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ABSTRACT
STABILITY ANALYSIS FOR THE EQUILIBRIA OF A MONKEYPOX MODEL

by
Rachel Elizabeth TeWinkel

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Istvan Lauko

Monkeypox virus was first identified in 1958 and has since been an ongoing problem in Central
and Western Africa. Although the smallpox vaccine provides partial immunity against
monkeypox, the number of cases has greatly increased since the eradication of smallpox made its
vaccination unnecessary. Although studied by epidemiologists, monkeypox has not been
thoroughly studied by mathematicians to the extent of other serious diseases. Currently, to our
knowledge, only three mathematical models of monkeypox have been proposed and studied. We
present the first of these models, which is related to the second, and discuss the global and local
asymptotic stability of its equilibrium points. We prove the global asymptotic stability of the
endemic equilibrium which has been previously incomplete. We expand this model to include a
situation where the contact rate is a function of time and not simply a constant and then consider
an expansion of the model with more than two populations. Then we present the results of
numerical simulations for the original model and the modified models. Finally, we propose a
basic network model, discuss the limitations of this model in its current form, and propose
modifications for future study.
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1 Preliminaries

In this work we seek to understand mathematical models of monkeypox. We primarily explore a
system of differential equations representing both interacting human and animal populations. We
build off of previously completed work and prove the global asymptotic stability of the endemic
equilibrium. This is an important step in accurately modeling monkeypox and is needed if the
model is to reflect reports on the disease by epidemiologists. We will propose extensions to the
model and test them analytically and numerically.

1.1 Introduction

In 1958, the monkeypox virus was isolated for the first time from infected monkeys – resulting in
the name – and the first human case was identified in 1970 in the Democratic Republic of Congo
(DRC) during the eradication of smallpox [10, 11, 14, 31, 66]. Monkeypox presents very similarly
to smallpox and is mostly found in Central and Western Africa [14, 47, 51]. While monkeypox has
a lower mortality rate than smallpox at an estimated 9-12%, cases have increased 20-fold in recent
years compared to past decades [10, 14, 17, 31, 44, 47, 66]. In the Bokungu Health Zone of the
DRC, there were 17 cases reported in 2011 and 13 cases reported in 2012 [47]. However, during
the second half of 2013 there was at least a 6-fold increase in monkeypox in this health zone [47].

Hosts of the monkeypox virus include prairie dogs, tree squirrels, chimpanzees, and baboons, but
there is not currently a complete list of hosts. Since monkeypox infects both humans and animals,
it is generally considered impossible to eradicate [11, 14, 17, 31, 43, 48, 49, 66].

Humans become infected with the monkeypox virus when they come into direct contact with in-
fected animals or people. It is also believed that the virus can be transmitted through respiration as
well. The incubation period is approximately 7-17 days. Symptoms are initially similar to those of
the flu and include fever, muscle aches, headache, and fatigue. The lymph nodes become enlarged, a
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rash develops, and vesicles or “pocks” appear all over the body, including on the palms of the hands
and soles of the feet. These vesicles then form scabs before they drop off [14, 26, 48, 51, 64, 66].

In the last decade there has been a noticeable increase in monkeypox correlated to the decrease in
herd immunity to smallpox. There is no vaccine currently available for monkeypox. The small-
pox vaccine provides approximately 85% immunity against monkeypox and, although the vaccine
can provide cross-protective immunity against monkeypox lasting decades after vaccination, only
about 25% of the populations with endemic monkeypox infection are currently vaccinated against
smallpox. There are also concerns about a new mass vaccination campaign given the prevalence of
HIV/AIDS in those areas affected by monkeypox [26, 28, 38, 40, 43, 49, 51].

After smallpox was declared eradicated in 1977, the World Health Organization continued active
surveillance of monkeypox from 1981 to 1986. Later surveillance of monkeypox from 2006-2007
looked at current incidence rates and those recorded in the 1980s. Rimoin et. al. compared “the
most intense surveillance in the 1980s (Kole in the Sankuru District and Bumba health zone in
the neighboring Equateur province) to zones with similarly intense efforts, comparable popula-
tion demographics, and ecological characteristics (Kole, Tshudi Loto, and Lomela health zones) in
2006 and 2007. For these zones, the average annual incidence increased from 0.48 per 10,000 to
11.25 per 10,000 population” [51]. Although many people become infected through contact with
infected animals, human-to-human transmission chains up to seven individuals long consisting of
42 apparent cases have been identified. Until recently, it was thought that human-to-human trans-
mission chains were rarely, if ever, longer than two. In addition to waning herd immunity provided
through the smallpox vaccine, poverty and civil war have left people to hunt for food in areas where
monkeypox is endemic throughout animal populations [28, 29, 30, 47, 48, 51, 53, 64].
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1.2 Outline of Chapters and Results

In Chapter 2 of this work, we discuss a previously proposed mathematical model of monkeypox
from [4]. We will discuss how the model is set up and attempt to follow their work to show the
global asymptotic stability of the equilibria under certain assumptions. We show that the desired
result does not necessarily follow and hence the need for a new approach. Chapter 2 also presents
some results needed for later proofs.

The main result of this dissertation is presented in Chapter 3. There we will prove the existence
of the endemic equilibrium regardless of whether or not certain assumptions from Chapter 2 are
true. We will also prove the global asymptotic stability of the endemic equilibrium. This proof
was previously incomplete. This is an important result for modeling monkeypox with a system of
differential equations. Knowing that the endemic equilibrium is globally asymptotically stable for
the model suggests that, as long as there is monkeypox infection in the animal population, there
will be infection in the human population. We end the chapter with an extension of our main result.

Chapter 4 presents numerical results for simulations of the models presented in the previous chap-
ters. We also show numerical results for simulations on more complicated versions of these models
– e.g. when there are more than two populations and when one constant parameter is changed to a
function of time.

In Chapter 5 we briefly outline a network model of monkeypox. We show some preliminary results
when running simulations of this model and discuss why this model does not give us the results
expected based on epidemiological data. We also propose some adjustments for future work and
highlight the information needed to make these adjustments.

Proposed future work is given in Chapter 6.
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2 Current Monkeypox Models

Currently, only three mathematical models of monkeypox can be found in the literature. The first
is an SIR model by Bhunu and Mushayabasa, the second is an expansion on this model to include
co-infection of monkeypox and HIV by Bhunu, Mushayabasa and Hyman, and the third was only
recently published by Emeka et. al [4, 5, 20]. Since the second is an extension of the first, we
wished to understand the first and then expand on this model in a different way than was done
before. During this process, we found that some results in [4] were not proven while others were
proven under certain assumptions. We will complete these proofs and show that result still holds
even if we use more more general assumptions.

2.1 Description of the Model

Themodel examined in this section was first proposed in [4] and the work in this chapter extends the
work of that paper. This model considers a population of humans divided into susceptible, infected
and recovered individuals, denotedSℎ, Iℎ andRℎ, respectively, and a population of animals divided
into susceptible, infected and recovered individuals, denoted Sa, Ia and Ra, respectively. The total
human population is given asNℎ(t) = Sℎ(t)+Iℎ(t)+Rℎ(t) and the total animal population is given
as Na(t) = Sa(t) + Ia(t) + Ra(t). Susceptible humans are recruited through migration and birth
at the rate Λℎ and susceptible animals are recruited at a rate of Λa. Let da, dℎ be the death rates
by monkeypox for the animals and humans, respectively, �a, �ℎ be the natural death rates for the
animals and humans, respectively, and �a, �ℎ be the recovery rates with permanent immunity for
the animals and humans, respectively. It is assumed that the impact of hunting on the animals by
humans is negligible and can be ignored. Further, we assume that animals cannot become infected
by humans since the vast majority of animal and human contact is when animals are hunted and
eaten. Disease transmission is modeled using standard incidence, assuming a constant (density-
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independent) contact rate both within and across the two populations resulting in infection rates

fa
(

Sa, Ia, Ra
)

=
�a1Ia
Na

Sa, and fℎ
(

Sa, Ia, Ra, Sℎ, Iℎ, Rℎ
)

=
(�a2Ia
Na

+
�ℎIℎ
Nℎ

)

Sℎ,

where �a1 , �a2 and �ℎ are the effective contact rates within the animal population, between the
animal population and human population, and in the human population, respectively. We assume
that Λa,Λℎ, �a, �ℎ, �a, �ℎ are positive, while da, dℎ, �a1 , �a2 and �ℎ are non-negative parameters.

Thus we have the following system of non-linear differential equations (2.1a)-(2.1f)

dSa
dt

= Λa − �aSa −
�a1Ia
Na

Sa, (2.1a)

dIa
dt

=
�a1Ia
Na

Sa −
(

�a + �a + da
)

Ia, (2.1b)

dRa

dt
= �aIa − �aRa, (2.1c)

dSℎ
dt

= Λℎ − �ℎSℎ −
(�a2Ia
Na

+
�ℎIℎ
Nℎ

)

Sℎ, (2.1d)

dIℎ
dt

=
(�a2Ia
Na

+
�ℎIℎ
Nℎ

)

Sℎ −
(

�ℎ + �ℎ + dℎ
)

Iℎ, (2.1e)

dRℎ

dt
= �ℎIℎ − �ℎRℎ. (2.1f)

Since
dNa

dt
= Λa − �aNa − daIa and

dNℎ

dt
= Λℎ − �ℎNℎ − dℎIℎ,

the set Ω = Ωa × Ωℎ, where
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Λa

Sa Ia Ra

(

�a + da
)

Ia

�aSa �aRa

�a1Ia
Na
Sa �aIa

Sℎ

Λℎ

Iℎ Rℎ

(

�ℎ + dℎ
)

Iℎ�ℎSℎ �ℎRℎ

�a2IaSℎ
Na

+ �ℎIℎSℎ
Nℎ �ℎIℎ

Figure 2.1: The structure of the model in the system (2.1a)-(2.1f) of differential equations
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Ωa =
{

(

Sa, Ia, Ra
)

∈ ℝ3
+ ∶ Sa ≥ 0, Ia ≥ 0, Ra ≥ 0, Sa + Ia + Ra ≤

Λa
�a

}

and
Ωℎ =

{

(

Sℎ, Iℎ, Rℎ
)

∈ ℝ3
+ ∶ Sℎ ≥ 0, Iℎ ≥ 0, Rℎ ≥ 0, Sℎ + Iℎ + Rℎ ≤

Λℎ
�ℎ

}

,

is positively invariant under the dynamics of (2.1a)-(2.1f), and solutions with initial conditions in
Ω exist globally [4, 37].

2.2 Basic Reproduction Numbers

The disease free equilibrium is given as 0 =
(

S0a , I
0
a , R

0
a, S

0
ℎ, I

0
ℎ , R

0
ℎ

)

=
(

Λa
�a
, 0, 0,

Λℎ
�ℎ
, 0, 0

)

. An
analysis for this equilibrium was given in [4] and we also refer the reader to [8, 18, 19, 37, 60].

The basic reproduction number of an SIR model represents the average number of infections that
will result from one infected individual. Using the method of van der Driessche and Watmough,
the basic reproduction numbers of the model are {0a ,0ℎ

} where

0a =
�a1

�a + �a + da
and 0ℎ =

�ℎ
�ℎ + �ℎ + dℎ

.

We find this by first defining the matrix

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�a1
�a + �a + da

�a2
�ℎ + �ℎ + dℎ

0
�ℎ

�ℎ + �ℎ + dℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Each entry is obtained from looking at the average time a human is infected, (�ℎ + �ℎ + dℎ
)−1, and

the average time an animal is infected, (�a + �a + da
)−1, with the respective rates that infection

is transferred from animals to animals, �a1 , animals to humans, �a2 , and humans to humans, �ℎ.
Finding the eigenvalues of this matrix gives us the basic reproduction numbers. We have

7



M − �I =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�a1
�a + �a + da

− �
�a2

�ℎ + �ℎ + dℎ

0
�ℎ

�ℎ + �ℎ + dℎ
− �

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Since thismatrix is upper triangular, the eigenvalues of thismatrix are �a1
�a + �a + da

and �ℎ
�ℎ + �ℎ + dℎ

.

When0a < 1 and0ℎ < 1, this equilibrium is locally asymptotically stable and unstable otherwise
[4, 8]. We will discuss the global asymptotic stability of the disease-free equilibrium in the next
chapter.

2.3 Endemic Equilibrium of the Animal Subsystem

We now look at what happens when there is no infection in the human population, but infection
is only in the animal population. Since animals cannot get infected through humans, the spread of
infection through the animal population happens independently of the dynamics of infection among
humans. By assuming no infection in the human population, we hone in on the epidemic dynamics
among animals. We will use the results of this section later to understand the bigger picture of how
the epidemic spreads through both populations and is driven by the infection among animals.

We start with the setup provided in [4] and show that this endemic equilibrium of the animal sub-
system is feasible. Suppose �a2 = �ℎ = 0 so there are only animal-to-animal infections. Then
0ℎ = 0 and the endemic equilibrium of the animal subsystem is given as E∗

a =
(

S∗a , I
∗
a , R

∗
a

). At
the equilibrium point, S ′a = I ′a = R′a = 0. Using the system in (2.1a)-(2.1c), we have

Λa =
(

�a +
�a1I

∗
a

N∗
a

)

S∗a ,
�a1I

∗
a

N∗
a
S∗a =

(

�a + �a + da
)

I∗a , �aI
∗
a = �aR

∗
a (2.2)
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By adding the first two equations we obtain

Λa +
�a1I

∗
a

N∗
a
S∗a =

(

�a +
�a1I

∗
a

N∗
a

)

S∗a +
(

�a + �a + da
)

I∗a

Λa = �aS∗a +
(

�a + �a + da
)

I∗a

S∗a =
Λa
�a
−
�a + �a + da

�a
I∗a . (2.3)

Looking at the second equation above and the last equation in (2.2), we solve forN∗
a to get:

Λa = �aS∗a +
(

�a + �a + da
)

I∗a

Λa = �aS∗a + �aI
∗
a + �aR

∗
a + daI

∗
a

Λa = �aN∗
a + daI

∗
a

N∗
a =

Λa − daI∗a
�a

. (2.4)

By the third equation in (2.2), we have

R∗a =
�a
�a
I∗a . (2.5)

If we find I∗a in terms of the parameters only, then we can also write S∗a , R∗a andN∗
a in terms of the

parameters since they are given above in terms of the parameters and I∗a . We use (2.2) and (2.3) to
represent I∗a in terms of the parameters and assume I∗a > 0.

�a1I
∗
a

N∗
a
S∗a =

(

�a + �a + da
)

I∗a

�a1S
∗
a =

(

�a + �a + da
)

N∗
a
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�a1

(

Λa
�a
−
�a + �a + da

�a
I∗a

)

=
(

�a + �a + da
)

(

Λa − daI∗a
�a

)

�a1Λa
�a

−

(

�a + �a + da
)

Λa
�a

=

((

�a + �a + da
)

�a1
�a

−
da

(

�a + �a + da
)

�a

)

I∗a

�a1Λa −
(

�a + �a + da
)

Λa
�a

=

((

�a1 − da
) (

�a + �a + da
)

�a

)

I∗a

I∗a =
Λa

(

�a1 −
(

�a + �a + da
) )

�a
⋅

�a
(

�a1 − da
) (

�a + �a + da
)

I∗a =
Λa

(

�a1 −
(

�a + �a + da
))

(

�a1 − da
) (

�a + �a + da
) (2.6)

We note that I∗a > 0whenever0a > 1 or �a1 < da, but in the latter case the resultingS∗a is negative.
Thus the endemic equilibrium is feasible, that is, E∗

a ∈ Ωa, if and only if0a > 1.

2.3.1 Stability Analysis for the Endemic Equilibrium of the Animal Subsystem

We now investigate the stability of E∗
a with the goal of proving the global asymptotic stability of

the endemic equilibrium of (2.1a)-(2.1c). We start by exploring the analysis proposed in [4], which
suggests a method from [33], and then we include an alternate method from [61]. The latter method
is necessary because the result in [4] does not clearly follow. Once the global asymptotic stability
of E∗

a is proven, we will have the result that as long as there is infection in the animal population,
there will continue to be infection in the animal population regardless of what happens in the human
population.

Assume that 0a > 1. Then E∗
a exists for Sa, Ia, Ra > " > 0. Bhunu and Mushayabasa pro-

pose the following Lyapunov function similar to that proposed by Korobeinikov in [33]. Define
g
(

Sa, Ia, Ra
)

∶=
�a1IaSa
Na

. This function is positive and monotonic in Sa, Ia, and Ra.
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They define the following function in ℝ3
+:

V
(

Sa, Ia, Ra
)

= Sa − ∫

Sa

"

g
(

S∗a , I
∗
a , R

∗
a

)

g
(

�, I∗a , R∗a
) d� + Ia − ∫

Ia

"

g
(

S∗a , I
∗
a , R

∗
a

)

g
(

S∗a , �, R∗a
) d�

+ Ra − ∫

Ra

"

g
(

S∗a , I
∗
a , R

∗
a

)

g
(

S∗a , I∗a , �
) d�. (2.7)

This function is similar to one in [33], but must include the recovered class. Because of this,
the analysis does not follow in the same way. In [4], the partial derivatives of V with respect to
Sa, Ia and Ra are calculated and used to show the time derivative is negative definite and zero at
equilibrium. We have

)V
)Sa

= 1 −
g
(

S∗a , I
∗
a , R

∗
a

)

g
(

Sa, I∗a , R∗a
)

)V
)Sa

= 1 −

(

�a1I
∗
aS

∗
a

S∗a + I∗a + R∗a
⋅
Sa + I∗a + R

∗
a

�a1I
∗
aSa

)

)V
)Sa

= 1 −
S∗a

(

Sa + I∗a + R
∗
a

)

Sa
(

S∗a + I∗a + R∗a
) ,

)V
)Ia

= 1 −
g
(

S∗a , I
∗
a , R

∗
a

)

g
(

S∗a , Ia, R∗a
)

)V
)Ia

= 1 −

(

�a1I
∗
aS

∗
a

S∗a + I∗a + R∗a
⋅
S∗a + Ia + R

∗
a

�a1IaS
∗
a

)

)V
)Ia

= 1 −
I∗a
(

S∗a + Ia + R
∗
a

)

Ia
(

S∗a + I∗a + R∗a
) ,
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and

)V
)Ra

= 1 −
g
(

S∗a , I
∗
a , R

∗
a

)

g
(

S∗a , I∗a , Ra
)

)V
)Ra

= 1 −

(

�a1I
∗
aS

∗
a

S∗a + I∗a + R∗a
⋅
S∗a + I

∗
a + Ra

�a1I
∗
aS∗a

)

)V
)Ra

= 1 −
S∗a + I

∗
a + Ra

S∗a + I∗a + R∗a
.

While )V
)Sa

and )V
)Ia

increase monotonically with respect to their variables, )V
)Ra

decreases mono-
tonically with respect to its variable. In order to use [33], we need each partial derivative to be
increasing monotonically with respect to its variable. Since we cannot say this, we cannot use this
method.

Before abandoning the method from [33], we looked into the possibility of simply changing the
signs on the last two terms of (2.7) so that

V
(

Sa, Ia, Ra
)

= Sa − ∫

Sa

"

g
(

S∗a , I
∗
a , R

∗
a

)

g
(

�, I∗a , R∗a
) d� + Ia − ∫

Ia

"

g
(

S∗a , I
∗
a , R

∗
a

)

g
(

S∗a , �, R∗a
) d�

− Ra + ∫

Ra

"

g
(

S∗a , I
∗
a , R

∗
a

)

g
(

S∗a , I∗a , �
) d�.

Alternatively, since the difficulty in the partial derivative comes from the fact that Ra is in the
denominator of g but not the numerator, we defined g differently as g (Sa, Ia, Ra

)

∶=
�a1IaSaRa

Na
.

In either case, we still cannot show that dV
dt

is negative definite following the method in [4, 33].
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2.3.2 An Alternative Lyapunov Function

Despite the global asymptotic stability failing to follow clearly in the analysis in [4], the result does
follow if proved in an alternative way. A Lyapunov function was proposed by Vargas De-León for a
slightly more complicated version of the system in (2.1a)-(2.1c). This section follows the analysis
of that system and we refer the reader to [61]. The system is given as

dS
dt

= Λ −
�SI

S + I + R
− �S + 
R (2.8a)

dI
dt

=
�SI

S + I + R
− (� + � + �) I (2.8b)

dR
dt

= �I − (� + 
)R (2.8c)

on the positively invariant set Γ = {

(S, I, R) ∈ ℝ3
+ ∶ N ≤ Λ∕�

}. Notice that this system is exactly
(2.1a)-(2.1c) where 
 = 0, Λ, �, �, � > 0, and � ≥ 0. In system (2.8a)-(2.8c), we can assume 
 ≥ 0.
As before, we find that the basic reproduction number is0 =

�
� + � + �

.

Before discussing the endemic equilibrium of (2.8a)-(2.8c) we first note that the disease-free equi-
librium is globally asymptotically stable.
Theorem 2.3.1 (Vargas De-León). If0 ≤ 1, then the disease-free equilibrium E0 of (2.8a)-(2.8c)

is globally asymptotically stable in Γ.

Proof. Let U ∶ {(S, I, R) ∈ Γ ∶ S > 0} → ℝ by U (S, I, R) = 1
2
I2. Suppose 0 ≤ 1. We

calculate U ′ to obtain

U ′ = II ′

U ′ = I
(

�SI
S + I + R

− (� + � + �) I
)

U ′ = I2

S + I + R
(

�S − (� + � + a�) (S + I + R)
)
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U ′ =
(� + � + �) I2

S + I + R

(

�S
� + � + �

− (S + I + R)
)

U ′ = −
(� + � + �) I2

S + I + R
(

S + I + R −0S
)

U ′ = −
(� + � + �) I2

S + I + R
(

I + R +
(

1 −0
)

S
)

.

Notice that U ′ ≤ 0. If U ′ = 0 then either I = R = 0 with 0 = 1 or I = 0 must be true. Thus,
U is a Lyapunov function on Γ and I → 0, R → 0 as t → ∞. If I = R = 0 then by (2.8a)-(2.8c),
S → Λ∕�. The global asymptotic stability follows by LaSalle’s Invariance Principle.

We adapt this to our particular system in (2.1a)-(2.1c) as follows:
Theorem 2.3.2. If 0a ≤ 1 then the disease-free equilibrium E0

a =
(

Λa∕�a, 0, 0
)

of (2.1a)-(2.1c)

is globally asymptotically stable in Ωa.

Before showing the global asymptotic stability of the endemic equilibrium for the system (2.8a) -
(2.8c), we must show that this equilibrium point exists. To find this endemic equilibrium point,
∗ = (S∗, I∗, R∗), we set each equation in (2.8a)-(2.8c) to zero and find that

R∗ = �I∗

� + 

. (2.9)

If we add up all three equations we get dN
dt

= Λ − �N∗ − �I∗. Adding (2.8a) and (2.8b) at
equilibrium, we get

Λ −
�S∗I∗

N∗ − �S∗ + 
R∗ +
�S∗I∗

N∗ − (� + � + �)I∗ = 0

Λ − �S∗ + 
R∗ − (� + � + �)I∗ = 0

Λ + 
R∗ − (� + � + �)I∗ = �S∗

1
�
(

Λ + 
R∗ − (� + � + �)I∗
)

= S∗. (2.10)
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Using (2.8a) and (2.8b) at equilibriumwe haveΛ = �S∗I∗

N∗ +�S∗−
R∗ and �S
∗I∗

N∗ = (�+�+�)I∗.
Substituting the latter into the former we obtain Λ = (� + � + �)I∗ + �S∗ − 
R∗. Using (2.8c) at
equilibrium, we obtain �I∗ − 
R∗ = �R∗. Thus, we can rewrite Λ as

Λ = (� + � + �)I∗ + �S∗ − 
R∗

Λ = �I∗ + �I∗ + �S∗ + (�I∗ − 
R∗)

Λ = �I∗ + �I∗ + �R∗ + �S∗

Λ = �I∗ + �N∗. (2.11)

Using (2.8b) at equilibrium again, �S
∗I∗

N∗ = (�+� +�)I∗ can be written as �S∗ = (�+� +�)N∗.
Using (2.11), we can writeN∗ = 1

�
(Λ − �I∗) and using this along with (2.10) then write

�S∗ = (� + � + �)N∗

�
[

1
�
(

Λ + 
R∗ − (� + � + �) I∗
)

]

= (� + � + �)
(

1
�
(Λ − �I∗)

)

�Λ
�
+
�
R∗

�
−
�(� + � + �)I∗

�
=
(� + � + �)Λ

�
−
�I∗(� + � + �)

�

�Λ − (� + � + �)Λ + �
R∗ =
(

�(� + � + �) − �(� + � + �)
)

I∗.

We substitute (2.9) into the above and obtain

Λ
(

� − (� + � + �)
)

+ �
R∗ =
(

�(� + � + �) − �(� + � + �)
)

I∗

Λ
(

� − (� + � + �)
)

+
�
�I∗

� + 

=
(

�(� + � + �) − �(� + � + �)
)

I∗

Λ
(

� − (� + � + �)
)

=

(

�(� + � + �) − �(� + � + �) −
�
�
� + 


)

I∗
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I∗ =
Λ
(

� − (� + � + �)
)

(

�(� + � + �) − �(� + � + �) −
�
�
� + 


)

I∗ =
Λ(� + 
)

(

� − (� + � + �)
)

�(� + 
)(� + � + �) − �(� + 
)(� + � + �) − �
�

I∗ =

Λ(� + 
)�
(� + � + �)

−
Λ(� + 
)(� + � + �)

(� + � + �)
�(� + 
)(� + � + �)

(� + � + �)
−
�(� + 
)(� + � + �)

(� + � + �)
−

�
�
(� + � + �)

I∗ =

�Λ(� + 
)
(� + � + �)

− Λ(� + 
)

�(� + 
)(� + � + �)
(� + � + �)

− �(� + 
) −
�
�

(� + � + �)

I∗ =
Λ(� + 
)

(

0 − 1
)

0(� + 
)(� + � + �) − �(� + 
) −0
�

I∗ =
Λ(� + 
)

(

0 − 1
)

0(�� + �� + �2 + 
� + 
� + 
�) − (�� + �
) −0
�

I∗ =
Λ(� + 
)

(

0 − 1
)

0(�� + �2 + 
�) +0(�� + 
�) − (�� + �
)

I∗ =
Λ(� + 
)

(

0 − 1
)

0�(� + � + 
) + �(
 + �)
(

0 − 1
) . (2.12)

Since the equations for S∗ and R∗ given in (2.10) and (2.9) are in terms of the parameters and I∗
and we have just expressed I∗ in terms of only the parameters, we have found the equilibrium point.
Explicitly finding these, we have

R∗ = �I∗

� + 


R∗ =
�Λ(
 + �)

(

0 − 1
)

(� + 
)
[

0�(� + � + 
) + �(
 + �)
(

0 − 1
)]
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R∗ =
�Λ

(

0 − 1
)

0�(� + � + 
) + �(
 + �)
(

0 − 1
) . (2.13)

We can write S∗ more simply than in (2.10) using N∗ = 1
�
(Λ − �I∗) and �S∗ = (� + � + �)N∗

from before to get

�S∗ = (� + � + �)N∗

S∗ =
(� + � + �)(Λ − �I∗)

��

S∗ = Λ − �I∗
0�

S∗ = Λ
0�

− �
0�

(

Λ(� + 
)
(

0 − 1
)

0�(� + � + 
) + �(
 + �)
(

0 − 1
)

)

S∗ = Λ
0�

− Λ
0�

(

�(� + 
)
(

0 − 1
)

0�(� + � + 
) + �(
 + �)
(

0 − 1
)

)

S∗ = Λ
0�

(

1 −
�(� + 
)

(

0 − 1
)

0�(� + � + 
) + �(
 + �)
(

0 − 1
)

)

S∗ = Λ
0�

(

0�(� + � + 
) + �(
 + �)
(

0 − 1
)

− �(� + 
)
(

0 − 1
)

0�(� + � + 
) + �(
 + �)
(

0 − 1
)

)

S∗ = Λ
0�

(

0�(� + � + 
)
0�(� + � + 
) + �(
 + �)

(

0 − 1
)

)

S∗ =
Λ(� + � + 
)

0�(� + � + 
) + �(
 + �)
(

0 − 1
) . (2.14)

Thus, we have the existence of the equilibrium point, ∗ = (S∗, I∗, R∗), for (2.8a)-(2.8c), and
another possible form for E∗

a when 
 = 0.
Theorem 2.3.3 (Vargas De-León). Suppose 0 > 1 and 2
 + � ≥ �. Then the unique endemic

equilibrium ∗ = (S∗, I∗, R∗) is globally asymptotically stable in the interior of Γ.
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Proof. Consider the Lyapunov function Ṽ given in:

Ṽ =
(

(S − S∗) + (I − I∗) + (R − R∗) − (S∗ + I∗ + R∗) ln
(S + I + R)
(S∗ + I∗ + R∗)

)

+
(� + 2�) (S∗ + I∗ + R∗)

� (I∗ + R∗)

(

I − I∗ − I∗ ln I
I∗

)

+
(� + 2�)
2�

(

1 + S∗

I∗ + R∗
) (R − R∗)2

S + I + R
.

Then Ṽ is C1 in the interior of the positively invariant set Γ = {

(S, I, R) ∈ ℝ3
+ ∶ N ≤ Λ∕�

}, ∗
is the global minimum of Ṽ on Γ, and Ṽ (S∗, I∗, R∗) = 0.

Computing the time derivative of Ṽ along solutions of (2.8a)-(2.8c), we have

dṼ
dt

=S ′(t) + I ′(t) + R′(t) − (S∗ + I∗ + R∗)

(

S ′(t) + I ′(t) + R′(t)
S∗ + I∗ + R∗

⋅
S∗ + I∗ + R∗
S + I + R

)

+
(� + 2�) (S∗ + I∗ + R∗)

� (I∗ + R∗)

(

I ′(t) − I∗
(I ′(t)
I∗

⋅
I∗

I

)

)

+
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)[

2 (R − R∗)R′(t)
S + I + R

−
(R − R∗)2

(S + I + R)2
⋅
(

S ′(t) + I ′(t) + R′(t)
)

]

dṼ
dt

=
(

S ′(t) + I ′(t) + R′(t)
)

(

1 −
(S∗ + I∗ + R∗)
S + I + R

)

+
(� + 2�) (S∗ + I∗ + R∗)

� (I∗ + R∗)

(

I − I∗
I

)

I ′(t)

+
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)[

2 (R − R∗)R′(t)
S + I + R

−
(R − R∗)2

(

S ′(t) + I ′(t) + R′(t)
)

(S + I + R)2

]

dṼ
dt

=
(

S ′(t) + I ′(t) + R′(t)
)

(

(S + I + R) − (S∗ + I∗ + R∗)
S + I + R

)

+
(� + 2�) (S∗ + I∗ + R∗)

� (I∗ + R∗)

(

I − I∗
I

)

I ′(t)
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+
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

2 (R − R∗)R′(t)
S + I + R

)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)2N ′(t)
(S + I + R)2

)

dṼ
dt

=

(

(S − S∗) + (I − I∗) + (R − R∗)
S + I + R

)

(

S ′(t) + I ′(t) + R′(t)
)

+
(� + 2�) (S∗ + I∗ + R∗)

� (I∗ + R∗)

(

I − I∗
I

)

I ′(t)

+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

R − R∗
S + I + R

)

R′(t)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)2N ′(t)
(S + I + R)2

)

.

Using the ODE system in (2.8a)-(2.8c) and recalling thatN ′(t) = Λ−�(S+I+R)−�I , we obtain

dṼ
dt

=

(

(S − S∗) + (I − I∗) + (R − R∗)
S + I + R

)

(

Λ − �(S + I + R) − �I
)

+
(� + 2�)(S∗ + I∗ + R∗)

�(I∗ + R∗)

(

I − I∗
I

)(

�IS
S + I + R

− (� + � + �)I

)

+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

R − R∗
S + I + R

)

(

�I − (� + 
)R
)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

.
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Since Λ = �(S∗ + I∗ + R∗) + �I∗ and �S∗

S∗ + I∗ + R∗
= � + � + � at equilibrium we have

dṼ
dt

=

(

(S − S∗) + (I − I∗) + (R − R∗)
S + I + R

)

(

�(S∗ + I∗ + R∗) + �I∗ − �(S + I + R) − �I)
)

+
(� + 2�)(S∗ + I∗ + R∗)

�(I∗ + R∗)
(I − I∗)

(

�S
S + I + R

− (� + � + �)

)

+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

R − R∗
S + I + R

)

(

�I − (� + 
)R
)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

dṼ
dt

=

(

(S − S∗) + (I − I∗) + (R − R∗)
S + I + R

)

(

�(S∗ + I∗ + R∗) + �I∗ − �(S + I + R) − �I)
)

+
(� + 2�)(S∗ + I∗ + R∗)

�(I∗ + R∗)
(I − I∗)

(

�S
S + I + R

−
�S∗

S∗ + I∗ + R∗

)

+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

R − R∗
S + I + R

)

(

�I − (� + 
)R
)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

dṼ
dt

=

(

(S − S∗) + (I − I∗) + (R − R∗)
S + I + R

)

(

�(S∗ + I∗ + R∗) + �I∗ − �(S + I + R) − �I)
)

+
(� + 2�)(S∗ + I∗ + R∗)

(I∗ + R∗)
(I − I∗)

(

S
S + I + R

− S∗

S∗ + I∗ + R∗

)

+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

R − R∗
S + I + R

)

(

�I − (� + 
)R
)
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−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

. (2.15)

Simplifying the first term in equation (2.15) we have
(

(S − S∗) + (I − I∗) + (R − R∗)
S + I + R

)

(

�(S∗ + I∗ + R∗) + �I∗ − �(S + I + R) − �I
)

=

(

(S − S∗) + (I − I∗) + (R − R∗)
)(

(−�)
(

(S − S∗) + (I − I∗) + (R − R∗)
)

− �(I − I∗)
)

S + I + R

=

(

1
S + I + R

)

(

− �
[

(S − S∗)2 + (S − S∗)(I − I∗) + (S − S∗)(R − R∗) + (S − S∗)(I − I∗)

+ (I − I∗)2 + (I − I∗)(R − R∗) + (S − S∗)(R − R∗) + (I − I∗)(R − R∗) + (R − R∗)2
]

− �(S − S∗)(I∗ − I) − �(I − I∗)2 − �(I − I∗)(R − R∗)
)

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−
(� + �)(I − I∗)2

S + I + R
−
(� + 2�)(S − S∗)(I − I∗)

S + I + R
(2.16)

−
(� + 2�)(I − I∗)(R − R∗)

S + I + R
.

From the system in (2.8a)-(2.8c) we have (� + 
)R∗ − �I∗ = 0, so we can insert this into the third
line of equation (2.15). Using this and (2.16) we have

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−
(� + �)(I − I∗)2

S + I + R

−
(� + 2�)(S − S∗)(I − I∗)

S + I + R
−
(� + 2�)(I − I∗)(R − R∗)

S + I + R

+
(� + 2�)(S∗ + I∗ + R∗)

(I∗ + R∗)
(I − I∗)

(

S
S + I + R

− S∗

S∗ + I∗ + R∗

)
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+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

R − R∗
S + I + R

)

(

�I − (� + 
)R + (� + 
)R∗ − �I∗
)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−
(� + �)(I − I∗)2

S + I + R

−
(� + 2�)(S − S∗)(I − I∗)

S + I + R
−
(� + 2�)(I − I∗)(R − R∗)

S + I + R

+
(� + 2�)(S∗ + I∗ + R∗)

(I∗ + R∗)
(I − I∗)

(

S
S + I + R

− S∗

S∗ + I∗ + R∗

)

+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

R − R∗
S + I + R

)

(

�(I − I∗) − (� + 
)(R − R∗)
)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

.

Notice that we can rewrite S
S + I + R

− S∗

S∗ + I∗ + R∗
in the following way:

S
S + I + R

− S∗

S∗ + I∗ + R∗
=
S(S∗ + I∗ + R∗) − S∗(S + I + R)

(S∗ + I∗ + R∗)(S + I + R)

= SI∗ + SR∗ − S∗I − S∗R
(S∗ + I∗ + R∗)(S + I + R)

= SI∗ + SR∗ − S∗I − S∗R + S∗I∗ − S∗I∗ + S∗R∗ − S∗R∗
(S∗ + I∗ + R∗)(S + I + R)

=
(I∗ + R∗)(S − S∗) − S∗(I − I∗) − S∗(R − R∗)

(S∗ + I∗ + R∗)(S + I + R)
.
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Then we can rearrange (2.15) as

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−
(� + �)(I − I∗)2

S + I + R

−
(� + 2�)(S − S∗)(I − I∗)

S + I + R
−
(� + 2�)(I − I∗)(R − R∗)

S + I + R

+

[

(� + 2�)(S∗ + I∗ + R∗)
(I∗ + R∗)

(I − I∗)⋅

(

(I∗ + R∗)(S − S∗) − S∗(I − I∗) − S∗(R − R∗)
(S∗ + I∗ + R∗)(S + I + R)

)]

+
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

�(I − I∗)(R − R∗)
S + I + R

−
(� + 
)(R − R∗)2

S + I + R

)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−
(� + �)(I − I∗)2

S + I + R

−
(� + 2�)(S − S∗)(I − I∗)

S + I + R
−
(� + 2�)(I − I∗)(R − R∗)

S + I + R

+
(� + 2�)(I − I∗)(S − S∗)

(S + I + R)
−
(� + 2�)(S∗)(I − I∗)2

(S + I + R)(I∗ + R∗)

−
(� + 2�)(I − I∗)(S∗)(R − R∗)

(S + I + R)(I∗ + R∗)

+ (� + 2�)

(

1 + S∗

I∗ + R∗

)(

(I − I∗)(R − R∗)
S + I + R

)

−
(� + 2�)

�

(

1 + S∗

I∗ + R∗

)(

(� + 
)(R − R∗)2

S + I + R

)
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−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−

(

� + � +
S∗(� + 2�)
I∗ + R∗

)

(I − I∗)2

S + I + R

−
(� + 2�)(� + 
)

�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)2

S + I + R

)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

−
(� + 2�)(S − S∗)(I − I∗)

S + I + R
−
(� + 2�)(I − I∗)(R − R∗)

S + I + R

+
(� + 2�)(I − I∗)(S − S∗)

(S + I + R)
−
(� + 2�)(I − I∗)(S∗)(R − R∗)

(S + I + R)(I∗ + R∗)

+ (� + 2�)

(

(I − I∗)(R − R∗)
S + I + R

)

+ (� + 2�)

(

S∗(I − I∗)(R − R∗)
(I∗ + R∗)(S + I + R)

)

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−

(

� + � +
S∗(� + 2�)
I∗ + R∗

)

(I − I∗)2

S + I + R

−
(� + 2�)(� + 
)

�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)2

S + I + R

)

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

N ′(t)
)

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−

(

� + � +
S∗(� + 2�)
I∗ + R∗

)

(I − I∗)2

S + I + R

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

2(S + I + R)(� + 
) +N ′(t)
)
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dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−

(

� + � +
S∗(� + 2�)
I∗ + R∗

)

(I − I∗)2

S + I + R

−

[

(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2

⋅

(

2(S + I + R)(� + 
) + Λ − �(S + I + R) − �I
)

]

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−

(

� + � +
S∗(� + 2�)
I∗ + R∗

)

(I − I∗)2

S + I + R

−

[

(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2

⋅

(

2�S + 2�I + 2�R + 2
(S + I + R) + Λ − �S − �I − �R − �I
)

]

dṼ
dt

=
−�

(

(S − S∗) + (R − R∗)
)2

S + I + R
−

(

� + � +
S∗(� + 2�)
I∗ + R∗

)

(I − I∗)2

S + I + R

−
(� + 2�)
2�

(

1 + S∗

I∗ + R∗

)(

(R − R∗)
(S + I + R)

)2
(

(� + 2
)(S + R) + Λ + (� + 2
 − �)I
)

.

Thus, Ṽ ′ is negative definite if 2
+� ≥ � and Ṽ ′ = 0 only whenS = S∗, I = I∗, andR = R∗ [61].
By LaSalle’s invariance principle, it follows that ∗ is globally asymptotically stable on Γ̊, hence
E∗
a is globally asymptotically stable on Ω̊a and we have established the existence of the endemic

equilibrium of the animal subsystem.

We adapt this theorem for our own case, when 
 = 0, and will refer to it later.
Theorem 2.3.4. Assume that �a ≥ da and 0a > 1, then the unique endemic equilibrium E∗

a of

(2.1a)-(2.1c) is globally asymptotically stable in the interior of Ωa.
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2.4 Co-existence Endemic Equilibrium

In this section we present the incomplete results from [4] to highlight the need for a new method
of analysis proposed in the next chapter. We now look at the most complicated scenario for (2.1a)-
(2.1f). This co-existence endemic equilibrium occurs when there is animal-to-animal infection,
animal-to-human infection and human-to-human infection. This is the most important scenario
because we want to understand the dynamics of monkeypox in both animal and human populations.
We note that if �a2 = 0 the human subsystem is exactly the same as the animal subsystem and
becomes independent of the animal subsystem, so similar results follow as were presented in the
previous section.

The co-existence endemic equilibrium point is given as 1 =
(

E∗
a , E

∗
ℎ

). The components of 1
related to the animal population are the same as in (2.3), (2.5), and (2.6) because infection in the
animal population is independent of any infection in the human population. We find the components
related to the human subsystem by setting the equations (2.1d)-(2.1f) equal to zero to obtain

Λℎ =
(

�ℎ +
�a2I

∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ

)

S∗ℎ ,
�a2I

∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ
S∗ℎ =

(

�ℎ + �ℎ + dℎ
)

I∗ℎ , �ℎI
∗
ℎ = �ℎR

∗
ℎ.

(2.17)

As before, we try to express S∗ℎ and R∗ℎ in terms of the parameters and I∗ℎ . If we can then show that
I∗ℎ is positive, then the components of E∗

ℎ are positive and the endemic equilibrium point 1 exists.
Using the first two equations from (2.17), we see that

Λℎ = �ℎS∗ℎ +
�a2I

∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ
S∗ℎ

Λℎ = �ℎS∗ℎ +
(

�ℎ + �ℎ + dℎ
)

I∗ℎ

S∗ℎ =
Λℎ
�ℎ

−

(

�ℎ + �ℎ + dℎ
)

�ℎ
I∗ℎ . (2.18)
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Clearly, by the third equation of (2.17),

R∗ℎ =
�ℎ
�ℎ
I∗ℎ . (2.19)

Next, we solve forN∗
ℎ in a similar way to the previous case using (2.19).

Λℎ = �ℎS∗ℎ +
(

�ℎ + �ℎ + dℎ
)

I∗ℎ

Λℎ = �ℎS∗ℎ + �ℎI
∗
ℎ + �ℎI

∗
ℎ + dℎI

∗
ℎ

Λℎ = �ℎS∗ℎ + �ℎI
∗
ℎ + �ℎR

∗
ℎ + dℎI

∗
ℎ

Λℎ = �ℎN∗
ℎ + dℎI

∗
ℎ

⟹ N∗
ℎ =

Λℎ − dℎI∗ℎ
�ℎ

(2.20)

For simplicity, let mℎ ∶= �ℎ + �ℎ + dℎ and x∗ ∶= �a2I
∗
a

�ℎN∗
a
. Using (2.18), (2.20), and the second

equation in (2.17) we have

�a2I
∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ
S∗ℎ = mℎI

∗
ℎ

(

�a2I
∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ

)(

Λℎ − mℎI∗ℎ
�ℎ

)

= mℎI∗ℎ

(

x∗�ℎ +
�ℎI∗ℎ
N∗
ℎ

)(

Λℎ − mℎI∗ℎ
�ℎ

)

= mℎI∗ℎ

[

x∗�ℎ + �ℎI∗ℎ

(

�ℎ
Λℎ − dℎI∗ℎ

)](

Λℎ − mℎI∗ℎ
�ℎ

)

= mℎI∗ℎ

(

Λℎ − dℎI∗ℎ
�ℎ

)[

x∗�ℎ + �ℎI∗ℎ

(

�ℎ
Λℎ − dℎI∗ℎ

)](

Λℎ − mℎI∗ℎ
�ℎ

)

= mℎI∗ℎ

(

Λℎ − dℎI∗ℎ
�ℎ

)
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(

x∗
(

Λℎ − dℎI∗ℎ
)

+ �ℎI∗ℎ

)(

Λℎ − mℎI∗ℎ
�ℎ

)

= mℎI∗ℎ

(

Λℎ − dℎI∗ℎ
�ℎ

)

(

I∗ℎ
(

�ℎ − dℎx∗
)

+ Λℎx∗
)

(

Λℎ − mℎI∗ℎ
�ℎ

)

− mℎI∗ℎ

(

Λℎ − dℎI∗ℎ
�ℎ

)

= 0.

By expanding, we can write the above equation as a quadratic in terms of I∗ℎ .

I∗ℎ�ℎΛℎ
�ℎ

−
I∗ℎdℎx

∗Λℎ
�ℎ

−

(

I∗ℎ
)2mℎ�ℎ
�ℎ

+

(

I∗ℎ
)2mℎdℎx∗

�ℎ
+
Λ2ℎx

∗

�ℎ

−
Λℎx∗mℎI∗ℎ

�ℎ
−
mℎI∗ℎΛℎ
�ℎ

+
mℎdℎ

(

I∗ℎ
)2

�ℎ
= 0

(

I∗ℎ
)2
(

mℎdℎ + mℎdℎx∗ − mℎ�ℎ
)

+ I∗ℎ
(

�ℎΛℎ − dℎx∗Λℎ − Λℎx∗mℎ − mℎΛℎ
)

+ Λ2ℎx
∗ = 0

(

I∗ℎ
)2
(

dℎ + dℎx∗ − �ℎ
)

+ I∗ℎ

(

�ℎΛℎ
mℎ

−
dℎx∗Λℎ
mℎ

− Λℎx∗ − Λℎ

)

+
Λ2ℎx

∗

mℎ
= 0

(

I∗ℎ
)2
(

dℎ(1 + x∗) − �ℎ
)

+ I∗ℎΛℎ

(

�ℎ
mℎ

−
dℎx∗

mℎ
− (1 + x∗)

)

+
Λ2ℎx

∗

mℎ
= 0

(

I∗ℎ
)2
(

�ℎ − dℎ(1 + x∗)
)

+ I∗ℎΛℎ

(

(1 + x∗) −
�ℎ − dℎx∗

mℎ

)

−
Λ2ℎx

∗

mℎ
= 0 (2.21)

If we impose the extra condition that �ℎ > dℎ(1 + x∗), then (2.21) is concave in I∗ℎ . When I∗ℎ = 0
then (2.21) is simply −Λ

2
ℎx

∗

mℎ
< 0 and so this function crosses the vertical axis below the origin.

Thus, this function has a single positive root and I∗ℎ > 0 so that R∗ℎ > 0 is clear. We just need to
show that S∗ℎ =

Λℎ
�ℎ

−
�ℎ + �ℎ + dℎ

�ℎ
I∗ℎ > 0.

This is where the analysis in [4] ends when it comes to showing the existence of 1. In a our own
analysis in the next chapter, wewill show that 1 exists regardless of whether or not �ℎ > dℎ (1 + x∗)
is true. In the meantime, we continue to examine the work done in [4].
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2.4.1 Previously Proposed Stability Analysis for the Co-existence Endemic
Equilibrium

Bhunu and Mushayabasa suggest using the following function, referring to it as a Lyapunov func-
tion, to prove the global asymptotic stability of the co-existence endemic equilibrium for (2.1a)-
(2.1f):

W =
(

Sa − S∗a lnSa
)

+
(

Ia − I∗a ln Ia
)

+
(

Ra − R∗a lnRa
)

+
(

Sℎ − S∗ℎ lnSℎ
)

+
(

Iℎ − I∗ℎ ln Iℎ
)

+
(

Rℎ − R∗ℎ lnRℎ
)

.

They suggest following the method of McCluskey [4, 42]. No details on this calculation are in-
cluded in [4] and this function is not necessarily positive definite in the above form. Instead, let
A,B, C,D,E > 0 be constants and consider a Lyapunov function of the form suggested by Mc-
Cluskey and similar to one used by Korobeinikov and Maini in [34]:

W̃ =A

(

Sa − S∗a − S
∗
a ln

Sa
S∗a

)

+ B

(

Ia − I∗a − I
∗
a ln

Ia
I∗a

)

+ C

(

Ra − R∗a − R
∗
a ln

Ra

R∗a

)

+

(

Sℎ − S∗ℎ − S
∗
ℎ ln

Sℎ
S∗ℎ

)

+D

(

Iℎ − I∗ℎ − I
∗
ℎ ln

Iℎ
I∗ℎ

)

+ E

(

Rℎ − R∗ℎ − R
∗
ℎ ln

Rℎ

R∗ℎ

)

.

Using the method of McCluskey, we will find that it is not clear that W̃ is a Lyapunov function.
First, calculate the derivative of W̃ with respect to time to obtain

W̃ ′(t) =AS ′a(t) − AS
∗
a

(

S ′a(t)
Sa(t)

)

+ BI ′a(t) − BI
∗
a

(

I ′a(t)
Ia(t)

)

+ CR′a(t) − CR
∗
a

(

R′a(t)
Ra(t)

)

+ S ′ℎ(t) − S
∗
ℎ

(

S ′ℎ(t)
Sℎ(t)

)

+DI ′ℎ(t) −DI
∗
ℎ

(

I ′ℎ(t)
Iℎ(t)

)

+ ER′ℎ(t) − ER
∗
ℎ

(

R′ℎ(t)
Rℎ(t)

)
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W̃ ′ =AS ′a

(

1 −
S∗a
Sa

)

+ BI ′a

(

1 −
I∗a
Ia

)

+ CR′a

(

1 −
R∗a
Ra

)

+ S ′ℎ

(

1 −
S∗ℎ
Sℎ

)

+DI ′ℎ

(

1 −
I∗ℎ
Iℎ

)

+ ER′ℎ

(

1 −
R∗ℎ
Rℎ

)

W̃ ′ =A
S ′a
Sa

(

Sa − S∗a
)

+ B
I ′a
Ia

(

Ia − I∗a
)

+ C
R′a
Ra

(

Ra − R∗a
)

+
S ′ℎ
Sℎ

(

Sℎ − S∗ℎ
)

+D
I ′ℎ
Iℎ

(

Iℎ − I∗ℎ
)

+ E
R′ℎ
Rℎ

(

Rℎ − R∗ℎ
)

.

For simplicity, define �a ∶=
�a1Ia
Na

, �∗a ∶=
�a1I

∗
a

N∗
a
, �ℎ ∶=

�a2Ia
Na

+
�ℎIℎ
Nℎ

, and �∗ℎ ∶=
�a2I

∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ
.

Using the system in (2.1a)-(2.1f), we have

W̃ ′ =A

(

Λa −
(

�a + �a
)

Sa
Sa

(

Sa − S∗a
)

)

+ B

(
(

�aSa −
(

�a + �a + da
)

Ia
)

Ia

(

Ia − I∗a
)

)

+ C

(
(

�aIa − �aRa
)

Ra

(

Ra − R∗a
)

)

+
Λℎ −

(

�ℎ + �ℎ
)

Sℎ
Sℎ

(

Sℎ − S∗ℎ
)

+

D

(
(

�ℎSℎ −
(

�ℎ + �ℎ + dℎ
)

Iℎ
)

Iℎ

(

Iℎ − I∗ℎ
)

)

+ E

((

�ℎIℎ − �ℎRℎ
)

Rℎ

(

Rℎ − R∗ℎ
)

)

.

Using the fact that Λa =
(

�a + �∗a
)

S∗a and Λℎ =
(

�ℎ + �∗ℎ
)

S∗ℎ , we obtain

W̃ ′ =

(

A
(

�a + �∗a
)

S∗a
Sa

−
A
(

�a + �a
)

Sa
Sa

)

(

Sa − S∗a
)

+

(

B�aSa
Ia

−
B
(

�a + �a + da
)

Ia
Ia

)

(

Ia − I∗a
)

+

(

C�aIa
Ra

−
C�aRa

Ra

)

(

Ra − R∗a
)

+

(
(

�ℎ + �∗ℎ
)

S∗ℎ
Sℎ

−

(

�ℎ + �ℎ
)

Sℎ
Sℎ

)

(

Sℎ − S∗ℎ
)
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+

(

D�ℎSℎ
Iℎ

−
D
(

�ℎ + �ℎ + dℎ
)

Iℎ
Iℎ

)

(

Iℎ − I∗ℎ
)

+

(

E�ℎIℎ
Rℎ

−
E�ℎRℎ

Rℎ

)

(

Rℎ − R∗ℎ
)

W̃ ′ = −
A�a

(

Sa − S∗a
)2

Sa
−
A
(

�aSa − �∗aS
∗
a

) (

Sa − S∗a
)

Sa

+

(

B�aSa
Ia

− B
(

�a + �a + da
)

)

(

Ia − I∗a
)

+

(

C�aIa
Ra

−
C�aRa

Ra

)

(

Ra − R∗a
)

−
�ℎ
(

Sℎ − S∗ℎ
)2

Sℎ
−

(

�ℎSℎ − �∗ℎS
∗
ℎ

)(

Sℎ − S∗ℎ
)

Sℎ

+

(

D�ℎSℎ
Iℎ

−D
(

�ℎ + �ℎ + dℎ
)

)

(

Iℎ − I∗ℎ
)

+

(

E�ℎIℎ
Rℎ

−
E�ℎRℎ

Rℎ

)

(

Rℎ − R∗ℎ
)

.

Notice that W̃ ′ is of the form

W̃ ′ = −
A�a

(

Sa − S∗a
)2

Sa
−
�ℎ
(

Sℎ − S∗ℎ
)2

Sℎ
+ g

(

Sa, Ia, Ra, Sℎ, Iℎ, Rℎ
).

We wish to show that g is negative definite away from the equilibrium point 1 and g = 0 at 1. If
this is true, then W̃ ′ is negative definite except at the equilibrium where it is zero.

Since �a =
�a1Ia
Na

and �ℎ =
�a2Ia
Na

+
�ℎIℎ
Nℎ

. Then W̃ ′ can be rearranged and rewritten as

W̃ ′ = −
A�a

(

Sa − S∗a
)2

Sa
−
�ℎ
(

Sℎ − S∗ℎ
)2

Sℎ
−
A
(

�aSa − �∗aS
∗
a

) (

Sa − S∗a
)

Sa
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+

(

B�aSa
Ia

−
(

�a + �a + da
)

)

(

Ia − I∗a
)

+

(

C�aIa
Ra

−
C�aRa

Ra

)

(

Ra − R∗a
)

−

(

�ℎSℎ − �∗ℎS
∗
ℎ

)(

Sℎ − S∗ℎ
)

Sℎ
+

(

D�ℎSℎ
Iℎ

−D
(

�ℎ + �ℎ + dℎ
)

)

(

Iℎ − I∗ℎ
)

+

(

E�ℎIℎ
Rℎ

−
E�ℎRℎ

Rℎ

)

(

Rℎ − R∗ℎ
)

W̃ ′ = −
A�a

(

Sa − S∗a
)2

Sa
−
�ℎ
(

Sℎ − S∗ℎ
)2

Sℎ
− A
Sa

(

�a1IaSa
Na

−
�a1I

∗
aS

∗
a

N∗
a

)

(

Sa − S∗a
)

+
B�a1Sa
Na

(

Ia − I∗a
)

− B
(

�a + �a + da
) (

Ia − I∗a
)

+
C�aIa
Ra

(

Ra − R∗a
)

− C�a
(

Ra − R∗a
)

−

[(

�a2Ia
Na

+
�ℎIℎ
Nℎ

)

Sℎ
Sℎ

−

(

�a2I
∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ

)

S∗ℎ
Sℎ

]

(

Sℎ − S∗ℎ
)

+D

(

�a2Ia
Na

+
�ℎIℎ
Nℎ

)

Sℎ
Iℎ

(

Iℎ − I∗ℎ
)

−D
(

�ℎ + �ℎ + dℎ
) (

Iℎ − I∗ℎ
)

+
E�ℎIℎ
Rℎ

(

Rℎ − R∗ℎ
)

− E�ℎ
(

Rℎ − R∗ℎ
)

,

so that

g
(

Sa, Ia, Ra, Sℎ, Iℎ, Rℎ
)

= − A
Sa

(

�a1IaSa
Na

−
�a1I

∗
aS

∗
a

N∗
a

)

(

Sa − S∗a
)

+
B�a1Sa
Na

(

Ia − I∗a
)

− B
(

�a + �a + da
) (

Ia − I∗a
)

+
C�aIa
Ra

(

Ra − R∗a
)

− C�a
(

Ra − R∗a
)
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−

[(

�a2Ia
Na

+
�ℎIℎ
Nℎ

)

Sℎ
Sℎ

−

(

�a2I
∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ

)

S∗ℎ
Sℎ

]

(

Sℎ − S∗ℎ
)

+D

(

�a2Ia
Na

+
�ℎIℎ
Nℎ

)

Sℎ
Iℎ

(

Iℎ − I∗ℎ
)

−D
(

�ℎ + �ℎ + dℎ
) (

Iℎ − I∗ℎ
)

+
E�ℎIℎ
Rℎ

(

Rℎ − R∗ℎ
)

− E�ℎ
(

Rℎ − R∗ℎ
)

.

In order to show this is negative definite except at the equilibrium point, we rewrite this function
so that all variables are in a ratio to their respective element of the equilibrium point – e.g., Sa
will only be included in the function in the form Sa

S∗a
or S

∗
a

Sa
. We accomplish this by factoring out

constants and distributing terms where necessary. For simplicity, and so we can see that g is not
obviously negative definite, we write g so that each term has the same sign. Then we have

g = −
A�a1IaS

∗
a

Na

(

Sa
S∗a

− 1

)

−
A�a1I

∗
aS

∗
a

N∗
a

(

S∗a
Sa

− 1

)

−
B�a1SaIa
Na

(

I∗a
Ia
− 1

)

− B
(

�a + �a + da
)

I∗a

(

Ia
I∗a
− 1

)

− C�aIa

(

R∗a
Ra

− 1

)

− C�aR∗a

(

Ra

R∗a
− 1

)

−
(

Sℎ − S∗ℎ
)

[(

�a2IaSℎ
NaSℎ

+
�ℎIℎSℎ
NℎSℎ

)

−

(

�a2I
∗
aS

∗
ℎ

N∗
aSℎ

+
�ℎI∗ℎS

∗
ℎ

N∗
ℎSℎ

)]

−
D�a2IaSℎ

Na

(

I∗ℎ
Iℎ
− 1

)

−
D�ℎSℎIℎ
Nℎ

(

I∗ℎ
Iℎ
− 1

)

−D
(

�ℎ + �ℎ + dℎ
)

I∗ℎ

(

Iℎ
I∗ℎ
− 1

)

− E�ℎIℎ

(

R∗ℎ
Rℎ

− 1

)

− E�ℎR∗ℎ

(

Rℎ

R∗ℎ
− 1

)
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g = −
A�a1IaS

∗
a

Na

(

Sa
S∗a

− 1

)

−
A�a1I

∗
aS

∗
a

N∗
a

(

S∗a
Sa

− 1

)

−
B�a1SaIa
Na

(

I∗a
Ia
− 1

)

− B
(

�a + �a + da
)

I∗a

(

Ia
I∗a
− 1

)

− C�aIa

(

R∗a
Ra

− 1

)

− C�aR∗a

(

Ra

R∗a
− 1

)

−
(

Sℎ − S∗ℎ
)

[

�a2
Sℎ

(

IaSℎ
Na

−
I∗aS

∗
ℎ

N∗
a

)

+
�ℎ
Sℎ

(

IℎSℎ
Nℎ

−
I∗ℎS

∗
ℎ

N∗
ℎ

)]

−
D�a2IaSℎ

Na

(

I∗ℎ
Iℎ
− 1

)

−
D�ℎSℎIℎ
Nℎ

(

I∗ℎ
Iℎ
− 1

)

−D
(

�ℎ + �ℎ + dℎ
)

I∗ℎ

(

Iℎ
I∗ℎ
− 1

)

− E�ℎIℎ

(

R∗ℎ
Rℎ

− 1

)

− E�ℎR∗ℎ

(

Rℎ

R∗ℎ
− 1

)

g = −
A�a1I

∗
aS

∗
a

N∗
a

(

IaN∗
a

I∗aNa

)(

Sa
S∗a

− 1

)

−
A�a1I

∗
aS

∗
a

N∗
a

(

S∗a
Sa

− 1

)

−
B�a1S

∗
aI

∗
a

N∗
a

(

IaSaN∗
a

I∗aS∗aNa

)(

I∗a
Ia
− 1

)

− B
(

�a + �a + da
)

I∗a

(

Ia
I∗a
− 1

)

− C�aI∗a

(

Ia
I∗a

)(

R∗a
Ra

− 1

)

− C�aR∗a

(

Ra

R∗a
− 1

)

−

(

1 −
S∗ℎ
Sℎ

)[

�a2I
∗
aS

∗
ℎ

N∗
a

(

IaSℎN∗
a

I∗aS
∗
ℎNa

− 1

)

+
�ℎI∗ℎS

∗
ℎ

N∗
ℎ

(

IℎSℎN∗
ℎ

I∗ℎS
∗
ℎNℎ

− 1

)]

−
D�a2I

∗
aS

∗
ℎ

N∗
a

(

IaSℎN∗
a

I∗aS
∗
ℎNa

)(

I∗ℎ
Iℎ
− 1

)

−
D�ℎS∗ℎI

∗
ℎ

N∗
ℎ

(

SℎIℎN∗
ℎ

S∗ℎI
∗
ℎNℎ

)(

I∗ℎ
Iℎ
− 1

)

−D
(

�ℎ + �ℎ + dℎ
)

I∗ℎ

(

Iℎ
I∗ℎ
− 1

)

− E�ℎI∗ℎ

(

Iℎ
I∗ℎ

)(

R∗ℎ
Rℎ

− 1

)

− E�ℎR∗ℎ

(

Rℎ

R∗ℎ
− 1

)

.
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Notice that we can rewrite the terms with the constant A to get

−
A�a1I

∗
aS

∗
a

N∗
a

(

IaN∗
aSa

I∗aNaS∗a
−
IaN∗

a

I∗aNa
+
S∗a
Sa

− 1

)

.

Thus, the first three terms in g can be written as

−
�a1S

∗
aI

∗
a

N∗
a

(

AIaN∗
aSa

I∗aNaS∗a
−
AIaN∗

a

I∗aNa
+
AS∗a
Sa

− A −

(

BIaSaN∗
a

I∗aS∗aNa

)(

I∗a
Ia
− 1

))

= −
�a1S

∗
aI

∗
a

N∗
a

(

AIaN∗
aSa

I∗aNaS∗a
−
AIaN∗

a

I∗aNa
+
AS∗a
Sa

− A +
BSaN∗

a

S∗aNa
−
BIaSaN∗

a

I∗aS∗aNa

)

.

Combining these results and reworking some more terms, results in

g = −
�a1S

∗
aI

∗
a

N∗
a

(

AIaN∗
aSa

I∗aNaS∗a
−
AIaN∗

a

I∗aNa
+
AS∗a
Sa

− A +
BSaN∗

a

S∗aNa
−
BIaSaN∗

a

I∗aS∗aNa

)

− B
(

�a + �a + da
)

I∗a

(

Ia
I∗a
− 1

)

− C�aI∗a

(

Ia
I∗a

)(

R∗a
Ra

− 1

)

− C�aR∗a

(

Ra

R∗a
− 1

)

−

(

1 −
S∗ℎ
Sℎ

)[

�a2I
∗
aS

∗
ℎ

N∗
a

(

IaSℎN∗
a

I∗aS
∗
ℎNa

− 1

)

+
�ℎI∗ℎS

∗
ℎ

N∗
ℎ

(

IℎSℎN∗
ℎ

I∗ℎS
∗
ℎNℎ

− 1

)]

−
D�a2I

∗
aS

∗
ℎ

N∗
a

(

IaSℎN∗
a

I∗aS
∗
ℎNa

)(

I∗ℎ
Iℎ
− 1

)

−
D�ℎS∗ℎI

∗
ℎ

N∗
ℎ

(

SℎIℎN∗
ℎ

S∗ℎI
∗
ℎNℎ

)(

I∗ℎ
Iℎ
− 1

)

−D
(

�ℎ + �ℎ + dℎ
)

I∗ℎ

(

Iℎ
I∗ℎ
− 1

)

− E�ℎI∗ℎ

(

Iℎ
I∗ℎ

)(

R∗ℎ
Rℎ

− 1

)

− E�ℎR∗ℎ

(

Rℎ

R∗ℎ
− 1

)

g = −
�a1S

∗
aI

∗
a

N∗
a

(

AIaN∗
aSa

I∗aNaS∗a
−
AIaN∗

a

I∗aNa
+
AS∗a
Sa

− A +
BSaN∗

a

S∗aNa
−
BIaSaN∗

a

I∗aS∗aNa

)

− B
(

�a + �a + da
)

I∗a

(

Ia
I∗a
− 1

)

− C�aI∗a

(

R∗aIa
RaI∗a

−
Ia
I∗a

)
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− C�aR∗a

(

Ra

R∗a
− 1

)

−
�a2I

∗
aS

∗
ℎ

N∗
a

(

IaSℎN∗
a

I∗aS
∗
ℎNa

− 1 −
IaN∗

a

I∗aNa
+
S∗ℎ
Sℎ

)

−
�ℎI∗ℎS

∗
ℎ

N∗
ℎ

(

IℎSℎN∗
ℎ

I∗ℎS
∗
ℎNℎ

− 1 −
IℎN∗

ℎ

I∗ℎNℎ
+
S∗ℎ
Sℎ

)

−
D�a2I

∗
aS

∗
ℎ

N∗
a

(

IaSℎN∗
a I

∗
ℎ

I∗aS
∗
ℎNaIℎ

−
IaSℎN∗

a

I∗aS
∗
ℎNa

)

−
D�ℎS∗ℎI

∗
ℎ

N∗
ℎ

(

SℎN∗
ℎ

S∗ℎNℎ
−
SℎIℎN∗

ℎ

S∗ℎI
∗
ℎNℎ

)

−D
(

�ℎ + �ℎ + dℎ
)

I∗ℎ

(

Iℎ
I∗ℎ
− 1

)

− E�ℎI∗ℎ

(

R∗ℎIℎ
RℎI∗ℎ

−
Iℎ
I∗ℎ

)

− E�ℎR∗ℎ

(

Rℎ

R∗ℎ
− 1

)

.

Although each term in g is being subtracted, it is still not clear whether each term subtracted is
positive or negative. To help determine this, letw =

Sa
S∗a

, x = Ia
I∗a

, y = Ra

R∗a
, z = Sℎ

S∗ℎ
, t = Iℎ

I∗ℎ
, r = Rℎ

R∗ℎ
,

v =
Na

N∗
a
, and u = Nℎ

N∗
ℎ
and rewrite g in terms of these variables. If we rearrange this function and can

show that the coefficients of terms involving these variables are negative when A,B, C,D,E > 0,
then we can continue on to show that g is negative definite except at the equilibrium point. To this
end, substitute the new variables into the function to obtain

g = −
�a1S

∗
aI

∗
a

N∗
a

(Awx
v

− Ax
v
+ A
w
− A + Bw

v
− Bwx

v

)

− B
(

�a + �a + da
)

I∗a (x − 1)

− C�aI∗a
(x
y
− x

)

− C�aR∗a(y − 1) −
�a2I

∗
aS

∗
ℎ

N∗
a

(xz
v
− 1 − x

v
+ 1
z

)

−
�ℎI∗ℎS

∗
ℎ

N∗
ℎ

( tz
u
− 1 − t

u
+ 1
z

)

−
D�a2I

∗
aS

∗
ℎ

N∗
a

(xz
tv
− xz
v

)

−
D�ℎS∗ℎI

∗
ℎ

N∗
ℎ

(z
u
− tz
u

)

−D
(

�ℎ + �ℎ + dℎ
)

I∗ℎ(t − 1) − E�ℎI
∗
ℎ

( t
r
− t

)

− E�ℎR∗ℎ(r − 1).
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For simplicity, let �∗ = �a1S
∗
aI

∗
a

N∗
a

, �∗ =
�a2I

∗
aS

∗
ℎ

N∗
a

, and �∗ = �ℎI∗ℎS
∗
ℎ

N∗
ℎ

. Rewriting, it follows that

g = �∗
(

(B − A)wx
v

+ Ax
v
− A
w
+ A − Bw

v

)

+ I∗a
[

− B
(

�a + �a + da
)

(x − 1) + C�a
(

x − x
y

)]

− C�aR∗a(y − 1) + �
∗
(

1 − xz
v
+ x
v
− 1
z
− Dxz

tv
+ Dxz

v

)

+ �∗
(

1 − tz
u
+ t
u
− 1
z
− Dz

u
+ Dtz

u

)

+ I∗ℎ
[

−D
(

�ℎ + �ℎ + dℎ
)

(t − 1) + E�ℎI∗ℎ
(

t − t
r

)]

− E�ℎR∗ℎ(r − 1).

Next, we express g as its constants added to the variables that have more than one coefficient term
each multiplied by their respective coefficients, and then subtract all other terms. Unlike the associ-
ated function in [42], we have one extra positive variable term, �∗t

u
, and include it with the positive

constants. If the coefficients of all the variables are positive, then it is possible that g is positive, so
we aim to show that these coefficients are all negative. If we can do that, the next step is to show
that the negative terms outweigh the positive terms, so that g itself is negative semidefinite and only
zero at equilibrium.

We write g as

g =
(

�∗A + BI∗a
(

�a + �a + da
)

+ C�aR∗a + �
∗ + �∗ +DI∗ℎ

(

�ℎ + �ℎ + dℎ
)

+ E�ℎR∗ℎ +
�∗t
u

)

+ x
v
(

�∗A + �∗
)

+ x
(

C�aI
∗
a − B

(

�a + �a + da
)

I∗a
)

+ xw
v
(

(B − A)�∗
)

+ xz
v
(

�∗(D − 1)
)

+ t
(

E�ℎI
∗
ℎ −D

(

�ℎ + �ℎ + dℎ
)

I∗ℎ
)

+ tz
u
(

�∗(D − 1)
)

−
(A
w
+ Bw

v
+ C�aI∗a

(

x
y

)

+
�∗ + �∗

z
+
�∗Dxz
tv

+ �∗Dz
u

+ E�ℎ
( t
r

)

+ E�ℎR∗ℎ
)

.
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Unlike the associated function obtained by McCluskey, we cannot simply set all of the coefficients
of x
v
, x, wx

v
, xz
v
, t and tz

u
to be negative except at the equilibrium point. Since �∗, �∗, �∗ > 0 are

given, I∗a , I∗ℎ are fixed and A,B, C,D,E > 0, we see that �∗A + �∗ > 0 and we can include this
with the positive terms. If we set the remaining coefficients – those of x, wx

v
, xz
v
, t and tz

u
– to be

negative except at the equilibrium point, we get the following:

(B − A)�∗ ≤ 0 ⟹ 0 < B ≤ A,

C�aI
∗
a − B

(

�a + �a + da
)

I∗a ≤ 0 ⟹ 0 < C ≤ B

(

�a + �a + da
)

�a
,

�∗(D − 1) ≤ 0, �∗(D − 1) ≤ 0 ⟹ 0 < D ≤ 1,

E�ℎI
∗
ℎ −D

(

�ℎ + �ℎ + dℎ
)

I∗ℎ ≤ 0, ⟹ 0 < E ≤ D

(

�ℎ + �ℎ + dℎ
)

�ℎ
.

There is not enough information identify A,B, C,D or E explicitly as was done in [42] and so we
cannot determine whether or not the negative terms outweigh the positive terms. Thus, we cannot
say for certain that W̃ ′ is negative semidefinite, nor can we say that W̃ is positive semidefinite and
zero only at the equilibrium. Hence, it is not clear that W̃ is a Lyapunov function following the
method of McCluskey.

There are two suspected reasons why this method does not work for the system in (2.1a)-(2.1f).
There are two SIR-type models in the McCluskey paper. The first is an SEIR model and the sec-
ond is an SIR model with five compartments. We attempted to apply the method used in the five
compartment model above since the SEIR model was too simplistic compared to our situation. The
models in the McCluskey paper are only for one population, but (2.1a)-(2.1f) is a system with two
interacting populations. Additionally, (2.1a)-(2.1f) includes the termsNa andNℎ and these are not
included in [42]. Even if we ignore the terms Na and Nℎ in (2.1a)-(2.1f) and write Na and Nℎ in
terms of Sa, Ia, Ra, Sℎ, Iℎ, and Rℎ, we still do not have enough information to explicitly identify
A,B, C,D or E.
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A proof of the global asymptotic stability of the co-existence endemic equilibrium is the focus of
the next chapter.
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3 Existence and Stability of the Co-existence Endemic Equilibrium

In this chapter we present a proof of the global asymptotic stability of the co-existence endemic
equilibrium. The idea is that since we have the global asymptotic stability of the animal subsystem’s
endemic equilibrium and since the animal population is independent of the human population, we
can essentially consider only the human subsystem (2.1d)-(2.1f) when searching for a Lyapunov
function. Using a theorem from Thieme, we can essentially write the cross-infection terms in
(2.1d)-(2.1f) as constants and this allows us to prove our result. (This new result was recently
published in [37].)

3.1 An Asymptotically Autonomous System

Now that we know the dynamics of the disease in the animal population from the theorems in the
previous chapter, we can consider how this affects disease propagation in the human population.
Here our analysis diverges from what was done previously in [4] and we also refer the reader to
[41]. Individuals in the human population can get infected by contact with infectious animals or
infectious humans. However, we know that if0a ≤ 1, then Ia(t)→ 0, Na(t)→ Λa∕�a as t→∞,
while if 0a > 1 and �a ≥ da, then Ia(t) → I∗a > 0,Na(t) → N∗

a = S
∗
a + I

∗
a + R

∗
a as t → ∞. Thus

we can think of (2.1d)-(2.1f) as a non-autonomous system

dSℎ
dt

= Λℎ − �ℎSℎ −
(

�a2g(t) +
�ℎIℎ
Nℎ

)

Sℎ, (3.1a)

dIℎ
dt

=
(

�a2g(t) +
�ℎIℎ
Nℎ

)

Sℎ −
(

�ℎ + �ℎ + dℎ
)

Iℎ, (3.1b)

dRℎ

dt
= �ℎIℎ − �ℎRℎ, (3.1c)
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where g(t) ∶= Ia(t)
Na(t)

. By Theorem 2.3.2 and Theorem 2.3.4, we have that

lim
t→∞

g(t) =
limt→∞ Ia(t)
limt→∞Na(t)

=
I ea
N e
a
,

where the limits I ea andN e
a depend on0a and the corresponding parameters. That is, I ea = 0when

0a ≤ 1 and I ea = I∗a when 0a > 1. Thus, (2.1d)-(2.1f) is an asymptotically autonomous system
with limit system

dSℎ
dt

= Λℎ − �ℎSℎ −
(

�a2
I ea
N e
a
+
�ℎIℎ
Nℎ

)

Sℎ, (3.2a)

dIℎ
dt

=
(

�a2
I ea
N e
a
+
�ℎIℎ
Nℎ

)

Sℎ −
(

�ℎ + �ℎ + dℎ
)

Iℎ, (3.2b)

dRℎ

dt
= �ℎIℎ − �ℎRℎ, (3.2c)

and we can use the theory developed for such systems found in [9, 59] to address the stability
properties of our model in all possible cases. In particular, we repeatedly make use of the following
corollary applied to our systems:
Corollary 3.1.1 (Thieme). If solutions of the system (3.1a)-(3.1c) are bounded, and the equi-

librium E of the limit system (3.2a)-(3.2c) is globally asymptotically stable, then any solution
(

Sℎ(t), Iℎ(t), Rℎ(t)
)

of the system (3.1a)-(3.1c) satisfies
(

Sℎ(t), Iℎ(t), Rℎ(t)
)

→ Eℎ as t → ∞.

3.2 Existence of the Endemic Equilibrium

Previously, it was only shown that the co-existence endemic equilibrium existed under the assump-
tion that �ℎ > dℎ(1+x∗). We will now prove the existence of this equilibrium without the assumed
inequality and use a method similar to that in [2]. We start with the following claim:
Proposition 3.2.1. Assume that 0a > 1, �a2 > 0, and �a ≥ da, so the disease in the animal pop-
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ulation tends to the endemic equilibrium E∗
a . Then (2.1d)-(2.1f) has a unique endemic equilibrium

E∗
ℎ ∈ Ωℎ, and 1 =

(

E∗
a , E

∗
ℎ

)

is the unique endemic equilibrium of (2.1a)-(2.1f) in Ω.

Proof. To calculate E∗
ℎ =

(

S∗ℎ , I
∗
ℎ , R

∗
ℎ

) we set the right sides of equations (2.1d)-(2.1f) equal to
zero to obtain

Λℎ =
(

�ℎ +
�a2I

∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ

)

S∗ℎ , (3.3)
(�a2I

∗
a

N∗
a
+
�ℎI∗ℎ
N∗
ℎ

)

S∗ℎ =
(

�ℎ + �ℎ + dℎ
)

I∗ℎ , (3.4)
�ℎI

∗
ℎ = �ℎR

∗
ℎ. (3.5)

For simplification, define

�∗a ∶=
�a2I

∗
a

N∗
a
, mℎ ∶= �ℎ + �ℎ + dℎ, �∗ℎ ∶=

�ℎI∗ℎ
N∗
ℎ
,

a ∶=
Λℎ�∗a
mℎ

, b ∶=
Λℎ
mℎ
, c ∶=

�ℎa
�ℎ
, d ∶=

�ℎb
�ℎ
, e ∶= Λℎ + a + c, f ∶= b + d.

Using (3.3),
S∗ℎ =

Λℎ
�ℎ + �∗a + �

∗
ℎ
. (3.6)

From (3.4) and using (3.6),

I∗ℎ =
S∗ℎ

(

�∗a + �
∗
ℎ

)

mℎ

I∗ℎ =
(

Λℎ
�ℎ + �∗a + �

∗
ℎ

)(�∗a + �
∗
ℎ

mℎ

)

I∗ℎ =
(Λℎ�∗a
mℎ

+
Λℎ�∗ℎ
mℎ

)(

1
�ℎ + �∗a + �

∗
ℎ

)

I∗ℎ =
a + b�∗ℎ

�ℎ + �∗a + �
∗
ℎ
. (3.7)
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Clearly, by (3.5) and (3.7),

R∗ℎ =
�ℎ
�ℎ
I∗ℎ

R∗ℎ =
( a + b�∗ℎ
�ℎ + �∗a + �

∗
ℎ

)(

�ℎ
�ℎ

)

R∗ℎ =
c + d�∗ℎ

�ℎ + �∗a + �
∗
ℎ
. (3.8)

Then it follows that

I∗ℎ
N∗
ℎ
=
( a + b�∗ℎ
�ℎ + �∗a + �

∗
ℎ

)( �ℎ + �∗a + �
∗
ℎ

Λℎ + a + b�∗ℎ + c + d�
∗
ℎ

)

I∗ℎ
N∗
ℎ
=
a + b�∗ℎ
e + f�∗ℎ

so that
�∗ℎ =

�ℎ
(

a + b�∗ℎ
)

e + f�∗ℎ
. (3.9)

Rearranging (3.9), we obtain

�∗ℎ
(

e + f�∗ℎ
)

= �ℎ
(

a + b�∗ℎ
)

f�∗ℎ
2 + e�∗ℎ − a�ℎ − b�ℎ�

∗
ℎ = 0

f�∗ℎ
2 + �∗ℎ

(

e − b�ℎ
)

− �ℎa = 0. (3.10)

Since (3.10) is quadratic equation in �∗ℎ, it has one positive root. Now (3.6), (3.7), and (3.8) imply
that the corresponding E∗

ℎ =
(

S∗ℎ , I
∗
ℎ , R

∗
ℎ

) is feasible.
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3.3 Global Stability of the Co-existence Endemic Equilibrium

Nowwe prove the global asymptotic stability of the co-existence endemic equilibrium. This results
in the conclusion that infection in the animal population leads to infection in the human population.

Consider the endemic equilibrium 1 =
(

E∗
a , E

∗
ℎ

)

∈ Ω. We prove the following theorem.
Theorem 3.3.1. If 0a > 1, �a ≥ da, �a2 > 0, and �ℎ ≥ dℎ then the unique endemic equilibrium

1 =
(

E∗
a , E

∗
ℎ

)

of (2.1a)-(2.1f) is globally asymptotically stable in the interior of Ω.

Proof. Since 0a > 1 and �a ≥ da Theorem 2.3.4 implies that E∗
a is a globally asymptotically

stable equilibrium of (2.1a)-(2.1c) in the interior of Ωa. Using this result, and the assumption that
�a2 > 0 we have that the system

dSℎ
dt

= Λℎ − �ℎSℎ −
(

�a2
I∗a
N∗
a
+
�ℎIℎ
Nℎ

)

Sℎ,

dIℎ
dt

=
(

�a2
I∗a
N∗
a
+
�ℎIℎ
Nℎ

)

Sℎ −
(

�ℎ + �ℎ + dℎ
)

Iℎ,

dRℎ

dt
= �ℎIℎ − �ℎRℎ

is the asymptotic limit of system (2.1d)-(2.1f), and E∗
ℎ is its unique equilibrium. We claim that E∗

ℎ

is a globally asymptotically stable equilibrium of (3.2a)-(3.2c).

Consider the function L ∶ {(Sℎ, Iℎ, Rℎ
)

∈ Ωℎ ∶ Sℎ > 0, Iℎ > 0, Rℎ > 0
}

→ ℝ given by

L =Nℎ −N∗
ℎ −N

∗
ℎ ln

(

Nℎ

N∗
ℎ

)

+
N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

[

Iℎ − I∗ℎ − I
∗
ℎ ln

(

Iℎ
I∗ℎ

)]

+

(

dℎ + 2�ℎ
)

2�ℎ

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)

(
(

Rℎ − R∗ℎ
)2

Nℎ

)

+ A
(

Nℎ −N∗
ℎ

)2 + B
(

Rℎ − R∗ℎ
)2 ,

where A,B > 0 are yet to be determined. L ∈ C1
(

Ωℎ
), L (

S∗ℎ , I
∗
ℎ , R

∗
ℎ

)

= 0 and L is positive
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definite except at E∗
ℎ where L = 0. Calculating the derivative of L along solutions of (3.2a)-(3.2c)

we have

L′ =
(

N ′
ℎ

)

(Nℎ −N∗
ℎ

Nℎ

)

+
N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

(

I ′ℎ
)

(Iℎ − I∗ℎ
Iℎ

)

+

(

dℎ + 2�ℎ
)

2�ℎ

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)(

2R′ℎ
(

Rℎ − R∗ℎ
)

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2BR′ℎ
(

Rℎ − R∗ℎ
)

L′ =
(

Λℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Nℎ −N∗
ℎ

Nℎ

)

+
N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

(

�a2I
∗
aSℎ

N∗
a

+
�ℎIℎSℎ
Nℎ

−
(

�ℎ + �ℎ + dℎ
)

Iℎ

)(

Iℎ − I∗ℎ
Iℎ

)

+

(

dℎ + 2�ℎ
)

2�ℎ

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)(

2
(

�ℎIℎ − �ℎRℎ
)(

Rℎ − R∗ℎ
)

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B
(

�ℎIℎ − �ℎRℎ
)(

Rℎ − R∗ℎ
)

.

Using the relationships

Λℎ = �ℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

+ dℎI∗ℎ , �ℎI∗ℎ = �ℎR
∗
ℎ,

�a2I
∗
aS

∗
ℎ

N∗
a

+
�ℎI∗ℎS

∗
ℎ

N∗
ℎ

=
(

�ℎ + �ℎ + dℎ
)

I∗ℎ ,

we obtain

L′ =
(

�ℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

+ dℎI∗ℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Nℎ −N∗
ℎ

Nℎ

)

+

(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)[

�a2I
∗
aSℎ

N∗
a

+
�ℎIℎSℎ
Nℎ

−

(

�a2I
∗
aS

∗
ℎ

N∗
a I

∗
ℎ
+
�ℎS∗ℎ
N∗
ℎ

)

Iℎ

](

Iℎ − I∗ℎ
Iℎ

)

+

[(

dℎ + 2�ℎ
2�ℎ

)(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)

⋅
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(

2
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)]

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

L′ =
(

�ℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

+ dℎI∗ℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Nℎ −N∗
ℎ

Nℎ

)

+

[(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
aSℎ

(

Iℎ − I∗ℎ
)

N∗
a Iℎ

+
�ℎSℎ

(

Iℎ − I∗ℎ
)

Nℎ

−

(

�a2I
∗
aS

∗
ℎ

(

Iℎ − I∗ℎ
)

N∗
a I

∗
ℎ

+
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)

N∗
ℎ

))]

+

[(

dℎ + 2�ℎ
2�ℎ

)(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)

⋅

(

2
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)]

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

L′ =
(

�ℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

+ dℎI∗ℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Nℎ −N∗
ℎ

Nℎ

)

+

[(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
aSℎI

∗
ℎ

(

Iℎ − I∗ℎ
)

N∗
a IℎI

∗
ℎ

−
�a2I

∗
aS

∗
ℎIℎ

(

Iℎ − I∗ℎ
)

N∗
a IℎI

∗
ℎ

+
�ℎSℎN∗

ℎ

(

Iℎ − I∗ℎ
)

N∗
ℎNℎ

−
�ℎS∗ℎNℎ

(

Iℎ − I∗ℎ
)

N∗
ℎNℎ

)]

+

[(

dℎ + 2�ℎ
2�ℎ

)(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)

⋅

(

2
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)]
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+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

Since

�ℎSℎN
∗
ℎ

(

Iℎ − I∗ℎ
)

− �ℎS∗ℎNℎ
(

Iℎ − I∗ℎ
)

= �ℎ
(

Iℎ − I∗ℎ
)(

SℎN
∗
ℎ − S

∗
ℎNℎ

)

= �ℎ
(

Iℎ − I∗ℎ
)(

Sℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

− S∗ℎ
(

Sℎ + Iℎ + Rℎ
))

= �ℎ
(

Iℎ − I∗ℎ
)(

SℎS
∗
ℎ + SℎI

∗
ℎ + SℎR

∗
ℎ − S

∗
ℎSℎ − S

∗
ℎIℎ − S

∗
ℎRℎ

)

= �ℎ
(

Iℎ − I∗ℎ
)(

SℎI
∗
ℎ + SℎR

∗
ℎ − S

∗
ℎIℎ − S

∗
ℎRℎ

)

= �ℎ
(

Iℎ − I∗ℎ
)(

SℎI
∗
ℎ + SℎR

∗
ℎ − S

∗
ℎIℎ − S

∗
ℎRℎ + S∗ℎI

∗
ℎ − S

∗
ℎI

∗
ℎ + S

∗
ℎR

∗
ℎ − S

∗
ℎR

∗
ℎ

)

= �ℎ
(

Iℎ − I∗ℎ
)((

Sℎ − S∗ℎ
)(

I∗ℎ + R
∗
ℎ

)

− S∗ℎ
(

Iℎ − I∗ℎ
)

− S∗ℎ
(

Rℎ − R∗ℎ
))

and

�a2I
∗
aSℎI

∗
ℎ

(

Iℎ − I∗ℎ
)

−�a2I
∗
aS

∗
ℎIℎ

(

Iℎ − I∗ℎ
)

= �a2I
∗
a

(

Iℎ − I∗ℎ
)(

SℎI
∗
n − S

∗
ℎIℎ

)

= �a2I
∗
a

(

Iℎ − I∗ℎ
)(

SℎI
∗
n − S

∗
ℎIℎ + SℎIℎ − SℎIℎ

)

= �a2I
∗
a

(

Iℎ − I∗ℎ
)(

Iℎ
(

Sℎ − S∗ℎ
)

− Sℎ
(

Iℎ − I∗ℎ
))

we have

L′ =
(

�ℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

+ dℎI∗ℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Nℎ −N∗
ℎ

Nℎ

)
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+

[(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
a Iℎ

(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)

N∗
a IℎI

∗
ℎ

−
�a2I

∗
aSℎ

(

Iℎ − I∗ℎ
)2

N∗
a IℎI

∗
ℎ

+
�ℎ
(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)(

I∗ℎ + R
∗
ℎ

)

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)2

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

N∗
ℎNℎ

)]

+

[(

dℎ + 2�ℎ
2�ℎ

)(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)

⋅

(

2
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)]

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B
(

�ℎIℎ − �ℎRℎ − �ℎI∗ℎ + �ℎR
∗
ℎ

)(

Rℎ − R∗ℎ
)

.

Some more algebra yields

L′ =
(

�ℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

+ dℎI∗ℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Nℎ −N∗
ℎ

Nℎ

)

+

[(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
a

(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)

N∗
a I

∗
ℎ

−
�a2I

∗
aSℎ

(

Iℎ − I∗ℎ
)2

N∗
a IℎI

∗
ℎ

+
�ℎ
(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)(

I∗ℎ + R
∗
ℎ

)

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)2

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

N∗
ℎNℎ

)]

+

[(

dℎ + 2�ℎ
2�ℎ

)(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)

⋅

(

2
(

�ℎ
(

Iℎ − I∗ℎ
)

− �ℎ
(

Rℎ − R∗ℎ
))(

Rℎ − R∗ℎ
)

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)]
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+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B
(

�ℎ
(

Iℎ − I∗ℎ
)

− �ℎ
(

Rℎ − R∗ℎ
))(

Rℎ − R∗ℎ
)

L′ =
(

�ℎ
(

S∗ℎ + I
∗
ℎ + R

∗
ℎ

)

+ dℎI∗ℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Nℎ −N∗
ℎ

Nℎ

)

(3.12)

+

[(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
a

(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)

N∗
a I

∗
ℎ

−
�a2I

∗
aSℎ

(

Iℎ − I∗ℎ
)2

N∗
a IℎI

∗
ℎ

+
�ℎ
(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)(

I∗ℎ + R
∗
ℎ

)

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)2

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

N∗
ℎNℎ

)]

+

[(

dℎ + 2�ℎ
2�ℎ

)(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)

⋅

(

2�ℎ
(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

Nℎ
−
2�ℎ

(

Rℎ − R∗ℎ
)2

Nℎ
−
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)]

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B�ℎ
(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

− 2B�ℎ
(

Rℎ − R∗ℎ
)2.

Notice line (3.12) can be written as
(
(

Sℎ − S∗ℎ
)

+
(

Iℎ − I∗ℎ
)

+
(

Rℎ − R∗ℎ
)

Nℎ

)(

− �ℎ
(

Sℎ − S∗ℎ + Iℎ − I
∗
ℎ + Rℎ − R∗ℎ

)

− dℎ
(

Iℎ − I∗ℎ
)

)

=

(

1
Nℎ

)(

− �ℎ
[

(

Sℎ − S∗ℎ
)2 +

(

Sℎ − S∗ℎ
)(

Iℎ − I∗ℎ
)

+
(

Sℎ − S∗ℎ
)(

Rℎ − R∗ℎ
)

+
(

Sℎ − S∗ℎ
)(

Iℎ − I∗ℎ
)

+
(

Iℎ − I∗ℎ
)2 +

(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

+
(

Sℎ − S∗ℎ
)(

Rℎ − R∗ℎ
)

+
(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

+
(

Rℎ − R∗ℎ
)2
]

− dℎ
[

(

Sℎ − S∗ℎ
)(

Iℎ − I∗ℎ
)

+
(

Iℎ − I∗ℎ
)2 +

(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

]

)
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= −
�ℎ
(

(

Sℎ − S∗ℎ
)

+
(

Rℎ − R∗ℎ
)

)2

Nℎ
−

(

dℎ + �ℎ
)(

Iℎ − I∗ℎ
)2

Nℎ

−

(

dℎ + 2�ℎ
)(

Sℎ − S∗ℎ
)(

Iℎ − I∗ℎ
)

Nℎ
−

(

dℎ + 2�ℎ
)(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

Nℎ
(3.13)

so then

L′ = −
�ℎ
(

(

Sℎ − S∗ℎ
)

+
(

Rℎ − R∗ℎ
)

)2

Nℎ
−

(

dℎ + �ℎ
)(

Iℎ − I∗ℎ
)2

Nℎ

−

(

dℎ + 2�ℎ
)(

Sℎ − S∗ℎ
)(

Iℎ − I∗ℎ
)

Nℎ
−

(

dℎ + 2�ℎ
)(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

Nℎ

+

[(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)

⋅

(

�a2I
∗
a

(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)

N∗
a I

∗
ℎ

−
�a2I

∗
aSℎ

(

Iℎ − I∗ℎ
)2

N∗
a IℎI

∗
ℎ

+
�ℎ
(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)(

I∗ℎ + R
∗
ℎ

)

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)2

N∗
ℎNℎ

−
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

N∗
ℎNℎ

)]

+
(

dℎ + 2�ℎ
)

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)((

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

Nℎ

)

−

(

dℎ + 2�ℎ
)

2�ℎ

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)(

2�ℎ
(

Rℎ − R∗ℎ
)2

Nℎ
+
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B�ℎ
(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

− 2B�ℎ
(

Rℎ − R∗ℎ
)2.
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Simplifying and canceling terms yields

L′ = −
�ℎ
(

(

Sℎ − S∗ℎ
)

+
(

Rℎ − R∗ℎ
)

)2

Nℎ
−

(

dℎ + �ℎ
)(

Iℎ − I∗ℎ
)2

Nℎ

+

(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
a

(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)

N∗
a I

∗
ℎ

)

−

(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
aSℎ

(

Iℎ − I∗ℎ
)2

N∗
a IℎI

∗
ℎ

+
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)2

N∗
ℎNℎ

)

−
(

dℎ + 2�ℎ
2�ℎ

)

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)(

2�ℎ
(

Rℎ − R∗ℎ
)2

Nℎ
+
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)

+ 2AN ′
ℎ

(

Nℎ −N∗
ℎ

)

+ 2B�ℎ
(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

− 2B�ℎ
(

Rℎ − R∗ℎ
)2.

Then, using the same method as with the work shown in (3.13), we obtain

L′ = −
�ℎ
(

(

Sℎ − S∗ℎ
)

+
(

Rℎ − R∗ℎ
)

)2

Nℎ
−

(

dℎ + �ℎ
)(

Iℎ − I∗ℎ
)2

Nℎ

+

(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
a

(

Iℎ − I∗ℎ
)(

Sℎ − S∗ℎ
)

N∗
a I

∗
ℎ

)

−

(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
aSℎ

(

Iℎ − I∗ℎ
)2

N∗
a IℎI

∗
ℎ

+
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)2

N∗
ℎNℎ

)

−
(

dℎ + 2�ℎ
2�ℎ

)

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)(

2�ℎ
(

Rℎ − R∗ℎ
)2

Nℎ
+
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)

− 2A�ℎ
(

(

Sℎ − S∗ℎ
)

+
(

Rℎ − R∗ℎ
)

)2
− 2A

(

dℎ + 2�ℎ
)(

Iℎ − I∗ℎ
)2

− 2A
(

dℎ + 2�ℎ
)(

Sℎ − S∗ℎ
)(

Iℎ − I∗ℎ
)

− 2A
(

dℎ + 2�ℎ
)(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

+ 2B�ℎ
(

Iℎ − I∗ℎ
)(

Rℎ − R∗ℎ
)

− 2B�ℎ
(

Rℎ − R∗ℎ
)2.
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Next, we find A,B > 0.

−2A
(

dℎ + 2�ℎ
)

+ 2B�ℎ = 0

B�ℎ = A
(

dℎ + 2�ℎ
)

B =
A
(

dℎ + 2�ℎ
)

�ℎ
,

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

(

�a2I
∗
a

N∗
a I

∗
ℎ

)

− 2A
(

dℎ + 2�ℎ
)

= 0

2A
(

dℎ + 2�ℎ
)

=
N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

(

�a2I
∗
a

N∗
a I

∗
ℎ

)

,

A =
N∗
ℎ�a2I

∗
a

2�ℎN∗
a I

∗
ℎ

(

I∗ℎ + R
∗
ℎ

) ,

B =
N∗
ℎ�a2I

∗
a

(

dℎ + 2�ℎ
)

2�ℎ�ℎN∗
a I

∗
ℎ

(

I∗ℎ + R
∗
ℎ

) .

Using these constants, we have

L′ = −
�ℎ
(

(

Sℎ − S∗ℎ
)

+
(

Rℎ − R∗ℎ
)

)2

Nℎ
−

(

dℎ + �ℎ
)(

Iℎ − I∗ℎ
)2

Nℎ

−

(

N∗
ℎ

(

dℎ + 2�ℎ
)

�ℎ
(

I∗ℎ + R
∗
ℎ

)

)(

�a2I
∗
aSℎ

(

Iℎ − I∗ℎ
)2

N∗
a IℎI

∗
ℎ

+
�ℎS∗ℎ

(

Iℎ − I∗ℎ
)2

N∗
ℎNℎ

)

−
(

dℎ + 2�ℎ
2�ℎ

)

(

1 +
S∗ℎ

I∗ℎ + R
∗
ℎ

)(

2�ℎ
(

Rℎ − R∗ℎ
)2

Nℎ
+
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

)

−
N∗
ℎ�a2I

∗
a�ℎ

(

(

Sℎ − S∗ℎ
)

+
(

Rℎ − R∗ℎ
)

)2

�ℎN∗
a I

∗
ℎ

(

I∗ℎ + R
∗
ℎ

) −
N∗
ℎ�a2I

∗
a

(

dℎ + 2�ℎ
)(

Iℎ − I∗ℎ
)2

�ℎN∗
a I

∗
ℎ

(

I∗ℎ + R
∗
ℎ

)
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−
N∗
ℎ�a2I

∗
a

(

dℎ + 2�ℎ
)

�ℎ
(

Rℎ − R∗ℎ
)2

�ℎ�ℎN∗
a I

∗
ℎ

(

I∗ℎ + R
∗
ℎ

) .

Finally, since we assume �ℎ ≥ dℎ, it follows that

2�ℎ
(

Rℎ − R∗ℎ
)2

Nℎ
+
N ′
ℎ

(

Rℎ − R∗ℎ
)2

N2
ℎ

=

(

2�ℎNℎ +N ′
ℎ

)(

Rℎ − R∗ℎ
)2

N2
ℎ

=

(

2�ℎ
(

Sℎ + Iℎ + Rℎ
)

+ Λℎ − �ℎ
(

Sℎ + Iℎ + Rℎ
)

− dℎIℎ
)

(

Rℎ − R∗ℎ
)2

N2
ℎ

=

(

�ℎ
(

Sℎ + Iℎ + Rℎ
)

+ Λℎ − dℎIℎ
)

(

Rℎ − R∗ℎ
)2

N2
ℎ

=

(

�ℎ
(

Sℎ + Rℎ
)

+ Λℎ +
(

�ℎ − dℎ
)

Iℎ
)

(

Rℎ − R∗ℎ
)2

N2
ℎ

≥ 0.

Hence, L′ is negative semi-definite in Ωℎ, with L′ = 0 if and only if Sℎ = S∗ℎ , Iℎ = I∗ℎ , and Rℎ =

R∗ℎ. Thus the largest compact invariant set in {(

Sℎ, Iℎ, Rℎ
)

∈ Ωℎ ∶ L′ = 0
} is {E∗

ℎ

}, therefore,
by the LaSalle invariance principle, {E∗

ℎ

} is globally asymptotically stable in Ωℎ [35, 36]. Now
Corollary 3.1.1 implies that 1 is a globally asymptotically stable equilibrium of (2.1a)-(2.1f).

Note that our theorem shows that if the disease is endemic in the animal population, and �a2 >
0, then irrespective of the reproductive number 0ℎ the disease becomes endemic in the human
population (if �ℎ ≥ dℎ

).

53



3.4 Stability of the Disease-free Equilibrium

The other equilibrium of the animal subsystem (2.1a)-(2.1c) is the disease-free equilibrium given
byE0

a =
(

S0a , I
0
a , R

0
a

)

=
(

Λa∕�a, 0, 0
). By Theorem 2.3.2 we know that this equilibrium is globally

asymptotically stable if0a ≤ 1. In this case, Ia(t)→ 0 as t→ ∞, so in the limit there is no infection
in the human population coming from the animal population. Thus, in the limit, dynamics in the
human population become exactly the same as the general dynamics in the animal population, and
Corollary 3.1.1 applies. Thus we have the following results.
Proposition 3.4.1. Assume that0a ≤ 1, so the disease dies out in the animal population. Addition-

ally, let0ℎ ≤ 1. Then the disease-free equilibrium 0 =
(

Λa∕�a, 0, 0,Λℎ∕�ℎ, 0, 0
)

of (2.1a)-(2.1f)

is globally asymptotically stable in Ω.

Proposition 3.4.2. Assume that 0a ≤ 1, 0ℎ > 1 and �ℎ ≥ dℎ. Then the equilibrium 2 =
(

Λa∕�a, 0, 0, S∗ℎ , I
∗
ℎ , R

∗
ℎ

)

of (2.1a)-(2.1f) is globally asymptotically stable inΩ.
(

Note that
(

S∗ℎ , I
∗
ℎ , R

∗
ℎ

)

are given by the same expressions as (2.3)-(2.6) with the parameters corresponding to the human

population.
)

3.5 Multiple Animal Populations

To finish this chapter, we now consider a scenario where there are multiple animal populations. In
this scenario we assume there is no cross-infection between different animal populations. While this
results in a fairly straight-forward extension of our results in the previous sections, it is conceivable
that such a scenario exists when one group of people hunt multiple species of animals and each
species lives in different locations and never cross paths.

Suppose there are n such animal populations, A1, A2,… , An, and one human population denoted
H . Sℎ, Iℎ, Rℎ, and Nℎ are defined as before with Sai , Iai , and Rai representing the susceptible,
infected, and recovered individuals in population Ai, for i = 1, 2,… , n, with the total number of
individuals in populationAi being given asNai . Susceptible individuals inAi are recruited through
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migration and birth at the rate Λai and susceptible individuals in H are recruited at a rate of Λℎ.
We represent the death rates from disease in population Ai by dai and the death rate by disease in
population H as dℎ. Further, we assume �ai , �ℎ are the natural death rates for Ai and H , respec-
tively, and �ai , �ℎ are the recovery rates with permanent immunity for Ai and H , respectively. It
is assumed that no one in the human population can infect any individual in any Ai population,
while individuals in any Ai population can infect those inH on suitable contact. We assume there
is no cross-infection between Ai and Aj when i ≠ j. Disease transmission is modeled using stan-
dard incidence, assuming a constant (density-independent) contact rate both within and across the
populations resulting in infection rates

fai
(

Sai , Iai , Rai

)

=
�a1i Iai
Nai

Sai , for i = 1, 2,… , n, and

fℎ
(

Sa1 , Ia1 , Ra1 ,… , San , Ian , Ran , Sℎ, Iℎ, Rℎ
)

=

((

n
∑

i=1

�a2i Iai
Nai

)

+
�ℎIℎ
Nℎ

)

Sℎ,

where �a1i is the effective contact rate within population Ai, �a2i is the effective contact rate between
populations Ai andH , and �ℎ is the effective contact rate within populationH . For i = 1, 2,… , n,
we assume that Λai ,Λℎ, �ai , �ℎ, �ai , and �ℎ are positive parameters and dai , dℎ, �a1i , �a2i , and �ℎ are
non-negative parameters. Specifically, this leads to the following model. For i = 1, 2,… , n,

dSai
dt

= Λai − �aiSai −
�a1i Iai
Nai

Sai , (3.14a)

dIai
dt

=
�a1i Iai
Nai

Sai −
(

�ai + �ai + dai
)

Iai , (3.14b)

dRai

dt
= �aiIai − �aiRai , (3.14c)

dSℎ
dt

= Λℎ − �ℎSℎ −

((

n
∑

i=1

�a2i Iai
Nai

)

+
�ℎIℎ
Nℎ

)

Sℎ, (3.14d)
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dIℎ
dt

=

((

n
∑

i=1

�a2i Iai
Nai

)

+
�ℎIℎ
Nℎ

)

Sℎ −
(

�ℎ + �ℎ + dℎ
)

Iℎ, (3.14e)

dRℎ

dt
= �ℎIℎ − �ℎRℎ. (3.14f)

For i = 1, 2,… , n, let

Ωai =

{

(

Sai , Iai , Rai

)

∈ ℝ3
+ ∶ Sai ≥ 0, Iai ≥ 0, Rai ≥ 0, Sai + Iai + Rai ≤

Λai
�ai

}

and
Ωℎ =

{

(

Sℎ, Iℎ, Rℎ
)

∈ ℝ3
+ ∶ Sℎ ≥ 0, Iℎ ≥ 0, Rℎ ≥ 0, Sℎ + Iℎ + Rℎ ≤

Λℎ
�ℎ

}

.

Then for i = 1, 2,… , n, the set Ω̃ = Ωa1 × Ωa2 ×⋯ × Ωan × Ωℎ is positively invariant under the
dynamics of (3.14a)-(3.14f) and solutions with initial conditions in Ω̃ exist globally.

Define E(t)
ai
∶=

(

S (t)ai , I
(t)
ai
, R(t)ai

)

and Ee
ai
∶=

(

Se
ai
, I eai , R

e
ai

)

for i = 1, 2,… , n. Depending on the
parameters, Ee

ai
is either the disease-free equilibrium or the endemic equilibrium. By the structure

of the model in (3.14a)-(3.14f) — with animals uninfected by humans and each animal population
independent, that is, unable to infect any other animal population — we have that E(t)

ai
→ Ee

ai
for

i = 1, 2,… , n, and each Ee
ai
is globally asymptotically stable by Theorems 2.3.2 and 2.3.4 under

appropriate conditions. Thus, it is straightforward to extend the results of the equilibrium analysis
for (2.1a)-(2.1f) and we have the following corollary.
Corollary 3.5.1. If there exists an i ∈ 1, 2,… , n such that 0ai

> 1, �ai ≥ dai , and �a2i > 0, and

�ℎ ≥ dℎ, then the unique endemic equilibrium ̃ =
(

Ee
a1
,… , Ee

an
, E∗

ℎ

)

of (3.14a)-(3.14f) is globally

asymptotically stable in the interior of Ω̃.
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4 Numerical Results

Wenowpresent numerical results from simulations for the system in (2.1a)-(2.1f) and its extensions.
We will present simulation results for the system (2.1a)-(2.1f) as it is, with constant values for all
appropriate parameters, and we will present examples where �a2 is no longer a constant, but a
function of time. We also present scenarios with more than two populations. We will simulate a
scenario with the system in (3.14a)-(3.14f) where we have have two animal populations and one
human population. We further introduce a new system where there is one animal population and
two interacting human populations. Finding and analyzing an endemic equilibrium for this last
model is difficult, but we take the opportunity to show some simulation results for this system and
discuss these results. Some of these results appeared in [37], but we present a more extensive study
here.

4.1 Scenarios with One Animal Population and One Human Population

In this section we present some numerical results related to the model (2.1a)-(2.1f). Figure 4.1
shows the results of a numerical simulation of (2.1a)-(2.1f) using MATLAB’s ode45 and the pa-
rameters Λa = 152500∕3, �a = 1∕8, �a = 1∕20, da = 1∕30,Λℎ = 2900∕6, �ℎ = 1∕6, �ℎ =

17∕24, dℎ = 1∕8 individuals per month and �ℎ = 31∕24, �a1 = 3∕8, and �a2 = 41∕120 as the
contact rates. The initial values used were S0ℎ = 2000, I0ℎ = R0ℎ = R0a = 0, S0a = 30000, and
I0a = 1000. These are artificial values and are used only for illustration purposes. Under these
conditions, the endemic equilibrium of (2.1a)-(2.1f) is globally asymptotically stable.

In the proof of the global asymptotic stability for the co-existence endemic equilibrium, we as-
sumed that �a ≥ da and �ℎ ≥ dℎ. However, even if we ignore both of those conditions, the
numerical results still seem to indicate that the co-existence endemic equilibrium of (2.1a)-(2.1f)
is globally asymptotically stable. Figure 4.2 shows the results of a simulation of this kind, with
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Λa = 152500∕3, �a = 1∕25, �a = 1∕20, da = 1∕10,Λℎ = 2900∕6, �ℎ = 1∕9, �ℎ = 17∕24, dℎ =

1∕6 individuals per month and �ℎ = 31∕24, �a1 = 3∕8, and �a2 = 41∕120 as the contact rates. The
initial values used are the same as those in the previous set of results.

4.2 Dependence of Human Infection on the Infection in Each Population

Looking at the system (2.1a)-(2.1f) and revisiting our assumptions, the infection in the human
population depends on infection in both populations. In Figure 4.3 we see the change in I∗ℎ∕N∗

ℎ as
0a changes. The values used for this figure were Λa = 152500∕3, �a = 1∕25, �a = 1∕20, da =

1∕10,Λℎ = 2900∕6, �ℎ = 1∕9, �ℎ = 17∕24, dℎ = 1∕6 individuals per month, and �a2 = 0.3. In
order to get the change in 0a we use a range of �a1 values; namely 0 ≤ �a1 ≤ 1.9. The initial
values used were S0ℎ = 2000, I0ℎ = Rℎ

ℎ = R0a = 0, S
0
a = 3000, and I0a = 1000. (These values are

simply for illustration purposes.) We notice that I∗ℎ∕N∗
ℎ increases after 0a = 1. When �ℎ = 1∕3

we have0ℎ ≈ 0.338 and when �ℎ = 1∕9 we have0ℎ ≈ 0.113. Even if �ℎ = 0, when0a ≥ 1, we
see there is infection in the human population. Hence, limiting infection from humans to humans
is not enough to fully mitigate this disease in humans. In all three curves there is a sharp increase
in I∗ℎ∕N∗

ℎ for 1 ≤ 0a ≤ 2 so that the differences between the different I∗ℎ∕N∗
ℎ curves are nearly

indistinguishable the closer0a is to 1. While we do not know what �a1 is in reality, this shows that
if it is high enough for there to be endemic infection in the animal population, there will be some
level of infection in the human population. This pattern mirrors the belief that it is impossible to
eradicate monkeypox due to the endemic infection in animal populations [17, 31, 43, 48, 49].

Figure 4.4 uses the same parameters as in 4.3, but with �ℎ ≥ 1. Specifically, �ℎ = 1 where 0ℎ ≈

1.014, �ℎ = 1.5 when we have 0ℎ ≈ 1.521 and �ℎ = 2 when 0ℎ ≈ 2.028. As expected, the
increase in �ℎ results in higher values for I∗ℎ∕N∗

ℎ than in Figure 4.3. While difficult, it is important
to continue studyingmonkeypox in both human and animal populations since infection in the animal
population has a substantial impact on infection in the human population.
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Figure 4.1: The above shows the results for a simulation with all parameters constant and the criteria for
Theorem 3.3.1 met.
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Figure 4.2: The results of a simulation with all parameters constant, but with �a < da and �ℎ < dℎ.
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In Figure 4.5, we use the same parameters as in Figure 4.3, but we consider I∗a∕N∗
a as a function

of 0a . Since we changed �ℎ to obtain three curves in Figure 4.3 but �ℎ has no role in the value of
I∗a∕N

∗
a , the curve in Figure 4.5 is the same regardless of �ℎ. We note that, as expected, changing

0a has a greater effect on I∗a∕N∗
a than it did on I∗ℎ∕N∗

ℎ reflected in Figure 4.3.
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Figure 4.3: The above illustrates the ratio I∗ℎ∕N∗
ℎ as a function of0a . The lowest curve represents the casewhen �ℎ = 0 so we see that there is still infection in the human population as long as0a > 1.

We also know that changes in �a2 impact the animal-to-human cross-infection. Figure 4.6 shows
�a2I

∗
a∕N

∗
a as a function of 0a for the same values as in Figure 4.3 with �ℎ = 0. These results

indicate that, as expected, controlling the disease in the human population also depends on reducing
the value of �a2 . Educating individuals in areas affected by monkeypox on how to recognize the
symptoms of the disease can be useful in limiting the spread of monkeypox from person-to-person
[10, 14, 11, 66]. However, the results presented here indicate that we have to continue to take
measures to minimize �a2 . Educating people on how the symptoms of monkeypox present in the
animals they interact with and hunt, and on the proper handling of infected animals is crucial in
limiting the spread of this disease among humans.
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Figure 4.4: The above illustrates the ratio I∗ℎ∕N∗
ℎ as a function of0a for0ℎ > 1.
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Figure 4.5: The above illustrates I∗a∕N∗
a as a function of0a .
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Figure 4.6: The above illustrates �a2I∗a∕N∗
a as a function of0a for three different values of �a2 with �ℎ = 0.

4.3 Simulations with �a2 as a Function of Time

Since there is no longer any vaccination against smallpox and this vaccine provided partial immu-
nity against monkeypox, there is waning herd immunity against monkeypox [28, 38, 40, 43, 47,
49, 50, 51]. Thus, in this next example, we assume that as time goes on there is an increasing
likelihood that a human will get infected when they come into contact with an infected animal. For
this simulation, we use �a2(t) =

(

1 + 9e−t
)−1. Figure 4.7 shows the results of a numerical sim-

ulation with this �a2(t) and all other parameters the same as for Figure 4.1. The analysis for our
asymptotically autonomous system is still valid because �a2(t) → 1 as t → ∞ and so if we define
g(t) ∶= �a2(t)Ia(t)∕Na(t), then g(t)→ I ea∕N

e
a as t→∞. Since �a2 → 1, it makes sense that Figure

4.7 shows the system approaching a higher I∗ℎ value than in Figure 4.1.

We are also interested in modeling seasonal oscillations in monkeypox. Figure 4.8 shows the results
of a simulation of the system (2.1a)-(2.1f) but with �a2(t) =

(

�2 − �1
)

sin(2�nt) where �2 = 0.8,
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Figure 4.7: The results for a simulation with all parameters constant except �a2(t) which is an increasing
function of time.
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Figure 4.8: The results for a simulation with all parameters constant except �a2(t) is the sinusoidal functionof time graphed in Figure 4.9.
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Figure 4.9: A graph of �a2(t) =
(

�2 − �1
)

sin(2�nt) where n = 0.15, �2 = 0.8 and �1 = 0.1. This was used
to help create Figure 4.8.
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Figure 4.10: A graph of �a2(t) =
(

�2 − �1
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sin(2�nt) where n = 0.015, �2 = 0.8 and �1 = 0.1. This was used
to help create Figure 4.11.
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Figure 4.11: The results for a simulation with all parameters constant except �a2(t) is the sinusoidal functionof time graphed in Figure 4.10.
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�1 = 0.1, and n = 0.15. Figure 4.9 shows a graph of this �a2(t) function. For the system, we
have initial conditions S0a = 30000, I0a = 100, R0a = 0, S0ℎ = 2000, I0ℎ = 100, and R0ℎ = 0 and
parameters Λℎ = 2900∕6, �ℎ = 1∕6, �ℎ = 17∕24, dℎ = 1∕8,Λa = 152500∕3, �a = 1∕8, �a = 1∕20,
da = 1∕30, �a1 = 3∕8, and �ℎ = 31∕24. In order to see a similar situation but with a longer period,
Figure 4.11 shows the results of a simulation using the same conditions as in Figure 4.8 but with
n = 0.015.
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Figure 4.12: A graph of �a2(t) =
(

�2 − �1
)

sin(2�nt sin(2�mt)) where n = 0.315, m = 0.01, �2 = 0.8 and
�1 = 0.1.

As an interesting example, we take this idea further and suppose there is some kind of oscillating be-
havior, but not it’s as direct as in the previous examples. Let �a2(t) =

(

�2 − �1
)

sin (2�nt sin (2�mt))

with �2 = 0.8, �1 = 0.1, n = 0.315, and m = 0.01. A graph of this �a2(t) is shown in Figure 4.12
and the resulting dynamics of the system are illustrated in Figure 4.13.

Although these examples are only for illustration purposes, with more data we could attempt to
find appropriate parameters. It would probably be much easier to find more data from the human
population than it is from the animal populations. The fact that we don’t even have a complete
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Figure 4.13: The results for a simulation with all parameters constant except that �a2(t) is an oscillating
function of time.
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list of species affected by monkeypox [48] makes obtaining data among animal populations seem
almost impossible, but it would be incredibly helpful to know which species most frequently infect
humans and try to find a way to understand how monkeypox impacts those animal populations.

4.4 Multi-host and Meta-population Models

Meta-population models andmulti-host models are used for modeling epidemic outbreaks and were
also brought into consideration [3, 7, 18, 19, 22, 46, 47, 52, 54, 55, 56]. We simulated an epidemic
withmultiple animal populations and a single human population. Figure 4.14 shows the results of an
epidemic simulation with two animal populations and one human population as given in (3.14a)-
(3.14f) for the case of i = 2. The initial values used for this simulation are S0a1 = 3000, I0a1 =

100, S0a2 = 2500, I
0
a2
= 40, S0ℎ = 2000, I

0
ℎ = 100, and R0a1 = R0a2 = R0ℎ = 0. The contact rates are

�a11 = 1∕4, �a21 = 1∕9, �a12 = 1∕8, �a22 = 1∕11, and �ℎ = 31∕24. The parameter values, with units of
individuals per month, are Λℎ = 2900∕6, �ℎ = 1∕6, �ℎ = 17∕24, dℎ = 1∕8,Λa1 = 152500∕2, �a1 =
1∕8, �a1 = 1∕20, da1 = 1∕30,Λa2 = 500, �a2 = 1∕25, �a2 = 1∕10, and da2 = 1∕30.

Figure 4.15 uses all of the same parameters as for the example shown in 4.14 with the exception
that �ℎ = 0 and I0ℎ = 0. Although no humans are infected at the start of the simulation and no
humans can be infected by other humans in this scenario, the infection still spreads to humans from
the animal population. This may seem like an extreme example since we expect that humans can
infect each other, but it again highlights how difficult it would be to eradicate monkeypox entirely,
and that is seen numerically in these simulations. As long as animals can infect humans, the disease
will persist.

Figure 4.16 takes the results of Figure 4.15 one step further. We add the requirement that �a22 = 0
so that there is no infection spread between humans or from A2 to humans. We imagine this is
a situation where humans take steps to stop human-to-human infection and avoid interacting with
some known animal carriers of monkeypox, but still interact with some other animal species that
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Figure 4.14: The results of a simulation with two animal populations as in (3.14a)-(3.14f) for i = 2. The first
two columns show the results for populations A1 and A2, respectively. The last column shows the results for
the human population.
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Figure 4.15: The results of a simulation with two animal populations as in (3.14a)-(3.14f) for i = 2. These
results only differ from Figure 4.14 in that humans can only be infected through contact with animals and
I0ℎ = 0.
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Figure 4.16: The results of a simulation with two animal populations as in (3.14a)-(3.14f) for i = 2. These
results only differ from Figure 4.14 in that humans can only be infected through contact with animals in A1
and I0ℎ = 0.
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carry monkeypox – possibly without knowing it. We see that even though humans can only be
infected from animals in A1 the infection persists. As mentioned earlier, we only know some of the
animals that can be infected by monkeypox and these results indicate that even if those different
species of animals do not interact, even if infection is eradicated in some animal species, and even if
humans cannot spread it among each other, all this is not enough to completely prevent monkeypox
in the human population.

For another example of a meta-population model, we divided the human population into subpopu-
lations, assume there is movement of individuals between these human subpopulations and assume
that they all have contact with one large animal population with endemic monkeypox infection. We
can imagine these human subpopulations represent distinct villages that use the same area to hunt
for food. This scenario is particularly difficult to study analytically. Due to the interaction between
the human subpopulations, finding a Lyapunov function to prove the global asymptotic stability of
the endemic equilibrium is difficult. Regardless, we can still study this situation numerically.

Consider the following system of nine differential equations:

dSa
dt

= Λa −
(

�a +
�aIa
Na

)

Sa, (4.1a)

dIa
dt

=
�aIa
Na

Sa −
(

�a + �a + da
)

Ia, (4.1b)

dRa

dt
= �aIa − �aRa, (4.1c)

dSℎ1
dt

= Λℎ1 −

(

�ℎ1 +
�a1Ia
Na

+
�ℎ11Iℎ1
Nℎ1

+
�ℎ21Iℎ2
Nℎ2

)

Sℎ1 , (4.1d)

dIℎ1
dt

=

(

�a1Ia
Na

+
�ℎ11Iℎ1
Nℎ1

+
�ℎ21Iℎ2
Nℎ2

)

Sℎ1 −
(

�ℎ1 + �ℎ1 + dℎ1
)

Iℎ1 , (4.1e)

dRℎ1

dt
= �ℎ1Iℎ1 − �ℎ1Rℎ1 (4.1f)
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dSℎ2
dt

= Λℎ2 −

(

�ℎ2 +
�a2Ia
Na

+
�ℎ12Iℎ1
Nℎ1

+
�ℎ22Iℎ2
Nℎ2

)

Sℎ2 , (4.1g)

dIℎ2
dt

=

(

�a2Ia
Na

+
�ℎ12Iℎ1
Nℎ1

+
�ℎ22Iℎ2
Nℎ2

)

Sℎ2 −
(

�ℎ2 + �ℎ2 + dℎ2
)

Iℎ2 , (4.1h)

dRℎ2

dt
= �ℎ2Iℎ2 − �ℎ2Rℎ2 . (4.1i)

This models a population of animals divided into susceptible, infected, and recovered individuals,
denoted Sa, Ia, and Ra, respectively, the first population of humans divided into susceptible, in-
fected and recovered individuals, denoted Sℎ1 , Iℎ1 , and Rℎ1 , respectively, and a second separate
population of humans divided into susceptible, infected, and recovered individuals, denoted Sℎ2 ,
Iℎ2 , and Rℎ2 , respectively. The total number of individuals in the first human population is given
as Nℎ1(t) = Sℎ1(t) + Iℎ1(t) + Rℎ1(t), the total number of individuals in the second human pop-
ulation is given as Nℎ2(t) = Sℎ2(t) + Iℎ2(t) + Rℎ2(t), and the total animal population is given as
Na(t) = Sa(t) + Ia(t) + Ra(t). For simplicity, from now on we call the first human population H1

and the second human populationH2. InH1, susceptible humans are recruited through migration
and birth at the rate Λℎ1 , susceptible humans inH2 are recruited through migration and birth at the
rate Λℎ2 , and susceptible animals are recruited at a rate of Λa. Let da, dℎ1 , and dℎ2 be the death rates
by monkeypox for the animals,H1, andH2, respectively, �a, �ℎ1 , and �ℎ2 be the natural death rates
for the animals,H1, andH2, respectively, and �a, �ℎ1 , and �ℎ2 be the recovery with permanent im-
munity for the animals,H1, andH2, respectively. It is assumed that hunting of animals by humans
is negligible and can be ignored and that animals cannot become infected by humans.

Disease transmission ismodeled using standard incidence, assuming a constant (density-independent)
contact rate both within and across the populations resulting in infection rates

fa
(

Sa, Ia, Ra
)

=
�aIa
Na

Sa,

fℎ1
(

Sa, Ia, Ra, Sℎ1 , Iℎ1 , Rℎ1 , Sℎ2 , Iℎ2 , Rℎ2

)

=

(

�a1Ia
Na

+
�ℎ11Iℎ1
Nℎ1

+
�ℎ21Iℎ2
Nℎ2

)

Sℎ1 , and
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fℎ2
(

Sa, Ia, Ra, Sℎ1 , Iℎ1 , Rℎ1 , Sℎ2 , Iℎ2 , Rℎ2

)

=

(

�a2Ia
Na

+
�ℎ12Iℎ1
Nℎ1

+
�ℎ22Iℎ2
Nℎ2

)

Sℎ2 ,

where �a is the effective contact rate within the animal population, �a1 is the effective contact rate
between the animal population andH1, �ℎ11 is the effective contact rate withinH1, �ℎ21 is the effective
contact rate between individuals inH2 affecting those inH1, �a2 is the effective contact rate between
the animal population andH2, �ℎ12 is the effective contact rate between individuals inH1 affecting
those in H2 and �ℎ22 is the effective contact rate within H2. We assume all parameters are non-
negative.

Figure 4.17 shows the results of a numerical simulation of the model in (4.1a)-(4.1i). The initial
values used were S0a = 30000, I0a = 1000, S0ℎ1 = 2000, S0ℎ2 = 3000, and R0a = I0ℎ1 = R0ℎ1 = I0ℎ2 =
R0ℎ2 = 0. The associated contact values are �a = 3∕8, �a1 = 41∕120, �a2 = 31∕24, �ℎ11 = 41∕120,
�ℎ12 = 5∕12, �ℎ21 = 1∕8, and �ℎ22 = 13∕40. The other parameters used, in individuals per month,
were Λa = 152500∕3, Λℎ1 = 1450∕3, Λℎ2 = 500∕3, �a = 1∕8, �ℎ1 = 1∕6, �ℎ2 = 1∕3, �a = 1∕20,
�ℎ1 = 17∕24, �ℎ2 = 13∕24, da = 1∕30, dℎ1 = 1∕8, and dℎ2 = 1∕9. This shows that even in
the meta-population, although no humans in either population are infected at the beginning of the
simulation, infection from the animals is enough to cause endemic infection in all three populations.

4.5 Summation

In the systems (2.1a)-(2.1f), (3.14a)-(3.14f), and (4.1a)-(4.1i), there is cross-infection from at least
one animal population into a human population. As we have noted, it is believed that it would
be impossible to eradicate monkeypox due to the endemic infection in animal populations and the
necessary interactions between humans and animals. Our numerical results show that, even when
there is no infection between humans, the animal infection does indeed cause endemic infection
in both populations in this model. It is clear that more data and information is needed in order to
approximate parameter values so that the system (2.1a)-(2.1f) more accurately model monkeypox.
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Figure 4.17: Column 1 shows the results for the animal population, the second column shows the results for
populationH1 and the last column shows the results forH2.
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5 A Brief Discussion of Cellular Automata Models

Although different from the system of differential equations, network models have become a com-
mon way of modeling epidemics [6, 7, 16, 24, 32, 38, 39, 45, 52, 57, 58, 62, 63, 65, 67, 68]. Part
of the ongoing investigation into monkeypox modeling can include numerical simulations of the
infection spread in a network setting such a small-world network or by using cellular automata.

We present a brief outline of a basic cellular automata model in this chapter. We run some simula-
tions and it becomes clear that morework needs to be done in order tomake appropriate assumptions
for this model. The intention of this chapter is to explore a different kind of monkeypox model, to
present questions and ideas related to monkeypox modeling, and to leave plenty of room for future
work.

5.1 Cellular Automata Model Description

Cellular automata can be represented as a grid or lattice of cells changing between states [16, 32,
63, 65, 68]. This idea is applicable when looking for a way to model monkeypox if we want to
take each individual human and each individual animal into consideration. We now present a basic
cellular automata model for monkeypox.

Consider a grid of cells representing both animal and human populations. We have part of the
grid covered in human cells and the rest of the grid covered in animal cells. We have susceptible,
infected, and recovered states for both animals and humans. In the systems (2.1a)-(2.1f), (3.14a)-
(3.14f), and (4.1a)-(4.1i) we assumed death by monkeypox, natural death by other causes, and a
birth rate, but for now let us make the assumption that there is no birth or death, each cell represents
one individual animal or individual human, and they can only experience the states of susceptible,
infected, and recovered. An example of what a such a cellular automata grid might look like is
shown in Figure 5.1. Notice that this grid only has direct connections between some animals and
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some humans, but not all animals are connected to humans or vice versa. At this time we believe
this assumption is realistic if we consider that those who hunt and cook potentially infected animals
are most likely to become infected from an animal versus other humans with less direct contact.
The grid may look different from Figure 5.1 depending on the sizes of the populations and other
examples will be shown later in the form of simulation results.

Figure 5.1: This figure shows a cellular automata grid where violet cells are in AS , green cells are in AI ,
black cells are in AR, blue cells are inHS , magenta cells are inHI and white cells are inHR.

For all the examples presented here, let the grid be toroidally connected so that the top row connects
to the bottom row and the left side connects to the right. This way each cell has the same number
of neighbors. For the simplest case, a cell has four neighbors – the cell above, the cell below, the
cell to the left and the cell to the right.

Define the cell states as follows: a susceptible animal is in the state denoted AS , an infected animal
is in the state denotedAI , an animal who has recovered frommonkeypox is in the state denotedAR,
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a susceptible human is in the state denotedHS , an infected human is in the state denotedHI , and a
humanwho has recovered frommonkeypox is in the stateHR. Let�a be the number of a susceptible
cell’s infected animal neighbors and�ℎ be a susceptible cell’s infected human neighbors [58]. Let �aa
be the probability that a susceptible animal with one infected animal neighbor becomes infected, �aℎ
be the probability that a susceptible humanwith one infected animal neighbor becomes infected, and
�ℎℎ be the probability that a human with one infected human neighbor becomes infected. Initialize
the grid so that there is at least one infected animal. Let �a be the probability that an infected
animal recovers and �ℎ be the probability that a human recovers in one time step. We defineΦa

a ∶=

1−
(

1 − �aa
)�a to be the probability that an animal with �a infected neighbors will become infected,

Φa
ℎ ∶= 1 −

(

1 − �aℎ
)�a to be the probability that a human with �a animal neighbors will become

infected, and Φℎ
ℎ ∶= 1 −

(

1 − �ℎℎ
)�ℎ to be the probability that a human with �ℎ infected human

neighbors will become infected [58]. We will calculate Φa
a, Φa

ℎ, and Φℎ
ℎ at each time step and

update the grid according to the following rules:

• Each cell in state AS with �a > 0 changes state to AI with probability Φa
a.

• Each cell in stateHS with �a > 0 changes state toHI with probability Φa
ℎ.

• Each cell in stateHS with �ℎ > 0 changes state toHI with probability Φℎ
ℎ.

• Each cell in state AI changes state to AR with probability �a.

• Each cell in stateHI changes to stateHR with probability �ℎ.

These rules are not definitive and may be changed to best reflect reality. For instance, changing the
order these rules are followed may change the outcome.

5.2 Preliminary Simulation Results

Figure 5.2 shows the results of a simulation on a 100 × 100 grid where the left half of the grid
contains cells representing animals and the right side contains cells representing humans. For this
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simulation, �aa = 0.25, �aℎ = 0.3, �ℎℎ = 0.2, �a = 0.1, and �ℎ = 0.1. This grid was set up with
a cluster of infected animals and humans in the middle of the grid shown, and two independent
clusters – one in the human section of the grid and one in the animal section. In Figure 5.2 we can
roughly see where these infected clusters are located. At the start of the simulation AS = 116 and
HS = 124. It should be noted that these values are simply for illustration purposes.

Figure 5.2: An example of a cellular automata model is shown. The cells in blue are in the state AS , the red
cells are in the state of AR, the black cells are in the state ofHS , and the cells in the state ofHR are in green.

Table 5.1 shows the averaged results from this same cellular automata set up as was used in Figure
5.2 run 1000 times.

Mean AS Mean AI Mean AR MeanHS MeanHI MeanHR

2604.992 0 2395.008 4601.289 0 398.711
Table 5.1: The averages for relevant population values after 1000 simulations.

When we change some of the probabilities in this set up, we immediately see a difference. Suppose
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the grid is initialized the same way as was done for the results in Table 5.1 and Figure 5.2, but
�aa = 0.3, �aℎ = 0.3, �ℎℎ = 0.25, �a = 0.07, and �ℎ = 0.1. An example grid from a simulation
run under these conditions is shown in Figure 5.3 and Table 5.2 shows the mean averaged results
after running 1000 of these simulations. Since �ℎℎ < �aa , �ℎℎ < �aℎ, and �a < �ℎ, it is expected that
more animals will spread infection than humans, but the result of a relatively small difference in
probabilities was more striking than one may expect.

Figure 5.3: Another example of a cellular automata model is shown above. The cells in blue are in the state
AS , the red cells are in the state of AR, the black cells are in the state ofHS , and the cells in the state ofHR
are in green.

Mean AS Mean AI Mean AR MeanHS MeanHI MeanHR

152.855 0 4847.145 3567.632 0 1432.368
Table 5.2: The averages for relevant population values after 1000 simulations.

The results of a cellular automata model depend on more than just the probabilities. The initial
states and structure of the model are of the utmost importance. In Figure 5.4 and Table 5.3, we see
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Figure 5.4: Another example of a cellular automata model is shown above. The initial infected cells were
along the diagonal. The cells in blue are in the state AS , the red cells are in the state of AR, the black cells
are in the state ofHS , and the cells in the state ofHR are in green.

Mean AS Mean AI Mean AR MeanHS MeanHI MeanHR

2493.252 0 2506.748 4493.359 0 506.641
Table 5.3: The averages for relevant population values after 1000 simulations.

the results of a simulation with the same probabilities as was used in Figure 5.2 and Table 5.1, but
in the initial grid, those who are infected do not exist in three clusters, but along the diagonal of
the grid. Also for comparison, Figure 5.5 and Table 5.4 show the results of a simulation with the
same probabilities as was used in Figure 5.3 and Table 5.2, but with the infected individuals only
along the diagonal initially. Since the initial infected individuals are down the diagonal, for these
grid dimensions, each simulation starts with 50 infected animals and 50 infected humans.

This is only a simple outline for a cellular automata model and it can certainly be made more
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Figure 5.5: Another example of a cellular automata model is shown above. The initial infected cells were
along the diagonal. The cells in blue are in the state AS , the red cells are in the state of AR, the black cells
are in the state ofHS , and the cells in the state ofHR are in green.

Mean AS Mean AI Mean AR MeanHS MeanHI MeanHR

145.54 0 4854.46 3443.601 0 1556.399
Table 5.4: The averages for relevant population values after 1000 simulations.

realistic and complicated. Since these are closed systems with no birth, migration, or death, the
epidemic is always mitigated and AI = HI = 0 at the end of each simulation. Unlike the model in
(2.1a)-(2.1f), the disease in this cellular automata is not endemic as long as there is disease in the
animal population. Since monkeypox is endemic in parts of the world, particularly in the animal
population, we believe that the problem is with the accuracy of this cellular automata model in this
form.
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5.3 A Slight Modification

In this section, in an attempt to make the model more accurate, we allow the state of death and then
revive cells with a certain probability. This means that each cell can then go through the states of
susceptible, infected, recovered, and dead. If the cell is revived then it represents another individual
and can then go through the states again as a new individual. Although this may seem like an easy
fix, we will see that whether or not the epidemic remains endemic depends on the probabilities.

To adapt our cellular automata model to include a state of death, let �a, �ℎ be the probabilities of
natural death for an animal cell and a human cell, respectively, let !a, !ℎ be the probabilities of
death due to monkeypox for an animal cell and a human cell, respectively, and let �a, �ℎ be the
probabilities of revival of a dead animal cell and a dead human cell, respectively. In addition to the
states AS , AI , AR,HS ,HI , and HR, add the state of AD for dead animal cells and the state of HD

for dead human cells. Initialize the grid with at least one infected animal cell and then at each time
step, update the grid accordingly with the following rules:

• Each cell in state AD changes to state AS with probability �a.

• Each cell in stateHD changes to stateHS with probability �ℎ.

• Each cell in state AS , AI , AR changes to state AD with probability �a.

• Each cell in stateHS ,HI ,HR changes to stateHD with probability �ℎ.

• Each cell in state AI changes to state AD with probability !a.

• Each cell in stateHI changes to stateHD with probability !ℎ.

• Each cell in state AS with �a > 0 changes state to AI with probability Φa
a.

• Each cell in stateHS with �a > 0 changes state toHI with probability Φa
ℎ.

• Each cell in stateHS with �ℎ > 0 changes state toHI with probability Φℎ
ℎ.

• Each cell in state AI changes state to AR with probability �a.
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• Each cell in stateHI changes to stateHR with probability �ℎ.

For clarity in our figures, we will only show the animal population or the human population and the
other population will be blacked out. This allows us to focus on all of the states in each population,
but also reminds us that we are looking at two distinct populations.

Figure 5.6: This figure shows a picture of an ongoing simulation and highlights the animal population.
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Figure 5.7: This figure shows a picture of an ongoing simulation and highlights the human population.

Figure 5.6 shows an example of modeling monkeypox with cellular automata with the probability
values of �aa = 0.3, �aℎ = 0.25, �ℎℎ = 0.3, �a = 0.1, �ℎ = 0.1, �a = 0.02, �ℎ = 0.02, �a = 0.9, �ℎ =

0.9, !a = 0.08, and !ℎ = 0.08. The grid is initialized with infected individuals down the diagonal
and with all remaining cells in the state of susceptible. (All of our remaining simulations will be
initialized this way.) Figure 5.6 shows the model in four stages, but only shows what is happening
among the animals. On the left hand side in this figure, the red cells are in the state AS , the black
cells are in the state AI , the green cells are in the state AR, and the cells in the state AD are in
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blue. On the right hand side, all human cells are black. Figure 5.7 shows an example of modeling
monkeypox with cellular automata with the same probabilities as were used in 5.6, but highlights
the human population. On the left hand side, the animal cells are shown in black. On the right hand
side, the cells in red are in the stateHS , the black cells are in the stateHI , the green cells are in the
state HR, and the blue cells in the state HD. The bottom right portions of Figures 5.6 and 5.7 are
good representations of what the simulation looks like when it is continued even further. We see
that the epidemic is endemic in both populations in this scenario. The high probabilities of �a and
�ℎ result in a cell being revived almost immediately after it has died and this fuels the epidemic.

Table 5.5 shows the averaged results of 1000 simulations for a different scenario. The values av-
eraged were taken at time step 500. The probability values used for these simulations were �aa =
0.3, �aℎ = 0.25, �

ℎ
ℎ = 0.3, �a = 0.1, �ℎ = 0.1, �a = 0.02, �ℎ = 0.02, �a = 0.15, �ℎ = 0.15, !a = 0.08,

and !ℎ = 0.08. At these values of �a and �ℎ and for higher values of �a and �ℎ like in the examples
illustrated in Figures 5.6 and 5.7, when the other values are left as they are, our results indicated
there is enough revival to maintain the infection. In other words, the results presented here indicate
that for these values there are enough new susceptible individuals entering the population for the
epidemic to be endemic. An example of how the epidemic spreads in this situation is shown in
Figure 5.8.

Mean AS Mean AI Mean AR Mean AD MeanHS MeanHI MeanHR MeanHD

3838.13 79.842 383.822 698.206 3619.454 115.125 553.268 712.153
Table 5.5: The averages for relevant population values after 1000 simulations of 500 time steps each. These
values indicate that the epidemic continues since AI ,HI > 0.

When we change the rate of revival so that the parameters are �aa = 0.3, �aℎ = 0.25, �ℎℎ = 0.3, �a =
0.1, �ℎ = 0.1, �a = 0.02, �ℎ = 0.02, �a = 0.14, �ℎ = 0.14, !a = 0.08, and !ℎ = 0.08, we see
that the infection is mitigated. This is true when we ran 1000 simulations. Those averaged results
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Figure 5.8: This figure shows a picture of an ongoing simulation with the same parameters as those used for
the results in Table 5.5. The animal population is shown on the right and the human population is shown on
the left. For the corresponding population, the susceptible individuals are in red, the infected individuals are
in black, the recovered individuals are in green, and the dead individuals are in blue.

are shown in Table 5.6. Figure 5.9 shows an example of what this looks like in the GUI. In this
figure, the top row shows how the epidemic progresses in the animal population and the bottom row
shows how the epidemic spreads in the human population. The left column of Figure 5.9 shows the
progression after 50 time steps and the right hand side shows what happens after 300 time steps. In
each population, we see that the disease will die out eventually in this example.

Mean AS Mean AI Mean AR Mean AD MeanHS MeanHI MeanHR MeanHD

4247.78 0 19.756 715.466 4216.174 0 66.713 717.113
Table 5.6: The averages for relevant population values after 1000 completed simulations.
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Figure 5.9: This figure shows a picture of an ongoing simulation with the same parameters as those used for
the results in Table 5.6. The animal population is shown in the top row and the human population is shown
in the bottom row. For the corresponding population, the susceptible individuals are in red, the infected
individuals are in black, the recovered individuals are in green, and the dead individuals are in blue.
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6 Future Work

In addition to obtaining more data and finding actual parameter values, we can consider other mod-
eling approaches to further understand monkeypox and similar epidemic models.

A natural mathematical extension of thework in the previous chapters related to system (2.1a)-(2.1f)
is an optimal control problem to determine if there is a threshold where monkeypox can remain
endemic at some low level in the animal population while mitigating it in the human population
using a range of controls. Since there is currently no vaccine for monkeypox available for wide use,
the most realistic control would be a parameter changing the incidence of infection in the human
population as a result of education. Many people in areas affected with monkeypox are not always
aware of the difference between monkeypox and other diseases or ways of preventing the spread of
infection, hence education efforts in these areas may decrease the incidence of monkeypox [48, 51,
53]. Additionally, people in these areas can have increased contact with infected animals because
they have a difficult time finding food and safety from local socioeconomic turbulence and so there
could also be other methods to keep people from becoming infected that are related to these issues
[1, 17, 21, 23, 27, 40, 44, 10, 14, 11, 48, 49, 51, 53, 54, 66, 67].

While it is interesting to consider network models, a lot of work needs to be done in order for those
models to reflect what we know from ongoing monkeypox research. A cellular automata model
was presented in this work, but only as a catalyst for future work.

Another way of modeling the states of individuals during an epidemic is with a small-world net-
work. An example of a small-world network is shown in Figure 6.1. This network was created in
MATLAB by starting with a series of nodes connected to their neighbor on each side, then discon-
necting each node from a neighboring node with a certain probability, and then connecting each
node by a shortcut to another node across the network with another probability. In general, a small-
world network can most simply be created by taking a lattice network and adding some random
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Figure 6.1: An example of a small-world network without specified states.

connections. Even just two or three of these shortcuts can have a major impact on the spread of the
epidemic versus a lattice without shortcuts. Since each individual in a cellular automata network
is only connected to its four nearest neighbors, this is like a person who can only get infected from
the people they live with or who live right next to them. We know this is not entirely accurate since
people interact with others from different locations at community areas such as schools, churches,
and markets. A small-world network accounts for these kind of interactions [32, 57, 63].

Although we could use a model like the one shown in Figure 6.1 and use rules similar to those
proposed in the previous section for the cellular automata model, it would possibly be more realistic
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to have one such network for the animal population and another for the human population with some
connections between the two networks representing the influence of the animal population on the
human population. As with the cellular automata model, we start with at least one infected animal
node and update each node based on its state and the states of their connections given certain
probabilities.

In order to use networkmodels to better understand the spread ofmonkeypox, a better understanding
of the interactions between humans and animals in areas with endemic monkeypox is needed.

Although we have been solely focused on monkeypox, the ideas presented here are applicable to
a range of diseases that affect humans and animals. Ebola viruses are thought to have a natural
reservoir in apes, bats, and other animals, avian flu viruses are carried by birds but can adapt to
infect humans as well, and bats are a reservoir for rabies since they can spread it to humans and
other animals [12, 13, 15, 25, 37].

The differential equation models considered in this work corroborate the epidemiological evidence
that once the disease becomes endemic in the reservoir (animal) population, there will be endemic
disease in the human population. While we might wish to suggest a guaranteed way of mitigating
monkeypox in the human population, this is incredibly difficult. The mass culling of birds is one
strategy used to prevent the spread of avian flu, but this is not practical or even possible for the
cases of monkeypox, rabies, or ebola within wild populations. In the case of monkeypox, there are
too many different species of wild animals that can harbor the disease so it is difficult to know what
ways of controlling this disease in the animal populations will work best.

The study and understanding of monkeypox is crucial given its resurgence. The system presented
in (2.1a) - (2.1f) is important in our understanding of monkeypox – as are its extensions. As more
data is collected and as epidemiologists learn more about this disease, the model can be made more
accurate and new insights can be gained.
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