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ABSTRACT
MATHEMATICAL MODELING AND ANALYSIS OF A PHYTOPLANKTON

COMPETITION MODEL INCORPORATING PREFERENTIAL NUTRIENT UPTAKE

by

Thomas G. Stojsavljevic Jr.

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Gabriella Pinter

Phytoplankton live in a complex environment with two essential resources forming various

gradients. Light supplied from above is never homogeneously distributed in a body of

water due to refraction and absorption from biomass present in the ecosystem and from

other sources. Nutrients in turn are typically supplied from below. In poorly mixed water

columns, phytoplankton can be heterogeneously distributed forming various layering

patterns. We present a new reaction-diffusion-taxis model describing the vertical

distribution of two phytoplankton species competing for two nutrients, one of which is

assumed to be preferred. The parameter space of the model is analyzed for parameter

identifiability – the ability for a parameter’s true value to be recovered through

optimization, and for global sensitivity – the influence a parameter has on model response.

Using simulations, we exhibit evidence of thin layer formation for motile phytoplankton in

poorly mixed environments. A game theoretic approximation is considered, where the

depth of the phytoplankton layer is treated as the strategy the phytoplankton adopt. The

evolutionary stable strategy (ESS) is the depth at which the phytoplankton are equally

limited by both resources. We analytically derive the ESS of the proposed preferential

uptake model along with a related two-species reaction-diffusion-taxis model which only

considers one limiting nutrient.
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1 Introduction

In general, phytoplankton are regarded as the community of plants adapted to suspension in

the sea or in fresh waters and which are susceptible to passive movement by wind and current.

They include algae, diatoms, and cyanobacteria (commonly referred to as blue-green algae).

It is estimated that the first phytoplankton (marine cyanobacteria) occurred approximately

3 billion years ago, and since then, have gone on to oxygenate Earth’s atmosphere and

undergone dramatic diversification (including founding the lineage of terrestrial plants) [39].

Today, phytoplankton account for approximately one half of Earth’s primary production, and

play a vital role in the biogeochemical cycling of many nutrients including carbon, nitrogen,

and phosphorous [3], [9], [39], [61].

As the base of the aquatic food chain, phytoplankton are greatly impacted by human

activities [39]. In particular, the effects of climate change on the structure and functioning

of ecosystems are far reaching and complex. While elevated carbon dioxide (CO2) levels

are causing acidification of oceans to the detriment of calcifying organisms such as coral,

the elevation in CO2 levels may be beneficial for primary production in both aquatic and

terrestrial environments. In addition to altering the timing and distribution of organisms

across ecosystems, warming in aquatic ecosystems induces increased thermal stratification

[9], [61]. Generally, as thermal stratification increases, nutrient concentrations in the upper

mixed layers of oceans and deeper lakes decreases. From this change in the environment

there is a corresponding change in the ecological stoichiometry – the field investigating how

the elemental composition of organisms affects ecological processes [9], [61].

In 1934, Alfred C. Redfield reported that the ratios between the elements carbon, nitro-

gen, and phosphorous (C,N, and P respectively) in marine phytoplankton are constant in

ratio of 106:16:1 (by atom). This ratio, which went on to be known as the Redfield ratio, was

also originally noted to be similar to ratios found in marine environments. The N:P ratio

present in phytoplankton was found to be similar to the nitrate:phosphate ratio found in deep
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ocean waters. Thus, the elemental composition of phytoplankton were noted to reflect the

elemental composition of their environment and vice versa [61]. As global warming and rising

CO2 levels make the ocean more acidic and loaded more with carbon, a similar reflection

is observed in the elemental composition of the phytoplankton. This is further exacerbated

by the increased thermal stratification and decreased nutrient concentration in the upper

mixed layers of bodies of water. The resulting shift of having high carbon nutrients poses a

significant risk for the aquatic food chain [9], [61]. Plankton which have a high carbon-to-

nutrient ratio are of low nutritional value to zooplankton [61], and thus a poor food source

for the primary consumers in the aquatic food chain. These climate induced changes in the

elemental makeup of plankton may have a potential cascading effect throughout the entire

aquatic food chain [61]. It remains an open area of research as to whether diverse plankton

communities can offset the adverse effects of a high carbon-to-nutrient composition and the

exact role temperature plays in this relationship [9].

While climate change is a major stress on the environment, it is not a force that acts

alone. Many ecosystems are threatened by stressors including increased fragmentation, eu-

trophication, and pollution [9]. Eutrophication occurs when a body of water becomes overly

enriched with minerals and nutrients resulting in excessive plant and algae growths which

can result in oxygen depletion in a body of water. The two most common nutrients resulting

from human-derived sources are phosphorous and nitrogen [1]. In freshwater environments,

phosphorous is the least abundant macronutrient needed by photosynthetic organisms and is

the nutrient which limits their growth [1], [30]. Phosphorous can also limit growth in marine

environments which sustain high nitrogen inputs, however, nitrogen is often the primary

limiting nutrient in marine environments [1]. In estuaries, both nitrogen and phosphorous

can co-limit phytoplankton production.

For more than 50 years scientists have recognized that harmful algal blooms (HABs)

in freshwater lakes, reservoirs, and slow moving rivers, are stimulated by phosphorous en-

richment [1],[22], [23]. In addition to forming thick scums which can be over 1 meter thick,
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consisting of billions of cells, and having chlorophyll a concentrations as large as 3,000 µg L−1,

many species are able to produce hepatotoxins and neurotoxins which have killed livestock,

wildlife, and more rarely humans, in most countries around the world [1]. This relationship is

strong enough that the total phosphorous concentration in moderately deep lakes (≥ 10 m)

with low abiotic turbidity during the spring season has been used as a predictor for the late

summer maximum in cyanobacteria biomass (measured in chlorophyll a) with reasonable

success. Similar results have been reported in estuaries in Australia and Scandinavia as well

[1].

Over the last several decades, public views and responses to the global HAB problem

in estauries and costal waters have shifted. Almost every costal country is affected by mul-

tiple harmful or toxic algal species, often in many locations and over broad areas [1], [22],

[23]. While poor historical data and new advances in toxin detection methods both play

an important role in understanding part of this trend; for resource managers the potential

relationship between HABs and accelerated eutrophication of costal waters due to human ac-

tivity is of utmost importance. Coastal waters are receiving massive and increasing amounts

of industrial, agricultural, and sewage runoff through multiple pathways and in urbanized

coastal regions, these inputs have already altered the size and content of the nutrient pool

which can create a more favorable environment for HABs [1], [22], [23].

Along with the large ecological and environmental hazards that HABs impose on aquatic

ecosystems, there is a significant economic cost that is also associated with the increase in

HAB events. Currently resource managers estimate that HABs are responsible for millions

of dollars lost annually to coastal communities due to the costs of beach cleanup, the closing

of fisheries, and decreased tourism. Other estimates, such as those found in section 602(5)

of the U.S. Harmful Algal Bloom and Hypoxia Research and Control Act of 1998 concluded

that HABs were responsible for $1,000,000,000 over the last decade, and that figure has

only increased [22]. Part of the difficulty in estimating the true economic impact is that as

bloom events become more widespread and frequent, there are increased cases of paralytic,
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diarrhetic, amnesic, or neurotoxic shellfish poisoning resulting from people eating shellfish

which accumulated toxins from those algal blooms. The loss of economic productivity from

missing work and for hospitalization and treatment from these sources is also in the millions

of dollars annually [22].

There have been numerous efforts to find ways to preserve water resevoirs and limit

the impact of algal blooms. One of the most recent newsworthy endeavors came from Los

Angeles, California in 2015. Due to the extreme drought that was occurring, and wanting to

preserve water quality from degradation resulting from algal blooms, over 96 million shade

balls with a diameter of 4 inches were released into the Los Angeles reservoir [20]. While

it remains an open question as to how successful the black shade balls were in preserving

water quality since the shade balls are able to create a thermal blanket which may improve

conditions that promote bacterial growth, there was success in reducing water loss due to

evaporation. LA officials estimate that up to 300 million gallons of water per year have been

conserved by the use of shade balls [20]. However, shade balls are made with high–density

polyethylene plastic, which requires crude oil, natural gas, and electricity to produce, and

thus can have significant water quantity and quality impacts [20]. Analysis done by Haghighi,

Madani, and Hoesktra found that the amount of water needed to produce the shade balls

in the typical thickness of 5 mm used during the LA drought was larger than the reduced

reservoir evaporation achieved by the balls during the 1.5–year period between the release

of the balls (August 2015) and the end of California’s drought (March 2017)[20]. Their

analysis also showed that while reducing the thickness of the shade balls would be able to

result in net positive water conservation, it would also come with operational difficulties of

the thermal blanket being less stable and more prone to move. Thus it remains critically

important to understand the mechanisms that are responsible for HAB development and to

find other sustainable methods for controlling HAB events.

In this dissertation we introduce a new mathematical model which is of interest to the

biological community. This model describes the competition between two phytoplankton
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species which incorporates preferential nutrient uptake. The role of co-limitation by multiple

nutrients is an important dynamic in phytoplankton ecology and until now has not been

addressed in the models existing in the literature.

In Chapter 2, we discuss standard approaches to modeling phytoplankton population

dynamics and present several existing models. The strengths and limitations these models

have are discussed through the use of phase portraits, model simulations, and the results

of previous theoretical analysis. The first three models discussed highlight the importance

that nutrient in-flows and out-flows have on phytoplankton population dynamics which are

naturally present in spatially dependent models. We then present a model first discussed

in [35] and a multi-species variant of that model. These models are simulated using bi-

ologically significant parameters and the results of the simulations are discussed for their

phenomenological ability to capture complex behavior seen in real world data.

The original work in this thesis is presented in Chapters 3, 4, and 5. This work can be

categorized into three major tasks:

1. The development of a biologically meaningful model of phytoplankton dynamics which

incorporates the role of co-limitation by multiple nutrients via preferential uptake.

2. Numerical experiments and applications that illustrate the behavior of the system and

discuss the biological relevance of the proposed model. This includes comparing the

phenomological results of the proposed preferential uptake model to existing models

in the literature and to field data. Additional work in parameter sensitivity analysis

and the results of several inverse problems are also considered in this discussion.

3. The derivation of special equilibrium solutions used to approximate the amount of

biomass present and the location of where phytoplankton layers occur.

In Chapter 3 we present the proposed model of phytoplankton competition which incor-

porates the role of co-limitation by multiple nutrients via preferential nutrient uptake. We

describe the necessary biological assumptions along with mathematical formulations for the
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preferential nutrient uptake. We then introduce the numerical method needed to conduct

model simulations. The results of these numerical simulations are compared to real world

data from Lake Michigan as well as existing models in the literature. In particular, param-

eters responsible for reproducing various layering phenomena seen in nature are discussed.

In Chapter 4, we report on the results of three inverse problems resulting from the

preferential uptake model, along with the models presented at the end of Chapter 2 which

serve as an inspiration for the proposed model. In particular, we are interested in the ability

of each model to recover its original parameter set through solving the inverse problem. Those

parameters are deemed to be identifiable and are important to experimental design. Next

we analyze the parameter spaces of all three models for global sensitivity. Global sensitivity

refers to the influence a parameter has on model response [55]. In this dissertation two

different methods of global sensitivity are presented: the Morris screening and the Sobol

decomposition. The similarities and differences between the parameters identified by all

three models is discussed for both biological relevance and mathematical significance.

In Chapter 5, we derive special equilibrium solutions which can be used to approximate

the amount of biomass present and the location of where phytoplankton layers can occur in

a body of water. This is done by considering a game theoretic approach where the depth

of the layer is treated as a strategy the phytoplankton adopt. Under these assumptions, we

solve for the equilibrium distribution of the system. The results of this analysis for the model

presented in [35] are summarized. We then rigorously derive the equilibrium distributions

of a related two species phytoplankton competition model based off of the model presented

in [35] and the proposed preferential uptake model.

We finish the dissertation with suggestions for future work in this area. In particular,

further biological considerations which can be incorporated into the proposed model, other

types of models, and further statistical analysis are briefly discussed.

6



2 Existing Models

The dynamics of phytoplankton populations have been the subject of numerous studies.

These models can be broadly divided into two categories: non-spatial and spatial models. In

this chapter, we summarize several models found in the literature and state results of their

analysis if available. In the first section we will focus on simple population models in a non-

spatial context. In the second section we consider 1D models of the vertical phytoplankton

distributions incorporating limiting factors.

2.1 Non-spatial Models

Adopting the notation used in [51], let P (t) denote the density of a population at time t. The

simplest model to consider studying the dynamics of P is given by the first order ordinary

differential equation

dP

dt
= µ(P )P, (2.1)

where the growth rate µ(P ) depends on the population density P . The growth function µ

takes into account density dependent factors which can regulate populations such as resource

depletion or over-crowding. Typically it is assumed that µ(P ) is monotonically decreasing

and eventually becomes negative for large densities. A classic example of a model that fits

this form is logistic growth:

dP

dt
= µ0P

(
1− P

K

)
, (2.2)

where µ0 is the growth rate, K is the carrying capacity of the system and describes the

maximum population density that the system can sustain. While models of this form can be

used for population density, models of this form lack information about resource limitation.
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2.1.1 Resource Limited Growth

We now consider an extension to the basic differential equation model by considering an

isolated consumer-resource system. Let N(t) denote the limiting resource concentration.

For phytoplankton models this typically is a limiting nutrient such as phosphate or nitrate.

The new model becomes a system of differential equations given in the following form

dP

dt
= µ(N)P −mP

dN

dt
= −µ(N)P +mP.

(2.3)

Here the parameter m is a mortality rate and the growth function µ(N) is assumed to be

defined in such a way that µ(0) = 0 and lim
N→∞

µ(N) = c, where 0 < c < ∞, i.e. the growth

rate is saturated for large values of N . A standard example is the Michaelis-Menten relation

µ(N) = c
N

HN +N
, (2.4)

where HN is the half-saturation constant.

As shown in Figure 2.1, the phase trajectories of the conservative model in the (P,N)

plane are straight lines from the initial conditions to an equilibrium state. In this model,

nutrient recycling is assumed to be 100% efficient. Thus the above system can be reduced

to a one-dimensional model by noting that S = N + P is a constant. This reduction only

holds in a closed system.

In general, recycling efficiency will never be 100%. Assuming that only a fraction ε of

8



Figure 2.1: Phase trajectory of the model given in (2.3) with Michaelis-Menten growth rate
(2.4). The initial value P (0) = 0.1 and N(0) = 1.5. The other parameters used are c = 5,
HN = 5, and m = 1.

the dead biomass is remineralized, we can modify system (2.3) as

dP

dt
= µ(N)P −mP

dN

dt
= −µ(N)P + εmP,

(2.5)

where 0 < ε < 1. The system given in (2.5) is a non-conservative model since we no longer

have S = N + P is a constant. As shown in Figure 2.2, the phase trajectory of the non-

conservative model leads to the extinction of the population. In general, (2.5) does not

admit isolated stationary states in the (P,N) phase plane. Further, for any initial condition,

P (t)→ 0 as t→∞ for certain growth functions µ(N).

The principal issues that the models given in (2.3) and (2.5) have is that neither system

9



Figure 2.2: Phase trajectory of the model given in (2.5) with Michaelis-Menten growth rate
(2.4). The initial value P (0) = 0.1 and N(0) = 1.5. The other parameters used are c = 5,
HN = 5, m = 1, and ε = 0.5.

contains terms for in-flows and out-flows. While this issue is not present in the spatially

dependent models which necessarily have exchanges with the surroundings specified by the

boundary conditions, in non-spatial models these exchanges need to be introduced to the

models as additional terms. For this we turn our attention to a chemostat model.

2.1.2 Chemostat Model

The following model is adapted from [51]. Consider a well-stirred reactor that contains

phytoplankton cells with concentration P (t) and a limiting nutrient with concentration N(t).

The chemostat is supplied with the nutrient at an input concentration Ni from an external

source. The out-flow contains both phytoplankton cells and the nutrient medium. Assume

that the in-flow and out-flow are characterized by the dilution rate δ. The chemostat under
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these assumptions is modeled by the following system of ordinary differential equations

dP

dt
= µ(N)P − (m+ δ)P

dN

dt
= δ(Ni −N)− µ(N)P + εmP,

(2.6)

with 0 < ε < 1. The chemostat model is non-conservative since the quantity S = N + P

is not constant. However, unlike the previous non-conservative model given in (2.5), the

chemostat model attains a stable non-trivial equilibrium. Indeed, when examining the phase

portrait given in Figure 2.3, the phase trajectories spiral in the (P,N) plane to an isolated

fixed point.

Figure 2.3: Phase trajectory of the model given (2.6) with Michaelis-Menten growth rate
(2.4). The initial value P (0) = 0.1 and N(0) = 1.5 is marked by the closed circle. The other
parameters used are c = 5, HN = 5, m = 1, ε = 0.5, Ni = 15, and δ = 0.005.
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2.2 Spatial Models

The vertical distribution of phytoplankton in a water column has been the subject of numer-

ous investigations [5],[7],[19],[24],[29],[35],[43]. Prominent vertical patterns observed include

deep chlorophyll maxima (DCMs), benthic layers, and surface scums [35],[43]. Deep chloro-

phyll maxima is the layering phenomenon where biomass accumulation happens beneath the

surface of the water column. Surface scums is the layering pattern where up to 90% of the

biomass concentration is near the surface resulting in heavy shading of the water. Benthic

layers are large biomass acccumulations that are near the sediment layer and often occur in

stratified bodies of water. Stratification occurs due to temperature fluxes at the surface and

advections within the body of water. The thickness of these layers is controlled by the degree

of mixing and can vary from several centimetres to tens of meters [35]. These distributions

affect primary production [38] and energy transfers in aquatic ecosystems and are affected

by changing environment conditions and global warming [21].

Various mathematical models have been developed to describe the spatial and temporal

dynamics of phytoplankton populations [7], [24], [35], [43], [47]. While certain models at-

tribute the layering phenomenon to physical forces such as wind shear, or advections within

the body of water and mixing processes, other models suggest that layer formation is due

to phytoplankton competing in a stratified environment with non-homogeneous light and

nutrient distributions in the vertical dimension. Light is never homogeneously distributed in

aquatic environments since it forms a gradient over biomass and other light-absorbing sub-

stances [28], [29]. Further, continuous residence in the illuminated layers is neither necessary

nor optimal for growth [54]. We restrict our attention to the model presented in [35] and a

multi-species variant of that model.
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2.2.1 Klausmeier and Litchman Model

The following is a model used to study vertical phytoplankton distributions by Klausmeier

and Litchman in [35]. This model incorporates intra-specific competition for light and nu-

trients in a poorly mixed body of water. For simplifying purposes Klausmeier and Lichtman

consider a one dimensional water column where the depth is indexed by z, where 0 ≤ z ≤ zb.

The surface of the water column occurs at z = 0 and the bottom of the water column is given

by zb. The full model consists of equations for the depth distributions of biomass density,

b(z, t), nutrient concentration, R(z, t), and light, I(z, t).

Since light and nutrients form gradients throughout bodies of water, in order to model

the change in biomass density it is necessary to know which factor is limiting phytoplankton

growth. The functions fI(I(z, t)) and fR(R(z, t)) will be used to represent the phytoplank-

ton growth rate when light and nutrients are limiting respectively. In general, the func-

tions fI and fR need to be bounded, strictly increasing functions in I and R respectively.

Following Liebig’s law of the minimum, the gross phytoplankton growth rate is given by

min(fI(I), fR(R)). Biomass loss due to grazing, respiration, and death is given by a density

and depth independent constant m. Combining these, we define the net per capita growth

rate at depth z by g(z, t) = min(fI(I(z, t)), fR(R(z, t)))−m.

To complete describing the dynamics of phytoplankton populations, phytoplankton move-

ment needs to be incorporated. Phytoplankton movement is divided into two components:

the first being passive movement due to turbulence in the water column and the second being

the active movement. For simplicity, Klausmeier and Lichtman only consider phytoplankton

species which rely on flagella to swim. Passive movement is modelled by eddy diffusion with

diffusion coefficient Db, which is uniform throughout the water column. This assumption is

not necessary and, in general, depth dependent diffusion is permissible. To model the active

movement, we introduce a velocity function ν which is dependent on the gradient of the

growth rate,
∂g

∂z
, i.e., ν = ν

(
∂g

∂z

)
. Given how phytoplankton might regulate their position

13



depending on whether light or nutrients are limiting, the biological assumption is introduced

that phytoplankton will move up if the conditions are better above than they are below, and

phytoplankton will move down if the conditions are better below than they are above, and

phytoplankton will not move if the conditions are worse above and below. Positive velocity

is oriented upward and associated to the negative z direction. Specifically we assume ν(·)

is an odd, decreasing function which approaches a value νmax as
∂g

∂z
approaches negative

infinity and approaches −νmax as
∂g

∂z
approaches positive infinity.

Combining physical and biological dynamics we can describe the change in phytoplankton

biomass by the partial differential equation

∂b

∂t
= (min(fI(I), fR(R)))b−mb+Db

∂2b

∂z2
+

∂

∂z

[
ν

(
∂g

∂z

)
b

]
= [Growth]− [Loss] + [Passive Movement] + [Active Movement]. (2.7)

Under the assumption that phytoplankton do not enter or leave the water column equation

(2.7) has no flux boundary conditions

[
−Db

∂b

∂z
− ν

(
∂g

∂z

)
b

] ∣∣∣∣∣
z=0

=

[
−Db

∂b

∂z
− ν

(
∂g

∂z

)
b

] ∣∣∣∣∣
z=zb

= 0. (2.8)

Nutrients in the water column are impacted by diffusion processes and by phytoplankton

through consumption and recycling from dead phytoplankton. In [35], the nutrient under

consideration is phosphorus due to its role as a limiting nutrient in aquatic ecosystems. Let

DR represent the diffusion coefficient and let ε represent the proportion of the nutrients from

dead phytoplankton that is immediately recycled. Then we can describe the change in the

nutrients by the partial differential equation

∂R

∂t
= − b

Y
min(fI(I), fR(R)) +DR

∂2R

∂z2
+ εm

b

Y

= −[Uptake] + [Mixing] + [Recycling] (2.9)
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where Y is the yield of phytoplankton biomass per unit of nutrient consumed.

It is assumed that nutrients do not leave the system from the surface but are supplied at

the bottom of the water column. Nutrients in the sediment are assumed to have constant

concentration denoted by Rin and diffuse across the sediment-water interface at a rate pro-

portional to the concentration difference at the interface. Under these assumptions we get

the boundary conditions

∂R

∂z

∣∣∣∣∣
z=0

= 0,
∂R

∂z

∣∣∣∣∣
z=zb

= h(Rin −R(zb)) (2.10)

where the parameter h describes the permeability of the sediment-water interface.

Finally, light at depth z is determined using the Lambert-Beer law with phytoplank-

ton attenuation coefficient a, background attenuation coefficient abg, and incident light Iin.

Incident light is assumed to be constant throughout the model simulations, however this

assumption can be relaxed to a time dependent function Iin(t). Using this we have I(z, t) is

given by

I(z, t) = Iin exp

[
−
∫ z

0

(ab(w, t) + abg)dw

]
. (2.11)

System (2.7) – (2.11) is a non-local, nonlinear system of integro-partial differential equations

for which theoretical analysis has been conducted [11], [12], [13], [14], [25]. A summary of

these analysis is presented at the end of this section.

To be able to implement the model, functional representations for fI , fR, and ν are

needed. In [35] the functions fI and fR follow the Michaelis-Menten relation while the

function ν is a step function given by ν = νmax for
∂g

∂z
< 0, ν = −νmax for

∂g

∂z
> 0, and

ν = 0 for
∂g

∂z
= 0. In [43] the following velocity function is considered

ν

(
∂g

∂z

)
= −νmax

∂g
∂z

|∂g
∂z
|+Kswim

. (2.12)

For the simulations presented here we will be using the above formulation. Using the pa-
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rameter values given in Table 2.1, sample model simulations are given in Figure 2.4. The

numerical solution to this system uses a finite volume approach with a third-order upwind-

ing scheme used on the advection term and a symmetric difference method for the diffusion

terms [27]. For a more thorough description of the method see Chapter 3 Section 2. By

altering key parameters distinct layering phenomenon can be exhibited.

Parameter Explanation Value Source
N Spatial discretization level 100
zb Water column depth (m) 20 [35]
Rin Sediment P concentration (µg P L−1) 100 [35]
h Sediment-water column permeability (m−1) 10−2 [35]
Iin Incoming light (µmol photons m−2 s−1) 1,400 [35]
abg Background attenuation coefficient (m−1) 0.35 [35], [36]
a Algal attenuation coefficient (m−1 [cells ml−1]−1) 10−5 [35], [36]
Db Eddy biomass diffusion coefficient (m2 d−1) 10 [35]
DR Eddy nutrient diffusion coefficient (m2 d−1) 10 [35]
νmax Species 1 swimming speed (m d−1) 10 [35]
r Maximum growth rate (d−1) 0.4 [35]
m Loss rate (d−1) 0.2 [35]
KR P half-saturation constant (µg P L−1) 1.0 [35]
KI Light half-saturation constant (µmol photons m−2

s−1)
50 [35]

Y Yield coefficient (cells ml−1 [µg P L−1]−1) 103 [35]
ε Recycling coefficient (dimensionless) 0 [43]

Kswim Swimming constant (m−1 d−1) 0.001 [43]

Table 2.1: Parameters used in simulations unless otherwise noted.

With the parameter values given in Table 2.1 the resulting layer is a DCM. By altering

parameters such as ε up to 0.9 and the parameters KI and KR to 100 and 0.1 respectively,

the resulting equilibrium vertical distribution is a surface scum - the phenomenon where

large biomass concentrations happen near the surface and as a result of shading, very little

biomass is present in the lower layers. By altering the half-saturation constants KI and KR

to 0.1 and 50 respectively and keeping ε = 0.9, the resulting equilibrium vertical distribution

is a benthic layer - the phenomenon where large biomass concentrations happen near the

sediment layer. These situations are illustrated in Figure 2.4 given below.

These layering phenomena that are exhibited are consistent with biological intuition. By
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Figure 2.4: Equilibrium vertical distributions of phytoplankton biomass and nutrients de-
termined from System (2.7) – (2.11). The top left represents the DCM distribution, the top
right represents the surface scum distribution, and the bottom represents the benthic layer
distribution.

altering the half-saturation constants, the resource dependence on light and free nutrient is

altered, and by altering the recycling coefficient ε, we are changing the amount of free nutrient

released upon cell death that can be utilized by phytoplankton. Thus, when simulating the

surface scum, the parameters were altered in such a way that the phytoplankton species had

a large light preference, and upon cell death, a large proportion of the nutrient in the cell

was assumed to be available for re-uptake by living cells. In comparison, when simulating

the surface scum, the preference was switched so that the phytoplankton species had a

proportinally larger nutrient presence which is why the layering happened near the sediment

layer - the natural source of nutrient in the environment. The ability of this model to replicate
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multiple layering phenomenon seen in nature as well being able to define parameters values

that are unique to both freshwater and marine environments gives this model a wide range

of latitude in practical applications.

The model simulations shown here result from running the model to numerical equilib-

rium. The existence of positive steady state solutions and asymptotic behavior is established

in [11] and [12] respectively. Analysis of similar reaction-diffusion equations and reaction-

diffusion advection equations is given in [13], [14], and [25]. A brief summary of their work

follows.

The Steady State Solutions

In [11], the problem



−[d1ux + σc(x)u]x = [g(x)−m]u, 0 < x < 1,

−d2vxx = −g(x)u, 0 < x < 1,

d1ux + σc(x)u = 0, x = 0, 1,

vx(0) = 0, vx(1) = β[v0 − v(1)],

(2.13)

is considered where d1, d2, m, v0 and β are positive constants, g(x) = f(min{αv(x), w(x)}),

f(s) =
rs

KI + s
, and

w(x) = w0 exp

[
− A0x− A

∫ x

0

u(s)ds

]
,

with α, r, KI , A, and A0 are positive constants. The positive function c(x) is determined

by v and w and is defined by

c(x) = cv,w(x) =
x− x0

δ + |x− x0|
,

where δ > 0 is a small constant and x0 ∈ [0, 1] is determined by min{αv(x), w(x)} =

αv(x) ∀x ∈ [0, x0) and min{αv(x), w(x)} = w(x) ∀x ∈ (x0, 1]. Note that the function c
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is meant to serve as a continuous approximation to the step function used in [35]. The

dependence of c on v and w makes this a special quasi-linear problem.

This problem relates to the Klausmeier and Litchman model by using the following

normalization and parameter definitions. We normalize the functions given in (2.7), (2.9)

and (2.11) by defining u(x) = b(zbx), v(x) = R(zbx), and w(x) = I(zbx) for 0 ≤ x ≤ 1. Then

define d1 = z−2
b Db, d2 = z−2

b DR, σ = νmaxz
−1
b , A = azbY , A0 = abgzb, α = KIK

−1
R , β = hzb,

v0 = Rin, w0 = Iin, and x0 = z0z
−1
b . Finally, by letting bt = 0 and Rt = 0, the problem

posed in (2.13) is derived. The main results of the analysis done in [11] are as follows.

Proposition 2.2.1. Fix γ ∈ (0, 1) and set K = {φ ∈ C1,γ([0, 1]) : φ is nondecreasing in [0, 1]}

and P = {φ ∈ C1,γ([0, 1]) : φ is nonnegative in [0, 1]}. For given (u, v) ∈ P ×K and m ≥ 0,

define

w = w0 exp

[
− A0x− A

∫ x

0

u(s)d(s)

]
,

c(x) = cv,w(x), v+ = max{v, 0}.

Define an abstract operator T(m,u,v) such that T(m,u,v) = (u,v) for (u, v) ∈ P ×K if and

only if (u,v) is a nonnegative solution of (2.13). The operator T : [0,∞)×P ×K → P ×K

is completely continuous, and it is Fréchet differentiable at (m, 0, v0) with respect to (u,v) in

the convex set P ×K, with derivative operator Lm, where Lm = (ξ, η) is the unique solution

to the following linear problems:

 −(d1ξ
′ + σc0ξ)′ + (m+ 1)ξ = f(min{αv0, w∗})u+ u 0 < x < 1,

d1ξ
′ + σc0ξ = 0 x = 0, 1,

and  −d2η
′′ = −f(min{αv0, w∗})u 0 < x < 1,

η′(0) = 0, η′(1) + βη(1) = 0,
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where c0(x) = cv0,w∗(x) and w∗ = w0 exp(−A0x). Moreover, (u, v) = T (m,u, v) implies that

v ∈ P and (u,v) is a nonnegative solution of (2.13) if and only if (u, v) = T (m,u, v).

Theorem 2.2.2. For every m ∈ (0,m∗) problem (2.13) has at least one positive solution.

Moreover, if mn decreases to 0 and (un, vn) is a positive solution of (2.13) with m = mn,

then un →∞ uniformly in [0, 1] and there exists a unique τ ∈

(
0,

v0

1 + β−1

)
determined by

d2τ = f(w0 exp(−Aσiτ))στ +

∫ ∞
στ

f(w0 exp(−Ay))dy

such that

un(x)

||un||∞
→

(
1 +

x

δ

) σ
d1
δ

exp

(
− σ

d1

x

)
, vn(x)→ τx+ v0 − τ(1 + β−1)

uniformly in [0, 1]. Furthermore, for each m ∈ (0,m∗), there is a positive solution (m,u,v)

lying on the global bifurcation branch, Γ = {(m,u, v)} ⊂ (0,∞) × C1,γ([0, 1]) × C1,γ([0, 1]),

bifurcating from the trivial solution branch Γ0 = {(m, 0, v0) : m ∈ (−∞,∞)} at m = m∗.

Theorem 2.2.3. Let m∗ be defined as above and define m∗ = − inf
x0∈[0,1]

λ1(c(x), v0, w∗). Then

lim
σ→∞

m∗(σ) = lim
σ→∞

m∗(σ) = f(min{αv0, w0}).

The analysis done in [12] continues the above work and shows the existence of four critical

values v∗∗ < v∗ < v∗ < v∗∗ for v0 - the nutrient concentration in the sediment layer, such

that

(i) x∗ = 0 when v0 ≥ v∗, x∗ ∈ (0, 1) when v0 ∈ (v∗, v
∗), and x∗ = 1 when v0 ≤ v∗.

(ii) The total biomass increases with v0 in the range v∗∗ < v0 < v∗∗, but it is constant for

v0 ≥ v∗∗ or v0 ≤ v∗∗. This is under the assumption that v0 is above a certain threshold

level so that biomass can survive.
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In [13] the analytic properties of the reaction-diffusion problem with light limitation for a

single phytoplankton species is studied. That work is extended in [14] to show that with the

inclusion of variable sinking rates, the global dynamics of the model is completely determined

by its unique steady-state solution. In [25] the analysis of a nonlocal reaction-diffusion-

advection equation modeling the growth of a single phytoplankton species in a water column

where the species solely depends on light is analyzed for the existence and uniqueness of

positive steady states.

2.2.2 Multi-species Klausmeier and Litchman Model

The previous model can be adapted for the presence of multiple algal species. In general,

if N species are present then the following changes to the Klausmeier and Litchman model

need to be considered. The same assumptions of biomass growth and movement are kept

but are now extended for the presence of N species by allowing for species specific growth,

death, diffusion, and active movement. The resulting partial differential equations are given

by

∂bk
∂t

= min(fI,k(I), fR,k(R))b1 −mkbk +Dbk

∂2bk
∂z2

+
∂

∂z

[
νk

(∂gk
∂z

)
bk

]
= [Growth]− [Loss] + [Passive movement] + [Active movement] (2.14)

for k = 1, . . . , N . These partial differential equations are given no flux boundary conditions

[
−Dbk

∂bk
∂z
− νk

(
∂gk
∂z

)
bk

] ∣∣∣∣∣
z=0

=

[
−Dbk

∂bk
∂z
− νk

(
∂gk
∂z

)
bk

] ∣∣∣∣∣
z=zb

= 0. (2.15)

For computational purposes, the functions fI,k and fR,k for k = 1, . . . , N will take the
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Michaelis-Menten form given by

fI,k(I(z, t)) = rk
I(z, t)

I(z, t) +KI,k

, (2.16)

and

fR,k(R(z, t)) = rk
R(z, t)

R(z, t) +KR,k

, (2.17)

where rk represents the maximal growth rates of species k and the parameters KI,k and KR,k

represent half-saturation constants for light and nutrients for species k. Following [43], the

function νk will take the form

νk

(∂gk
∂z

)
= −νkmax

∂gk
∂z

|∂gk
∂z
|+Kswim

. (2.18)

Following the conventions of the single species model, let DR represent the diffusion

coefficient of the limiting nutrient and let εk represent the proportion of nutrients that are

available in the water column from dead phytoplankton by species. The rate of change in

the limiting nutrient R is given by the partial differential equation

∂R

∂t
=

N∑
k=1

(
− bk
Yk

min(fI,k(I), fR,k(R)) + εk
bk
Yk

)
+DR

∂2R

∂z2

= −[Species k Uptake] + [Species k Recycling] + [Mixing] (2.19)

where Yk are the yield of phytoplankton biomass per unit of nutrient consumed for each

species respectively. As before, this partial differential equation will have boundary condi-

tions given by

∂R

∂z

∣∣∣∣∣
z=0

= 0,
∂R

∂z

∣∣∣∣∣
z=zb

= h(Rin −R(zb)), (2.20)

where the parameter h describes the permeability of the sediment-water interface.

Finally, with phytoplankton attenuation coefficients ak, background attenuation coeffi-

cient abg, and incident light Iin, to describe the change in light at depth z, we modify the
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Lambert-Beer law to accommodate the presence of multiple phytoplankton species. We have

I(z, t) = Iin exp

[
−
∫ z

0

(
N∑
k=1

akbk(w, t) + abg

)
dw

]
. (2.21)

The incident light here is assumed to be constant, although this assumption can be relaxed

to make the incident light a function of time. Throughout the dissertation, we will be

considering the case when N = 2.

Parameter Explanation Value Source
N Spatial discretization level 100
zb Water column depth (m) 20 [35]
Rin Sediment P concentration (µg P L−1) 100 [35]
h Sediment-water column permeability (m−1) 10−2 [35]
Iin Incoming light (µmol photons m−2 s−1) 1,400 [35]
abg Background attenuation coefficient (m−1) 0.35 [35], [36]
a1 Species 1 algal attenuation coefficient (m−1 [cells

ml−1]−1)
10−5 [35], [36]

a2 Species 2 algal attenuation coefficient (m−1 [cells
ml−1]−1)

10−5 [35], [36]

Db1 Species 1 biomass diffusion coefficients (m2 d−1) 10 [35]
Db2 Species 2 biomass diffusion coefficients (m2 d−1) 10 [35]
DR Nutrient diffusion coefficient (m2 d−1) 10 [35]
ν1max Species 1 swimming speed (m d−1) 10 [35]
ν2max Species 2 swimming speed (m d−1) 10 [35]
r1 Species 1 maximum growth rates (d−1) 0.4 [35]
r2 Species 2 maximum growth rates (d−1) 0.4 [35]
m1 Species 1 loss rate (d−1) 0.2 [35]
m2 Species 2 loss rate (d−1) 0.1
KR,1 P half-saturation constant (µg P L−1) 1 [35]
KR,2 P half-saturation constant (µg P L−1) 10
KI,1 Light half-saturation constant (µmol photons m−2

s−1)
50 [35]

KI,2 Light half-saturation constant (µmol photons m−2

s−1)
5

Y1 Species 1 yield coefficient (cells ml−1 [µg P L−1]−1) 103 [35]
Y2 Species 2 yield coefficient (cells ml−1 [µg P L−1]−1) 103 [35]
ε1 Species 1 recycling coefficient (dimensionless) 0 [43]
ε2 Species 2 recycling coefficient (dimensionless) 0 [43]

Kswim Swimming constant (m−1 d−1) 0.001 [43]

Table 2.2: Parameters used in simulations unless otherwise noted.
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The case of N = 2 is of particular concern since it allows for the development and analysis

of a mathematical framework for the theory of competition and modes of coexistence between

multiple phytoplankton species. Theoretical analysis of a similar reaction-diffusion model in

the case when N = 2 has considered in [13] under the hypothesis of light limitation only.

Based on the work done in [14] the bistable behavior exhibited in [52] can only occur with

the assumption of nutrient limitation as well.

Figure 2.5: Equilibrium vertical distributions of phytoplankton biomass and nutrients deter-
mined from Equations (2.14) – (2.21). The top left represents the case when Species 1 out
competes Species 2, the top right represents the case when Species 2 out competes Species
1, and the bottom represents the case of bistability between the two species resulting in
coexistence.

Sample model simulations using the parameter values given in Table 2.2 are given above.

This model has the same ability to replicate multiple layering phenomena as the single species

24



model was able to capture. The advantage to considering multi-species models over the single

species version is the ability to investigate biological questions of how multiple phytoplankton

species are able to coexist. By altering certain parameters, there are two distinct outcomes

that occur. The first scenario is competitive exclusion. This occurs when one species is

able to out compete with the other resulting in one of the competitors becoming extinct.

Examining Figure 2.5 these scenarios are illustrated in the top left and top right. This was

accomplished by setting the mortality coefficients m1 and m2 to be equal and making the

winner have a growth rate of 0.5 while the loser had a lower growth rate of 0.1. The second

scenario that can occur is coexistence. This is illustrated in the bottom panel of Figure 2.5.

This was accomplished by using the parameter values assigned in Table 2.2 and changing

the parameters ν1max = 7, ν2max = 6, and ε1 = ε2 = 0.75.

While the multi-species model is able to explore more complex questions of ecosystem

structure than the single species version, the model does not account for other complexi-

ties that arise. In particular, the models described assume that there is only one nutrient

present in the system which is limiting growth and that the phytoplankton only utilize this

resource for growth. This is an idealized situation and the biogeochemical interactions that

phytoplankton have with their environment are complex [49]. As an example, the species

Mycrocistis which forms toxic blooms, prefers to acquire nitrogen from ammonia rather than

nitrate [7], both of which are available in the environment. Models incorporating preferential

nutrient uptake have yet to be considered and analyzed. We propose a new phytoplankton

competition model which incorporates this nutrient dynamic and present numerical illustra-

tions of how this model compares to previous models in the literature.
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3 Proposed Preferential Nutrient Uptake Model

It is generally understood that the rate of nitrate (NO−3 ) uptake by phytoplankton is severely

reduced by the presence of ammonium (NH+
4 ). This effect is referred to either as ‘inhibition’

of nitrate uptake by ammonium or by ‘preference’ for ammonium [10]. Work done to support

this theory can be found in [10], [40], [44], [60], and others. Evidence includes both laboratory

studies of nitrate assimilation by green algae [44], field studies in marine ecosystems, and

theoretical considerations [40], [60]. The existing theoretical considerations made to support

the preference for ammonium over nitrate are a result of the energy requirements needed to

utilize both resources. While nitrate and ammonium are both available in the environment

and are susceptible to diffusion processes, there is an eight electron difference in the utiliza-

tion of ammonium over nitrate [19]. In order for nitrate to be utilized by phytoplankton it

must undergo two chemical reactions summarized below:

NO−3 NO−2 NH+
4

2e−

NR

6e−

NiR

The first reaction involves the enzyme nitrate reductase (NR) which costs two electrons

and reduces nitrate to nitrite (NO2−). The second reaction involves the enzyme nitrite

reductase (NiR) which costs six electrons and reduces nitrite to ammonium. However, further

work has shown that the nitrate-ammonium relationship is in fact difficult to explain by one

simple mechanism and that both inhibition (an indirect interaction) and preference (a direct

interaction) can be observed [8], [10]. These interactions can vary across environmental

conditions and phytoplankton species but can be tested for separately in laboratory settings.

Until the process of nitrate uptake is fully understood, it is not possible to accurately model

the response of nitrate uptake to environmental conditions or to model its relationship to

biomass productivity [10]. This is especially important for the development of models of

harmful algal blooms, a matter of significant public health importance, and one of great

interest to biologists, government officials, and aquatic based industries.
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In this chapter we first introduce a new model of phytoplankton competition which incor-

porates preferential nutrient uptake. We then give a detailed explanation of the numerical

methods used to simulate the model. Finally, we conduct several simulations of this new

model to examine the layer formation patterns that are exhibited along with competitive

outcomes by altering certain model parameters. These simulations will be analyzed for their

biological significance and compared to existing models in the literature. In particular, sim-

ulated phytoplankton distributions will be compared to data from Lake Michigan presented

in [5], [6], and [45].

3.1 Model Development

The proposed model studies the coexistence of two phytoplankton species, b1 and b2, in a

water column where there are two nutrients, R1 and R2, present with the assumption that

one nutrient is preferentially taken up. Without loss of generality, it is assumed that R1 is the

preferred nutrient. The full model consists of a non-local, nonlinear system of integro-partial

differential equations for the depth distributions of biomass densities b1(z, t) and b2(z, t),

the limiting nutrient concentrations R1(z, t) and R2(z, t), and light I(z, t). For simplifying

purposes we consider a one dimensional water column index by z, where 0 ≤ z ≤ zb where

z = 0 represents the surface and z = zb represents the depth of the water column. We further

assume that the water column is not stratified.

Biomass densities are assumed to be limited by the availability of light and nutrients.

The functions fI,1(I(z, t)) and fI,2(I(z, t)) will represent the phytoplankton growth rate when

light is limiting for species 1 and species 2, respectively, while the functions fR,1(R1(z, t), R2(z, t))

and fR,2(R1(z, t), R2(z, t)) represent the phytoplankton growth rate when nutrients are lim-

iting for species 1 and 2, respectively. The gross phytoplankton growth rate of each species

follows the Liebig law of the minimum so that the per-capita growth rate will be given by

the equations gk(z, t) = min[fI,k(I(z, t)), fR,k(R1(z, t), R2(z, t))] −mk, where mk is the loss

rate, and the index k = 1, 2 represents the respective species.
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Each phytoplankton species is assumed to move within the water column. Their move-

ment is affected by the processes of diffusion and active movement. Passive movement is

modeled by eddy diffusion with diffusion coefficients Db1 and Db2 which are assumed to be

uniform throughout the water column. This assumption is not necessary and, in general,

depth dependent diffusion is permissible [27], [43]. To model the active movement, we intro-

duce a velocity function ν which is dependent on the gradient of the growth rate,
∂gk
∂z

, i.e.

ν = νk

(
∂gk
∂z

)
for k = 1, 2 [46]. Given how phytoplankton can regulate their position, to

an extent, depending on whether light or nutrients are limiting, the biological assumption

is introduced that phytoplankton will move up if the conditions are better above than they

are below, and phytoplankton will move down if the conditions are better below than they

are above, and phytoplankton will not move if the conditions are worse above and below

[35]. Positive velocity is oriented upward and associated to the negative z direction. Specif-

ically we assume ν(.) is an odd, decreasing function which approaches a value νkmax as
∂gk
∂z

approaches negative infinity and approaches −νkmax as
∂gk
∂z

approaches positive infinity for

k = 1, 2 [33] [35],[43],[46].

The resulting partial differential equations for biomass densities are given by

∂b1

∂t
= min(fI,1(I), fR,1(R1, R2))b1 −m1b1 +Db1

∂2b1

∂z2
+

∂

∂z

[
ν1

(∂g1

∂z

)
b1

]
= [Growth]− [Loss] + [Passive movement] + [Active movement] (3.1)

and

∂b2

∂t
= min(fI,2(I), fR,2(R1, R2))b2 −m2b2 +Db2

∂2b2

∂z2
+

∂

∂z

[
ν2

(∂g2

∂z

)
b2

]
= [Growth]− [Loss] + [Passive movement] + [Active movement]. (3.2)
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These partial differential equations are given no flux boundary conditions

[
Db1

∂b1

∂z
+ ν1

(
∂g1

∂z

)
b1

] ∣∣∣∣∣
z=0

=

[
Db1

∂b1

∂z
+ ν1

(
∂g1

∂z

)
b1

] ∣∣∣∣∣
z=zb

= 0, (3.3)

and [
Db2

∂g2

∂z
+ ν2

(
∂g2

∂z

)
b2

] ∣∣∣∣∣
z=0

=

[
Db2

∂g2

∂z
+ ν2

(
∂g2

∂z

)
b2

] ∣∣∣∣∣
z=zb

= 0. (3.4)

The functions fR,1(R1, R2) and fR,2(R1, R2) used to model the inhibition of the uptake of

the second nutrient R2 by the presence of the first nutrient R1 take the form of a modified

Michaelis-Menten relation given by

fR,1(R1(z, t), R2(z, t)) = r1

(
R1(z, t)

KR1,1 +R1(z, t)
+

R2(z, t)

KR2,1 +R2(z, t)

λn

λn +R1(z, t)

)
(3.5)

and

fR,2(R1(z, t), R2(z, t)) = r2

(
R1(z, t)

KR1,2 +R1(z, t)
+

R2(z, t)

KR2,2 +R2(z, t)

λn

λn +R1(z, t)

)
, (3.6)

where r1 and r2 are the maximal growth rate of species 1 and species 2, respectively, and

the parameters KR1,1 and KR2,1 represent the saturation constants for species 1 with the

corresponding nutrient, the parameters KR1,2 and KR2,2 represent the saturation constants

for species 2 with the corresponding nutrient, KI,1 and KI,2 represent the light saturation

constants for species 1 and 2 respectively, and λ is an inhibition coefficient. Following [32]

the functions fI,k for k = 1, 2 are hyperbolic tangent functions of the form

fI,1(I(z, t)) = r1 tanh

(
I(z, t)

KI,1

)
, (3.7)

and

fI,2(I(z, t)) = r2 tanh

(
I(z, t)

KI,2

)
. (3.8)

29



The use of hyperbolic tangent functions over the classic Michaelis-Menten relation is due to

better results from regression analysis on experimental data [32].

As in [43], the active movement functions ν1 and ν2 take the form

ν1

(∂g1

∂z

)
= −ν1max

∂g1

∂z

|∂g1

∂z
|+Kswim

(3.9)

and

ν2

(∂g2

∂z

)
= −ν2max

∂g2

∂z

|∂g2

∂z
|+Kswim

. (3.10)

Nutrients in the water column are impacted by diffusion processes and by phytoplankton

through consumption and recycling. Let DR1 and DR2 represent the diffusion coefficients of

the two nutrients, respectively, and let ε1,1, ε2,1, ε1,2, and ε2,2 represent the proportion of

nutrients that are available in the water column from dead phytoplankton where the indexing

on the recycling coefficients is done in the order of species, nutrient. Since both species use

both nutrients to grow, it is necessary to determine the proportion of each nutrient lost to

uptake processes. Define the functions γ and ρ by

γk(R1) = rk
R1

KR1,k +R1

(3.11)

and

ρk(R1, R2) = rk
R2

KR2,k +R2

λn

λn +R1

(3.12)

for k = 1, 2. These functions will be used to give the appropriate proportion of each nu-

trient uptaken by each species. Using these modifications and the physical and biological

assumptions consistent with the multi-species Klausmeier and Litchman model, the partial
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differential equations for the nutrients are given by

∂R1

∂t
=− b1

Y1

min(fI,1(I), fR,1(R1, R2))
γ1(R1)

fR,1(R1, R2)
+ ε1,1m1

b1

Y1

− b2

Y2

min(fI,2(I), fR,2(R1, R2))
γ2(R1)

fR,2(R1, R2)
+ ε2,1m2

b2

Y2

+DR1

∂2R1

∂z2

= −[Species 1 Uptake] + [Species 1 Recycling]− [Species 2 Uptake]

+ [Species 2 Recycling] + [Mixing]

(3.13)

and

∂R2

∂t
=− b1

Y1

min(fI,1(I), fR,1(R1, R2))
ρ1(R1, R2)

fR,1(R1, R2)
+ ε1,2m1

b1

Y1

− b2

Y2

min(fI,2(I), fR,2(R1, R2))
ρ2(R1, R2)

fR,2(R1, R2)
+ ε2,2m2

b2

Y2

+DR2

∂2R2

∂z2

= −[Species 1 Uptake] + [Species 1 Recycling]− [Species 2 Uptake]

+ [Species 2 Recycling] + [Mixing].

(3.14)

For boundary conditions on the nutrient equations, assume that nutrients cannot enter or

leave the water column from the surface, and that both nutrients are supplied from the bot-

tom. Assume nutrients in the sediment have a constant concentration. Let the concentration

of nutrient 1 in the sediment be denoted by Rin1 and let the concentration of nutrient 2 in

the sediment be denoted by Rin2 . Then the boundary conditions for equations (3.13) and
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(3.14) are given respectively by

∂R1

∂z

∣∣∣∣∣
z=0

= 0,
∂R1

∂z

∣∣∣∣∣
z=zb

= h(Rin1 −R1(zb)) (3.15)

and

∂R2

∂z

∣∣∣∣∣
z=0

= 0,
∂R2

∂z

∣∣∣∣∣
z=zb

= h(Rin2 −R2(zb)), (3.16)

where h represents the permeability of the sediment-water interface.

Finally, to describe the change in light at depth z, we modify the Lambert-Beer law

to accommodate the presence of multiple phytoplankton species. The Lambert-Beer law

becomes

I(z, t) = Iin exp

[
−
∫ z

0

(a1b1(w, t) + a2b2(w, t) + abg)dw

]
, (3.17)

where the parameters Iin, a1, a2 and abg represent the incident light, species specific light

attenuation coefficients, and background attenuation coefficient, respectively [34]. The in-

cident light is considered to be constant in our simulations, although this assumption can

be relaxed to admit a time dependent function Iin(t). This model is based on [35] with the

addition of another phytoplankton species, the competition for two nutrient resources, one

of which is assumed to be preferred, and light dependence on growth functions consistent

with experimental results.

3.2 Simulation Technique

In order to simulate the model, we use a finite volume method [27]. Under this approach

the spatial differential operators given in equations (3.1), (3.2), (3.13), and (3.14) as well as

the integral term given in equation (3.17) will be replaced by discrete approximations. This

will result in a large system of ordinary differential equations of the form

db(t)

dt
= F(b(t)), t ≥ 0 (3.18)
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where the vector b ∈ R4N contains the components bi(t) and Ri(t) resulting from the dis-

cretization. Since (3.18) is still continuous in time the resulting system of ODEs are solved

by numerical integration. The ODE model given in (3.18) is generally stiff, thus to solve

the system numerically, an implicit integration method is needed. In this treatment, we

implemented the model in MATLAB, and integrated using MATLAB’s ODE solver ode15s

[2].

To begin we define a spatial grid on the one dimensional water column 0 ≤ z ≤ zb. Let

s0 = 0, si =
(
i− 1

2

)
∆z, and sN+1 = zb be the spatial grid where ∆z =

zb
N

. Here N will rep-

resent the partition of the water column and will represent the number of ODEs each of the

bi and Ri in equations (3.1), (3.2), (3.13), and (3.14) are partitioned into. For convenience,

the method will be explained using only one species and one nutrient. To simplify notation,

for i = 1, . . . , N let bi(t) denote an approximation to b(si, t). A visual representation of the

discretization adapted from [27] is given below.

s0 s1 s2 s3 sN−2 sN−1 sN sN+1

1
2
∆z ∆z ∆z ∆z ∆z 1

2
∆z

si−2

bi−2

si−1

bi−1

Ji−1

si

bi

Ji

si+1

bi+1

si+2

bi+2

∆z

To discretize the spatial derivatives at the points si present in the diffusion and active

movement terms in equations (3.1) and (3.2), a finite volume approach is used. First define

the flux of the phytoplankton by

J(z, t) = −
(
νkb(z, t) +Db

∂b

∂z
(z, t)

)
. (3.19)
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The minus sign on the diffusion term is present to indicate that turbulent diffusion is in the

direction opposite to the biomass concentration while the minus sign on the active movement

term is a result of the orientation of the velocity.

As demonstrated in the figure above, assume there is an imaginary box of size ∆z around

the point si and we denote the fluxes at the side of these ’boxes’ by Ji ≈ J(si+
1
2
∆z, t) which

depends on the numerical values bi. Doing this, conservation of J is obtained since the outflow

of one part of one box will serve as the input for the adjacent box. Further, observe that

equations (3.1) and (3.2) can be rewritten using J in the following form

∂b

∂t
(z, t) = g(z, t)b(z, t)− ∂J

∂z
(z, t). (3.20)

Thus our interest is in approximating
∂J

∂z
at the point z = si. To form the approximation

we first split the flux into two components

∂J

∂z
(z, t) = −

(∂A
∂z

(z, t) +
∂P

∂z
(z, t)

)
(3.21)

where A represents the active movement portion of the flux while P represents the portion

of passive movement in the flux

(
Db

∂b

∂z

)
.

We use the approximation

∂J

∂z
(z, t) ≈ Ji − Ji−1

∆z
= −

(Ai − Ai−1

∆z
+
Pi − Pi−1

∆z

)
. (3.22)

What follows is a description of determining the approximation for Ji. For the advection

term in equations (3.1) and (3.2) (the active movement) a third-order upwind scheme is

used. The diffusion terms present in equations (3.1), (3.2), (3.13), and (3.14) (the passive

movement) are handled using a symmetric discretization.
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3.2.1 Biomass Advection

Under the assumptions laid out in the previous section, phytoplankton will move up or

down in the water column depending on growth conditions. Thus to determine Ai under

the upwinding scheme, first we need to separate the cases when νi > 0 (upward movement)

and νi < 0 (downward movement). Further, movement near the surface of the water column

and near the bottom of the water column have to be treated separately. No flux boundary

conditions tell us that there cannot be upward movement at the surface or any downward

motion on the bottom. However phytoplankton can swim up to the surface and down to

the bottom. The approximation at the surface will rely on the terms A0, A1, and A2 and

the bottom will rely on AN−2, AN−1, and AN . The rest of the water column will rely on the

terms Ai for i = 2, . . . , N − 2.

First consider phytoplankton that are in the water column but are not at the surface or

the bottom. To implement the upwinding scheme it is necessary to know which direction

the phytoplankton are swimming. When the phytoplankton are swimming down towards

the bottom the flow is from left to right in the figure. For that reason more information will

be used from the left. Similarly, when phytoplankton are swimming up towards the surface,

the flow is from the right to the left. Separating the cases for νi > 0 and νi < 0 we get that

the upwinding scheme in general can be given by the formula

Ai =
1

6
νi(2bi + 5bi+1 − bi+2) ∗ (νi > 0) +

1

6
νi(−bi−1 + 5bi + 2bi+1) ∗ (νi < 0)

= [Upward movement] + [Downward movement]. (3.23)
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Thus the approximation to
∂A

∂z
is given by

Ai − Ai−1

∆z
=

1

6∆z

(
νi(2bi + 5bi+1 − bi+2) ∗ (νi > 0)

+ νi(−bi−1 + 5bi + 2bi+1) ∗ (νi < 0)

− νi−1(2bi−1 + 5bi − bi+1) ∗ (νi−1 > 0)

− νi−1(−bi−2 + 5bi−1 + 2bi) ∗ (νi−1 < 0)
)
. (3.24)

Combining like terms and reorganizing we get

Ai − Ai−1

∆z
=

1

6∆z

(
νi−1 ∗ (νi−1 < 0)bi−2 − (νi ∗ (νi < 0) + 2νi−1 ∗ (νi−1 > 0)

− 5νi−1 ∗ (νi−1 < 0))bi−1 + (2νi ∗ (νi > 0) + 5νi ∗ (νi < 0)

− 5νi−1 ∗ (νi−1 > 0)− 2νi−1 ∗ (νi−1 < 0))bi + (5νi ∗ (νi > 0)

+ 2νi ∗ (νi < 0) + νi−1 ∗ (νi−1 > 0))bi+1 − νi ∗ (νi > 0)bi+2

)
. (3.25)

Now consider phytoplankton near the surface of the water column. The upwinding scheme

used on Ai for i = 2, . . . , N − 2 has to be modified to get the upwinding scheme for A0 and

A1. Given that the system is closed we have A0 = 0. To compute A1, observe that A1

depends only on b1, b2, and b3. Using this, A1 can be computed using the formula

A1 = ν1 ∗ (ν1 < 0)
(b1 + b2

2

)
+

1

6
ν1 ∗ (ν1 > 0)(2b1 + 5b2 − b3). (3.26)

Using the same strategy as before we construct the approximations
∂A

∂z
for z = s1 and

z = s2. For z = s1 we get

∂A

∂z
(s1, t) ≈

A1 − A0

∆z
=

1

6∆z

(
(3ν1 ∗ (ν1 < 0) + 2ν1 ∗ (ν1 > 0))b1

+ (3ν1 ∗ (ν1 < 0) + 5ν1 ∗ (ν1 > 0))b2 − ν1 ∗ (ν1 > 0)b3

)
. (3.27)
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For z = s2 we get

∂A

∂z
(s2, t) ≈

A2 − A1

∆z
=

1

6∆z

(
(−ν2 ∗ (ν2 < 0)− 3ν1 ∗ (ν1 < 0)− 2ν1 ∗ (ν1 > 0))b1

+ (2ν2 ∗ (ν2 > 0) + 5ν2 ∗ (ν1 < 0)− 5ν1 ∗ (ν1 > 0)− 3ν1 ∗ (ν1 < 0))b2

+ (5ν2 ∗ (ν2 > 0) + 2ν2 ∗ (ν2 < 0) + ν1 ∗ (ν1 > 0))b3 − ν2 ∗ (ν2 > 0)b4

)
.

(3.28)

Finally, consider phytoplankton near the bottom of the water column. As with the

computations near the surface, the upwinding scheme for AN−1 and AN has to be modified.

As with A0, since the system is closed it follows that AN = 0. To compute AN−1 observe

that AN−1 will depend on bN−2, bN−1, and bN . Hence we get

AN−1 = νN−1 ∗(νN−1 > 0)
(bN + bN−1

2

)
+

1

6
νN−1 ∗(νN−1 < 0)(−bN−2 +5bN−1 +2bN). (3.29)

Using this we can finish constructing the approximations of
∂A

∂z
by computing the terms

at z = sN−1 and z = sN . At z = sN we get

∂A

∂z
(sN , t) ≈

AN − AN−1

∆z
=

1

6∆z

(
νN−1 ∗ (νN−1 < 0)bN−2

+ (−3νN−1 ∗ (νN−1 > 0)− 5νN−1 ∗ (νN−1 < 0))bN−1

+ (−3νN−1 ∗ (νN−1 > 0)− 2νN−1 ∗ (νN−1 < 0))bN

)
. (3.30)

Finally, at z = sN−1 we get
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∂A

∂z
(sN−1, t) ≈

AN−1 − AN−2

∆z
=

1

6∆z

(
νN−2 ∗ (νN−2 < 0)bN−3

+ (−νN−1 ∗ (νN−1 < 0)− 2νN−2 ∗ (νN−2 > 0)

− 5νN−2 ∗ (νN−2 < 0))bN−2 + (5νN−1 ∗ (νN−1 < 0)

+ 3νN−1 ∗ (νN−1 > 0)− 5νN−2 ∗ (νN−2 > 0)

− 2νN−2 ∗ (νN−2 < 0))bN−1

+ (2νN−1 ∗ (νN−1 < 0) + νN−2 ∗ (νN−2 > 0))bN

)
. (3.31)

Using these approximations, one can construct the active movement matrix, AM, such

that AMb gives the approximations to
∂A

∂z
. The active movement matrix will be an N ×

N sparse matrix whose coefficients are given by the velocities νi with their corresponding

positive and negative parts. This matrix will be a banded matrix which has non-zero elements

in the two diagonal arrays above and the two diagonal arrays below the main diagonal, and

non-zero elements in the main diagonal.

3.2.2 Biomass Diffusion

To finish the discretization of the biomass flux, the spatial derivatives present from the

diffusion term need to be approximated. Unlike the active movement problem where a

symmetric difference can produce unwanted numerical artifacts [27], we use a symmetric

method to discretize the diffusion for both the biomass and the nutrients.

Let Pi = P (si + 1
2
∆z). Since the system is closed for phytoplankton at the surface and

the bottom of the water column, we have P0 = PN = 0. For i = 1, . . . , N − 1 we have

Pi = Di
bi+1 − bi

∆z
. (3.32)

Using equation (3.32) we form the approximations to the diffusion term
∂P

∂z
in equation
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(3.19) using the appropriate differences. Computing the differences we get

P1 − P0

∆z
=

1

(∆z)2
(D1b1 −D1b2), (3.33)

Pi − Pi−1

∆z
=

1

(∆z)2
(−Dibi+1 + (Di +Di−1)bi −Dibi+1), (3.34)

PN − PN−1

∆z
=

1

(∆z)2
(−DN−1bN−1 +DN−1bN). (3.35)

Thus the resulting biomass diffusion matrix, PM, will be an N ×N tridiagonal matrix. The

main diagonal will consist of
1

(∆z)2
D1,

1

(∆z)2
(Di +Di−1), and

1

(∆z)2
DN−1. The upper and

lower diagonals will consist of elements of the form − 1

(∆z)2
Di where i = 2, . . . , N for the

lower diagonal and i = 1, . . . , N − 1 for the upper diagonal.

3.2.3 Nutrient Diffusion

While the nutrient diffusion matrix that results from the discretization is almost identical to

the biomass diffusion matrix constructed above there is a key difference. Unlike the biomass,

the model developed is not assumed to be a closed system for the nutrients. The boundary

terms given in equations (3.15) and (3.16) show that nutrients can be supplied from the

sedimentary layer at the bottom of the water column. So while equations (3.33) and (3.34)

will still be valid for the nutrients equation, (3.35) will no longer hold in this circumstance.

Using the boundary term for
∂R

∂z
at z = zb we can define PN by the equation

PN =
DN

∆z

(
h(Rin −RN)

)
. (3.36)

Proceeding as we did before, we now calculate the approximation of
∂P

∂z
(z, t) at z = sN .
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Using equation (3.35) (making the change from bi to Ri) we get

PN − PN−1

∆z
=

1

(∆z)2
(−DNhRin + (DNh+DN−1)RN +−DN−1RN−1).

3.3 Numerical Illustration and Biological Significance

Parameter interpretation and values used for the simulations can be found in Table 3.1 given

at the end of this section. The constants for light and nutrients used in the growth rate affect

the proportion of light and nutrients needed by a species. For this reason, these parameters

are chosen such that KI,2 < KI,1. This way the competing species will have growth functions

defined in such a way that the first species has a growth rate with proportionally larger

requirement on light while the second species has a growth rate with proportionally larger

nutrient requirements. With these assumptions, the phytoplankton species have potential

natural niches located at different depths that they will want to occupy.

For initial conditions suppose b1(z, 0) = b2(z, 0) = 104 cells ml−1, R1(z, 0) = 2.25 µg L−1,

and R2(z, 0) = 2.1 µg L−1 holds for all z, 0 ≤ z ≤ zb. To investigate the phytoplankton

layering patterns, model simulations are run for a time period long enough for numerical

changes in phytoplankton and nutrient distributions to approximately stabilize. For sim-

plifying purposes we consider situations when νmax1 = νmax2 and ε1,1 = ε1,2 = ε2,2 = ε2,2,

although these assumptions can be relaxed.

As hypothesized, the model under this parametrization gives a vertically heterogeneous

water column. Studying the left panel in Figure 3.1 we can see that the two species form

layers whose thickness and location within the water column vary. While this result supports

the hypothesis of MacArthur and Levins (1964) to explain why various phytoplankton species

coexist, it is not necessarily feasible to consider this approach when studying field data. To

get a better understanding of how the model compares to field data, relative fluorescence

is simulated along with light transmission. While the model may not match field data

quantitatively [5], [6], [35], [43], the model simulations do qualitatively agree with what
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Figure 3.1: Left Panel: Species specific biomass vs. depth. Middle Panel: Simulated relative
fluorescence vs. depth. Right Panel: Simulated light transmission vs depth.

is seen in Lake Michigan. In particular, the presence of multiple phytoplankton layers of

varying depths is a key phenomological behavior that the proposed model has successfully

captured. Similarly, the behavior of the simulated light transmission data as it relates to

peaks in phytoplankton biomass is qualitatively similar to that seen in the literature [5], [6],

[43].

In addition to capturing the qualitative behavior of what is seen in Lake Michigan the

model is also able to capture other layering phenomenon. For the remaining model simula-

tions presented in this chapter, we will be using zb = 20 as is used in the Klausmeier and

Litchman model. By changing the model parameters we can see the formation of surface

scums, deep chlorophyll maxima, and benthic layers. We will illustrate these examples below

along with which parameters from Table 3.1 need to be altered.

The multiple DCMs present in the top left are a result from the following parameter

changes from the values given in Table 3.1: abg = 0.35, ν1max = 8, ν2max = 6, KI,1 =

100, and KI,2 = 1 . To produce the surface scum seen in the top right panel the following pa-

rameters changes were made: a1 = 10−3, a2 = 10−2, abg = 0.35, ν1max = ν2max = 10, KR1,1 =
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Figure 3.2: Equilibrium vertical distributions of phytoplankton biomass and nutrients deter-
mined from Equations (3.1) –(3.17). The top left represents the DCM distribution, the top
right represents the surface scum distribution, and the bottom represents the benthic layer
distribution.

KR2,1 = 1, KR1,2 = KR2,2 = 10, KI,1 = 100, KI,2 = 5 and ε1,1 = ε1,2 = ε2,1 = ε2,2 = 0.9.

The resulting surface scum is reasonable to expect since the algal attenuation coefficients

impact the amount of light that is absorbed by the biomass and influences the level of self

shading that occurs. Further, by increasing the amount of nutrients that are released back

into the environment upon cell death and increasing the speed in which phytoplankton are

able to move, the need to go deeper into the water column in search of nutrients is minimized.

To produce the benthic layer demonstrated in the bottom panel, the following parameter

changes were made: a1 = 10−7, a2 = 10−6, abg = 0.35, ν1max = ν2max = 10, KR1,1 = KR2,1 =

100, KR1,2 = KR2,2 = 500, KI,1 = 0.1, KI,2 = 0.5, and ε1,1 = ε1,2 = ε2,1 = ε2,2 = 0.9. Un-
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like with the surface scum where the parameter changes were made to favor light intensive

conditions, the benthic layer requires light to be able to permeate further in depth in the

water column so that self-shading is minimized and the nutrient saturation requirements are

increased so that phytoplankton will reside in the lower depths.

Figure 3.3: Equilibrium vertical distributions of phytoplankton biomass and nutrients de-
termined from Equations (3.1) –(3.17). The top left represents the case when Species 1 out
competes Species 2, the top right represents the case when Species 2 out competes Species
1, and the bottom represents the case of bistability between the two species resulting in
coexistence.

Besides being able to replicate common layering phenomena seen in field data, these

simulations also capture insights into the nutrient dynamics present in an ecosystem when

one nutrient is assumed to be preferentially uptaken over the other. As can be seen in

Figure 3.2, it is not always the case that the preferred nutrient, R1, is utilized more than
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the secondary source R2. This outcome is largely determined by the saturation constants

KR1,1, KR1,2, KR2,1, KR2,2, KI,1, and KI,2. These differences are displayed in Figure 3.4.

Notably, this figure also demonstrates the importance of differences in nutrient utilization

for coexistence. In Figure 3.2, the surface scum contains only b2 while b1 is extinct. When

looking at the respective nutrient uptake plots in Figure 3.4 for the surface, it is clearly

seen that both species have a similar uptake pattern. However, due to the differences in

mortality rates (m1 > m2) species 2 out-competed species 1 and competitive exclusion is the

final result.

Figure 3.4: Surface plots for Equations (3.5) and (3.6) modeling the preferential nutrient up-
take using the same parameters as in Figure 3.2 showing the differences in nutrient utilization
by the competing phytoplaknton species.
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As with the multi-species version of the Klausmeier and Litchman model, our proposed

preferential uptake model is able to exhibit cases where competitive exclusion of each species

occurs and cases of bistable coexistence demonstrated in Figure 3.3. To simulate the case

where only the first species survives the following parameters from Table 3.1 were altered:

abg = 0.35, ν1max = ν2max = 10, r1 = 0.5, r2 = 0.2, m1 = 0.1, KI,1 = 50, and KI,2 = 1.

In comparison, to simulate the case where only the second species survives the following

parameters were altered: abg = 0.35, ν1max = ν2max = 10, r1 = 0.2, r2 = 0.5, KI,1 = 50, and

KI,2 = 1. Finally, the bistable coexistence simulation is identical to the simulation of the

DCM distribution shown in Figure 3.2.

Currently the model simulations are performed using parameters reported from the lit-

erature, and while biologically feasible, they may not be suitable for all environments. For

example, parameters used in a marine environment would not be suitable for a freshwater

ecosystem such as Lake Michigan. Further, since the parameters are species dependent, there

can be a wide range of accepted values which can be influenced by factors that are unique

to the environment. Given the large number of parameters present in the PDE models it is

necessary to use various statistical techniques to analyze the parameter space. This analysis

in turn can be used to design experiments in laboratory settings and to accurately make

predictions for conditions which will result in large blooms for a specific body of water.
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Parameter Explanation Value Source
N Spatial discretization level 200
zb Water column depth (m) 100 [35]
Rin1 Sediment concentration Nutrient 1 (µg L−1) 150
Rin2 Sediment concentration Nutrient 2 (µg L−1) 100 [35]
h Sediment-water column permeability (m−1) 10−2 [35]
Iin Incoming light (µmol photons m−2 s−1) 1,400 [35]
abg Background attenuation coefficient (m−1) 0.15 [35], [36]
a1 Species 1 algal attenuation coefficient (m−1 [cells

ml−1]−1)
10−5 [35], [36]

a2 Species 2 algal attenuation coefficient (m−1 [cells
ml−1]−1)

10−4 [35], [36]

Db1 Species 1 biomass diffusion coefficients (m2 d−1) 10 [35]
Db2 Species 2 biomass diffusion coefficients (m2 d−1) 10 [35]
DR1 Nutrient 1 diffusion coefficient (m2 d−1) 10 [35]
DR2 Nutrient 2 diffusion coefficient (m2 d−1) 10 [35]
ν1max Species 1 swimming speed (m d−1) 1 [35]
ν2max Species 2 swimming speed (m d−1) 1 [35]
r1 Species 1 maximum growth rates (d−1) 0.4 [35]
r2 Species 2 maximum growth rates (d−1) 0.4 [35]
m1 Species 1 loss rate (d−1) 0.2 [35]
m2 Species 2 loss rate (d−1) 0.1
KR1,1 Nutrient 1 saturation constant for Species 1 (µg

L−1)
1 [35]

KR1,2 Nutrient 1 saturation constant for Species 2 (µg
L−1)

1 [35]

KR2,1 Nutrient 2 saturation constant for Species 1 (µg
L−1)

15

KR2,2 Nutrient 2 saturation constant for Species 2 (µg
L−1)

15

KI,1 Light saturation constant for Species 1 (µmol pho-
tons m−2 s−1)

120 [35]

KI,2 Light saturation constant for Species 2 (µmol pho-
tons m−2 s−1)

0.1

Y1 Species 1 yield coefficient (cells ml−1 [µg L−1]−1) 103 [35]
Y2 Species 2 yield coefficient (cells ml−1 [µg L−1]−1) 103 [35]
εi,1 Species i Nutrient 1 recycling coefficient (dimen-

sionless)
0 [43]

εi,2 Species i Nutrient 2 recycling coefficient (dimen-
sionless)

0 [43]

Kswim Swimming constant (m−1 d−1) 0.001 [43]
λ Nutrient uptake inhibition factor (dimensionless) 0.8
n Shaping parameter 24

Table 3.1: Parameters used in simulations unless otherwise noted.
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4 Parameter Identification and Global Sensitivity Analysis

One of the principal challenges to modeling algal bloom dynamics are the non-stationary

and non-linear dynamics due to the complex interaction of physical, chemical, and biolog-

ical parameters affecting growth and accumulation of biomass [64]. Traditional statistical

methods such as multiple linear regression and autoregressive moving average models are

thus difficult to implement in this situation [48]. In this chapter we analyze the parameter

spaces of three models - the Klausmeier and Litchman model, the multispecies variant of

their model, and the proposed preferential uptake model. The parameter spaces of all three

models are analyzed for parameter identifiability: the ability for a parameter’s true value to

be recovered through optimization, and for global sensitivity: the influence a parameter has

on model response [55].

4.1 Parameter Estimation

In order to implement the model and run simulations, values for the model parameters need

to be supplied. Ranges for some of these quantities are reported in [7], [24], [35], [43],

[47]. While quantities such as incident light and depth of the water column can be easily

measured, other parameters are either difficult to measure or have wide reported ranges.

Thus we resort to parameter estimation based on data. However, when experimental or field

data is unavailable, the parameter estimation problem can be done on simulated data [4].

Analysis of estimation techniques and results using simulated data provide information about

which parameters can be identified computationally. Further, solving estimation problems

on simulated data provide insights into the type of data that is needed, as well as how

frequently it must be collected in order to successfully identify unknown parameters.
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4.1.1 Deterministic Estimation Problem

To solve the inverse problem, we set up a deterministic estimation problem using the sim-

ulated data with random noise. Adopting the notation used in [4], let Bi be observations

taken for Tn time values. We want to estimate the parameters q in the parameter space Q

= Rm where m is the number of parameters in the vector q. To this end we seek to minimize

J(q, B) =
Tn∑
i=1

1

||Bi||2
||Y (ti; q)−Bi||2 + P (q) (4.1)

over q ∈ Q, where Y is a model given estimate of the total biomass in the water column,

P (q) is a penalty function to prevent parameters from taking on negative values, and ||.||2

is the 2-norm.

Numerous algorithms exist to solve the optimization problem given by (4.1). In this dis-

cussion we utilized MATLAB’s fminsearch function which uses the Nelder-Mead algorithm

[37].

4.1.2 Parameter Estimation Based on Simulated Data

We analyze the sensitivity of the model to the inverse problem by solving the minimization

problem using synthetic data. To generate the simulated data, we run the model with a

chosen set of parameters q. We form observations Bi = Y (t2i; q) according to the model

given estimate of the total biomass and then add various levels of random noise to form the

synthetic data set. Thus we define BNi by

BNi = (1 + ηNi (α))Bi, (4.2)

where ηNi is a normally distributed random variable with mean 0 and standard deviation of

α
3
. This corresponds to 99.74% of ηNi taking values in the interval [−α, α]. The parameter

48



estimation problem was solved using noise levels α = 5% and 10% to analyze the impact ran-

dom noise in the data set has on the model’s ability to recover the original parameters. The

parameter estimation problem on simulated data was solved for the Klausmeier and Litch-

man model, the multi-species variant of their model, and the proposed model incorporating

preferential nutrient uptake.

The Klausmeier and Litchman Model

In this application, q ∈ R12 is a vector of the form

q = [Rin, h, Iin, abg, a, r,m,KR, KI,, Y, ε,Kswim]T ,

and

Y (t; q) =
zb
2

(
N∑
k=1

b(wk+1, t, q) + b(wk, t, q)

)

≈
∫ zb

0

b(w, t, q)dw. (4.3)

Note that the diffusion parameters Db and DR along with the swimming speed νmax were

excluded from the parameter vector. These parameters were not included due to the nu-

merical stability of the solution to the inverse problem. When the diffusion coefficients are

large, artificial oscillations are introduced into the solution and when the swimming speed

is made too large, the numerical solutions become singular.

Solving the parameter estimation problem, model simulations with 5% and 10% noise

were generated. Each parameter in q was augmented by 5% from the reported values in

literature and was used as an initial guess in the optimization routine. The results of these

experiments are given in Tables 4.1 and 4.2.

Overall, the two parameter estimation problems give results which are consistent with

the original parameter values with total error of 1.38% and 2.53% for α = 0.05 and α = 0.1
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Parameter Original Value Recovered Value Relative Error
Rin 100 95.630 -0.0437
h 0.01 0.0102 0.0237
Iin 1400 1517.65 0.0840
abg 0.35 0.348 -0.0049
a 1.0× 10−5 1.01× 10−5 0.0112
r 0.4 0.409 0.0234
m 0.2 0.208 0.0377
KR 1 1.081 0.0809
KI 50 52.686 0.0537
Y 1000 1059.635 0.0596
ε 0.3 0.323 0.0753

Kswim 0.001 0.0011 0.1074

Table 4.1: Comparing the original and recovered values of the parameters in q when α = 0.05.

Parameter Original Value Recovered Value Relative Error
Rin 100 101.824 0.0182
h 0.01 0.00992 -0.0085
Iin 1400 1518.67 0.0848
abg 0.35 0.341 -0.0247
a 1.0 × 10−5 1.04 × 10−5 0.0373
r 0.4 0.402 0.0060
m 0.2 0.204 0.0177
KR 1 1.119 0.1188
KI 50 55.092 0.1018
Y 1000 1026.329 0.0263
ε 0.3 0.326 0.0867

Kswim 0.001 0.00110 0.0990

Table 4.2: Comparing the original and recovered values of the parameters in q when α = 0.1.

respectively. Since the optimized parameter values are close to the original parameter values,

we can say that the parameters in q are identifiable. The parameters with the largest

relative error in both estimation problems were Iin, KR, ε, and Kswim. While Iin is an

identifiable parameter, in practical applications this term would not be included in the

parameter estimation problem since it is possible to accurately measure incident light both

in the field and in laboratory settings with minimal difficulty. As for the other parameters,

the absolute error is small and within the reported literature values.
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Multi-species Klausmeier and Litchman Model (N=2)

In this application, q ∈ R19 is a vector of the form

q =[Rin, h, Iin, abg, a1, a2, r1, r2,m1,m2, KR,1, KR,2, KI,1, KI,2, Y1, Y2, ε1,

ε2, Kswim]T ,

and

Y (t; q) =
zb
2

[
N∑
k=1

(b1(wk+1, t, q) + b1(wk, t, q)) +
N∑
k=1

(b2(wk+1, t, q) + b2(wk, t, q))

]

≈
∫ zb

0

(b1(w, t, q) + b2(w, t, q))dw. (4.4)

Note that the diffusion parameters Db1 , Db2 , DR and the swimming speeds ν1max and ν2max

were excluded from the parameter vector.

Solving the parameter estimation problem, model simulations with 5% and 10% noise

were generated. Each parameter in q was augmented by 5% from the reported values in

literature and was used as an initial guess in the optimization routine. The results of solving

the inverse problem with α = 0.05 and α = 0.1 are given in Tables 4.3 and 4.4.

Overall, the two parameter estimation problems give results which are consistent with

the original parameter values and with total error of 1.45% and 2.91% for α = 0.05 and

α = 0.1 respectively. Since the optimized values are close to the original values, in this case

we say that the parameters in q are identifiable.

The parameters with largest relative error in both estimation problems were Iin, KR,1,

KR,2, KI,2, and ε1. As before, the parameter Iin can be excluded from the parameter vector

q in practical applications while the other parameters would be useful to include. While the

relative error for these terms is larger than for the other parameters in q, the absolute error

is small. Additionally, the optimized parameter values are within the acceptable ranges of

the reported literature values.
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Parameter Original Value Recovered Value Relative Error
Rin 100 104.973 0.0497
h 0.01 0.0098 -0.0233
Iin 1400 1581.18 0.1294
abg 0.35 0.350 0.0011
a1 1.0 × 10−5 9.983 × 10−6 -0.0017
a2 1.0 × 10−5 9.655 × 10−6 -0.0345
r1 0.4 0.395 -0.0132
r2 0.4 0.449 0.1233
m1 0.2 0.207 0.0347
m2 0.1 0.102 0.0169
KR,1 1 0.896 -0.1036
KR,2 10 11.169 0.1169
KI,1 50 49.725 -0.0055
KI,2 5 6.350 0.2699
Y1 1000 1064.78 0.0648
Y2 1000 978.273 -0.0217
ε1 0.1 0.120 0.2043
ε2 0.1 0.103 0.0328

Kswim 0.001 0.00105 0.0595

Table 4.3: Comparing the original and recovered values of the parameters in q when α = 0.05.

Another important feature of these results is the larger relative error in the optimized

values for the half-saturation parameters KI,1, KI,2, KR,1, and KR,2. In the multi-species

model, these parameters were chosen so that one species is a better light competitor while

the other species is a better nutrient competitor. These parameters help determine the

preferred depth these species reside in within the water column. The deviations presented in

the recovered values compared to the original model values further highlights the importance

that these parameters have on understanding phytoplankton population dynamics along side

the more biologically obvious parameters such as the growth and loss rates.
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Parameter Original Value Recovered Value Relative Error
Rin 100 104.970 0.0497
h 0.01 0.0102 0.0185
Iin 1400 1498.81 0.0706
abg 0.35 0.344 -0.0169
a1 1.0 × 10−5 1.037 × 10−5 0.0371
a2 1.0 × 10−5 1.029 × 10−5 0.0285
r1 0.4 0.430 0.0750
r2 0.4 0.418 0.0456
m1 0.2 0.218 0.0904
m2 0.1 0.105 0.0518
KR,1 1 1.085 0.0846
KR,2 10 10.709 0.0709
KI,1 50 52.939 0.0588
KI,2 5 5.537 0.1074
Y1 1000 1074.19 0.0742
Y2 1000 1033.74 0.0337
ε1 0.1 0.107 0.0724
ε2 0.1 0.105 0.0481

Kswim 0.001 0.00105 0.0482

Table 4.4: Comparing the original and recovered values of the parameters in q for α = 0.1.

Preferential Nutrient Uptake Model

In this application, q ∈ R26 is a vector of the form

q =[Rin1 , Rin2 , h, Iin, abg, a1, a2, r1, r2,m1,m2, KR1,1, KR1,2, KR2,1,

KR2,2, KI,1, KI,2, Y1, Y2, ε1,1, ε1,2, ε2,1, ε2,2, Kswim, λ, n]T ,

and

Y (t; q) =
zb
2

[
N∑
k=1

(b1(wk+1, t, q) + b1(wk, t, q)) +
N∑
k=1

(b2(wk+1, t, q) + b2(wk, t, q))

]

≈
∫ zb

0

(b1(w, t, q) + b2(w, t, q))dw, (4.5)

as before with the multi-species Klausmeier and Litchman model. Note that the diffusion

parameters Db1 , Db2 , DR1 , DR2 and the swimming speeds ν1max and ν2max were excluded
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from the parameter vector. As stated before, this exclusion was made due to issues with

numerical stability of the solution to the model.

Solving the parameter estimation problem, model simulations with 5% and 10% noise

were generated. Each parameter in q was augmented by 5% from the reported values in

literature and was used as an initial guess in the optimization routine. The results of solving

the inverse problem with α = 0.05 and α = 0.1 are given in Tables 4.5 and 4.6.

Parameter Original Value Recovered Value Relative Error
Rin1 150 174.386 0.1626
Rin2 100 107.932 0.0793
h 0.01 0.00993 -0.0073
Iin 1400 1219.38 -0.1290
abg 0.15 0.156 0.0421
a1 1.0 × 10−5 1.18 × 10−5 0.1796
a2 1.0 × 10−4 9.49 × 10−5 -0.0505
r1 0.4 0.375 -0.0619
r2 0.4 0.408 0.0189
m1 0.2 0.203 0.0156
m2 0.1 0.099 -0.0078
KR1,1 1 0.775 -0.2250
KR1,2 1 1.052 0.0518
KR2,1 10 13.128 0.3128
KR2,2 10 7.720 -0.2280
KI,1 50 77.521 0.5504
KI,2 5 5.183 0.0366
Y1 1000 975.930 -0.0241
Y2 1000 1080.346 0.0803
ε1,1 0.1 0.107 0.0656
ε2,1 0.1 0.0870 -0.1310
ε1,2 0.1 0.098 -0.0190
ε2,2 0.1 0.138 0.3782
Kswim 0.001 0.00088 -0.1235
λ 0.8 1.046 0.3069
n 4 3.905 -0.0238

Table 4.5: Comparing the original and recovered values of the parameters in q for α = 0.05.

Overall, the two parameter estimation problems give estimated parameters that are close

to the true values with error of 4.15% and 8.32% error for α = 0.05 and α = 0.1 respectively.

The parameters with the largest relative error in both estimation problems were a1, KR1,1,
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Parameter Original Value Recovered Value Relative Error
Rin1 150 156.262 0.0417
Rin2 100 108.142 0.0814
h 0.01 0.00840 -0.1602
Iin 1400 1452.37 0.0374
abg 0.15 0.168 0.1172
a1 1.0 × 10−5 3.71 × 10−6 -0.6292
a2 1.0 × 10−4 9.89 × 10−5 -0.0112
r1 0.4 0.403 0.0063
r2 0.4 0.419 0.0480
m1 0.2 0.201 0.0074
m2 0.1 0.100 0.0039
KR1,1 1 1.144 0.1438
KR1,2 1 0.875 -0.1247
KR2,1 10 10.539 0.0539
KR2,2 10 9.968 -0.0032
KI,1 50 92.603 0.8521
KI,2 5 4.806 -0.0388
Y1 1000 1108.37 0.1084
Y2 1000 1124.76 0.1248
ε1,1 0.1 0.113 0.1279
ε2,1 0.1 0.091 -0.0924
ε1,2 0.1 0.108 0.0816
ε2,2 0.1 0.108 0.0842
Kswim 0.001 0.0010 0.0012
λ 0.8 1.084 0.3548
n 4 4.776 0.1940

Table 4.6: Comparing the original and recovered values of the parameters in q for α = 0.1.

KI,1, and λ . While the optimized values differ from the true value, they are within the

reported ranges in the literature and are biologically feasible. The parameters a1, KR1,1, and

KI,1 are species dependent and can have a wide range of values [49].

Further, while there are ways to empirically determine the algal attenuation coefficients

and light and nutrient saturation constants in a laboratory setting, the experiments are

time consuming and can be expensive. The parameter λ is dependent on the relationship

between the two nutrients and can include factors such as which nutrient is more limiting

in the environment (important in estuaries when comparing the availability of phosphorous

and nitrogen) and which one is more energetically efficient to uptake (important in ma-
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rine environments when comparing different forms of nitrogen uptake such as nitrate and

ammonium).

4.2 Global Sensitivity Analysis

Beyond parameter identifiability, another important aspect of a model’s parameter space

is measuring how parameters interact to influence the dynamics of the model. Various

methods such as local sensitivity analysis, global sensitivity analysis and Bayesian methods

are available to test how important parameters and groups of parameters are to model

dynamics [55].

Global sensitivity analysis has an advantage over Bayesian methods since these methods

tend to not require prior information which is needed for a Bayesian approach and are only

dependent on the structure of the model itself. Two common measures for global sensitivity

analysis are given by Morris screening and Sobol decomposition [55]. The Sobol decom-

position is a variance based method which is sensitive to the size of the parameter space

and the complexity of the model. Screening methods provide an alternative for identifying

critical parameters and are able to generally provide a ranking for parameters in terms of

importance. However, unlike the variance based methods, screening methods are not able

to quantify how much more important one parameter is compared to another [55].

4.2.1 The Morris Screening Procedure

Consider the model y = f(q) where q = [q1, . . . , qn] is the set of parameters scaled such

that qi ∈ [0, 1]. To construct the Morris screening, partition [0, 1] into `-levels. Then the

elementary effect associated with the i-th input is given by the difference quotient

di(q) =
f(q1, . . . , qi−1, qi + ∆, . . . , qn)− f(q1, . . . , qn)

∆
=
f(q + ∆ei)− f(q)

∆
(4.6)
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where the step size ∆ is chosen from the set

∆ ∈
{ 1

`− 1
, . . . , 1− 1

`− 1

}
= Γ`. (4.7)

The elementary effects di approximate large scale, local sensitivity at the point q. The step

size is taken large to cover the entire parameter space. For r sample points, the sensitivity

measures for qi are the sample mean and the sample variance given by

µ∗i =
1

r

r∑
j=1

|dji (q)| (4.8)

and

σ2
i =

1

r − 1

r∑
j=1

(
dji (q)−

1

r

r∑
j=1

dji (q)
)2

, (4.9)

where

dji =
f(qj + ∆ei)− f(qj)

∆
(4.10)

is the elementary effect associated with the i-th parameter in the j-th sample [55]. The mean

quantifies the individual impact that a parameter has on the output while the variance es-

timates the effects of interactions with other inputs. As with the parameter estimation

problem, the Morris screening procedure was performed on the Klausmeier and Litchman

model, the multi-species variant of their model, and the proposed model incorporating pref-

erential nutrient uptake. Of particular interest are the different parameters that will be

identified as significant as more complex biological dynamics are introduced to the models

and what parameters, if any, are consistently identified.

The Klausmeier and Litchman Model

In this application, q ∈ R15 is a vector of the form

q = [Rin, h, Iin, abg, a,DR, Db, νmax, r,m,KR, KI , Y, ε,Kswim]T .
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Note that unlike the parameter estimation problem, the diffusion coefficients and the swim-

ming speed are included. When implementing this procedure, ` was chosen sufficiently large

(` = 10) and was done 50 times before constructing µ and σ2.

Figure 4.1: Morris screening results for the phytoplankton biomass. Parameters in the
q vector are on the horizontal axis in order as listed in the vector. The averages µi are
displayed on the vertical axis.

Examining Figure 4.1, we immediately see that for b(z, t) the most important parameter

in q is q12 which corresponds to the mortality coefficient m. Based on theoretical analysis of

this model in [11], [12], [13], and [25], this result is consistent since the death rate impacts

the existence of unique positive steady state solutions to the system. It can be further shown

that when the death rate is above a critical level, then the solution of the biomass equation

converges to 0 uniformly as t→∞ [14].

For the limiting nutrient R(z, t), the Morris screening procedure highlights a different

set of parameters for consideration. As can be seen in Figure 4.2, the parameters now

highlighted by the procedure are q1, q2, q10, q13, and q14 which correspond to the parameters

Rin, h, m, Y, and ε. As with the biomass, the parameter m also makes an appearance as
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Figure 4.2: Morris screening results for the liming nutrient. Parameters in the q vector are
on the horizontal axis in order as listed in the vector. The averages µi are displayed on the
vertical axis.

an important parameter. However, compared to the other four parameters present, it is

the least important. The remaining parameters are all connected with terms used to model

the nutrient dynamics. Rin and h are parameters in the boundary term at z = zb which

corresponds to nutrients in the sediment layer that are able to released into the water column.

The parameter Y , the yield coefficient, relates to how much nutrient a cell is able to uptake

while the parameter ε is the recycling coefficient and relates to the proportion of nutrient

released back into the environment upon cell death. These parameters are consistent with

biological intuition about the system.

Ranking of the top 5 parameters for b(z, t) and R(z, t) are given in Table 4.7. An impor-

tant note is that DR, Db, and KR had a mean of 0 under the Morris screening. This indicates

that these parameters are not influential for the model and can be fixed in subsequent model

sensitivity analysis, and uncertainty quantification to reduce model complexity [55].
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Ranking b(z, t) R(z, t)
1 m Y
2 Iin ε
3 r Rin

4 abg h
5 KI m

Table 4.7: Ranking the top 5 most important parameters in q from the Morris screening.

Multi-species Klausmeier and Litchman Model (N=2)

In this application, q ∈ R24 is a vector of the form

q =[Rin, h, Iin, abg, a1, a2, DR, Db1 , Db2 , ν1max , ν2max , r1, r2,m1,m2, KR,1, KR,2, KI,1,

KI,2, Y1, Y2, ε1, ε2, Kswim]T .

Note the diffusion coefficients and the swimming speeds are included in this procedure. When

implementing this procedure, ` was chosen sufficiently large (`=10) and was done 50 times

before constructing µ and σ2.

Examining Figure 4.3, we can see immediately that for b1(z, t) the most important param-

eters in q are q4, q18, and q15 which correspond to the parameters abg, KI,1, and m2 respec-

tively. In contrast to the single species model, in the Morris screening results, the parameters

highlighted by that procedure for b1 as being significant were abg and KI,1-parameters re-

lating to light absorption and light utilization by the first phytoplankton species. This is

consistent with how the model was parameterized originally: the parameters were chosen

such that KI,2 < KI,1, KR,1 < KR,2, and m1 6= m2 so that the first species has a growth

rate with proportionally larger requirement on light availability, the second species has a

growth rate with proportionally larger requirement on nutrient availability, and we exclude

the possibility of the principle of competitive exclusion resulting in the extinction of one of

the phytoplankton species. Also of note, it is the mortality rate of the second species m2

rather than m1 which is highlighted as important for species 1. This is consistent with the
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Figure 4.3: Morris screening results for the phytoplankton biomass by species. Parameters
in the q vector are on the horizontal axis in order as listed in the vector. The averages µi
are displayed on the vertical axis.

hypothesis that coexistence in spatially variable habitats can result from a growth based

trade-off [26], [53],[56], [63].

Indeed, when examining Figure 4.3 for b2(z, t) we see immediately that the most impor-

tant parameters in q are q4, q15, q2, q6, and q19 which correspond to abg, m2, h, a2, and KI,2,

respectively. While m2 is a natural candidate for parameter importance for b2(z, t) since it

corresponds to the death rate of the second species, the most important parameter high-

lighted by the Morris screening was the background attenuation coefficient abg. This term

appears in Equation (2.21) and it accounts for light absorbed by inorganic sediments. Since

the parameters were chosen in such a way that the second species would require proportion-

ally less light than nutrients, the importance in how much light is absorbed throughout the

depth of the water column further highlights the importance of light dynamics in phytoplank-

ton populations. This is further reinforced by the appearance of the attenuation coefficient

a2 and the half-saturation constant KI,2. Finally, given the model parametrization, the im-
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portance of the parameter h is consistent with phytoplankton which reside deeper in the

water column close to the sediment layer where nutrients are able to be introduced into the

environment as the second species is constructed.

Figure 4.4: Morris screening results for the limiting nutrient. Parameters in the q vector are
on the horizontal axis in order as listed in the vector. The averages µi are displayed on the
vertical axis

For the limiting nutrient R(z, t), the Morris screening procedure highlights a different

group of parameters for importance from the biomass but consistent with the results from

the one species model. Examining Figure 4.4 we see that the most important parameters

in q are q20, q21, q22, q23, q2, and q1 which correspond to the parameters Y1, Y2, ε1, ε2, h,

and Rin respectively. These parameters are consistent with the construction of R(z, t) since

they all appear in Equations (2.19) and (2.20). From physical considerations, h and Rin are

logical since it describes how nutrients enter the water column from the sediment layer at

the bottom: the more porous the sediment layer is and the more nutrient rich the sediment

is, the more nutrients will diffuse into the water column. Physiologically, ε1 and ε2 have a

similar relationship. While ε1, ε2 ∈ [0, 1], the closer to 1 these parameters are, the larger the
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portion of nutrients are released into the environment upon phytoplankton death.

Ranking b1(z, t) b2(z, t) R(z, t)
1 abg abg Y1

2 KI,1 m2 Y2

3 m2 h ε1

4 ν1max a2 ε2

5 m1 KI,2 h

Table 4.8: Ranking the top 5 most important parameters in q from the Morris screening.

The top 5 parameter rankings for b1(z, t), b2(z, t), and R(z, t) are given in Table 4.8

above. One interesting feature to note is that for all three equations the parameters Db1 ,

Db2 , DR, KR,1, and KR,2 had a mean of 0 under the Morris screening. This would indicate

that these parameters are not influential for the model and can be fixed in subsequent model

calibration, sensitivity analysis, and uncertainty quantification to reduce model complexity

[55].

Preferential Nutrient Uptake Model

In this application, q ∈ R32 is a vector of the form

q =[Rin1 , Rin2 , h, Iin, abg, a1, a2, DR1 , DR2 , Db1 , Db2 , ν1max , ν2max ,

r1, r2,m1,m2, KR1,1, KR1,2, KR2,1, KR2,2, KI,1, KI,2, Y1, Y2,

ε1,1, ε1,2, ε2,1, ε2,2, Kswim, λ, n]T .

Note the diffusion coefficients and the swimming speeds are included in this procedure. When

implementing this procedure, ` was chosen sufficiently large (`=10) and was done 50 times

before constructing µ∗ and σ2.

Examining Figure 4.5 we see that the most important parameters for b1(z, t) in q are

q17, q4, and q16 which correspond to the parameters m2, Iin, and m1 respectively. From

a biological perspective, Iin and m1 are expected as they represent incident light and the

death rate of the first phytoplankton species respectively. For b2(z, t) we see that the most
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Figure 4.5: Morris screening results for the phytoplankton biomass by species. Parameters
in the q vector are on the horizontal axis in order as listed in the vector. The averages µ∗i
are displayed on the vertical axis.

important parameters in q are q17, q5, and q15 which correspond to the parameters m2, abg

and r2 respectively.

The parameter m2, representing the loss rate of species 2, was chosen so that the principle

of competitive exclusion would not hold allowing for the coexistence of the two phytoplank-

ton species in the model simulations. For that reason its importance for b1 and b2 is expected.

Having both Iin and abg being identified by the screening procedure emphasizes the impor-

tance of understanding how phytoplankton species compete and utilize light for coexistence.

For the nutrients R1(z, t) and R2(z, t) the Morris screening procedure highlights a dif-

ferent group of parameters for importance. Examining Figure 4.6 we see that the most

important parameters in q for R1(z, t) are q25, q27, and q8 which correspond to Y2, ε1,2, and

r2 respectively. In comparison, for R2(z, t) the parameters q25, q29, and q24 which correspond

to Y2, ε2,2, and Y1 are the top three ranked parameters. Given the assumptions of how the

biomass groups were constructed – one species favoring light, the other favoring nutrients
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Figure 4.6: Morris screening results for the nutrients. Parameters in the q vector are on the
horizontal axis in order as listed in the vector. The averages µ∗i are displayed on the vertical
axis

– the dependence on the amount of nutrient in each cell and how much of the preferred

nutrient released upon cell death is biologically feasible to allow coexistence.

Parameter rankings for b1(z, t), b2(z, t), R1(z, t), and R2(z, t) are given in Table 4.9 below.

Ranking b1(z, t) b2(z, t) R1(z, t) R2(z, t)
1 m2 m2 Y2 Y2

2 Iin abg ε1,2 ε2,2

3 m1 r2 r2 Y1

4 ν1max KI,2 Y1 r2

5 Kswim ν2max r1 ε2,1

Table 4.9: Ranking the top 5 most important parameters in q from the Morris screening.

The diffusion parameters Db1 , Db2 , DR1 and DR2 as well as the shape parameter n all had

a mean of 0 under the Morris screening. This indicates that these parameters are not influ-

ential for the model and can be fixed in subsequent model calibration, sensitivity analysis,

and uncertainty quantification to reduce model complexity [55]. Other parameters that were

highlighted such as swimming speeds and light half saturation constants further demonstrate
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the importance of phytoplankton’s potential abilities to regulate their position in bodies of

water to adapt to various resource gradients.

4.2.2 The Sobol Decomposition

The construction of the Sobol decomposition is adapted from [55] and [62]. Consider the

scalar valued non-linear model Y = f(q) where q = [q1, q2, . . . , qp] is defined so that the qi are

independent random variables uniformly distributed on [0, 1]. The Sobol indices are based

on a second-order High Dimensional Model Representation (HDMR) given by

f(q) ≈ f0 +

p∑
i=1

fi(qi) +
∑

1≤i<j≤p

fij(qi, qj), (4.11)

where f0 is a constant, fi is a function of qi, fij is a function of qi and qj, etc.

Since the representation is not unique, constraints are placed to ensure uniqueness of the

representation. This is accomplished by minimizing the functional

J =

∫
[0,1]p

[
f(q)−

(
f0 +

p∑
i=1

fi(qi) + · · ·+
∑

i1<···<is

fi1i2...is(qi1 , qi2 , . . . , qis)
)]2

dq (4.12)

subject to ∫ 1

0

fi1i2...,is(qi1 , . . . , qis)dqik = 0 (4.13)

for k = 1, . . . , s and s = 1, . . . , p so that all the terms in the function decomposition are

orthogonal. The component functions fi and fij are given by

fi =

∫
[0,1]p−1

f(q) dq∼i (4.14)

and

fij =

∫
[0,1]p−2

f(q) dq∼i,j, (4.15)
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where the notation dq∼i represents dq1, . . . , dqi−1, dqi+1, . . . , dqp.

The Sobol decomposition method uses the expansion given in equation (4.9) to quantify

the contribution of each parameter to the variance of the response. The total variance of the

response Y is defined by

D = Var(Y ) =

∫ 1

0

f 2(q) dq − f 2
0 , (4.16)

where f0 is the mean response given by

f0 =

∫ 1

0

f(q) dq. (4.17)

To define the Sobol indices, we rewrite D as the sum of variances due to first-order and

second-order parameter interactions by

D =

p∑
i=1

Di +
∑

1≤i<j≤p

Dij, (4.18)

where

Di =

∫ 1

0

f 2
i (qi) dqi (4.19)

and

Dij =

∫
[0,1]2

f 2
ij(qi, qj) dqidqj. (4.20)

The Sobol indices are then defined by

Si =
Di

D
, and Sij =

Dij

D
, (4.21)

for i, j = 1, . . . , p. The indices given by Si are the first-order sensitivity indices and measure

the contribution of the parameter qi on the response variance, while the indices given by Sij

measure the interaction of parameters qi and qj on the response variance.

The computation of first and second-order indices requires p+ p(p−1)
2

model responses. To
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reduce the computational cost, total sensitivity indices STi which quantify the total impact

of a parameter qi on the response are defined by

STi = Si +

p∑
j=1

Sij. (4.22)

As with the parameter estimation problem and the Morris screening procedure, the Sobol

Decomposition was performed on the Klausmeier and Litchman model, the two species

variant of their model, and the proposed model incorporating preferential nutrient uptake.

Similarly to the Morris screening, of particular interest are the different parameters that will

be identified as significant as more complex biological dynamics are introduced to the models

and what parameters, if any, are consistently identified. In this application the vector q is

the same as the vector used in the Morris screening.

The Klausmeier and Litchman Model

As with the Morris screening, for the biomass term b(z, t), the main parameter of importance

that is highlighted is the mortality coefficient m as shown in Figure 4.7. The consistency

between both methods in accordance with the established theoretical analysis is significant

as it indicates that these methods are able to consistently detect influential parameters.

The next most significant parameters identified by the Sobol decomposition method for

this model are q5, q3, q12, and q9 which correspond to the parameters a, Iin, KI , and r.

However the order of magnitude for a is 10−7, while the other parameters are of order of

magnitude 10−8. Unlike the Morris screening method which is able to give just an ordered

ranking, the Sobol decomposition can determine that the mortality parameter m is much

more significant since it has an order of magnitude of 10−1 which is significantly larger than

the next highest ranked terms.

Unlike the biomass term where the global sensitivity analysis gave consistent results

for ranking parameter importance, when the nutrient term R(z, t) is analyzed additional
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Figure 4.7: Sobol decomposition results for the biomass. Parameters in the q vector are
on the horizontal axis in order as listed in the vector. The total sensitivity indices ST are
displayed on the vertical axis.

parameters are filtered out. In the Morris screening, the parameters Rin, h, m, Y, and ε

were the top 5 parameters in ranking while in the Sobol decomposition the two parameters

that are highlighted as significant are Y and ε as demonstrated in Figure 4.8. Under the

Sobol decomposition, the parameter m is order of magnitude of 10−2 while the parameters

Rin and h are both of order 10−8 which is significantly smaller than the rankings of Y and ε.

While these parameters were all consistent with the biological intuition about the system,

this result suggests that these parameters do not play as critical of a role in the overall

dynamics of R(z, t) in numerical simulations as compared to Y and ε.

As with the Morris screening, the parameters DR, Db, and KR had a total sensitivity

index of 0 for both the biomass and the nutrient terms. This carries the same interpretation

as it did in the case of the Morris screening stated previously.
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Figure 4.8: Sobol decomposition results for the limiting nutrient. Parameters in the q vector
are on the horizontal axis in order as listed in the vector. The total sensitivity indices ST
are displayed on the vertical axis.

Multi-species Klausmeier and Litchman Model (N=2)

Unlike the Morris screening results presented in Figure 4.3, the Sobol decomposition results

given in Figure 4.9 show that the mortality ratesm1 andm2 have the largest impact on b1(z, t)

and b2(z, t) respectively. The other parameters in the vector q have orders of magnitude

10−5 and lower for b1(z, t) and 10−6 and lower for b2(z, t). While the parameters that showed

up in the Morris screening as being significant are among the next highest ranked in the

Sobol decomposition, the difference in the order of magnitude is significant. This result

is consistent with theoretical analysis of a related two species phytoplankton competition

model considered in [13].

Similarly to the one species variant, when the multi-species Klausmeier and Litchman

models parameter space is analyzed with the Sobol decomposition, the number of parameters

identified as significant is filtered down to the yield coefficient Y1 and Y2 along with the
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Figure 4.9: Sobol decomposition results for the phytoplankton biomass by species. Param-
eters in the q vector are on the horizontal axis in order as listed in the vector. The total
sensitivity indices ST are displayed on the vertical axis.

recycling coefficients ε1 and ε2 as seen in Figure 4.10. The parameters resulting from the

boundary term at the sediment layer, Rin and h, have a total sensitivity index on the order of

magnitude of 10−9 under this procedure. The mortality coefficient m2 has a total sensitivity

index order of magnitude of 10−5 and the background attenuation coefficient abg has a total

sensitivity index of order 10−8 magnitude. These are significantly smaller than the rankings

for the yield and recycling coefficients.

As with the single species variant, the diffusion parameters Db1 , Db2 , and DR along

with the nutrient half-saturation constants KR,1 and KR,2 have total sensitivity index of

order 0 for all three components considered. As stated previously, this result has the same

interpretation as it did in the Morris screening.
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Figure 4.10: Sobol decomposition results for the phytoplankton biomass by species. Param-
eters in the q vector are on the horizontal axis in order as listed in the vector. The total
sensitivity indices ST are displayed on the vertical axis.

Preferential Nutrient Uptake Model

Unlike the Morris screening results presented in Figure 4.5, the Sobol decomposition results

given in Figure 4.11 show that the loss rates m1 and m2 have the largest impact on b1(z, t)

and b2(z, t) respectively. However, this result is consistent with the multi-species Klausmeier

and Litchman model. This further highlights the importance these parameters have on the

dynamics of the system which is similar to the role the parameterm has in the Klausmeier and

Litchman model. The other parameters in the vector q had a sensitivity index ST of orders

of magnitude of 10−6 to 0 indicating there was little to no impact on the response variance.

From a computational standpoint, this results is consistent to the numerical sensitivity the

model has to the mortality coefficients.

The Sobol decomposition results for R1(z, t) and R2(z, t) are given in Figure 4.12. As

with the Morris screening, the Sobol decomposition method identified the parameters Y2,

72



Figure 4.11: Sobol decomposition results for the phytoplankton biomass by species. Param-
eters in the q vector are on the horizontal axis in order as listed in the vector. The total
sensitivity indices ST are displayed on the vertical axis.

ε1,2, Y1 and r2 as having the largest impact on R1(z, t) and the parameters Y2, ε2,2, Y1 and

r2 on R2(z, t). While this method does identify the parameters r2 and Y1 having an impact

on the response variance, it is less than what the Morris screening procedure indicates.

These parameters are also consistent with the biological assumptions of the model since

the growth rates r1 and r2 along with the yield coefficients Y1 and Y2 impact how much

nutrient cells are drawing from the environment and can utilize while the recycling coefficients

ε1,1, ε1,2, ε2,1, and ε2,2 represent proportions of each nutrient that is released back into the

water column upon cell death. This is also consistent with both the single species and

multi-species Klausmeier and Litchman models.

Overall, the analysis of the parameter spaces of all three models demonstrates that these

class of models is well-suited for experimental data. In addition to having low total error,

the inverse problems were able to be successfully solved as the size of the parameter space

increased from the base case given by the Klausmeier and Litchman model to the most com-
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Figure 4.12: Sobol decomposition results for the nutrients. Parameters in the q vector are
on the horizontal axis in order as listed in the vector. The total sensitivity indices ST are
displayed on the vertical axis.

plex case given by the proposed preferential uptake model. Further, for all three models, the

only parameters which were excluded from the inverse problem were parameter affected the

numerical stability of the solution. These results can be improved by removing parameters

which can be easily measured from the parameter vector. The incident light parameter, Iin,

used in all three models fits this requirement.

Additional restrictions to parameters used in the inverse problem can be made by using

the insights from the global sensitivity analysis. Certain parameters that were estimated

with higher relative error can be eliminated from the parameter vector if it does not show up

in sensitivity screening. For example, the parameters KI , KR, and Kswim in the Klausmeier

and Litchman model, the parameters r2, KR,1, and KR,2 in the multi-species Klausmeier and

Litchman model, and the parameters a1, KR1,1, KR2,1, KR2,2, KI,1, and λ are all parameters

that fit this requirement.

Along with gaining insights reducing the complexity of the parameter estimation prob-
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lem, the results of the global sensitivity analysis for all three models identify important

parameters that govern the dynamics of the system. Given the large number of parameters

present in the three models considered and the nonlinear interactions between parameters,

it is advantageous to find theoretical approximations to these models which can determine

both the location of phytoplankton layers as well as an approximation of the total biomass

present. We go about this by considering a game theoretic approach where the depth of

phytoplankton layers are treated as the strategy that is adopted. We then solve for the

equilibrium distribution of the system.
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5 The Evolutionary Stable Strategy

In [35] it is observed that as the swimming velocity νmax increases, the phytoplankton biomass

distributions go from a more uniform distribution (νmax = 0) to increasingly concentrated

in thin layers. Dimensional analysis done on the Klausmeier and Litchman model shows

that the width of a layer of phytoplankton swimming toward a preferred depth and mixed

by diffusion processes is proportional to
D

νmax
. From the literature, order of magnitude

estimates of these parameters are available. Swimming velocity νmax ranges from 101 m d−1

to 102 m d−1 [49]. Typical diffusion coefficients range from D = 101 m2 d−1 in poorly mixed

hypolimnia in stratified water columns to D = 103 m2 d−1 in well-mixed water columns

[31]. Simulations of the Klausmeier and Litchman model (Equations (2.7) - (2.11)) as νmax

increases from 0 to 100 m d−1 are given in Figure 5.1.

The known parameter ranges imply that the thickness of a layer under poorly mixed

conditions ranges from 0.1–1 m while a layer under well mixed conditions ranges from 10–100

m. Given the field observations of thin phytoplankton layers in poorly mixed water columns

and the calculations above, Klausmeier and Litchman propose that the location of a layer

of phytoplankton can be approximated by an infinitely thin layer in a game theoretical

approach [35]. For the game theoretic approach, it is assumed that the phytoplankton form

an infinitely thin layer at a depth zl by setting b(z) = Bδzl(z), where δzl(z) is a Dirac delta

function and B is the total depth-integrated biomass. That is,

B =

∫ zb

0

b(z) dz. (5.1)

It is further assumed that active movement is sufficient to overcome biomass mixing(
Db

νmax
� zb

)
so that Db = 0 is set. From these assumptions, the game theoretic approach

outlined in [35] is as follows. Given a layer at zl, calculate the equilibrium biomass of

phytoplankton and distribution of nutrients and light in the absence of movement and then
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Figure 5.1: Model simulations of Equations (2.7) - (2.11) as νmax increases from 0 m d−1 to
100 m d−1. The upper left panel uses νmax = 0 m d−1. The upper right panel uses νmax = 1
m d−1. The lower left panel uses νmax = 10 m d−1. The lower right panel uses νmax = 100
m d−1.

determine whether net growth is possible above or below the layer at zl. A strategy is said

to be evolutionarily stable if, when the whole population is using this strategy, any small

group of invaders using a different strategy will eventually die off over time [15]. Thus, the

Evolutionary Stable Strategy (ESS) depth, z?, is the depth of a layer that prevents

phytoplankton from growing throughout the rest of the water column [18], [42]. Net growth,

g(z), fails when g(z) ≤ 0 and occurs when there are insufficient nutrients, R(z) ≤ R?, or

because there is insufficient light, I(z) ≤ I?, where R? and I? are the minimum nutrient and

light levels necessary for growth to occur.

For the Klausmeier and Litchman model, when phytoplankton are absent (b(z) = 0),

nutrients are uniformly distributed (R(z) = Rin) and light declines exponentially with depth
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due to background attenuation (I(z) = Iine
−abgz). Phytoplankton can grow if Rin > R? and

Iin > I?. These assumptions are assumed to be satisfied. Finally, the maximum depth at

which phytoplankton can grow is determined by background attenuation of light and is given

by

zmax =
ln (Iin/I

?)

abg
. (5.2)

The equilibrium distributions of the Klausmeier and Litchman model for nutrient, light,

and biomass are determined by the following system of equations:

0 = b̂(z)
(

min
(
fI(Î(z)), fR(R̂(z))

)
−m

)
, (5.3)

0 = − b̂(z)

Y
min

(
fI(Î(z)), fR(R̂(z))

)
+DR

∂2R̂

∂z2
+ εm

b̂(z)

Y
, (5.4)

∂R̂

∂z

∣∣∣∣∣
z=0

= 0, (5.5)

∂R̂

∂z

∣∣∣∣∣
z=zb

= h
(
Rin − R̂(zb)

)
, (5.6)

Î(z) = Iin exp

(
−
∫ z

0

(ab̂(w) + abg) dw

)
. (5.7)

Proposition 5.0.1. (The Equilibrium Distributions of R̂(z), Î(z), and B̂) Assume that fI

and fR are continuous functions in their respective variables. Then the solution to the system

given by Equations (5.3) –(5.7) under the ESS assumptions is given by

R̂(z) =


R̂(zl), 0 ≤ z ≤ zl,

R̂(zl) + (z − zl)
Rin − R̂(zl)

zb + 1/h− zl
, zl < z ≤ zb,

(5.8)

Î(z) =

 Iine
−abgz, 0 ≤ z < zl,

Iine
−aB̂−abgz, z ≥ zl,

(5.9)
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and

B̂ =



Y DR(Rin −R?)

m(1− ε)(zb + 1/h− zl)
, for a nutrient-limited layer,

ln(Iin/I
?)

a
− abg

a
zl, for a light-limited layer,

(5.10)

where

B̂ =

∫ zb

0

b̂(z) dz. (5.11)

Theorem 5.0.2. (Existence of z?) The ESS depth z? is determined by

ln(Iin/I
?)

a
− abg

a
z? =

Y DR(Rin −R?)

m(1− ε)(zb + 1/h− z?)
, (5.12)

which corresponds to the case of co-limitation in Equation (5.10). Further, z? is convergence

stable [16], [18]. That is, the ESS attracts solutions that do not start at the ESS. If 0 <

z? < zb, the layer occurs within the water column and corresponds to a DCM. If z? < 0 then

the layer is a light-limited surface layer and if z? > zb then the layer is a nutrient-limited

benthic layer. This solution provides a stable equilibrium of the full model (Equations (2.7)

–(2.11)) with Db = 0 and ν(∂g/∂z)|z? = 0.

Corollary 5.0.3. (The Equilibrium Biomass B̂ as a function of z?) The equilibrium biomass

can be expressed as a function of z? as

B̂ =



ln(Iin/I
?)

a
, z? ≤ 0 (surface layer)

ln(Iin/I
?)

a
− abg

a
z? =

Y DR(Rin −R?)

m(1− ε)(zb + 1/h− z?)
, 0 < z? < zb (DCM)

Y DRh

m(1− ε)
(Rin −R?), z? ≥ zb (benthic layer).

(5.13)
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In this chapter we will solve for the equilibrium distributions of the multi-species version

of the Klausmeier and Litchman model in the case when N = 2 and the proposed preferential

uptake model under the ESS assumptions. Conditions for the existence of the critical depths

and convergence will be presented along with numerical demonstrations of increasingly thin

layers as the swimming velocities are increased.

5.1 Multi-species Klausmeier and Litchman Model ESS

When N = 2 the multi-species Klausmeier and Litchman Model reduces to the following

system of integro-partial differential equations:

∂b1

∂t
= min

(
fI,1(I(z, t)), fR,1(R(z, t))

)
b1 −m1b1 +Db1

∂2b1

∂t2
+

∂

∂z

(
ν1

(
∂g1

∂z

)
b1

)
, (5.14)

∂b2

∂t
= min

(
fI,2(I(z, t)), fR,2(R(z, t))

)
b2 −m2b2 +Db2

∂2b2

∂t2
+

∂

∂z

(
ν2

(
∂g2

∂z

)
b2

)
, (5.15)

∂R

∂t
= − b1

Y1

min
(
fI,1(I(z, t)), fR,1(R(z, t))

)
+ ε1m1

b1

Y1

− b2

Y2

min
(
fI,2(I(z, t)), fR,2(R(z, t))

)
+ ε2m2

b2

Y2

+DR
∂2R

∂z2
, (5.16)

I(z, t) = Iin exp

(∫ z

0

(a1b1(w, t) + a2b2(w, t) + abg) dw

)
. (5.17)

The boundary conditions for the partial differential equations are given by:

[
Db1

∂b1

∂z
+ ν1

(
∂g1

∂z

)
b1

] ∣∣∣∣∣
z=0

=

[
Db1

∂b1

∂z
+ ν1

(
∂g1

∂z

)
b1

] ∣∣∣∣∣
z=zb

= 0, (5.18)
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[
Db2

∂b2

∂z
+ ν2

(
∂g2

∂z

)
b2

] ∣∣∣∣∣
z=0

=

[
Db2

∂b2

∂z
+ ν2

(
∂g2

∂z

)
b2

] ∣∣∣∣∣
z=zb

= 0, (5.19)

∂R

∂z

∣∣∣∣∣
z=0

= 0, (5.20)

∂R

∂z

∣∣∣∣∣
z=zb

= h(Rin −R(zb)). (5.21)

As shown in Figure 5.2 , when the swimming velocities ν1max and ν2max are increased from

0 m d−1 to 100 m d−1 (all other parameters are consistent with the values listed in Table 2.2),

the phytoplankton distributions go from more uniform to increasingly more concentrated in

thin layers. Thus, we can approximate the phytoplankton distributions by an infinitely thin

layer using the game theoretic approach. To account for multiple species, we now assume

that the phytoplankton form infinitely thin layers at depths zl1 and zl2 corresponding to the

preferred depths that the species occupy based on their utilization of light and nutrients.

Thus we set b1(z) = B1δzl1 (z) and b2(z) = B2δzl2 (z) where δzl1 (z) and δzl2 (z) are Dirac delta

functions and B1 and B2 are the total depth-integrated biomasses. That is,

B1 =

∫ zb

0

b1(z) dz, (5.22)

and

B2 =

∫ zb

0

b2(z) dz. (5.23)

To find the ESS equilibrium distributions, we set the time derivatives of Equations (5.14)

– (5.16) to 0, Db1 = Db2 = 0 (active movement is sufficient to overcome biomass mixing).

Given layers at zl1 and zl2 , calculate the equilibrium biomasses and distributions of light and

free nutrient in the absence of movement, and then determine whether net growth is possible

outside of the layers at zl1 and zl2 . This results in the following system of equations:
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Figure 5.2: Model simulations of Equations (5.14) - (5.21) as ν1max and ν2max increases from
0 m d−1 to 100 m d−1. The upper left panel uses ν1max = ν2max = 0 m d−1. The upper right
panel uses ν1max = ν2max = 1 m d−1. The lower left panel uses ν1max = ν2max = 10 m d−1.
The lower right panel uses ν1max = ν2max = 100 m d−1.

0 = b̂1(z)
(

min(fI,1(Î(z)), fR,1(R̂(z)))−m1

)
, (5.24)

0 = b̂2(z)
(

min(fI,2(Î(z)), fR,2(R̂(z)))−m2

)
, (5.25)
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0 = − b̂1(z)

Y1

min(fI,1(Î(z)), fR,1(R̂(z))) + ε1m1
b̂1(z)

Y1

− b̂2(z)

Y2

min(fI,2(Î(z)), fR,2(R̂(z)))

+ ε2m2
b̂2(z)

Y2

+DR
∂2R

∂z2
, (5.26)

∂R̂

∂z

∣∣∣∣∣
z=0

= 0, (5.27)

∂R̂

∂z

∣∣∣∣∣
z=zb

= h
(
Rin − R̂(zb)

)
, (5.28)

Î(z) = Iin exp

(
−
∫ z

0

(a1b̂1(w) + a2b̂2(w) + abg) dw

)
. (5.29)

The solution to the system of is given below.

Proposition 5.1.1. (The Equilibrium Distributions of R̂(z), Î(z), B̂1, and B̂2) Assume

that fI,1, fI,2, fR,1, and fR,2 are continuous functions in their respective variables. Then

the solution to the system of equations given by Equations (5.24) –(5.29) under the ESS

assumptions is given by

R̂(z) =



R̂(zl1), 0 ≤ z ≤ zl1 ,

R̂(zl1) + (z − zl1)
Rin − R̂(zl1)

zb + 1/h− zl1
, zl1 < z ≤ zl2 ,

R̂(zl2) + (z − zl2)
Rin − R̂(zl2)

zb + 1/h− zl2
, zl2 < z ≤ zb,

(5.30)
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Î(z) =


Iine

−abgz, 0 ≤ z < zl1 ,

Iine
−a1B̂1−abgz, zl1 ≤ z < zl2 ,

Iine
−a1B̂1−a2B̂2−abgz, zl2 ≤ z ≤ zb

(5.31)

B̂1 =



Y1

m1(1− ε1)

(
DR(Rin −R?)

zb + 1/h− zl2
− m2(1− ε2)

Y2

B̂2

)
, for a nutrient-limited layer,

ln(Iin/I
?
1 )

a1

− abg
a1

zl1 , for a light-limited layer.

(5.32)

and

B̂2 =



Y2

m2(1− ε2)

(
DR(Rin −R?)

zb + 1/h− zl2
− m1(1− ε1)

Y1

B̂1

)
, for a nutrient-limited layer,

ln(I?1/I
?
2 )

a2

− abg
a2

(zl2 − zl1), for a light-limited layer,

(5.33)

where

B̂1 =

∫ zb

0

b̂1(z) dz, (5.34)

and

B̂2 =

∫ zb

0

b̂2(z) dz. (5.35)

Proof. Under the assumption of b1(z) = B1δzl1 (z) and b2 = B2δzl2 (z) with B1 and B2 as
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given in Equations (5.22) and (5.23), Equation (5.26) becomes

∂2R̂

∂z2
= 0, 0 ≤ z < zl1 , (5.36a)

∂2R̂

∂z2
= 0, zl1 < z < zl2 , (5.36b)

∂2R̂

∂z2
= 0, zl2 < z ≤ zb. (5.36c)

Now consider Equation (5.36a) with boundary condition (5.27):



∂2R̂

∂z2
= 0, 0 ≤ z < zl1

∂R̂

∂z

∣∣∣∣∣
z=0

= 0.

(5.37)

Equation (5.37) shows that the diffusion of nutrients equalizes the nutrient concentration

above the layer at zl1 . That is, R̂(z) = R̂(zl1) if 0 ≤ z ≤ zl1 . Equation (5.37) also implies

that nutrients vary linearly below the layer at zl1 , denoted by z+
l1

, to zl2 . Thus

∂R̂

∂z

∣∣∣∣∣
z=z+

l1

=
∂R̂

∂z

∣∣∣∣∣
z=zl2

=
R̂(zl2)− R̂(zl1)

zl2 − zl1
. (5.38)

Now consider Equation (5.36c) with boundary condition (5.28):



∂2R̂

∂z2
= 0, zl2 < z ≤ zb

∂R̂

∂z

∣∣∣∣∣
z=zb

= h(Rin − R̂(zl2)).

(5.39)
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Using the same argument as before, nutrients vary linearly below the layer at zl2 , denoted

by z+
l2

, to zb. Thus

∂R̂

∂z

∣∣∣∣∣
z=z+

l2

=
∂R̂

∂z

∣∣∣∣∣
z=zb

=
R̂(zb)− R̂(zl2)

zb − zl2
. (5.40)

From Equation (5.40) and Equation (5.28) we obtain

h(Rin − R̂(zb)) =
R̂(zb)− R̂(zl2)

zb − zl2
. (5.41)

Solving Equation (5.41) for R̂(zb) yields

R̂(zb) =
h(zb − zl2)Rin + R̂(zl2)

1 + h(zb − zl2)
. (5.42)

From Equations (5.40) and (5.42) it follows that

∂R̂

∂z

∣∣∣∣∣
z=z+

l2

=
R̂(zb)− R̂(zl2)

zb − zl2
=

h(zb − zl2)Rin + R̂(zl2)

1 + h(zb − zl2)
− R̂(zl2)

zb − zl2

=
h(Rin − R̂(zl2))

1 + h(zb − zl2)
=

Rin − R̂(zl2)

zb + 1/h− zl2
. (5.43)

Finally, consider (5.36b)

∂2R̂

∂z2
= 0, zl1 < z < zl2 .

The boundary condition for this differential equation can be inferred to be

∂R̂

∂z

∣∣∣∣∣
z=zl2

=
R̂(zl2)− R̂(zl1)

zl2 − zl1
. (5.44)
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Using Equations (5.43) and (5.44) we obtain

Rin − R̂(zl2)

zb + 1/h− zl2
=
R̂(zl2)− R̂(zl1)

zl2 − zl1
. (5.45)

Solving Equation (5.45) for R̂(zl2) gives

R̂(zl2) =
Rin(zl2 − zl1) + R̂(zl1)(zb + 1/h− zl2)

zb + 1/h− zl1
. (5.46)

Substituting the result of Equation (5.46) into Equation 5.44 and simplifying yields

∂R̂

∂z

∣∣∣∣∣
z=zl2

=
R̂(zl2)− R̂(zl1)

zl2 − zl1
=

Rin(zl2 − zl1) + R̂(zl1)(zb + 1/h− zl2)

zb + 1/h− zl1
− R̂(zl1)

zl2 − zl1

=

(zl2 − zl1)(Rin − R̂(zl1))

zb + 1/h− zl1
zl2 − zl1

=
Rin − R̂(zl1)

zb + 1/h− zl1
. (5.47)

Thus we have shown that the equilibrium distribution for R̂(z) under the ESS assumptions

is given by Equation (5.30)

R̂(z) =



R̂(zl1), 0 ≤ z ≤ zl1 ,

R̂(zl1) + (z − zl1)
Rin − R̂(zl1)

zb + 1/h− zl1
, zl1 < z ≤ zl2 ,

R̂(zl2) + (z − zl2)
Rin − R̂(zl2)

zb + 1/h− zl2
, zl2 < z ≤ zb,

as desired.
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Now consider Equation (5.29)

Î(z) = Iin exp

(
−
∫ z

0

(a1b̂1(w) + a2b̂2(w) + abg) dw

)
.

Under the assumption of b1(z) = B1δ(zl1) and b2 = B2δ(zl2) with B1 and B2 as given in

Equations (5.22) and (5.23) it is straightforward to see that

Î(z) =


Iine

−abgz, 0 ≤ z < zl1 ,

Iine
−a1B̂1−abgz, zl1 ≤ z < zl2 ,

Iine
−a1B̂1−a2B̂2−abgz, zl2 ≤ z ≤ zb

due to the nature of the Dirac delta function used when evaluating the integral. Light

declines with depth exponentially due to background attenuation and drops a finite amount

at the layers due to attenuation by phytoplankton. Thus we have shown that the equilibrium

distribution for Î(z) under the ESS assumptions is given by Equation (5.31) as desired.

Now we will determine the equilibrium biomass. From Equations (5.24) and (5.25), we

either have b̂1(z) = 0 and b̂2(z) = 0 or

min
(
fI,1(Î(z)), fR,1(R̂(z))

)
= m1 (5.48)

and

min
(
fI,2(Î(z)), fR,2(R̂(z))

)
= m2. (5.49)

However, b̂1(z) = 0 and b̂2(z) = 0 are trivial solutions with no phytoplankton in the water

column so we assume Equations (5.48) and (5.49) hold. There are two cases to consider:

1. The layers are nutrient-limited so that R̂(zl1) = R?, R̂(zl2) = R?, Î(zl1) > I?1 and

Î(zl2) > I?2 .

2. The layers are light-limited so that Î(zl1) = I?1 , Î(zl2) = I?2 , R̂(zl1) > R?, and R̂(zl2) >

R?.
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First consider the case of nutrient limitation. We use Equations (5.48) and (5.49) in

conjuction with Equation (5.26) to solve for B̂1 and B̂2:

0 = − b̂1(z)

Y1

min(fI,1(Î(z)), fR,1(R̂(z))) + ε1m1
b̂1(z)

Y1

− b̂2(z)

Y2

min(fI,2(Î(z)), fR,2(R̂(z)))

+ ε2m2
b̂2(z)

Y2

+DR
∂2R

∂z2
,

0 = − b̂1(z)

Y1

m1 + ε1m1
b̂1(z)

Y1

− b̂2(z)

Y2

m2 + ε2m2
b̂2(z)

Y2

+DR
∂2R

∂z2
,

m1(1− ε1)

Y1

b̂1(z) +
m2(1− ε2)

Y2

b̂2(z) = DR
∂2R̂

∂z2
. (5.50)

Integrating both sides of (5.50) from 0 to zb results in

∫ zb

0

(
m1(1− ε1)

Y1

b̂1(z) +
m2(1− ε2)

Y2

b̂2(z)

)
dz =

∫ zb

0

(
DR

∂2R̂

∂z2

)
dz,

m1(1− ε1)

Y1

B̂1 +
m2(1− ε2)

Y2

B̂2 = DR
∂R̂

∂z

∣∣∣∣∣
zb

0

,

m1(1− ε1)

Y1

B̂1 +
m2(1− ε2)

Y2

B̂2 = DRh(Rin − R̂(zb)). (5.51)

Rewriting this using Equation (5.43) we get

m1(1− ε1)

Y1

B̂1 +
m2(1− ε2)

Y2

B̂2 = DR
Rin − R̂(zl2)

zb + 1/h− zl2
. (5.52)

Thus we obtain the implicit solutions

B̂1 =
Y1

m1(1− ε1)

(
DR(Rin − R̂(zl2))

zb + 1/h− zl2
− m2(1− ε2)

Y2

B̂2

)
, (5.53)
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B̂2 =
Y2

m2(1− ε2)

(
DR(Rin − R̂(zl2))

zb + 1/h− zl2
− m1(1− ε1)

Y1

B̂1

)
. (5.54)

Finally, setting R̂(zl2) = R? gives us

B̂1 =
Y1

m1(1− ε1)

(
DR(Rin −R?)

zb + 1/h− zl2
− m2(1− ε2)

Y2

B̂2

)
, (5.55)

and

B̂2 =
Y2

m2(1− ε2)

(
DR(Rin −R?)

zb + 1/h− zl2
− m1(1− ε1)

Y1

B̂1

)
, (5.56)

as desired for the nutrient-limited case. The light level at and immediately under the layer

at zl1 and zl2 are given by

Î(zl1) = Iine
− a1Y1
m1(1−ε1)

(
DR(Rin−R?)

zb+1/h−zl2
−m2(1−ε2)

Y2
B̂2

)
−abgzl1 > I?1 (5.57)

and

Î(zl2) = Iine
− a1Y1
m1(1−ε1)

(
DR(Rin−R?)

zb+1/h−zl2
−m2(1−ε2)

Y2
B̂2

)
− a2Y2
m2(1−ε2)

(
DR(Rin−R?)

zb+1/h−zl2
−m1(1−ε1)

Y1
B̂1

)
−abgzl2 > I?2 .

(5.58)

Note that both Î(zl1) and Î(zl2) decrease as zl2 increases, so that a deeper nutrient-limited

layer implies more shade.

Now consider the case of light-limitation of both layers. Recall

Î(z) =


Iine

−abgz, 0 ≤ z < zl1 ,

Iine
−a1B̂1−abgz, zl1 ≤ z < zl2 ,

Iine
−a1B̂1−a2B̂2−abgz, zl2 ≤ z ≤ zb.

Evaluating at zl1 gives

Î(zl1) = Iine
−a1B̂1−abgzl1 .
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Solving for B̂1, we obtain

B̂1 =
ln(Iin/Î(zl1))

a1

− abg
a1

zl1 . (5.59)

Similarly, we evaluate at zl2 to get

Î(zl2) = Iine
−a1B̂1−a2B̂2−abgzl2 .

Solving for B̂2, we first obtain

B̂2 =
ln(Iin/Î(zl2))

a2

− a1

a2

B̂1 −
abg
a2

zl2 . (5.60)

Rewriting Equation (5.60) using (5.59), we get

B̂2 =
ln(Iin/Î(zl2))

a2

− a1

a2

(
ln(Iin/Î(zl1))

a1

− abg
a1

zl1

)
− abg
a2

zl2 ,

and after simplifying we obtain

B̂2 =
ln(Î(zl1)/Î(zl2))

a2

− abg
a2

(zl2 − zl1). (5.61)

Finally, letting Î(zl1) = I?1 and Î(zl2) = I?2 , we get

B̂1 =
ln(Iin/I

?
1 )

a1

− abg
a1

zl1 , (5.62)

and

B̂2 =
ln(I?1/I

?
2 )

a2

− abg
a2

(zl2 − zl1) (5.63)

as desired for the light-limited case. The nutrient level at and above the layer at zl2 is given

by

R̂(zl2) = Rin −
zb + 1/h− zl2

DR

(
m1(1− ε1)

Y1

B̂1 +
m2(1− ε2)

Y2

B̂2

)
(5.64)
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and from Equations (5.62) and (5.63) it follows that

R̂(zl2) = Rin −
zb + 1/h− zl2

DR

(
m1(1− ε1)(ln(Iin/I

?
1 )− abgzl1)

a1Y1

)
− zb + 1/h− zl2

DR

(
m2(1− ε2)(ln(I?1/I

?
2 )− abg(zl2 − zl1))

a2Y2

)
> R?. (5.65)

Note that R̂(z2) increases as zl2 increases, so that a shallower light-limited layer depresses

nutrient levels more.

Thus we have shown that the equilibrium distribtions for B̂1 and B̂2 under the ESS

assumptions are given by Equations (5.32) and (5.33)

B̂1 =



Y1

m1(1− ε1)

(
DR(Rin −R?)

zb + 1/h− zl2
− m2(1− ε2)

Y2

B̂2

)
, for a nutrient-limited layer,

ln(Iin/I
?
1 )

a1

− abg
a1

zl1 , for a light-limited layer.

and

B̂2 =



Y2

m2(1− ε2)

(
DR(Rin −R?)

zb + 1/h− zl2
− m1(1− ε1)

Y1

B̂1

)
, for a nutrient-limited layer,

ln(I?1/I
?
2 )

a2

− abg
a2

(zl2 − zl1), for a light-limited layer.

as desired.

Theorem 5.1.2. (Existence of (z?1 , z
?
2)) The ESS depths z?1 and z?2 are determined by the
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system of equations:



Y1

m1(1− ε1)

(
DR(Rin −R?)

zb + 1/h− z?2
− m2(1− ε2)

Y2

B̂2

)
=

ln(Iin/I
?
1 )

a1

− abg
a1

z?1 ,

Y2

m2(1− ε2)

(
DR(Rin −R?)

zb + 1/h− z?2
− m1(1− ε1)

Y1

B̂1

)
=

ln(I?1/I
?
2 )

a2

− abg
a2

(z?2 − z?1).

(5.66)

This solution provides a stable equilibrium of the full model (Equations (5.14) –(5.21)) with

Db1 = Db2 = 0 and ν1(∂g1/∂z)|z?1 = ν2(∂g2/∂z)|z?2 = 0.

Proof. Observe that net growth is positive below a nutrient-limited layer since I > I?1 > I?2

and net growth is positive above a light-limited layer since R > R?. Thus the ESS depth is

obtained by considering the case of a layer under the conditions of co-limitation. That is, the

layers are limited by both resources so that R̂(zl2) = R?, Î(zl1) = I?1 , and Î(zl2) = I?2 . Thus

we need to combine the nutrient-limited and light-limited cases for B̂1 and B̂2 to derive the

system needed to solve for the ESS depths z?1 and z?2 . We do this by setting the nutrient-

limited and light-limited profiles equal and replace zl1 and zl2 with z?1 and z?2 . Doing this

results in the system of equations given in (5.66):



Y1

m1(1− ε1)

(
DR(Rin −R?)

zb + 1/h− z?2
− m2(1− ε2)

Y2

B̂2

)
=

ln(Iin/I
?
1 )

a1

− abg
a1

z?1 ,

Y2

m2(1− ε2)

(
DR(Rin −R?)

zb + 1/h− z?2
− m1(1− ε1)

Y1

B̂1

)
=

ln(I?1/I
?
2 )

a2

− abg
a2

(z?2 − z?1).

Existence of solutions to this system of equations is guaranteed by the Implicit Function

Theorem. The system of equations can be solved in (z?1 , z
?
2), however, the resulting algebraic

expressions are uninformative.

The ESS provides a stable equilibrium of the full model (Equations (5.14) –(5.21)) with
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Db1 = Db2 = 0 and ν1(∂g1/∂z)|z?1 = ν2(∂g2/∂z)|z?2 = 0 since

g1(z) = min
(
fI,1(I?1 ), fR,1(R?)

)
−m1 = m1 −m1 = 0 (5.67)

and

g2(z) = min
(
fI,2(I?2 ), fR,2(R?)

)
−m2 = m2 −m2 = 0 (5.68)

for all z ∈ [0, zb] under the assumptions that b̂1 = B1δzl1 (z) and b̂2(z) = B2δzl2 (z). Equations

(5.67) and (5.68) follow since I?1 = f−1
I,1 (m1), I?2 = f−1

I,2 (m2), and R? = f−1
R,1(m1) = f−1

R,2(m2) so

that no net growth occurs outside the layers at z?1 and z?2 for b1(z) and b2(z) respectively.

Corollary 5.1.3. (The Biomass Equilibrium B̂1 and B̂2 as functions of (z?1 , z
?
2)) The equi-

librium biomass of B̂1 and B̂2 can be expressed as functions of (z?1 , z
?
2) as

B̂1 =



ln(Iin/I
?
1 )

a1

, z?1 ≤ 0 (surface layer)

Y1

m1(1−ε1)

[
DR(Rin−R?)
zb+1/h−z?2

− m2(1−ε2)
Y2

(
ln(I?1 /I

?
2 )

a2
− abg

a2
(z?2 − z?1)

)]
, 0 < z?1 < z?2 < zb (DCM)

Y1DRh

m1(1− ε1)
(Rin −R?), z?2 ≥ zb (benthic layer),

(5.69)

and

B̂2 =



ln(I?1/I
?
2 )

a2

, z?1 ≥ z?2 (surface layer)

Y2

m2(1−ε2)

[
DR(Rin−R?)
zb+1/h−z?2

− m1(1−ε1)
Y1

(
ln(Iin/I

?
1 )

a1
− abg

a1
z?1

)]
, 0 < z?1 < z?2 < zb (DCM)

Y2DRh

m2(1− ε2)
(Rin −R?), z?2 ≥ zb (benthic layer).

(5.70)
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Proof. Recall the equilibrium distribtions for B̂1 and B̂2 under the ESS assumptions are

given by Equations (5.32) and (5.33)

B̂1 =



Y1

m1(1− ε1)

(
DR(Rin −R?)

zb + 1/h− zl2
− m2(1− ε2)

Y2

B̂2

)
, for a nutrient-limited layer,

ln(Iin/I
?
1 )

a1

− abg
a1

zl1 , for a light-limited layer.

and

B̂2 =



Y2

m2(1− ε2)

(
DR(Rin −R?)

zb + 1/h− zl2
− m1(1− ε1)

Y1

B̂1

)
, for a nutrient-limited layer,

ln(I?1/I
?
2 )

a2

− abg
a2

(zl2 − zl1), for a light-limited layer.

To derive the distributions given in Equations (5.69) and (5.70), we combine the cases when

one species has a nutrient-limited layer while the other species has a light-limited layer

to allow for coexistence of both species. That is, when B̂1 is a nutrient-limited layer, B̂2

is a light-limited layer and when B̂1 is a light-limited layer, B̂2. Making the appropriate

substitutions and replacing zl1 and zl2 with z?1 and z?2 results in

B̂1 =
Y1

m1(1− ε1)

[
DR(Rin −R?)

zb + 1/h− z?2
− m2(1− ε2)

Y2

(
ln(I?1/I

?
2 )

a2

− abg
a2

(z?2 − z?1)

)]
,

and

B̂2 =
Y2

m2(1− ε2)

[
DR(Rin −R?)

zb + 1/h− z?2
− m1(1− ε1)

Y1

(
ln(Iin/I

?
1 )

a1

− abg
a1

z?1

)]
,

which are the expressions describing when the resulting layers are DCMs.

The remaining terms in the biomass distributions are determined by restricting the

biomass to the water column. For B̂1, if z?1 ≤ 0 we restrict the biomass to the light-limited

surface layer at z = 0. Additionally, if z?2 ≥ zb we restrict the biomass to the nutrient-limited
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benthic layer at z = zb. While the argument is identical for B̂2, the surface layer will occur

when z?2 − z?1 ≤ 0.

5.2 Preferential Nutrient Uptake Model ESS

In this section we extend the ESS analysis of the multi-species Klausmeier and Litchman

model to the proposed preferential nutrient uptake model. The addition of a second nutrient

source that competing phytoplankton can utilize will require the previous analysis to be

updated by determining the equilibrium distribution of this additional model component.

This change will also impact the game theoretic approximations to the location of the phy-

toplankton layers given in the previous analysis. We now present a detailed analysis of the

ESS equilibrium distributions of the proposed preferential uptake model that was introduced

in Chapter 3.

Consider the preferential nutrient uptake model:

∂b1

∂t
= min(fI,1(I(z, t)), fR,1(R1(z, t), R2(z, t)))b1 −m1b1 +Db1

∂2b1

∂z2
+

∂

∂z

[
ν1

(∂g1

∂z

)
b1

]
,

∂b2

∂t
= min(fI,2(I(z, t)), fR,2(R1(z, t), R2(z, t)))b2 −m2b2 +Db2

∂2b2

∂z2
+

∂

∂z

[
ν2

(∂g2

∂z

)
b2

]
,

∂R1

∂t
= − b1

Y1

min(fI,1(I(z, t)), fR,1(R1(z, t), R2(z, t)))
γ1(R1(z, t))

fR,1(R1(z, t), R2(z, t))
+ ε1,1m1

b1

Y1

− b2(z, t)

Y2

min(fI,2(I(z, t)), fR,2(R1(z, t), R2(z, t)))
γ2(R1(z, t))

fR,2(R1(z, t), R2(z, t))
+ ε2,1m2

b2

Y2

+DR1

∂2R1

∂z2
,
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∂R2

∂t
= − b1

Y1

min(fI,1(I(z, t)), fR,1(R1(z, t), R2(z, t)))
ρ1(R1(z, t), R2(z, t))

fR,1(R1(z, t), R2(z, t))
+ ε1,2m1

b1

Y1

− b2

Y2

min(fI,2(I(z, t)), fR,2(R1(z, t), R2(z, t)))
ρ2(R1(z, t), R2(z, t))

fR,2(R1(z, t), R2(z, t))
+ ε2,2m2

b2

Y2

+DR2

∂2R2

∂z2
,

I(z, t) = Iin exp

[
−
∫ z

0

(a1b1(w, t) + a2b2(w, t) + abg)dw

]
.

The boundary conditions for the partial differential equations are given by:

[
Db1

∂b1

∂z
+ ν1

(
∂g1

∂z

)
b1

] ∣∣∣∣∣
z=0

=

[
Db1

∂b1

∂z
+ ν1

(
∂g1

∂z

)
b1

] ∣∣∣∣∣
z=zb

= 0,

[
Db2

∂g2

∂z
+ ν2

(
∂g2

∂z

)
b2

] ∣∣∣∣∣
z=0

=

[
Db2

∂g2

∂z
+ ν2

(
∂g2

∂z

)
b2

] ∣∣∣∣∣
z=zb

= 0,

∂R1

∂z

∣∣∣∣∣
z=0

= 0,
∂R1

∂z

∣∣∣∣∣
z=zb

= h(Rin1 −R1(zb))

∂R2

∂z

∣∣∣∣∣
z=0

= 0,
∂R2

∂z

∣∣∣∣∣
z=zb

= h(Rin2 −R2(zb)).

As shown in Figure 5.3, when the swimming velocities ν1max and ν2max are increased from

0 m d−1 to 100 m d−1 (all other parameters are consistent with the values listed in Table 2.2),

the phytoplankton distributions go from more uniform to increasingly more concentrated in

thin layers. Thus, we can approximate the phytoplankton distributions by an infinitely thin

layer using the game theoretic approach.
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To account for multiple species, we use the previous assumption that the phytoplankton

form infinitely thin layers at depths zl1 and zl2 corresponding to the preferred depths that

the species occupy based on their utilization of light and nutrients. As before, we set b1(z) =

B1δzl1 (z) and b2(z) = B2δzl2 (z) where δzl1 (z) and δzl2 (z) are Dirac delta functions and B1 and

B2 are the total depth-integrated biomasses given by equations (5.22) and (5.23) respectively.

Figure 5.3: Model simulations of Equations (3.1) –(3.17) as ν1max and ν2max increases from
0 m d−1 to 100 m d−1. The upper left panel uses ν1max = ν2max = 0 m d−1. The upper right
panel uses ν1max = ν2max = 1 m d−1. The lower left panel uses ν1max = ν2max = 10 m d−1.
The lower right panel uses ν1max = ν2max = 100 m d−1.

To find the ESS equilibrium distributions, we set the time derivatives of Equations (3.1),

(3.2), (3.13), and (3.14) to 0, Db1 = Db2 = 0 (active movement is sufficient to overcome

biomass mixing), Given layers at zl1 and zl2 , calculate the equilibrium biomasses and distri-

butions of light and free nutrients in the absence of movement, and then determine whether
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net growth is possible outside of the layers at zl1 and zl2 . This results in the following system

of equations:

0 = b̂1(z)
(

min
(
fI,1(Î(z)), fR,1(R̂1(z), R̂2(z))

)
−m1

)
, (5.71)

0 = b̂2(z)
(

min
(
fI,2(Î(z)), fR,2(R̂1(z), R̂2(z))

)
−m2

)
, (5.72)

0 = − b̂1(z)

Y1

min
(
fI,1(Î(z)), fR,1(R̂1(z), R̂2(z))

) γ1(R̂1(z))

fR,1(R̂1(z), R̂2(z))
+ ε1,1m1

b̂1(z)

Y1

− b̂2(z)

Y2

min
(
fI,2(Î(z)), fR,2(R̂1(z), R̂2(z))

) γ2(R̂1(z))

fR,2(R̂1(z), R̂2(z))
+ ε2,1m2

b̂2(z)

Y1

+DR1

∂2R̂1

∂z2
, (5.73)

0 = − b̂1(z)

Y1

min
(
fI,1(Î(z)), fR,1(R̂1(z), R̂2(z))

) ρ1(R̂1(z), R̂2(z))

fR,1(R̂1(z), R̂2(z))
+ ε1,2m1

b̂1(z)

Y1

− b̂2(z)

Y2

min
(
fI,2(Î(z)), fR,2(R̂1(z), R̂2(z))

) ρ2(R̂1(z), R̂2(z))

fR,2(R̂1(z), R̂2(z))
+ ε2,2m2

b̂2(z)

Y1

+DR2

∂2R̂2

∂z2
, (5.74)

Î(z) = Iin exp

(
−
∫ z

0

(a1b̂1(w) + a2b̂2(w) + abg) dw

)
, (5.75)

∂R̂1

∂z

∣∣∣∣∣
z=0

= 0, (5.76)

∂R̂1

∂z

∣∣∣∣∣
z=zb

= h(Rin1 − R̂1(zb)), (5.77)

(5.78)
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∂R̂2

∂z

∣∣∣∣∣
z=0

= 0, , (5.79)

∂R̂2

∂z

∣∣∣∣∣
z=zb

= h(Rin2 − R̂2(zb)). (5.80)

The solution to the system is given below.

Proposition 5.2.1. (The Equilibrium Distributions of R̂1(z), R̂2(z), Î(z), B̂1, and B̂2 )

Assume that fI,1, fI,2, fR,1, fR,2, γ1, γ2, ρ1, and ρ2 are continuous functions in their respective

variables. Then the solution to the system of equations given by Equations (5.71) –(5.80)

under the ESS assumptions is given by

R̂1(z) =



R̂1(zl1), 0 ≤ z ≤ zl1 ,

R̂1(zl1) + (z − zl1)
Rin1 − R̂1(zl1)

zb + 1/h− zl1
, zl1 < z ≤ zl2 ,

R̂1(zl2) + (z − zl2)
Rin − R̂1(zl2)

zb + 1/h− zl2
, zl2 < z ≤ zb,

(5.81)

R̂2(z) =


R̂2(zl1), 0 ≤ z ≤ zl1 ,

R̂2(zl1) + (z − zl1)
Rin2 − R̂1(zl1)

zb + 1/h− zl1
, zl1 < z ≤ zb,

(5.82)

Î(z) =


Iine

−abgz, 0 ≤ z < zl1 ,

Iine
−a1B̂1−abgz, zl1 ≤ z < zl2 ,

Iine
−a1B̂1−a2B̂2−abgz, zl2 ≤ z ≤ zb,

(5.83)
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B̂1 =


DR1

P2(zl2 )(zb+1/h−zl1 )(Rin1
−R?2)−DR2

Γ2(zl2 )(zb+1/h−zl2 )(Rin2
−R?1)

(Γ1(zl1 )P2(zl2 )−Γ2(zl2 )P1(zl1 ))(zb+1/h−zl2 )(zb+1/h−zl1 )
, nutrient-limited layer,

ln(Iin/I
?
1 )

a1
− abg

a1
zl1 , light-limited layer,

(5.84)

and

B̂2 =


DR2

Γ1(zl1 )(zb+1/h−zl2 )(Rin2
−R?1)−DR1

P1(zl1 )(zb+1/h−zl1 )(Rin1
−R?2)

(Γ1(zl1 )P2(zl2 )−Γ2(zl2 )P1(zl1 ))(zb+1/h−zl2 )(zb+1/h−zl1 )
, nutrient-limited layer,

ln(I?1 /I
?
2 )

a2
− abg

a2
(zl2 − zl1), light-limited layer.

(5.85)

The terms B̂1 and B̂2 are as given in (5.34) and (5.35) respectively, and Γ1(z), Γ2(z),

P1(z), and P2(z) are defined by

Γ1(z) =
m1

Y1

(
γ1(R̂1(z))

fR,1(R̂1(z), R̂2(z))
− ε1,1

)
, (5.86)

Γ2(z) =
m2

Y2

(
γ2(R̂1(z))

fR,2(R̂1(z), R̂2(z))
− ε2,1

)
, (5.87)

P1(z) =
m1

Y1

(
ρ1(R̂1(z), R̂2(z))

fR,1(R̂1(z), R̂2(z))
− ε1,2

)
, (5.88)

and

P2(z) =
m2

Y2

(
ρ2(R̂1(z), R̂2(z))

fR,2( ˆR1(z), R̂2(z))
− ε2,2

)
. (5.89)

Proof. As before, under the assumptions of b1 = B1δzl1 (z) and b2 = B2δzl2 (z) with B1 and
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B2 as defined in Equations (5.22) and (5.23) respectively, Equation (5.73) becomes

∂2R̂1

∂z2
= 0, 0 ≤ z < zl1 (5.90a)

∂2R̂1

∂z2
= 0, zl1 < z < zl2 (5.90b)

∂2R̂1

∂z2
= 0, zl2 < z ≤ zb. (5.90c)

Now consider Equation (5.90a) with boundary condition 5.76:



∂2R̂1

∂z2
= 0, 0 ≤ z < zl1

∂R̂1

∂z

∣∣∣∣∣
z=0

= 0.

(5.91)

Equation (5.91) shows that the diffusion of the first nutrient equalizes the nutrient concen-

tration above the layer at zl1 . That is, R̂1(z) = R̂1(zl1) if 0 ≤ z ≤ zl1 . Equation (5.91) also

implies that nutrients vary linearly below the layer at zl1 , denoted by z+
l1

, to zl2 . Thus

∂R̂1

∂z

∣∣∣∣∣
z=z+

l1

=
∂R̂1

∂z

∣∣∣∣∣
z=zl2

=
R̂1(zl2)− R̂1(zl1)

zl2 − zl1
. (5.92)

Now consider Equation (5.90c) with boundary condition given by Equation (5.77):



∂2R̂1

∂z2
= 0, zl2 < z ≤ zb

∂R̂1

∂z

∣∣∣∣∣
z=zb

= h(Rin1 − R̂1(zb)).

(5.93)
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Using the same argument as before, nutrients vary linearly before the layer at zl2 , denoted

by z+
l2

, to zb. Thus

∂R̂1

∂z

∣∣∣∣∣
z=z+

l2

=
∂R̂1

∂z

∣∣∣∣∣
z=zb

=
R̂1(zb)− R̂1(zl2)

zb − zl2
. (5.94)

From Equation (5.94) and (5.77) we obtain

h(Rin1 − R̂1(zb)) =
R̂1(zb)− R̂1(zl2)

zb − zl2
. (5.95)

Solving Equation (5.95) for R̂1(zb) gives

R̂1(zb) =
h(zb − zl2)Rin1 + R̂1(zl2)

1 + h(zb − zl2)
. (5.96)

From Equations (5.94) and (5.96) it follows that

∂R̂

∂z

∣∣∣∣∣
z=z+

l2

=
R̂1(zb)− R̂1(zl2)

zb − zl2
=

h(zb − zl2)Rin1 + R̂1(zl2)

1 + h(zb − zl2)
− R̂1(zl2)

zb − zl2

=
h(Rin1 − R̂1(zl2))

1 + h(zb − zl2)
=
Rin1 − R̂1(zl2)

zb + 1/h− zl2
. (5.97)

Finally, consider Equation (5.90b)

∂2R̂1

∂z2
= 0, zl1 < z < zl2 .

The boundary condition for this differential equation can be inferred to be

∂R̂1

∂z

∣∣∣∣∣
z=zl2

=
R̂1(zl2)− R̂1(zl1)

zl2 − zl1
. (5.98)
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Using Equations (5.97) and (5.98) we get

Rin1 − R̂1(zl2)

zb + 1/h− zl2
=
R̂1(zl2)− R̂1(zl1)

zl2 − zl1
. (5.99)

Solving Equation (5.99) for R̂1(zl2) gives

R̂1(zl2) =
Rin1(zl2 − zl1) + R̂1(zl1)(zb + 1/h− zl2)

zb + 1/h− zl2
. (5.100)

Substituting the result from Equation (5.100) into (5.98) and simplifying yields

∂R̂

∂z

∣∣∣∣∣
z=zl2

=
R̂1(zl2)− R̂1(zl1)

zl2 − zl1
=

Rin1(zl2 − zl1) + R̂1(zl1)(zb + 1/h− zl2)

zb + 1/h− zl2
− R̂1(zl1)

zl2 − zl1

=

(zl2 − zl1)(Rin1 − R̂1(zl1))

zb + 1/h− zl1
zl2 − zl1

=
Rin1 − R̂1(zl1)

zb + 1/h− zl1
(5.101)

Thus we have shown that the equilibrium distribution for R̂1(z) under the ESS assumptions

is given by Equation (5.81)

R̂1(z) =



R̂1(zl1), 0 ≤ z ≤ zl1 ,

R̂1(zl1) + (z − zl1)
Rin1 − R̂1(zl1)

zb + 1/h− zl1
, zl1 < z ≤ zl2 ,

R̂1(zl2) + (z − zl2)
Rin − R̂1(zl2)

zb + 1/h− zl2
, zl2 < z ≤ zb,

as desired.

Now consider Equation (5.74) under the assumptions of b1 = B1δ(zl1) and b2 = B2δ(zl2)

with B1 and B2 as defined in Equations (5.22) and (5.23) respectively. Since R1 is as-
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sumed (without loss of generality) to be the preferred nutrient source for both phytoplankton

species, its uptake is assumed to occur at both infinitely thin concentrations of biomass at

zl1 and zl2 . Since R2 is not the preferred resource, its uptake will occur at the layer of the

species which is the better nutrient competitor (and thus a light-limited layer). If we assume

without loss of generality that 0 < zl1 < zl2 < zb, then this will correspond to the layer at

zl1 . Under the ESS assumptions, Equation (5.74) reduces to

∂2R̂2

∂z2
= 0, 0 ≤ z < zl1 (5.102a)

∂2R̂2

∂z2
= 0, zl1 < z < zb. (5.102b)

Consider (5.102a) with boundary condition given by Equation 5.79



∂2R̂2

∂z2
= 0, 0 ≤ z < zl1

∂R̂2

∂z

∣∣∣∣∣
z=0

= 0.

(5.103)

Solving Equation (5.103) gives R̂2(z) = R̂2(zl1) if 0 ≤ z ≤ zl1 . Proceeding as we did before,

observe that

∂R̂2

∂z

∣∣∣∣∣
z=z+

l1

=
∂R̂2

∂z

∣∣∣∣∣
z=zb

=
R̂2(zb)− R̂2(zl1)

zb − zl1
. (5.104)

Thus, from Equations (5.80) and (5.104) it follows that

h(Rin2 − R̂2(zb)) =
R̂2(zb)− R̂2(zl1)

zb − zl1
. (5.105)
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Solving (5.105) for R̂2(zb) gives

R̂2(zb) =
h(zb − zl1)Rin2 + R̂2(zl1)

1 + h(zb − zl1)
(5.106)

Substituting Equation (5.106) into (5.104) gives

∂R̂2

∂z

∣∣∣∣∣
z=z+

l1

=
R̂2(zb)− R̂2(zl1)

zb − zl1
=

h(zb − zl1)Rin2 + R̂2(zl1)

1 + h(zb − zl1)
− R̂2(zl1)

zb − zl1

=
h(Rin2 − R̂2(zl1))

1 + h(zb − zl1)
=
Rin2 − R̂2(zl1)

zb + 1/h− zl1
. (5.107)

Thus we have shown that the equilibrium distribution for R̂2(z) under the ESS assumptions

is given by Equation (5.82)

R̂2(z) =


R̂2(zl1), 0 ≤ z ≤ zl1 ,

R̂2(zl1) + (z − zl1)
Rin2 − R̂1(zl1)

zb + 1/h− zl1
, zl1 < z ≤ zb,

as desired.

Now consider Equation (5.75)

Î(z) = Iin exp

(
−
∫ z

0

(a1b̂1(w) + a2b̂2(w) + abg) dw

)
.

Under the assumption of b1(z) = B1δzl1 (z) and b2(z) = B2δzl2 (z) with B1 and B2 as given in
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Equations (5.22) and (5.23) it is straightforward to see that

Î(z) =


Iine

−abgz, 0 ≤ z < zl1 ,

Iine
−a1B̂1−abgz, zl1 ≤ z < zl2 ,

Iine
−a1B̂1−a2B̂2−abgz, zl2 ≤ z ≤ zb

due to the nature of the Dirac delta function used when evaluating the integral. Light

declines with depth exponentially due to background attenuation and drops a finite amount

at the layers due to attenuation by phytoplankton. Thus we have shown that the equilibrium

distribution for Î(z) under the ESS assumptions is given by Equation (5.83) as desired.

Finally we will determine the equilibrium biomass distributions for B̂1 and B̂2. Recall

equations (5.71) and (5.72)

0 = b̂1(z)
(

min
(
fI,1(Î(z)), fR,1(R̂1(z), R̂2(z))

)
−m1

)
,

0 = b̂2(z)
(

min
(
fI,2(Î(z)), fR,2(R̂1(z), R̂2(z))

)
−m2

)
.

It follows that either b̂1 = 0 and b̂2(z) = 0 or

min
(
fI,1(Î(z)), fR,1(R̂1(z), R̂2(z))

)
= m1 (5.108)

and

min
(
fI,2(Î(z)), fR,2(R̂1(z), R̂2(z))

)
= m2, (5.109)

that is, the phytoplankton either reduce the nutrient concentration or the light concentration

to their break even value at the layers zl1 and zl2 . However, b̂1 = 0 and b̂2(z) = 0 are trivial

solutions with no phytoplankton in the water column so we assume that Equations (5.108)

and (5.109) hold. As before, there are two cases to consider:

1. The layers are nutrient-limited so that R̂1(zl2) = R?
2, R̂2(zl1) = R?

1, Î(zl1) > I?1 , and

Î(zl2) > I?2 .
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2. The layers are light-limited so that Î(zl1) = I?1 , Î(zl2) = I?2 , R̂1(zl2) > R?
2, and R̂2(zl1) >

R?
1.

First consider the case of nutrient limitation. We use Equations (5.108) and (5.109) in

conjunction with Equations (5.73) and (5.74) to solve for B̂1 and B̂2:

0 = − b̂1(z)

Y1

min
(
fI,1(Î(z)), fR,1(R̂1(z), R̂2(z))

) γ1(R̂1(z))

fR,1(R̂1(z), R̂2(z))
+ ε1,1m1

b̂1(z)

Y1

− b̂2(z)

Y2

min
(
fI,2(Î(z)), fR,2(R̂1(z), R̂2(z))

) γ2(R̂1(z))

fR,2(R̂1(z), R̂2(z))
+ ε2,1m2

b̂2(z)

Y1

+DR1

∂2R̂1

∂z2
,

0 = − b̂1(z)

Y1

min
(
fI,1(Î(z)), fR,1(R̂1(z), R̂2(z))

) ρ1(R̂1(z), R̂2(z))

fR,1(R̂1(z), R̂2(z))
+ ε1,2m1

b̂1(z)

Y1

,

− b̂2(z)

Y2

min
(
fI,2(Î(z)), fR,2(R̂1(z), R̂2(z))

) ρ2(R̂1(z), R̂2(z))

fR,2(R̂1(z), R̂2(z))
+ ε2,2m2

b̂2(z)

Y1

+DR2

∂2R̂2

∂z2
.

Which imply:

0 = − b̂1(z)

Y1

m1
γ1(R̂1(z))

fR,1(R̂1(z), R̂2(z))
+ ε1,1m1

b̂1(z)

Y1

− b̂2(z)

Y2

m2
γ2(R̂1(z))

fR,2(R̂1(z), R̂2(z))

+ ε2,1m2
b̂2(z)

Y1

+DR1

∂2R̂1

∂z2
,

0 = − b̂1(z)

Y1

m1
ρ1(R̂1(z), R̂2(z))

fR,1(R̂1(z), R̂2(z))
+ ε1,2m1

b̂1(z)

Y1

− b̂2(z)

Y2

m2
ρ2(R̂1(z), R̂2(z))

fR,2(R̂1(z), R̂2(z))

+ ε2,2m2
b̂2(z)

Y1

+DR2

∂2R̂2

∂z2
.
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Next,

DR1

∂2R̂1

∂z2
=
m1b̂1(z)

Y1

(
γ1(R̂1(z))

fR,1(R̂1(z), R̂2(z))
− ε1,1

)
+
m2b̂2(z)

Y2

(
γ2(R̂1(z))

fR,2(R̂1(z), R̂2(z))
− ε2,1

)

DR2

∂2R̂2

∂z2
=
m1b̂1(z)

Y1

(
ρ1(R̂1(z), R̂2(z))

fR,1(R̂1(z), R̂2(z))
− ε1,2

)
+
m2b̂2(z)

Y2

(
ρ2(R̂1(z), ˆR2(z))

fR,2(R̂1(z), R̂2(z))
− ε2,2

)

To simplify notation, we now introduce the terms defined in Equations (5.86) –(5.89) to get

DR1

∂2R̂1

∂z2
= Γ1(z)b̂1(z) + Γ2(z)b̂2(z), (5.110)

DR2

∂2R̂2

∂z2
= P1(z)b̂1(z) + P2(z)b̂2(z). (5.111)

Integrating both sides of Equations (5.110) and (5.111) from 0 to zb results in

∫ zb

0

DR1

∂2R̂1

∂z2
dz =

∫ zb

0

(
Γ1(z)b̂1(z) + Γ2(z)b̂2(z)

)
dz,

DR1h
(
Rin1 − R̂1(zb)

)
= Γ1(zl1)B̂1 + Γ2(zl2)B̂2, (5.112)

and

∫ zb

0

DR2

∂2R̂2

∂z2
dz =

∫ zb

0

(
P1(z)b̂1(z) + P2(z)b̂2(z)

)
dz,

DR2h
(
Rin2 − R̂2(zb)

)
= P1(zl1)B̂1 + P2(zl2)B̂2. (5.113)

Before solving for B̂1 and B̂2, we rewrite Equations (5.112) and (5.113) using Equations
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(5.95), (5.101), (5.105), and (5.107) to obtain

DR1(Rin1 − R̂1(zl2))

zb + 1/h− zl2
= Γ1(zl1)B̂1 + Γ2(zl2)B̂2, (5.114)

DR2(Rin2 − R̂2(zl1))

zb + 1/h− zl1
= P1(zl1)B̂1 + P2(zl2)B̂2. (5.115)

Now we solve the system of equations given by Equations (5.114) and (5.115) for B̂1 and B̂2

to obtain

B̂1 =

P2(zl2)
DR1(Rin1 − R̂1(zl2))

zb + 1/h− zl2
− Γ2(zl2)

DR2(Rin2 − R̂2(zl1))

zb + 1/h− zl1
Γ1(zl1)P2(zl2)− Γ2(zl2)P1(zl1)

=
DR1P2(zl2)(zb + 1/h− zl1)(Rin1 − R̂1(zl2))−DR2Γ2(zl2)(zb + 1/h− zl2)(Rin2 − R̂2(zl1))

(Γ1(zl1)P2(zl2)− Γ2(zl2)P1(zl1))(zb + 1/h− zl2)(zb + 1/h− zl1)
,

(5.116)

and

B̂2 =

Γ1(zl1)
DR2(Rin2 − R̂2(zl1))

zb + 1/h− zl1
− P1(zl1)

DR1(Rin1 − R̂1(zl2))

zb + 1/h− zl2
Γ1(zl1)P2(zl2)− Γ2(zl2)P1(zl1)

=
DR2Γ1(zl1)(zb + 1/h− zl2)(Rin2 − R̂2(zl1))−DR1P1(zl1)(zb + 1/h− zl1)(Rin1 − R̂1(zl2))

(Γ1(zl1)P2(zl2)− Γ2(zl2)P1(zl1))(zb + 1/h− zl2)(zb + 1/h− zl1)
.

(5.117)

Finally, letting R̂1(zl2) = R?
2 and R̂2(zl1) = R?

1 in Equations (5.116) and (5.117) gives

B̂1 =
DR1P2(zl2)(zb + 1/h− zl1)(Rin1 −R?

2)−DR2Γ2(zl2)(zb + 1/h− zl2)(Rin2 −R?
1)

(Γ1(zl1)P2(zl2)− Γ2(zl2)P1(zl1))(zb + 1/h− zl2)(zb + 1/h− zl1)
,

(5.118)
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and

B̂2 =
DR2Γ1(zl1)(zb + 1/h− zl2)(Rin2 −R?

1)−DR1P1(zl1)(zb + 1/h− zl1)(Rin1 −R?
2)

(Γ1(zl1)P2(zl2)− Γ2(zl2)P1(zl1))(zb + 1/h− zl2)(zb + 1/h− zl1)
,

(5.119)

as desired for the nutrient-limited case. The light level at and immediately below the layers

at zl1 and zl2 are given by

Î(zl1) = Iine
−a1(DR1

P2(zl2
)(zb+1/h−zl1 )(Rin1

−R?2)−DR2
Γ2(zl2

)(zb+1/h−zl2 )(Rin2
−R?1))

(Γ1(zl1
)P2(zl2

)−Γ2(zl2
)P1(zl1

))(zb+1/h−zl2 )(zb+1/h−zl1 )
−abgzl1 > I?1 (5.120)

and

Î(zl2) = Î(zl1)e
−a2(DR2

Γ1(zl1
)(zb+1/h−zl2 )(Rin2

−R?1)−DR1
P1(zl1

)(zb+1/h−zl1 )(Rin1
−R?2))

(Γ1(zl1
)P2(zl2

)−Γ2(zl2
)P1(zl1

))(zb+1/h−zl2 )(zb+1/h−zl1 )
−abg(zl2−zl1 )

> I?2 .

(5.121)

Note that both Î(zl1) and Î(zl2) decrease as zl1 and zl2 increase so that a deeper nutrient-

limited layer implies more shade.

Now consider the case of light-limitation of both layers. Recall

Î(z) =


Iine

−abgz, 0 ≤ z < zl1 ,

Iine
−a1B̂1−abgz, zl1 ≤ z < zl2 ,

Iine
−a1B̂1−a2B̂2−abgz, zl2 ≤ z ≤ zb,

Evaluating at zl1 gives

Î(zl1) = Iine
−a1B̂1−abgzl1 .

Solving for B̂1, we obtain

B̂1 =
ln(Iin/Î(zl1))

a1

− abg
a1

zl1 . (5.122)
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Similarly, evaluating at zl2 gives

Î(zl2) = Iine
−a1B̂1−a2B̂2−abgzl2 .

Solving for B̂2, we first obtain

B̂2 =
ln(Iin/Î(zl2))

a2

− a1

a2

B̂1 −
abg
a2

zl2 . (5.123)

Substituting Equation (5.122) into Equation (5.123) and simplifying gives

B̂2 =
ln(Î(zl1)/Î(zl2))

a2

− abg
a2

(zl2 − zl1). (5.124)

Finally, letting Î(zl1) = I?1 and Î(zl2) = I?2 , we get

B̂1 =
ln(Iin/I

?
1 )

a1

− abg
a1

zl1 , (5.125)

and

B̂2 =
ln(I?1/I

?
2 )

a2

− abg
a2

(zl2 − zl1), (5.126)

as desired for the light-limited case. Using Equations (5.118), (5.119), (5.125), and (5.126),

the nutrient level at and above the layer at zl1 is given by

R̂2(zl1) = Rin2 −
(zb + 1/h− zl1)

2a1Γ2(zl2)DR2(zb + 1/h− zl2)
(∆(zl1 , zl2)(zb + 1/h− zl2)(ln(Iin/I

?
1 )

− abgzl1)) +
(zb + 1/h− zl1)

2a1DR2Γ2(zl2)(zb + 1/h− zl2)
(2a1DR2P2(zl2)(Rin1 −R?

2))

− (zb + 1/h− zl1)

2a2DR1Γ1(zl1)(zb + 1/h− zl2)
(∆(zl1 , zl2)(zb + 1/h− zl2)(ln(I∗1/I

?
2 )

− abg(zl2 − zl1))) +
(zb + 1/h− zl1)

2a2DR1Γ1(zl1)(zb + 1/h− zl2)
(a2DR1P1(zl1)(Rin1 −R?

2))

> R?
1, (5.127)

112



where ∆(zl1 , zl2) = Γ1(zl1)P2(zl2)− Γ2(zl2)P1(zl1). Similarly, the nutrient level at and above

the layer at zl2 is given by

R̂1(zl2) = Rin1 −
(zb + 1/h− zl2)

2a1DR1P2(zl2)(zb + 1/h− zl1)
(∆(zl1 , zl2)(zb + 1/h− zl1)(ln(Iin/I

?
1 )

− abgzl1))− (zb + 1/h− zl2)

2a1P2(zl2)DR1(zb + 1/h− zl1)
(a1DR2Γ2(zl2)(Rin2 −R?

1))

− (zb + 1/h− zl2)

2a2P1(zl1)DR1(zb + 1/h− zl1)
(a2DR2Γ1(zl1)(Rin2 −R?

1))

+
(zb + 1/h− zl2)

2a2P1(zl1)DR1(zb + 1/h− zl1)
(∆(zl1 , zl2)(zb + 1/h− zl1)(ln(I?1/I

?
2 )

− abg(zl2 − zl1))

> R?
2. (5.128)

Note that R̂1(z2) and R̂2(zl1) increases as zl1 and zl2 increase so that a shallower light-limited

layer depresses nutrient levels more.

Thus we have shown that the equilibrium distributions for B̂1 and B̂2 under the ESS

assumptions are given by Equations (5.84) and (5.85)

B̂1 =


DR1

P2(zl2 )(zb+1/h−zl1 )(Rin1
−R?2)−DR2

Γ2(zl2 )(zb+1/h−zl2 )(Rin2
−R?1)

(Γ1(zl1 )P2(zl2 )−Γ2(zl2 )P1(zl1 ))(zb+1/h−zl2 )(zb+1/h−zl1 )
, nutrient-limited layer,

ln(Iin/I
?
1 )

a1
− abg

a1
zl1 , light-limited layer,

and

B̂2 =


DR2

Γ1(zl1 )(zb+1/h−zl2 )(Rin2
−R?1)−DR1

P1(zl1 )(zb+1/h−zl1 )(Rin1
−R?2)

(Γ1(zl1 )P2(zl2 )−Γ2(zl2 )P1(zl1 ))(zb+1/h−zl2 )(zb+1/h−zl1 )
nutrient-limited layer,

ln(I?1 /I
?
2 )

a2
− abg

a2
(zl2 − zl1), light-limited layer,

as desired.

Theorem 5.2.2. Existence of (z?1 , z
?
2) The ESS depths z?1 and z?2 are determined by the
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system of equations:



DR1
P2(zl2 )(zb+1/h−z?1 )(Rin1

−R?2)−DR2
Γ2(zl2 )(zb+1/h−z?2 )(Rin2

−R?1)

(Γ1(zl1 )P2(zl2 )−Γ2(zl2 )P1(zl1 ))(zb+1/h−z?2 )(zb+1/h−z?1 )
=

ln(Iin/I
?
1 )

a1
− abg

a1
z?1 ,

DR2
Γ1(zl1 )(zb+1/h−z?2 )(Rin2

−R?1)−DR1
P1(zl1 )(zb+1/h−z?1 )(Rin1

−R?2)

(Γ1(zl1 )P2(zl2 )−Γ2(zl2 )P1(zl1 ))(zb+1/h−z?2 )(zb+1/h−z?1 )
=

ln(I?1 /I
?
2 )

a2
− abg

a2
(z?2 − z?1).

(5.129)

This solution provides a stable equilibrium of the full preferential nutrient uptake model

(Equations (3.1) –(3.17)) with Db1 = Db2 = 0 and ν1(∂g1/∂z)|z?1 = ν2(∂g2/∂z)|z?2 = 0.

Proof. Observe that net growth is positive below a nutrient-limited layer since I > I?1 > I?2

and net growth is positive above a light-limited layer since R > R?
1 > R?

2. Thus the ESS depth

is obtained by considering the case of a layer under the conditions of co-limitation. That is,

the layers are limited by both resources so that R̂2(zl1) = R?
1, R̂1(zl2) = R?

2, Î(zl1) = I?1 , and

Î(zl2) = I?2 . Thus we need to combine the nutrient-limited and light-limited cases for B̂1 and

B̂2 to derive the system needed to solve for the ESS depths z?1 and z?2 . We do this by setting

the nutrient-limited and light-limited profiles equal and replace zl1 and zl2 with z?1 and z?2 .

Doing this results in the system of equations given in (5.129):



DR1
P2(zl2 )(zb+1/h−z?1 )(Rin1

−R?2)−DR2
Γ2(zl2 )(zb+1/h−z?2 )(Rin2

−R?1)

(Γ1(zl1 )P2(zl2 )−Γ2(zl1 )P1(zl1 ))(zb+1/h−z?2 )(zb+1/h−z?1 )
=

ln(Iin/I
?
1 )

a1
− abg

a1
z?1 ,

DR2
Γ1(zl1 )(zb+1/h−z?2 )(Rin2

−R?1)−DR1
P1(zl1 )(zb+1/h−z?1 )(Rin1

−R?2)

(Γ1(zl1 )P2(zl2 )−Γ2(zl2 )P1(zl1 ))(zb+1/h−z?2 )(zb+1/h−z?1 )
=

ln(I?1 /I
?
2 )

a2
− abg

a2
(z?2 − z?1).

Existence of solutions to this system of equations is guaranteed by the Implicit Function

Theorem. The system of equations can be solved in (z?1 , z
?
2), however, the resulting algebraic

expressions are uninformative.

The ESS provides a stable equilibrium of the full model (Equations (3.1) –(3.17)) with
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Db1 = Db2 = 0 and ν1(∂g1/∂z)|z?1 = ν2(∂g2/∂z)|z?2 = 0 since

g1(z) = min
(
fI,1(I?1 ), fR,1(R?

1, R
?
2)
)
−m1 = m1 −m1 = 0 (5.130)

and

g2(z) = min
(
fI,2(I?2 ), fR,2(R?

1, R
?
2)
)
−m2 = m2 −m2 = 0 (5.131)

for all z ∈ [0, zb]. Equations (5.130) and (5.131) follow since I?1 = f−1
I,1 (m1), I?2 = f−1

I,2 (m2),

R?
1 = f−1

R,1(m1,m2), and R?
2 = f−1

R,2(m1,m2) so that no net growth occurs outside the layers

at z?1 and z?2 for b1(z) and b2(z) respectively.

Corollary 5.2.3. (The Biomass Equilibrium B̂1 and B̂2 as functions of (z?1 , z
?
2)) The equi-

librium biomass can be expressed as a function of (z?1 , z
?
2) as

B̂1 =



ln(Iin/I
?
1 )

a1

, z?1 ≤ 0

(surface layer),

DR1
P2(zl2 )(Rin1

−R?2)

∆(zl1 ,zl2 )(zb+1/h−z?2 )
− DR2

Γ2(zl2 )(Rin2
−R?1)

∆(zl1 ,zl2 )(zb+1/h−z?1 )
=

ln(Iin/I
?
1 )

a1
− abg

a1
z?1 , 0 < z?1 < z?2 < zb

(DCM),

DR1P2(zl2)(Rin1 −R?
2)−DR2Γ2(zl2)(Rin2 −R?

1)

∆(zl1 , zl2)
, z?2 ≥ zb

(benthic layer),

(5.132)
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and

B̂2 =



ln(I?1/I
?
2 )

a2

, z?1 ≥ z?2

(surface layer),

DR2
Γ1(zl1 )(Rin2

−R?1)

∆(zl1 ,zl2 )(zb+1/h−z?1 )
− DR1

P1(zl1 )(Rin1
−R?2)

∆(zl1 ,zl2 )(zb+1/h−z?2 )
=

ln(I?1 /I
?
2 )

a2
− abg

a2
(z?2 − z?1), 0 < z?1 < z?2 < zb

(DCM),

DR2Γ1(zl1)(Rin2 −R?
1)−DR1P1(zl1)(Rin1 −R?

2)

∆(zl1 , zl2)
, z?2 ≥ zb

(benthic layer).

(5.133)

Proof. The DCM layers present in Equations (5.132) and (5.133) are a direct consequence

of Theorem 5.2.2. The remaining terms in the biomass distributions are determined by

restricting the biomass to the water column. For B̂1, if z?1 ≤ 0 we restrict the biomass to the

light-limited surface layer at z = 0. Additionally, if z?2 ≥ zb we restrict the biomass to the

nutrient-limited benthic layer at z = zb. While the argument is identical for B̂2, the surface

layer will occur when z?2 − z?1 ≤ 0.
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6 Conclusion and Suggestions for Future Work

The proposed preferential nutrient uptake model presented is able to qualitatively replicate

common depth profiles and offer insights into what physical and physiological parameters

are important to consider in model calibration. The parameter estimation problem was able

to be successfully solved on 26 of the model’s parameters. While simulated data was used in

this presentation, this approach offered insights into parameters that are numerically difficult

to estimate. Of these, the incident light Iin is the easiest to resolve with measurement and

can be fixed for simulations done on data generated from field observations. When the model

was analyzed under the Morris screening and Sobol decomposition procedures, the model’s

full parameter space was considered to determine a ranking of the parameters and their

impact on the model’s output for b1(z, t), b2(z, t), R1(z, t), and R2(z, t). The results of the

screening algorithm for the biomass were consistent with biological intuition and highlighted

the importance of parameters associated with how phytoplankton species use light. The

Sobol decomposition method highlighted the possible numerical instability of the solutions

when the loss coefficients are made too large. For the nutrient, the yield coefficients were

ranked as most important in both methods. Since the yield coefficients Y1 and Y2 have

a large range of values reported in the literature and are susceptible to being estimated

with error, care should be taken with these parameters in simulations. These finds are

remarkably consistent with the analysis done on the Klausmeier and Litchman model and

the multi-species variant of their model as well.

In Chapter 5 we derived special equilibrium solutions to the multi-species Klausmeier and

Litchman model (an extension of the work done in [35]) and the preferential nutrient uptake

model. The analysis of both multi-species models show that presence of light and nutrient

gradients are essential in controlling biomass abundance. In particular, the co-existence

of phytoplankton populations can be attributed to how different species specialize in the

utilization of light and nutrients. This work can be extended to analyze the competition
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between two consumers for multiple resources in a spatially continuous habitat in which

resource distributions are impacted by biological factors. Research in this direction for

a multi-species phytoplankton competition model can be found in [51]. Using a similar

analysis, the impact of preferential nutrient uptake can be better understood.

Going forward, there are multiple avenues of study which can be considered relating to

this current body of research. An often overlooked component of aquatic ecosystems is the

impact that viral populations have in the microbial loop. Studies have shown that there

can be up to an order of magnitude of 1010 viruses per liter in surface water and are an

important factor in controlling algal blooms [17]. Currently most models that study the

vertical distributions of phytoplankton and forms of coexistence do not incorporate a viral

component. Additionally, the invasion of zebra and quagga mussels in North American

freshwater ecosystems and the Great Lakes poses further modeling challenges. Mussels are

filter feeders which attach to the substrate and adults are capable of filtering one or more liters

of water per day where they remove phytoplankton, zooplankton, and algae and discharge

particle free water. In order to adapt the existing models to this environment, a biologically

active layer at the boundary would need to be added, resulting in a term which would be

the solution of an ordinary differential equation used to model mussel growth. Some work

has been done in this regard and can be found in [59].

In addition to extending the existing models to incorporate further biological complex-

ities, different modeling approaches can also be considered. In particular, the use of agent

based models and cellular automata models, along with models which incorporate machine

learning techniques such as evolutionary computation, autoregressive fuzzy models, and ar-

tificial neural network models are of great interest. Agent based and cellular automata

models are discrete models which simulate a group of individuals. Population level behavior

emerges as the sum of the agent behaviors and how the agents interact with the environment.

These models provide a natural contrast to the differential equation models and can offer

further insights into the phytoplankton layering phenomenon and forms of coexistence. In
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particular, combining these methods with other models which incorporate machine learning

techniques which have been previously used successfully to forecast the formation of harmful

algal blooms is of interest. This framework would allow us to not only see how those fore-

casts compare to others based on field data, but to further contrast the existing differential

equation models and reduce the number of input parameters needed for a robust forecasting

system.
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