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ABSTRACT 
 

USING HISTORIC GLO DATA AND GIS TO ASSESS THE POTENTIAL FOR LOCAL BISON BISON NEAR 

TWO WISCONSIN LATE PREHISTORIC ONEOTA LOCALITIES 

 

by 

 

Andrew Michael Saleh 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Jean Hudson, Ph.D. 

 

Bison (Bison bison) remains are rare in the archaeological record of Wisconsin. This 

thesis uses a Geographic Information System (GIS) to better understand native vegetation near 

sites with reported bison bone to assess their ecological viability to support local bison herds. 

The distribution of bison bone recovered in archaeological contexts in Wisconsin can be 

summarized as follows: few sites report bison remains, the archaeological  contexts that do 

report bison are clustered in a few Late Prehistoric period locations (approximately A.D. 1300-

1650), and bison remains are rare in comparison to other fauna at those sites (Arzigian et al. 

1989; Boszhardt 1989, 2000; Boszhardt and McCarthy 1999; Brown and Sasso 2001; Dirst 1985; 

Gibbon 1970; Jeske et al. 2017; Kreisa 1986; McQuin 2010; Peske 1966, 1971; Sasso 1993, 2014; 

Scott 1994; Shay 1978; Stevenson 1994; Stoltman 1973; Theler 1994b, 2000; Theler and 

Boszhardt 2003, 2006; Theler and Pfaffenroth 2010). Sasso (1993, 2014) summarizes three 

major hypotheses about how bison were acquired by Wisconsin’s prehistoric and historic native 

residents: local hunting, non-local hunting, or trade acquisition. One comparative approach to 

assessing the viability of a local hunting hypothesis versus other hypotheses is to consider the 

vegetative needs of a bison herd, and to model local vegetation around the sites where bison 
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bones have been recovered. This thesis attempts that by considering historic accounts of 

vegetation, bison biological needs, and GIS modeling.  
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Chapter 1: Introduction 

At the genus level, bison bones appear in western Great Lakes archaeological contexts 

during different times when humans are present in the region. This genus includes the extant 

Bison bison species, as well as the extinct Bison antiquus and Bison occidentalis (Boszhardt et al. 

1993; Hawley et al. 2007, 2011; Hill et al. 2014; Kuehn 2009; Sasso 1993, 2014; Theler 1994a). 

In terms of specimen count and reporting, at a species level, Bison bison bones and evidence 

attributed to Late Prehistoric Oneota contexts in Wisconsin show the most abundance (Arzigian 

et al. 1989; Boszhardt 1989, 2000; Boszhardt and McCarthy 1999; Brown and Sasso 2001; Dirst 

1985; Edwards IV 2017; Gallagher et al. 1985; Gibbon 1970; Hall 1962; Jeske et al. 2017; Kreisa 

1986; McQuin 2010; Peske 1966, 1971; Sasso 1993, 2014; Scott 1994; Shay 1978; Sterner 2018; 

Stevenson 1994; Stoltman 1973; Theler 1994b, 2000; Theler and Boszhardt 2003, 2006; Theler 

and Pfaffenroth 2010). This thesis suggests that even with modern techniques, much labor is 

required to understand this elusive species. At the same time, it also suggests that the labor 

involved is worth it.  

Recently, Sasso (2014) synthesized historic documents and archaeological grey literature 

or site reports tied to Late Prehistoric period bison in Wisconsin. Using these data he proposed 

three possible frameworks for the acquisition of bison as food or tool options by Late 

Prehistoric period residents: local, non-local, and trade. Local refers to the hunting of local 

bison herds or individual animals within a reasonable distance of residential sites. Historic 

evidence for bison in Wisconsin supports the possibility of local herds in prehistoric times, and 

it is difficult to imagine a prehistoric hunter ignoring bison if it were directly available (Henning 

1992; Hornaday 1887; Sasso 1993, 2014; Schorger 1937; W.DNR 2006). Non-local refers to 
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traveling to hunt distant bison herds in locations closer to the Great Plains, such as western 

Minnesota, western Iowa, or further west (Boszhardt and McCarthy 1999; Sasso 1993; Theler 

and Boszhardt 2006). Blair (1911), Lehmer (1963), and Radin (1923) show that non-local 

“communal” bison or elk hunting may have occurred seasonally in the western Great Lakes and 

eastern Great Plains. The term “communal” as used here is not always clearly defined; 

sometimes it is used in the sense of many members of the human community participating in a 

long-distance trek, at other times it is used in the sense of shared access to large hunting 

regions by members of multiple human communities. Kreisa (1986), Sasso (1993), Theler and 

Boszhardt (2006), and others suggest that bison remains attributed to the Lake Winnebago or 

La Crosse area Oneota groups may be a result of this practice prehistorically.  

Defining local versus non-local hunting distances, or distinguishing between a local 

subsistence strategy versus a non-local “communal” strategy for the acquisition of bison, is 

seen as a difficult task in terms of currently available archaeological data. Arguments for one or 

the other typically rely on historic or ethnographic analogies, with some consideration of the 

number of bison bones at a site and the particular bison elements represented (Kreisa 1986, 

Sasso 1993, Theler and Boszhardt 2006). 

Trade refers to obtaining bison meat, bone, or hide through exchange with hunters of 

other groups. Discussion has focused on trade between Oneota groups, specifically between 

the La Crosse area and other localities (Kreisa 1986; Martin 2014; McQuin 2010; Peske 1971; 

Sasso 1993, 2014). For example, Martin (2014) examines the idea of the La Crosse area as an 

Oneota hub along the Mississippi River that potentially facilitated trade to places further away 

from major bison source locations like northeastern Illinois. In Figure 1.1, one can see the 
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general Holocene (0-10,000 Y.A.) archaeological bison bone site distribution relating this 

discussion at a continental scale (FAUNMAP 2019). The date range is that of the data set itself. 

It is clear that the Holocene data is widely distributed across the Great Plains area of North 

America, present but rare east of the Mississippi River, present but rare in Wisconsin in 

particular, and more abundant in Illinois just to the south. 
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Figure 1.1: FAUNMAP (2019) catalogs most archaeological sites in North America where bison bone is reported. 
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It has been proposed that most bison remains in Wisconsin from prehistoric contexts 

should be attributed culturally to an Upper Mississippian “Oneota” presence in the western 

Great Lakes region, regardless of how they were obtained (Jeske et al. 2017; Rodell 1997; Kreisa 

1986; Sasso 1993, 2014; Theler and Boszhardt 2006). Oneota is a term used by archaeologists 

to refer to a prehistoric cultural group defined materially by pottery, lithics, domesticated 

plants, and permanent villages. Potential Oneota contexts are noted from Kansas to Ohio, with 

temporal and spatial variability in Late Prehistoric bison acquisition evidenced archaeologically 

(Blakeslee et al. 2001; Edwards IV 2010; Hall 2007; Jakle 1968; Martin 2014; Mcmillan 1996, 

2006, Ritterbush 2002, 2006; Sasso 2014; Tankersley 2005; Wilford 1945). The Oneota contexts 

in Wisconsin have been generally conceived as localities organized into agricultural village 

clusters or sites that are linked together; localities where bison remains occur fit this site-

cluster settlement pattern (Brown and Sasso 2001; Edwards IV 2010, 2017; Gallagher and Sasso 

1987; Gibbon 1972; Hall 1962; Mason 1993; Overstreet 1976, 1978, 1987; Peske 1966, 1971; 

Sasso 1993, 2014; Sterner 2018; Theler and Boszhardt 2006). 

Some Oneota localities cross modern state boundaries, especially in the Mississippi 

River valley (Sasso 1993, 2014). All Oneota localities in Wisconsin do not exhibit the same exact 

cultural practices or occur during the same time periods; inter-locality lithic comparisons have 

proven this (Sterner 2012, 2015, 2018). Oneota contexts in Wisconsin have been viewed 

temporally in somewhat confusing phases and horizons depending on the Oneota locality. For 

example, multiple La Crosse locality phases such as “Orr” or “Valley View,” are chronologically 

broken down quite often and defended successfully; yet, Lake Koshkonong shows mixing 

pottery styles and phases, while Lake Winnebago shows the “Lake Winnebago” phase as 
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defendable (Boszhardt 1989; Brown and Sasso 2001; Carpiaux 2017; Clair 2013; Edwards IV 

2017; McQuin 2010; Jeske et al. 2017; Richards 1992; Schneider 2015; Sterner 2018; Theler and 

Boszhardt 2003, 2006). Many agree that at the very least, there were earlier Oneota phases 

starting around A.D. 1000, and later Oneota phases starting around A.D. 1400.  The “Orr” phase 

from the La Crosse locality, and the “Lake Winnebago” phase in Lake Winnebago locality 

potentially align temporally from AD 1300-1650 based on pottery. These two phases are 

thought to be the ones most associated with Oneota bison acquisition and potential inter-

locality trading or hunting (Brown and Sasso 2001; Kreisa 1986; Martin 2014; Mason and Mason 

1992; Peske 1971; Richards 1992; Sasso 2014). 

Generally, Upper Mississippian Oneota cultural signatures in Wisconsin are defined 

archaeologically by the presence of shell-tempered pottery within contexts near large 

waterways (Brown and Sasso 2001; Edwards IV 2010, 2017, 2017; Gibbon 1972; Hall 1962; 

Jeske 2000, 2003; Jeske et al. 2017; Kreisa 1986; Sasso 1993; Schneider 2015; Sterner 2012, 

2015, 2018; Theler and Boszhardt 2006). Middle Mississippian archaeological sites in the state, 

most notably Aztalan, have also shown this general pattern, but a lot of the general 

comparisons end there (Goldstein and Richards 1991; Van der Heiden 2019). Shell-tempered 

pottery styles or motifs link Wisconsin’s prehistoric Oneota archaeological contexts to those in 

neighboring states like Minnesota and Iowa, and to more distant states like Ohio (Blakeslee et 

al. 2001; Ritterbush 2002, 2006; Schneider 2015; Schulenburg 2010; Wilford 1941, 1945). Figure 

1.2 provides one version of a chronological overview of Wisconsin Oneota prehistory. For the 

purposes of this thesis it is useful to note that the archaeological contexts with bison bones are 

associated primarily with post-A.D. 1400 ceramic types, although a few date somewhat earlier.   
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Figure 1.2: Timeline of Wisconsin Oneota Prehistory (adapted from Boszhardt (1989) and Brown and Sasso (2001)). 
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On the topic of Oneota in Wisconsin, it is worth considering that prehistoric conceptions 

of landscape and community may have crossed modern state boundaries. Of specific relevance 

to this thesis, Sasso (1993) conceived the entirety of the La Crosse area Oneota locale as 

dispersed agricultural village clusters that may have extended beyond Wisconsin into Iowa and 

Minnesota.  Historically, the Chiwere Siouan-speaking Ioway and Oto peoples may be tied to 

the Oneota of this region as likely descendants (Boszhardt 2000; Griffin 1937; Henning 1992a, 

1992b; Sasso 1993). While Peske (1966, 1971) shows a similar agricultural village pattern 

around Lake Winnebago, the Oneota here may be predecessors of the historic Winnebago (Kay 

1990; C. Mason 1992; R. Mason 1992; Richards 1992; Overstreet 1997).  

Sasso (1993) conceived the whole La Crosse locality as approximately 650 square 

kilometers, extending along the Mississippi River. Sometime around A.D. 1250, the Oneota 

occupation in this locality started and it lasted until the late A.D. 1600s and possibly into the 

Early Historic (See Figure 1.2) (Brown and Sasso 2001; Boszhardt 1889; Sasso 1993). In Iowa and 

Minnesota, Early Historic French period artifacts have been found above Oneota contexts, but 

not on the Wisconsin side, suggesting possible abandonment of the Wisconsin sites prior to 

historic French trade. This unfortunately highlights a common issue in Wisconsin: the Oneota 

are hard to link to specific Early Historic period tribes in the state (Brown and Sasso 2001; 

Overstreet 2000; Richards 1992; Sasso 1993). 

Two points to be considered in the comparison of bison acquisition patterns at the La 

Crosse and Lake Winnebago localities are 1) their relative physical proximity to and/or potential 

social connections with people who had direct access to Plains bison herds, and 2) their shared 

subsistence identity as agricultural villagers. The latter is especially relevant because bison 
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scapula was a popular source bone for hoes, and hoes were an essential tool for ridged-field 

agriculture (Brown and Sasso 2001; Boszhardt et al. 1985; Gallagher et al. 1985; Gallagher and 

Sasso 1987; Overstreet 1987). Temporal aspects may also come into play; Dirst (1985:88) has 

argued that bison scapula hoes are diagnostic artifact for Classical period Lake Winnebago 

phase Oneota. 

Pertaining to this study, a key subsistence pattern noted amongst Oneota contexts has 

been described as mixed hunting and farming, with farming based on the cultivation of core 

staples of maize (corn), beans, and squash in ridged fields, often using bison or elk scapula hoes 

for cultivation (Brown 1982; Gallagher and Stevenson 1982; Gallagher et al. 1985, 1987; Sasso 

1993; Sasso et al. 1985). In terms of the hunting aspect of the subsistence, Sasso (1993) 

conceives the large mammal hunting focus of the La Crosse area Oneota as centered on deer, 

elk, or bison. At the same time, Richards (1992:286) notes the general paucity of large 

mammals in Oneota archaeological contexts. Shay (1978:202), unknowingly balancing these 

ideas, shows that in southern Wisconsin in the Late Prehistoric period, although large mammals 

do not have a high representation, when represented, the mean percentage of identified bison 

remains (9.7%) is almost the same as deer (10.1%) from the fourteen sites he analyzed 

throughout the western Prairie Peninsula, while elk was somewhat less (3.2%).  

The archaeological data thus provide some evidence for bison bone in Oneota sites, but 

also some ambiguity and debate about their importance to subsistence and the way in which 

they were acquired. This thesis offers an alternative approach, a Geographic Information 

System (GIS), to answer the question: could Wisconsin support local bison as individuals or 

herds during the Late Prehistoric period. It models environmental variables such as vegetation, 
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terrain, and waterways to assess the options for local hunting in two of Wisconsin’s major 

Oneota localities, La Crosse and Lake Winnebago. The main driver of my vegetation modeling is 

the bison itself; how much land would be needed, with what mix of resources, to support local 

bison. To establish these parameters I review modern bison biology and ecology (Blackburn 

2018; Brockman 2017; Burke 2016; Fortin et al. 2003; Gates et al. 2010; Hartnett et al. 1995; 

Hess et al. 2014; Illius and Farnsworth 1998; Jackson et al. 2010; Larter 1991; Lueck 2002; 

McDonald 1981; McHugh 1958; Meagher 1986; Middleton 2002a, 2002b; Nowak 1999; Nelson 

et al. 2007; Pearson et al. 1995; Raynor et al. 2015; Reynolds et al. 1978; Shay 1978; Senft et al. 

1987; Trottier and Carbyn 1987; Turner et al. 1990; Ulman 2000; Wallace et al. 1995; Widga 

1997, 2006, 2014; Widga et al. 2010). 

Although bison became locally extinct east of the Mississippi River in the early 1800s, 

they were observed in Wisconsin until approximately 1832, and they were noted historically as 

far southeast as Florida (Belue 1996; FAUNMAP 2019; Hornaday 1887; Rostlund 1960; Sasso 

1993, 2014; Schorger 1937; Widga 2006; W.DNR 2006). Combining historic faunal and 

ecological records provides evidence to understand what environmental parameters were 

suitable for bison living east of the Great Plains. Figure 1.3 shows the distribution of bison herds 

in eastern North America based on historic accounts compiled by Hornaday (1887). Figure 1.4 

shows the distribution of bison herds in Wisconsin based on historic accounts compiled by 

Schorger (1937), incorporating and updating Hornaday (1887).  
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Figure 1.3: Historic distribution of bison in North America (adapted from Hornaday 1887). 
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Figure 1.4: Historic distribution of bison in Wisconsin (adapted from Schorger 1937). 
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This GIS-centric study may contribute to a better understanding of the distribution of 

Early Historic and Late Prehistoric period bison populations in eastern North America. The La 

Crosse and Lake Winnebago Oneota localities were chosen for this study based on Sasso’s 

(2014) summary of bison elements or specimens. Figure 1.5 shows the location of the two 

study areas in Wisconsin. Sasso (1993, 2014) identified the La Crosse and Lake Winnebago 

Oneota localities as being of high importance in terms of understanding the bison phenomenon 

in Wisconsin specifically. His reasoning was mostly based on differences in specimen counts and 

element types and contemporaneity of contexts between the regions. In the case of the La 

Crosse locality additional lines of prehistoric evidence have been suggested, including regional 

rock art (Boszhardt 2000; Salzer 1987, 1997; Shrab and Boszhardt 2018; Theler and Boszhardt 

2003).  

I approach these two Oneota localities as hunting catchments, focusing on potential 

human-large mammal interactions. The La Crosse area catchment is of special interest for 

multiple reasons, including bison specimen abundance and element diversity and the locality’s 

relative proximity to the Great Plains. The Lake Winnebago area catchment provides a useful 

contrast to the La Crosse area in that it is located at a greater distance from the Plains. As 

illustrated in Figure 1.2 these localities appear to align temporally.  Archaeologically, the Lake 

Winnebago area contains fewer Oneota sites with fewer bison remains. According to Kreisa 

(1986) and Sasso (2014), scapula are the only bison elements present there. Bison scapula were 

popular as hoes and thus potentially valuable as trade items. This raises the question of 

whether these two Oneota localities might represent two parts of Sasso’s model for bison 

acquisition, Lake Winnebago representing the trade model and La Crosse representing the 
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hunting model, either local or non-local hunting. Because my evaluation of the two localities 

focuses on their ecological suitability for local bison herds, it adds another line of evidence. Was 

the La Crosse area better suited ecologically for local bison than was the Lake Winnebago area? 

Among the first steps in creating catchment maps relevant for Oneota time periods 

were to 1) determine which environmental variables were important and 2) choose the 

approach to reconstructing the prehistoric environment. For the first, three environmental 

variables seemed especially important when modeling habitat suitable to bison: vegetation, 

terrain, and waterways. For the second, while the time gap between Oneota occupations and 

the modern era is not huge, those centuries have certainly seen many changes in landscape use 

with the arrival of Euro-American settlers, the clearing of forest for timber and farms, the 

development of towns and cities, and a growing density of the resident human population. 

Thus, modern vegetation maps were not expected to be a good proxy for the Oneota 

landscape. One type of mapped vegetation data gathered in the 1800s, before many of the 

landscape changes began, was gathered by surveyors whose job it was to map the public lands 

of Wisconsin for future sale (BCPL 2019; Finley 1951). These surveyors were hired by the 

General Land Office (GLO), an agency of the United States government, and the work they did 

followed a method known as the Public Land Survey System (PLSS) (BCPL 2019; Bolliger et al. 

2004; Finley 1951, 1976; Manies and Mladenoff 2000; Mladenoff 2019).  

The hand-written records and plat maps that resulted from the GLO PLSS have since 

been developed into digital data. These data are widely used by scholars in fields such as 

historic ecology and archaeology to estimate prehistoric vegetation patterns across North 

America. GLO historic maps and notes have been applied in different ways in Wisconsin and at 
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different spatial scales (Bolliger et al. 2004; Bolliger and Mladenoff 2005; Cogbill et al. 2018; 

Edwards IV 2010; Finley 1951, 1976; Liu et al. 2011; Manies and Mladenoff 2000; Mladenoff 

2019; Mladenoff et al. 2008; Nelson et al. 2007; Shea et al. 2014; Stencil 2015).  

 The main types of data available in GLO PLSS records are hand-written field notes and 

associated sketch and plat maps. These include descriptions of major land features, ecotone 

changes, timber-centric vegetation information, and soil information. Details were recorded 

according to distances measured by surveyor’s “chains” and “links” relating to section lines; a 

section was a one-mile by one-mile square that served as the standard unit of record keeping in 

the field notes (BCPL 2019; Finley 1951; Manies and Mladenoff 2000; Mladenoff 2019).  

Although GLO field notes represent the original source data, they can be used in 

different ways, resulting in diverse reconstructions of past vegetation. This diversity often 

reflects the research goals of the particular study. For example, this thesis focuses on the 

ecological needs of bison, particularly the contrasts between forage-rich grasslands and forage-

poor forests. It combines this with a spatial scale relevant to a human hunter traveling and 

returning to an Oneota residential site. It also only considers GLO vegetation, GLO or modern 

waterways, and modern terrain in modeling bison viability at a statistical level. Other non-bison 

GLO studies in Illinois or Wisconsin relating to the Prairie Peninsula have brought in additional 

or alternative factors like soil or barometric readings (Bourdo Jr. 1956; Curtis 1959; Edwards IV 

2010; Finley 1951; Jeske 1990; Kilburn 1955). The basic spatial scale of data that has been 

adapted from the original GLO PLSS comes from townships (six-mile squares) and sections (one-

mile squares within a township). Some scholars use these to model broad state-wide patterns 
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while others target much smaller areas, such as one-mile catchments (Bolliger et al. 2004; 

Edwards IV 2010; Finley 1951; Nelson et al. 2007).  

Catchment analysis is one approach to evaluating resources in a region. Archaeologists 

and other scientists often apply the concept to model human or animal use of prehistoric, 

historic, or modern landscapes, typically identifying a residential site as the hub and the 

catchment as the area surrounding it, scaling the size and shape of the catchment to the 

research question (Arroyo 2009; Calenge 2007; Ebert 2004; Edwards IV 2010; Host et al. 1996; 

Hunt 1992; Nolan and Cook 2010; Mysterud et al. 2012; Morgan 2008; Pendleton et al. 1998; 

Schaefer and Messier 1995; Scurry 2015; Stencil 2015; Supernant 2017; Tiffany 1982; Vita-Finzi 

and Higgs 1970; Wheatley and Gillings 2002). For example, Edwards (2010), when studying 

horticultural catchments for Oneota sites, used one- and two-kilometer radii from residential 

sites to evaluate garden resources. My thesis uses twenty-kilometer radii because I am studying 

large game hunting. My goal is to model a distance suitable to that type of hunting and a same-

day or next-day return to the Oneota residential site (Bamforth 1981; Binford 1983, 2001; 

Green 2008; Morgan 2008; Theler and Boszhardt 2006).   

The acquisition of large mammals in upper western Great Lakes states by prehistoric 

peoples has usually been weighted by white-tailed deer (Odocoileus virginianus); but, in the 

Driftless Area in southwestern Wisconsin, archaeologists have noted that a transition from the 

Late Woodland to the Upper Mississippian time period includes a new large mammal staple 

within this study’s catchments, bison (Brown 1982; Brown and Sasso 2001; Pfaffenroth 2009; 

Richards 1992; Sasso 1993, 2014; Stencil 2015; Theler and Boszhardt 2006). Some scholars 

suggest that as human populations increased in areas like southern Wisconsin through the Late 
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Prehistoric period, their hunting ranges may have become smaller and more contested 

(Edwards 2017; Sterner 2018; Theler and Boszhardt 2006). Theler and Boszhardt (2006) state 

that settlement patterns may have been particularly tight during the Late Prehistoric period in 

La Crosse due to the density of people per kilometer over the settled landscape. Near Lake 

Koshkonong, Edwards IV (2017) and Sterner (2018) suggest Oneota movement was even more 

restricted regionally in the Late Prehistoric period. Near Lake Winnebago, Koziarski (2012) 

shows faunal acquisition patterns relating to Upper Mississippian contexts at the Bell Site were 

potentially affected by conflict, which may have restricted many aspects of Oneota lifeways in 

Wisconsin in general. 

This consideration of the clustered Oneota settlement patterns, prehistoric hunting 

ranges, and bison biology all factored into the catchment sizes I chose to use for the GIS portion 

of this study. Within these catchments, statistical scenarios are presented for the landscape’s 

viability for bison. A “custom” La Crosse area vegetation dataset, one that I constructed from 

the original GLO notes, is included as part of this thesis as a way to critically evaluate the 

impacts of GLO translation and research-specific coding and choice of spatial scale on GIS-based 

interpretations of prehistoric ecology. It is distinct from Kay’s (1990) use of the reconstructed 

prehistoric vegetation of Wisconsin to model prehistoric game distribution; Kay did not include 

bison and relied on the vegetation reconstruction provided by Finley (1976). 

This thesis is organized as follows. Chapter 2 provides background on three topics: 

archaeological evidence for bison in Wisconsin, bison biology as it relates to suitable habitats 

for bison, and the use of GLO data with GIS to reconstruct prehistoric environments. Chapter 3 

reviews the methods I used to translate GLO data into GIS catchment maps, and how I used 
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modern bison biology to establish criteria for evaluating catchment suitability for local bison 

herds. Chapter 4 presents my results for both the La Crosse and Lake Winnebago study area 

catchments. Chapter 5 reviews and compares the results from these two localities in terms of 

their ecological suitability for local bison herds, evaluates the use of GLO data in GIS modeling, 

and discusses my interpretations.  
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Figure 1.5: Map of Wisconsin terrain showing the location of the two study areas. 
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Chapter 2: Background 

In this chapter the background literature on three topics will be reviewed. These are: 

bison remains in the archaeological record of Wisconsin, the biology of bison as it relates to 

evaluating habitats in Wisconsin that could have sustained local herds, and the use of GLO and 

GIS as approaches to reconstructing prehistoric environments in Wisconsin.  

Bison in the Archaeological Record of Wisconsin: 

In 2014, Dr. Robert F. Sasso synthesized years of archaeological finds and inquiries 

relating to Late Prehistoric Oneota Wisconsin archaeological sites containing bison remains, 

combining data from published literature, historic literature, grey or site literature, and 

personal communication. His study was divided into four geographic areas containing bison 

remains: “La Crosse,” Western “Upper Mississippi” Wisconsin, “Lake Winnebago – Middle Fox,” 

and “Lake Koshkonong.” Figure 2.1 shows Sasso’s geographic areas and their related 

archaeological site locations. 
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Figure 2.1: The four Oneota locales known to have bison remains in Wisconsin. The two that are the focus of this 

thesis are circled in red (map adapted from Sasso 2014:175). 
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Based on Sasso’s tabled data, these remains represent a total Number of Identified 

Specimens (NISP) of between 182 and 215; in some cases, the source reports noted presence 

but not quantity, or noted a minimal number or a range, resulting in the total NISP range given 

here. Most of these represent confirmed bison identifications, with a small number of tentative 

identifications. These remains are distributed among 26 Oneota sites and clustered in the four 

localities mapped in Figure 2.1. 

One point of special interest is that bison scapulae make up the majority of the total 

reported NISP; 125 out of 182, using the minimal end of the range of NISP values. Most of the 

scapulae identified were modified. Bison scapulae are known to have served as hoes, useful for 

Oneota Late Prehistoric agricultural practices (see Figure 2.2 and 2.3) (Sasso 1993, 2003, 2014). 

In the Lake Winnebago area scapulae are the only type of Bison bison element identified within 

Oneota contexts.  

This spatial patterning and overwhelming preference for scapulae has been argued by 

some as strong evidence for the trade hypothesis of bison acquisition. Dirst (1985) argued that 

bison and elk scapula are diagnostic of the Orr phase Oneota represented at the La Crosse 

locality, and the Lake Winnebago phase Oneota represented at the Lake Winnebago locality. 

Peske (1971) and Kreisa (1986) argue that beyond pottery, trade between Oneota localities can 

also be evidenced by bison scapula appearing in contexts at the Lake Winnebago locality. Both 

of these phases fall within the same Oneota horizon, the Classical period (A.D. ~1300-1650), the 

last temporal horizon of the Upper Mississippian period that led into the Early Historic period in 

Wisconsin (Figure 1.2). 
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Figure 2.2: Pammel Creek bison scapula hoe cash (one of Sasso’s reported bison sites in the La Crosse area). 

Provided by the Mississippi Valley Archaeology Center online, excavated in 1983. 

 

 

Figure 2.3: Scapula hoe drawing example. Provided by the Illinois State Museum online. 
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Sasso (1993, 2014) entertains the idea that bison were present in Wisconsin throughout 

the Upper Mississippian period but suggests that acquisition of bison most likely picked up 

during the Classical period horizons in the southern half of the state. Although rarer, some non-

scapula elements were recovered from three of the four locales, Lake Winnebago being the 

exception. These elements included horn cores, humerus, radius, ulna, carpals and tarsals, 

metacarpals, phalanges, ilium, vertebrae, ribs, and a tooth. Some of these were modified, 

including an incised rib and an incised vertebra, but most were not.  

This patterning of elements contributes to Sasso’s three alternative explanations for 

Oneota bison acquisition. Element diversity – or lack of it – matters in the interpretation of 

hunting versus trade. In zooarchaeological modeling of large game transport from a kill site to a 

residential site two arguments are typically made (Bamforth 1988; Bamforth et al. 2005; Reitz 

and Wing 2008; Speth 1983). One is that the more complete the representation of all possible 

skeletal elements, the more likely that the animal was hunted nearby. The other is that an 

absence at a residential site of low food utility elements, such as cranial elements (e.g., horn 

cores and teeth) and distal limb elements (e.g., carpals and tarsals, metapodials, and phalanges) 

suggests that the kill site was at some distance from the residential site. For animals as large as 

the bison, these models can be complicated by the possibility that meat was flensed from bone 

at the kill site to reduce transport weight, resulting in few bones of any kind being transported 

to the residential site, a practice noted historically (Hennepin 1938; Lehmer 1963; Schorger 

1937). It is thus of special interest that some Oneota sites in Wisconsin had not only scapula, 

but also low food utility elements like horn cores, carpals, tarsals, metacarpals, and phalanges, 

and high food utility elements like humerus, ilium, vertebrae and ribs.  
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Bison bones are still seen as rare from Oneota archaeological contexts in Wisconsin, and 

the La Crosse locality is the one that shows the most abundance in low utility elements. It also 

has some non-scapula high meat utility elements. This suggests the possibility of local kills and 

the use of local bison meat and hide in this locality. Modeling based on element frequency at 

this locality is slightly complicated by the description of several bison elements as modified. 

These include a thoracic vertebra described as engraved, a rib described as incised, another rib 

described as polished, and an ulna described as a paint applicator (Sasso 2014). This serves as a 

reminder that models based on meat utility capture only one of the ways that humans see and 

value animals. 

Sasso (2014) and Edwards and Pater (2011) report that no bison scapula have yet been 

recovered in the Lake Koshkonong Oneota assemblages although this locality has yielded a few 

other elements, including some low utility items, such as a horn core and a tarsal, as well as 

some higher utility items, such as a vertebra and a distal radius. The Lake Koshkonong locality 

has been the subject of long-term and on-going research; when more complete faunal data 

become available, it will provide an important addition to our understanding of Oneota bison 

use. Jeske et al. (2017) consider bison as a part of the Lake Koshkonong Oneota subsistence 

pattern.   

Rodell (1997), Sasso (2014), and Savage (1978) report that north of the La Crosse 

locality, in the area Sasso maps as Upper Mississippi, earlier Oneota contexts present at the 

Diamond Bluff (47PI2) site contain only scapula, while the Armstrong (47PE12) site has lower 

utility horn cores and some unidentified bison specimens. Rodell (1997:480) identifies Diamond 

Bluff as a potential hub for bison hide and bison parts, where native groups could send these 
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goods down to the American Bottom via river trade. This conclusion is based on pottery from 

the contemporaneous Cambria phase found at sites in south-central Minnesota. These sites 

have high amounts of bison remains compared to Diamond Bluff but are thought to show 

evidence of Cambria and Diamond Bluff Oneota as direct trade partners through pottery. 

Essentially, the trade route proposed by Rodell (1997) is a line from south-central Minnesota to 

places like Cahokia, with Diamond Bluff as the northern-most trade outpost along the line.  

Essentially, sites along the Mississippi River show a mix of scapulae and low and high 

meat utility elements. Lake Koshkonong shows a mix of low and high meat utility elements, but 

no scapula. And Lake Winnebago shows only scapulae. Thus, what Sasso’s (2014) summary data 

show, when combined with Brown and Sasso’s (2001) Oneota chronology (Figure 1.2), is that 

from approximately A.D. 1050 to 1700, low utility and high utility bison remains show up 

variably across the southern part of the state. This is the same part of the state where bison 

were observed historically (Schorger 1937).  

One of the puzzles about the archaeological evidence for bison in Wisconsin is that 

there is so little of it. Bison are large animals with dense bones that are more likely to preserve 

better than those of many smaller animals. Sasso (1993, 2014) reviews some of the factors that 

might explain the relative lack of bison bone if bison were hunted locally in Wisconsin during 

Oneota times.  He notes that large animals, such as bison, are more likely to be processed near 

the kill site, making their bones less likely to be found in residential sites. He also comments 

that kill sites may leave more ephemeral archaeological signatures due to their short use-life, 

and thus may be more difficult to find. This would be especially true of hunts that targeted 

single bison rather than entire herds. Sasso (2014) argues that a bison kill site - what McQuin 



27 

 

(2010) and others regard that as the almighty “smoking gun” - may yet be discovered in 

Wisconsin. Sasso (2014:178) also presents the idea that if we want to suggest scapula trade as 

the primary explanation for bison remains in Wisconsin, we need to investigate what items 

were offered in exchange for the scapulae. Whether from inside our modern Wisconsin borders 

or beyond them, other than pottery, nothing has yet to be overwhelmingly confirmed as a 

traceable trade item linking sites with bison scapulae to sites elsewhere that might have 

supplied them (Rodell 1997; Sasso 2014).  

One additional issue that may impact the current visibility of bison bone in the 

archaeological record of Wisconsin is the challenge of identifying it when it does occur. Sasso 

(2014) and others note that fragments of very large mammals, such as elk, cow, moose, or 

horse can be difficult to distinguish from bison, especially in the field or without appropriate 

comparatives. Relatively few published osteological guides compare the elements of these taxa 

in a comprehensive or well-illustrated way (Balkwill and Cumbaa 1992; Brown and Gustafson 

1990). This means it is possible that unreported bison remains exist in curated archaeological 

collections but have yet to be identified.  

This thesis focuses on just two of the Oneota localities, La Crosse and Lake Winnebago. 

What follows is a more detailed account of the bison evidence at these two localities. 

The La Crosse locality includes 16 of the 26 Oneota sites that Sasso identifies as having 

bison bone.  As discussed here, the La Crosse locality refers to recognized Oneota sites on the 

Wisconsin side of the Mississippi River. Those with bison remains include the following sites: 

Filler (47LC149), Firesign (47LC359), Gunderson of the Sanford Archaeological District Locality 
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12 (47LC394), Herbert (47LC43), Holley Street (47LC485), Jim Braun (47LC59), Krause (47LC41), 

Midway Village (47LC19), Onalaska Village and Cemetery (47LC288), OT (47LC262), Overhead 

(47LC20), Pammel Creek (47LC61), Sand Lake (47LC44), State Road Coulee (47LC176), Tremaine 

(47LC95), and Valley View (47LC34). The OT site is seen as especially important, as up to 

twenty-nine recovered specimens were scapulae, but other elements were also represented, 

including humerus fragments (three), a magnum carpal, a metacarpal, and a lower molar (Sasso 

2014). This suggests that sites like OT could have multiple acquisition styles, the abundance of 

scapula suggesting trade while the mix of other elements suggest local hunting. Kay (1990) 

notes that during historic times, both access to hunting grounds and hunting methods changed 

seasonally; this could potentially be a reason for multiple acquisition methods at one site. At 

sites like OT in the La Crosse locality, the zooarchaeological evidence of scapula and high and 

low meat utility elements suggests both trade and hunting were important, while the presence 

of low utility elements suggest local hunting was part of the total strategy.  

In the Lake Winnebago locality there were five Oneota sites that yielded bison remains 

(Sasso 2014). These are: the Eulrich (47WN215), Furman (47WN216), Lasley’s Point (47WN96), 

Overton Meadows (47WN106), and Sauer Resort (47WN207) sites. In all cases these remains 

are scapula. The number of scapula specimens per site ranges from one to five. This exclusive 

emphasis on scapula, and the lack of low utility elements, makes the Lake Winnebago locality a 

better fit for Kreisa’s (1986), McQuin’s (2010), Peske’s (1971), and Sasso’s (2014) trade 

hypotheses rather than a local hunting hypothesis. Kay (1990) notes that although historic 

Winnebago hunting grounds had shifted by A.D. 1810, they were quite large, sometimes 

involving almost half the state, with evidence of seasonal long-distance hunting. This is a 
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reminder that Native groups were quite capable of traveling large distances in Wisconsin, 

whether for hunting or for trade.  

Figure 2.4 locates the two Oneota study areas in relation to regional linguistic 

associations and named archaeological cultural areas during the Upper Mississippian period; 

although somewhat dated, it provides a wider context for considering regional interaction and 

trade. Do the bison scapula found in Lake Winnebago indicate trade? Figure 2.5 illustrates the 

background of waterways that connected different regions of the state, highlighting routes 

available to groups traveling by water. Tanner and Pinther (1987) show that by A.D. 1774, 

French fur traders would have been able to go from Green Bay to the northern mouth of the 

Mississippi with some ease. Kay (1990) shows that by A.D. 1810, historic Wisconsin tribes, 

including the Winnebago, were able to travel great distances along the rivers not only to trade, 

but also to travel to winter or communal hunting grounds. Figures 2.4 and 2.5 are seen as 

useful to conceiving possible inter-locality Late Prehistoric period exchange, especially when 

combined with what is currently understood about ceramic style distributions (Figure 1.2). As a 

way to imagine just what a Native American historic canoe party might look like, Schorger 

(1937:47) summarizing observations by De Beauharnois in May of A.D. 1730, describes the 

return of some twenty flat boat canoes of successful bison hunters of the Fox nation.  
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Figure 2.4: Historic cultural and linguistic distributions in Wisconsin. Adapted from Tanner and Pinther (1987). 
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Figure 2.5: Two study areas in relationship to Wisconsin waterways and terrain. 
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The ecosystem known as the Prairie Peninsula is also argued to have played an 

important role in where and when prehistoric bison populations occurred (Sasso 1993; Theler 

and Pfaffenroth 2010). The Prairie Peninsula can be described as an eastern extension of the 

prairie grasslands of the Great Plains. Historic reconstructions typically center it in the state of 

Illinois, stretching north into Wisconsin and east into Indiana, with scattered patches in 

Kentucky and possible remnants in Ohio (Meszaros and Guy 2017). It has fluctuated in size 

through time (Ohio Plants 2019). Transeau (1935) attempted to map its estimated distribution 

at the time of Euro-American settlement (Figure 2.6) but noted that the ecological explanations 

for its location and extent were widely debated. Meszaros and Guy (2017) define it as a 

tallgrass prairie that occurs in the American Midwest, sandwiched between western shortgrass 

prairies and eastern deciduous forests. In Wisconsin this region has been reconstructed using 

factors such as soils and temperature (Curtis 1959; Finley 1951) and pollen samples (Nelson et 

al. 2007). Schorger uses historic accounts to map the extent of prairie in Wisconsin (Figure 1.4); 

significant to this thesis, he argues it extended into the Lake Winnebago region as well as along 

the upper Mississippi Valley in the La Crosse region. Anthropogenic factors in creating or 

maintaining grasslands, such as intentional burning by Native American groups, have also been 

discussed (Curtis 1959; Transeau 1935). This ecosystem is important in understanding why 

bison bones end up where they do (Meszaros and Guy 2017; Ohio Plants 2019).  
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Figure 2.6: Prairie Peninsula as mapped by Transeau (1935); grasslands shaded black. 
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 Sasso (1993) reviews research on climatic shifts in the Great Lakes region, noting the 

sequence of warmer regimes during the Neo-Atlantic Episode (A.D. 690-1100), drier regimes 

during the Pacific Episode (A.D. 1100-1550), and cooler and moister regimes during the Neo-

Boreal Episode or Little Ice Age (A.D. 1550-1850).  It is not clear exactly how these climatic shifts 

impacted the expansion or contraction of the Prairie Peninsula, but the time period associated 

with the Oneota overlaps the drier regimes of the Pacific Episode.  

Sasso (1993) suggests that any local bison herds near the La Crosse area may have 

moved into these areas due to these climate shifts. Others have suggested that small local 

herds had established themselves in the area as early as A.D. 1100 in the wide Driftless Area 

river valleys near places like modern Buffalo County, Wisconsin (Henning 1992a, 1992b; Meine 

and Keeley 2017; Schorger 1937; W.DNR 2006). Boszhardt and McCarthy (1999) note the La 

Crosse area river valleys would be more favorable to large mammals than the Iowa or 

Minnesota river valleys, as the Wisconsin side has much wider bottoms and valleys. Bison may 

have already been in the La Crosse area before the Oneota populations settled (Sasso 1993; 

Theler and Pfaffenroth 2010). Figure 2.7 shows archaeological bison finds as documented by 

FAUNMAP (2019) superimposed on a georeferenced map of the Prairie Peninsula (National 

Geographic 1980); the overlap between the two in Wisconsin is striking. It is worth noting that 

this is true for the Lake Winnebago area as well as the La Crosse area. 
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Figure 2.7: Archaeological sites with bison remains; the Prairie Peninsula is shaded in black. 
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Archaeological evidence provides direct observable bones of bison, so there is no doubt 

that bison somehow entered American Indian lives in prehistoric Wisconsin. Historic accounts 

of bison in Wisconsin and elsewhere in eastern North American provide another line of 

evidence. Archaeologists often use analogic reasoning, evaluating historic and ethnographic 

evidence to aid in understanding prehistory; this includes issues that involve hunter-animal 

relations (Bamforth et al. 2005; Binford 1967; Hudson 1991). It is important to recognize that it 

is problematic to try to link specific historic tribes to the prehistoric Oneota of the La Crosse 

area or Lake Winnebago area (Henning 1992a; Richards 1992). Setting aside any arguments of a 

direct historical connection, what can historic accounts add to our understanding of where 

bison could live, and when and where they could be hunted? 

Although historic sites in Wisconsin are known to contain bison remains, they are not 

systematically reviewed here, given my focus on Oneota bison use. It would be useful to 

incorporate these historic sites in some future catchment study. For example, in the Lake 

Winnebago area, bison horn was reported for the Middle Historic period Bell site (Wittry 1963). 

There are also known historic locations of bison remains outside Wisconsin, such as at Starved 

Rock along the northern Illinois River, where thick layers of processed bison bones have been 

recovered in Early Historic period contexts (Martin 2014). For the purpose of the present thesis 

I will simply argue that such sites, in conjunction with historic journals and other documents, 

show compelling evidence of Early Historic period bison hunting in or near Wisconsin (Blair 

1911; Hennepin 1938; Lehmer 1963; Martin 2014; Sasso 1993, 2014; Wittry 1963).  

Schorger (1937) published a review of historic accounts pertaining to the range of bison 

in Wisconsin, using a mix of French and English accounts from the 1600s and 1700s as well as 
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other sources.  For example, Schorger (1937:47) cites Perrot’s description that a Native group 

established a new settlement near modern Green Bay, Wisconsin around 1666, and after doing 

so, went to hunt bison, returning in a fortnight with grease and meat. Schorger (1937:46) 

hypothesizes that given the time needed to travel, hunt, and return, these bison could not have 

been much further than the prairies south of Lake Winnebago. He cites other sources for 

mentions of bison herds along Wisconsin’s western border.  These include Hennepin’s 

observations in the late 1600s of bison near the Chippewa River and Lake Pepin, and settler’s 

reports from the late 1700s of bison crossing near the mouth of the Wisconsin River in large 

numbers. He also calls attention to place names that refer to buffalo, such as Buffalo County in 

western Wisconsin and Buffalo Lake in central Wisconsin, and associated historic accounts of 

the presence of local herds in those two locations. He uses these accounts to build his mapped 

estimation of the historic distribution of bison in Wisconsin (Figure 1.4), which place bison from 

Lake Pepin near the northern Mississippi River in Wisconsin, southward to the mouth of the 

Wisconsin River, and eastward across the state to southern Lake Michigan.  

In 1675, Father Louis Hennepin entered the western Great Lakes and northern 

Mississippi River regions; his notes include mention of cultural practices related to bison 

hunting as it was conducted by the Miami living then at the southern end of Lake Michigan near 

the Prairie Peninsula. His observations suggest that the Miami hunted bison heavily in the 

autumn with bow and arrow and the use of fire (Cross 1938:59). Important information can be 

pulled from his discussions: 1) some Native American groups seemed to manage grasslands and 

bison alike so that the animals would return to be hunted again, 2) women carried up to 300 

pounds of bison meat away from kill sites, 3) bison wool was used to make bags that helped 
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carry smoked or dried bison meat, 4) bison hides weighed 100 to 120 pounds, 5) meat could 

last three to four months, 6) many of the bison related items obtained in the autumn were used 

for subsistence through the winter, and 7) the bison of this region were noted to migrate 

seasonally, crossing rivers and creating traces. These animals seemed so important to Hennepin 

that he wondered why the calves were not taken from kill sites and domesticated (1938:62). 

Figure 2.6 shows the historic extent of the Prairie Peninsula; although the Miami that Hennepin 

observed were hunting south of my study areas, similar prairie habitats likely extended into 

Wisconsin.  

Artistic representations of bison provide another line of archaeological evidence. Rock 

art attributed to Oneota time-periods in southwestern Wisconsin portrays bison possibly 

associated with hunting magic and the “heartline motif,” a motif which appears as far south as 

New Mexico and as far north as North Dakota in the same general form (see Figure 2.8) 

(Boszhardt 2000; McQuin 2010; Salzer 1987, 1997; Shrab and Boszhardt 2016; Theler and 

Boszhardt 2003). Lothson (1976) reports bovid petroglyphs associated with Upper Mississippian 

contexts in Minnesota, while Boszhardt (2000) and Salzer (1987, 1997) both report this as a 

common occurrence related to Driftless Area Upper Mississippian sites. Boszhardt (2000) also 

identified a possible bovid image (potentially with a heartline motif) at Hoxie Farms, an Oneota 

site in northern Illinois. A heartline motif was found on a catlinite tablet found at the Midway 

site in the La Crosse locality; the catlinite itself is thought to be from southwestern Minnesota.   

Thus, the distribution of petroglyphs and other artistic representations of bison, including those 

with the heartline motif, seem to match the distribution of bison bone and the historic accounts 

of bison, and suggest that bison were valued in symbolic ways. Others have extended this to 
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the Late Historic period with historic Sauk art in modern northeastern Iowa (Boszhardt 2000; 

Torrence 1988; Musgrove and Musgrove 1974; Salzer 1987, 1997; Sasso 1993). 

Another iconographic form is represented by bison effigy earthen works or “mounds” in 

Wisconsin (Schorger 1937). Schorger (1937) notes they once existed along prairies near modern 

Madison, Wisconsin. Birmingham (2009) states that evidence suggests effigy mounds were 

most intensely constructed from A.D. 700-1100. These mounds had social meaning beyond just 

representing animals, and potentially directly related to native ideology in the region. The 

Wisconsin Historical Society Archaeological Site Index (2019) supports the idea that there may 

only be one bison effigy mound left in Wisconsin, in modern Adams County. At some level, 

whoever built these specific mound types may have held the animal in some regard.  

Another line of evidence that has been applied to location of bison herds is lithic 

analysis, specifically use-wear analysis and protein-residue analysis. Use-wear analysis has been 

used to argue against local hunting by some scholars; Boszhardt and McCarthy (1999) see the 

absence of wet-hide polish and the presence of dry-hide polish on end-scrapers as evidence 

that animals were killed elsewhere at some distance from the La Crosse locality. McQuin 

(2010:33) attempted protein residue analysis on end-scrapers from the same locality; none of 

the tools tested showed any bison residue, and was seen as supporting an interpretation that 

hunting was not local. Sterner provides some alternative lithic evidence. She conducted use-

wear analysis on 200 tools from the La Crosse locality and found wet-hide and meat at a higher 

frequency than dry-hide polish; her tool forms were not restricted to end-scrapers (2018:163). 

Although neither Sterner (2018) nor Boszhardt and McCarthy (1999) used protein residue 

analysis in conjunction with use-wear studies for the La Crosse locality, Sterner did find protein 
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residue evidence for bison hunting at the Lake Koshkonong Oneota locality (2018:172). Her 

analysis of “Tool 107,” a Madison point made from local chert indicates that the tool was used 

to shoot a bison, and was lodged in the wet-meat of the bison for quite some time. The Lake 

Koshkonong locality appears to have been occupied earlier than the La Crosse locality and is not 

one my study areas; it would have located in or near the Prairie Peninsula.  
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Figure 2.8: Bison depictions showing the heartline motif (from Boszhardt 2000; McQuin 2010). 
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The question in most of the eastern Prairie Peninsula states, regardless of the historic 

bison sightings or rock art, still seems to be: why the apparent lack of prehistoric archaeological 

evidence and enduring ecological impacts (Leach et al. 1999; Mcmillan 2006; Sasso 1993, 

2014)? The recorded historic range of the bison extends well east of Wisconsin, with Daniel 

Boone journaling about bison presence near the Appalachian mountain range in the mid-1800s 

(Belue 1996). Rostlund (1960) reports historic bison sightings all the way down in Florida by the 

Spanish (See Figure 2.9). Therefore, examining some major Late Prehistoric period sites outside 

Wisconsin becomes important. 
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Figure 2.9: Evidence for bison in southeastern North America (Rostlund 1960). 
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Illinois archaeologists contend that bison persisted in that state regularly from the Early 

Archaic to the Early Historic period (Griffin and Wray 1945; Harn and Martin 2006; Martin 2014; 

Mcmillan 2006; Widga and White 2015). In Illinois and Indiana, unlike Wisconsin, evidence of 

bison “wallowing” areas and “traces” exist today to go along with the archaeological evidence 

(Jakle 1968; Tankersley 2005; Widga and White 2015). Wallowing refers to the bison habit of 

rolling in the dirt and thereby creating a large shallow pit (Hess et al. 2014; McDonald 1981; 

Widga and White 2015). Bison traces are essentially paths that have been created by repeated 

bison movement in a region (Jakle 1968; Widga and White 2015). Schorger (1938:47) provides 

the only mention of an historic account of bison wallows in Wisconsin, an observation made 

south of Green Lake, about 30 miles west of Lake Winnebago, sometime after 1840. 

In Illinois, they have found the archaeological “smoking gun” that Wisconsin lacks. The 

Lonza-Caterpillar site was discovered along the Illinois River not far south of the modern 

Wisconsin state line in 2006 (Harn and Martin 2006). Interpretation of the natural and cultural 

aspects of the site are complex, but it is clear that it represents the presence of bison in this 

part of the Prairie Peninsula, both during the Oneota time span and long before it. It is a multi-

component site, with AMS radiocarbon dates ranging from 305-420 B.C. to A.D. 1460. The site 

contains 522 fragments of bison bone, recovered in eight spatial clusters, representing a total 

of at least twelve individual bison. One of the clusters includes a broken projectile point in 

association with ribs that show wounding marks. Elsewhere on the site a bison thoracic 

vertebra has a chert fragment, interpreted as a point tip, embedded in it. Both these finds date 

to the earliest component of the site. This site is thus interpreted as a kill site, possibly serving 
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that role multiple times. The authors note that hunting strategies in the upper Midwest may 

have included hunting along river banks where animals are vulnerable (Harn and Martin 2006).  

In related research in Illinois, Martin (2014) conducted a metric study on bison scapula 

from three Oneota and Early Historic sites: Hoxie Farm, Palos, and Zimmerman. Figure 2.10 

shows the location of these sites. These are Oneota village sites that show similar element 

distributions to the La Crosse Oneota locality in that scapula and low utility remains are found 

together. The goal of his study was straightforward yet elusive: to answer the bison acquisition 

question in northern Illinois. Essentially, the research was framed by the question: were bison 

scapulae found in Oneota sites in Illinois traded in from locations closer to the Great Plains, 

such as the La Crosse Oneota locality, or were they the results of direct local hunting? Martin 

(2014:186) hypothesizes that if La Crosse was a hub for trade, and controlled access to scapula 

coming in from the Great Plains, then they might keep the biggest and best for themselves, and 

release only the smaller and less desirable ones for trade to other Oneota communities.  

While the metric results did not support this hypothesis, Martin presents valuable data 

on element frequencies at Hoxie Farm and Zimmerman, and compares these to White Rock, an 

Oneota site on the Plains in Kansas where bison hunting is well noted. Hoxie Farm (total bison 

NISP=62) shows a pattern similar to that seen in the La Crosse locality, with abundant scapula 

but a light mix of other elements represented as well, both high utility elements, like vertebrae 

and innominate, and low utility elements like phalanges. Zimmerman (total bison NISP=161) 

has a similar number of scapulae, but many more vertebrae and ribs, and almost every type of 

element represented to some degree. White Rock (total bison NISP=338) is like Zimmerman in 

terms of the diversity of elements represented, but with a higher frequency of scapula than 
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either of the other two sites. The big take-away seems to be that Hoxie Farms does look 

different from Zimmerman and White Rock based on the mix of elements; Hoxie Farms has 

scapula and distal limbs, the other two localities have a full range of high-low utility elements, 

as expected with direct hunting. 

This comparison revealed some trends: scapula hoes were important to Late Prehistoric 

period Great Plains White Rock phase Oneota just like they were to La Crosse locality, Lake 

Winnebago locality, Hoxie Farm, and Zimmerman Oneota. These site localities are all important 

because they all show the combination of low utility remains at varying rates with high utility 

remains. The addition of Martin’s (2014) data is particularly revealing in that it shows similar 

patterns with fewer elements, potentially indicating that Oneota east of the Mississippi River 

near or in the Prairie Peninsula simply had less access to local bison.  
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Figure 2.10: Illinois Oneota sites with bison remains (from Martin (2014:186). 
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Outside of Illinois and Wisconsin, Late Prehistoric period peoples near the intersection 

of southeastern Indiana, north-central Kentucky, and southwest Ohio also obtained bison (Jakle 

1968; Tankersley and Adams 1991; Widga 2006a). These remains are attributed to another 

potential Upper Mississippian expression known as “Fort Ancient.” Although it was not the goal 

of this thesis to synthesize Fort Ancient’s relation to Oneota, the source location of the bison 

these groups were acquiring is well noted. Widga (2006a) and Tankersley (2005) have shown 

that people obtained bison from Big Bone Lick, a site in north-central Kentucky, and brought 

the parts back to Fort Ancient village sites to the north.  

Widga (2006a:1243) was able to run isotopic analysis on Late Prehistoric (A.D. 1270-

1640) period bison samples from Big Bone Lick. The results show that these bison were from 

the same herd. The herd had a ratio of one male to three females based on cranial elements, 

and sexually dimorphic limb elements like calcanei (Widga 2006a:1252). Morphologically, these 

bison were similar to their Great Plains counterparts, as demonstrated by Widga’s (2006a) 

analysis of eighteen sites west of Iowa. Males and females in the Big Bone Lick herd were only 

slightly smaller. Based on the isotopic and tooth wear analyses, Widga (2006a:1252) shows the 

main difference between eastern and western bison was in their diet; the Kentucky bison 

supplemented their diet with a lot of woody browse. This provides useful insights into how Late 

Prehistoric period bison adapted to the Prairie Peninsula and mosaic environments.  

This section began with a review of the archaeological evidence for bison in Wisconsin 

and expanded into other relevant evidence drawn from historic accounts and archaeological 

sites in Illinois and Kentucky. Archaeologists have often argued for the importance of non-local 

hunting and trade to explain the presence of bison bone in Oneota sites in Wisconsin. However, 
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numerous lines of evidence support the possibility of local herds of bison in Wisconsin in the 

past and local hunting as another viable way to explain the Oneota access to bison. These 

include evidence based on the archaeological recovery of bison bone, the relative amount of 

that bone, the particular elements recovered, the analysis of lithic tools for use wear and 

protein residue, the analysis of Native American rock art and earthworks for depictions of 

bison, and historic accounts of bison herds in Wisconsin and elsewhere east of the Mississippi.  

The Biology and Ecology of Bison bison 

 What do bison need to be “local” in Wisconsin? In particular, what constitutes adequate 

acreage of suitable forage to maintain a herd? Answering this important question involves 

considering the dynamic aspects of the ecology of bison as well as their biology and behavior. 

Here I will summarize general trends relating to the ecology of historic and modern bison as it 

has been reviewed (Brockman 2018; Knapp et al. 1999; Larter and Gates 1991; Leach et al. 

1999; Nelson et al. 2007; McDonald 1981; Nowak 1999; Sasso 2014; Shay 1978; Widga 1997, 

2006a, 2006b). As noted by Flores (1991), bison ecology can be seen as a complex interaction of 

biology and behavior, including population dynamics that involve predators (human and non-

human) as well as seasonal variations in forage, temperature, and migration range.  

There are two currently accepted living bison species, the North American bison, Bison 

bison, and the European bison, Bison bonasus. Both bison species are in the order Artiodactyla, 

the family Bovidae, and the genus Bison. Some scholars argue that there are two North 

American subspecies of B. bison. These subspecies are Bison bison bison and Bison bison 

athabascae, sometimes referred to as Plains bison and Woodland bison, respectively. The 

modern B. b. bison is now associated with the prairie lands of the Great Plains. The B. b. 
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athabascae form has a modern range in subarctic Alaska or Canada, associated with tundra and 

boreal forest, and has been observed as having a more general and adaptable dietary regime 

(Brockman 2017; Larter and Gates 1991; Meagher 1986). Some have argued that bison are not 

too dissimilar to what we know as cattle and belong in the genus Bos (Chapman and 

Feldhammer 1982; Nowak 1999; McDonald 1981; Van Zyll de Jong 1986; W.DNR 2006). The 

Artiodactyla as an order includes members such as Cervidae (deer) and Antilocapridae 

(pronghorn). Bovidae as a family includes antelopes, cattle, bison, water buffalo, goats, and 

sheep (Nowak 1999). 

 For the purposes of this thesis, B. bison as a species is the focus, with the full acceptance 

that Wisconsin could have potentially been home to both B. b. bison and B. b. athabascae at 

some point in the past, as well as extinct species. B. bison as a species most likely evolved from 

Bison occidentalis, Bison antiquus, or a hybrid of the two, and all most likely evolved from Bison 

priscus (Bamforth 1981; Boszhardt et al. 1993; Chapman and Feldhammer 1982; McDonald 

1981; McMillan 2006; Nowak 1999; Speth 1983; Van Zyll de Jong 1986). Trace evidence of B. 

antiquus and B. occidentalis occurring during the Late Paleoindian to Early Archaic periods in 

Wisconsin exists, but sites where these species are found are seen as paleontological sites 

rather than archaeological sites (Hawley et al. 2011; Hill et al. 2014; Kuehn 2009b; Theler 

1994a). The purpose of this thesis is not to argue the origins of B. bison, but rather to simply 

recognize that they are a species that evolved in North America sometime between 4,000 and 

7,000 years before the present (Brockman 2017; Chapman and Feldhammer 1982; Hill et al. 

2014; McDonald 1981; Nowak 1999; Van Zyll de Jong 1986).  
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 Bison are the largest surviving land mammal in North America. Bison bison has a weight 

range of 350-1,000 kg and a shoulder height of 1.5-2 meters (Nowak 1999; Shay 1978). Males 

are commonly larger than females. Sasso (2014) and Jackson (1961) remark bison adult males 

on average weigh from 727 to 909 kg, while bison adult females on average weigh from 409 to 

500 kg. In general, American bison are traditionally associated with prairies, but are noted to 

occur in mountainous areas and forests that are broken or open (Nowak 1999; Widga 2006a).  

Bison are primarily grazers, favoring grasses and sedges, but they can browse on 

woodier plants as well. Of special relevance to this thesis are studies that focus on the foraging 

habits of bison living in mosaic habitats similar to those of prehistoric Wisconsin. These mixed 

habitats could include wetlands and forests as well as prairie. Studies of bison foraging habits 

have identified seasonal variations in the balance of grasses, sedges, and browse, as well as in 

the balance of C4 and C3 grasses. Studies of a modern bison herd at the Nachusa Grassland in 

Illinois indicate that they graze primarily on C4 grasses during the summer and fall, and C3 

grasses during the spring and winter (Blackburn 2018). Besides C3 grasses, bison are also noted 

to forage on C3 sedges and woody species year-round to supplement their diets (Blackburn 

2018; Morgan 2002a, 2002b; Meagher 1986; Ulman 2000). At Nachusa, it has been noted that 

bison preferably graze on big blue stem (Andropogon gerardi) and Indian grass (Sorghastrum 

nutans); these species would have been available in southern Late Prehistoric Wisconsin (Curtis 

1959; Hess et al. 2014; Jackson et al. 2010; Meszaros and Denny 2017; Middleton 2002a, 

2002b; Nelson et al. 2007; Shay 1978). Analysis of bison remains recovered from a Late 

Prehistoric period archaeological site in northern Kentucky proves woody species were relied 
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upon quite frequently (Widga 2006a). C4 grasses are of a higher nutritional value, and therefore 

will be preferred by bison when available.  

Behavioral observations of bison include wallowing and rubbing to get rid of parasites, 

using their acute sense of hearing or smell, running at speeds close to 60km/hr., and swimming 

across rivers over a kilometer wide (Nowak 1999). Wallowing is of special interest to ecologists 

and archaeologists trying to identify landscapes previously used by bison, as wallows can 

become recognizable and enduring features. 

Bison are known as herd animals. Herd size is variable, with an average size of 57 

individuals (Nowak 1999). Historic records provide relevant data. Herds numbering in the 

hundreds were noted in the extensive prairies of Great Plains, while in mosaic habitats east of 

the Mississippi herd sizes of 60 were recorded (Bamforth 1981; Belue 1996; Hornaday 1887; 

Schorger 1937; Widga 2006a). Rostlund (1960:398) notes multiple buffalo herds of 60 or more 

individuals as far southeast as Georgia in 1716. Schorger (1937:41) notes historic accounts of a 

Wisconsin herd near Lake Pepin herd of around 60 members. 

This average herd size has been challenged by historic sources that list bison herds four 

times the size of this well east of Wisconsin (Belue 1996). In fact, bison were hunted regularly 

by historic Native Americans even in Florida. The idea is that confined herds reported 

throughout the modern United States, and their average herd sizes, will never mimic a species 

that was completely decimated before herd statistics were ever taken (Hornaday 1887). The 

Lake Pepin historic herd may actually be closer to what studies about confined modern herds 

suggest.  
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In terms of both animal size and herd size, it has been suggested that herds subject to 

harsh climatic episodes or mixed forage are physically smaller and less numerous when 

compared to herds with access to extensive grasslands year-round (Sasso 2014; Widga 1997, 

2006a). Prairie Peninsula herds were no doubt subject to these factors in prehistory to at least a 

small degree, as supported by Widga (2006a).  

There are seasonal patterns to aggregation and to bison herd composition (Chapman 

and Feldhammer 1982; McDonald 1981; Nowak 1999; Van Zyll de Jong 1986). Adult females 

and calves of up to three years stay in herds year-round (Nowak 1999). Male bison often spend 

part of the year either solo or in bachelor herds of a small number of individuals. Adult males 

typically enter mixed herds only at certain times of the year. This means year-round herds 

usually only have females and young as permanent members. Analysis of the sex ratio of bison 

represented at the Late Prehistoric archaeological site of Big Bone Lick in Kentucky showed one 

male to three females (Widga 2006a). Mating has been noted as a summer through fall activity, 

while birthing occurs in the spring. Females take around three years to gain full maturity, while 

males usually take twice as long (Nowak 1999). 

Also critical to modeling the needs of a local bison herd is an understanding of the size 

of their daily and annual range, and the degree to which long-range seasonal migrations are 

typical. Modern herds are often maintained by humans in bounded areas and sometimes 

supplied with fodder. Herd size is often managed via selective culling to keep it sustainable on 

the available land. Sources vary in their estimates of range. Nowak (1999) and McDonald (1981) 

describe daily herd movements of an average of three kilometers within a potential thirty-

kilometer range per herd. Hornaday (1887:389), in reviewing historic accounts, notes that on 
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the Great Plains along the Arkansas River, a general traveling from one fort to another in 1871 

noted a single herd occupying over twenty-five miles of land. 

To better model bison herds in environments relevant to prehistoric Wisconsin, I will 

now look more closely at recent observations of herds of bison that have been re-introduced in 

Wisconsin and the neighboring state of Illinois. These herds include the Sandhill State Wildlife 

Area in Wisconsin, and the Fermilab, Midewin National Tallgrass Prairie, and Nachusa 

Grasslands in Illinois.  

The herd in the Sandhill State Wildlife Area is treated as an integral member of a 

reconstructed ecosystem, key to regaining higher numbers of rare butterflies and birds that 

need Wisconsin grasslands to persist in the state. Bison there are kept in a 260-acre enclosure 

and used to help maintain an oak savannah environment (Hess et al. 2014; W.DNR 2019). 

Originally introduced in 1946, the herd is currently maintained at about 15 individuals, with 

human intervention in the form of winter fodder, annual culling of the herd, and controlled 

breeding. This grassland, like others, supports the idea that bison foraging, wallowing, horning, 

and grazing all reduce woody vegetation, and that these activities are essential to maintaining 

an oak savanna or prairie ecosystem (Hess et al. 2014:332). It is worth noting that the W.DNR 

(2019) defines “oak openings-savannahs” as containing up to sixty-percent prairie ecosystem 

plants and grasses.  

The herd in the Nachusa Grassland in Illinois is of special interest because the policy 

there is to have minimal intervention with the herd, and to let them rely exclusively on native 

vegetation for food (Blackburn 2018; Brockman 2017; Burke 2016). Also relevant is that the 
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Nature Conservancy bought the land to preserve and restore native prairie. The land has been 

described as a seasonally fired mosaic of sedge wetland, oak-savannah, deciduous forest, and 

tallgrass prairie (Blackburn 2018; Brockman 2017). Mosaic grassland environments were 

common in Wisconsin post-glaciation (Burke 2016; Gates et al. 2010; Larter and Gates 1991; 

Jackson et al. 2010; Middleton 2002). The Nachusa grassland is just outside the Illinois Driftless 

area, making it similar topographically to my Lake Winnebago study area. The grass species are 

similar to Wisconsin grassland species found in both my study areas (Jackson et al. 2010; USDA 

2013).  

At the Nachusa Grassland, around 100 bison have stabilized as a breeding population 

with access to around 1,480 acres. Roughly half that acreage is grassland, the remainder a mix 

of trees, wetlands, and water (Brockman 2017). The herd has been free-ranging since 2014. 

Based on Nachusa studies, the way a bison subsists in a mosaic habitat is more related to what 

can be foraged seasonally, taking whatever will be available in the way of C4 shortgrass or 

tallgrass prairie forage in the summer and fall, and balancing this out with other resources like 

C3 grasses, sedges, or woody-forage in the winter and early spring. Blackburn (2018) confirms 

via isotopic analysis that age and sex do not affect foraging habits in the Nachusa bison herd. 

To summarize, to model the needs of a prehistoric bison herd in Wisconsin based on 

bison biology and behavior, the modern herd in the Nachusa Grassland suggests that a mixed 

herd of less than 100 individuals can do well in a mosaic habitat of 6 square kilometers (~1,480 

acres). While it is hard to quantify just how many acres of grassland a herd living in a mixed 

habitat would need, the Nachusa herd has access to roughly 740 acres of prairie. 
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Environmental Reconstruction using GLO and GIS 

This thesis uses a combination of historic GLO records and GIS mapping techniques to 

reconstruct prehistoric vegetation patterns relevant to the Oneota occupation (A.D. 1050-1700) 

of the La Crosse and Lake Winnebago localities. The original GLO data for these two study areas 

were collected from 1832-1866. In this section I will review the nature of GLO data and some of 

the issues involved in using these historic records to address diverse research questions, 

including its application by plant ecologists to model native vegetation patterns and by 

archaeologists to model prehistoric resource catchments. I will also review GIS scholarship 

pertinent to this thesis. 

What is known in modern times as the state of Wisconsin was surveyed by order of the 

United States government in the mid-1800’s. The federal government sought to gain funds by 

the sale of public lands, and the survey was seen as a necessary first step to creating a detailed 

record of those lands. The process started in 1785 in eastern Ohio. The General Land Office 

(GLO) implemented the Public Land Survey System (PLSS). The Board of Commissioners of 

Public Lands (BCPL) has since provided public access to digital copies of some of these original 

records, with this caution: “use this information (GLO maps) as a guide but realize that there 

may be records that do not fully match the standard.” This refers to the fact that there is some 

diversity in the way individual surveyors in the field recorded the information they observed. 

Records may be inconsistent due to variation in surveyor skills and the timing of the survey 

during a span of years that saw rapid landscape changes (BCPL 2019; Bolliger and Mladenoff 

2005; Bolliger et al. 2004; Cogbill et al. 2018; Manies and Mladenoff 2000; Mladenoff 2019; 

Saleh 2017). Even at a county level, every survey was not conducted in the same season or 
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year, or by the same surveyor (BCPL 2019). Over the three decades of survey noted in 

Wisconsin specifically, surveyors changed and variations in standard survey procedures 

occurred. 

Equally important are the diverse ways these data have been used by researchers since. 

Finley (1951) notes that reconstructions of GLO data occurred as early as the late 1800’s, with 

many researchers disregarding the GLO surveyor boundaries and combining only certain 

elements of the surveyor reports in attempts to map particular aspects of the environment. 

These researchers sometimes incorporated theoretical models specific to the topic of interest. 

Some have showed that the simplest applications of the original data are the most reliable 

(Bolliger et al. 2004; Edwards IV 2010). Prell (1989:62), in her review of historic vegetation 

mapping, states that Finley (1951) and Curtis (1959) created the most useful vegetation 

manuscripts. The University of Wisconsin-Madison Ecology Lab has since attempted to create 

the most up-to-date geographic set (Bolliger and Mladenoff 2005; Bolliger et al. 2004; Cogbill et 

al. 2018; Manies and Mladenoff 2000; Mladenoff 2019).    

The GLO implemented the PLSS system in Wisconsin; field data was gathered between 

the years 1832-1866. This system used a grid comprised of townships, ranges, and sections to 

produce geographically associated field notes and maps. Townships are six square mile units 

labeled with east or west ranges, consisting of thirty-six one square mile sections. The GLO field 

surveyor would walk each section line, using a compass for orientation and a metal chain to 

measure distances, recording the vegetation and other landscape features he observed. At the 

corner of each section he would record the species of one or more trees. The entire statewide 

survey started at an “initial point” ten-miles east of the Mississippi River on the border of 
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Wisconsin and Illinois (BCPL 2019). This point was intersected by a “baseline” and “principal 

meridian,” and in Wisconsin, the GLO used the “fourth principal meridian” as the datum at this 

initial point (BCPL 2019).  

The GLO PLSS was under the direction of a “Surveyor General,” and these administrators 

oversaw large areas of survey at a multi-state level. “Deputy Surveyors” supervised the actual 

fieldwork in states like Wisconsin, and facilitated the PLSS “General Instructions,” “Special 

Instructions,” and “Contracts” (BCPL 2019). The workers from state to state under these deputy 

surveyors had varying levels of experience and were subject to slow moving procedural changes 

in Wisconsin, which affects the data quality they produced. Once the system and surveyors 

were established in a territory or state, notes and maps became the result of field work related 

to documenting land along section lines, with a noted degree of variability occurring in many 

places. Figure 2.11 shows an example of GLO notes in Wisconsin near Lake Winnebago. 
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Figure 2.11: BCPL (2019) GLO notes and sketch map for T17N/R18E in Wisconsin. 
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These GLO images are in the BCPL’s easily accessible digital archives, and these archives 

are open to the public. The BCPL essentially houses forestry-related information for the state of 

Wisconsin. The BCPL (2019) digital library offers a three-part warning in using its archive. First, 

GLO maps and notes are old, and some level of deterioration occurred of the original paper 

records; scanned copies make them widely accessible but cannot resolve such issues. Second, 

some surveyors wrote in cursive styles that are very difficult to decipher. Third, some 

terminology was abbreviated in keeping with conventions typical of the times of the original 

surveys and related to the surveying profession; the translations of these are not always 

obvious. The conclusion by the BCPL (2019) was that successful reading of the original records 

requires practice.  

Previous to the advent and implementation of modern GIS, scholars tried to take GLO 

data and apply it to many scientific ventures. Beyond the GLO, Lea (1836) shows that maps 

were made of the “Wisconsin Territory” before the GLO’s PLSS system was implemented, but 

nothing as systematic. GIS allows a user to recreate these GLO maps digitally, but in the past, 

some just analyzed the maps and notes or hand drew recreated versions of them (Jeske 1990).  

The end goal of a study seems to greatly affect how the GLO is manipulated, even in the 

non-digital era without GIS. Finley (1951) and Prell (1989) have both commented on many of 

these studies. Finley (1951:257) believed that GLO data, because it was not collected by 

ecologists, did not actually represent real vegetation regimes; so, the maps he created of pre-

settlement Wisconsin were weighted by soil types, drainage, topography, catastrophe, climatic 

evidence, and time-lag. Finley (1951) essentially took all of Wisconsin’s townships, hand-coded 

them based on these factors, combined them with what the original GLO surveyor saw, and 
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created a statewide map for the pre-European settlement vegetation of Wisconsin. This map, 

along with an update, were digitized by a student under the supervision of professor Ventura 

(1990) at the University of Wisconsin-Madison and is now available in digital format on the 

W.DNR GIS portal (Finley 1951, 1976; Ventura 1990, 2019; W.DNR 2019). Curtis (1959) updated 

Finley’s (1951) vegetation information and others in “The Vegetation of Wisconsin.” He 

provides data to create an essential encyclopedia on native Wisconsin vegetation past and 

present. The importance of these two ecologists amongst others is clear in modern publication 

(Baker and Mladenoff 1999; Bolliger et al. 2004; Bolliger and Mladenoff 2005; Cogbill et al. 

2018; Edwards IV 2010; Jeske 1990; Liu et al. 2011; Host et al. 1996; Kay 1990; Meyer 2018; 

Mladenoff 2019; Manies and Mladenoff 2000; Mladenoff et al. 2008; Prell 1989; Shea et al. 

2014; Stencil 2015; Wood 1976). This GLO effort has not just taken place in Wisconsin, and 

other ecologists and scientists have tried to quantify states like Illinois, showing how important 

inquiries on the topic are treated in science (Bourdo Jr. 1956; Hansen 1981; Jeske 1990; King 

1978, 1981; Kilburn 1955, 1959; Moran 1978, 1980; Transeau 1935).  

By 1996, scholars at UW-Madison’s Ecology lab were taking ideas from Finley (1951) and 

Curtis (1959) and updating them in combination with GIS (Host et al. 1996:615). With GIS, one 

can take land cover information, historic or modern, and create ecosystem classifications 

designed to analyze evidence more precisely at a local level, and scholars like Finley (1951) or 

Curtis (1959) essentially did not have access to these techniques. Baker and Mladenoff 

(1999:334) show modeling from patches to tree levels in Wisconsin is possible, and Bolliger et 

al. (2004) show specifically that the GLO can be quantified by individual patch area and cover 

type density. When they took their analyses and compared them to Finley’s (1951, 1976), 
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Bolliger et al. (2004:136) found that most of pre-settlement Wisconsin was either a closed 

forest or a savanna (not quite a prairie, but very few trees). The trees that appeared on the 

savannas were largely comprised of white oak, bur oak, black oak, mixed oak, and jack pine. 

Figure 2.12 shows what happened at a state level when Bolliger et al. (2004) initially 

reconceived the original vegetation cover of the state with an objective classification schema 

that used tree counts, rather than Finley’s (1951, 1976) subjective classification schema. 

Essentially, forests are not as dominant as was once conceived, and savanna may have been 

more prevalent in Wisconsin prehistory than previously thought. 
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Figure 2.12: From Bolliger et al. (2004:135) showing A.) Finley’s statewide averages versus B.) Bolliger et al.’s 

statewide averages. 
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Archaeologists, with and without a GIS, have also manipulated the GLO. Jeske (1990) 

shows that one does not need a GIS to successfully analyze the GLO, and in his Fermi 

Accelerator Lab study in northern Illinois, he compared archaeological sites to the GLO and 

quantified the patterns. Edwards IV (2010) shows that using simplified vegetation regimes 

proposed by Jeske (1990) and Bolliger et al. (2004) can be quite effective in converting the GLO 

details into more general patterns of relevance to human behavior. Edwards does this for Late 

Prehistoric Lake Koshkonong Oneota sites and their relation to their vegetative surroundings, 

and Saleh (2017) does this for La Crosse. Wisconsin archaeologists have also used Finley’s 

(1951, 1976) conception of the GLO as well, due to its public and digital availability (Kay 1990; 

Stencil 2015). The theme in all of these studies is how best to use historic GLO data to model 

the environments relevant to historic and prehistoric archaeological sites.     

This thesis, like others, uses a GIS to analyze GLO data as it provides an elegant way to 

create and analyze mapped data, often referred to as geospatial data (Ballas et al. 2018). It 

allows the researcher to associate many different types of data with specific points on the 

landscape. These data are stored in a relational database as “layers” that can be added to or 

taken out of any particular map to facilitate analysis of spatial associations. Of special interest 

to this thesis are the ways that a GIS can be used to create maps, to define catchment areas, to 

measure distances between points of interest, and to measure acreage of particular types of 

resources. GIS can also be used to model solutions to spatial problems; for example, models 

can simulate future climate change or least-cost paths of travel from point A to point B (Ballas 

et al. 2018; Howey 2011; Mladenoff 2019; Sherman et al. 2010; Supernant 2017; Wheatley and 
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Gillings 2002). Of special interest to this thesis is the use of weighted landscape modeling to 

evaluate the relative impacts of vegetation, terrain, and water. 

There are some special issues when converting GLO mapped data into a GIS.  For 

example, it is not unusual to experience slight township to township alignment issues based on 

modern projections and township lines. One of the reasons for this is that compass readings 

used for the original GLO were obtained on a 360-degree bearing compass, while most modern 

compasses use the azimuth (BCPL 2019). Most modern compasses and geographic coordinate 

systems can point to “true north,” or the azimuth, while historic surveyors did not have access 

to this. There is also the idea that simple surveyor error existed, and this cannot be reversed 

(BCPL 2019). A good way to solve some spatial issues in dealing with historic data is to 

georeference old maps; essentially, tie these maps to a known geographic reference point, such 

as a township corner, with a program like ArcMap (Ballas 2018:18; Esri 2019).  

For many reasons, Wisconsin pre-settlement vegetation has appeared in many forms 

(Finley 1951; Prell 1989). The original GLO data has certain issues, but the multitude of 

applications that have followed also show some issues and variability. For example, Mladenoff 

(2019) and Finley (1951, 1976) never mapped historic waterways. In my thesis, I will compare 

the impact of some of these differences on the interpretation of the bison suitability of 

catchments in the La Crosse locality.  

Catchment analysis has been approached in a number of ways related to archaeology 

(Arroyo 2009; Ballas et al. 2018; Ebert 2004; Edwards IV 2010; Greene 2008; Hunt 1992; Roper 

1979; Tiffany 1982; Vita-Finzi and Higgs 1970; Wheatley 2004; Wheatley and Gillings 2002). It 
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provides a way to look at the natural resources within a bounded area and evaluate their 

relative extent. This requires the definition of resource types and their mapping across space. 

Catchments are often mapped as circles radiating out from a center point, where the center 

point represents the starting point of the population using the resources. For example, an 

archaeologist might treat a residential site as the center point and map a radius to represent 

the distance of a one hour walk. Catchment size and shape are sometimes refined to 

accommodate realities of travel as these may be impacted by terrain or waterways, or by mode 

of travel.  

Catchment analysis can be used to address diverse questions, including those related to 

human practices of farming, plant gathering, and hunting. For example, Edwards IV 

(2010:80,91) uses one-two kilometer catchments around Lake Koshkonong’s Carcajou Point, 

Crescent Bay, Schmeling, and Twin Knolls sites to evaluate the agricultural potential within two 

catchment sizes, and what patterns were caught within these rings related to Oneota sites. In 

another example, Morgan (2008:255) shows catchments and least-cost paths can be used to 

estimate hunter-gatherer foraging limits and paths of travel to acorn caches. In the southern 

Sierra Nevada of California, Late Prehistoric period Western Mono groups had an estimated 

maximum foraging radius limit of 9.4 kilometers from their main habitation site, and three 

kilometers from their camp sites. Morgan (2008:256) laments the distance of hunting is not 

well-represented in his study, only the distance of gathering. In another study, Arroyo (2009:31) 

shows, using catchments and theory, that hunters in lowlands settings could potentially travel 

~ten hours and have walked ~twenty kilometers in a straight line to hunt red deer and ibex. 

Hunting patterns do not necessarily follow straight lines and hunting time incorporates search, 
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kill, processing, and return. The author states that if a Cantabrian prehistoric hunter travels 1.6 

hours to kill a red deer, it will take a total of 7.5 hours to return to the home base if that red 

deer is fully processed at the kill site (Arroyo 2009:31). Therefore, a day’s hunt must also 

consider dressing the animal, and this is important in considering hunting within vegetation and 

terrain regimes of a catchment.     

 Archaeologists have implemented weighted landscape models in their studies to 

combine multiple environmental factors and simulate their relative importance (Ebert 

2004:331). Ebert (2004) states that archaeologists aim to experiment and generate data with 

simulations. Catchment analyses can be improved in archaeological studies with the 

implementation of cost surfaces that use vegetation, slope, natural barriers, and more (Ebert 

2004:328). A cost surface is a weighted landscape that ranks zones, allowing a user to simulate 

scenarios with the set of ranks as levels of costs. 

This thesis implements a cost surface to analyze land viability for bison. Sherman et al. 

(2010) show that with these surfaces, one can create pathways of travel from point A to point B 

with a GIS. With the implementation of GIS’ in archaeological studies, if one is using catchments 

and landscapes, the idea is to balance the complexity and use. If a landscape is too simple, 

more can be said, but if it is too complex, the simulation can represent scenarios that are not 

necessarily valid. As Arroyo (2009) shows, catchments do not always have to be circles, as 

circles do not always model reality. This can also be said about vegetation. Enlarging circular 

catchments, creating more human-friendly catchments, creating cost surfaces that consider 

more than one landscape factor, and implementing mathematical simulations can all help the 

researcher achieve a level of balance in creating more realistic models. This thesis uses GIS to 
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quantify and model landscape features relevant to bison, using a twenty-kilometer hunting 

distance catchment in relation to archaeological sites.    

Vita-Finzi and Higgs (1970) frame one approach to catchment analysis, from the 

perspective of people making decisions about how far they will go for which resources: the 

closer to a site a given resource is located, the less energy needed to bring the resource back to 

the site. Roper (1979:121) follows with the idea that these catchments, usually centered 

around archaeological sites, are estimated, as no one really knows how far people actually 

traveled in prehistory. She states further that ten kilometers might be a safe maximum 

distance, and Arroyo (2009:31) echoed this sentiment over three decades later. If a resource is 

further away within a catchment, then there is a lesser likelihood of that resource appearing in 

the archaeological record based on travel costs and efficiency. The abundance of the resource 

can also play a role, which is why catchment analyses often model area or acreage. Hunt 

(1992:284) defines site catchment as a theory in itself, one which grew out of optimization 

theory. When applied to prehistoric people it assumes a specific travel distance to the resource 

as being an optimal “home-range” or catchment; thus, hunter-gatherers may be likely to collect 

subsistence items within a home-range of ten-square kilometers and horticulturalists may be 

likely to create gardens within a home-range of 1.5-square kilometers.  

The use of principles of efficiency link site catchment analysis to optimal foraging and 

the culling of resources, such as large mammals, in many ways (Arroyo 2009; Edwards 2010; 

Jochim 1976, 1991; Keene 1981; Smith et al. 1983; Stevenson 1979; Tiffany 1982; Vita-Finzi and 

Higgs 1970). Optimal Foraging Theory (OFT) is derived from evolutionary theory and viewed as 

a product of natural selection; it argues that there is an evolutionary advantage for humans 
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who make more efficient choices in their foraging strategies (Jochim 1991). Arroyo (2009) 

directly applies both site catchment and OFT to show what a day’s hunt might have looked like 

in prehistoric Cantabria, Spain. Stephens and Krebs (1986) outline many concepts of OFT, 

showing that foraging economics, average-rate maximization, prey and patch models, the 

economics of choice, the economics of risk, and foraging or hunting constraints are all factored 

at varying degrees; their focus is on applications in biology and the foraging of non-human 

animals.  

For the purposes of this thesis, hunting constraints, foraging constraints, and the 

economics of choice are all considered in defining the catchments and the implemented GIS. 

Foraging constraints are applied to bison, hunting constraints are applied to people, and 

archaeological sites are used to define the relevant size of the catchment. Therefore, along with 

GLO data and a GIS, site catchment theory and OFT are part of the modeling represented in this 

thesis. 
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Chapter 3: Methods 

 This thesis focuses on the application of GIS to the modeling of Oneota site catchments 

to evaluate those catchments for their ecological suitability for sustaining a local bison herd. 

This chapter discusses the methods used to: 1) develop criteria for evaluating bison herd 

viability, 2) translate GLO primary data into relevant vegetation categories, and 3) build maps 

and statistics using GIS. The GIS work involved making analytic decisions about coding and 

digitizing GLO notes and using ESRI’s Model Builder software. The vegetation data was 

supplemented by elevation data to establish terrain, and the mapping of waterways, as both of 

these environmental attributes impact the travel and sustainability of herds of bison and their 

human hunters. 
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Criteria for Evaluating Bison Herd Sustainability: 

The Nachusa Grasslands in Illinois provide a good source of data for modeling bison 

needs in a region ecologically similar to the study areas. At Nachusa a mixed herd of 

approximately 100 bison have had free ranging access to approximately 1,480 acres (equivalent 

to about six square kilometers) of mixed habitat since 2014. Brockman describes the vegetation 

as a mix of prairie, forest, savanna, and wetlands, with about half of it representing remnant or 

restored prairie (2017:8). There are two small spring-fed creeks and a scatter of ephemeral 

wetlands and depressions that hold water. These modern data allowed me to establish some 

minimal parameters for bison habitat in prehistoric southern Wisconsin: roughly 1,500 acres of 

mixed habitat for a breeding herd, including at least 50% or 750 acres of prairie and some 

access to wetlands. 

GIS, and specifically catchment modeling, are used in this thesis to analyze local bison 

herd viability and Oneota options for hunting bison locally. Catchment modeling creates a 

buffer of a particular radius around a center point and maps the areal distribution of each or 

several resource zones within this buffer (Arroyo 2009; Edwards IV 2010; Hunt 1992; Roper 

1979). For this study I created catchments with twenty-kilometer radii around known Oneota 

archaeological sites in two localities, La Crosse and Oshkosh. I chose a twenty-kilometer radius 

to better approximate the distance a hunter could travel roundtrip from a residential hub in a 

single day or two, in keeping with my intent to test a local bison hunting model. Although this 

buffer may be seen as a bit large, this is intended, as hunters sometimes set up smaller camps 

away from home bases (Morgan 2008). Since I worked with clusters of sites, I buffered every 
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site individually with a measure of twenty-kilometers, and then merged those into a single large 

catchment for both study areas.   

The Wisconsin Historical Society’s Archaeological Site Index (WHS ASI) was used to 

create the site catchment “home bases” or center points (Arroyo 2009; Ebert 2004). It was 

made available by the University of Wisconsin-Milwaukee’s Cultural Resource Management 

program (2018-2019). The geospatial data for the archaeological sites used in this study were 

derived from the state’s site index shapefile. These were cross-referenced with Sasso’s (2014) 

list of which sites had reported bison remains.  

I then viewed these catchments from the perspective of bison to evaluate whether they 

could sustain a local herd. My Lake Winnebago study area represents approximately 2,275 

square kilometers, and my La Crosse study area represents approximately 1,640 square 

kilometers, thus both catchments represent ample acreage when compared with the Nachusa 

Grassland’s six square kilometers. In fact, the Lake Winnebago catchment represents a 

landscape equivalent in size to about 379 Nachusa grazing ranges, and the La Crosse catchment 

represents a size equivalent to about 273 Nachusa grazing ranges. The next question is whether 

the catchments provide sufficient prairie and adequate access to wetlands. I use GIS modeling 

tools to compare the quantitative mix of wetlands, oak openings, forest, prairie, and water in 

each of my study areas with data from Nachusa. The Nachusa Grassland is shown in Figure 3.1 

as a way to view the landscape the bison herd there has access to year-round as well. 
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Figure 3.1: This thesis used data from the Nachusa Grassland in northern Illinois. This figure of Nachusa is from 

Brockman 2017:31, and the North Unit is noted as the pasture where bison are corralled or trapped. 
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A key issue for my catchment analysis was knowing how best to convert the vegetation 

details provided in the historic GLO notes into the four broad vegetation categories relevant to 

my comparison. Although Wisconsin ecologists have suggested and put into practice multiple 

ways to quantify GLO data, their research questions do not wholly match those of this thesis. 

Ecologists are often focused more on tree species and densities (Bolliger et al. 2004; Bolliger 

and Mladenoff 2005; Finley 1951; Host et al. 1996; Liu et al. 2011; Cogbill et al. 2018). Bison, 

however, are focused on grasses. In particular, they are looking for C4 grasses when they can 

find them, and C3 grasses, C3 sedges, or woody-forage when they cannot. My approach was to 

go back to the original GLO notes and code them with a focus on the presence, absence, and 

relative abundance of grasses and sedges.  

To compare the La Crosse and Lake Winnebago localities, particularly as those related to 

the ability of the local catchment to sustain bison, I used both the Finley approach (Finley 1951, 

1976) and the Mladenoff (2019) approach. The Finley (1951, 1976) approach transformed the 

GLO data into a map of the state of Wisconsin at a 1:500,000 scale, essentially summarizing 

vegetation patterns at the level of townships (a six mile square) and coding for many types of 

vegetation, with an emphasis on differentiating dominant tree species (Bolliger et al. 2004; 

Bolliger and Mladenoff 2005). This map was made into a coded shapefile by Ventura (1990, 

2019) and a student matching Finley’s hand-drawn data (1990). This shapefile did not contain 

waterways upon drawing; however, the W.DNR (2019) reports adding part of the 1:250,000 

scale modern hydrology shapefile for the state of Wisconsin to the publicly available “pre-

European settlement vegetation” shapefile in its metadata, mirrored in the digital data to this 

day. The Mladenoff (2019) approach transformed the GLO data into a map of the state of 



75 

 

Wisconsin, focusing on tree density at the level of sections (a one mile square) and quarter 

sections (a quarter mile square). This approach did not record wetlands or waterways, and 

because the dataset is currently private to the UW-Ecology lab, this study only obtained 

vegetation within the study area buffers. 

In the case of the La Crosse locality I compared these two approaches with a third, 

which I derived from my own reading of the GLO (Saleh 2017 and this thesis) following and 

updating a style of coding and spatial scale suggested by Edwards IV (2010, 2017) and Nicholls 

(2017). My approach transformed the GLO data into coding for four types of general vegetation 

categories: Prairie, Oak Opening, Forest, and Wetlands. All of these categories were subject to 

slight naming differences in the original notes and maps. Waterways were mapped, and 

inundated bottoms that were mapped by GLO surveyors were mapped as wetlands as most 

were reported as inundated in the La Crosse surveyor notes with no reported prairie grasses. It 

also used GLO quarter section level plat maps to digitize a linear approximation of transitions or 

boundaries between those four vegetation types. My goal in applying this third approach was 

to highlight vegetation distinctions that would be both important to bison (e.g., the relative 

amount of grassland versus wetland available) and comparable to other archaeological 

approaches to catchments (Blackburn 2018; Edwards IV 2010; Jeske 1990). My goal in 

comparing the three approaches was to assess the impact of differences in spatial resolution, 

coding, and mapping of GLO data on the interpretation of vegetation patterns. These 

differences slightly tweak how one views the landscape versus bison viability. 
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Translating GLO Primary Data into Broader Categories: 

The original GLO field notes and sketch maps provide the following types of data on 

vegetation observed in the early 1800s. Surveyors were not recording every tree in a section, 

just tree counts, soil rates, and ecological zone changes along section lines or meanders. Some 

surveyors noted when they entered forested regions, while others noted when they left 

forested regions. In terms of note taking and map making, detail was variable township to 

township. This variability is explored more thoroughly in Appendix A. 

Prior to my thesis work I conducted a test of the impacts of mapping the GLO vegetation 

data at a finer spatial scale and with broader vegetation categories than those provided by the 

public sources (Saleh 2017). Using the original GLO notes I built a map of vegetation for one-

mile site catchments near La Crosse, Wisconsin, working at the spatial scale of a quarter section 

(a quarter mile square) coding vegetation into general vegetation categories (Saleh 2017). This 

test demonstrated that these methods do change the vegetation reconstruction in significant 

ways.  

The Jeske (1990:148) categories (oak barrens, oak-dominated mesic forest, prairie, and 

Aquatic/wetland) are still seen as working well with upper western Great Lakes archaeological 

vegetation reconstructions, as he was working with sites in northern Illinois’ prairie peninsula 

area and using the historic GLO notes as a source of inference for prehistoric vegetation. Of 

note, Jeske (1990) notes that the categorical terms he uses are interchangeable in 

reconstructing general vegetation categories (for example, he treats oak openings, oak 

savannas, and oak barrens as the same general category). These four habitats are relevant to 

both humans and bison as they provide a simple contrast between forest, prairie grassland, 
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grassland with scattered trees, and wetlands. This thesis separates water (or aquatic) from 

wetland for modeling purposes. These transformation categories were used in this thesis for 

the twenty-kilometer La Crosse catchment in creating a custom thesis dataset.   

Although this schema appears simple, certain complications in its execution are worth 

mentioning as they relate to the custom La Crosse area thesis dataset. These complications 

mainly pertain to the handling of timber of unspecified thickness and prairies or scattered 

timber areas that may in fact have been seasonally inundated and thus overlapped with the 

wetland designation. Some degree of flexibility was also needed to accommodate some of the 

idiosyncrasies of the language habits of GLO field workers. For example, the term “scattered 

timber” was judged to be equivalent to “oak openings/savannas” and translated as Oak 

Openings. “Timber”, as well as “oak mesic forest,” and specific mention of thick white and black 

oak densities were translated as Forest. “Prairie” was translated as Prairie, but it should be 

noted that that designation in the original notes may have been under-represented. Because 

the purpose of the original surveys was to define land for sale to future residents, and land full 

of good timber and first-rate soils had premium value, the PLSS note taking technique focused 

on tree types or counts and soil rates rather than prairie grasses (BCPL 2019). On the other 

hand, “prairies” in bottom lands were also translated as Prairie although these may have been 

inundated at some points of the year. “Aquatic/wetland” is split and expanded in this thesis 

because it is possible to obtain this data at an accurate level for both categories. For the 

purposes of this thesis, most river bottoms were combined with “wetlands” and “swamps” to 

create a Wetlands category to account for the dynamism of the Mississippi River and its linking 

waterways. When one views the GLO notes within the La Crosse study area it becomes clear 
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that some bottoms were subject to inundation up to six feet at the times of their survey; yet, 

these bottoms are variably mapped as wetlands, swamps, wet, or dry by the original surveyors 

(BCPL 2019). “Waterways” are given their own category in this study. This was due to their 

importance for hunters and bison, as well as to weighted landscape modeling within 

catchments (Supernant 2017). 

It is worth noting that prehistoric waterways are not routinely considered in the two 

other geospatial databases used in my comparison. For example, in the Mladenoff (2019) 

dataset, waterways and wetlands were omitted altogether; this decision was based on northern 

Wisconsin’s numerous small bodies of water (Mladenoff 2019). They also treated bottoms 

differently, as did Finley (1951, 1976). Bottoms are especially dynamic in the La Crosse region 

(Knox and Mickelson 1974). These classification choices are important to judging and adapting 

weight values for weighted landscapes. 

 The category “Non-Vegetative Features” was used in this study as a place holder for 

terrestrial areas that could not be coded for vegetation based on the original GLO notes; these 

were later removed from landscape statistical counts. Using this category uncovered a few 

interesting details in the La Crosse area as a byproduct. Initially intended to simply record 

features that were historic areas of disturbance, the collection of non-vegetative features 

uncovered what has been interpreted as a network of Native American trails reported by the 

GLO linking the La Crosse sites together across the region (La Crosse GLO Townships BCPL 

2019). The areas mapped as historic roads may also have been a part of the prehistoric trail 

network, but this has not been established. While the non-vegetative feature category appears 

on some of the mapped results, it was not included in calculations of total percent contribution 
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of water and vegetation. This category made weighted landscapes more accurate in that it 

removes a tiny percentage of land forage when combined with waterways.    

Besides showing how this thesis coded GLO data, it also reviews how Finley (1951) and 

Mladenoff (2019) methods compare. Figure 2.10 shows how Finley (1951, 1976) and Mladenoff 

(2019) can be compared graphically, and Bolliger et al. (2004) essentially shows that Finley’s set 

was subjectively collected. Finley’s (1951, 1976) collection method included coding seventeen 

vegetation zones that he drew state wide. They are listed by order of importance per category 

(W.DNR 2019): 1) White spruce, balsam fir, tamarack, white cedar, white birch, aspen 2) Beech, 

hemlock, sugar maple, yellow birch, white pine, red pine 3) Hemlock, sugar maple, yellow birch, 

white pine, red pine 4) Sugar maple, yellow birch, white pine, red pine 5) White pine, red pine 

6) Jack pine, scrub (hill’s), oak forest and barrens 7) Aspen, white birch, pine 8) Beech, sugar 

maple, basswood, red oak, white oak, black oak 9) Sugar maple, basswood, red oak, white oak, 

black oak 10) Oak – white oak, black oak, bur oak 11) Oak openings – bur oak, white oak, black 

oak 12) Prairie 13) Brush 14) Swamp conifers – white cedar, black spruce, tamarack, hemlock 

15) Lowland hardwoods – willow, soft maple, box elder, ash, elm, cottonwood, river birch 16) 

Marsh and sedge meadow, wet prairie, lowland shrubs and 17) Area with vegetation cover type 

not interpreted. These zones overlay the entire state of Wisconsin.       

Mladenoff (2019) used an objective method to obtain a “density class” category that is 

seen as potentially more accurate than these zones (Bolliger et al. 2004). Although Mladenoff 

(2019) provides the first and second most dominant vegetation type per quarter section in the 

attribute information, their collection never goes past two species, unlike Finley’s (1951, 1976). 

There is nothing wrong with this by any means, but these attributes do not do the best job of 
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revealing prairies. For this reason, this thesis only considers Mladenoff’s (2019) density classes. 

Mladenoff’s (2019) collection technique essentially uses more of the GLO notes and tree counts 

rather than the drawn boundaries. This thesis tried to balance what both prominent scholars 

had to say. For example, it uses drawn boundaries like Finley rather than quarter section 

densities; but within the drawn boundaries, simple classes are used like Mladenoff. Table 3.1 

shows how the UW-Ecology lab collects GLO data objectively into density classes (Bolliger et al. 

2004). They use prairie, savanna, open forest, closed forest, and an open category that is said to 

be of an unknown density class. In fact, they suggest against using the category in quantitative 

studies, so this thesis follows their warning to an extent (Mladenoff 2019). They were used in 

the same way non-vegetative features were for this thesis or the “area with vegetation cover 

type not interpreted” category for Finley’s (1951). After using and analyzing many GLO data 

sources, Table 3.1’s is seen has high quality as it focuses on the most accurate part of the GLO 

survey, the actual written notes where specific tree counts, species, and soil rates can be found 

(BCPL 2019). 
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Table 3.1: From Mladenoff (2019) vegetation coding of GLO data based on tree density. 

Vegetation density class # trees/acre # trees/hectare 

Prairie (pra) < 1 < 2.5 

Savanna (sav) 1- 19 2.5 – 47 

Open Forest (opf) 19 – 40 47 – 99 

Closed Forest (clf) > 40 > 99 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 

 

GIS as a Mapping Technique: 

GIS, as related to the social sciences, has been defined as a Geographic Information 

System, capable of quantitative spatial analyses (Ballas et al. 2018:3). These systems of 

information essentially allow a researcher to generate new knowledge related to the dataset 

they are manipulating within a geospatial database. A GIS can analyze anything from crime 

patterns to transportation patterns. GIS’ need a coordinate system and a projection type to 

project data geospatially within a mapping program (Ballas et al. 2018; Wheatley 2004). A user 

needs to be highly critical of what data is put in their GIS, as bad data can lead to invalid results 

and conclusions. 

Within a GIS, shapefiles and models can be related under the same coordinate system. 

Esri (2019) allows a user to implement a GIS from ArcCatalog in coordination with their ArcMap 

program. Within ArcMap (this thesis used ArcMap 10.5-.6), geoprocessing tools, toolbars, and 

geospatial files can be implemented in coordination with one another to create useable maps 

and tables (see Appendix B for Esri terms and adaptations). This thesis found that current Esri 

(2018-2019) software packages and tutorials offer some of the best options for using, creating, 

and learning about new geospatial data. This thesis uses many teachings in creating geospatial 

data, some from Esri, but others from colleagues. Every basic learned technique cannot be 

accounted for in this thesis, but it suggests that before anyone uses ArcMap or ArcCatalog, that 

they do some background research with any available accompanying training. This thesis 

implemented a GIS in order to obtain new knowledge on the distribution and exploitation of 

the prehistoric and historic bison.   
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To obtain new data on bison, the GIS used in this thesis related multiple geospatial files 

and functions. In the GIS, this thesis stored and related vectors and rasters including: vegetation 

layers, site catchment buffers, WHS archaeological site location information, FAUNMAP bison 

archaeological site location information, terrain elevation information, waterways, weighted 

landscapes, geoprocessing toolboxes, geoprocessing models, coded domains to draw new 

vegetation with, W.DNR (2019) locational data, and many different georeferenced images. 

Geospatial data was provided by Esri (2019), FAUNMAP 2019; the Board of Commissioners of 

Public Lands combined with the General Land Office (GLO) records (2019), the University of 

Wisconsin-Madison Ecology Laboratory (Mladenoff 2019), the University of Wisconsin-

Milwaukee Cultural Resource Management (2019), the Wisconsin Department of Natural 

Resources (2019), and the Wisconsin Historical Society’s Archaeological Site Index (2019).  

 This data was manipulated with a number of toolbars and geoprocessing tools available 

with Esri’s ArcMap (2019) (see Appendix B). In terms of toolbars, Esri’s (2019) editor, spatial 

analyst, and georeferencing toolbars were used the most frequently to produce datasets. In 

terms of geoprocessing tools, Esri’s (2019) buffer, clip (raster and vector), merge, polygon to 

raster, reclassify, slope, and weighted overlay were used the most frequently. Figure 3.2 shows 

how geoprocessing tools were linked together in Esri’s (2019) Model Builder program. This 

geoprocessing model can be used to continuously simulate landscapes with input data. 
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Figure 3.2: This thesis produces weighted landscapes. Esri (2019) Model Builder helped, linking tools to make a 

geoprocessing model. This model specifically can overlay vector data (like vegetation) onto a manipulated terrain 

dataset to make a coded raster. This model is versatile; for example, it could be adapted to least-cost path 

modeling (LCP) to generate future results. It is suggested that much practice goes into using models such as these, 

and Esri software in general. Preparing oneself for the time it could take to achieve results using GIS is key. 
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This model can handle many inputs, including the custom thesis data. A critical step in 

building a GIS is the process of georeferencing the data. The main technique in creating custom 

La Crosse area data was simply to use Esri’s georeference toolbar in coordination with a historic 

map. After this, with the editor tool bar, it was easy to digitize sections of townships based on 

original maps and notes to create quarter square-mile feature-level accuracy. Although time-

consuming, the quarter-section approach to the original GLO records is worth the effort if a 

researcher wants accuracy, precision, and categories that address their research questions. To 

georeference in ArcMap, one simply loads in an unreferenced raster image, and ties it to 

geospatial data like townships. It is suggested by this thesis’s collection of historic maps that 

one “rectifies” georeferenced images into their GIS to save finalized images. To contain the data 

that was created from this process of georeferencing at a township level, buffers from all the 

archaeological sites were merged at twenty-kilometers, and everything was clipped and 

analyzed within these site catchments. These site catchment buffers were the bounds of the 

model in Figure 3.2, and the vegetation layer starts by getting clipped within this buffer with 

“vector clip.”  

Although this thesis is described as mostly implementing a version of the GLO 

reconstruction categories developed by Edwards IV (2010) and Jeske (1990), just reading the 

notes and maps revealed how region-specific interpretation is needed for relaying historic GLO 

vegetation information. Appendix A explores township by township in Trempealeau, La Crosse, 

and Vernon counties, Wisconsin and provides a general summary of what this thesis saw from 

the original surveyors, and how that relates to the custom data that I collected. Figures 3.3, 3.4, 

and 3.5 provide a zoom-in of a georeferenced GLO plat map. This thesis reproduced these 
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digitally with the editor toolbar continuously until the La Crosse study area catchment was 

covered.  
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Figure 3.3: Wisconsin DNR (2019) township grid and thesis site catchments.
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Figure 3.4: Wisconsin township/range grid, La Crosse site catchment, and a GLO plat map from La Crosse county. 
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Figure 3.5: Detailed view of a sample GLO plat map from La Crosse county (T17N/R07W). 
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All of the vegetation datasets used in this thesis were in some way, shape, or form 

derived in this fashion originally. This makes the vegetation layers useable in Figure 3.2’s model 

like the custom thesis dataset. At the base of all GLO reconstructions, a map is referenced to a 

township and considered in coordination with a note set. Any additions after this are based on 

user input. Considering all three of these datasets as raw statistics was a goal of this thesis. The 

acreage and square kilometers are considered in Chapter 4. Viewing and manipulating the raw 

statistics is useful, but this thesis also simulated these statistics. 

 To simulate statistics and show their results, weighted landscapes were generated from 

the weighted overlay tool at the end of the model in Figure 3.2. This thesis combined modern 

terrain, historic or modern water, and historic vegetation within this tool. These dataset inputs 

were weighted with percentages or ranks. After much tinkering, and with bison as the focus, 

vegetation was weighted at 75 percent, and terrain was weighted at 25 percent. 

Terrain was derived from a Digital Elevation Model (DEM) provided by the W.DNR with 

ten-meter accuracy (2019). Archaeological and geographic suggestions on how to manipulate 

DEM to slope in least-cost path studies were referenced to consider reclassified slope 

percentage rankings in relation to bison landscape viability; these were also considered in 

weighting and ranking individual vegetation regimes in this thesis (Cook and Nolan 2010:143; 

Howey 2011:2526; Kay 1990:408; Sherman et al. 2010:289; Supernant 2017:69; Webster et al. 

2016:17). Figure 3.6 shows how a weighted overlay can be generated with Figure 3.2. For this 

thesis, this method was used many times to simulate results, whether tests or final. Esri (2019) 

suggests making a database to pump rough draft landscapes into, and this thesis echoes this 

sentiment, as it takes many attempts to find the solution that seems to best suit the problem.  
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A ranking system of “1” (best) through “4” (worst) was used after considering Kay’s 

(1990:408) hunting weighting system that used Finley vegetation (1951, 1976). Data from Finley 

(1951, 1976), Mladenoff (2019), and this thesis are ranked by like vegetation regimes with the 

same numbers. Areas within the site catchment that were not quantified are set to “restricted” 

in weighted overlays as to not affect land modeling. Slope and vegetation were both used with 

the same ranking system in order to create succinct final result landscapes. Figure 3.5 shows 

the order of the method in one example, and Appendix C shows the final weighted overlay 

tables related to this thesis’s Chapter 4 results. These Figure 3.5 images more specifically show 

an example of how overall landscape weight percentage and vegetation code to weighted rank 

conversions relate. Overall, GIS as a mapping technique in association with Esri products is all of 

the above and more. That is, a blend of raw data, geoprocessing tools, toolbars of various sorts, 

Model Builder, and a formatting system that exports useable information.  
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Figure 3.6: This example comes from the Lake Winnebago catchment Mladenoff (2019) analysis. This helps 

illustrate how terrain can be combined with landscape in Figure 3.2’s “reclassify” and “weighted overlay” steps. 

The reclassification shows the “old values” which come from the slope step in Figure 3.1. Slope (“old values”) is 

converted and ranked with the “1” (best) to “4” (worst) classification schema. This ranked slope is given a final 25% 

thesis value in the weighted overlay tool. Vegetation uses the same ranking classification but shows the final 75% 

thesis value. This creates a weighted landscape where one can evaluate the percentage of each classification 

within a site catchment by looking at histograms of pixel counts generated by Esri’s Spatial Analyst toolbar.  
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 Slope percentage was derived the same way for every weighted landscape in this thesis 

to keep everything succinct. The values from Supernant (2017:69) show that slope above 

twenty-five percent becomes less favorable for movement, and over fifty-percent becomes far 

less favorable. At the same time, bison are noted near mountainous environment edges 

historically, so this thesis recognizes that travel above this slope percentage is not impossible, 

just not as energetically efficient. The maximum slope percentage for this thesis was derived 

from the steepest part of the two site catchments. With this maximum, this thesis was able to 

implement matching slope percentages which could be reclassified into ranks that could match 

to vegetation (see Figure 3.4). Figure 3.7 shows histograms produced by the spatial analyst 

toolbar. Esri (2019) allows a user to use this toolbar as a way to produce graphs of raster pixels 

within a site catchment. These pixels show how much of each rank occurs in a study area. 

Figure 3.7 shows how the final slope method affects each site catchment. This can be related to 

Chapter 4’s bison viability results, and also shows that the La Crosse catchment has more 

terrain penalties than the Lake Winnebago catchment. The results for this thesis come from a 

degree of all the listed methods. 
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Figure 3.7: La Crosse (LAX) and Lake Winnebago (LW) catchment slope value histograms. The “value” and “count” 

columns relate to the bar graphs. These relay how many pixel counts comprise each slope value. Figure 3.4 shows 

how these slope values were derived. The La Crosse site catchment shows more terrain penalties. 
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Chapter 4: Results 

 The results will be presented in the following way. First, the summary acreage values for 

the two study areas will be compared to Nachusa data. Table 4.1 presents these data and the 

estimated number of herds and individual bison that the two study areas could support based 

on acreage alone. This establishes the more-than-adequate amount of range space in both 

study areas catchments. Second, the two study areas are compared in terms of vegetation 

types and their spatial distributions and acreage. The Lake Winnebago study area is presented 

first, with base maps showing archaeological site locations, the catchment boundary, modern 

waterways and terrain. These are followed by vegetation reconstructions, comparing Finley’s 

reconstructions with those of Mladenoff. These results are presented as maps and as tables of 

acreage per vegetation type. The implications of these results for bison suitability are discussed. 

Parallel data are then presented for the La Crosse study area. Third, the interpretive outcomes 

of three different translations of GLO data for the La Crosse catchment are compared; the 

objective here is to evaluate how coding and spatial scale impact environmental 

reconstructions. Fourth, the two study areas are compared using a weighted landscapes 

approach to quantify the relative importance of vegetation, terrain, and water in a single GIS 

model; this is implemented using Esri Model Builder software as describe in Chapter 3. Multiple 

scenarios and their statistics are considered.  
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Table 4.1: Study area catchment statistics compared to Blackburn’s (2018) reported Nachusa bison herd statistics. 

These statistics are inflated, so the goal of this thesis was to refine and consider their significance.  

 

Thesis Study Areas Acres Square 

Kilometers 

Potential 

Bison Herds 

Potential 

Individual 

Bison 

La Crosse 20 km Radius Site Catchment Buffer 405,485.78 1,640.94 273 23,247 

Lake Winnebago 20 km Radius Site Catchment 

Buffer 

562,168.38 2,275.01 379 32,229 

Nachusa’s Accessible Grassland 

(Bison as of 2018 free ranging year-round) 

1,482.63 6.00 1 85 

 

The Lake Winnebago Site Catchment: 

 Figure 4.1 shows the locations of the five Lake Winnebago archaeological sites that had 

bison remains; in all cases the remains were scapula fragments (Dirst 1985; Peske 1966, 1971; 

Sasso 2014). The base map is from ESRI and indicates modern features such as roads and 

counties; the greyscale shading depicts waterways and lakes in darkest grey, modern urban 

developments in a middle tone, and the rest of the landscape in the lightest grey. Four major 

bodies of water fall within the catchment: Lake Winnebago, Lake Butte des Morts, Lake 

Winneconne, and Lake Poygan. All four lakes are relatively shallow; the water system has been 

dammed in modern times and may have represented more extensive wetland and less water 

acreage in prehistoric times (W.DNR 2019). Figure 4.2 illustrates the general terrain, and Figure 

3.4 shows how data such as these can be manipulated into slope. It also shows that this region 

in particular does not have much variation in terrain or slope percentage.   
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Figure 4.1: Lake Winnebago archaeological sites and combined catchment.  



98 

 

Figure 4.2: Lake Winnebago modern terrain and water with archaeological sites and their combined catchment.  
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 In order to evaluate the catchment in terms of forage suitable for bison, vegetation data 

was added to the GIS. This was done using two sets of GLO codings, the first developed by 

Finley (1951, 976) and the second by Mladenoff. Table 4.2 shows the acreage calculated using 

Finley’s vegetation codes, and how these twelve codes were adapted to the four broader 

vegetation types used in this thesis. Figure 4.3 shows the distribution of praire, oak openings, 

wetlands, and forest. This adaptation allows more direct comparison with the vegetation 

available to the Nachusa Grassland bison herd.   

The Nachusa Grassland is noted as having 1,482.63 acres of forage area for free-ranging 

bison. Although the pockets of prairies are not connected in Figure 4.3, many are seen as 

having multiple kilometers of space. In the Lake Winnebago site catchment, according to Finley 

(1951, 1976), prairie makes up 4,467.27 acres alone. That is to say at 18.08 square kilometers, 

prairie alone has enough raw space to provide enough land for three Nachusa herds. Oak 

openings are also important, and as shown in the background of Chapter 2, bison can not only 

survive in these habitats in modern Wisconsin and Illinois, but can actually help them thrive 

(Blackburn 2018; Brockman 2017; Burke 2016; Gates et al. 2010; Hess et al. 2014). Oak 

openings make up 99,527.80 acres within the Lake Winnebago site catchment. That is to say at 

402.77 squared kilometers, and 67 Nachusa herds could hypothetically subsist in this 

vegetation zone alone. If prairie and oak openings are combined, 70 Nachusa herds could find 

forage in these grass-friendly patches; this represents almost 6,000 individual bison. Wetlands 

provide additional resources for bison in the form of C3 sedges and access to drinking water. In 

summary, the Lake Winnebago catchment seems quite capabale of supporting a Late 

Prehistoric period bison herd year-round.  



100 

 

Figure 4.3: Lake Winnebago vegetation based on Finley’s translation of the GLO adapted to the thesis schema. 
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Table 4.2: Shows Finley’s (1951, 1976) individual categories and statistics, and how these were converted into the 

general zones (defined in Chapter 3). This table is related to Figure 4.3. Categorical adaptations are based what is 

the most accurate geospatially and environmentally, as well as bison forage needs (outlined in Chapter 2). 

Removing areas that cannot be grazed helps view the landscape more simply. 

 

Finley’s Vegetation Types Acres Adapted Final Acres Final Acres % 

Water 132,110.93 Waterway Removed Removed 

White Pine, Red Pine 4,806.97 

Forest 

 

 

 

 

202,134.54 

 

 

 

 

49.50% 

Jack Pine, Scrub (Hill’s), Oak Forest and Barrens 2,476.94 

Aspen, White Birch, Pine 3,820.81 

Beech, Sugar Maple, Basswood, Red Oak, White 

Oak, Black Oak 

7,909.61 

Sugar Maple, Basswood, Red Oak, White Oak, 

Black Oak 

129,258.48 

Oak – White Oak, Black Oak, Bur Oak 53,861.73 

Oak Openings – Bur Oak, White Oak, Black Oak 99,527.80 Oak 

Opening 

99,527.80 24.37% 

Prairie 4,467.27 Prairie 4,467.27 1.10% 

Swamp Conifers – White Cedar, Black Spruce, 

Tamarack, Hemlock 

38,659.63 

Wetlands 

 

 

 

102,222.02 

 

 

 

25.03% 

Lowland Hardwoods – Willow, Soft Maple, Box 

Elder, Ash, Elm, Cottonwood, River Birch 

7,112.02 

Marsh and Sedge Meadow, Wet Prairie, 

Lowland Shrubs 

56,450.37 

Stockbridge-Munsee Reservation 

Land/Unmapped Vegetation (labeled “Null 

Data” (W.DNR 2019)) 

20,184.89 Non-

Vegetative 

Features 

 

Removed 

 

Removed 

Grand Total: 560,647.45 - 408,351.63 100% 
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 How does Mladenoff’s vegetation reconstruction for the Lake Winnebago catchment 

compare to Finley’s? Mladenoff (2019) data is presented in Table 4.3 and Figure 4.4. Because 

waterways and wetlands were not mapped by Mladenoff, these are not quantified. As detailed 

in Chapter 3, Mladenoff reconstruction is based on densities of trees; a by-product of this 

approach is that wetlands are not recorded as such. While the two reconstructions produce 

similar estimates for acreage of forests, they differ markedly in the acreage identified as prairie 

and oak opening or savanna, with Mladenoff suggesting more grasslands of both kinds. There 

are 36,197.20 acres or 146.48 square kilometers of prairie, and 168,873.73 acres or 683.41 

square kilometers of oak openings, available to forage. These differences in GLO coding impact 

the estimates of how many bison herds this catchment could sustain. 

Table 4.3: Mladenoff’s (2019) GLO vegetation density classes adapted for this thesis. 

Mladenoff’s Vegetation Types Acres Adapted Final Acres Final Acres % 

Closed Forest 157,969.85 Forest 216,701.88 51.38% 

Open Forest 58,732.03 

Open 138,874.64 Non-Vegetative 

Features 

Removed Removed 

Prairie 36,197.20 Prairie 36,197.20 8.58% 

Savanna 168,873.73 Oak Opening 168,873.73 40.04% 

Grand Total: 560,647.45 - 421,772.81 100% 

 

Roughly 24 Nachusa herds could subsist in the prairie alone, another 113 herds could fit in oak 

opening densities, and 138 herds in both densities or patches combined. This represents almost 

12,000 individual bison. Thus both the Finley and the Mladenoff vegetation reconstructions 

support the viability of local bison herds in the Lake Winnebago locality.  
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Figure 4.4: Lake Winnebago vegetation based on Mladenoff’s translation of the GLO adapted to the thesis schema. 
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The La Crosse Site Catchment: 

Figure 4.5a shows the locations of the sixteen La Crosse archaeological sites that had 

bison remains; Figure 4.5b provides a zoomed-in view to allow legible labeling of the individual 

sites. This region has the most reported bison remains in Oneota contexts in Wisconsin (Sasso 

1993, 2014). This is also the catchment where I created my own translation of the GLO, coding 

the original notes directly into four broad vegetation types chosen for their relevance to 

research questions about bison and archaeological catchments. This allows me to make a 3-way 

comparison of the coding methods. Three major rivers fall within this catchment: the Black, La 

Crosse, and Mississippi Rivers. Figure 4.6 illustrates the general terrain, and Figure 3.4 shows 

how data such as these can be manipulated into slope. These figures also show that this region 

has much more variation in terrain or slope percentage than Lake Winnebago’s site catchment.   
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Figure 4.5a: La Crosse site catchment and archaeological sites.   



106 

 

 
Figure 4.5b: La Crosse site catchment and archaeological sites. Zoom-in.  
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Figure 4.6: La Crosse modern terrain and water with archaeological sites and their combined catchment.   
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Figures 4.5 and 4.6 illustrate general terrain, water, and archaeological site distributions 

within the La Crosse catchment. Vegetation was added using Finley’s coding of the GLO. Table 

4.4 shows how Finley’s (1951, 976) codes, detailed in Chapter 3, were collapsed into broader 

zones for this catchment. These zone adaptations allow more direct comparison with the zones 

used to describe the Nachusa Grassland. Figure 4.7 maps their distribution. Finley’s data shows 

a mix of prairie, oak openings, forest, and wetlands. 

 

Table 4.4: Shows Finley’s (1951, 1976) individual categories and statistics, and how these were converted into the 

general zones (defined in Chapter 3). Brush was combined with oak openings. Lowland hardwods were grouped 

with wetlands based on GLO notes. This table is associated with Figure 4.7.  

 

Finley’s Vegetation Types Acres Adapted Final Acres Final Acres % 

Water 25,669.41 Waterway Removed Removed 

Sugar Maple, Basswood, Red Oak, White 

Oak, Black Oak 

524.16  

Forest 

 

170,363.69 

 

45.12% 

Oak – White Oak, Black Oak, Bur Oak 169,839.53 

Oak Openings – Bur Oak, White Oak, Black 

Oak 

105,035.65  

Oak Opening 

 

119,830.68 

 

31.74% 

Brush 14,795.03 

Prairie 42,058.60 Prairie 42,058.60 11.14% 

Swamp Conifers – White Cedar, Black 

Spruce, Tamarack, Hemlock 

1,629.07  

 

Wetlands 

 

 

45,323.44 

 

 

12.00% Lowland Hardwoods – Willow, Soft Maple, 

Box Elder, Ash, Elm, Cottonwood, River 

Birch 

28,890.43 

Marsh and Sedge Meadow, Wet Prairie, 

Lowland Shrubs 

14,803.94 

Grand Total: 403,245.83 - 377,576.42 100% 
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Figure 4.7: La Crosse vegetation based on Finley’s translation of the GLO adapted to the thesis schema. 
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 Although all the prairie lands are not connected, their acreage represents many 

kilometers of space. Some patches of prairie are quite large, such as the one at the northern 

boundary of the catchment. In the La Crosse site catchment, according to Finley (1951, 1976) as 

a raw statistic, prairie makes up 42,058.60 acres. This is equivalent to 170.21 square kilometers. 

There would enough room for 28 Nachusa herds even if they foraged only on the C4 grasses 

represented by the prairies of this catchment. Oak openings are also important, and again, 

grazing bison can help maintain the openness of this zone (Blackburn 2018; Brockman 2017; 

Burke 2016; Gates et al. 2010; Hess et al. 2014). Oak openings make up 119,830.68 acres or 

484.94 square kilometers. Another 80 Nachusa herds could forage in this vegetation zone. If 

prairie and oak opening acreage is combined, some 109 Nachusa herds could be 

accommodated, or roughly 9,000 individual bison. Prairie is 11.14% of the total recorded land 

area and oak opening is 31.74% of the total recorded land area. Wetland C3 sedges, as shown 

in Table 4.4, were also available. Wetlands provide both food and access to water.The 

vegetation mosaic in the La Crosse site catchment seems quite capabale of supporting Late 

Prehistoric period bison year-round.  

 Mlandenoff (2019) provides a second approach to coding the GLO for the La Crosse 

catchment. Table 4.5 provides the acreage for his vegetation codes and shows how they are 

collapsed into the four broad zones described for Nachusa. Figure 4.8 maps this distribution. 

Because waterways and wetlands were not mapped by Mladenoff, these are not quantified. 

The most striking difference between Mladenoff and Finley’s reconstructions are the relative 

abundance of forest and oak openings. Mladenoff’s attention to tree densities results in a much 

higher acreage of oak openings and a lower acreage of forest.   
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Table 4.5: Mladenoff’s (2019) GLO vegetation density classes adapted for this thesis. 

 

Mladenoff’s Vegetation Types Acres Adapted Final Acres Final Acres % 

Closed Forest 22,289.54 Forest 58,703.16 14.91% 

Open Forest 36,413.62 

Open 11,510.41 Non-Vegetative 

Features 

Removed Removed 

Prairie 34,660.16 Prairie 34,660.16 8.80% 

Savanna 300,407.45 Oak Opening 300,407.45 76.29% 

Grand Total: 405,281.18 - 393,770.77 100% 
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Figure 4.8: La Crosse vegetation based on Mladenoff’s translation of the GLO adapted to the thesis schema. 
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 Mladenoff’s reconstruction for the La Crosse locality includes 34,660.16 acres of 

prairie and 300,407.45 acres of oak opening. This is equivalent to 140.26 square kilometers of 

prairie and 1,215.71 square kilometers of oak opening. This landscape could accommodate 23 

Nachusa herds in the prairies and an astounding 202 herds in oak openings, for a total of 226 

herds when those resource areas are combined. That represents some 19,000 individual bison. 

 In both the Finley and Mladenoff reconstructions, the La Crosse locality had ample 

forage to sustain bison. Multiple healthy herds could subsist in all of these datasets. One could 

even create “local” site buffers of one-kilometer around each Oneota site based on the 

assumption that bison would not graze near human home bases, and the result would still be 

the same. Historic accounts and vegetation both provide a compelling case for bison in 

prehistoric Wisconsin. 

I will now add a third approach to vegetation reconstruction from GLO records, one that 

was designed with bison in mind. It codes vegetation with attention to prairie and oak opening 

components and thus C4 grazing potential, and with attention to wetlands, since they are a 

source for the C3 sedges that are seasonally important to bison. It also distinguishes wetlands 

from waterways; the Mississippi, La Crosse, and Black River watersheds significantly impact this 

catchment when hand drawn. It codes at the spatial scale of quarter section and GLO feature 

level. I applied this approach to the GLO records for the La Crosse area with the goal of 

assessing its impact on the calculation of habitats suitable for bison when compared with the 

approaches of Finley and Mladenoff. This added a third reconstruction (Figure 4.9), but also 

allowed me to explore the potential of tackling the GLO at a large regional scale. Table 4.6 

shows the related statistics. Visually, my reconstruction (Figure 4.9) looks more like Mladenoff’s 
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(Figure 4.8) than Finley’s (Figure 4.7) in terms of the abundance of oak openings. Mine differs 

from Mladenoff’s in that my forests are clustered in the south, where his appear as small 

scatters throughout the catchment (Appendix A explores why these forests appear). Mine 

stands out among the three for having the largest acreage of prairie. Other significant 

differences with the Saleh dataset is the merging of inundated bottoms with wetlands, the 

accuracy of the historic waterways, and the attention to small pockets of non-vegetative data. 

The Saleh data set is the only one where historic waterways are mapped. 

Table 4.6: Saleh’s (2019) GLO vegetation types. Jeske (1990) and Edwards IV (2010) greatly contributed to these 

thesis-wide categorical choices. The removal of non-grazeable land aids in quantifying bison forage.  

 

Saleh’s Vegetation Types Acres Final Acres Final Acres % 

Waterway 14,715.16 Removed Removed 

Forest 41,839.35 41,839.35 10.74% 

Oak Opening 193,488.72 193,488.72 49.68% 

Prairie 77,784.50 77,784.50 19.97% 

Wetlands 76,375.29 76,375.29 19.61% 

Non-Vegetative Features 1,155.12 Removed Removed 

Grand Total: 405,358.13 389,487.85 100% 
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Figure 4.9: La Crosse vegetation based on Saleh’s translation of the GLO with the thesis schema. 
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In terms of foraging lands suitable for bison, this reconstruction estimates 77,784.50 

acres of prairie and 193,488.72 acres of oak opening were available. This is equivalent to 314.78 

square kilometers of prairie and 783.02 square kilometers of oak opening. This represents 

enough prairie for 52 Nachusa herds, enough oak openings for another 130 herds, and a 

combined acreage sufficient for 182 herds. This represents roughly 15,000 individual bison in 

the La Crosse site catchment.  

Thus all three approaches (Finley, Mlandenoff, and Saleh) confirm that both catchments 

were likely more than adequate to sustain a local Wisconsin bison herd in prehistoric Oneota 

times. It also confirms that this would have been possible within local hunting ranges.  

One of the objectives of this thesis was to evaluate how coding of the original GLO notes 

impacts the results. One way to look at this is to compare how each approach ranked four 

broad categories of vegetation land comparatively: forest, prairie, oak opening, and wetlands. 

Table 4.7 shows how these translations compare in their approach to the La Crosse locality 

catchment. All three were derived from the same original GLO notes. While it is not surprising 

that exact acreages differ in all cases, it is perhaps surprising that when viewed more simply as 

a rank ordering of most abundant to least abundant vegetation, there is almost no agreement 

in the rankings. Some of this can be attributed to the lack of a fourth category for Mlandenoff, 

since he did not code wetlands. The only shared ranking is the ranking of oak openings as the 

most abundant type by Mlandenoff and Saleh. Both of these approaches made it a point to 

distinguish between trees that occurred scattered in grasslands versus trees in forests. Both 

also translated the GLO more directly, and translated at the spatial scale of section and quarter 

section.  
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Interestingly, because I took the approach of setting a particular acreage threshold for 

my evaluation of the needs of a bison herd, the interpretations of bison sustainability was the 

same for all three translations of the GLO. The different values of vegetation acreage did not 

have an impact once the threshold was met. The variations did lead to some large differences in 

estimates of exactly how many herds or how many bison could be sustained, but my research 

question was sufficiently answered as long as even one herd could find adequate forage. 

 

Table 4.7: La Crosse catchment vegetation reconstruction comparison.  

 

Vegetation 

Type 

Finley Acreage Total and 

% (rank) 

Mlandenoff Acreage Total 

and % (rank) 

Saleh Acreage Total and % 

(rank) 

Forest 170,363.69 (1) 45.12% 58,703.16 (2) 14.91% 41,839.35 (4) 10.74% 

Oak Opening 119,830.68 (2) 31.74% 300,407.45 (1) 76.29% 193,488.72 (1) 49.68% 

Prairie 42,058.60 (4) 11.14% 34,660.16 (3) 8.80% 77,784.50 (2) 19.97% 

Wetlands 45,323.44 (3) 12.00% Not Coded Not Coded 76,375.29 (3) 19.61% 

Grand Total: 377,576.41 100% 393,770.77 100% 389,487.85 100% 
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Using GIS Modeling to Combine Vegetation and Terrain: 

 While forage is critical to modeling bison habitat, other environmental variables also 

play a role. One of the goals of this thesis was to incorporate terrain and water into modeling 

bison land viability. Terrain in particular is considered to impact bison access to forage. Modern 

studies show a preference for bison to aggregate in open grasslands, especially in the summer 

(Brockman 2017). Rugged terrain, on the other hand requires more energy to negotiate and 

may, in extreme cases, prevent access or require the bison to travel around an obstacle. Large 

bodies of water may also become obstacles to movement. 

 As described in the methods, I set terrain as 25 percent influence, and vegetation as 75 

percent influence to create viability ratings with Esri’s (2019) weighted overlay tool (see Figures 

3.1 and 3.3). Terrain was converted to a percentage slope and ranked on a scale where 1 is the 

best (slope = 0 (min.) - 20.91%) and 4 is the worst (slope 62.73 - 83.63% (max.)) (see Figure 3.3). 

Vegetation was also ranked related to bison, which is described in Chapter 3. Prairie (1), oak 

opening (2), wetlands (3), and forest (4). Restricted values (0) represent an absence of 

grazeable land. These are presented both as histograms and maps; the histograms quantify the 

pixels or numbers of spatial units in the archaeological site catchments that fall into each of the 

ranked categories. The X axis in the histograms are color coded, and the Y values are scaled 

from the real pixel “counts.” The landscape below the viability coloration is an adaption of the 

W.DNR (2019) terrain data provided to help visualize terrain relief. Appendix C provides the 

final result modeling weights, and Chapter 3 provides more in-depth method descriptions. All 

five vegetation scenarios from Lake Winnebago and La Crosse are presented as bison viability 

scenarios below. 
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Figure 4.10: Shows the resulting histogram using Finley’s vegetation data for the Lake Winnebago area and the 

corresponding bison viability map. The combination of vegetation and terrain suggests that very little of the 

catchment was ideal for bison (rank 1) and a modest amount was adequate (rank 2). A rank 3 majority is directly 

related to the amount of woody forage in the catchment.   
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Figure 4.11: Shows the same catchment using Mladenoff’s vegetation data with the associated histogram and 

map. Comparing these with Finley’s data we see that Mlandenoff’s data increases the relative amount of rank 1 

and rank 2 habitats (Figure 4.10 compared to Figure 4.11). The rank 3 maximum is noted to be driven, again, by a 

high percentage of woody forage available in this catchment. 
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Figure 4.12: Shows the resulting histogram using Finley’s vegetation data for the La Crosse area with the 

corresponding map. The combination of vegetation and terrain suggest that a modest amount of the catchment 

was ideal for bison (rank 1) and a large amount was adequate (rank 2). Although rank 2 is the maximum, rank 4 is 

the point of statistical significance. If Finley’s data holds true, much of the La Crosse region constitutes the poorest 

bison foraging habitats. The lowlands near the Mississippi River seem much more suited to ranks 1 and 2, and 

therefore also seem much more suited to year-round bison herds.  
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Figure 4.13: Shows the same La Crosse catchment data using Mladenoff’s vegetation. This figure presents the 

corresponding histogram and map. Comparing these with Finley’s data we see that while Mlandenoff’s data, like 

Finley’s, shows high relative abundance of rank 2 habitats, it decreases the amount of rank 1, rank 3 and rank 4 

habitats, resulting in an overall increase in the amount of the catchment adequate for bison. Unlike the Lake 

Winnebago catchment, using Mladenoff vegetation and Finley vegetation in the La Crosse catchments weighted 

landscape modeling produced much different viability results. 
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Figure 4.14: Shows the La Crosse site catchment using Saleh vegetation data with the corresponding histogram. 

Unlike Finley (1951), the Saleh data did not incorporate additional factors such as barometric readings or soils. 

Unlike Mladenoff (2019), the Saleh data did not rely heavily on section by section tree counts either. Instead, the 

Saleh data made more direct use of the original surveyor maps and notes equally, without adding additional 

factors or numerical thresholds. The accuracy of prairies may be highest in this data set, as its categorical definition 

followed the original maps of the surveyors in coding them. The results in comparing the three datasets are quite 

similar from the rank 2 perspective. The Saleh histogram and map show a high amount of good (2) to best (1) bison 

viability visually and statistically. These figures continue to support the general idea that overall, as seen in all 

versions of the La Crosse area vegetation reconstructions, the rank 2 viability rank was quite prominent. It must be 

noted that accurate GLO non-vegetative features, waterways, wetlands, and inundated bottoms increases the 

power of landscape modeling. 
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What did this exploration of the use of weighted modeling to combine the variables of 

terrain, vegetation, and water add to our evaluation of the two catchments as viable bison 

environments? Overall, it shows that the Lake Winnebago site catchment averages a majority 

rank of “3,” and the La Crosse site catchment averages a majority rank of “2.” In terms of bison 

viability, the simulation of terrain and vegetation into weighted landscapes helps show the La 

Crosse catchment is more favorable than the Lake Winnebago catchment. Although La Crosse 

bison viability is shown to be higher from a majority rank perspective, it must also be noted that 

there was a higher percentage of “4” (worst) values than Lake Winnebago in all simulations.  

When the background of both catchments is considered, the local bison herd viability 

suggested by terrain and Finley, Mladenoff, and Saleh vegetation values mirror the bison 

remains frequency and representation. When these results are compared to other regional 

studies, like Nelson et al.’s (2007) combined GLO and pollen suggestions, they are shown to be 

less general and more refined geographically. The historic accounts of bison in southern 

Wisconsin are shown to be aided by the results of all three reconstruction approaches.     

Terrain is noted to have impacted the La Crosse catchment more so than the Lake 

Winnebago catchment, and was a check and balance system versus vegetation. The percentage 

of slope influence was tested at different realistic percentages, and the simulation suggestions 

still showed the same general viability patterns. Although terrain’s impact was not extreme, 

creating a weighted landscape allowed for the easy quantification of site catchment patterns 

related to grazing on viable land.  
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Chapter 5: Summary and Discussion 

 The goal of this thesis was to explore the potential for local bison herds to have existed 

in prehistory within reasonable hunting range of Oneota villages in two localities in Wisconsin. 

The main conclusion is that multiple herds could have hypothetically existed within a local 

hunting range of archaeological sites in both thesis catchments that have produced bison 

remains. This thesis used GLO records from the mid-1800s to reconstruct vegetation patterns 

within twenty-kilometer La Crosse and Lake Winnebago area catchments. It compared three 

different approaches to coding the GLO, the Finley (1951, 1976), Mladenoff (2019), and Saleh 

(2019) reconstructions. Different GLO reconstructions led to different statistics and choosing 

how to categorize the reconstructions into ecological zones also affected comparisons. This 

thesis also added a consideration of the impact of terrain and water, first by simple visual 

inspection, and then with weighted landscapes built with a geoprocessing model constructed in 

Esri’s (2019) Model Builder. It used the habitat parameters of a modern herd at the Nachusa 

Grasslands in Illinois to evaluate the suitability of the reconstructed environments for bison. 

The Nachusa herd is a breeding herd, with males and females, adults and young; it consists of 

approximately 85 individuals. This herd forages for itself year-round on approximately six-

square kilometers of mixed habitat including prairie, forest, and wetlands.  

All vegetation, waterway, and terrain considerations in this thesis show both 

catchments would be viable to bison herds in all scenarios. The percentage of the best bison 

landscape varies in its clustering and relation to the archaeological sites considered in this 

thesis. La Crosse is seen as a more viable landscape than Lake Winnebago, and this is supported 

by remain counts, remain utility considerations, and landscape viability quantifications. Other 
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background information also supports the results in some ways; for example, bison site number 

frequency per catchment generally matches grazing land viability ratings. Beyond these general 

notions, more nuanced conclusions can be made; for example, viability combined with remain 

frequency may continue to favor trade as a more likely source of Lake Winnebago remains 

despite the statistics showing herds could exist within the catchment.  

Using the Nachusa Grassland Bison Herd as a Model for Bison Needs: 

At the most basic level, the most useful pieces of local information provided by this 

thesis are the quantified historic landscape patterns and the evaluation of the ecological 

suitability of the two Oneota site catchments. This makes the consideration of the model based 

on the Nachusa herd itself highly important. The herd is useful in that it is a free-range 

Midwestern herd in a reconstructed grassland with supporting scientific data such as isotopic 

results. Although the Nachusa Grassland herd is considered a quality case choice for this thesis, 

it is useful to evaluate alternative ideas about herd size. 

Nowak (1999), in his review of bison species using Banfield (1974) and Lott (1974), 

suggests a healthy herd in an ideal environment could have around 57 individuals, mostly 

consisting of females, with a home-range of around 30 square kilometers in the warm season, 

potentially increasing to 100 square kilometers in the cold of winter. This represents fewer 

bison in more space than is true for the approximately 85 individuals over six-square kilometers 

at Nachusa. If we apply Nowak’s (1999) statistics in the La Crosse catchment to a warm season 

range they show 55 Nowak herds compared to 273 Nachusa herds, based on acreage alone, 
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without consideration of vegetation, waterway, or terrain.  Nowak does not include data about 

percentage of prairie in his estimate. 

We can also compare Nachusa with a modern Great Plains wildlife refuge. The National 

Bison Range in Montana is one of these refuges. It is a place where bison freely range over a 

larger landscape than Nachusa Grassland and have for over 100 years. Here, 75 square 

kilometers of a rolling plains landscape are available to 350-500 bison (Visit Montana 2019). 

The National Bison Range thus has 18-24 individuals per six-square kilometers, far fewer than 

the 85 bison at Nachusa. Not only that, but with up to 75 percent of the Montana refuge 

covered in prairie grasses of high C4 value, the amount of available prairie forage is higher in 

the National Bison Range compared to the estimated 50 percent at the Nachusa Grassland. 

Thus there is a lower density of bison grazing on a higher density of prairie land in Montana. 

Another way to view these data is to consider simply the amount of prairie land. Of the 75 

square kilometers of National Bison Range land, 56 square kilometers is described as prairie. As 

an example, the Saleh GLO reconstruction shows 314.78 square kilometers of prairie available 

in the La Crosse catchment. That is to say enough prairie land for five or six times the number of 

bison in the Montana herd.   

This comparison of the Nachusa model with two alternatives indicates that while both 

Oneota localities would remain viable for bison, the estimated numbers of bison would be less 

than those based only on the Nachusa herd. It is also worth noting that while the Nachusa 

model does not include natural predators, the herd is culled annually by people. A more 

sophisticated simulation might incorporate natural predators and might vary the role of human 
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predators to better model the ecological dynamics of prehistoric hunting. Another issue that 

could be incorporated in future modeling would be seasonal migrations of herds. 

Although these considerations make it clear that Nachusa is not perfect, combined with 

the GLO, the grassland’s data is useful in showing the potential of what could have existed in 

the two thesis catchments in late prehistory. The isotopic information from the Nachusa bison 

herd is especially useful, as are the similarities of its mosaic Midwestern environment to parts 

of southern Wisconsin. Nachusa shows at the very least that multiple herds could exist within 

these catchments at the same time within clustered prairies or oak openings, as well as within 

the clustered good (“2”) to best (“1”) viability areas. Even if we applied other metric’s such as 

Nowak’s, the results relating to local herds would still show multiple herds could exist within 

the thesis catchments within range of human hunters. Overall, Nachusa’s data are most useful 

in this regard. The role of winters, climate changes, intentional human burns to maintain 

grasslands, and the role of bison grazing in maintaining prairies or oak openings needs to be 

understood further in its relation to bison east of the Mississippi River, and using Nachusa as a 

scientific aid would be highly useful in this regard as well (Blackburn 2018). 

Using GLO Notes and Maps to Model Prehistoric Vegetation: 

This thesis begins to shed light on what the historic vegetation within twenty-kilometer 

site catchments of Lake Winnebago and La Crosse Oneota archaeological sites with bison 

remains looks like. These models use vegetation from approximately a decade after historic 

bison went extinct east of the Mississippi River (Hornaday 1887). Although quality state-wide 

general depictions of vegetation have provided us with atlas-style ecological information 
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throughout the decades, a more precise version of what the GLO surveyors recorded can be 

produced with a GIS (Curtis 1959; Finley 1951, 1976; Mladenoff 2019; Prell 1989; Tanner and 

Pinther 1987; Ventura 1990, 2019; W.DNR 2019). 

Although the GLO historic vegetation data can be useful, a quality reconstruction is 

needed. First, deciding how to quantify and match coding or spatial scales to a research 

question is imperative. If one wants to reconstruct their own GLO GIS data, it is highly 

recommended that the user practices not only using GIS software, but also interpreting GLO 

data; overall, expect to spend a lot of hours whether reconstructing or modeling. Further, there 

is a lack of what may be conceived as full-blown predator simulation, as it is an enclosed 

grassland, although the Nachusa herds are culled by humans. In terms of the thesis catchments 

and the Nachusa Grassland, although close, each environment slightly varies. For example, La 

Crosse is the only case used in this thesis’ results from the Driftless Area. In terms of migration, 

bison at Nachusa Grassland cannot simulate this practice seasonally. 

All of the GLO datasets used in this thesis have their own strengths. At the same time, 

they show different statistics. Although general patterns hold true across the datasets, the 

results show clear differences. One important difference is the choice of whether to reconstruct 

GLO waterways. This is a labor-intensive process but makes the dataset the most accurate. It is 

thought that a combination of the Mladenoff method, which recorded GLO tree density, and 

the method used in this thesis’ reconstruction of the custom La Crosse layer, which 

reconstructed GLO waterways, is warranted in archaeological studies. Essentially, if GLO 

boundaries are not clear on plat or sketch maps, count how many trees there are within a 

quarter-section, and review the known surrounding zones. This way, instead of relying only on 
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quarter-section densities, one can draw known boundaries first, and use densities as a back-up 

when plat and sketch maps fail the user. This allows wetland and waterway construction. In 

many places, coding the GLO runs into boundary issues statewide, and a combination of 

techniques may lessen this.  

Another way to look at GLO-based environmental reconstructions is to evaluate 

whether they are more objective, meaning they rely directly on the original data, or more 

subjective, meaning they rely on additional types of environmental data and/or incorporate 

theoretical models about which sets of environmental variables are expected to co-occur and 

extrapolate from that to map likely vegetation zones. Both Mladenoff and this thesis use a 

more objective approach, relying more closely on what a surveyor observed. Finley, on the 

other hand, used a more subjective approach, combining GLO observations with ecological 

theory about which plants, soils, temperatures, and moisture should exist together. 

Another issue in building environmental reconstructions from GLO data is spatial scale. 

Given the way the original data was recorded, one can choose to record details at the section or 

quarter-section scale, or at the township scale, and one can choose whether to read all the 

detailed notes or to rely on the plat and sketch maps that were created from those notes. Some 

studies may not require the finest possible scale. For example, at a state or national level, 

recording every waterway or wetland may not necessarily aid a vegetation study (Bolliger et al. 

2004; Mladenoff 2019).    

Aside from data quality and spatial scale decisions, using a GIS and organizing 

geoprocessing tools into a geoprocessing model with Esri’s (2019) Model Builder is suggested 
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by this thesis to be a productive way to apply geospatial data to reconstruct archaeological 

landscapes. At its core, a GIS relates and quantifies data and in archaeological studies, this can 

help clarify many aspects of a site or region. A GIS relies on quality data to produce quality 

maps and tables.  

Using GIS to Analyze Catchments: 

In terms of the data, the multiple GIS scenarios and simulations were meant to provide 

a critique for each other, but this does not make them perfect. It is recognized that taking a 

modern bison herd from a reconstructed grassland and applying it to historic vegetation and 

prehistoric site catchments makes certain assumptions and simplifications. One of these was 

the application of a twenty-kilometer catchment for clustered archaeological sites. Many of the 

sites used in this thesis have been shown to be home base style sites, but not all of them 

(Arzigian et al. 1989; Boszhardt 1989; Bullock 1942; Dirst 1985; Kreisa 1986; Peske 1966, 1971; 

Sasso 1993; Savage 1978; Sterner 2018; Theler and Boszhardt 2006; WHS ASI 2019). Twenty-

kilometer catchments were chosen as appropriate for the combined analysis of local human 

hunting from clustered human sites and bison foraging or movement.  

It is interesting to consider the impacts of using smaller catchments for a bison hunting 

model. Hypothetically, if twenty-kilometer catchments were reduced to ten-kilometer 

catchments, the viability estimates might actually increase. To highlight this notion, as an 

exercise, consider the land viability in the Lake Winnebago catchment results (Figures 4.10 and 

4.11), and imagine reducing the size to ten-kilometers. Due to the clustering of better viability 

zones in the center and south of the catchment, the viability of the landscape would increase in 
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terms of its potential to host local bison herds. In the La Crosse catchments, the Finley and 

Saleh statistics would change, and comparatively, the Finley dataset might show an even 

greater difference in viability versus the Mladenoff and Saleh hypothetical ten-kilometer results 

(Figures 4.12, 4.13, and 4.14). The time needed to repeatedly construct, process, and discuss all 

the weighting and catchment sizing potentials is seen as substantial, but in the future, the 

production of alternative results would help to create more refined suggestions on the 

Wisconsin bison topic.   

This thesis still finds it useful to reconstruct and use historic GLO vegetation data. These 

maps, along with pollen samples, soils, the geologic record, or tree rings, are the best 

information sets in trying to decipher the prehistoric environment of the western Great Lakes 

(Finley 1951; Jeske 1990; Nelson et al. 2007; Palmer 1965). At the very least, they can show us 

patterns of potential. As this thesis notes, this land potential can be applied to a variety of 

research questions. At the same time, when we combine this data with other, more modern 

data, it becomes temporally skewed. For example, the terrain data and the vegetation data in 

this thesis were created over 100 years apart. As long as we recognize these issues, these data 

can still be useful.   

The use of site catchment analysis to answer local hunting potential and bison land 

viability is seen as useful, but with caveats. Human lifeways do not sit within perfect circles. 

Further, Arroyo (2009) shows that there is no single rule about the distance that a hunter will 

travel in a day. Although many studies suggest using a ten-kilometer home base site catchment, 

this study enlarged this to twenty-kilometers to account for the unknown large-scale landscape 

relationship between prehistoric hunters and prehistoric bison subsisting over the same upper 
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Great Lakes landscape (Ebert 2004; Roper 1979; Wheatley 2004). Arroyo (2009) shows a hunter 

in a lowland setting could potentially travel over ten-kilometers in a straight line in much less 

time than a day. Schorger (1937) shows that historic Winnebago hunters may have traveled 

even further than twenty-kilometers to bison hunt in Wisconsin. Catchment size or shape is an 

important decision. The catchments used in this thesis are thought to cover more than enough 

land to answer its core question: could a local bison hunting hypothesis be supported within 

Oneota site catchments by historic accounts of vegetation, bison biological needs, and GIS 

modeling? 

Revisiting Archaeological Models for Bison Acquisition in Wisconsin: 

The research from this thesis adds a way to look at what prehistoric archaeological sites 

and historic landscapes can say compared to what we know about modern bison and terrain. 

More specifically, it adds a new line of evidence to show that local hunting near both La Crosse 

and Lake Winnebago Oneota sites could hypothetically exist and demonstrates multiple healthy 

bison herds could have potentially been available to late prehistoric Wisconsin residents. 

Questions remain surrounding the topic though. For example, if herds could live in 

Wisconsin and herds did live east of the Mississippi River, why the lack of bison bone in 

archaeological sites? Some sites seem to have scapula only, while others show scapula and low 

utility meat elements, or low and high utility meat elements mixed together. Some sites in 

other states like Illinois and Kentucky (Lonza-Caterpillar and Big Bone Lick) show hunting and 

processing evidence, but nothing to this degree has been found in Wisconsin. These 

suggestions and more highlight another question, why does the patterning or amount of 
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evidence of bison elements per site vary not only in Wisconsin, but east of the Mississippi in 

general? These are not new questions, and they continue in their validity.   

More nuanced conundrums still exist as well. Using local and non-local analogic 

reasoning is tough for the Oneota in Wisconsin as “communal” bison hunting existed in 

Wisconsin history, but has little prehistoric evidence. It may be useful not to quantify or 

prescribe the style of hunt people were embarking on to groups before we have the 

unequivocal prehistoric evidence for hunt types and distances. Even the historic periods have 

problems. If we use Kay (1990) as an example, historic Winnebago hunting ranges covered 

much of southern Wisconsin year-round. Is the whole range local? Is every hunt within their 

land communal? Is local and non-local defined by modern state-boundaries? Does one trade on 

every hunt with another village? If an Oneota village hunts with another village from within the 

Lake Winnebago catchment versus another village from the La Crosse catchment, are both 

hunts communal? Is one of those a communal non-local hunt, while the other is a local-

communal hunt? It was not the goal of this thesis to answer these questions, but they are 

important to how we conceive prehistory in southern Wisconsin in general. 

The current debates about evidence for bison in the historic and prehistoric periods in 

Wisconsin warrant studies such as this one. The current lines of evidence suggest trade, non-

local “communal” hunting, or local hunting may be the reasons we find bison remains in 

Oneota contexts at the Lake Winnebago and La Crosse localities. This thesis presents the idea of 

comparing distributions of high tool-utility scapula remains versus the remaining high and low 

meat-utility bones of a bison. Based solely on the remains, Lake Winnebago is said to more 
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likely fit a trade or non-local model, while La Crosse potentially shows all three patterns. 

Although other parts of the animal could be used as tools, that is shown as rare in Wisconsin.  

This thesis provides background evidence that all three modes of bison acquisition were 

potentially happening, and further contends that based on the remains patterning, this may 

have been the case at Lake Koshkonong and the Upper Mississippi Western Wisconsin locality 

as well. There are interesting parallels to this complexity of bison element site types in Illinois, 

as reported by Martin (2014). 

Related to the two thesis site catchments, bones, historic accounts, rock art, lithics, 

effigy mounds, and accounts outside of Wisconsin all provide archaeological evidence in their 

own ways. Relying exclusively on any one skews an understanding of the topic. When we add 

refined GLO reconstructions as a new piece of the archaeological evidence, the viability of local 

bison herds around Oneota archaeological sites is seen as good. When we consider Widga’s 

(2006a) Big Bone Lick information on Late Prehistoric Prairie Peninsula bison diets, as well the 

archaeological data from other western Great Lakes contexts, the Wisconsin archaeological 

record does not quite match the volume of remains one might expect when considering how 

easily bison could have hypothetically lived in places like southern Wisconsin. 

Future Research Directions:  

As questions still remain regarding this thesis’ topic, other research options are possible 

for future lines of inquiry on bison in Wisconsin. These include revisiting faunal collections for 

missed bison bone, more use of protein residue studies, more use of isotopic studies where 

possible, and the introduction of strontium analysis on multiple bison specimens.  
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Lake Koshkonong seems ideal for applying isotopic studies to try to understand if bison 

were hunted locally. Non-scapula low utility meat remains have been reported and this 

suggests local hunting. Could strontium analysis confirm whether these bison were drinking 

local water (Saleh 2017)? This locality is also the southernmost in Wisconsin, so geographically 

speaking, it is also ideal, having best access to the northern boundaries of the Prairie Peninsula.  

In the case of La Crosse, relating this conversation to Minnesota and Iowa is also seen as 

needing much more attention. The western side of the Mississippi River is argued as local to La 

Crosse Oneota, so tying the region together in terms of archaeological bone counts and site 

locations would be an ideal start. Sasso (1993) suggests the La Crosse Oneota locality can be 

conceived at around 650 square kilometers, with much of the locality located in Iowa and 

Minnesota. If this is the case, although time intensive, it could be useful to combine GLO notes 

and maps from all three states. A quick review of the I.DNR (2019), M.DNR (2019), and W.DNR 

(2019) pre-European settlement shapefiles and their metadata shows this task would have its 

issues in terms of connecting surveys, though it would still be possible. All of this data is publicly 

available too, and this would lead to quick manipulation by a skilled user. However, the 

accuracy or precision of the data would come into question. For example, Finley’s subjective 

technique was not applied on the other public datasets. The GLO collection methods may 

warrant custom reconstruction, and it would take hundreds of hours to do this for the whole 

locality. Shea et al. (2014) have reconstructed the Driftless Area using methods similar to the 

Bolliger et al. (2004) and the Mladenoff (2019) data used in this thesis. Finding Driftless 

Minnesota and Iowa La Crosse Oneota sites with bison remains to combine with the Driftless 

Wisconsin sites would be useful as a comparative to this study. Shea et al. (2014) suggest over 



142 

 

70 percent of the Driftless Area in all states was Savannah (converted to Oak Opening in this 

thesis), which would be interesting to quantify compared to remain and site distribution.  

A new more subjective-style GIS dataset similar to the one developed by Finley (1951) 

could conceivably be attempted within the study areas too. Soil rates and types could be 

quantified and updated per quarter section. This data is available at the bottom of most GLO 

survey note pages (BCPL 2019). For climate, the Palmer Draught Severity Index, could be 

considered and weighted into GLO vegetation data (Palmer 1965). Bison in the archaeological 

record are noted as being affected by climate stress, and this could strengthen the conclusions 

within the thesis study area catchments (Widga 1997).  

In terms of GIS in Wisconsin, I think quantifying and mapping extinct bison and historic 

bison sites would also be useful. These would allow easier visualization of the temporal 

patterns of known bison remains. Ideally, these would be linked to climatic reconstructions and 

the changing extent of the Prairie Peninsula and grassland or savanna in general. 

In terms of creating a better model for viable environments for bison, extracting actual 

modern grassland geospatial information to pull land cover from places like the Nachusa 

Grassland in Illinois and the National Bison Range in Montana would be ideal, as these could 

then be quantified in relation to GLO reconstructions within archaeological site catchments. 

Other aspects of the dynamic nature of bison ecology could also be integrated into modeling, 

including predation rates by human hunters and non-human predators, and seasonal and 

climatic migration impacts on herd health and location. Based on the time it took to model and 

reconstruct in this thesis, this may take hundreds of hours. 
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Further considering anatomical utility of bison could prove useful. For example, what 

could applying a comparative general utility model (Hudson 1993:142) to the remains reported 

by Sasso (2014) suggest if implemented? Ribs are well documented as being quite common 

compared to other elements at full-occupation sites on the plains, and these are currently 

identified as recovered from archaeological sites within the La Crosse study area catchment in 

low numbers (Bamforth 2007:206; Sasso 2014). Ribs and femurs are noted as having the 

highest food utility when considering bison specifically, yet these elements are relatively rare in 

Wisconsin archaeological sites. If low food utility elements are found as often or more often 

than high food utility elements, what human behaviors were bringing them into the sites? And 

what is the best way to model the very abundant high tool utility scapulae, which appear to 

occur both alone and in combination with other elements? Is their story more complicated than 

simply representing either the source or the destination of a valuable trade item? These 

questions and more could be explored further when considering the aspects of the general 

utility of individual elements. For example, how much meat, marrow, or tool use can one gain 

from a particular bison element, and what does this say about the element’s appearance at an 

archaeological site and site-type? 

Finally, what if there was a way to apply a potential human population statistic as a part 

of the catchment weighting? This might include human population density estimates. Theler 

and Boszhardt (2006) suggest human populations in the La Crosse area would have been large 

enough to affect how local bison herds occupied the landscape with an applicable metric. Other 

authors have suggested that the risks of inter-group violence affected Oneota subsistence and 

settlement systems (Edwards IV 2017; Koziarski 2012; Sterner 2018). 
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This thesis can echo what others have suggested: Wisconsin essentially needs an Oneota 

bison kill site within a certain proximity of a home base, or a seasonal camp near a home base, 

to tie most of this together and confirm it (McQuin 2010; Sasso 1993, 2014). Historic accounts 

prove these animals have subsisted in Wisconsin, with areas as far east as Lake Winnebago near 

modern Wild Rice Lakes described in the 1800s as “great buffalo ranges” (Schorger 1937:47). 

The faunal record may also benefit from a more comprehensive review of the collections 

themselves. As an example, Sasso (2014) alludes to the fact that Hall’s (1962) Carcajou Point (at 

the Lake Koshkonong Oneota locality) faunal collection has yet to be reanalyzed and is reported 

to contain up to 7.5 percent bison or elk remains. Reviewing large mammal remains for 

identifications that may have been missed or left uncounted from some sites outside of the La 

Crosse area generally seems warranted. At any rate, the lid on the bison in Wisconsin “can of 

worms” has been opened slightly further with this thesis, and it hopes to inspire future 

research directions.  
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Appendix A: 

La Crosse Custom Data Collection GLO Township by Township General Summation 

 

Due to the fact that the GLO notes can have some variance, a township by township 

commentary is provided below for the La Crosse study area in terms of my vegetation coding. 

This provides a deeper understanding of the procedure of going from the details of primary 

data – the GLO notes – to my digitization of the maps into four basic categories of plant 

coverage.  This translation process was based on extensive reading and deciphering of plat 

maps, sketch maps, and surveyor notes from the PLSS GLO provided by the BCPL (2019) in what 

are now the modern counties of Trempealeau, La Crosse, and Vernon in Wisconsin.  

The northern most township of the study area was T19N. This township was defined by 

the range T19N/R09W-T19N/R06W. Due to the fact that the twenty-kilometer study area buffer 

ended within T19N, no township had all thirty-six sections included in the analysis. The major 

waterway that is mapped within T19N is the Black River. Excellent, fair, or poor was an easy 

way to classify descriptively what I viewed. These descriptions relate to the quality of the 

collected GLO data, and is considered throughout Appendix A. These are judgement 

statements, and not highly systematic. The overall sketch map and field notes translation into 

the four plat maps that were drawn from T19N was considered fair, with no major errors. This 

was measured against the rest of the study area’s notes and maps. Compared to the rest of the 

La Crosse study area, the plat maps matched fairly, but vegetation geographic boundaries in the 

notes were not necessarily always mapped. Further, the sketch maps created by the original 

surveyors lacked key word language. The only time this presented an issue was in deciphering 



162 

 

“Oak Barrens,” “Oak Openings,” “Scattering Timber,” or any other term relating to regions 

outside of bottoms or prairies. Defining where this “scattered timber” may thicken into a 

“timber” forest was hard in this region, and the soil was generally noted as second to third rate 

on a one to three scale (BCPL 2019). Bottoms were wet and swampy in T19N, and as will be 

clearly noted with the rest of the study area, I noted these as blanket wetland vegetation areas 

due to reported inundation, their proximities to waterways, and the dynamism of the Driftless 

area Mississippi River valley (Knox and Mickelson 1974).  

Some prairies entered bottoms, and were possibly wet at the time of the survey. White, 

black, and burr oak were highly dominant in terms of tree cover for T19N in all ranges. The 

dominant vegetation classification within T19N was “scattered timber,” as is shown in the 

results section. Some noted undergrowth included prickly ash, ash, vines, and oak. Some bluffs 

were noted, and the conceived “null data” in the results included a historic road to Black River 

Falls, Wisconsin, and the “Douglass” saw mill.      

In descending order, the next township analyzed within the twenty-kilometer study area 

was T18N. The ranges considered within this township included T18N/R09W-T18N/R05W. Most 

of the sections were used, except for in T18N/R05W, where the study area catchment buffer 

just captured data within this T18N range. T18N/R09W along the Mississippi River actually 

captures the western bank of the river, which is variable in Wisconsin GLO notes (BCPL 2019; 

Meyer 2018). As usual, nothing was made of the Minnesota side vegetation or elevation 

besides where the Mississippi is located geographically. Besides the Mississippi, the Black River 

is the main waterway within T18N. Roads to Black River Falls and “Prairie La Cross” (now known 

as La Crosse) Wisconsin are a part of the “null data” digitization result within T18N, as well as a 



163 

 

Mississippi River boat landing, and river houses within the Mississippi River bottom. The 

location of these houses means, at some point, whether seasonally or not, bottoms could also 

be quite dry within the study area. Overall though, inundation up to six feet was noted within 

some bottoms. Some wetlands were present, but due to the fact that most bottoms were wet 

too, T18N could be considered especially dynamic in terms of vegetation. Overall, the theme is 

the same. Oak openings, barrens, or scatterings are associated with any mentions of the 

dominant black and white oak timber on sketch or plat map notes in every range except for 

T18N/R08W. Although timber may have thickened in this region, overall, there is no indication 

of this geographically. In general, the only study area thick timber that is noted and sketched 

does not appear until T14N. T18N/R09W has an especially large prairie section that continues 

out of the study area. In general, the further east the surveyors went, the less open the land 

seemed. T18N/R06W clearly states how scattered the white, black, burr, or jack oak was, and in 

these regions, the W.DNR (2019) notes that up to sixty percent of the vegetation within these 

openings would indeed have been prairie grass. When I aligned T18N custom data with the 

precise quarter section UW-Madison dataset (Mladenoff 2019), this was also apparent from the 

density classification, as this can be seen by the “savannah” category in the results below. T18N 

supports a landscape that is generally dynamic, with valleys and flat areas intermingled within 

ever-changing flooding zones. Oak seems to be the dominant tree type, with others appearing 

here and there. Willow was documented from time to time, for example. 

The next township of the study area was T17N. The ranges considered within this 

township included T17N/R09W-T17N/R05W. All sections were used with the exception of some 

within T17N/R05W. T17N/R08W’s notes provide a perfect example of surveyor disconnect. 
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Bottoms from T18N/R08N and T17N/R07W are no doubt in T17N/R08W, especially considering 

it graces the Mississippi River; yet, they appear incomplete in surveyor notes, and the bottom 

area was altogether missing from the plat and sketch maps (BCPL 2019). For the purposes of my 

study, this area is conceived as part of the dynamic Mississippi river bottom, which constitutes 

the giant western wetland and bottom combined vegetation regime that runs the length of the 

custom dataset within this thesis in the results below. Further, the township notes “timber” and 

a “timber grove,” as does T18N/R08W, yet was surrounded by maps and notes noting 

scattering timber with known geography. This “scattered timber” to “timber” thickening may 

have occurred within T17-18N then, but the overall presence of scattered timber cannot be 

denied either based on the GLO notes (BCPL 2019). Overall, the soils were mostly second to 

third rate and sandy. Mississippi River bluffs were noted as far east as T17N/R07W. Native 

trails, historic Euro-American trails, and giant rock outcrops made up most of the null data, as 

well as the missing Minnesota data. The Black and “La Cross” or La Crosse Rivers are within 

T17N in the twenty-kilometer study area buffer. Again, willow was found in a bottom. Although 

other minor species such as aspen, maple, birch, cottonwood, and willow exist in T17N and 

others, overall, black and white oak seem to be the dominant tree species. The general picture 

was that of an oak savannah that becomes hillier and more open as one hits the Mississippi 

River bottom (BCPL 2019; Mladenoff 2019). Of importance to this study, many sites with bison 

remains from the Classical La Crosse Oneota phase (AD.1300-1650) are located in T17N/R07W. 

These sites are not only tied together temporally and geographically via space and artifacts, but 

also, via a fairly extensive trail network that was discovered as a biproduct of this thesis. 
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Whether by river or trail, the whole study area is essentially connected with a path. The results 

support this further.  

The next township within the study area catchment was T16N. The ranges considered 

within this township included T16N/R08W-T16N/R05W. All sections were used with the 

exception of some within T16N/R05W. T16N marks a study area boundary of GLO note 

differential at its southern boundary. Essentially, the plats, sketches, and notes do not properly 

align with T15N, where things are somewhat inaccurate and poor in general. The first study 

area “tree grove” that was able to be mapped as “timber” appeared in T16N/R06W. These 

became ever present in T15N. The main waterway within this region besides the Mississippi 

River was the La Crosse River. Oak scatterings, prairies, and bottoms were clearly distinguished 

in T16N. An extensive road network, and the north half of “Prairie La Cross” the historic town 

appear as “null data” within the results section, as well as large rock structures. Two study area 

archaeological sites appear in T16N/R07W. T16N/R06W notes that some of the bottoms were 

filled in with water during the survey, which supports the collection technique of considering 

bottoms as dynamic wetland areas or dynamic wet prairies subject to inundation. Within the 

GLO section line notes of sections 7-8, one can find “scattering” within T16N/R05W (BCPL 

2019). Continuously, this study’s data collection consistently found this type of vocabulary, but 

this range represents the last range where this was absolutely clear-cut. Notes and maps made 

sense in terms of just viewing one township, and were considered fair. Further, if it was the 

right season, surveyor, or year, many townships could successfully align with little survey error. 

Starting with T15N/R05W, a prime example of where townships do not align becomes readily 

apparent (BCPL 2019). Essentially, anyone can go into the BCPL (2019) database, download 
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these ranges, and try to align them geographically and with notes. Further, many people would 

produce different digitization results post georeferencing and studying these ranges. Overall, 

this study still contends that the GLO was highly useful in many ways, and that misalignment 

can be refined further with note parsing and data editing, by multiple individuals if necessary, 

to come up with a better dataset. 

The next township of the study area was T15N. The ranges considered within this 

township included T15N/R07W-T15N/R05W. Most sections were used, except for in the 

easternmost R05W. The “Mormon” and “Racoon” Creeks were the largest waterways in T15N 

besides the Mississippi River. “Prairie La Cross” is in the northwestern corner of T15N/R07W. It 

is interesting to view the WHS ASI versus the GLO native and historic trail locations. This region 

was easily traversable by water or via land trails that enter and exit favorable terrains. In terms 

of tree species, black and white oak continue to dominate the list. Any indication of true 

township alignment throughout the study area takes a hit in T15N, and this is noted as a trend 

in Wisconsin by other scholars (Bolliger & Mladenoff 2005). True forest density was also hard to 

quantify township to township, but somewhere in T14N/R06W the forest notably thickens, with 

some boundaries and notes (Cogbill et al. 2018). “Tree groves” and “thick timber” are mapped 

in R05-06W in T15N, and the sketch map quality in T15N and 14N are the highest within the 

study area. The tree density was also noticeable in the tree counts within T15N’s surveyor 

section-line notes. In fact, the sketch maps had too much vocabulary on them to the point of 

convolution, almost too excellent. Further, townships in T15N have prairie colorations on plat 

maps within them but are intermittently labeled barrens or prairies on the sketch maps. The 

BCPL (2019) GLO notes for T15N within the twenty-kilometer La Crosse study area switched 
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from reporting entering prairies to simply reporting when one enters and exits timber, no 

matter how scattered. Essentially, excellent sketch maps exist in T15N, but surveyors are mixing 

up barrens and prairies, which leaves the plat maps and notes ranked as poor.  

Further, it was apparent that surveyors had different techniques in T15N. Oak openings 

are next to barrens, for example (BCPL 2019). Overall, the mapped bottom and wetland areas in 

these maps are noted as drier than the townships to the north. It was no surprise then that a 

historic road runs through some large bottom areas. This also happens in T16N/R07W, and it 

was a further hint at how dynamic the region could be. Seasonal flooding near the Mississippi 

River is and was common, especially when considering the second and third rate sandy soils, 

bluffs, and rivers stemming from the Mississippi with associated creeks and springs. In terms of 

prairie, the geographic regions especially targeted in relating the GLO to bison, the historic 

town of “Prairie La Cross” sits at the edge of a huge prairie bottom, and many acres of prairie 

exist east of this in other ranges within T15N. T15N generally lost tree density as it went west 

towards the river. Besides roads and trails, farm fields and historic structures made up the null 

data in T15N. This was all translated to the data in the results, and the decision had to be made 

on bottom labeling, timber boundaries, and prairie misalignment between T16N/R05W and 

T15N/R05W. T15N was the southernmost township where Oneota WHS ASI sites occurred with 

bison remains as of 2014 (Sasso 2014; WHS 2019). Trails clearly linked these sites in a smooth 

prairie environment near the Mississippi River. T15N supports using density classification by 

quarter-section instead of drawing out plat map boundaries, shown in the results section. Due 

to the multiple ways to collect GLO data, sometimes the thesis technique was better within a 

catchment, yet other times the Mladenoff (2019) lab techniques are better. Regardless, these 
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maps were and are only accurate to a point, and the thesis methodology uncovers this to align 

with previous literature (Bolliger & Mladenoff 2005; Cogbill et al. 2018). 

The next township of the study area was T14N. The ranges considered within this 

township included T14N/R08W-T14N/R05W. Most sections were used, except for in the 

easternmost R05W. T14N was quite similar to T15N in that it continued the oak trend, while 

also containing mystery timber boundaries. Somewhere in T14N/06W a thickening of the 

“timber” into a southern study area forest seems to occur, shown in the results. For example, if 

one goes through the GLO section-line notes of T14N/06W, it will be evident along sections 2-

11, 5-8, and 6-7 that timber goes from thick to scattered. Further, on the sketch map for 

T14N/R07W, it was clear the timber became scattered at some point. This was and is an 

example of why, if one wants to conduct and independent GLO GIS study, one must balance 

plats, sketches, and notes while also understanding that at times, even this may not be enough. 

In terms of terrain, the surveyors noted how hilly some areas became. It is assumed that hills, 

bluffs, and “mountains” are relatable within these notes township to township. Willows were 

found yet again in T14N. Although unmapped, a willow thicket even existed along the section 

26-27 line in T14N/R07 (BCPL 2019). The biggest question area to the collected study area data 

comes from T14N. Essentially, many note pages contain question marks at the bottom, relaying 

that the historic surveyor essentially made some stuff up, or estimated. This left the ranking of 

the notes for this section as poor. This was apparent even in the way trails and roads do not 

align in places. Overall, based on the notes, the UW-Madison ecology lab’s approach seems 

highly sound for T14N (Mladenoff 2019). The “Raccoon” Creek is the dominant waterway in 

T14N besides the Mississippi River. The null data within T14N are roads and trails with some 
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large rock outcrops noted. It could be said that if one were to conduct an independent study on 

T14N within this project area, one should digitize sketch maps and only use the notes on those. 

Further, the townships are used best solo. This was and is the case with every township in the 

GLO essentially, but it was especially the case with T14N and T15N in this study. Overall, this 

contributed to the production of the results, and the collection method was followed as best as 

possible to align with the study area as a whole. 

  The last and southernmost township of the study area was T13N. The ranges 

considered within this township included T13N/R07W-T13N/R05W. Not many sections were 

mapped from T13N. As noted by the publishers of the original maps and notes, T13N 

represents a shift of survey style. County boundaries seem to have nothing to do with the 

survey shifts in the study area, as these maps were mapped just before Wisconsin’s statehood. 

The sketch maps have zero writing on them, which is a far cry from the sketch maps in T14N-

15N, leaving them with a poor ranking (BCPL 2019). The notes lack major language, and the 

plats did not have much in the way of linkage to T14N, and they were also viewed as poor.  

Therefore, the maps from T13N were read as a continuation of the timber zone from 

T14N. Overall, based on the notes, it seems at times the timber scatters. Again, this is difficult 

to gauge. The Mississippi River’s Western bank in Minnesota oddly got picked up and mapped 

again in T13N. The only null data in T13N was a large historic field. Besides the Mississippi River, 

the North Bad Axe River watershed just graces the southern buffer boundary in T13N/R06W. 

The bottoms were not noted as particularly wet in T13N, but they were none-the-less merged 

with wetlands to avoid confusion. This township could be conceived as a scattered timber 

region if one were able to find the unmapped boundaries. This study tried to find some sort of 
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boundary but could not. The density class UW-Madison collection technique was suggested yet 

again for T13N in the results. The main tip to showing the errors between T13N and T14N occur 

in the northwest corner of T13N/R06W, where a prairie seemed to indiscriminately disappear 

from the region.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



171 

 

Appendix B: 

Thesis Esri (2019) and GIS Adapted Terms and Concepts Table 

 

 

Adapted Esri 

Terms (2019): Adapted Esri Definitions (2019): 

Editor Toolbar 

Allows a user to edit and create attributes and geospatial data within a shapefile or 

geodatabase file. For example, while editing, one can draw new geospatial data, or 

merge data within the same set. 

File 

Geodatabase 

Usually contains related data. One can manipulate properties and create domains 

within databases. These have the ability to store vector data, raster data, 

toolboxes, and models. 

Geoprocessing 

Tools 

Esri tools that allow a user to manipulate geospatial data with mapping functions: 

for example, clipping data within a boundary. 

Geoprocessing 

Tools used in 

this Thesis 

Clip (raster and vector), buffer, merge, polygon to raster, slope, reclassify, and 

weighted overlay. 

Georeferencing 

Toolbar 

Most notably allows a user to use a set of control points to tie a raster to a known 

set of geographic points, such as township corners. 

GIS Most commonly known as a geographic information system. 

Histogram 

Can be produced with the spatial analyst toolbar, displaying pixel counts derived 

from a raster in bar-graph form. 

Model Builder 

and Toolbox 

Functions in ArcCatalog/Map. They allow a user the ability to link Esri 

Geoprocessing tools to generate data. Tools and models are stored inside 

geodatabase toolboxes. 

Shapefile/ 

Geodatabase 

File 

A shapefile is geospatial vector data tied to a set of attributes, such as the WHS 

ASI. A geodatabase file is an Esri formatted shapefile tied to a database. 

Spatial Analyst 

Toolbar Allows a user to analyze raster data with histograms and contours. 

Vector or Raster 

data Vector data are points, lines, polygons. Raster data are pixels with certain values. 
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Appendix C: 

Final Results Geoprocessing Tool and Modeling Parameters 

The figures provided in Appendix C follow the order of the final weighted land viability maps in Chapter 4’s results. 

The tables come directly from Esri’s (2019) “weighted overlay” tool and shows how vegetation codes and terrain 

values are given ranks. These ranks relate to the vegetation types and slope percentages. 

 

 
Finley Lake Winnebago.  

Shows raster entry column and raw codes as examples. 

 

 
Mladenoff Lake Winnebago. 
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Finley La Crosse. 

 

 
Mladenoff La Crosse. 

 As an example, the DEM and vegetation column are shown. They are entered similar for Finley, Mladenoff, and 

Saleh reconstructions, and all values relate to the adapted result tables from Chapter 4. Although open forest was 

considered in forest acreage, as the exception due to tree density, it is ranked the same as wetlands in modeling.  

 

 
Saleh La Crosse. 
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