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ABSTRACT 
 

USING EVOLUTIONARY PROGRAMMING TO GENERATE A TROPICAL CYCLONE 
INTENSITY MODEL 

 
by 
 

Jesse Schaffer 
 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Paul Roebber and Professor Clark Evans 

 
 
An innovative statistical-dynamical tropical cyclone (TC) intensity model is developed 

from a large ensemble of algorithms through evolutionary programming (EP). EP mimics the 

evolutionary principles of genetic information, reproduction, and mutation to develop through 

selective pressure a population of algorithms with skillful predictor combinations. From this 

process the 100 most skillful algorithms as determined by root-mean square error on cross-

validation data is kept and bias corrected. Bayesian model combination is then used to assign 

individual weights to a subset of ten algorithms from the 100 best algorithms list, which are 

chosen to minimize mean-absolute error (MAE) and maximize mean-absolute difference across 

the selected algorithms. This results in combining both skillful and diverse algorithms, which 

together produce a forecast that is superior in skill to that from any individual algorithm. Using 

these methods and a perfect-prognostic approach, two similar but distinctly separate TC intensity 

models are developed to forecast for TC intensity every 12 h out to 120 h, with one forecasting 

TC intensity for the North Atlantic basin and the other for the east/central North Pacific basins. 

Results show improvements as defined by MAE over the “no skill” Decay Statistical Hurricane 

Intensity Forecast (OCD5) climatology/persistence model in the North Atlantic basin out to 96 h. 

In the east/central Pacific basins performance over the 12-24 h lead-time is similar to the OCD5, 
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while at later lead times performance drops below that of OCD5. Specific case studies are 

analyzed to give more insight into the behavior and performance of the models.
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1. INTRODUCTION 

Tropical cyclone intensity forecasting is recognized as being particularly challenging 

with only slow improvements in recent years. But this sentiment and the problem itself is nothing 

new. DeMaria and Kaplan (1994) mentioned this idea roughly 25 years ago when developing the 

Statistical Hurricane Intensity Prediction Scheme (SHIPS) and since then, the challenge of 

forecasting TC intensity has persisted over the years (Emanuel	et	al.,	2003,	Rappaport	et	al.,	

2012,	DeMaria	and	Kaplan,	2014,	Emanuel	and	Zhang,	2016). Over the past 25 years 

improvement rates across the 24-72 h range have averaged only 1%-2% yr-1 (DeMaria et al. 

2014; Fig. 1 & 2). This lack of improvement is even more dramatic when the time series is 

placed alongside track errors, which are improving at three times the rate of intensity errors over 

the same 24-72 h range (DeMaria et al. 2014).  Over these shorter lead times intensity errors are 

dominated by the mischaracterization of the storm’s initial intensity and of inner-core and 

eyewall processes (Emanuel and Zhang 2016, 2017; Kieu and Moon 2016). Furthermore, the 

challenge of forecasting the occurrence, timing, and magnitude of rapid intensification (RI) and 

rapid weakening (RW) significantly contributes to large absolute forecast errors and overall 

forecast difficulty over the shorter lead times (Rappaport et al. 2012, Kaplan et al. 2010).  

Despite these challenges, notable improvements in TC intensity forecast have occurred. 

DeMaria et al. (2014) demonstrated that while improvement rates of 1%-2% seem negligible 

(especially when compared to track improvements) they are nonetheless statistically significant 

at the majority of lead times. Furthermore, at lead times longer than 72 h significant 

improvements have occurred, with improvement rates averaging 2%-4% yr-1 (DeMaria et al. 

2014). However, this improvement rate is largely attributed to improvements in track forecasts, 

which have had similar improvement rates over the same time period (DeMaria et al. 2014, 
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Emanuel and Zhang 2016).  Despite these improvements, the sentiment that TC intensity 

forecasts have not improved quickly enough is still indicative of the idea of that these small 

improvements may not be meaningful enough to produce significant practical improvements 

when it comes to better aiding emergency managers in preparation, planning, and decision-

making.  

While there is no significant relationship between TC wind risk and the likelihood of 

evacuations (Lazo et al. 2010), and even though TC winds alone account for only 8% of fatalities 

attributed to Atlantic TCs in the United States (Rappaport 2014), TC intensity forecasts are 

nonetheless critically important. TC intensity play an important role in the inundation of water 

and storm surge that is of primary concern when a TC makes landfall, with this being the leading 

cause of Atlantic TC related fatalities in the U.S., accounting for nearly half of all direct deaths 

(Linn et al. 2013, Rappaport 2014). Additionally, TC intensity forecasts are an important input to 

storm surge and inundation models such as the Sea, Lake, and Overland Surges from Hurricanes 

model (SLOSH; Jelesnianski, 1992), which is consulted heavily during evacuation planning and 

decision-making (Glahn 2009, Linn et al. 2013).  Furthermore, Sheets (1990) noted that as 

populations grow in TC-prone coastal areas, longer lead times are needed for communities to 

adequately prepare. This idea is then amplified in the case of evacuations as a variety of factors 

lead to heavy traffic flow and prolonged evacuation times. These factors include, but are not 

limited to, the propensity for households to take multiple cars, the propensity for people to leave 

at similar times after evacuations have been ordered, and the propensity to evacuate on interstate 

routes rather than smaller highways and roads (Dow and Cutter 2002). More recently, Klotzbach 

et al. (2018) noted that while the number of landfilling hurricanes in the continental US since the 

year 1900 has held steady, inflation-adjusted hurricane-related damage has shown rapid growth. 
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They too attribute this to a growing coastal population and mention that as the population of 

coastal areas continues to climb higher this will be a problem well into the future. Thus, 

improved TC intensity forecasts are and will continue to be important for early evacuation 

planning and decision-making.  

In 2001 NOAA, in conjunction with the U.S. Weather Research Program (USWRP), 

established the Joint Hurricane Testbed (JHT) to improve TC forecasting and expedite the 

transfer of research advances to operations. While intensity forecasts have been a top priority, the 

projects funded by the JHT through 2010 had struggled to produce significant improvements 

demonstrating the difficulty of this task (Rappaport et al. 2012). Despite this lack of 

improvement, Emanuel and Zhang (2016) suggested that quite a bit of improvement could still 

be made at all lead times out to 120 h. They suggested that these improvements would result 

from better characterizations of the initial TC, better models, and large ensembles of diverse 

models with heterogeneous vortex and environmental states, which would be valuable for better 

quantifying uncertainty in intensity forecasts.  

TC intensity forecasts can be generated from three different types of models: dynamical, 

statistical-dynamical, and consensus models. Dynamical (or numerical weather prediction - 

NWP) models obtain a TC intensity forecast by solving the governing equations of motion for 

the atmosphere and appropriately parameterizing other processes such as moisture, radiation 

transfer, boundary-layer turbulence, surface energy fluxes, etc. These model domains can be 

global or limited in area, the latter of which allows for a smaller, convection-permitting, 

horizontal grid spacing. The result of this smaller grid spacing is that these models are better able 

to resolve the TC’s inner core, resulting in more skillful forecasts so long as the inner-core 

structure can be initialized accurately through the assimilation of inner-core observations. 
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Currently, the most skillful limited-area dynamical models in the Atlantic and eastern North 

Pacific basins are the Hurricane Weather Research and Forecasting (HWRF; Tallapragada et al. 

2014) and the Hurricanes in a Multiscale Ocean Coupled Nonhydrostatic Model (HMON, Mehra 

2017), which replaced the Geophysical Fluid Dynamics Laboratory (GFDL; Bender et al. 2007) 

model in 2017.  

Statistical-dynamical models, meanwhile, use statistical methods to assign appropriate 

weights for empirical relationships between environmental and structural TC characteristics, 

which themselves are obtained from dynamical models and/or observations. In the Atlantic and 

eastern North Pacific, the best-performing statistical dynamical models are the Statistical 

Hurricane Intensity Prediction Scheme (SHIPS; DeMaria and Kaplan 1994, 1999; DeMaria et al. 

2005), Decay-SHIPS (DSHIPS) and the Logistic Growth Equation Model (LGEM; DeMaria 

2009). SHIPS is an ever-changing multiple linear regression model that relates a large number of 

input parameters to TC intensity while DSHIPS pairs this with an empirical inland wind decay 

model (Kaplan and DeMaria 1995, Kaplan and DeMaria 2001, DeMaria et al. 2006). Meanwhile, 

LGEM uses a relatively small number of predictors to form a growth parameter that forecasts for 

TC intensity using a logistic growth equation, wherein TC intensity is confined between zero and 

an upper bound determined by a maximum potential intensity parameter. 

Lastly, consensus models combine intensity forecasts from multiple models and use a 

variety of methods to derive the weights for the selected models. These models can be 

dynamical, statistical-dynamical, or a combination thereof. To date, consensus models have 

outperformed the other model types in the Atlantic and eastern North Pacific basins, but they are 

followed closely by statistical-dynamical models and recently by the best-performing dynamical 

models (Stewart 2016; Blake 2014; Pasch 2015).   
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Here we propose and develop an innovative way to forecast for TC intensity, RI, and RW 

by using a statistical-dynamical model derived from a large ensemble of algorithms which are 

generated through evolutionary programming (EP, Fogel 1999). While convective-permitting 

grid scales have brought increased skill to TC forecasts by dynamical models (Gopalakrishnan 

2011), obtaining large and diverse ensembles at such grid spacing is not easily feasible using the 

traditional initial condition and model physics perturbation strategies. Consequently, skillful and 

reliable probability density functions (PDFs) should not be expected to stem from NWP models. 

In contrast, EP was specifically developed in the 1960s to produce large-member ensemble 

forecasts by utilizing the evolutionary the principles of reproduction and mutation to develop 

through selective pressure predictor combinations that maximize forecast skill (Fogel 1999). 

These EP generated predictor combinations have shown superior performance over dynamical 

models in 500-hPa heights forecasts (Roebber 2013), as well as statistical-dynamical models like 

Model Output Statistics (MOS) in minimum temperatures forecasts (Roebber 2010, 2015ab). 

Furthermore, algorithms generated through the EP process provide forecast PDFs superior in 

probabilistic and deterministic skill than many traditional models, particularly at the tails of the 

distribution (Roebber 2013). This is not only the result of an EP process that can create more 

skillful forecasts, but also of a process that allows for more heterogeneity amongst the 

algorithms. Additionally, while EP crosses over into machine-learning, the genetic structure of 

EP algorithms can still be formed in such a way that the algorithms are readily interpretable. 

Lastly, this flexible process can be structured to use existing predictors already in use by other 

statistical-dynamical models forecasting for TC intensity, RI, and RW. 

Section 2 provides a more complete, yet still generalizable, conceptual overview of EP 

before the rest of the paper goes on to describe in detail the development of a TC intensity model 
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for the North Atlantic and eastern/central North Pacific basins with Section 3 discussing the data 

and methods. It fully discusses the specific EP process as well as post-processing techniques 

used to generate the final structure of the algorithms that constitute the models. The performance 

of the two models with enlightening case examples is presented in section 4 followed by a 

discussion of the results more generally in Section 5. Section 6 offers a summary of the 

presented research before the paper concludes with a discussion of future work in Section 7.  

2. CONCEPTUAL OVERVIEW OF EP 

EP has been used in a variety of contexts across the meteorological community over the 

years. For example, Bakhshaii and Stull (2009) applied gene-expression programming to 

forecasting precipitation over complex terrain, while Roebber (2010) constructed a series of IF-

THEN nonlinear equations to forecast for minimum temperature at a site in Ohio. While a 

general overview of EP is discussed in each of these papers and in Ferreira (2006), a conceptual 

overview of EP is provided here as well.  

The EP process is applicable when there exists a well-defined problem with a clear 

measure of success, as an algorithm can then be constructed to forecast a solution by combining 

inputs. The structure of the algorithm can vary based on the problem, but for simplicity let us 

consider an EP process that generates a multiple linear regression (MLR), where the solution is 

the result of summing input variables that are weighted by a coefficient. In EP, the coefficients 

and predictors are randomly initialized and, in the case of more complex algorithms, some of the 

operators themselves are randomly initialized. After a population of algorithms is generated, the 

performance, or fitness, of each algorithm is then measured, hence the need for a clear success 

measure. This attribute of fitness, with some members of the population exhibiting greater/better 

forecast skill than others, is reminiscent of fitness in biology and its role in survival and 
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consequently, reproductive success. By repeating this process (as has happened over the course 

of history in nature) the successive pressure of fitness drives the algorithms towards better and 

better (i.e., more fit) solutions. Natural evolution, however, is more complicated than what is 

presented here as different sexes, tribal groupings, diseases, etc., all affect gene transmission and 

complicate the evolutionary process. Some of these dynamics may be beneficial to mimic in EP 

as well, particularly those that might lead to a more genetically diverse population thus helping 

to generalize the obtained algorithms to a wide range of forecasts. A more complete description 

of the specific formatting of the EP process used for this research follows in the methods section.  

3. DATA AND METHODS 

a. Data 

Two similar, but distinctly separate, TC intensity models are developed using a perfect-

prognostic approach, with one forecasting TC intensity for the North Atlantic basin and the other 

for the east/central North Pacific basins. The process of developing each model is identical with 

the only difference being the Atlantic model is trained on data from the north Atlantic basin 

while the Pacific model is trained on data from the central and eastern North Pacific basins. TC 

intensity and predictor data is sourced from the SHIPS developmental database, which contains 

0-h reanalysis data every 6 h for all TCs from 1982 to present for the North Atlantic and 

eastern/central North Pacific basins (DeMaria and Kaplan 1994). Despite this long time series, 

only storms from the year 2000-onward are utilized for model development and evaluation as the 

reanalysis data prior to 2000 is derived from the Climate Forecast System Reanalysis (CFSR; 

Saha et al. 2010) rather than the Global Forecast System (GFS; NWS 2016) model as is used for 

TCs since 2000. Meanwhile, storms through the year 2016 are included, coinciding with the start 

of this project. While 2017 cases could have been included as well, it was elected to leave this 
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out for multiple reasons. First, while a subset of TCs from the 2000-2016 dataset is reserved for 

independent testing, setting aside an entire season provides a wholly independent testing dataset 

without the chance for storm-to-storm interactions across datasets. Secondly, the 2017 season is 

ideal for testing as the North Atlantic saw above-normal TC activity and challenging forecasts, 

particularly at shorter lead times, while the eastern North Pacific basin also saw above normal 

activity. Specifically, for North Atlantic basin 407 official forecasts were issued in 2017, while 

intensity errors for the official National Hurricane Center (NHC) forecasts over the 12-48 h lead-

times were 10-15% higher than their 5-year means (Cangialosi 2017). Lastly, archived real-time 

predictor information from 2017 allows for retrospective testing of the operational (i.e., real-

time) performance of the models. Thus, having both analysis and archived real-time predictor 

information for the 2017 season allows for an estimation of the degradation in performance that 

results from transitioning away from the analysis data used in training and towards the forecast 

(i.e., imperfect) data used in operations. 

For each forecast period, over 80 predictor variables are available from the SHIPS dataset 

with variants of these variables pushing the total number of predictors to up over 100. A variant 

of a predictor variable, as defined in this dataset, is the same variable but averaged over a 

different radial distance, for example precipitable water averaged over 0-200 km from the storm 

center versus from 0-800 km. However, when more predictors are kept, the solution-space that 

must be explored grows larger, thus increasing the time and information needed to adequately 

search the space. This potentially compromises performance because it may be hard to search the 

solution-space completely and furthermore much of the solution-space may contain expansive 

deserts of unskillful solutions. This is especially true when the dataset is small, as in this study, 

as compared to what is typical for machine-learning. While there is no good method to know at 
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what point the solution space is of optimal size, it is often desirable (as in this study) to reduce 

the number of predictor variables through the application of domain expertise and selecting only 

the most meaningful variables.  

From the full predictor list 88 potentially meaningful variables are initially selected and 

the 0-h linear correlation between each paring is tabulated. These correlations are then consulted 

when using domain expertise to select a subset of variables that are relatively independent of 

each other, with no two variables having a linear correlation above 0.8. This process results in 47 

variables, which are then further refined to 34 variables to eliminate variables deemed to be of 

lesser importance. However, the dimensionality of the search space resulting form 34 variables is 

believed to still be too large, especially for the relatively small amount of data that was available. 

For reference, the total number of forecasts available in the North Atlantic basin is 6110, 

whereas for the east/central North Pacific it is 6443, and this is before processing the data to 

remove undesirable cases such as those with missing predictor information. Thus, the remaining 

34 variables are separated into groupings of similar dynamical properties (e.g. thermodynamics, 

moisture, shear, etc.) and a single variable is chosen based on domain expertise to be 

representative of the general dynamical characteristics of all the variables in that particular 

group. This results in eight variables (Table 1), which are then passed to the EP for processing. 

The majority of these variables are converted to standard anomalies (Grumm and Hart 2001) to 

better identify the relative magnitude and rarity of each predictor value as well as to aid a direct 

comparison between variables of dissimilar units. However, the 0-600 km average symmetric 

tangential wind at 850 hPa from NCEP (National Center for Environmental Prediction) analysis 

(TWAC) is notably non-Gaussian (not shown) and therefore is converted to a linear scaling from 

(-1 to 1), with the extremes representing the maximum and minimum values of TWAC in the 
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training dataset. Lastly, a constant value of 10 is provided as a potential predictor variable as 

well. The purpose of this constant is explained later when discussing the algorithm structure. 

Once the desired variables are chosen, the dataset is then processed to remove cases with 

missing predictor information. Even if only one of the chosen predictor variables is missing it is 

still more advantageous to remove the case rather than to fill the gap with climatological values 

or neighboring values. This is because the potential for non-linear relationships between 

variables as well as the fact that climatological values in terms of standard anomalies are zero, 

could lead to large changes in the training forecasts. Furthermore, operationally the model cannot 

be run with missing predictor information so removing these cases ensures consistency with 

operational practice. Lastly, cases where the forecast initializes or verifies over land are removed 

since an inland decay model (Kaplan and DeMaria 1995, Kaplan and DeMaria 2001, DeMaria et 

al. 2006) is used operationally to post-process the intensity forecast and account for any 

weakening that occurs due to the TCs interaction with land.  

With the processing of the data complete, the remaining cases are assigned to either a 

training, cross-validation, or independent testing dataset. However, the dynamical and empirical 

relationship between predictor variables likely varies as a function of intensity. Therefore, it 

would be undesirable if for example the algorithms were trained on TCs of a weak intensity but 

tested on TCs of a strong intensity, as this would result in the algorithms attempting to forecast 

for something they have not been calibrated to. Consequently, each TC in the dataset is 

categorized into three intensity classes based on the maximum-achieved intensity in its lifetime; 

tropical storms, weak hurricanes (category 1 or 2), and major hurricanes (category 3, 4, or 5).  

TCs and all their respective forecasts are then pulled from each of these three intensity classes to 

form the training, cross-validation, and independent testing datasets so that the intensity bias 
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across the three datasets is mitigated. At this point the dataset has been cultivated and the EP 

process can begin. 

 

b. Evolutionary Programming 

From the cultivated dataset, a large ensemble of algorithms is generated using a perfect 

prognostic approach, with the EP process of cloning, mutation, and selective pressure used to 

determine the empirical relationships between the predictor variables and TC intensity. As in 

previous studies (e.g. Roebber 2010, 2013, 2015ab), the basic genetic architecture of an 

algorithm is a summation of IF-THEN equations, which in this model are structured to forecast a 

12-h adjustment to a persistence forecast. Operationally, this adjustment is calculated using 

values derived from the forecast fields of the GFS at the end of the specified 12-h interval, when 

the intensity forecast verifies, except for the DELV predictor, which is the change in intensity 

over the previous 12-h. So initially the change in intensity over the previous 12 h and the 12-h 

forecast fields are used to calculate an adjustment, which gets added to the observed 0-h intensity 

to become the 12-h forecast. Then the process iterates forward and the 24-h forecast fields are 

used to calculate an adjustment from the 12-h forecast, which becomes the 24-h forecast. The 

DELV parameter meanwhile would be the forecast change in intensity from the 0-h observation 

to the 12-h forecast. This process is then repeated iteratively to obtain intensity forecasts in 12-h 

intervals out to 120 h.  Conversely, in training, the algorithms use only the 12-h analysis fields of 

the chosen predictors to make a 12-h forecast. 

The structure of a single algorithm can be written most generally in the following form: 

𝐹 =  𝐼𝐹  𝑉!!𝑅!!𝑉!!   𝑇𝐻𝐸𝑁  (𝐶!!𝑉!!)𝑂!!(𝐶!!𝑉!!)𝑂!!(𝐶!!𝑉!!) 
!

!!!
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An algorithm consists of five lines that sum together to forecast for a change in intensity over a 

12-h interval. 𝑉!" can be any of the input variables including the constant value of 10; 𝑅!! is a 

relational operator (≤ or >); 𝐶!" are real-valued constants ranging from [-1,1]; and 𝑂!" are 

operators (+ or *).  The reason for adding a constant value of 10 to the list of input variables is to 

allow the EP process to generate lines within the algorithm that always execute, or never 

execute, as is deemed necessary by the EP, since no variable theoretically should exceed +/- 10 

standard deviations. Additionally, the constant value of 10 provides a scaling factor for the EP to 

use when calculating the adjustment if necessary. This algorithm structure with the conditional 

statements and the potential for linear and non-linear predictor combinations allows for a flexible 

yet interpretable equation that can be linked back to logical and dynamical processes familiar to 

a forecaster. 

Figure 3 provides a schematic overview of the EP process and can be used as a visual aid 

for the explanation that follows. The EP training process starts with a population of 10,000 

algorithms of the aforementioned form that are randomly initialized from the eight variables 

listed in Table 1 as well as the constant value of 10 (top left of Fig. 3). While the size of the 

population is somewhat arbitrary and could be increased, prior experimentation has shown that 

the improved skill from larger populations is minimal and does not compensate adequately for 

the increase in computational time (Roebber 2016). Once a population of algorithms is initiated, 

they forecast on the training dataset to determine their fitness/skill, from which the 2,000 worst-

performing algorithms, as based on root mean square error (RMSE), are eliminated leaving only 

8000 algorithms (top right of Fig. 3).  

Next comes the “evolutionary step,” which is where the next generation of algorithms is 

produced through cloning and mutation, the result of which is increased exploration of the 
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solution space. The evolutionary step starts by cloning the 2,000 best-performing algorithms 

(again as determined by RMSE) thus returning the population to its full capacity of 10,000 

algorithms. The 2,000 cloned algorithms additionally undergo a mutation where a randomly 

selected line is completely and randomly reinitialized. Meanwhile, middle-performing 

algorithms – those ranked from 2,001 to 8,000 – then undergo a process of swapping genetic 

information. In this step, each algorithm swaps a line of genetic information with another 

randomly selected algorithm. If an algorithm is selected multiple times by the other algorithms to 

swap information it can result in more than one line being altered or the same line being altered 

multiple times or a combination thereof. Conversely, because the swapping of genetic 

information and cloning of algorithms leads to similar genetic information across the population, 

there is a chance that the line selected for exchange is identical in form resulting in no change to 

the algorithm, although the odds are against it. After this process these middle-performing 

algorithms also undergo a mutation in the same manner as the cloned algorithms. Consequently, 

even if an algorithm did select an identical line for genetic exchange it still undergoes some 

change. At this point the evolutionary step is complete and the population of equations is in its 

second generation (bottom-right of Fig. 3). Meanwhile the best 2,000 performing algorithms are 

left untouched in order to provide a source of good genetic information for future generations.   

This new generation of algorithms then forecasts on the cross-validation dataset and the 

100 best-performing algorithms (as determined by RMSE) are used to populate the “best 

algorithms list”. The purpose of this list is to ensure that we keep the best-performing algorithms 

no matter the generation in which they occur, rather than simply selecting the best algorithms 

from the final generation. The EP process then repeats for 300 iterations and after each new 

generation the best algorithm list is updated to include any new, particularly skillful algorithms 
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that emerge, while the less-skillful algorithms get bumped off. While the performance of the 

algorithms improves rapidly in the first few generations, the rate of improvement eventually 

plateaus. Small improvements may be made to the skill of worst performing algorithms on the 

list, but it may not notably improve upon the most skillful algorithms or the skill of the 

algorithms on the list as a whole (Fig. 4). Therefore, a new population of algorithms is then 

randomly initialized and it goes through the same EP process. The algorithms this second 

population produces are also considered for inclusion on the same best algorithms list and must 

out-perform those already present to be included. Even if this population does not provide much 

improvement in overall performance it may still help add more diversity to the best algorithm list 

(Fig. 4). In total, five different populations of 10,000 algorithms are run for 300 iterations to 

produce the final set of 100 algorithms on the best algorithms list. 

As mentioned previously a perfect-prognostic approach is utilized, with the EP model 

being developed on analysis data, but run operational using forecast data. Despite using a cross-

validation dataset to prevent over fitting of the model, this serves to mostly prevent over fitting 

to the specific selection of training cases. However, the model would still be training on the 

ideally perfect empirical relationships amongst the predictors, which in operation would not be 

so perfect. Thus to prevent over fitting of the relationships between variables, noise is added to 

the analysis variables used in the training. The magnitude of the perturbations have a Gaussian 

distribution centered on zero, with a standard deviation that is a quarter of the observed standard 

distribution in the differences between the analysis and forecast values across both the 

independent and cross-validation datasets from 2010-2016. Furthermore, this noise is dynamic, 

meaning that each time the algorithms forecast on the testing data the noise added to the analysis 

variables is changed. However, cross-validation performance and selection for the best algorithm 
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list is still done using analysis variables without the added noise. This ensures that the EP 

developed algorithms don’t start to train to any anomalous relationships that appear as a result of 

noise and instead remains connected to real-world relationships. 

 

c. Bayesian Model Combination 

After a model is developed, statistical post-processing techniques can be used to bring 

about improved performance and reliability. The most common techniques involve removing 

model bias and assimilating other model data and/or climatological data. Here, bias correction, 

along Bayesian model combination (BMC) is used to post-process the algorithms on the best 

algorithms list. Bias-correction is applied first, resulting in the final generic form of an algorithm 

as: 

𝐹 = 𝜀 +  𝐼𝐹  𝑉!!𝑅!!𝑉!!   𝑇𝐻𝐸𝑁  (𝐶!!𝑉!!)𝑂!!(𝐶!!𝑉!!)𝑂!!(𝐶!!𝑉!!) 
!

!!!

, 

where 𝜀 is the bias correction factor. Then BMC assigns weights to multiple ensemble 

members, which taken together produce a forecast that is superior in skill to that from any 

individual ensemble member (Monteith 2011). The BMC process also produces a PDF, which 

allows a probabilistic forecast of RI and RW to be produced. While Bayesian model averaging 

(BMA, Raftery et al. 2005) is more commonly used in the meteorological community over BMC 

there is a notable distinction that makes BMC a superior post-processing choice. Although BMA 

also provides a weighting across multiple ensemble members, it actually attempts to select the 

ensemble member that gives the best individual forecast, after which it applies weights to other 

members to account for the uncertainty in its selection. Conversely, with BMC there is no 

assumption that a single ensemble member individually produces the best forecast. Instead, BMC 
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assumes that the best forecast is obtained through a combined weighting of multiple ensemble 

members. Consequently, BMC provides superior skill through a more effective weighting of 

ensemble members (Monteith et al. 2011). However a limitation of this technique is that it is 

computationally expensive and therefore members must be sub-selected from the overall 

population (e.g., Hoeting et al. 1999). In this case ten members are sub-selected from the best 

algorithms list as evaluating ten members with four possible raw weights requires an evaluation 

of only 410 or 1,048,576 possible combinations while evaluating all 100 members would require 

evaluating 4100 or 1.6x1060 possible combinations. 

For BMC, the ten sub-selected members are chosen such that the mean absolute error 

(MAE) of the forescasts from the chosen bias-corrected algorithms is minimized while the mean 

absolute difference (MAD) between their forecasts is maximized, resulting in a subset of 

algorithms that are both skillful and diverse. Once the ten members are selected the BMC 

processes then steps through all possible raw weights (including zero) of the individual members, 

which are then normalized to sum to one. The selected weighting used in the model is the one 

that minimizes MAE across the cross-validation dataset, with MAE used here over RMSE to 

mirror the way in which the NHC evaluates the performance between different TC intensity 

models. With the weightings of each ensemble member obtained, the deterministic forecast is a 

simple weighted sum of the individual members’ forecast. Meanwhile, to obtain a probabilistic 

forecast, a normal curve is fitted about each ensemble member with the standard deviation being 

determined from the PDF of 0-12 h intensity change. These individual PDFs are then weighted 

by the BMC weightings and summed to give the total forecast PDF, from which the resulting 

RI/RW probabilities at any specified intensity-change interval (e.g. 30kt in 24 h) are calculated. 
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While the model is producing probabilistic forecasts, they have not been archived or 

examined yet. This is because the complete PDF that is outputted from the probabilistic model is 

a weighted sum of PDFs centered on the deterministic forecast from each individual algorithm. 

As such, the deterministic forecast forms the underpinnings of the probabilistic forecasts. 

Consequently, focus has primarily been on getting a satisfactory deterministic model first and 

foremost. That being said, the development of the deterministic model was done with 

consideration of the probabilistic model and some experimentation with the probabilities has 

been performed. For example, rather than fitting a Gaussian PDF to each individual algorithm’s 

deterministic forecast a mixed-normal (MN) curve was fitted. This MN curve was a function of 

storm intensity and accounted for the fact that a strong (weak) TC is more likely to under go RW 

(RI) than RI (RW) owing to the fact that it is close to (far from) its maximum potential intensity. 

This MN PDF was also used to post-process the deterministic model by averaging over the MN 

PDF to also help the deterministic forecasts with RI/RW forecasting. Initial results, however 

demonstrated that a slight decrease in performance (not shown) and thus it was determined to 

keep with a normal PDF and try to continue to probe the formulation of the EP process for better 

performance. 

4. RESULTS 

a. Model Performance 

Operational performance of the North Atlantic (EPA) and eastern/central North Pacific 

(EPP) models is evaluated using archived real-time predictor information across reserved 

independent test cases from the 2010-2016 season as well as across the entirety of the 2017 

season. While the EP model is paired with the inland decay model for operational purposes, 

cases where the forecast initializes overland or verifies overland are removed to mirror the way 
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the NHC evaluates TC model performance. As described previously, the model is developed 

using analysis data around which noise was added. Thus, to compare the effects of using analysis 

data versus forecast data the EP models are run with archived real-time predictor data (denoted 

by “-R”) as well as analysis data without adding noise (denoted by “-A”). The performance of 

these two models is then compared to the Statistical Hurricane Intensity Forecast model 

accounting for decay over land (OCD5; Knaff et al. 2002), official NHC forecasts, and a 

persistence model using homogeneous forecast cases.  

The OCD5 model uses climatology and persistence to forecast for future track and TC 

intensity and is therefore often used as a baseline for model skill (Knaff et al. 2002; Cangialosi 

2017) with persistence errors instead demonstrating the average magnitude of observed intensity 

change. When comparing to the other models the performance of the EP models will always be 

given relative to the model being discussed, however figures will only show overall MAE 

performance as well as performance relative to the OCD5 model. 

From the ten sub-selected members chosen for the BMC process, seven algorithms 

received a non-zero weighting to become the EPA model (Appendix). The EPA-A and EPA-R 

models show mixed performance, sometimes performing better than the baseline OCD5 model 

and at other times performing worse (Fig. 5 and 7). Across the 2010-2016 dataset the 12-h 

forecast errors from the EPA-A model are 30.9% better than OCD5 and only 3.8% worse than 

official NHC forecasts (Fig. 6). However, EPA-R performance averages about 1 kt worse than 

the EPA-A model over the 12-h lead time and therefore performance drops to become 22.0% 

worse than official NHC forecasts, while retaining a 18.8% improvement over OCD5. The EPA-

R model continues to outperform the OCD5 model through the 24-72 h range with improvements 

of 5.9%-10.2%. However, both the EPA-A and the EPA-R model fail to see a plateau in TC 
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intensity errors at the later lead times, as is seen in the NHC and OCD5 forecasts (Fig. 5). 

Consequently, model skill drops off with the EPA-R model becoming 4.6% worse than OCD5 at 

96 h and 39.5% worse at 120 h. It should also be noted that the effect of real-time predictor data 

on model performance varies across the lead times, with the largest degradation in performance 

coming at 120 h, where the MAE of the EPA-R model is 2.7 kt larger than the EPA-A model. 

However, at 72 h the EPA-R model performs notably better than the EPA-A model with a MAE 

that is 1.6 kt less. Across the 2017 North Atlantic season, both the EPA-A and EPA-R models 

see more consistent performance across all lead times, with the EPA-R model showing consistent 

improvements over the OCD5 in the 12.7%-20.0% range over the 24-96 h lead times (Fig. 8). 

Meanwhile, the EPA-A forecasts between 12-96 h are 8.6% -18.8% less skillful than official 

NHC forecasts over the 2017 season.  

In the eastern/central North Pacific basins, two algorithms received a non-zero weighting 

from the BMC process to become the EPP model (Appendix). Across the 2010-2016 

independent test cases, the performance of the EPP-R model starts with a 13.0% improvement 

over OCD5 at 12 h, but this performance becomes 7.1% worse than OCD5 at 36 h (Fig. 9 and 

10). Through the 48-96 h lead times, the EPP-R model ranges from 10.2-12.3% worse than 

OCD5 before coming within 1% of OCD5 at 120 h. Meanwhile, the use of real-time predictor 

variables seems to have little impact on the forecasts as EPP-A and EPP-R model performance is 

similar over all lead times. Across the 2017 season, performance of the EPP-A and EPP-R 

models roughly matches OCD5 to within 2% over the 12-36 h range, while the EPP-R 

performance at 48 h drops to be 5.8% worse than OCD5 (Fig. 11 and 12). As the lead time 

continues to grow, the EPP-R model then becomes better than OCD5 as errors decrease leading 

to improvements of 8.8%, 13.6%, and 10.6% at the 72, 96, and 120-h lead times respectively. 
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Meanwhile, the EPP-A errors continue to grow throughout the lead times leading to performance 

errors that are much worse than OCD5 peaking at 40.0% at the 120-h lead time. The difference 

in performance between the EPP-A and EPP-R models shows that using forecast predictor 

variables over analysis variables can have a large impact on the forecast and it does not always 

have to be a negative impact. Looking at certain cases studies, specifically Joaquin from the 

Atlantic basin, will demonstrate how this can be. 

 

b. Case Studies 

As for TC intensity forecasting in general (Rappaport et al. 2012 and Kaplan et al. 2010), 

RI and RW cases provide a major contribution to model errors in both the North Atlantic and 

east/central North Pacific basins. For example, if we sum the performance errors across at the 

24-h lead time over the 2010-2016 independent dataset in the North Atlantic basin, we see that 

the 16 RI/RW cases, which comprise only 6.0% of the forecasts, account for 17.4% of the errors. 

Over the 2017 season, the 40 RI/RW cases, which comprise only 15.2% of the forecasts, account 

for 34.7% of the forecast errors in the North Atlantic basin. Meanwhile, in the eastern/central 

North Pacific basins the 16 RI/RW cases from 2010-2016, comprising 7.0% of the forecasts, 

account for 14.9% of the errors. Over the 2017 season, the 28 RI/RW cases, which comprise only 

14.7% of the cases, account for 39.0% of the errors. 

To analyze certain RI/RW cases, it is helpful to know just how much each predictor 

contributes to the overall intensity forecast. However, with the algorithms containing conditional 

statements and non-linear predictor combinations getting a direct measurement of this is not 

straightforward. Here, the relative contribution from each variable is obtained by re-running the 

forecast with the variable of interest set to an input value of zero (i.e., a climatological value) for 
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the given lead time. The direction and magnitude of the change in the forecast intensity as 

compared to the original forecast then tells us the impact that variable has on the forecast. For 

example, if a predictor is set to zero and the resulting intensity forecast decreases by 5 kt, then it 

is said to have had a 5 kt contribution to the original forecast. Conversely, if zeroing out a 

predictor leads to an increase in the forecast, then that predictor is said to have a negative 

contribution to the original forecast. Since the algorithms forecast for a 12-h intensity change 

these relative contributions are calculated only over a12-h interval as well. An estimation of the 

relative contribution of a variable at for example, 36 h, still presumes an accurate 24-h forecast 

with no zeroing of the variable at the earlier lead times. Thus, the relative contribution at later 

lead times is estimated by summing up the contribution of the variable over each 12-h interval.  

 

Maria – 0000 UTC 18 September 2017 

Maria started out as a tropical depression around 1200 UTC 16 September 2017 over the 

tropical Atlantic. The depression then moved westward toward the Lesser Antilles and quickly 

strengthened into a tropical storm and then by 1800 UTC 17 September 2017, a hurricane (Fig. 

13). Aided by warm waters and weak shear the storm continued to rapidly intensify, becoming a 

100-kt major hurricane 24-h later at 1800 UTC 18 September 2017. Maria then made landfall on 

the island of Dominica around 0115 UTC 19 September 2019 as a 145-kt hurricane (Pasch et al. 

2017). Maria’s intensity weakened slightly after crossing Dominica, but it quickly reorganized 

and went on to reach a peak intensity of 150-kt before striking Puerto Rico. After crossing Puerto 

Rico and dropping to an intensity of 95 kt, Maria was able to retain its strength for a few days as 

it reached a relative peak of 110 kt and held onto the classification of a major hurricane. 
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However, as Maria progressed northward and into the mid-latitudes, it slowly weakened into a 

weak hurricane before being swept up by the westerlies without ever making landfall again. 

One of the largest 24-h forecast errors from the EPA-R model is a 51 kt under forecast of 

TC Maria given by the forecast initializing 0000 UTC 18 September 2017 (Fig. 14). At this time 

Maria was in the middle of a nearly unprecedented RI event, wherein it strengthened 115 kt over 

60 h, and furthermore was at a time when the rate of intensification was beginning to increase. 

The 24-h verification then occurs at the conclusion of the RI event on 0000 UTC 19 September 

2017, just before Maria crossed Dominica. While the EPA-R model forecast Maria to strengthen 

from 75 kt to 94 kt over the 24 h, Maria instead strengthened much more rapidly reaching 145 kt. 

This 70 kt (24 h)-1 intensification rate more than doubled the 30 kt (24 h)-1 intensification rate 

seen over the previous 24-h period. With a forecast of 100 kt and a 45 kt error the NHC had a 

slightly better forecast but also underestimated the rate of intensification. With the 24-h forecast 

from the EPA-R and the EPA-A model being so similar only the later will be analyzed as the 

input variables truthfully represent the environment.  

At the 24-h verification time the depth of the 26˚C isocline (CD26) was 1.2 standard 

deviations (σ) above climatology while vertical wind shear (SHDC) was 0.9 σ below climatology 

(Table 2), indicating a favorable environment for RI with warm waters and weak vertical wind 

shear. Despite the warm waters, CD26 has little to no impact on the forecast contributing only 

0.1 kt to the forecast intensity change of 18-kt from the EPA-A model. This is the result of the 

CD26 predictor lacking presence in the algorithms and receiving a relatively small weighting 

when it does appear. In algorithm 6 and 8 the CD26 parameter is absent all-together while in 

algorithm 9 and 34 it only appears in the conditional statement. Furthermore, while CD26 

appears in algorithms 34 and 49, it only appears once and with a small coefficient that is made 
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smaller by being multiplied by another variable with a small coefficient. Only in algorithm 35 

does CD26 have a good chance to make a solid contribution to the forecast. Meanwhile, SHDC 

has only a modest impact on the forecast contributing 2.4 kt to the 12-h forecast and 1.7 kt to the 

24-h forecast. Combined over both lead times SHDC contributes 3.1 kt in total to the 18-kt (24 

h)-1 intensity-change forecast. The primary predictor contributing to the forecast is the DELV 

parameter, which was 1.3 σ above climatology to begin with and then forecast to be 0.8 σ above 

climatology over the next 12-h interval. This resulted in a 5.4 kt and 4.5 kt contribution to each 

12-h forecast interval thus having a 9.9 kt contribution to the total 18-kt (24 h)-1 intensity-change 

forecast. While the 200-hPa divergence averaged over 0-1000 km of the storm center (D200) 

was 1.8 σ above climatology at 24 h this too had little impact on the intensity forecast, 

contributing only 0.2 kt because of the relatively sparse appearance of the variable in the 

algorithms. While these variables indicate a favorable environment for RI, it is reasonable to say 

that they do not necessarily show any indication that such impressive RI would be seen. 

Consequently, even though we would like to improve upon this, it seems reasonable that a first-

attempt machine-learning algorithm such as the EP model used here might underforecast this 

event with the large error from the NHC forecast seeming to verify this as well.  

 

Otis – 0000 UTC 18 September 2017 

For much Otis’ lifespan, it was hindered by strong wind shear and associated dry air 

infiltration and therefore was unable to develop into a hurricane as it traveled westward across 

the eastern North Pacific (Fig. 15). But, on 17 September 2017, the storm turned northward into 

a more-weakly sheared environment, which helped to slow the intrusion of dry air into its center. 

Consequently, Otis underwent RI, increasing 60 kt over 24 h to reach a peak intensity of 100 kt. 
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However, as the northward progression of the storm continued it brought the storm back into a 

more-highly sheared environment, reestablishing the intrusion of dry air into the storm center. As 

a result, Otis experienced RW, decreasing 60 kt over the subsequent 24 h to return to an intensity 

of 40 kt, before continuing to weaken and eventually dissipating 48 h later. The forecast 

initiating on 0000 UTC 18 September 2017 when the storm was at its peak intensity of 100 kt 

and transitioning from RI to RW featured the largest 24-h forecast error by either the EPP or the 

EPA model (Fig. 16).  

When looking at the relative contribution from each input variable a clear explanation 

emerges for why this was the case (Table 3). At the analysis time, DELV was 3.1 σ above 

normal, corresponding to the RI that Otis just underwent. However, the dry-air predictor (CFLX) 

is also well-above-normal at 3.5 σ, indicating that a lot of dry air is being mixed back into the 

storm. Despite their similar magnitudes, the two variables have distinctly different magnitudes of 

impact on the forecast. While the DELV predictor contributes 15.7 kt to the 12-h forecast, the 

CFLX predictor contributes only -0.9 kt. This greater contribution of DELV not only stems from 

the weighting of the parameter in the calculations, but also its role in the conditional statement 

and determining which lines get executed. For example, given the analysis values from the 12-h 

lead time (Table 3), line 2 of algorithm 31 does not execute because the conditional statement is 

false (Appendix). When the CFLX predictor is zeroed the statement becomes true, but then the 

calculated adjustment given by that line equals zero. Therefore, CFLX is said to have no impact 

on the forecast adjustment given by that line thus helping DELV to have a larger contribution as 

compared to CFLX. At the 24-h lead time the value of the DELV parameter drops to 0.8 σ, while 

the CFLX parameter remains high at 3.4 σ. However, because the DELV parameter has a larger 

relative contribution to the algorithms, the relative contribution from the two variables turns out 
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to be roughly equal and opposite, with DELV contributing roughly 5.3 kt to the intensity-change 

forecast and CFLX contributing -4.6 kt to the intensity-change forecast. Meanwhile, other 

variables feature only modest deviations from climatology and a mixed impact on the forecast. 

As a result, rather than forecasting for a sharp change in intensity, the EPP model forecasts a 

more rounded change as the DELV parameter needs eroded before the effect of the CFLX 

predictor can take hold. 

 

Joaquin – 1200 UTC 3 October 2015 

While the previous cases demonstrate the challenge of forecasting for RI and RW, they 

also demonstrate that generally the use of analysis data versus real-time data has little impact on 

the forecast. This is because for most variables the errors in the real-time values are small 

compared to their climatological range and consequently when converted to standard anomalies 

the errors are minimal and contribute little to differences between the forecasts. However, 

sometimes post-season analysis finds times where the intensity of the storm was 

mischaracterized. Not only does this mean that the real-time operational model uses the wrong 

starting point from which the intensity-change forecast adjusts, but it also means that the initial 

DELV parameter that gets calculated from the observed and forecast intensities is incorrect. 

Furthermore, given that the NHC bins intensities in 5 kt intervals, the smallest possible non-zero 

error in the input value is 0.52 σ. Thus, the resulting errors in the DELV parameter can be 

relatively large compared to its climatological range, which may lead to large impacts on the 

forecast. In the forecast for Joaquin initializing1200 UTC 3 October 2015 though, this 

mischaracterization actually led to an improved intensity forecast. 
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Joaquin began as a surface low about 355 n mi east-northeast of San Salvador Island in 

the Bahamas on 1800 UTC 26 September 2015, and by 0000 UTC 28 September 2015 it was 

classified as a tropical depression (Fig. 17). Joaquin then drifted to the southwest over warm 

waters and began to intensity. By 0000 UTC 1 October 2015, Joaquin was a major hurricane 

located 90 n mi to the east of San Salvador Island. However, as a trough deepened over the 

eastern United States, Joaquin slowed down, made a hairpin turn, and started to move the 

northeastward toward where it originated. Aided by the warm waters Joaquin continued to be 

classified as a major hurricane, and as the trough weakened Joaquin was able to reach a peak 

intensity of 135 kt on 1200 UTC 3 October 2015. Thereafter, vertical wind shear increased and 

the category-4 hurricane weakened to a category 1 in just 36 h. From there, Joaquin was picked 

up by the westerlies and carried off to the east. 

While Joaquin was noted to have reached a peak intensity of 135 kt at 1200 UTC 3 

October 2015 before undergoing RI and decreasing 60 kt over the next 36 h, in real-time the 

storm was thought to be at 115 kt. With both the EPA-A and EPA-R models failing to pick up on 

the RW of the Joaquin, this underforecast allowed the EPA-R model to have a much more 

accurate forecast than the EPA-A model (Fig. 18). Still, it is interesting to note that over the 0-12 

h lead time the EPA-A model notably increases Joaquin’s intensity, while the EPA-R model does 

so only slightly. This is primarily due to the difference in the DELV parameter as a result of the 

mischaracterization of the storm’s intensity. The analysis data shows the DELV parameter to be 

1.8 σ for the 12-h forecast, resulting in a 6.3 kt contribution (Table 4). Therefore, the behavior of 

the forecast is similar to what was discussed with Otis and the EPP model with the DELV 

predictor having a greater impact than other variables and leading to a forecast increase in 

intensity. In the real-time data though the DELV parameter was only 0.3 σ as a result of a much 
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lower intensity and, thus DELV contributed only -0.7 kt to the forecast allowing for a flatter 

intensity curve forecast. This combined with a lower initial intensity allowed the EPA-R model 

to have a more accurate forecast than the EPA-A model. 

 

Harvey – 1800 UTC 24 August 2017 

Harvey began its life as a tropical storm out in the tropical Atlantic, but while moving 

westward across the Caribbean Sea strong vertical wind shear caused the system to devolve into 

a tropical depression and then further to a tropical wave (Figure 19). After crossing the Yucatan 

Peninsula, convection became more persistent and Harvey became a tropical storm again. Then, 

on 23 August 2017 and continued to rapidly intensify as it encountered warm waters, high mid-

level moisture, and weak vertical wind shear. Harvey became a hurricane just after 1200 UTC on 

24 August 2017, and continued to rapidly intensify up until landfall reaching a maximum 

intensity of 115 kt. Once Harvey moved overland, it underwent RW and just 12 h later was again 

a tropical storm again as it sat over the Texas coast giving record breaking rainfall to the area. 

The case studies examined so far have only looked at times when the EPA or EPP models 

performed poorly, however there are cases where the model accurately picked up on RI/RW. The 

best of example of this is with the forecast of Harvey initializing 1800 UTC 24 August 2017, just 

after Harvey became a hurricane. However, the accuracy of the forecast is aided by the fact that 

Harvey had already been intensifying at a rate of 10 kt (12 h)-1 when the forecast initialized and 

continued to intensify at roughly the same rate. Consequently, DELV that was a hindrance to 

model skill in previous forecasts was more appropriate in this one. 

 Initializing with an intensity of 70 kt, the EPA-A model forecast Harvey to strengthen 

20.9 kt over 24 h to reach an intensity of 90.9 kt. While the EPA-A model picked up on the RI 



 28	

event continuing the forecast 90.9 kt was still 14.1 kt under the observed intensity of 105 kt. The 

forecast by the EPA-R model though was aided by a 5 kt overestimation (compared to post-

season analysis) of the initial intensity of Harvey. As a result, the input value of the DELV 

parameter to the EPA-R model was larger, resulting in a slightly larger intensity-change forecast 

of 25.2 kt (c.f. Tables 5 and 6). This combined with the 5 kt head start in intensity allowed for a 

more accurate prediction of the RI event with a 100.2 kt intensity forecast at 24 h, 4.8 kt below 

what was observed. Beyond 30 h Harvey moved overland triggered the inland decay model, 

which did a decent job capturing the decrease in intensity of the storm. 

5. DISCUSSION  

The multiple case studies presented in the previous section highlight the high relative 

contribution of the DELV predictor in the EP model and perhaps an overreliance on it. One 

might jump to the conclusion that this is a bad predictor and that it should not be used, but it is 

just the opposite. The EP process selected this predictor to be one of the most important, and 

therefore weighted it more heavily to increase the skill of the model across training data. The 

importance of keeping the DELV predictor is supported by its used in both the OCD5 and SHIPS 

model (Knaff et al. 2002, DeMaria and Kaplan 1994, Shimada 2018). The parameter represents 

persistence, however, persistence is not always a great baseline for a forecast, as in the case of RI 

and RW. Instead, future work will need to focus on ways to lessen the reliance on the DELV 

predictor and help the model identify times in which maybe it should be weighted less. Ideas for 

how to do this are discussed further in the future work section. 

One may also wonder if the selection of only two algorithms by the BMC process to be 

the basis of the eastern/central North Pacific model is too few and if the weighting of more 

algorithms would be better. However, of the ten members that were sub-selected to undergo the 
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BMC process this weighting of the two algorithms produced the best results. As such, even some 

small non-zero weighting of the other algorithms to help aid diversity would act only to degrade 

the forecast over the cross-validation dataset without anyway to know whether this would be 

beneficial to the operational performance of the model. Therefore, their inclusion is not as 

beneficial as it may seem. However, one could rightly question whether the ten members 

selected to undergo the BMC process were the best selection. Maybe there is a subset of 

algorithms that at their face value might have worse skill, but when combined via BMC might 

produce superior results. Yet it is not obvious how to identify the selection of such members. 

Furthermore, owing to the similarity in performance amongst the 100 best algorithms any 

improvements from a different sub-selection of members for the BMC process would likely be 

minimal with no guarantee that the performance would be distinctly better that the current 

model. 

6. SUMMARY 

 In this paper the development of two TC intensity models, one for the North Atlantic and 

another for the eastern/central North Pacific basins, were developed from a large ensemble of 

algorithms. These algorithms forecasted a change in intensity over a 12-h period using an IF-

THEN structure as well as linear and non-linear predictor combinations. Run iteratively, these 

algorithms produced a deterministic forecast for TC intensity every 12 h out to 120 h. Each 

algorithm had access to eight predictors from the SHIPS developmental dataset, which were 

converted to standard anomalies to aid comparison between variables of dissimilar units. The 

algorithms also could use a constant value of 10 as a scaling factor in calculations or to create 

conditionals statements that always had a certain outcome. While the algorithms were trained via 

a perfect-prognostic approach noise was added to the training dataset to prevent overfitting of the 
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analysis data as forecast data would be used in operations. After being randomly initialized, the 

EP process involving cloning, mutation, and selective pressure drove the algorithms towards 

skillful predictor combinations. In total five populations with 10,000 algorithms were run over 

300 iterations to produce algorithms that competed to get on the 100 best algorithms list. Bias 

correction was then applied to all the algorithms on the list before ten algorithms were sub-

selected to undergo BMC. These members were sub-selected based on minimizing the MAE 

amongst the algorithms but maximizing the MAD, so that the ten members were both skillful and 

diverse. Finally, BMC was used to determine the weighting for each of the ten members to 

produce the final model, which would have an overall skill better than any single algorithm. 

 Each model was tested on reserved independent storms across the 2010-2016 seasons as 

well as across the entirety of the 2017 season. In the North Atlantic basin, the model showed 

improvements over OCD5 at all but the latest lead times over both the 2010-2016 independent 

dataset and the 2017 season. Meanwhile, in the eastern/central North Pacific basin the model 

struggled to produce more skillful results than OCD5. Case-studies further demonstrated that 

both models struggled to forecast for RI and RW and that this was likely the result of an 

overreliance on the DELV predictor. Furthermore, mischaracterization of the storm’s initial 

intensity at times lead to large errors in the DELV predictor value, which could significantly 

affect a forecast. However, the use of forecast values amongst the other predictor variables had 

less of an impact on the forecast. This is because the errors in the forecast values were small 

relatively compared to their climatological range, unlike the case for DELV. Consequently, when 

converted to standard anomalies the errors are minimal and contribute little to differences 

between the analysis forecasts and the real-time forecasts. 
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While the current model shows only small improvements over the baseline OCD5 model 

it is believed that there is still unrealized potential in the EP process. In EP, as with other 

machine learning methods, many and almost countless tweaks and changes can be made to the 

structure of the process. Uncertainty though lies in knowing to what effect certain changes may 

have on algorithm performance. While a certain tweak may be thought to help algorithm 

performance it may have unforeseen consequences that result in just the opposite. Other times, a 

change to the process may lead to an increased computational load without necessarily producing 

any significant improvement. There are many other ways this model could be constructed going 

forward, and this will be contemplated to figure out how to extract the maximum performance 

from the EP process, as well as ways in which the algorithms could be post-processed to extract 

even more performance. Some ideas for how to improve the model are be discussed in the next 

section. 

7. FUTURE WORK 

As was discussed earlier, it seems that there may be an overreliance on the DELV 

predictor in the current model formulation, but it is not yet clear how to change this. One method 

would be to return to a larger number of input predictors. However, if not done thoughtfully this 

can be a somewhat imprecise approach to the problem. This is because while increasing the 

search space with more predictors diminishes the prevalence of the DELV predictor, if one does 

not know which predictors to add then the EP process will spend time trying to search through 

unskillful predictors and incorporate less skillful predictor combinations. However, going 

forward this seems to make the most sense as getting rid of the DELV predictor seems like a 

worse option. As discussed previously, the DELV predictor clearly exhibits skill, so it should be 

included. As of right now though there is no good method to know at what point the solution 
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space is of optimal size so trying to balance the DELV parameter with other variables is a 

somewhat inexact science. 

One variable that may be worthwhile to include is the intensity of the storm at the start of 

the forecast period (VMAX). While initially the inclusion of another persistence variable brings 

to mind the problems that came with the DELV predictor, this likely would not be seen.  While 

the magnitude of errors in VMAX would equal those of DELV the former has a larger 

climatological range, thus the relative size of the errors in the VMAX predictor would be 

smaller. Consequently, there should not be as large impacts of to the forecast if the initial 

intensity of the storm is mischaracterized. Furthermore, while DELV is strictly a persistence 

variable, VMAX does bring with it more dynamical meaning. A direct measure of the intensity 

of a storm can be contextually important to other parameters such as VMPI and DELV, as well 

as vertical wind shear and moisture variables. For example, consider the case of an intense 

hurricane where the VMPI is above normal but the observed intensity is close to the VMPI. In 

this case the storm is unlikely to strengthen much further and rather is actually more likely to 

undergo RW than RI. For this reason VMAX is actually negatively correlated with 

intensification as was found by DeMaria (1994) and independently through experimentation in 

this study (not shown). Consequently, even if the DELV parameter is well above climatology the 

inclusion of a VMAX predictor may allow the model to choose more accurately when to 

incorporate it. Lastly, VMAX can also give information on the organization of the storm and 

how resilient it is to shear and the entrainment of dry air.  

Looking holistically at the SIHPS parameter list, the majority are environmental and 

synoptic predictors. Consequently, there is a lack of predictor information with a concentrated 

focus on the inner-core of the storm where dynamical processes controlling RI and RW are most 
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prevalent. The inclusion of variables representing inner-core properties would then likely provide 

useful to the model. This data would likely have to be sourced from other datasets, but 

microwave satellite imagery for example might be able to give more information about the 

convection occurring in the inner-core of a TC. 

Beyond looking at which predictors are chosen one could also question the choice of 

using predictors from the verification time to forecast for a change in intensity. The current 

thinking is that the initial intensity of the storm at the start of each interval will capture how 

favorable the environmental conditions and dynamics are and, consequently, using forecast 

variables at the end of that interval demonstrates where the environmental conditions are headed. 

However, using forecast predictor information at the end of a forecast interval is not necessarily 

guaranteed to be representative of the environment across most of the forecast interval. Instead, it 

may be advantageous to average the value of predictor variables from the start of the interval 

time with those at the end to have a better representation of the conditions throughout the interval 

over which the storm is changing. Or, since the data are available in 6-h intervals, one could 

simply take the forecast valuables of the predictor variables from the middle of the forecast 

interval. How much impact this will have, though, is not yet clear. 

Transitioning away from the variables and towards the EP process generally, a 

fundamental problem of forecasting for TC intensity using a machine-learning technique is the 

quasi-Gaussian nature of TC intensity change. Across all 12-h intervals there are many more 

periods where a TC’s intensity does not change, or changes very little, as compared to when it 

changes a lot (not shown). Consequently, poor model performance on these relatively few cases, 

which may feature different environmental and dynamical characteristics, may be outweighed by 

the necessity to fit all cases. While using RMSE in the training process helps to inflate the large 
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errors that might typically be seen in a RI and RW forecast, it seems more needs to be done to 

account for this. One idea is to use bootstrapping to increase the prevalence of RI and RW 

forecasts in the dataset. What cost this might have on overall performance as well as false alarms 

of RI and RW, though, is unknown.  

Lastly, little attention has been paid here to the probabilistic performance of this model. 

With the deterministic forecast forming the basis for the probabilistic model, it is important to 

first have a deterministic model that performs well and promotes confidence before attempting to 

develop and analyze the probabilistic model. This has not yet occurred and, consequently, not 

much is known about the performance of the probabilistic forecasts. This will be the next major 

area of research and model development.  
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FIGURES 
	

	

 

Figure 1: Annual average official NHC intensity errors (top) and track errors (bottom), for the 
North Atlantic basin for the period 1990-2017 with least-squares lines superimposed (Cangialosi 
2017). 
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Figure 2: Same as Figure 1 but for basin in eastern North Pacific TCs (Cangialosi 2017). 
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Figure 3: Schematic Overview of the EP process used to train the algorithms. 
	
	

 

Figure 4: Range of performance of the algorithms on the best algorithm list as given by the best 
algorithm (blue) and worst algorithm (red) through the eastern/central North Pacific training 
process covering the 300 intervals of each of the 5 populations. 
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Figure 5: Mean absolute intensity errors across independent testing cases from the 2010-2016 
North Atlantic TC season for the EP model with real time predictor variables (EPA-R, solid 
blue), EP model with analysis predictor variables (EPA-A, dashed light blue), as well as from the 
SHIFOR model (OCD5, green), official NHC forecasts (black), and a persistence model (red). 
Sample sizes are indicated along the bottom of the figure in parenthesis. 
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Figure 6: Error Relative to OCD5 model across the independent cases for the 2010-2016 North 
Atlantic TC season for the EP model with real time predictor variables (EPA-R, solid blue), EP 
model with analysis predictor variables (EPA-A, dashed light blue), as well as from the official 
NHC forecasts (black), and a persistence model (red). Sample sizes are indicated along the top of 
the figure in parenthesis.  
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Figure 7: Same as Figure 5, but for the 2017 North Atlantic TC season. 
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Figure 8: Same as Figure 6, but for the 2017 North Atlantic TC season. 
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Figure 9: Mean absolute intensity errors across independent testing cases from the 2010-2016 
eastern/central North Pacific TC season for the EP model with real time predictor variables 
(EPP-R, solid blue), EP model with analysis predictor variables (EPP-A, dashed light blue), as 
well as from the SHIFOR model (OCD5, green), official NHC forecasts (black), and a 
persistence model (red). Sample sizes are indicated along the bottom of the figure in parenthesis. 
	
	



 43	

	

Figure 10: Error Relative to OCD5 model across the independent cases for the 2010-2016 
eastern/central North Pacific TC season for the EP model with real time predictor variables 
(EPP-R, solid blue), EP model with analysis predictor variables (EPP-A, dashed light blue), as 
well as from the official NHC forecasts (black), and a persistence model (red). Sample sizes are 
indicated along the top of the figure in parenthesis. 
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Figure 11: Same as Figure 9, but for the 2017 eastern/central North Pacific TC season. 
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Figure 12: Same as Figure 10, but for the 2017 eastern/central North Pacific TC season. 
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Figure 13: Best-track positions and TC intensity categories for TC Maria (Pasch et al. 2017). 
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Figure 14: The observed intensity (black) and the 0000 UTC 18 September 2017 intensity 
forecasts from the NHC (red), EPA-A model (dashed light blue) and from the EPA-R model 
(solid blue) for TC Maria 2017. The initial intensity and 0-h forecast time is highlighted with a 
yellow triangle. 
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Figure 15: Best-track positions and TC intensity categories for TC Otis (Blake 2018b). 
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Figure 16: The observed intensity (black) and the 0000 UTC 18 September 2017 intensity 
forecast from the NHC (red), EPP-A model (dashed light blue) and from the EPP-R model (solid 
blue) for TC Otis 2017. The initial intensity and 0-h forecast time is highlighted with a yellow 
triangle. 
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Figure 17: Best-track positions and TC intensity categories for TC Joaquin (Berg 2016). 
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Figure 18: The observed intensity (black) and the 1200 UTC 3 October 2015 intensity forecast 
from the EPA-A model (dashed light blue) and from the EPA-R model (solid blue) for TC 
Joaquin 2015. 
	



 52	

	

Figure 19: Best-track positions and TC categories for TC Harvey (Blake 2018a). 
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Figure 20: The observed intensity (black) and the 1800 UTC 24 August 2017 intensity forecast 
from the EPA-A model (dashed light blue) and from the EPA-R model (solid blue) for TC 
Harvey 2017. 
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TABLES 
 
 

DELV Change in intensity over the prior 12h 
CD26 Climatological depth of 26˚C Isotherm from 2005-2010 NCODA analysis 
U20C 200 hPa zonal wind (r=0-500 km 
D200 200 hPa divergence (r=0-1000 km) 
TWAC 0-600 km average symmetric tangential wind at 850 hPa from NCEP analysis 
SHDC 850-200 hPa shear magnitude (kt *10) (200-800 km) with vortex removed and 

averaged from 0-500 km relative to 850 hPa vortex center 
VMPI Maximum potential intensity from Kerry Emanuel equation 
CFLX Dry air predictor based on the difference in surface moisture flux between air with 

the observed (GFS) RH value, and with RH of air mixed from 500 hPa to the surface. 
CONS Constant value of 10. 

Table 1: List of chosen predictor variables used in EP model. 
 
 
 
Predictor 12-h Analysis Predictor Values (Std. 

Anom.) / Contribution (kt) 
24-h Analysis Predictor Values (Std. 

Anom.) / Contribution (kt) 
DELV 1.3 / 5.4 0.8 / 4.5 
CD26 1.2 / -0.1 1.2 / 0.0 
U20C -0.9 / 0.0 -1.1 / -0.2 
D200 0.8 / 0.2 1.8 / 0.2 

TWAC 0.0 / 0.0 0.0 / 0.0 
SHDC -1.3 / 2.4 -0.9 / 1.7 
VMPI 0.8 / 1.4 0.8 / 1.5 
CFLX 0.0 / 0.0 0.1 / -0.1 

Table 2: List of analysis predictor values in standard anomaly form and their relative 
contribution to the 12 and 24-h forecast of TC Maria initiating 0000 UTC 18 September 2017. 
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Predictor 12-h Analysis Predictor Values (Std. 
Anom.) / Contribution (kt) 

24-h Analysis Predictor Values (Std. 
Anom.) / Contribution (kt) 

DELV 3.1 / 15.7 0.8 / 5.3 
CD26 -0.3 / 0.0 -0.2 / 0.0 
U20C 1.1 / 0.9 0.5 / 0.5 
D200 0.8 / 0.0 0.2 / 0.0 

TWAC 0.3 / 0.3 -0.2 / -0.5 
SHDC -0.3 / 0.9 -0.4 / 1.3 
VMPI -0.7 / -0.9 -0.9 / -2.2 
CFLX 3.5 / -0.9 3.4 / -4.6 

Table 3: List of analysis predictor values in standard anomaly form and their relative 
contribution to the 12 and 24-h forecast of TC Otis initiating 0000 UTC 18 September 2017. 
 
 
Predictor 12-h Analysis Predictor Values (Std. 

Anom.) / Contribution (kt) 
12-h Real-Time Predictor Values (Std. 

Anom.) / Contribution (kt) 
DELV 1.8 / 6.3 0.3 / 0.7 
CD26 -0.1 / 0.0 -0.3 / 0.0 
U20C 1.4 / 0.1 1.1 / 0.1 
D200 0.6 / 0.6 1.0 / 0.0 

TWAC 0.1 / 0.3 0.4 / -2.2 
SHDC 0.0 / 0.0 0.6 / 1.4 
VMPI 0.6 / 0.9 0.6 / 0.5 
CFLX -1.2 / 2.5 -0.3 / 0.7 

Table 4: List of analysis and real-time predictor values in standard anomaly form and their 
relative contribution to the 12-h forecast of TC Joaquin initiating 1200 UTC 3 October 2015. 
 
 
Predictor 12-h Analysis Predictor Values (Std. 

Anom.) / Contribution (kt) 
24h Analysis Predictor Values (Std. 

Anom.) / Contribution (kt) 
DELV 1.8 / 3.1 0.8 / 4.2 
CD26 -0.1 / 0.0 -0.3 / 0.0 
U20C -0.3 / 0.1 -0.6 / 0.0 
D200 -0.6 / -0.9 0.4 / 0.1 

TWAC -0.1 / -0.1 0.0 / 0.0 
SHDC -0.4 / 1.0 -0.5 / 0.9 
VMPI 1.1 / 0.6 0.8 / 0.9 
CFLX -0.8 / 1.1 -1.9 / 3.7 

Table 5: List of analysis predictor values in standard anomaly form and their relative 
contribution to the 12 and 24-h forecast of TC Harvey initiating 1800 UTC 24 August 2017. 
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Predictor 12-h Real-Time Predictor Values (Std. 
Anom.) / Contribution (kt) 

24h Real-Time Predictor Values (Std. 
Anom.) / Contribution (kt) 

DELV 3.4 / 6.3 1.0 / 4.6 
CD26 -0.1 / 0.0 -0.3 / 0.0 
U20C -0.2 / 0.1 -0.3 / 0.0 
D200 0.2 / 0.2 0.3 / 0.1 

TWAC -0.1 / 0.0 0.1 / 0.3 
SHDC -0.3 / 0.7 -0.9 / 1.8 
VMPI 1.2 / 1.2 0.8 / 1.0 
CFLX -0.4 / 0.3 -2.2 / 4.5 

Table 6: List of real-time predictor values in standard anomaly form and their relative 
contribution to the 12 and 24-h forecast of TC Harvey initiating 1800 UTC 24 August 2017. 
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APPENDIX 
	
EPA MODEL 
Algorithm	6:	
Bias	=	0.52	
Weighting	=	0.16667	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*Vi3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 SHDC	 <=	 TWAC	 THEN	 0.14598*VMPI	 +	 -0.44744*U20C	 *	 -0.1582*D200	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 SHDC	 <=	 DELV	 THEN	 0.36127	*DELV	 *	 -0.0746*10	 *	 0.23645*DELV	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 SHDC	 <=	 SHDC	 THEN	 -0.95443	*DELV	 +	 0.95413*DELV	 +	 0.02358*10	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 DELV	 <=	 DELV	 THEN	 	-0.18835*SHDC	 +	 0.40803*DELV	 +	 -0.24738*CFLX	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 VMPI	 >	 TWAC	 THEN	 -0.94745*DELV	 *	 0.18154*VMPI	 *	 0.84904*D200	
	
Algorithm	8:	
Bias	=	-0.57	
Weighting	=	0.08333	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*Vi3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 CFLX	 <=	 DELV	 THEN	 0.90216*VMPI	 *	 0.65379*D200	 *	 0.21644	*DELV	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 SHDC	 <=	 DELV	 THEN	 0.36127	*DELV	 *	 -0.0746*10	 *	 0.23645*DELV	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 SHDC	 <=	 SHDC	 THEN	 -0.95443	*DELV	 +	 0.95413*DELV	 +	 0.02358*10	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 DELV	 <=	 DELV	 THEN	 -0.18835*SHDC	 +	 0.40803*DELV	 +	 -0.24738*CFLX	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 TWAC	 <=	 U20C	 THEN	 -0.32557*TWAC	 +	 -0.20541	*VMPI	 *	 -0.38564	*CFLX	
	
Algorithm	9:	
Bias	=	0.28	
Weighting	=	0.08333	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*Vi3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 CFLX	 >	 U20C	 THEN	 -0.26381*U20C	 *	 0.14971*VMPI	 +	 0.2113	*VMPI	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 SHDC	 <=	 DELV	 THEN	 0.36127	*DELV	 *	 -0.0746*10	 *	 0.23645*DELV	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 SHDC	 <=	 SHDC	 THEN	 -0.95443	*DELV	 +	 0.95413*DELV	 +	 0.02358*10	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 DELV	 <=	 DELV	 THEN	 	-0.18835*SHDC	 +	 0.40803*DELV	 +	 -0.24738*CFLX	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 SHDC	 <=	 CD26	 THEN	 -0.42766*TWAC	 *	 0.36128	*CFLX	 *	 0.03389	*SHDC	
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Algorithm	34:	
Bias	=	0.21	
Weighting	=	0.08333	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*Vi3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 TWAC	 <=	 CFLX	 THEN	 0.31731	*CFLX	 *	 -0.90571	*D200	 *	 -0.21776	*SHDC	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 SHDC	 >	 CFLX	 THEN	 0.25237	*TWAC	 +	 -0.36317*TWAC	 *	 0.27941*CFLX	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 DELV	 >	 TWAC	 THEN	 0.03356	*CD26	 *	 0.09853*DELV	 +	 0.03853*10	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 VMPI	 <=	 VMPI	 THEN	 0.33592	*DELV	 *	 -0.21264	*TWAC	 +	 0.15755	*DELV	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 SHDC	 <=	 SHDC	 THEN	 -0.18206	*SHDC	 +	 0.1172	*VMPI	 +	 -0.17664	*CFLX	
	
Algorithm	35:	
Bias	=	0.10	
Weighting	=	0.08333	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*Vi3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 CFLX	 <=	 SHDC	 THEN	 0.86228	*CD26	 +	 	0.41323*TWAC	 +	 -0.85329	*CD26	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 CD26	 >	 D200	 THEN	 -0.10933	*DELV	 +	 0.54357	*TWAC	 *	 -0.28723	*CD26	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 DELV	 >	 TWAC	 THEN	 0.03356	*CD26	 *	 0.09853*DELV	 +	 0.03853*10	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 VMPI	 <=	 VMPI	 THEN	 0.33592	*DELV	 *	 -0.21264	*TWAC	 +	 0.15755	*DELV	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 SHDC	 <=	 SHDC	 THEN	 -0.18206	*SHDC	 +	 0.1172	*VMPI	 +	 -0.17664	*CFLX	
	
Algorithm	49:	
Bias	=	0.19	
Weighting	=	0.16667	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*Vi3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 D200	 <=	 VMPI	 THEN	 0.32367	*TWAC	 +	 	-0.15624	*D200	 *	 0.11885	*CFLX	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 D200	 <=	 SHDC	 THEN	 -0.24229*TWAC	 *	 0.0833	*DELV	 +	 -0.07426	*DELV	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 DELV	 >	 TWAC	 THEN	 0.03356	*CD26	 *	 0.09853*DELV	 +	 0.03853*10	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 VMPI	 <=	 VMPI	 THEN	 0.33592	*DELV	 *	 -0.21264	*TWAC	 +	 0.15755	*DELV	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 SHDC	 <=	 SHDC	 THEN	 -0.18206	*SHDC	 +	 0.1172	*VMPI	 +	 -0.17664	*CFLX	
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Algorithm	53:	
Bias	=	-0.67	
Weighting	=	0.25	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*Vi3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 CD26	 <=	 CD26	 THEN	 -0.59528	*10	 *	 -0.83168*TWAC	 *	 -0.1173	*TWAC	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 D200	 <=	 10	 THEN	 -0.78933	*VMPI	 *	 0.26422	*TWAC	 *	 -0.78223	*CFLX	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 DELV	 >	 TWAC	 THEN	 0.03356	*CD26	 *	 0.09853*DELV	 +	 0.03853*10	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 VMPI	 <=	 VMPI	 THEN	 	0.33592	*DELV	 *	 -0.21264	*TWAC	 +	 0.15755	*DELV	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 SHDC	 <=	 SHDC	 THEN	 -0.18206	*SHDC	 +	 0.1172	*VMPI	 +	 -0.17664	*CFLX	
	
	
EPP	MODEL	
	
Algorithm	31:	
Bias	=	-0.07	
Weighting	=	0.25	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*VI3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 TWAC	 >	 VMPI	 THEN	 0.36679*CFLX	 *	 0.55976*TWAC	 +	 -0.03705*DELV	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 CFLX	 <=	 DELV	 THEN	 0.16784*CFLX	 *	 0.83909*DELV	 *	 0.58132*TWAC	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 SHDC	 >	 D200	 THEN	 -0.12243*VMPI	 +	 0.31332*TWAC	 +	 0.01871*CD26	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 D200	 <=	 D200	 THEN	 	-0.89092*TWAC	 *	 0.28928*TWAC	 +	 -0.1396*CFLX	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 VMPI	 <=	 VMPI	 THEN	 0.6716*VMPI	 +	 -0.44336*VMPI	 +	 0.42004*DELV	
	
Algorithm	69:	
Bias=	-0.09	
Weighting	=	0.75	
	
	 	 Vi1	 Ri1	 Vi2	 	 Ci1*VI3	 Oi1	 Ci2*Vi4	 Oi2	 Ci3*Vi5	
	 	 	 	 	 	 	 	 	 	 	

1	 IF	 DELV	 >	 U20C	 THEN	 0.17881*VMPI	 *	 -0.73721*U20C	 +	 -0.36376*SHDC	
	 	 	 	 	 	 	 	 	 	 	

2	 IF	 DELV	 >	 CFLX	 THEN	 -0.14589*DELV	 +	 0.0649*TWAC	 *	 0.8098*CD26	
	 	 	 	 	 	 	 	 	 	 	

3	 IF	 SHDC	 >	 D200	 THEN	 -0.12243*VMPI	 +	 0.31332*TWAC	 +	 0.01871*CD26	
	 	 	 	 	 	 	 	 	 	 	

4	 IF	 D200	 <=	 D200	 THEN	 -0.89092*TWAC	 *	 0.28928*TWAC	 +	 -0.1396*CFLX	
	 	 	 	 	 	 	 	 	 	 	

5	 IF	 VMPI	 <=	 VMPI	 THEN	 0.6716*VMPI	 +	 -0.44336*VMPI	 +	 0.42004*DELV	
 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2019

	Using Evolutionary Programming to Generate a Tropical Cyclone Intensity Model
	Jesse Schaffer
	Recommended Citation


	Microsoft Word - Schaffer_ThesisDraft_Formatted_4.docx

