and 

6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common 

patterns that patients used to report any beneficial effects or uses of medication. After manually 

reviewing the comments tagged by our rule-based system, we identified five potential drug 

repurposing candidates. To our knowledge, this was the first study to consider using social media 

data to identify drug-repurposing candidates. We found that even a rule-based system, with a 

limited number of rules, could identify beneficial effect mentions in the comments of patients. Our 

preliminary study shows that social media has the potential to be used in drug repurposing. 

In the second study, we investigated the significance of extracting information from multiple 

sentences specifically in the context of drug-disease relation discovery. We used multiple 

resources such as Semantic Medline, a literature-based resource, and Medline search (for filtering 

spurious results) and inferred 8,772 potential drug-disease pairs. Our analysis revealed that 6,450 

(73.5%) of the 8,772 potential drug-disease relations did not occur in a single sentence. Moreover, 

only 537 of the drug-disease pairs matched the curated gold standard in the Comparative 

Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. Among the 537, 

nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our analysis revealed that 

the drug-disease pairs inferred from Semantic Medline or retrieved from CTD could be extracted 

from multiple sentences in the literature. This highlights the significance of the need for discourse-

level analysis in extracting the relations from biomedical literature.  

In the third and fourth study, we focused on prioritizing drug repositioning candidates extracted 

from biomedical literature which we refer to as Literature-Based Discovery (LBD). In the third 

study, we used drug-gene and gene-disease semantic predications extracted from Medline abstracts 



 iv 

to generate a list of potential drug-disease pairs. We further ranked the generated pairs, by 

assigning scores based on the predicates that qualify drug-gene and gene-disease relationships. On 

comparing the top-ranked drug-disease pairs against the Comparative Toxicogenomics Database, 

we found that a significant percentage of top-ranked pairs appeared in CTD. Co-occurrence of 

these high-ranked pairs in Medline abstracts is then used to improve the rankings of the inferred 

drug-disease relations. Finally, manual evaluation of the top-ten pairs ranked by our approach 

revealed that nine of them have good potential for biological significance based on expert 

judgment. 

In the fourth study, we proposed a method, utilizing information surrounding causal findings, to 

prioritize discoveries generated by LBD systems. We focused on discovering drug-disease 

relations, which have the potential to identify drug repositioning candidates or adverse drug 

reactions. Our LBD system used drug-gene and gene-disease semantic predication in SemMedDB 

as causal findings and Swanson’s ABC model to generate potential drug-disease relations. Using 

sentences, as a source of causal findings, our ranking method trained a binary classifier to classify 

generated drug-disease relations into desired classes. We trained and tested our classifier for three 

different purposes: a) drug repositioning b) adverse drug-event detection and c) drug-disease 

relation detection. The classifier obtained 0.78, 0.86, and 0.83 F-measures respectively for these 

tasks. The number of causal findings of each hypothesis, which were classified as positive by the 

classifier, is the main metric for ranking hypotheses in the proposed method. To evaluate the 

ranking method, we counted and compared the number of true relations in the top 100 pairs, ranked 

by our method and one of the previous methods. Out of 181 true relations in the test dataset, the 

proposed method ranked 20 of them in the top 100 relations while this number was 13 for the other 

method. 
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In the last study, we used biomedical literature and clinical trials in ranking potential drug 

repositioning candidates identified by Phenome-Wide Association Studies (PheWAS). Unlike 

previous approaches, in this study, we did not limit our method to LBD. First, we generated a list 

of potential drug repositioning candidates using PheWAS. We retrieved 212,851 gene-disease 

associations from PheWAS catalog and 14,169 gene-drug relationships from DrugBank. 

Following Swanson’s model, we generated 52,966 potential drug repositioning candidates. Then, 

we developed an information retrieval system to retrieve any evidence of those candidates co-

occurring in the biomedical literature and clinical trials. We identified nearly 14,800 drug-disease 

pairs with some evidence of support. In addition, we identified more than 38,000 novel candidates 

for re-purposing, encompassing hundreds of different disease states and over 1,000 individual 

medications. We anticipate that these results will be highly useful for hypothesis generation in the 

field of drug repurposing. 
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1.1 Drug repositioning 

 
Drug development is an expensive and time-consuming process. Developing a new drug costs 

$500 million to $2 billion and takes 10-15 years [1]. In average, developing an oncology drug 

takes 13 years and could cost 1.8 billion [2]. The enormous cost and lengthy process of drug 

development underline the need for an alternative approach. A well-known approach to reducing 

the cost and time of new drug development is drug repositioning [3] which is also known as drug 

repurposing, re-profiling, re-tasking or therapeutic switching [4], [5] 1. Drug repositioning is the 

process of identifying new indications for existing or failed drugs. Figure 1 shows time-lines for 

drug discovery and drug repositioning process and highlights their differences [4].  

  

 

 

 

 

 

Drug repositioning could play a significant role in the drug development process. Since 

repositioning relies on previously approved drugs that already passed multiple toxicity tests in the 

first phase (Figure 1-a) of drug development process and their toxicity profiles are already known 

[2], drug repositioning candidates tend to be ready for clinical trials quickly and be reviewed by 

Food and Drug Administration (FDA) faster [5]. Drug repositioning can decrease the traditional 

                                                
1 Shameer et al. [4] provided an overview of definition for drug repositioning and related methods which repurpose 
pharmaceutical compounds. 

a) 

Target 
screen 

Tool 
compound 

Candidate 
compound 

Preclinical 
development 

Clinical 
development 

Therapy 

Phase one 

b) 
Clinical or 
marketed 

drug 

Clinical or 
computational 
repositioning 

Clinical 
development Therapy 

Figure 1: Comparing timelines of traditional drug discovery and drug repositioning [4] a) timeline in 
traditional drug discovery process b) timeline of drug repositioning 
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timeline from 10-17 years to only 3-12 years [5]. The significance of drug repositioning would be 

more tangible knowing a small percentage of proposed drugs are able to pass the first phase 

successfully. In average less than 10% [6] of proposed drugs pass the first phase. This rate for 

oncology drugs is only 5% [2]. This low rate of success emphasizes the importance of drug 

repositioning in reducing the cost and risk of drug development. There have been many efforts on 

using repositioning which led to many successful discoveries.  

1.2 Successful drug repositioning discoveries 

One of the earliest drug repositioning cases is the use of reticulose for post-radiation effects in the 

1950s [7], [8], [4]. Later in the 1980s, anti-malarial drugs were suggested as potential repurposing 

candidates for rheumatoid arthritis and connective tissue disease [9]–[11]. One famous example 

of drug repositioning is Pfizer’s sildenafil (Viagra) which was repositioned from angina treatment 

to erectile dysfunction treatment in men in 1998 [12] and has recently been studied as a possible 

treatment for Age-related Macular Degeneration [13]. Thalidomide is another example of drug 

repositioning. Thalidomide first introduced as a sedative hypnotic [14] and then it was withdrawn 

because of severe side-effects. Later, Thalidomide was re-introduced as an anti-cancer agent and 

used for erythema nodosum leprosum and HIV wasting syndrome. In recent clinical trials, 

Duloxetine, a medication for depression, was found to be effective in the treatment of stress urinary 

incontinence in women [15]. Overall, from 2007-2009, approximately 30-40% of newly approved 

drugs were repurposed medications [16]. 

1.3 Drug repositioning approaches 

Typically, a new indication for an available drug is identified only by chance. However, new data 

analytic technologies and a large number of available resources now enable the development of 
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systematic approaches to identify and assess drug repositioning candidates with considerably 

lower costs. Drug repositioning has been exhaustively studied, and various approaches have been 

used [16]–[18] to identify novel drug repositioning candidates. They have used clinical data [19], 

[20], genetic information [21]–[23], scientific literature [24]–[26], pathway information [27], 

chemical structure similarity [28], and databases of clinical side effects [29]. 

Several meta-analyses of drug repositioning allow us to categorize the different approaches. 

Dudley et. al. [30] reviewed computational methods for drug repositioning and categorized the 

methods into two classes: drug-based and disease-based, based on whether drug or disease 

perspective initiates the discovery. Wei et. al. [24] categorized the computational drug 

repositioning methods into literature-based and ontology-based. Grau and Serbedzija [17] named 

two types of drug repositioning: (1) identification of off-target drug actions and (2) identification 

of relevance of a known drug target to a new disease. In general, drug repositioning methods can 

be drug, disease or target oriented and can be further sub-classified into target-based, knowledge-

based, signature-based, network-based and targeted-mechanism-based approaches [16], [31]. 

From an informatics perspective, we can categorize repositioning methods based on resources 

utilized to extract drug repositioning discoveries. These resources include scientific literature, 

clinical data, social media, and biological resources. The compound database PubChem [32] has 

been used in several drug-repurposing studies [33]. Hoehndorf et al [34] implemented a system 

that inferred novel associations between drugs and diseases by linking drug-gene associations in 

the PharmGKB database to phenotype studies and animal models of disease. Moriaud et al [35] 

presented a computational method that mined the Protein Data Bank [36] to identify drug 

repositioning candidates. Several studies [24], [25], [34], [35], [37], [38] considered literature 

mining for drug repurposing; this approach has been comprehensively reviewed elsewhere [39], 
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[40]. Another valuable resource is social media. Although patients mostly use medically oriented 

social media to describe adverse events associated with drugs [41], [42], their experiences may 

help others to conceive of new indications for existing medications if their descriptions also 

include beneficial effects. A well-known example is Zolpidem, an insomnia medication that, 

through social media and patient reviews, was subsequently used for brain injury [43]. Leaman at 

el [44] identified 157 beneficial effects from 3600 patient posts that could lead to drug repurposing. 

The accuracy of these reported beneficial effects in social media requires additional confirmation, 

but considering the value of drug repurposing and the huge amount of available social media data, 

it is worthwhile to study this type of information and investigate the possibility of identifying 

potential drug-repurposing candidates. 

In the next chapter, we discuss related works in more detail. 

1.4 Our contributions 

This dissertation focuses on the use of text data in the drug repositioning process. We identify and 

assess challenges and opportunities in using text data in two main tasks of drug repositioning:  

1) identifying potential candidates for drug repositioning (DR) and  

2) validating (or prioritizing) the potential candidates.  

The contributions in this dissertation consist of the following: 

• Assessing the feasibility of using social media data in identifying potential drug repurposing 

candidates. Our hypothesis is that this imperfect resource could support drug repurposing by 

helping to identify unknown beneficial effects of drugs. This requires 1) gathering users’ 

comments in social media 2) identifying mentions of medication names (including generic names, 
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synonyms, and brand names), instances of actual (rather than hypothetical) uses, and contrasting 

these uses with the original indications found in published sources such as DrugBank.) We 

examine two named entity recognition methods: 1) dictionary-based and 2) machine learning. We 

develop a rule-based system to tag sentences with potential uses for drug repositioning. To evaluate 

our system, we manually review the sentences which were tagged as positive to assess the 

possibility of the potential drug repositioning candidates to be a true finding. As there is not any 

gold standard for this task, we are not able to evaluate our system using more formal common 

metrics such as precision, recall, and F-measure. 

• Comparing the number of relations that can be extracted from single sentences versus multiple 

sentences. Our goal is to assess the number of relations which relation extraction systems might 

be missing if they just focus on sentence-level analysis and to quantify the need for going beyond 

sentence-level extraction and implementing a relation extraction system capable of both sentence-

level and discourse-level extraction. This study focusses on drug-disease relation extraction as a 

case study. It uses two available resources, Semantic Medline and Comparative Toxicogenomics 

Database (CTD), to infer drug-disease relations and then compare the coverage of these relations 

in sentence level extraction versus discourse level extraction. This study provides a means to 

compare the potential importance of considering both a) single sentences and b) multiple sentences 

in relation extraction systems for the task of identifying drug repositioning candidates from text 

data. 

• Evaluating the effectiveness of two new methods to prioritize potential drug repositioning 

candidates identified by literature-based discovery (LBD) systems. In the first method, we consider 

LBD systems which use semantic predications to generate a list of potential candidates. In this 

study, we use predicates in semantic predications as the main metric to rank the candidates. We 
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assess our method by comparing it against curated databases such as CTD and expert judgment. 

In the second method, we train a binary classifier, using text surrounding the discoveries, to 

classify the discoveries into desired classes. To evaluate the performance of these classifiers, we 

calculate precision, recall, and F-measure. 

• Evaluating the use of published biomedical literature and clinical trials in ranking potential DR 

candidates identified by Phenome-Wide Association Studies (PheWAS) [45]. We first generate a 

list of potential DR candidates using PheWAS. Then, we develop an information retrieval system 

to retrieve any evidence of those candidates appearing in the biomedical literature and clinical 

trials. We use this information to prioritize our discoveries. Like previous methods, we ask an 

expert to provide judgments to evaluate the performance of our ranking method. 
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2.1 Introduction 

In this chapter, we review related works focusing on identifying potential DR candidates using 

biomedical literature, social media and then the current studies on validation of potential DR 

candidates. 

2.1.1 Use of biomedical literature in drug repositioning 

In the past decade, advances in high throughput biotechnology have shifted biomedical research 

from individual genes and proteins to entire biological systems. To make sense of the large-scale 

data sets being generated, researchers must increasingly be able to connect with research fields 

outside of their core competence. In addition, researchers must interpret massive amounts of 

existing knowledge while keeping up with the latest developments. One way researchers cope with 

the rapid growth of scientific knowledge is to specialize, which leads to a fragmentation of the 

scientific literature. This specialization or fragmentation of literature is a growing problem in 

science, particularly in biomedicine. Researchers tend to correspond more within their fragments 

than with the field’s broader community, promoting poor communication between specialties [46]. 

This is evidenced within the citations of such literature as authors tend to heavily cite those within 

their narrow specialties. Interesting and useful connections may go unnoticed for decades. This 

situation has created both the need and opportunity for developing sophisticated computer-

supported methodologies to complement classical information processing techniques such as 

information retrieval [26].  

Text mining can help bridge the gaps among subdisciplines by extracting new findings from the 

literature and presenting them to researchers based on their research interest, without requiring 

them to spend hours manually reading through new publications. There are systems, which go 
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beyond that and after extracting findings from the literature, use the findings to suggest and assess 

new hypotheses [47]. These systems support a process called Literature-Based Discovery (LBD) 

[26]. LBD strives to find novel connections or correlations between concepts by using scientific 

literature. LBD systems usually are comprised of the following steps: 

1) Extracting findings (especially causal findings) from the scientific literature  

2) Generating new hypotheses 

3) Prioritizing and ranking the hypotheses 

The first step usually carries out information extraction using natural language processing and 

machine-learning techniques. To generate new hypotheses, Swanson’s ABC model [48] is a 

common and well-known approach. The ABC model, which we explain later, cross-references 

findings extracted from different articles and hypothesizes new findings. Validating these 

hypotheses, manually by experts, is expensive and time-consuming which makes the role of the 

third step within LBD systems extremely significant. 

Similar to other domains, in the biomedical domain, a large pool of scientific literature is available 

that has been utilized by researchers to design and implement a variety of LBD systems which has 

led to valuable new discoveries [49]. In 1986, Don Swanson [50] introduced LBD and 

hypothesized that fish oil may have beneficial effects in patients with Raynaud’s syndrome based 

on the following findings that he concluded from two separate groups of literature: 

1) Raynaud’s syndrome (A) patients have blood viscosity (B) disorder  

2) Fish oil (C) can reduce blood viscosity (B). 

Later the hypothesis was verified by clinical trials. This model is now known as Swanson ABC 

model. Swanson implemented the model in a software system, called ArrowSmith [51], to 

automate the hypothesis generation process. As the above example illustrates, the model contains 
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three entities/concepts, A as starting, B as linking, and C as target concept [52]. The discovery 

process starts with mining associations between A - B and B - C from literature, then by combining 

the associations with the same linking concept, a list of potential A-C associations is created. If 

there is not any prior mention about a relation between A and C in literature, then a hypothesis of 

association between A and C can be formulated which can be confirmed or rejected through human 

judgment, laboratory methods or clinical investigations. The ABC model can be implemented in 

two discovery manners, open and closed. In closed-discovery, the starting and target concepts are 

determined by the user and the LBD system only identifies linking concepts. In the open-discovery 

approach, the starting and target entities are not limited to any specific concept. This approach 

usually generates a long list of potential relations. As mentioned, to reject or confirm each of these 

relations, each candidate should be evaluated through clinical trials and laboratory experiments, 

which are expensive and time consuming. LBD systems can facilitate and accelerate this step by 

providing initial validation, using computational methods and existing knowledge, and narrowing 

down the list to a more reasonable number of candidates. Otherwise, it is not cost effective for 

other researchers or scientists to investigate the numerous numbers of candidates provided by 

open-discovery methods. 

There have been several LBDs implemented to generate hypotheses by following Swanson’s 

paradigm, which has led to interesting and useful discoveries [53]. One of the most desirable 

findings in the biomedical domain is drug-disease relation which could shed light on side effects 

or new indications for an existing drug [54]. The latter one is known as drug repositioning which 

we introduced previously and has been receiving much attention from pharmaceutical companies 

and researchers. New uses connecting indomethacin and Alzheimer’s disease [55], somatomedin 

c and arginine [56], anandamide and gastric cancer [57], psychiatric and somatic diseases [58], 
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hypogonadism and diminished sleep quality [59], NF-kappaB and autism [60] are some of these 

findings. LBD can be utilized to discover any type of relation such as disease candidate genes [61], 

drug-drug interaction [62], drug mechanism [63], adverse drug reaction [64].  

All LBD systems mentioned above have utilized a similar paradigm, but their approaches for 

identifying starting, linking, and target concepts in text and extracting relationships between them 

vary. To identify desired concepts in literature, usually LBDs rely on named entity recognition 

systems [65] or medical subject heading (MeSH), terms assigned by experts to Medline abstracts 

[66] that describe the content of the associated abstract. BITOLA [61] is one of the LBD systems 

that uses assigned MeSH terms to each Medline abstract as concepts. After identifying concepts, 

LBD can be used to extract the relationship between the concepts (causal associations). Some 

common methods are: co-occurrence [61], association rules [67], term frequency–inverse 

document frequency [68], Z-Score [69], and mutual information [70]. Other approaches are 

available to identify associations between concepts and terms that do not co-occur with one another 

in the biomedical literature [71][72]–[74]. Yetisgen-Yildiz and Pratt [52] survey these approaches 

and Andronis et al. [54] reviews literature mining systems which have been applied to identifying 

potential drug repurposing candidates. 

Another approach for generating causal associations is using semantic predication [75]. A semantic 

predication is a “subject – predicate – object” triple extracted from the literature. For example, in 

the domain of drug repositioning, Subject and object are biomedical concepts from the UMLS 

Metathesaurus [76] and predicate is a relation from the UMLS Semantic Network such as: affects, 

causes, associated with, treats, etc. Semantic predications for the biomedical domain have been 

extracted by a rule-based system called SemRep [77] and stored in a relational database called, 

SemMedDB [78]. The latest version of this database contains more than 84 million predications, 
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extracted from 25 million PubMed abstracts. This resource has been used in several studies to 

facilitate knowledge discovery [79]–[81]. Hristovski et al. [75] proposed a method to use semantic 

predication to enhance their LBD system, BITOLA. They concluded that using semantic 

predications instead of co-occurrences generates a smaller number of false positive discoveries 

and provides an explanation to support the findings. Ahlers et al [63] used semantic predications 

in a closed-LBD system to discover connections between antipsychotic agents and cancer. Cohen 

et al. [71] proposed using hyper dimensional computing in a LBD system based on semantic 

predications. They suggested a method, called predication-based semantic indexing, to build a 

sequence of semantic predications, which ultimately associate a drug to a disease as a novel 

therapy. Cameron et al [53] proposed an automatic subgraph creation method, based on semantic 

predications, to facilitate LBD. Workman and Stoddart [79] proposed using Semantic Medline as 

a source for building a decision support system for point of care. The Natural Language Processing 

Group at the Mayo clinic integrated semantic predications into a system, called Ask Mayo Expert 

(AME), to retrieve the most relevant literature to support the evidence-based clinical decision 

making process at point of care [80]. 

2.1.2 Use of Social media in Drug Repositioning 

Social media provides a platform for patients to share their experiences with illnesses, medications, 

and also medical centers [82]. Patient posts, usually written in an informal language, contain 

hidden and valuable information. Owing to the massive amount of data derived from social media, 

computerized systems are needed to analyze and extract useful information from patient 

experience. Unlike scientific literature, these comments are usually written by non-expert users 

who do not have any obligation to follow proper grammar in their comments or report observations 

accurately. These differences make mining social media more complicated and challenging 
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compared to scientific literature. Nevertheless, there have been several attempts to extract 

knowledge from social media. Leaman et al [44] examined comments posted in a medical forum 

to identify reported adverse drug events. After manually annotating a corpus of patient posts, they 

used natural language processing methods to develop a system that extracted adverse drug 

reactions from the text. Chee et al [83] studied patient posts on Health and Wellness Yahoo! groups 

and applied common natural language processing methods to predict adverse drug events and 

identify medications that might require further scrutiny by the Food and Drug Administration. 

Freifeld et al [84] evaluated the correlation between adverse drug events reported in Twitter (where 

statements are limited to 140 characters) and spontaneous reports received by a regulatory agency. 

Rastegar et al [85] implemented a binary classifier to identify adverse drug reactions in tweets. 

Sharif et al [86] proposed a sentiment classification framework to detect adverse drug reactions in 

medical blogs and forums. Recently, Karimi et al [87] provided a corpus of 1321 medical forum 

posts on patient-reported adverse drug events, which allows researchers to develop and evaluate 

pharmacovigilance systems.  

Although patients mostly use medically oriented social media to describe adverse events 

associated with drugs [41], [42] , their experiences may help others to conceive of new indications 

for existing medications if their descriptions also include beneficial effects. A well-known example 

is Zolpidem, an insomnia medication that, through social media and patient reviews, was 

subsequently used for brain injury [43]. Leaman at el [44] identified 157 beneficial effects, in 3600 

patient posts that could lead to drug repurposing. The accuracy of these reported beneficial effects 

in social media may be questionable, but considering the value of drug repurposing and the huge 

amount of available social media data, it is worthwhile to study this type of information and 

investigate the possibility of identifying potential drug-repurposing candidates [88].  
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2.1.3 Validation and prioritizing potential drug repositioning candidates 

As mentioned in the description of LBD above, one challenging and expensive task after 

identifying potential drug repurposing candidates is validation. The discoveries can be confirmed 

or rejected through human judgment, laboratory methods, or clinical investigations. The validation 

could be facilitated with automated ranking and prioritizing of the potential candidates. There have 

been several studies which proposed ranking algorithms, mostly as part of LBD systems. However 

there have been several attempts to propose effective ranking methods [69], [70], [89] but this area 

has been largely unexplored. Wren proposed an algorithm called average minimum weight (AMV) 

[70]. The algorithm calculates a weight for each potential discovery (A-C) based on the strength 

of A-B and B-C relations. The strength of each relation is calculated based on mutual information. 

The algorithm considers all possible B concepts that have a relation with A and C in the calculation. 

Another approach to rank the findings is proposed by Yetisgen-Yildiz and Pratt [69], [90]. They 

used the number of B concepts that link A to C as the indication of a strong correlation. The 

method, which called Linking Term Count with Average Minimum Weight (LTC-AMW), uses 

AMV in case of a tie. Swanson et al. [89] introduced a measure to rank the discoveries based on 

MeSH terms in literature called Literature Cohesiveness. AMV and LTC-AMV are generic and 

can be used in different LBD systems, but these algorithms do not consider semantic predicates in 

their calculation. 
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3.1 Introduction 

Social media provides a platform for patients to share their experiences with illnesses, medications, 

and medical centers [82], [91]. Patient posts, usually written in an informal language, contain 

hidden and valuable information. Owing to the massive amount of data derivable from social 

media, computerized systems are needed to analyze and extract useful information from the 

patient’s perspective. Unlike edited scientific literature, these comments are usually written by 

non-expert users who may not follow proper grammar in their comments or report complete or 

accurate observations. These differences make mining social media more challenging compared 

to scientific literature. Nevertheless, there have been several successful attempts to extract 

knowledge from social media. Leaman et al [44] examined comments posted in a medical forum 

to identify reported adverse drug events. After manually annotating a corpus of patient posts, they 

used natural language processing methods to develop a system that extracted adverse drug 

reactions from the text. Chee et al [83] studied patient posts on Health and Wellness Yahoo! groups 

and applied common natural language processing methods to predict adverse drug events and 

identify medications that might require further scrutiny by the Food and Drug Administration. 

Freifeld et al [84] evaluated the correlation between adverse drug events reported in Twitter (where 

statements are limited to 140 characters) and spontaneous reports received by a regulatory agency. 

Rastegar et al [85] implemented a binary classifier to identify adverse drug reactions in tweets. 

Sharif et al [86] proposed a sentiment classification framework to detect adverse drug reactions in 

medical blogs and forums. Recently, Karimi et al [87] provided a corpus of 1321 medical forum 

posts on patient-reported adverse drug events, which allows researchers to develop and evaluate 

pharmacovigilance systems. 
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Although patients have mostly used medically oriented social media to describe adverse events 

associated with drugs [41], [42], patients also sometimes report beneficial effects and their 

experiences may also help others to conceive of new indications for existing medications. A well-

known example is Zolpidem, an insomnia medication that was subsequently used for brain injury 

[43]. The miracle of this medication discovered in 1994, when a patient who suffered severe brain 

injuries and went to coma, started to take Zolpidem as a sedative but it brought him back to life. 

Since then, Zolpidem has been waking up several brain-injured patients from a vegetative state. 

Leaman at el [44] identified 157 beneficial effects, in 3600 patient posts that could lead to drug 

repurposing. These reported beneficial effects in social media may not always be completely 

accurate (and possibly vulnerable to a placebo effect [44]), but considering the potential value of 

drug repurposing and huge amount of available social media data, it is worthwhile to study this 

type of information and investigate the possibility of identifying potential drug-repurposing 

candidates. In this chapter, we consider the feasibility of using social media data in identifying 

potential drug repurposing candidates. Our hypothesis is that this imperfect resource can be used 

to identify candidates for drug repurposing by revealing new beneficial effects of medications 

taken by patients and reported in social media. We collect patient reviews of 180 medications in 

an online forum and then use common Named Entity Recognition approaches, we identify 

beneficial or side effects reported by patients for each drug. We utilize public resources to 

distinguish known side effects and beneficial effects from potentially new ones and then using a 

rule-based system separate side effects from beneficial effects. To evaluate our approach, we 

manually evaluate the finding. 
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3.2 Data Sources 

Data for this study is obtained from public resources to allow for replicability. We use four public 

resources: WebMD [92], DrugBank [93], SIDe Effect Resource (SIDER) [94], and Unified 

Medical Language System (UMLS) [76]. Below are brief descriptions of these resources and their 

uses in this research. 

WebMD is a collection of Web-based health-related services provided by a US corporation, that 

consistently ranks as the top US health publisher in the United States [92]. It includes a forum 

specifically for patients to share their experiences with medications. The comments are entered as 

free text, and the length of comments is not subject to a character or word count limit. WebMD 

[92] allows users to score three different aspects of the medication in their reviews: (1) 

effectiveness, (2) ease of use, and (3) satisfaction. WebMD provides some basic information about 

the users such as age, sex, and duration of treatment. Figure 2 shows a screenshot of a WebMD 

review page. The patient comments from WebMD were the main material used in this study. 

DrugBank is a bioinformatics and cheminformatics resource that provides drug information, such 

as indication, synonyms, gene target, drug interactions, and structure. This database can be used 

to identify the current indications of drugs and thus to identify mentions of potential new uses as 

distinct from the prior ones. 

SIDER, developed by Kuhn et al [94], contains information about 1430 marketed medications and 

5880 side effects (140,064 drug-side effect pairs) extracted from public documents and package 

inserts. The developers of SIDER retrieved adverse drug reaction and disease names from UMLS 

to generate a dictionary of side effects. One can use SIDER to identify known side effects of drugs 

mentioned in the comments. 
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UMLS [76] integrates medical terminology and coding standards to help researchers and 

developers create interoperable biomedical information systems. One can use UMLS resources to 

create a dictionary of disease names that might potentially be treated by repurposed drugs.  

 

Figure 2: A screenshot of WebMD web page which allows users to post a comment about a medication and rate it 
based on effectiveness, ease of use, and satisfaction. 
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3.3 Method 

3.3.1 Creating a Table of Medications 

In the first step, we create a table of medications frequently mentioned in social media, the 

approved indications of these medications, and known side effects. For the list of medications, we 

generate a list of the top 180 most frequently searched medications on WebMD. Through 

DrugBank, we collect known and approved indications related to those medications. To locate the 

drugs in DrugBank, we search drug names, synonyms and brand name entries. In the next step, a 

list of known side effects for each drug is retrieved from SIDER. Finally, we retrieve all user-

generated reviews posted in WebMD about these medications. (WebMD categorizes reviews for 

each medication, therefore distinguishing comments for each medication is a straightforward task 

and there is not any need to locate or identify drug names in the comments.) 

3.3.2 Identification of Medication Effects within Consumer Reviews 

We next identify beneficial or adverse effects within the posted reviews. Beneficial effects would 

be their impact on reducing some observed negative health condition, such as a rash. For 

simplicity, we refer to such negative conditions as “diseases” although they might be symptoms 

or observations related to a disease. Any mentions of disorders in the reviews are tagged by using 

two disease named entity recognition (NER) approaches. 

In the first approach, which can be considered a dictionary-based approach, a list of disease names 

from UMLS is retrieved and a string-matching technique applied to identify any of the diseases 

mentioned in the comments. The dictionary-based approach misses mentions that are either 

semantic or grammatical variants of standard forms, so for these, a second approach was employed. 
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The second approach uses MetaMap [95]. We evaluate these two approaches by comparing disease 

names identified by each for the top ten most reviewed medications.  

Since we are interested in newly reported uses, we discard reviews that contain only known adverse 

effects for related medication, using the table we created previously. We then manually review 

100 of the remaining comments to develop a list of textual patterns used to report beneficial effects 

or indications. Using the textual patterns, we implement a rule-based system to tag the reported 

beneficial effects within the comments. We report the frequency of each textual patterns in the 

comments, before and after removing side effects and any previously known indications. In the 

final step and as the evaluation, the comments that contained any of the textual patterns are 

manually reviewed. 

3.4 Results 

3.4.1 Statistics of the medication table 

The results of retrieving consumer generated posts for the top 180 most commonly searched drugs 

in WebMD (mean number of posts per drug was 358) yielded 64,616 separate posts. Within this 

set, Lisinopril (an angiotensin-converting enzyme inhibitor used to treat high blood pressure and 

heart failure) had the most comments (n=2931), whereas metoclopramide (used to treat gastric 

esophageal reflux disease) had the fewest comments (n=8). Table 1 shows the top 10 reviewed 

medications and includes the three most frequently named diseases in the respective comments. 

The dictionary created to capture all spelling variants of diseases provided in UMLS included 

239,227 entries for 86,839 unique diseases. 
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Table 1: Most reviewed medications in WebMD and most frequently named diseases in reviews. 

Drug name  Number of 
Reviews 

Number of Disease names Most frequent disease names 

Dictionary-
based 

MetaMap Dictionary-
based 

MetaMap 

Lisinopril 2931 288 1135 Itch Blood 
pressure 

High blood 
pressure 

Cough 

Rash Dry cough 

Hydrocodone-
acetaminophen 

2684 320 987 Arthritis Pain 

Itch Back pain 

Chronic pain Arthritis 

Phentermine 1931 207 860 Dry mouth Dry mouth 

Depression Weight loss 

Obese Blood 
pressure 

Cymbalta 1651 320 1063 Depression Depression 

Itch Anxiety 

Fibromyalgia Weight gain 

Lexapro 1609 269 864 Depression Depression 

Itch Weight gain 

Panic attack Anxiety 

Effexor 1568 290 943 Depression Depression 
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Drug name  Number of 
Reviews 

Number of Disease names Most frequent disease names 

Dictionary-
based 

MetaMap Dictionary-
based 

MetaMap 

Itch Dizziness 

Panic attack Anxiety 

Tramadol 1404 261 826 Arthritis Pain 

Fibromyalgia Back pain 

Migraine Dizziness 

Trazodone 1305 226 701 Depression Insomnia 

Dry mouth Depression 

Chronic 
insomnia 

Anxiety 

Topamax 1191 271 840 Migraine Migraine 

Gist Headaches 

Memory loss Tingling 

Percocet 1125 245 713 Itch Pain 

Chronic pain Abuse 

Arthritis Back pain 

 
 

The dictionary-based NER approach identified 2178 disease names in the comments, whereas 

MetaMap identified 6171 disease mentions. Table 2 shows the 10 most commonly named diseases 

in the comments (after disambiguated terms and variations of diseases were removed manually).  
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Table 2: Most frequently named diseases in reviews. 

Dictionary-based MetaMap 

Disease Count Disease Count 

Depression 5602 Pain 9990 

Itch 3594 Depression 4921 

Migraine 1610 Blood pressure 4016 

Dry mouth 1269 Weight gain 3778 

Infection 1218 Dizziness 3484 

Panic attack 1174 Anxiety 3323 

Rash 1086 Headache 2216 

Arthritis 905 Nausea 1977 

Fibromyalgia 850 Relief 1671 

Mood swing 730 Dry mouth 1279 

 

Of the 180 drugs, 164 (91.1%) were listed in DrugBank but only 74 (41.1%) were listed in SIDER. 

After filtering comments to remove text describing known indications and adverse drug events 

from the list of recognized disease names, the top three most frequently named “new” diseases 

from the text that remained are shown in Table 3 (note the overlap with Table 1). 
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Table 3: Most-reviewed medications in WebMD and most frequently named diseases in the reviews after removing 
known indications and adverse drug events. 

Drug name  
Number of Disease names 

Most frequent new disease 
names 

Dictionary-
based 

MetaMap Dictionary-
based 

MetaMap 

Lisinopril 280 1124 Itch Blood 
pressure 

High blood 
pressure 

Cough 

Rash Dry cough 

Hydrocodone-
acetaminophen 

320 987 Arthritis Pain 

Itch Back pain 

Chronic pain Arthritis 

Phentermine 195 834 Depression Weight loss 

Obese Blood 
pressure 

High blood 
pressure 

Sleeping 

Cymbalta 320 1063 Depression Depression 

Itch Anxiety 

Fibromyalgia Weight gain 

Lexapro 269 864 Depression Depression 

Itch Weight gain 
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Drug name  
Number of Disease names 

Most frequent new disease 
names 

Dictionary-
based 

MetaMap Dictionary-
based 

MetaMap 

Panic attack Anxiety 

Effexor 290 943 Depression Depression 

Itch Dizziness 

Panic attack Anxiety 

Tramadol 200 670 Fibromyalgia Pain 

Chronic pain Back pain 

Migraine Headache 

Trazodone 196 609 Chronic 
insomnia 

Depression 

Migraine Anxiety 

Fibromyalgia Headache 

Topamax 271 840 Migraine Migraine 

Gist Headaches 

Memory loss Tingling 

Percocet 245 713 Itch Pain 

Chronic pain Abuse 

Arthritis Back pain 
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3.4.2 Statistics of Textual Patterns 

We identified 18 textual patterns used (or can be used) to report beneficial effects and then counted 

the frequency of them in the reports. The frequencies of the top ten most common are shown in 

Table 4.  

Table 4: Textual patterns to identify drug repositioning candidates. 

Pattern Count Example drugs and comments2 

I use * for 307 Methadone: I use this for diabetic neuopathy. works well with very 
little side effects. 

Percocet: I use this for M.S. pain 

Percocet: I use this med for peripheral neuropathy pain. 

I use it for 42 Cymbalta: My use of Cymbalta is two fold. I use it for depression 
and fibromyalgia pain. 

Spironolactone: I use it for acne. Go figure it works 

Promethazine: I use it for gastroparesis. I also use it for sleep 4 or 5 
times a month 

It helps 
with 

131 Nucynta: It helps with my pain from surgery 

Percocet: it helps with my back pain, better then any drug 

Klonopin: I like this medication it helps with my anxiety. 

It help with 11 OxyContin: it help with muscle spasms 

Neurontin: i had drop foot and much pain. it help with the pain 
along with the 3 epidurals i receiveed in my spine. 

                                                

2 Consumer comments are shown exactly as they appeared on the WebMD site. 
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Pattern Count Example drugs and comments2 

Cymbalta: i started this medication years ago. not only did it help 
my depression, it help with my auto immune, muscle and nerve 
pain. 

I take it 1,161 Nucynta: I take it for severe headache and neck pain from arthritis, 
bulging disks, and bone spur in my neck (cervical spine) 

Methadone: I take it for chronic pain it helps a lot 

Flexeril: I take it for muscle spasms related to fibromyalgia. 

I take it for 91 Methadone: I take it for chronic pain it helps a lot 

Methadone: I take it for degenertive disk deteration in my neck. 

Hydrocodone-acetaminophen: i take it for my scholiosis of my 
back 

It works for 258 Methocarbamol: It works for my muscle tension, but gives me a 
headache. 

Diazepam: it works for my pain weal good 

Tramadol: It works for my Arthritis Pain. 

It is useful 
for 

0 … 

Useful for 18 Methadone: very useful for chronic and severe pain associated with 
fibromyalgia/rheumatoid arthritis. 

Effexor: I have been reading the reviews of this med. I have been 
using it for 1.5 yrs and has been very useful for my depression. 

Ultram: this med has been very useful for my hip and back pain. 

Prescribed 
for 

319 Percocet: I was prescribed for kidney stones. definately took the 
pain away and very high. 
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Pattern Count Example drugs and comments2 

Zoloft: I feel like the antidepressant is used in conjunction with my 
cymbalta which I am prescribed for both depression and 
fibromayalgia. 

Celebrex: I was prescribed for knee pain following surgery for torn 
muniscus. 

 

Table 5 shows the frequency of the patterns after removing the comments that referred to only 

known side effects or indications.  

 

Table 5: Frequency of common textual patterns after removing known indications and adverse drug effects. 

Pattern Count Example drugs and comments3 

I use * for 171 Flector: it’s not so bad. I use them for stress headaches only if I 
have a mild headache 

Hydroxyzine: I use this drug for itching attacks and it works fast 
and effective for me. 

Elavil: I use this medication for restless leg syndrom 

I use it for 23 Promethazine: I use it for gastroparesis.i also use it for sleep 4 or 5 
times a month 

Amitriptyline: I use it for ic 

Seroquel: I m in love with seroquel its amazing! I use it for sleep 
and I wake up refreshed 

It helps 
with 

72 Neurontin: it helps with numbness in my legs and arms 

Neurontin: I was diagnosed with rsd in from a fall on the ice. It 
helps with controlling the pain; 

                                                
3 Consumer comments are shown exactly as they appeared on the WebMD site. 
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Pattern Count Example drugs and comments3 

Seroquel: although it helps with my depression I have gained over 
50lbs 

It help with 6 Oxycontin: it help with muscle spasms 

Hydrocodone-acetaminophen: it is ok I think and it help with my 
back pian. 

Neurontin: I had drop foot and much pain. It help with the pain 
along with the 3 epidurals I receiveed in my spine. 

I take it 729 Methadone: I take it for chronic pain it helps alot 

Pristiq: I take it for depression and ptsd as well as for chronic pain 
from failed cervical fusion. 

Zoloft: I have taken it for three years almost and when I take it my 
depression worsens rather in the summer when I wouldnt take it I 
was the happiest 

I take it for 48 Percocet: I take it for pain after a shoulder surgery and it works 

Buspar: I take it for stress. 

Effexor: I take it for depression. 

It works for 155 Pristiq: I do not think it works for me makes me very consipated 
and I think it makes the back of my legs hurt in the muscle part. 

Metformin: I take it before bed no sideeffect so for taking one 
month hope it works for me yes I am scared 

Flexeril: back problems healed up then came right back. overall it 
works for a little while. 

Useful for 13 Effexor: I have been reading the reviews of this med. I have been 
using it for 1.5 yrs and has been very useful for my depression. 
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Pattern Count Example drugs and comments3 

Hydrocodone-acetaminophen: this med. is useful for short term 
relief of pain. 

Ultram: this med has been very useful for my hip and back pain. 

Prescribed 
for 

0 … 

 

A manual review of the remaining comments identified five drugs with potential for repurposing 

(see Table 6). 

 

Table 6: Example comments suggesting the possibility of drug repositioning. 

Medication Indication Adverse effect Patient comments4 

Methadone Dry cough, drug 
withdrawal 
syndrome, opioid 
type drug 
dependence, and 
pain 

Amenorrhea, 
phlebitis, 
sneezing, 
suffering, 
withdrawn, 
hypomagnesemia, 
urticaria, 
rhinorrhea, fever, 
spasm, … 

I use this for diabetic 
neuopathy. Works well with 
very little side effects. 

Elavil Depression, chronic 
pain, irritable bowel 
syndrome, sleep 
disorders, diabetic 
neuropathy, 
agitation and 
insomnia, and 
migraine 
prophylaxis 

None in SIDER elavil is an old school 
antidepressant that is now 
considered a dirty drug 
because of its undesired side 
effects. one of the 
unintended side effects is to 
relax the skeletal muscle 
tissue. I use elavil off label 
to treat my tmj 

                                                
4 Consumer comments are shown exactly as they appeared on the WebMD site. 



 33 

Medication Indication Adverse effect Patient comments4 

Spironolactone Low-renin 
hypertension, 
hypokalemia, and 
Conn syndrome 

Hyperkalemia, 
amenorrhea, 
urticaria, 
epidermal 
necrolysis, 
anaphylaxis, 
fever, toxic 
epidermal 
necrolysis, 
lethargy, nausea, 
… 

I use it for acne. go figure it 
works 

Strattera Attention-
deficit/hyperactivity 
disorder, alone or in 
combination with 
behavioral 
treatment 

None in SIDER I was prescribed this 
medication for slight adhd 
with off label anxiety help. 

Viibryd Acute episodes of 
major depression 

None in SIDER It even helps my migraines 
somewhat (maybe it will be 
off label in the future for 
migraine prophylaxis) 

 

3.5 Discussion 

3.5.1 Comparison of MetaMap Versus a Dictionary-Based Approach 

MetaMap is a sophisticated tool that uses natural language processing and machine learning 

methods; thus, it is not surprising that it is more accurate than the dictionary-based approach. 

MetaMap, to some extent, addresses some general concerns such as disambiguation, misspelling, 

and word normalization, but none of these is addressed in the dictionary-based approach. For 

example, in the phrase “My stomach and back hurts to sit, lay down, or stand,” the dictionary-

based approach would tag “down” as a disease because of overlap with the “genetic disorder down 
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syndrome.” As Table 2 shows, MetaMap recognized about three times the number of disease 

names as compared to the dictionary-based approach. The main reason for this difference is word 

normalization in MetaMap. The dictionary-based approach is limited by its requirement for exact 

matches—for example, a dictionary that contains only “dizzy” would not detect “dizziness” as a 

relevant word. In contrast, MetaMap uses stemming and lemmatization to normalize words. The 

main advantage of dictionary-based mapping over MetaMap is its speed (the dictionary-based 

approach is considerably faster). 

3.5.2 Using Patient Comments for Drug Repurposing 

The reviews commonly described general disorders such as pain, itching, and headache. This is 

expected because comments usually are not authored by medical experts. We observed that 

patients more often tend to report adverse drug events instead of beneficial effects, as some of the 

previous studies reported a similar trend [44]. For example, in the corpus provided by Leaman et 

al [44], they annotated 157 beneficial effects in 3600 posts, while they found 1260 adverse drug 

events. Nevertheless, some patient comments contain beneficial effects of medication, which 

makes social media a useful resource for drug repurposing. This imbalanced distribution makes 

identifying beneficial effects more difficult, however, especially for training a classifier. Our 

results (see Tables 4, 5, and 6) suggest that an effective approach for this task would be to recognize 

the textual patterns that people used to report beneficial effects (eg, “I use [drug] for [disease]”). 

For example, in a review of Viibryd, a user mentioned, “It even helps my migraines somewhat,” 

clearly noting a beneficial effect of the drug, which could be captured by our rule-based system. 

Similar to other computational drug repurposing approaches, these findings need to be reviewed 

manually by experts and then confirmed or rejected by laboratory tests or clinical trials.  
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3.6 Limitations 

There are some known limitations to this study. Analysis of the patient comments, which are 

written in an informal manner, obviously needs a system that can handle spelling and grammatical 

errors. The current implementation does not address these issues. 

Our system covered only simple textual patterns, although the examples in Tables 4 and 5 highlight 

the need to decode complex patterns. A simple pattern-matching system obviously is insufficient 

for a statement such as “I use it for nose allergies and it does not clear up my nostrils.” A system 

should be able to handle negation and coreference. 

Another limitation of this study was that comments originated from only one forum. Other social 

media sites such as Yahoo! Answers, PatientsLikeMe [96], and even Twitter have similar 

information, which could be studied. In addition, using only one resource for known side effects 

and one for indication was another limitation. In Table 3, there are several known indications and 

adverse drug events, which highlight this limitation. 

In this study, we were not able to evaluate our system using measures such as precision or recall 

because of the lack of an annotated corpus.  

3.7 Summary 

We assessed the feasibility of using social media to identify drug-repurposing candidates. After 

collecting patient reviews of medications from WebMD, we compared dictionary-based and 

MetaMap approaches to identify disorders mentioned in the reviews. Reviews describing known 

indications or known adverse drug events were excluded, and the remaining reviews were searched 

for textual patterns commonly used to report beneficial effects. Although the most commonly 

reported disorders were nonspecific (eg, pain, itching, headache), we nevertheless showed that 
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consumer comments contain beneficial effects of medication and have the potential to be used for 

drug repurposing. Our textual patterns were able to capture some beneficial effects, but there is a 

need for a more complex and sophisticated system to identify complex mentions of beneficial 

effects in social media, such as those involving negation or co-reference. 
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4.1 Introduction 

In this chapter, we discuss literature-based discovery (LBD) and how to prioritize potential drug 

repositioning candidates generated by LBD. This chapter consists of three separate studies. In the 

first one, we study the effect of discourse-level and sentence-level analysis for relation extraction, 

which is one of the main components in LBD systems. In the second and third studies, we propose 

and evaluate two prioritizing algorithms to rank potential drug repositioning candidates generated 

by LBD. 

4.1.1 Discourse-level vs Sentence-level analysis for Relation Extraction 

Information extraction (IE) aims to automatically extract information from text. To understand and 

extract information from text, IE systems should look at the text as a whole and not just individual 

sentences. Researchers in the discourse domain agree that usually sentences/clauses are not 

understood in isolation [97]. IE researchers have studied discourse-level analysis [98] for 

applications such as question answering and dialogue generation. One important aspect of 

discourse-level analysis is identifying relation between sentences (clauses), called discourse 

relations, such as contrast or explanation-evidence [97].  

Two main tasks in IE are named entity recognition (NER) and relation extraction. In relation 

extraction, IE systems identify the relation between two or more entities where the entities could 

span multiple sentences. Identifying relations that span multiple sentences needs discourse-level 

analysis to interpret context dependent aspects of meaning such as coreference resolution. 

The goal of the first study in this chapter is to assess the need for discourse-level analysis for 

relation extraction and evaluate the amount of information that IE systems would miss if they just 

focus on the sentence level. To perform this experiment, firstly, Semantic Medline [78] is used to 
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generate a list of potential drug-disease repositioning candidates. Then, we used Medline abstracts 

to find evidence of these drug-disease co-occurrences, using two methods, one based on sentences 

and the second based on discourse-level information.  

4.1.2 Prioritization of LBD generated candidates 

Once the potential novel findings are discovered by LBD systems, it is necessary to eliminate the 

false positives, and identify only true findings (novel discoveries). Distinguishing novel 

discoveries from the others is not a trivial task. Typically, the LBD method consists of two steps: 

1) extracting and mining relations from the text, and 2) eliminating the false positives and 

identifying only the true relations. As a final step, however, it is also important to have a rigorous 

validation of the candidate relations before we proceeding to laboratory or clinical investigations, 

since these are not only expensive but also time consuming. The effectiveness of a LBD system, 

therefore, lies in its rigorous validation. Most prior studies lack such vigorous validation, including 

ranking of the generated candidates generated through LBD process. Though there are a few prior 

attempts [63], [71] in this direction, this area has been largely underexplored. 

In the second part of the study, first we propose and evaluate the effectiveness of two predicate-

based ranking methods for prioritizing potential drug repositioning candidates generated by LBD. 

Then we propose a prioritization method based on context. 

We discuss the methods and results of each study separately. 

4.2 Methods for Generating Candidates from single or multiple sentences 

The study contains two steps: 1) generating a list of drug-disease pairs based on LBDs and 2) using 

the discoveries to evaluate the drug-disease relation extraction by comparing the extractions from 

a single sentence to those from multiple sentences. 
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4.2.1 Generating drug-disease pairs 

In the first step, a list of potential relations between drugs and diseases is generated following 

Swanson’s model [48]. As discussed in Chapter 2, according to Swanson’s model if one scientific 

study notes a correlation between concept A (Starting concept) and concept B (Linking concept), 

and another study mentions a correlation between concept B and concept C (Target concept), then 

there might be a correlation between concept A and C. In our study, drug is the starting concept 

and disease is the target concept, a type of gene serves as a conceptual link between the two.  

We use semantic predications from SemMedDB as a source of these two types of links [75]. For 

example, from the following two predications: 

Flecainide (Drug)     INTERACTS WITH     SCN5A (Gene) 

SCN5A (Gene)        ASSOCIATED WITH     Heart Failure (Disease) 

the system generates Flecainide-Heart Failure as a potential new drug-disease pair. Figure 3 

shows the architecture of the overall LBD process. 

 
Figure 3: Architecture of our LBD system. In this system, starting concept is a drug, the linking concept is gene, and the target is 

a disease that leads to drug-disease discoveries. Our system uses Semantic predications as evidence of correlation between the 
concepts. 

There are two major reasons for our choice of using semantic predication to generate LBDs  
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1) semantic predication takes biological meaning into consideration  

2) the semantic type of the interaction and the contextual information about the interaction 

allow us to filter unnecessary predications such as: NEGATIVE TREATS, NEGATIVE 

ASSOCIATED WITH, etc.  

To further refine the drug-disease pairs to be relevant for LBD, we used Timeline profiles to 

narrow down the drug-disease pairs. Any potential drug-disease pair that occurs before either the 

first occurrence of either the related drug-gene or gene-disease pair is excluded. Equation (1) 

clarifies this use of a Timeline profile: 

               (Eq 1) 

 

where Ysp(Drug-Gene) indicates the publications’ date of all Medline abstracts that contain at least 

one semantic predication between Drug-Gene. For Drug-Disease pairs, we considered publications 

that contain at least one co-occurrence of the entities (Yc). For example, assume four studies in 

2002, 2004, 2007, and 2014 reported association between Drug A and Gene B; and two studies in 

2007 and 2010 mentioned association between Gene B and Disease C. The left-hand side of 

equation would be: 

Max (Min (2002, 2004, 2007, 2014), Min (2007, 2010)) = 20067 

So, if Drug A and Disease C appeared together in any publication before 2007, we do not consider 

Drug A-Disease C. Figure 4 illustrates this example. 
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Figure 4: Timeline profile. This figure illustrates the timeline profile which we used to make the generated drug-disease pairs 
relevant to LBD. In this example, as drug-disease pair co-occurred in 2008 (for the first time), which is after both drug-gene and 

gene-disease relations mentioned in literature, is an acceptable pair in our study. 

 

4.2.2 Evaluating sentence and discourse-level relation extraction 

In the next step, we search Medline abstracts for any co-occurrence (evidence) of drug and disease 

pairs that were not filtered because of their place on the timeline. We categorize the drug-disease 

pairs with at least one evidence in Medline into two groups, depending on whether they occur in 

the same sentence or spanning multiple sentences  

In order to assess the true validity of the drug-disease pairs, we compare the drug-disease pairs 

identified by the system against the chemical-disease associations in the Comparative 

Toxicogenomic Database (CTD) [99], a manually curated database of biological relations and 

associated PubMed citations. A pair is considered valid only if the Medline abstract matches a 

PubMed citation that contains the drug-disease pair.  

Lastly, we perform an analysis to study whether discourse-level analysis would have a positive 

impact on the time lag since the reporting of causal pairs (drug-gene/gene-disease) and the 

appearance of drug-disease pair in the scientific literature. 
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4.2.3 Results 

4.2.3.1 Retrieval of LBD relations 

There were a total of 1,710 approved drugs extracted from DrugBank [93]. Using this list of drugs, 

from SemMedDB there were 4,096 unique drug-gene (A-B) pairs given the gene-related semantic 

predicates extracted from SemMedDB. For all the genes mentioned in A-B pairs we retrieved 

2,741 gene-disease (B-C) relations from SemMedDB. With gene being the common link between 

Drug-Gene and Gene-Disease, we inferred 71,842 potential drug-disease (A-C) relations. The 

results of the study are illustrated in Figure 5. 

4.2.3.2 Comparison of sentence level and discourse level 

We found only 37,719 (52.05%) of the 71,842 drug-disease pairs with at least one literature 

evidence. 

Timeline analysis (Eq1) further narrowed down the number of drug-disease pairs to 8,772 

(23.25%) from 37,719. 6,450 drug-disease relation pairs (73.52%) out of 8,772 identified earlier 

transcend sentence boundaries, demanding the requirement of discourse-level analysis for textual 

extractions.  

For the 2,322 pairs that co-occurred in at least one abstract at the sentence level, we found 89,805 

total co-occurrences in the literature. Further composite analysis revealed that there was far more 

literature evidence across sentences than from a single sentence as shown in Figure 6.  
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Figure 5: Results of the study. 

 

For the 8,322 drug-disease pairs, only 537 (6.4%) of them matched the gold standard, CTD. Further 

analysis revealed that only 130 (24.20%) of the 537 that matched the gold standard occurred in a 

single sentence while the rest (75.80%) appeared across different sentences. Ignoring the match, 
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found in the literature citations we found 17,094 of the drug-disease pairs matched those in the 

CTD. 

 
Figure 6: Comparison of frequencies of drug-disease relations’ co-occurrence in a single sentence versus multiple 

sentences 

 

4.2.3.3 Discourse-level analysis may impact Time lag of LBD 

Figure 7 plots the cumulative percentage which represents a cluster of drug-disease pairs observed 

at a time zone at both the sentence level and discourse level. The trend shows that performing 

discourse-level analysis would significantly advance the identification of the drug candidate for a 

specific disease.  
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4.2.4 Discussion 

In this study, we assessed a method for finding potential drug candidates based on co-occurrence 

of drug-gene pairs and gene-disease pairs within Medline Abstracts. The study also compared the 

candidates found when considering relations found within a single sentence versus those spanning 

multiple sentences and thus require some discourse-level analysis. We found that drug-gene and 

gene-disease relations quite often transcend clausal and sentence boundaries and hence demand 

mechanisms to connect information across such boundaries. Here we found the description of 

23,268 potential drug-disease relations across sentence boundaries versus the 14,451 relations 

within sentences.  

Across all experiments, we observed a consistent trend that drug-disease relations that occurred 

across sentences outnumbered the ones within sentences. Our evaluation against the curated CTD 

resource also reinforces this trend. The study also revealed that a discourse-level analysis would 

have significantly reduced the time lag between the scientific reporting of causal pairs (drug-

gene/gene-disease) and drug-disease relational pair. This shows the need for advance discourse-

level analysis approaches to extract information from literature in time and its ability to hasten the 

pace of discovery. 

Another significant observation is the amount of potential false-positive drug-disease relations 

identified through literature mining. We observe a substantial reduction in the number of drug-

disease relations when we compare the literature-based drug-disease pairs with those from curated 

resource CTD (Figure 5). The reduction among the discourse-level pairs is far greater (3.3 times) 

when compared to the ones from sentence level (2.5 times), which might reflect that the discourse 

level analysis provided more candidates. 
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Figure 7: Comparing the time gap between the first co-occurrence of discovery and the causal pairs (Sentence level 

versus discourse level) 

 

4.2.5 Summary 

In this study, we investigated the extent of the need of discourse-level analysis for drug-disease 

relation extraction from biomedical literature. We used Semantic Medline to extract LBDs and 

then based on co-occurrence analysis, we collected any evidence of the discoveries in Medline 

abstracts. We categorized the evidence into two categories, sentence level and discourse level. 

From subsequent analysis, we infer that there is a potential to miss more than 70% of drug-disease 

relations when we extract information from just the sentence level. This clearly demonstrates the 

need for deeper discourse-level analysis, which may translate to significant improvement in the 

state of the art of NLP techniques. 
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4.3 Prioritization of potential discoveries generated by LBD 

In the second part of this chapter, we study prioritizing drug repositioning candidates generated by 

LBD systems. We propose and evaluate two prioritization approaches; 1) predicate-based 2) 

context-based. 

4.3.1 Predicate-based prioritization 

In this study, we follow the same approach as in the previous study to build a LBD system which 

generates a list of potential drug-disease relations using semantic predications in SemMedDB. 

From the initial list, we explore a series of methods to eliminate erroneous extraction. We then 

assign a score to the remaining pairs (likelihood of being true drug-disease pair) and rank them. 

First, we remove pairs that were qualified by negated predicates such as “did not inhibit”. We also 

remove pairs that were qualified by “co-exists” predicate, which does not semantically define a 

relationship between the pairs. For ranking, we use the occurrence of predicates that qualify the 

binary relationships (between drug-gene and gene-disease) as a feature to rank the final drug-

disease relationships. For example, to rank this pair, Strepsils - Chagas, inferred from these 

semantic predications:  

• Example 1) Strepsils (Drug), INTERACTS WITH, CA2 (Gene) 

• Example 2) CA2 (Gene), AUGMENTS, Chagas (Disease) 

we use the predicate between drug-gene, “INTERACTS WITH”, and the predicate between gene-

disease, “AUGMENTS”. The semantic predicates of both the drug-gene and gene-disease pairs 

(which we call intermediate predicates) play a determining role in qualifying a drug-disease pair. 

We attempt to find a meaningful co-relation between the predicates, one that qualifies drug-gene 

and gene-disease relationships, and the likelihood of generating a true drug-disease pair. The 
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importance of predicate to determine the relevance of drug-disease relations is even more 

important given the fact that the individual semantic predication can occur in more than one 

document. In order to assert a relationship that is inferred from two relationships from multiple 

documents, we propose that the predicate co-relation between the two relationships is one of the 

key factors. Besides, the relation and the predicates may have many-to-many relationships 

meaning that more than one predicate can qualify a relation between the two entities. For example, 

there is only one citation for the relationship between Strepsils and CA2 (example 1), while there 

are six citations that contain the relationship between CA2 and Chagas (example 2). Out of these 

six, three of them are “ASSOCIATED WITH”, two of them are “AUGMENTS”, and one is 

“AFFECTS” relationship. 

To assign a score to each predicate, we take advantage of the existing curated resources. There are 

numerous resources such as the UMLS and the Comparative Toxicogenomics Database (CTD) 

[99], which catalog drug-disease relationships. In this study, we use UMLS as the gold standard 

to evaluate the effect of intermediate predicates in generating a true drug-disease pair. To identify 

already known drug-disease relations in the list generated by the LBD system, we cross-reference 

the generated list of drug-disease pairs with UMLS drug-disease relations. We assign a score to 

each predicate based on how many times they generate a true drug-disease pair. 

We propose two different ranking approaches based on two assumptions. In the first approach, we 

consider the predicate of drug-gene and gene-disease to be independent of each other, while in the 

second we consider the dependencies between the predicates of the two pairs.  

4.3.1.1 Method of ranking based on predicate independence 

Figure 8 shows the steps of calculating the independence scores for each drug-disease pair. In the 

first step, we use SemMedDB to retrieve drug-gene and gene-disease pairs and create a list of 
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potential drug-disease pairs. Then we cross-reference the drug-disease pairs with true drug-disease 

relations in UMLS. As our goal is to identify potential drug-repositioning candidates, we only 

consider drug-disease relations in UMLS where their type is “May_be_treated_by”. As 

SemMedDB stores Concept Unique Identifier (CUI), assigned by UMLS to each biomedical 

entity, we use CUIs to cross-reference our list and UMLS. After identifying true drug-disease pairs 

in our list, we go back to identify drug-gene and gene-disease pairs which created those drug-

disease pairs. Then we count how many times each intermediate predicate contributed to 

generating true drug-disease relations. 

The score for a given drug-disease pair inferred from the individual pair (drug-gene (DG) and 

gene-disease (GD)) is calculated as per the equation 1. 

𝑆𝑐𝑜𝑟𝑒 ='log +
𝑃-./012
𝑃-./032

4 +'log +
𝑃-/.016
𝑃-/.036

4
7

89:

;

<9:

								(1) 

Where: 

n: the number of semantic predications between the drug-gene extracted from the literature 

m: the same number for the gene-disease relationship 

PpDG-U5: Percentage frequency of the predicates in drug-gene which participated in creating 

drug-disease pairs appeared in UMLS 

PpGD-U: Percentage frequency of the predicates in gene-disease which participated in 

creating drug-disease pairs appeared in UMLS 

PpDG-S6: Percentage frequency of drug-gene predicates in SemMedDB 

                                                
5 The first “P” stands for percentage and the second one stands for predicate and “DG” stands for “Drug-Gene”. 
6 In this notation, “S” stands for “SemMedDB”. 
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PpGD-S: Percentage frequency of gene-disease predicates in SemMedDB 

We use (PpDG-S) and gene-disease (PpGD-S) to normalize the percentage frequencies (PpDG-U and 

PpDG-S). 

 

 

Figure 8: Steps of calculating independence scores 
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For example, consider the above drug-disease pair (Strepsils - Chagas). In order to calculate the 

score for the pair, we add the ratio of log scores of the individual predicates as outlined in equation 

(1). For this example, we add the score of the only predicate, “INTERACTS WITH” that defines 

the relationship between the drug-gene pair (Example 1) with the score of all six predicates 

between the gene-disease pair (Example 2). As mentioned before, more than one predicate may 

qualify a drug-gene/gene-disease pair, which we consider the summation of the ratio of log scores 

of all of them. At this point, we do not consider the semantic relatedness of the predicates while 

calculating their scores. 

4.3.1.2 Method of ranking based on predicate inter-dependence 

In the second ranking, we assume that the predicates of the drug-gene pair and the gene-disease 

pair are dependent on each other while estimating their relevance in pairing a drug with a disease. 

This changes the formula used to compute the final score. Here are the specific steps used to score 

the pairs: 

1) Compute the Percentage Frequency of the combined predicates between the drug-gene 

and gene-disease pair (PpDG-pGD). We limit this calculation to only those drug-disease 

pairs that are represented in UMLS drug-disease relations, which we indicate with this 

notation (PpDG-pGD-U). For this computation, we count how many times each combined 

predicate appeared in true drug-disease pairs (generated by the LBD) and then calculate 

percentage frequency for them. 

2) To normalize the percentages, we use the percentage frequency of the combined 

predicates from SemMedDB (PpDG-pGD-S) as outlined in the following equation:  
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𝑃-./0-/.03 =
#𝑝./ ∗ #𝑝/.

∑ E#𝑝./2 ∗ #𝑝/.6F
;,7
<9:
89:

																(2) 

where n and m present the number of all different predicates between drug-gene 

and gene-disease, respectively. #𝑝./  shows the frequency of the drug-gene 

predicate in SemMedDB, and #𝑝/.  shows the frequency of gene-disease.  

3) Using the percentage frequency, we calculate the raw score for a given generated drug-

disease pair as given in the following equation (3). 

𝑆𝑐𝑜𝑟𝑒 ='log+
𝑃-./0-/.012
𝑃-./0-/.032

4
;

<9:

																			(3) 

where n presents the number of combinations which generate that drug-disease pair 

which is equal to the product of the number of different predicates between the 

drug-gene pair and the number of predicates between the gene-disease pair. 

4.3.1.3 Validation and evaluation 

To validate our ranking methods, we use two resources, CTD and Medline citations. After the 

scoring, the drug-disease pairs are sorted according to the scores, with the highest scoring pairs 

first. We then calculate and compare the percentage of high ranked and low ranked pairs that occur 

in the CTD or co-occurred in Medline abstracts.  

We cross-reference the generated drug-disease with CTD and then using a statistical test, calculate 

the correlation between our ranking methods and being a true drug-disease pair (appearing in 

CTD). We also measure the correlation between the score assigned to each generated pair and the 

number of times that the pair co-occurred in Medline abstracts. As the last step of validation, an 

expert reviewed the top 10 ranked drug-disease pairs manually by conducting a web-based search 



 54 

for each of these pairs and reviewed the relevant scientific literature to identify type of relation 

between the pairs. 

4.3.1.4 Result 

All drug-gene and gene-disease semantic predications were retrieved from SemMedDB. There 

were 19,993 drug-gene pairs (12,666 unique) and 59,945 gene-disease pairs (33,489 unique). 

When we applied Swanson’s model to these pairs, it resulted in the generation of 653,108 potential 

drug-disease pairs (245,102 unique). Of the roughly 245,000 possible pairs, we found that about 

0.5% (N=1,204) of the generated pairs appeared in UMLS. These 1,204 pairs were used to 

calculate percentage frequency related to each drug-gene and gene-disease predicate. 

Figure 9 shows the percentage of high and low ranked drug-disease pairs, which co-occurred in 

Medline abstracts, for the both, inter-dependence and independence, methods. In this figure, the 

Y-axis shows the percentage of pairs that co-occurred in Medline and the X-axis shows the number 

of top ranked pairs. Using a T-test, we found that the inter-dependence method (shown in red) was 

significant P value < 2.2e-16. 

 

 
 

Figure 9: Comparison of the percentage of high and low ranked drug-disease pairs co-occurred in Medline abstracts. 
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Figure 10 shows the results of calculating the percentage of appearance of just the high and low 

ranked drug-disease pairs in CTD.  

 

 
Figure 10: Comparison of the percentage of high and low ranked drug-disease pairs appeared in CTD. 

 

 

Table 7 includes the result of our manual investigation of top ten ranked drug-disease pairs. 

Table 7: Top ten ranked drug-disease pairs  

Drug Disease Type Reference 

Omalizumab Asthma Treatment [100] 

Nifedipine Tetanus Treatment Wikipedia 

Nifedipine Ischemia Treatment [101] 

Omalizumab Dermatitis, atopic Treatment [102] 

Nifedipine Heart failure Treatment [103] 

Nifedipine Renal tubular disorder Relation [104] 

Calan Hypertensive disease Treatment Not found 
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Airol Asthma - Not found 

Ezetimibe Coronary heart disease Treatment [105] 

Cyclosporine Asthma Treatment [106] 
 

4.3.1.5 Discussion 

In the prioritization study, we found that the interdependence-based rankings of drug-disease pairs 

(especially the top ranked pairs) identified through LBD were much more likely to be supported 

by published evidence than the pairs ranked using the independent ranking approach. Figure 9 

shows that 82% of the top 100 drug-disease pairs, ranked using inter-dependence approach had 

supporting literature-based evidence. These pairs were found to co-occur within a single abstract 

in Medline. However, there is a noticeable decline in the percentage of pairs as the ranking goes 

below 100. We observed that pairs ranked using independent ranking approach had relatively 

lower co-occurrence evidence in the biomedical literature.  

We observed a similar trend when we evaluated the confidence levels of the top ranked pairs 

identified using both approaches against the CTD. Figure 10 further confirms the distinct 

advantage of the inter-dependence ranking over the independence ranking. Finally, manual 

evaluation of top ten pairs ranked by inter-dependence approach revealed that the pairs have some 

biological significance based on expert judgment. This indicates that the inter-dependence method 

would be useful for identifying biologically relevant drug-disease pairs. Moreover, nine out of ten 

top ranked drug-disease pairs were found to belong to DRUG-TREATS-DISEASE relationship 

category. 

There are two main limitations in this study. First, we did not have a gold standard of drug-disease 

treatment pairs to evaluate the performance of our approaches. Second, there is an inherent 
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limitation both in the choice of resource (choice of CTD as a resource) and the measure (literature 

co-occurrence) to evaluate the confidence levels of top ranked drug-disease pairs identified by the 

system. CTD though a manually curated resource does not annotate the type of relationship 

between the drug and disease. Hence while evaluating our system against CTD we ignored the 

semantic predications extracted by the system, which would have resulted in loss of valuable 

information. Alternatively, we relied on document level co-occurrence in literature as a measure 

to validate drug-disease relationship. Document level co-occurrence of a relation is not a strong 

indicator for a valid drug-disease relation. There are also limitations in our ranking methods. Using 

some rigorous statistical validation may further refine the notion of semantic predication as 

evidence for relation between biomedical entities for LBD. 

4.3.1.6 Summary 

In this study, we proposed and evaluated two methods for ranking and prioritizing potential drug-

repositioning discoveries extracted from literature. We used drug-gene and gene-disease 

predications, extracted by SemRep, to generate potential drug-disease pairs. The predicates 

between dug-gene and gene-disease pairs are used to rank the generated drug-disease pairs. Our 

results showed using combination of drug-gene and gene-disease predicates can be a metric to rank 

more likely true drug-repositioning candidates higher in the list. 

4.3.2 Context-based prioritization 

In the second study related to prioritization, we propose a new method, called context-based 

prioritization. This method utilizes text surrounding A-B and B-C relations (causal 

associations/findings), to prioritize discoveries generated by LBD systems.  
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While our previous method (Study 2 in this chapter) looked for evidence in the form of sematic 

predications, in this approach, we explore a ranking method that utilizes text surrounding causal 

findings to train a binary classifier that categorizes drug-disease pairs into the following two 

classes:  

a) Positive class (Likely a true drug repositioning candidate) 

b) Negative class (Unlikely a true candidate) 

The classifier uses two sentences, which drug-gene and gene-disease relations are extracted from, 

to classify generated drug-disease pairs into one of these two classes. 

4.3.2.1 Method of context-based prioritization 

Like the two previous studies in this chapter, we use drug-gene and gene-disease semantic 

predications to generate potential drug-disease pairs. Like previous studies, we follow Swanson’s 

model in our LBD system (more details in section 2.1).  

After generating the list of drug-disease pairs, we search these relations in SemMedDB. We 

consider a drug-disease pair as a positive instance, if there is any semantic predication in 

SemMedDB that shows treat relationship (predicate) between that drug and disease. The rest of 

drug-disease pairs in the list, are considered as negative instances. 

We randomly select 5000 drug-disease pairs (2500 positive and 2500 negative instances). We 

retrieve two sentences from Medline abstracts for each of the pairs:  

a) one sentence which contains the corresponding causal drug-gene pair 

b) one sentence which contains the corresponding causal gene-disease pair 
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To address the possible time gap between appearing causal pairs (drug-gene and gene-disease) and 

evidence of drug-disease pair in literature (discussed in section 2.1), we only select the drug-

disease pairs with causal relationships published before 2009. To generate some of drug-disease 

pairs, more than one gene can play role of linking entity. For those drug-disease pairs, we randomly 

select only one gene.  

In the next step, we use these 5000 pairs and the sentences, corresponding to their causal pairs, to 

train a classifier. 

4.3.2.1.1 Features and learning models 

We generate two separate sets of features for each of causal pair, however they contain similar 

features. For each causal pair and corresponding sentences, the following features, determined 

after some preliminary analysis, are used in the classifier: 

1. Words that appeared at least 10 times in the causal sentences 

2. Bi-grams that appeared at least 5 times in the causal sentences 

3. Tri-grams that appeared at least 5 times in the causal sentences 

4. Predicate between the entities 

To find the optimal learning model, we compare several common models such as: Random Forest, 

Naïve Bayes, Support Vector Machine, Decision tree (J48 algorithm) and Rule-based (JRip 

algorithm). We implement the classifier in Java and use Weka training models [107]. 

4.3.2.1.2 Ranking 

After training, the classifier is used to rank generated drug-disease relations by the LBD system. 

For each drug-disease relation, we take the three following steps: 
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1) Classify all pairs of causal sentences, which might lead to a relation (some drug and 

disease pairs can be inferred by more than one gene and also each drug-gene or 

gene-disease pair can be extracted from more than one sentence) 

2) Count the pairs of causal sentences classified as positive (positive instances) for 

each drug-disease pair 

3) Rank the drug-disease pairs based on number of positive instances (in descending 

order). In case of a tie, the linking term count [90] is used to rank the pairs (in 

descending order).  

As the aim of LBD is to discover novel findings, we only rank potential novel drug-disease 

relations and remove already known relations. We consider a drug-disease relation as already 

known relation, if there is at least one semantic predication that shows relationship between them. 

4.3.2.2 Evaluation 

We evaluate the classifier and the ranking approach separately. 

4.3.2.2.1 Classifier 

To evaluate performance of the classifier and find the best learning model, the common metrics, 

precision, recall, and F-Measure are used. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
	𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
	𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 
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𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  

 

The classifier is evaluated using 10-fold cross validation. 

4.3.2.2.2 Ranking method 

To evaluate the ranking method, we generate a test dataset containing drug-disease pairs where 

their causal drug-gene and gene-disease pairs appeared after 2009 in the literature. We rank these 

pairs using the classifier and use the ranked list to evaluate our method. Firstly, we study 

distribution of known drug-disease relations (pairs with at least one evidence predication) in the 

list.  

Secondly, we calculate the two following correlations (using a t-test) between actual class labels 

(based on evidence predications in SemMedDB) and the following: 

1) Number of instances classified as positive 

2) Difference of number of instances classified as positive and negative 

Thirdly we compare our ranking method with the LTC [69] method. For this comparison, we rank 

the pairs in the test dataset using both methods and compare the distribution of true pairs in the 

ranked pairs. 

In addition to drug repositioning, we assess our method for two other tasks  

1) identifying novel adverse drug reaction (ADR)  

2) identifying existence of relation between drug and disease (regardless of relation type). 

To train the classifier for identifying ADR, drug-disease pairs augmented with “predisposes”, 

“disrupts”, “complicates”, and “causes” predicts are considered as positive instances and the 
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others as negative. For latter one, we use CTD [99] to label instances as positive or negative, 

instead of using the SemMedDB.  

4.3.2.3 Results 

We retrieved all drug-gene and gene-disease semantic predications from SemMedDB, which 

yielded 19,993 drug-gene and 59,945 gene-disease pairs. Following Swanson’s model, 245,102 

unique potential drug-disease relations were generated. Table 8 shows the performance of the 

classifiers trained using different training models for the drug repositioning task. Table 9 illustrates 

the performance of the classifier for identifying adverse drug events and Table 10 shows the 

classifier performance for identifying the relation between drug and disease, regardless of relation 

types. All these tables show the results of 10-fold cross validation. 

Table 8: The performance of the classifier for drug repositioning task 

Training Model Precision Recall F-Measure 

Random Forest 0.785 0.781 0.782 

Naïve Bayes 0.688 0.685 0.686 

SVM 0.708 0.712 0.709 

J48 0.709 0.714 0.711 

JRip 0.686 0.677 0.681 

 

Our calculation showed that there are strong positive correlations between the actual class label 

and the a) number of positive pairs of causal sentences (p-value = 2.2e-16) and the b) difference 

between the number of positive and negative pairs (p-value = 1.005e-07). 
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Table 9: The performance of the classifier for adverse drug event task 

Training Model Precision Recall F-Measure 

Random Forest 0.8646 0.8600 0.8622 

Naïve Bayes 0.7825 0.7819 0.7821 

SVM 0.7281 0.7123 0.7201 

J48 0.7471 0.7472 0.7471 

JRip 0.7910 0.7562 0.7732 

 

 

Table 10: The performance of the classifier for identifying relation between drug and disease task 

Training Model Precision Recall F-Measure  

Random Forest 0.8357 0.833 0.8343 

Naïve Bayes 0.6895 0.688 0.688 

SVM 0.673 0.681 0.6769 

J48 0.7699 0.7422 0.7557 

JRip 0.6953 0.693 0.6941 

 

Out of 245,102 drug-disease pairs, 6205 pairs met the test dataset criteria. We found out that 180 

pairs in the test dataset were true drug-disease pairs (treatment relationship). Figure 11 shows the 

number of true drug-disease pairs in the ranked test dataset. Each interval shows the number of 

true pairs in that interval.  
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Figure 11: Number of true drug-disease pairs in different intervals of ranked test dataset 

 

We compared true drug-disease pairs in top 100 pairs ranked by LTC and our method. There were 

20 true drug-disease pairs in top 100 pairs ranked by our method and only 13 pairs in the pairs 

ranked by LTC. Figure 12 shows result of this comparison and intersection of true drug-disease 

pairs in top 100 pairs. We observed a similar trend in the top 500 pairs. Our method ranked the 58 

true pairs in the top 500 pairs and LTC ranked 42 true pairs (38 pairs in common). 

4.3.2.4 Discussion 

Table 2, 3, and 4 show the performance of our classifier. The performance reported in Table 8 

confirms that using the surrounding text of drug-gene and gene-disease causal relations can help 

determine the likelihood of being a true drug repositioning candidate for generated drug-disease 

pairs. Using the random forest model, the classifier obtained f-measure of 0.78, which is a 

reasonable performance for a classifier for a task of this complexity. The performance of the 

classifier for two other tasks, identifying adverse drug events and relation detection, also supports 
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the proposed approach. Random forest achieved the highest f-measure among the five learning 

models for those two tasks, 0.86 for adverse drug event (Table 9) and 0.83 for relation detection 

(Table 10). As two different public resources are used as silver standard datasets (SemMedDB and 

CTD) to train and test the classifiers for these tasks, the results demonstrate that the performance 

of the classifier is not dependent on the particular dataset.  

 

 
Figure 12: Comparing true drug-disease pairs in top pairs ranked by (A) our method and (B) LTC. 

 

However, we found strong correlations between the actual class label and both the number of 

positive instances and the difference between the number of positive and negative instances, but 

the correlation between actual class label and earlier is stronger. These results support using the 

number of instances classified as positive in our ranking method.  

After ranking drug-disease pairs in our test dataset, we studied the distribution of true drug 

repositioning pairs in the list and as Figure 11 shows, the top ranked pairs include most of the true 

pairs. We identified 32% (58 out of 181) of the true drug repositioning pairs in the top 8% (500 

out of 6000) of ranked pairs. We plotted this distribution for both our ranking and LTC methods 

in Figure 11. The distributions showed that our approach ranked more true pairs in top of the list 
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comparing to LTC method. The next comparison illustrated intersection between top ranked true 

drug repositioning pairs by both methods. Part 1 in Figure 12 demonstrates that our method was 

able to rank 84% (11 out of 13) of true drug repositioning pairs ranked by LTC in top 100, in its 

own top 100 pairs. This number for top 500 pairs (part 2, Figure 12) was even higher 92% (38 out 

of 42). These two Venn diagrams clearly demonstrate that the majority of true pairs are in common 

between both methods, but our method was able to rank more true pairs in higher ranks of the list.  

There are two main limitations in this study, which first one is the lack of access to a gold standard, 

the same as in the previous study. Another limitation is using a balanced dataset (50% positive and 

50% negative cases) for training the classifiers. At this point, we have not trained/evaluated our 

classifiers using an unbalanced dataset.  

However, the results show that our proposed method can play a role in prioritizing LBD findings, 

but still provide pharmaceutical companies with a long list of potential candidates. As future work, 

we plan to not only prioritize the candidates, but also identify and remove false positive candidates 

from the list. 

4.3.2.5 Summary 

In this study [108], we created and tested a new method to prioritize discoveries identified by our 

LBD system. Our LBD system, which is based on Swanson’s model, uses semantic predications 

as causal findings to hypothesize new findings. To rank the generated hypotheses, we trained a 

binary classifier using information surrounding causal findings in literature. We trained our 

classifier for three different purposes, drug repositioning, adverse drug event, and drug-disease 

relation detection. Our classifier obtained reasonable f-measures for all the tasks (respectively, 

0.78, 0.86, and 0.83). Our results showed that the proposed method performed better than one of 

previous methods in ranking true drug repositioning candidates at the top of the list. 
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Chapter 5: Using biomedical literature and 

clinical trials to prioritize potential 

candidates 
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5.1 Introduction 

In chapter 4, we studied two ranking methods for potential drug repositioning candidates generated 

by LBD systems. In this chapter, we study ranking the candidates generated by information from 

a different source, phenome-wide associations studies (PheWAS). The goal of this chapter is to 

assess this method of using text data in prioritizing non-LBD discoveries. 

PheWAS provide evidence for the association of genetic variants with a wide spectrum of human 

disorders[109]. The PheWAS strategy relies on electronically available phenotypic data collected 

from patient cohorts. PheWAS is similar to a genome-wide association study (GWAS), but 

whereas a GWAS asks “What genetic variants are associated with a disease?”, a PheWAS asks 

“What diseases are associated with a genetic variant?”. PheWAS, similar to GWAS, provides us 

a list of gene-disease associations which we utilize to generate a list of potential discoveries.  

5.1.1 Related works of Phenome-Wide Association Studies 

In 2010, Denny et al. [45] introduced PheWAS and demonstrated an approach to discover gene-

disease associations using genetic data coupled to longitudinal electronic medical records. Later, 

Nature Biotechnology published a study by Denny et al. [110] in which they conducted a 

comprehensive PheWAS on 3,144 single-nucleotide polymorphisms (SNPs) that had been 

previously associated with a variety of phenotypes by GWAS. This PheWAS, like many other 

PheWAS published [109]–[111] used International Classification of Diseases version 9 (ICD9) 

codes extracted from electronic medical record systems in large patient cohorts to define case-

control groups for many phenotypes. In the United States, ICD9 coding is primarily used for billing 

and can have variable effectiveness for describing discrete phenotypes. Regardless, Denny et al. 

[110] demonstrate that for many of the GWAS SNPs, PheWAS was able to rediscover expected 

SNP- disease associations while also identifying novel associations [110]. This suggests that 
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PheWAS results may also provide new opportunities to identify candidates for drug repositioning. 

However, it is also likely that false positives exist in the reported PheWAS data, especially for 

those SNP-disease associations with moderate evidence of association. Independent PheWAS may 

prove highly effective when replicating novel findings. Regardless, to balance accuracy while still 

allowing for discovery and hypothesis generation, one might choose a loose P-value threshold 

from PheWAS data.  

5.1.2 GWAS vs PheWAS in drug repositioning 

As mentioned before, drug repositioning is the process of discovering new indications for existing 

drugs [112]. Critical to drug repositioning is the initial identification of candidate drug-disease 

relationships. Genetic-based association studies, including GWASs, have proven to be effective 

for generating hypotheses related to drug repurposing [113], [114]. GWASs can identify disease 

susceptibility genes that are targets for existing drugs used to treat different conditions. For 

example, a large GWAS implicated flavopiridol, a CDK4 inhibitor and anti-cancer agent, as a 

possible drug to repurpose for the treatment of rheumatoid arthritis [115]. However, GWAS data 

is partly limited by the number of diseases that can be linked to a gene. A unique advantage of the 

PheWAS approach is the ability to measure genetic associations with thousands of diseases 

simultaneously, which may be ideal when identifying pleiotropic effects. As a result, PheWAS 

may prove to be an effective alternative to GWAS when identifying susceptibility loci. 

Importantly, PheWAS may further expand the horizon for discovery and prioritization of 

candidates for drug repositioning [116].  

5.2 Method 

We seek to demonstrate the potential use of PheWAS information for drug repositioning by cross-

referencing PheWAS data with biomedical databases.  
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5.2.1 Generating Candidates 

We begin by extracting all SNP-disease associations from the recently reported PheWAS by 

Denny et al. [110]. We filter the association based on P-value. We use a loose P-value threshold 

(P ≤ 0.05). Only those SNPs that are mapped directly to a gene according to dbSNP, which includes 

2 kb upstream and 500 bp downstream, are considered in the study. In the next step, we retrieve 

all drugs from DrugBank and their direct and indirect gene targets and generate a list of drug-gene 

relations. These drug target data have been previously applied to other in silico drug-screening 

studies [117]–[119]. Then, we look for all sets of transitive pairs, A-B, B-C where A-B is a disease-

gene pair from PheWAS and B-C is a gene-drug pair from DrugBank. (Figure 13). 

 

Figure 13: The three steps in the discovery process. (1) PheWAS associations [108] to connect diseases to genes; (2) DrugBank 
analysis to connect genes to drugs; and (3) drug repurposing targets that connect drugs with diseases. Highlighted is an example 

where this process rediscovered glyburide as an indication to treat type 2 diabetes. 
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5.2.2 Validation and Ranking Candidates 

To measure the relevance of the generated drug-disease pairs identified using PheWAS data under 

a loose P-value cutoff, we assess the co-occurrence of the drug and disease terms in Medline 

abstracts. For this purpose, MetaMap [95], is used to extract disease names from the PheWAS 

phenotypes and then we scan Medline abstracts for the paired drug-disease terms using a text 

search engine, Apache Lucene. 

To validate our method, we generate a list of drug-disease pairs (the same number of pairs as our 

method generated) where both drug and disease names are randomly selected from a list of drugs 

and diseases. Then we follow the same approach to identify any co-occurrence of these pairs in 

biomedical literature. Finally, we compare the percentage of the pairs in both lists which have at 

least one co-occurrence in literature. We repeat the process 1000 times and look for any significant 

difference in the percentages. 

For comparison purposes, the process is also performed using gene-disease pairs driven solely by 

GWAS data extracted directly from the GWAS catalog [120]. 

To assess the novelty of the drug-disease pairs and to better rank candidates for drug repositioning, 

we further cross-reference all pairs with the clinical trial registry (clinicaltrials.gov). We categorize 

the pairs into four categories, including: 

• known/rediscovered 

• strongly supported (some support in the literature and clinical trial registry) 

• likely (some support in the literature or clinical trial registry) 

• novel (no evidence in the databases) 
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5.3 Result 

We extracted all 212,851 SNP-disease associations from PheWAS catalog [110]. Only 1,501 SNPs 

were mapped directly to a gene according to dbSNP, which allowed us to identify 48,488 unique 

gene-disease relationships. Using gene-drug relations in DrugBank, we were able to identify 

52,966 drug-disease pairs.  

Of the 52,966 drug-disease pairs, 14,816 (28%) were supported in the literature. After permuting 

drug-disease pairs 1,000 times and cross-referencing random drug-disease pairs with Medline 

abstracts, we identified a total of 3,270 ± 57 drug-disease pairs (6.2%; Figure 14-a) that co-

occurred in literature, which suggests that PheWAS data significantly enriches information for 

drug-disease pairs supported by evidence. Of the 52,966 drug-disease pairs, 127 pairs were 

‘rediscovered’ according to original indications listed in DrugBank (Table 11). As an example, the 

PheWAS catalog reported an association between SNP rs2515629 and ‘type 2 diabetes’ (P = 

0.000732). A search of dbSNP maps rs2515629 to the gene ABCA1, which is mentioned in 

DrugBank as a gene target for glyburide, a drug used to treat type 2 diabetes. Therefore, this 

process appropriately identified type 2 diabetes as an indication for glyburide (Figure 13). By 

contrast, using the GWAS approach, the number of drug-disease pairs identified was 7,945 of 

which 3,087 (38.8%) co-occurred in at least one abstract (Table 11). When the same permutation 

procedure was established for the GWAS data, a total of 489 ± 21 pairs (6.2%) appeared at least 

once in the abstracts (Figure 14-b).  
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Figure 14: Co-occurrence distribution plotted for 1000 randomly permuted drug-disease pairs identified in 
Medline Abstracts for (A) PheWAS- and (B) GWAS-derived data. For each dataset, the number observed drug-
disease pairs with evidence in Medline Abstracts is also highlighted. This contrast demonstrates that there is a 

significant difference between the observed drug-disease pairs in Medline Abstracts from those randomly 
permuted. 

 

The resulting distribution of the 52,966 PheWAS-derived pairs and 7,945 GWAS-derived pairs 

into the four categories of discovery, are shown in Table 11. 

Table 11: Comparison of PheWAS- and GWAS-based approaches to drug repositioning 

 

 GWAS PheWAS 

Drug-Disease pairs 7945 52,966 

Drug indication type   

Known/rediscovered 140 (1.8%) 127 (0.2%) 
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Strongly supported 908 (11.4%) 2,583 (4.9%) 

Likely 2,060 (25.9%) 12,221 (23.1%) 

Novel (candidates for drug repositioning) 4,837 (60.9%) 38,035 (71.8%) 
 

Some examples from each category driven by PheWAS data are illustrated in Table 12. For 

example, PheWAS results indicate that SNP rs2736100 in the gene TERT is associated with 

diabetes (P = 0.00029). Zidovudine, a drug prescribed to treat HIV/AIDS, is a reverse transcriptase 

inhibitor and may inhibit TERT activity. This example suggests that zidovudine might be 

repositioned to treat diabetes, a not unreasonable assertion as increased telomerase activity has 

been reported to be associated with increased diabetes complications [121]. It should be noted that 

the co-occurrence of drug-disease pairs may also be the result of adverse drug events [122].  

Table 12: Examples of Drug-Disease pairs identified from PheWAS data 

Status Drug Disease 
Indication 

PheWAS 
SNP 

PheWAS 
P-value 

Associated 
Gene 

Medline 
Citations/ 

Clinical Trial 
Citations 
(count) 

Known Paclitaxel breast cancer rs242557 0.041 MAPT 3003/321 

Known Glyburide type II diabetes rs2515629 0.00073 ABCA1 240/12 
Strongly 
supported 

Dexametha
sone 

rheumatoid 
arthritis rs4795067 0.050 NOS2 4271/48 

Strongly 
supported Everolimus breast cancer rs17036350 0.040 MTOR 221/46 

Likely Verapamil vaginal cancer rs216013 0.011 CACNA1C 1144/0 

Likely Chlorprom
azine liver cancer rs11214606 0.033 ARVCF 423/0 

Novel Porfimer hyper-
cholesterolemia rs6511720 2.5E-6 LDLR 0/0 

Novel Zidovudine diabetes rs2736100 0.00029 TERT 0/0 
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5.4 Discussion 

This study offers many promising new candidates to explore. Complete results from this study are 

available to the scientific community for further experimental validation and clinical study [22], 

[23]. For example, an investigator interested in developing a new drug for breast cancer would 

have 18 candidates, including oxcarbazepine and disopyramide, for investigation. Similarly, new 

indications may be identified for existing medications. On the basis of our analysis, docetaxel has 

88 potential new indications, including psoriasis, migraine and osteoporosis.  

Because the SNPs selected for the PheWAS were derived from reported GWAS, it is not surprising 

that several drug-disease pairs identified by PheWAS overlap those identified by GWAS. 

Specifically, there were 161 overlapping drug-disease pairs between GWAS and PheWAS data; 

70 were initially identified as ‘novel’ (no evidence in the databases). The 161 overlapping pairs 

may be an under- representation of the true overlap as phenotypic terms used by the GWAS may 

differ from those defined by the PheWAS, especially GWAS that assessed quantitative traits. For 

example, the PheWAS identified a link between LDLR, a target for Porfimer [93], and “hyper-

cholesterolemia,” whereas GWAS connected LDLR to “cholesterol” (Table 11).  

As mentioned previously, we chose a loose P-value threshold for PheWAS data for discovery and 

hypothesis generation. On the basis of permutation analysis, many of these associations may be 

real, but these are undoubtedly mixed with false positives. We investigated 

the effect of various P-value thresholds. When using a P-value threshold of ≤ 0.001, approximately 

250 drug-disease pairs with evidence were observed. This more stringent P-value threshold may 

decrease false positives but also dramatically reduce the number of potential candidates. 

Interestingly, as P values decreased below 1.0 × 10–5, the proportion of drug-disease pairs with 

evidence in the literature increased (Figure 15). Additional replication of PheWAS findings should 
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improve the association results. Furthermore, incorporating other biomedical databases, such as 

SemMedDB [78] and the Drug-Gene Interaction Database [123], in combination with manual 

curation, may also significantly benefit the prioritization process.  

 

Figure 15: Number of drug-disease pairs by P-value threshold for those pairs with and without evidence according to Medline 
Abstracts, Clinical Trial Registry, or DrugBank. 

 

Even with many drug-disease pairs identified through this raw screen, other factors of course 

influence whether candidates for drug repurposing may be suitable for commercial development. 

Economic factors may limit some drug candidates. Pharmaceutical companies may not support 

drug repositioning due to insufficient market potential driven by disease frequencies, competing 

medications, and/or intellectual property protection. In addition to economic constraints, some 

agents may require reformulation due to therapeutic index, toxicity profile and/or agent type 

(topical agents versus systemic agents). A second level ‘screen-out’ approach would further help 

identify candidates for repositioning. 
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5.5 Summary 

The conclusions of this study are two-fold. First, we suggest that the utilization of PheWAS data 

provides a robust approach for identifying new drug candidates for repurposing. Second, we 

illustrate how to use biomedical literature and clinical trials to rank non-LBD drug repositioning 

candidates. In this study, we identified nearly 14,800 drug-disease pairs with some evidence of 

support in biomedical literature or clinical trials. In addition, we identified more than 38,000 novel 

candidates for re-purposing, encompassing hundreds of different disease states and over 1,000 

individual medications. We anticipate that these results will be highly useful for hypothesis 

generation in the field of drug repurposing.  
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Chapter 6: Conclusion 
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6.1 Introduction 

The drug development process is a prolonged and expensive process. In this thesis, we examined 

drug repositioning as a popular alternative approach to reducing the cost and time needed for 

developing a new drug. We explored the opportunity of identifying potential drug repositioning 

candidates by leveraging publicly available text-based resources. We conducted five studies and 

utilized reviews posted by patients to WebMD, abstracts from the biomedical literature, clinical 

trials, and PheWAS data as the main resources for generating and prioritizing the potential drug 

repositioning candidates. We developed a rule-based system and studied the feasibility of using 

patient reviews in drug repositioning. To our knowledge, this is the first study to consider using 

social media data for this purpose. We were able to detect several beneficial effects of medications 

reported by patients, which highlighted the value of social media in drug repositioning.  

In three studies, we focused on literature-based discovery. First, we presented a method to compare 

the relative importance of using either isolated sentences or multiple sentences comprising a 

discourse to identify potential candidates. We found that nearly three quarters of the findable 

candidates would require mining candidates using multiple sentences. In the other two studies, we 

proposed statistical methods to prioritize the potential candidates. In the first method, we utilized 

predicates in semantic predications extracted from Medline abstracts to rank the candidates. Our 

results illustrated that predicates can be a metric to rank more likely true drug-repositioning 

candidates higher in the list, however this approach is limited to LBD systems that utilize semantic 

predication for discovery. The other method utilized the text surrounding discoveries to train 

several classifiers and used the classifiers to score and rank the potential candidates. Our analysis 

showed the effectiveness of this method as well. These two studies illustrated that by using 
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computational methods and existing knowledge sources, we can rank and narrow down the long 

lists of the potential candidates generated by LBD systems. 

In the fifth study, we utilized text data to prioritize and categorize potential drug repositioning 

candidates generated by a non-LBD system. In this study, we used Phenome-Wide Association 

Studies to generate a list of potential candidates and then utilized text from the biomedical 

literature and clinical trials to categorize and prioritize the candidates. The results of this study 

showed that PheWAS can be used to generate new hypotheses for drug repositioning and that 

biomedical literature and clinical trials can be used to prioritize the candidates and filter out already 

known candidates. 

6.2 Comparison 

In this section, we will compare the systems presented in this thesis based on the number of 

potential drug repositioning candidates generated by each. We presented three main systems to 

generate the potential candidates: 1) LBD using semantic predication, introduced in chapter 4 2) a 

PheWAS based system, presented in chapter 5 and 3) a GWAS based system, introduced in chapter 

5 as well. Table 13 and figure 16 show the number of potential candidates generated by each 

system, and the percentage of the candidates categorized as known, supported in literature (based 

on co-occurrence of drug and disease), and novel. 

Table 13: Comparing the systems based on the number of generated candidates 

System Total number Already known Supported in literature Novel 
LBD using sematic 

predication 
245,102 1,204 (0.49%) 

(in UMLS) 
53,922 (22%) 189,976 (77.5%) 

PheWAS based 52,966 127 (0.2%) 
(in DrugBank) 

14,816 (28%) 38,035 (71.8%) 

GWAS based 7,945 140 (1.8%) 
(in DrugBank) 

2,963 (37.3%) 4,837 (60.9%) 
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Figure 16: Comparing the systems based on the number of drug repositioning candidates 

By examining the results in Table 13, it is clear that the LBD system generated more potential drug 

repositioning candidates than the others, but it provided the smallest percentage of candidates 

supported by evidence from the literature. The GWAS-based system generated only 7,945 

candidates with 37.3% supported by the literature, which suggests a lower false positive rate, but 

has a limitation of generating the smallest number of novel candidates. Figure 14 indicates that for 

all three systems, the biggest proportion of the candidates are novel and thus there is a need to 

prioritize them and remove false positive candidates.  
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6.3 Future work 

In this thesis, we assessed methods for leveraging three important text-based resources, social 

media, biomedical literature, and clinical trials. We did not include one of the most important text-

based resources now available, clinical notes, because they are not public. Exploring clinical notes 

as resource to identify and prioritize the potential candidates is a potentially valuable extension to 

this work, as they might provide the earliest evidence of off-label uses of prescribed medications. 

For each study described here, we mentioned the limitations which could be considered as potential 

future work. For example, for the social media study, as we only explored the feasibility of using 

social media for drug repositioning, and only considered data from one source, many extensions 

are possible such as: exploring the other websites (tweeter, Facebook, …), creating an annotated 

dataset and developing statistical methods, using state-of-the-art NLP algorithms to address known 

issues with consumer-generated text, such as mis-spellings and ungrammaticality. To address the 

need for better methods for prioritizing candidates and removing more false positives, the next 

step would be to explore incorporating other biomedical databases, such as SemMedDB [78] and 

the Drug-Gene Interaction Database [123], in combination with manual curation.  
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