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ABSTRACT 

INVESTIGATION OF PERFORMANCE AND CAVITATION 
TREATMENT IN A KAPLAN HYDRO TURBINE 

 
by 
 

Muhannad Al-Haddad 
 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Ryoichi Amano 

 

Cavitation is a phenomenon that occurs in various turbomachinery applications causing 

drawbacks on the. Some of these downsides are damaging the components of the system, 

generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative 

to address issue of cavitation to increase the life span of the equipment in addition to improve the 

system performance. This thesis introduces a method used to mitigate the cavitation phenomenon 

in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study 

is based on modeling the turbine using Computational Fluid Dynamics (CFD) software as well as 

carrying out experimental tests. The simulations were conducted at different air injection pressures 

over a spectrum of rotational speeds using Large Eddy Simulation (LES) for turbulence and 

volume of fluid for multiphase interactions: water, vapor water and air. The cavitation behavior 

was observed first without aeration, then followed by air injection simulations to investigate the 

effect of aeration. Each case was simulated for 12 cycles at rotational speeds of 1000, 2000, 3000, 

4000, and 5000 rpm. The Vapor Volume Fraction (VVF) and the output mechanical power were 

monitored throughout the simulations. The data acquired from the simulations were compared to 

the experimental results for verifications. It was observed that the cavitation was mitigated in both 

the computer simulations and the experiment testing reaching up to 49.7% as an average reduction, 

while the output power was reduced by 6.6%. 
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1. Introduction 

1.1 Hydropower 

The scarcity of fossil fuels and their environmental impact had led to increase the 

dependency on alternative energy resources worldwide. Renewable energies are among these 

alternative sources in which arising as possible substitutes to the conventional energy generation. 

However, renewable energies are considered expensive and have less efficiency compared to 

conventional resources. Thus, recent studies in the energy field are focused on enhancing the 

efficiency of harnessing renewable energy and improving the quality of the power generated to 

make them more feasible and to be considered the sole candidates for all future power plants.  

In 2016, renewable energies in their various forms accounted for 18.2% of the total energy 

consumption worldwide [1]. Hydropower had the highest share among the other renewable energy 

sources of the aforementioned percentage with 71% [2]. The leading countries in the hydropower 

generation are China, Canada, Brazil and U.S.A. as shown in Figure 1. In the United States, 

hydropower generated 7.5% of the total electricity in 2017 with an estimate of 300 billion kWh 

placing it as third energy source after fossil fuels (gas and coal) and nuclear preceding other 

renewable sources [3].  
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Hydropower is the energy generated via the forces in flowing water such as in rivers, 

streams and dams as well as tidal waves in oceans. It is considered one of the oldest sources of 

energy used to produce mechanical and electrical energy and was used to grind grains using paddle 

wheels. The amount of the available energy is dependent on the elevation difference in addition to 

the volume of water flowing. The energy is extracted using a turbine connected to an electrical 

generator that transform the rotational energy to electricity. As of today, the largest hydroelectric 

plant is the Three Gorges Dam in China with a generating capacity of 22.5 GW while the largest 

plant in the U.S. is the Grand Coulee Dam with 6.809 GW generating capacity [5, 6].  

Hydro turbines are classified into two main categories depending on the action of water on 

the blades: reaction and impulse. In the reaction turbines, such as Francis and Kaplan (propeller), 

a pressure casing encompasses the blades which are fully immersed in water and the blades are 

angled to lift forces through the pressure differences. The runner in the impulse turbines, such as 

Pelton, operates in air and the rotational movement is created by one or more jets of water 

impinging on the blades. Reaction turbines are most common in low to medium-head applications 

whereas impulse turbines are used in high-head applications. Figure 2 illustrates the head and flow 

rate ranges for the different types of turbines. 

China 28.4%

Brazil 9.7%

Canada 9.5%
U.S. 6.3%

Russia 4.0%

Rest of World
42.1%

Figure 1:  Percentage of annual hydropower production per country [4] 
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1.2 Cavitation Phenomenon Description 

Cavitation is a phenomenon of the liquid to vapor transformation due to a sudden drop in 

pressure at a constant temperature. It occurs when the pressure falls below the vapor pressure of 

the liquid causing the transformation to vapor and thus formation of bubbles. Although cavitation 

and boiling may seem similar since both represent a liquid to gas phase change, however, the 

approach and the conditions of the phase transformation is different. Heating is the driving force 

of the phase change in boiling phenomenon in which as the molecules are being superheated, they 

gain kinetic energy causing rupture of the liquid. Whereas, cavitation occurs due to a drop in the 

pressure at a roughly constant temperature breaking the tensile forces between the molecules and 

leading to liquid rupture. The difference between two processes can be inferred from Figure 3. 

Boiling is represented by the constant pressure horizontal line, while cavitation is represented by 

the constant temperature vertical line. 

Figure 2:  Head and flow ranges of hydro turbine types [7] 
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Figure 3:  Phase change on pressure-temperature diagram [8] 

To characterize if the flow has the potential to cavitate, a dimensionless number is defined. 

Cavitation number is used to express the possibility of the flow to cavitate at a certain condition. 

It relates the pressure of a flowing stream to the liquid vapor pressure at that certain condition. The 

cavitation number is extracted from the Bernoulli’s equation: 

With a negligible height difference, the correlation becomes: 

Where 𝜎𝜎  is the cavitation number. The lower the cavitation number the higher the 

possibility of cavitation to occur. 

𝑃𝑃1 +
1
2
𝜌𝜌𝑉𝑉12 + 𝑍𝑍1 = 𝑃𝑃2 +

1
2
𝜌𝜌𝑉𝑉22 + 𝑍𝑍2 

(1) 

𝜎𝜎 =
𝑃𝑃∞ − 𝑃𝑃𝑣𝑣
1
2𝜌𝜌𝐿𝐿𝑉𝑉∞

2
 

 

(2) 
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Cavitation has been associated with some adverse in turbomachinery applications 

including the most common problem: material damage. Due to the collapse of the bubbles nearby 

a solid surface, severe damage can occur to the runner, blades, impellers and parts within the 

system. The collapse of the cavitation bubbles is a fierce process that creates localized large-

amplitude shock waves and microjets in the fluid where the collapse occurs causing stresses on 

the adjacent solid surfaces [9]. Having the cavitation bubbles collapse repeated leads to fatigue 

failure, pitting and eventually pieces of materials detachment. Figure 4 and 5 represent examples 

of localized damage on a pump blade due to cavitation. 

 

Figure 4: Localized cavitation damage on a pump blade [9] 

 

Figure 5:  Severe cavitation erosion as witnessed on a Francis turbine [10] 
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Additionally, cavitation generates noise and vibrations which affects the stability and 

system performance. The high pressures that are caused momentary when the bubbles are 

compressed and collapsed result in noise and vibrations. Moreover, vibrations can initiate cracks 

especially in low-head turbines applications such as Kaplan turbines [9].  It occurs once the 

excitation frequency of the vortices coincides with one of the natural frequencies within the system 

leading to cracks in the turbomachinery components. 

Large-scale cavitation structures can be classified into three main types: vortex, sheet and 

cloud cavitation. Vortex cavitation can be recognized by the cavitation formed in the vortex core 

where the pressure is smaller significantly than the other regions in the flow domain. Vortices 

usually form in flows with a high Reynolds number such as pump impellers and swirling flow in 

the draft tube of a hydro turbine. Tip vortex cavitation is a form of cavitation that occurs when 

bubbles are trapped in the center of the vortex that formed on the tip of a hydrofoil which is the 

low-pressure region [11]. Further reduction of the cavitation number will induce filling the vortex 

core with vapor. An example of a tip vortex cavitation is shown in Figure 6.  

 

Figure 6:  Tip vortex cavitation as witnessed on a Kaplan runner [12] 
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Cloud cavitation is a periodic formation and collapse of multiple cavitation bubbles in the 

form of a cloud. It occurs due to the scattering of cavitating vortices and a result of a periodic 

disturbance imposed on the flow. The cloud cavitation can be observed in the interaction between 

the stator and rotor of pumps and hydro turbines as well as in ships propellers and the wake region. 

The collapse of the cloud cavitation is proved to cause more noise and a higher potential for 

damage than flows with no fluctuations [13, 14]. Figure 7 shows a cloud cavitation formation on 

the suction side of a hydrofoil. 

 

Figure 7:  Cavitation cloud as seen on the suction side of a hydrofoil [15] 

Sheet cavitation occurs when a region of separated flow is transformed into vapor and a 

“sheet” like zone is formed. It is observed as a vapor-filled separation zone or wake that is often 

called fully developed or attached cavity. On a hydrofoil or a propeller blade it is called sheet 

cavitation, whereas in pumps known as blade cavitation. An example of sheet cavitation is 

exhibited in Figure 8. 
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Figure 8:  Sheet cavitation observed on the suction side of a hydrofoil [16] 

1.3 Previous Studies 

Many studies, including experimental and theoretical, were conducted to model and 

analyze cavitation, investigate the effects of cavitation, and find solutions to reduce the impact of 

cavitation. Different opinions were introduced discussing the effects of cavitation and reasons 

behind the performance declination as well as ways to overcome these drawbacks. However, most 

studies inferred that cavitation has an adverse effect on the performance of the hydro turbine 

systems.  

Theoretical investigations showed that cavitation is one of the main causes of damage in 

Kaplan and Francis hydro turbines in addition to material defects and fatigue [17]. Through 

improving the design parameters and production of the turbines, the erosion induced by cavitation 

has been reduced. Another study concluded that cavitation causes pitting and identified typical 

locations of cavitation pitting as well as ways to repair the pitting [18].  
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Some experimental investigations were carried out to detect cavitation based on analyzing 

the vibration and acoustic diagnosis. Escalera et al. [19] evaluated the detection of cavitation 

through analyzing vibrations and acoustics. The study indicated that various cavitation patterns 

can be found at different parts of the hydro turbine. Bajic [20] utilized signal processing, noise 

analysis and data processing in the diagnosis and interpretation of cavitation in hydro turbine 

applications. The research led to modeling the cavitation intensity through extracting data from 

the experimental work that was carried out. 

Additionally, Grekula and Bark [21] studied the mechanism of the erosion caused by 

cavitation in a Kaplan turbine experimentally using high-speed filming. It was observed that a 

cavitating tip vortex is formed at the blade root and bending towards the blade forming a cloud. 

The cavitation cloud appeared in a periodic pattern in addition to erosion indication due to forming 

a fine-scale cloud near the blade surface. 

Cavitation in Kaplan turbines often occurs in two forms: tip clearance and tip vortex 

cavitation [22]. Tip clearance cavitation takes place due to a high leakage flow in clearance and 

depends on the differential pressure between the suction and pressure sides of the blade. Tip vortex 

cavitation initiates at the leading edge of the blade detaching the blade suction side. Both types are 

believed to have a little dependency on the cavitation number. 

Air introduction into a hydraulic system to mitigate the cavitation phenomenon is not a 

new technique. Although not commonly known, it is used to influence the cavitation behavior in 

an already cavitating flow by increasing the pressure in the system, thus reducing the potential of 

cavitation occurrence. Air injection can be introduced by the means of a compressed air where the 

cavitation in anticipated to take place; low static pressure regions e.g.: suction side of a hydrofoil 

or leading edge of a hydro turbine.  
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There are previous studies and research conducted to investigate the effect of air 

introduction. Ardent et. al. [23] investigated the use of air injection to alleviate the erosion caused 

by cavitation in a study to improve the hydropower generation in a utility provider. The 

experimental work was performed on a specially instrumented hydrofoil and a NACA 0015 cross 

section in a water tunnel and tested flows up to 20 m/s velocities. The vibration and cavitation 

noise were measured using an ASTM vibratory apparatus and hydrophone. Pitting rate was 

inferred through measuring the impulse pressure and air was injected at the leading edge of the 

hydrofoil. The air injection was found to be an effective technique in minimizing the cavitation 

erosion. 

Zhi-yong et. al. [24] investigated the control of cavitation by aeration experimentally and 

theoretically at flow velocities 20-50 m/s. The pressure waveforms were measured with and 

without aeration and the variation of the compression ratios at different air concentration was 

identified. The experimental results indicated that with aeration the pressure was increased 

significantly in the region where cavitation is anticipated. Additionally, the compression ratio 

increased with increasing the air concentration.  

Tomov et. al. [25] studied the effect of aeration on a transparent horizontal venture nozzle 

by injecting compressed air and capturing images using a high-speed camera. The study compared 

the experimental results of the aerated and non-aerated cavitation by image processing for three 

different regimes: sheet cavitation, cloud cavitation, and super-cavitation. The experimental study 

showed that the symmetrical cavitation structures were partially broken in the case of sheet 

cavitation and cloud cavitation, while were completely disappeared when the super-cavitation was 

achieved. 
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Rivetti et. al. [26] investigated the effect of air injection on the tip vortex cavitation in a 

Kaplan hydro turbine. The experiments were carried out using a 0.34m diameter turbine located 

vertically between an upper and lower tanks. Air was introduced through twenty 3-mm-diameter 

holes located on a horizontal plane above the runner centerline. The data gathered through 

accelerometers, hydrophone, and high-speed camera were analyzed. Although the turbine 

efficiency was slightly reduced, however, air injection helped in alleviating the erosion caused by 

the tip vortex cavitation and the reduced the vibration in the whole system.  

From all the above, it can be concluded that cavitation has a major impact on 

turbomachinery applications in which deteriorating the system performance and lifetime. Also, it 

limits the performance of hydro turbines due to the constraint of running at high rotational speeds. 

Thus, it is vital to address cavitation and introduce methods to alleviate the adverse caused by this 

phenomenon to improve the overall system performance and extend the lifespan of the 

turbomachinery components. 
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2. Methodology 

2.1 Research Outline 

The main objective of this research is to investigate the effect of air injection on the 

cavitation treatment and power generation in a Kaplan hydro turbine. Air is being introduced to 

the system through the turbine hub and is injected at the suction side of each blade. Numerical and 

experimental approaches were performed to identify the aeration effect as well as compare and 

validate the results. The numerical approach is performed first, using CFD, to optimize the design 

of the turbine and the air injection technique. Five simulations within each batch were completed 

to provide a range of different rotational speeds including 1000, 2000, 3000, 4000, and 5000 rpm. 

The experimental setup was built based on the CFD optimization and tested to validate the results. 

The flow diagram of the work conducted in this research is shown in Figure 9. First, an 

initial CFD simulations were executed having a constant inlet water pressure to determine the 

water inlet velocity of rotational speed case. The water inlet velocity obtained from the first batch 

is used as an initial condition in the second batch of simulations. Then, the five rotational speed 

cases were simulated without aeration to determine the vapor volume of fraction in the system and 

the generated power. After that, air was introduced in the simulations at different gauge pressures 

for each rotational speed case and the VVF as well as the power generated were monitored. The 

experimental work was proceeded afterwards, and the collected data were compared with the CFD 

simulations results. 
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In this study, CFD simulations were executed using STAR CCM+  [27], a commercial 

software developed by Siemens. Large Eddy Simulation (LES), Volume of Fluid (VOF), and Wall-

Adapting Local-Eddy Vis models were used to solve the unsteady multiphase turbulent flow.  

 

Figure 9:  Flow diagram of research work 

2.2 Computational Fluid Dynamics (CFD) 

2.2.1 General 

Computational Fluid Dynamics is a powerful numerical tool that is used to analyze fluid 

flow, heat transfer, and mass transfer systems. It is utilized for phase change, multi-phase, and 

chemical reactions cases to predict the pattern of flow, heat transfer, or mass transfer as well as 

solving complicated equations numerically. CFD can be employed to a wide range of applications 

such as turbomachinery, aircraft and vehicles aerodynamics, and metrology, as well as heating, 

ventilation and air-conditioning of buildings. 

Initial CFD: constant pressure inlet simluations

Constant velocity inlet CFD simulations 

Air injection CFD simulations

Experimental testing

Comparison and Validation
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CFD has multi advantages over other analytical techniques and experimental approaches. 

It can be an effective cost and time saving approach to conduct a new design, investigate some 

research work or even for validation purposes. It can study a system that is complicated to perform 

experimentally and provide different scenarios without building a test rig. There are different 

commercial software that are capable of executing CFD simulations for various applications. 

However, they undergo a similar approach of solving the governing equations and processing the 

results to a user-friendly interface. 

There are three different numerical solution methods: finite difference, finite element, and 

spectral methods [28]. These numerical solution methods are the basis of any CFD solver. The 

solvers perform: approximation of the unknown variables, discretization, and solution of algebraic 

equations. 

2.2.2 Large Eddy Simulation (LES) 

Turbulence flow is characterized by random eddy motion of different scales. Small-scale 

eddies require fine meshing to be resolved, however, fine meshing will increase the cost of 

numerical computation since it will require high processing computers and long time to accomplish. 

LES decomposes the turbulent flow into solvable Grid Scale (GS) eddies which are larger than the 

grid size, and modeled  Sub Grid Scale (SGS) eddies as indicated in Equation (3).  Therefore, LES 

can be utilized to overcome the problem of expensive computations. 

LES filters the fluid/flow properties (𝜙𝜙) scales by using a filtration function 𝐺𝐺(x − x�, t − t̂) 

allowing larger values than space and time cut-off limits (x�, t̂), and weighing the property via a 

length scale (∆) function. The operation and the filtering are shown in Eq. (4) and (5).  

𝜙𝜙 = 𝜙𝜙� + 𝜙𝜙′ (3) 
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𝜙𝜙(𝑥𝑥, 𝑡𝑡)��������� = �𝜙𝜙(𝑥𝑥�, �̂�𝑡) 𝐺𝐺(𝑥𝑥 − 𝑥𝑥�, 𝑡𝑡 − �̃�𝑡) 𝑑𝑑𝑥𝑥� 𝑑𝑑�̃�𝑡
∞

−∞

               (4) 
 

(𝑥𝑥) = � 
  

1
∆

            �|𝑥𝑥| <
2
∆�

  0            �|𝑥𝑥| <
2
∆�

 
                (5) 

  
The cavitation alters the nature of the VOF flow making the density a function of time and 

space. The LES solves the governing equations in the compressible state providing accurate 

treatment.  The Favre filtering [29] applies to the LES when adding the density as a variable, 

leading to Eq. (6). 

 
The resultant continuity and N-S equations for the filtered field scale by Favre Filtration 

are expressed in a tensor form in Eqs. (7) and (8). Residual (or sub-grid scale) turbulent stress 

tensor (𝜏𝜏𝑖𝑖𝑖𝑖) proposed by Leonard [30] related the complex filtered advection term (∂(𝜌𝜌� )
∂xj

) to the 

multiplication of the filtered velocities (𝜕𝜕𝜌𝜌
�𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

). 

𝜏𝜏𝑖𝑖𝑖𝑖 and σ�ij in the Eq. (8) are defined by Eqs. (9) and (10) respectively. 

where the molecular viscosity, μ(T�), is based on the Favre-filtered static temperature T� 

[31]. 

𝜙𝜙� =
𝜌𝜌𝜙𝜙����
�̅�𝜌

 (6) 

𝜕𝜕�̅�𝜌
𝜕𝜕𝑡𝑡

+
𝜕𝜕�̅�𝜌𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (7) 

𝜕𝜕�̅�𝜌𝑢𝑢�𝑖𝑖
𝜕𝜕𝑡𝑡

+
𝜕𝜕�̅�𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= −
𝜕𝜕�̅�𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜏𝜏𝑖𝑖𝑖𝑖+𝜎𝜎�𝑖𝑖𝑖𝑖) (8) 

 
(9) 

𝜎𝜎�𝑖𝑖𝑖𝑖 = 𝜇𝜇(𝑇𝑇�)�−
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

� (10) 
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By defining (𝜏𝜏𝑖𝑖𝑖𝑖) using Boussinesq’s hypothesis [32] of linking the turbulence stress to an 

artificial turbulent viscosity (μt) which needs an SGS model to identify. Equations (11) and (12) 

are outlining the formulation for 𝜏𝜏𝑖𝑖𝑖𝑖 (general and descriptive forms) based on the strain rate tensor 

of the fluid flow (Sij = 1
2

(∂ui
∂xj

+ ∂uj
∂xi

)) and SGS kinetic energy (KSGS) 

With WALE model, 𝜇𝜇𝑎𝑎 is defined in terms of the length scale which is usually set at the 

half of (∀𝑐𝑐)
1
3  near the wall, and the deformation parameter which is a non-linear function 

consisting of the gradients of the filtered velocities as the building unit [33], [34]. 

2.2.3 WALE Subgrid Scale Model 

The WALE (Wall-Adapting Local-Eddy Viscosity) Subgrid Scale is an eddy viscosity 

model in which the length scale is filtered width (𝛥𝛥) [35].  In WALE model, the SGS eddy viscosity 

ν𝑆𝑆𝑆𝑆𝑆𝑆 is defined by using the filter width (𝛥𝛥): 

, where the strain rate tensor 𝑆𝑆𝑖𝑖𝑖𝑖 , 𝑔𝑔𝑖𝑖𝑖𝑖  and the tensor 𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑  are respectively defined as 

following; 

  
(11) 

𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝜇𝜇𝑎𝑎𝑆𝑆𝑖𝑖𝑖𝑖 −
2
3

(𝜇𝜇𝑎𝑎𝛻𝛻 ∙ 𝑢𝑢�⃗ + 𝜌𝜌𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆)𝐼𝐼 (12) 
 

  𝜈𝜈𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐶𝐶𝑤𝑤𝛥𝛥2
�𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑�

3 2⁄

�𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑�
5 4⁄ + �𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖�

5 2⁄   (13) 

 𝑆𝑆𝑖𝑖𝑖𝑖 =
1
2
�
𝜕𝜕〈𝑢𝑢𝑖𝑖〉
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕〈𝑢𝑢𝑖𝑖〉
𝜕𝜕𝑥𝑥𝑖𝑖

�    (14) 

  𝑔𝑔𝑖𝑖𝑖𝑖 =  
𝜕𝜕〈𝑢𝑢𝑖𝑖〉
𝜕𝜕𝑥𝑥𝑖𝑖

   (15) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑 =
1
2
�𝑔𝑔𝑖𝑖𝑖𝑖2 + 𝑔𝑔𝑖𝑖𝑖𝑖2 � −

𝛿𝛿𝑖𝑖𝑖𝑖
3
𝑔𝑔𝑘𝑘𝑘𝑘2   , 𝑔𝑔𝑖𝑖𝑖𝑖2 = 𝑔𝑔𝑖𝑖𝑘𝑘 𝑔𝑔𝑘𝑘𝑖𝑖     (16) 
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2.2.4 Volume of Fluid (VOF) 

VOF was introduced briefly in 1976 by Noh and Woodward [36] followed by a full method 

description by Hirt and Nichols in 1981 [37]. In such approach, the coexisted (n) fluids are 

accounted as a global one phase of fluid and flow properties calculated as an averaged sum based 

on the presence percentage of each phase in the computation cell by volume ratio (∀𝑙𝑙
∀𝑐𝑐

). Accordingly, 

the (𝑙𝑙)th phase volume fraction (α𝑙𝑙), and any equivalent property (𝜙𝜙) are calculated every time 

step as in Eqs. (17) and (18) respectively.  

𝛼𝛼𝑙𝑙 =
∀𝑙𝑙
∀𝑐𝑐

 (17) 

𝜙𝜙 = �𝛼𝛼𝑙𝑙 𝜙𝜙𝑙𝑙

𝑛𝑛

𝑙𝑙=1

 (18) 

Since the system is always conserved, the volume fractions of the phases are also 

maintained in balance by solving the transport equation (also known as continuity) of each volume 

fraction as shown in Eq. (19). The equation considers the phase motion relative to the reference 

frame motion (u − urf), interface update, and phase addition/reduction due to source/sink (𝜑𝜑α𝑙𝑙) 

existence.   

𝜕𝜕
𝜕𝜕𝑡𝑡
�𝛼𝛼𝑙𝑙 𝑑𝑑∀

.

∀
+ �𝛼𝛼𝑙𝑙 (𝑢𝑢 − 𝑢𝑢𝑟𝑟𝑎𝑎) 𝑑𝑑𝑑𝑑

.

𝐴𝐴
= � (𝜑𝜑𝛼𝛼𝑙𝑙 −

𝛼𝛼𝑙𝑙
𝜌𝜌𝑙𝑙

 
𝐷𝐷𝜌𝜌𝑙𝑙
𝐷𝐷𝑡𝑡

) 𝑑𝑑∀
.

∀
 (19) 

In situations of rapid phase change, like in cavitation, the global density varies temporally 

and locally at a high rate, and the source/sink term dominates. Meanwhile, the unsteady term 

exhibits a similar behavior and becomes difficult to be solved by the segregated flow method. To 

bypass the computational challenge, Eq. (20) is a simplified but non-conservative equation is 

derived from Eq. (19).  
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�α𝑙𝑙 (u − urf) dA
.

A
= �� (𝜑𝜑α𝑙𝑙 −

α𝑙𝑙
ρ𝑙𝑙

 
Dρ𝑙𝑙
Dt

) d∀
.

∀

.

𝑙𝑙

 
(20) 

It’s worth mentioning that in the case of cavitation, the R.H.S of Eq. (19) represents the 

mass transfer rate of the vapor depending on the status of generation (Pv > Ps) or collapse (Pv <

Ps). The rate of vapor generation and collapse is expressed by Eqs. (21) and (22) respectively [38]. 

G =
ρvρL
ρ

α(1 − α)
3
R
�

2
3

(Pv − Ps)
ρL

 (21) 

C =
ρvρL
ρ

α(1 − α)
3
R
�

2
3

(Ps − Pv)
ρL

 (22) 

In a consecutive computational step, the motion of the global phase (i.e. mixture) is solved 

by the compressible-flow momentum differential equation with the consideration of the isothermal 

and Newtonian fluid conditions as expressed in Eq. (23). 

d(ρu�⃗ )
dt

+ ∇. (ρu�⃗  u�⃗ ) = ρg�⃗ − ∇P + ∇. [μ(∇u�⃗ + ∇u�⃗ 𝑇𝑇)] (23) 

Where g�⃗  is affecting in negative y-direction. 

2.3 Numerical Models 

2.3.1 Numerical Model Inputs and Geometry 

As mentioned in section 2.1, the CFD models conducted in this thesis research can be 

outlined as follows: 

1. Initial simulations with a constant inlet water pressure as a boundary condition 

2. Constant water inlet velocity simulations as a boundary condition without aeration 

3. Constant water inlet velocity simulations with air injection at different pressures 

4. Experimental setup – CFD validation simulations (Propeller case) 
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In all of the afore-mentioned simulations, Large Eddy Simulation turbulence model was 

utilized as well as WALE subgrid scale model. The simulations took into consideration the phase 

change of water into water vapor, and thus, Eulerian Multiphase and Cavitation models were 

enabled. VOF model is used to quantify the cavitation and compare the results of the Vapor 

Volume Fraction (VVF) among the different cases. VVF is one of the determining factors that are 

monitored throughout all the simulations and used to interpret and identify the effect of aeration 

on cavitation. 

The Kaplan turbine in which is under investigation, was designed and developed by the 

Hydro Turbine Lab at the University of Wisconsin-Milwaukee. The turbine has a stator of 9 blades 

and a rotor of five blades. Figure 10 exhibits a 3-dimensional geometry scene of the turbine. 

Whereas, a side view of the turbine is shown in Figure 11. 

 

Figure 10:  3-D geometry view of the turbine 



20 
 

 

Figure 11:  Side view of the turbine 

The geometry of the numerical model as well as the simulation domain is indicated in 

Figure 12. The 3-inch (0.076 m) Kaplan turbine was simulated in a 6-inch (0.152 m) pipe having 

an inlet 6-inch to 3-inch reducer at the left-hand side and converted back to 6-inch. The diffuser at 

the right-hand side of the turbine has a length of 1.5 times the turbine diameter, 4.5 inches (0.114 

m), and the length of the exit 6-inch pipe is 15 inches (0.381 m). The inlet boundary condition was 

set as a constant water pressure for the first batch of simulations and then changed to constant 

water velocity for the rest simulation cases. On the other side, the same outlet boundary condition 

was used in all simulation and set as an atmospheric pressure outlet, 101.3 kPa.  

 

Figure 12:  Geometry and domain of the numerical models 
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The turbine was set to rotate for twelve cycles per each simulation and the simulation 

stopping criteria was based on the maximum physical time for each rotational speed. The steady 

state condition was achieved after eight cycles. The results were based on a time averaged values 

for the last two cycles in each simulation. 

The continua used in the numerical models included three fluid components and two 

phases: water, water vapor, air. The water vapor pressure was set as 3.17 kPa at temperature of 

298 K. 

2.3.2 Time Step 

The time step is the incremental change in time for which the governing equations are being 

solved. It is advised to select small time-step size to capture all the flow fluctuations, however, the 

smaller the time step the longer the time is required to execute the simulation. Thus, it is imperative 

to optimize the time step without jeopardizing the accuracy of the results nor increasing the 

computation expenses. 

There are some common approaches to optimize the time step in the numerical simulations. 

One approach is taking a percentage of the time scale which is the result of the division of the 

numerical domain length over the fluid velocity. In the rotational domain case, the optimum time 

step should be equal or less than one-degree rotation. The latter was utilized in this research and 

the time step was calculated based on the rotational speed. The time step and total time of each 

rotational speed are indicated in Table 1.  
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Table 1: Time step and total time per each rotational speed 

Rotational Speed 
(rpm) 

Time for One 
Complete 

Revolution (s) 

Total Simulation 
Time for 12  
Cycles (s) 

Time 
Step (μs) 

1000 0.06 0.72 100 
2000 0.03 0.36 80 
3000 0.02 0.24 60 
4000 0.015 0.18 40 
5000 0.012 0.144 30 

 

Ten inner iterations were utilized for each time step in each simulation. Inner iterations are 

used to repeat the process of solving the governing equations numerically to achieve convergence. 

Therefore, the number of iterations can help to attain convergence, however, it the higher number 

of inner iterations the simulations will take longer time to be completed. Thus, optimization of the 

computational cost verses the accuracy of the solution must be considered. 

2.3.3 Mesh Independent Study 

Mesh size is also another significant factor that plays a role in achieving accuracy of the 

numerical solution. LES discretization error depends on the mesh size used in the simulation and 

affects the convergence of the solution. Fine meshing is also expensive computationally, but the 

solution validity should not be comprised. Thus, the grid size was studied prior to performing any 

simulations to ensure the optimization of meshing size throughout the mesh independent study. 

Mesh independent study involves analyzing the solution of the simulations based on 

changing the discretization criteria of the computational domain only. The size of the cell is 

changed, and the solution time as well as the accuracy are monitored. Another way to analyze the 

mesh sizing is the 𝑌𝑌+ and the CFL numbers. 
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𝑌𝑌+ is a dimensionless wall distance for a wall-bounded flow and known also as the Law of 

the Wall. It was introduced by Theodore von Karman in 1930 and is defined in Eq. (24).  It is a 

function of the shear velocity near the wall, the distance to the nearest wall, and the kinematic 

viscosity of the fluid. 𝑌𝑌+ is used in turbulence models to indicate the effect of the influence of the 

Reynolds stress tensor [39]. The wall function approach is used to apply boundary conditions to a 

distance away from the wall, so the turbulence model equations are not solved close to the wall 

[40]. In simulation without wall functions, the value of  𝑌𝑌+ is usually around 1, and in simulations 

where wall functions are enabled the value of 𝑌𝑌+ is higher than 1. The viscous sublayer, which is 

a region within the boundary layer, has a value of 𝑌𝑌+< 5.    

𝑌𝑌+ =
𝑢𝑢𝜏𝜏𝑦𝑦
𝜈𝜈

 (24) 

The Courant-Friedrichs-Lewy (CFL) is a conditional stability requirement that is 

dependent on the time step and the mesh spacing. It was introduced and discussed at length by 

Courant et al. in 1928 [41]. CFL condition states that the distance traveled by any information 

during the time step must be less than the distance between the mesh elements. The information is 

transferred from a cell and propagates to the immediate neighboring cells. The Courant number, 

or mean of Convective Courant number, is a dimensionless number that is a function of time step 

and the mesh size. It is defined in Eq. (25). 

𝐶𝐶 =
𝑢𝑢Δ𝑡𝑡
Δ𝐿𝐿

  (24) 

Four grid sizes were studied for the simulation domain. The number of cells were 2.5, 3.5, 

5.5 and 7.5 million cells. The meshing cell is unstructured polyhedral to capture the separation and 

wake regions in addition to other fluid interactions. Prism meshing was also utilized to capture the 

physics at the boundary layer with 8 layers at the stator and 12 layers at the rotor. The simulations 

were computed at 2000 rpm and without aeration and were conducted using 280 cores of a High-
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Performance Computer (HPC). Table 2 indicates the VVF of each of each mesh size that was 

computed for the mesh independent study. 

Table 2: Mesh independent test results 

Number of Cells 
(in millions) 2.5 3.5 5.5 7.5 

Mesh  Very 
coarse Coarse Fine Very Fine 

Blade Average 
VVF 0.0285 0.0273 0.0325 0.0321 

Overall Average 
VVF 0.0301 

 

The blades VVF values of the cases indicated in Table 2 were averaged, and the averaged 

value was used in the selection of the grid size. The overall average VVF was used as a basis to 

calculate the deviation of the different cell size cases. Additionally, the computational time 

consumed for each case is monitored to investigate the impact of increasing the number of cells. 

The comparison of the VVF for the four number of cells simulations versus the overall averaged 

value as well as the computational time are shown in Table 3. 

Table 3: Mesh independent test results 

Number of Cells  
(in millions) 2.5 3.5 5.5 7.5 

Percentage of VVF 
to overall Avg. 5.3% 9.3% 7.9% 6.7% 

Computational 
Time (days)  1 1.5 2 3 

 

Moreover, the wall 𝑌𝑌+ and the mean of Convective Courant numbers were monitored to 

choose the optimum cell size. The main criteria were based on having a wall 𝑌𝑌+ number close to 

1 and a Courant number less than 5. The latter conditions were achieved in the 5.5 million cells 

meshing as shown in Figures 13 and 14 which are screenshots extracted from STAR CCM+. As it 
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can be inferred from both figures, the wall 𝑌𝑌+ number is less than 2, whereas, the Courant number 

is less than 5 according to Figure 14. Thus, and based on the results attained in Tables 2 and 3, the 

5.5 million cells meshing was used since it provided an accuracy of results, stability, and within 

moderate computational time and cost. 

 

Figure 13: Wall 𝑌𝑌+ scene of the 5.5 million cells case 

 

Figure 14:  Mean of Convective Courant scene of the 5.5 million cells case 
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The mesh scene of the whole simulation domain is shown in Figure 15. As noticed from 

the figure, the cell size is not similar throughout the whole domain. The cells around the turbine 

are finer than the cells in the exit pipe. The reason behind this approach is to capture all the fluid 

interactions and the phase change of the water molecules at the rotational domain which is the 

region of interest of this research. Figure 16 exhibits a close scene of the grid cells around the 

turbine. The multiple lines that wrap the turbine’s stator and rotor are the Prism layers.

 

Figure 15:  Mesh scene of the whole simulation domain 
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Figure 16:  Mesh scene at the turbine region 

2.4 Simulations without Aeration 

2.4.1 Constant Pressure Inlet 

As mentioned before, constant water pressure was set as an inlet boundary condition in the 

first run of simulations. The water pressure was set as 184.0 kPa (12 psig) ahead of the turbine and 

the outlet boundary condition. The main purpose is to obtain the water inlet velocities at different 

rotational speeds. This approach was sought to induce and guarantee the presence of cavitation 

prior air injection.  It is useful when neither the mass flow rate nor the velocity of the fluid is 

known. Although using an inlet constant pressure as a boundary condition is not an erroneous 

method, however, velocity inlet is preferable for incompressible flows. Velocity inlet boundary 

condition results in a better convergence and hence enhanced stability. Table 4 represents the water 
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inlet velocities per each rotational speed after completing the water constant inlet pressure 

simulations. 

Table 4: Water inlet velocity per each rotational speed 

Rotational Speed (rpm) Water Inlet Velocity (m/s) 

1000 2.00 
2000 2.15 
3000 2.29 
4000 2.45 
5000 2.64 

 

2.4.2 Constant Water Inlet Velocity 

After obtaining the water velocities the inlet boundary conditions were changed, and 

velocity inlet were used instead of constant pressure inlet. The water velocities indicated in Table 

4 for each rotational speed scenario were utilized as an inlet boundary condition along with water 

VOF of 1 and water vapor VOF as zero. The outlet boundary conditions were maintained as 

atmospheric pressure and similar VOF conditions as in the inlet. The simulations were executed 

and the VVF along with the absolute pressure and power generated were monitored. 

It is also worth mentioning that the constant water inlet velocity boundary condition will 

ensure the study of aeration effect on the cavitation solely. The air injection will change the water 

velocity in constant inlet pressure case since the velocity is not set as a constant input in the 

simulations. Thus, the cavitation pattern will be affected due to the fluctuation in the water velocity. 

However, the water velocity will not be altered in the constant water inlet velocity case as the air 

is being introduced. Therefore, the cavitation pattern will only be affected by the air injection 

which is the aim of this research.  
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2.5 Air Injection Simulations  

The air injection simulations are similar to the constant water velocity ones with the 

addition of aeration. Air is being introduced at the suction side of each blade near the leading edge 

as shown in Figure 17 with the magenta color. Each air injection port has a diameter of 3mm and 

a total of five ports distributed throughout the rotor. Air was injected at three different gauge 

pressures: 101.3 kPa (0 psig), 122.0 kPa (3 psig) and 135.8 kPa (5 psig) for each rotational speed 

leading to a total of 15 simulations with aeration. The cavitation patterns as well as the VFF were 

monitored and compared with the no aeration simulations. Additionally, the power generated per 

each simulation were compared with the no aeration case to investigate the effect of aeration on 

the turbine performance.  

 

Figure 17: 3D geometry with air injection ports 
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3. Experimental Work 

3.1 Setup Configuration 

Experimentation helps in verifying the numerical computations and can be used as a tool 

to validate the results obtained from the CFD simulations. It demonstrates the accuracy of the CFD 

results and can be used to proceed with the simulations with confidence. Additionally, it 

determines the credibility of the programming and computational results as well as examines the 

models through comparison with the experimental results. 

The experimental setup was built in the Hydro Turbine lab at the University of Wisconsin-

Milwaukee hosting a relatively low-head Kaplan turbine. The system was designed to 

accommodate a horizonal turbine configuration with an elevated tank, a discharge reservoir, and a 

circulating pump, as shown in Figure 18. The setup is installed on a T-slot table that houses the 

lower tank providing supports to the hydro turbine system and adjustable configuration. The 

maximum head that can be achieved through this setup is 2.75m (9 ft). The upper tank has a 

capacity of 0.60 m³, Figure 19 (a), and the lower reservoir has a capacity of 0.45 m³. The 10 HP 

pump circulates the water between the two tanks and is equipped with a Variable Speed Drive 

(VSD) to control the pump flow rate during testing. The water flowing into the turbine is also 

controlled through a ball valve installed vertically on the 0.15 m (6 inches) down pipe as shown in 

Figure 19 (b). 
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Figure 18: Experimental setup 

 

 

                                               (a) 

                                                                                                                          (b) 

Figure 19: (a) Upper tank (b) Ball valve installed on the down pipe 
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The turbine housing is made of clear Acrylic, shown in Figure 20, that was casted on the 

university campus and consists of three sections: 

1- Intake nozzle to convert the pipe diameter from 0.15 m (6”) to 0.076 m (3”) 

2- Straight 0.076 m (3”) section hosting the turbine rotor 

3- Outlet diffuser changing the diameter back to 0.15 m (6”) 

 

Figure 20: Turbine clear housing 

The turbine is attached to a stainless-steel shaft of 0.016m (5/8”) diameter that is connected 

a Magtrol torque-meter using non-slip coupling. The other side of the torque-meter is attached to 

a 2.25 HP DC permeant magnet motor that can be used as a generator through rewiring. The 

assembly of the shaft, torque-meter, and the motor is indicated in Figure 21. The electric power is 

dissipated through a resistive load-bank. 
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Figure 21: Shaft, torque-meter, and motor assembly 

The hydro turbine parts including the stator, rotor, and runner were designed and optimized 

through previous research conducted at the Hydro Turbine lab. These parts along the exit elbow, 

air injection chamber and supports were 3-D printed using Eastman Amphora 3-D Polymer 

AM3300 commercialized by ColorFabb as nGen [42]. Figure 22 exhibits the 3-D printed 3-inch 

turbine rotor. The parts were designed and optimized using a Computer Aided Design (CAD) 

modeling software to match with the system configuration and requirements. Ultimaker 2+ [43] 

was utilized to 3-D printer the turbine parts and supports used in the experimental setup.  
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Figure 22: 3-D printed 3-inch turbine rotor 

3.2 Air Injection Design 

The system was designed to introduce air at the suction side of the rotor blades. However, 

the way the setup was configured provided flexibility to test different turbine designs as well as 

various air injection techniques. To enable this feature while having rotating parts, the shaft was 

utilized as a media to transport the air to the turbine rotor. A hollow shaft was selected to have a 

channel for aeration purposes in addition to measuring the power generated through the turbine. 

Air is injected into an air-tight chamber attached to the exit elbow as shown in CAD drawing in 

Figure 23.  

Air tightness and sealing the chamber was achieved using two ceramic ball bearings 

attached to the shaft at both ends of the air injection chamber. Two holes were drilled in the shaft 

at the air injection chamber providing entry points for the air to the passage intended for the air to 

be delivered to the rotor. Both ends of the shaft air passage were terminated and blocked 

permanently preventing the air to escape and forcing it to travel to the turbine rotor. 
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Figure 23: Air injection technique CAD drawing – section view  

Additionally, the shaft was machined at the other end to be interlocked with the turbine 

rotor as well as drilling two holes permitting the air to be injected at the leading edge of the rotor. 

The design of the rotor incorporated channels to provide a passage for the air to be injected at the 

suction side of the blades. The channels were designed to distribute the air to the five 3mm-

diameter air injection ports as indicated in Figure 24.  

 

Figure 24: Air injection at turbine rotor CAD drawing – section view  
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Compressed air was utilized in the air injection process. The lab is served with 551.6 kPa 

(80 psi) compressed air network that is distributed throughout the whole facility. Hoses were used 

to transport the compressed air from the air nozzle taps to the air injection chamber as shown in 

Figure 25. Air pressure was measured using a pressure gauge connected to the air distribution 

manifold. 

 

Figure 25: Air injection chamber and compressed air tap  

3.3 Instrumentation 

3.3.1 Ultimaker 2+  

Ultimaker 2+ is a 3-D printer with a printing platform of 223 x 223 x 205 mm that has the 

capability to print complex 3-D parts at various layer resolutions. The printer has a high flexibility 

and provides a wide range of filament materials in addition to printing nozzle sizes. The printing 

layer resolution can be as fine as 0.6mm and the maximum printing speed can reach up to 24 mm3/s 

[43]. Figure 26 shows the 3-D printer that were utilized to print the parts used in building the 

experimental setup. 
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Figure 26: Ultimaker 2+ 3-D printer  

3.3.2 FASTCAM Mini UX50  

Flow and cavitation can be captured using a high-speed camera that is capable of taking 

thousands of images in one second. The high-speed camera is considered a powerful tool, through 

image processing, in analyzing the different pattern of cavitation and physics, that can be seen in 

a slow-motion frame.  The high-speed camera that was utilized in the experimentation, ISO 10,000 

monochrome FASTCAM Mini UX50, is capable of capturing images up to 102,400 fps. The 

highest image resolution is 1280 x 1024 pixels which can be achieved with a 2000 fps [44].  The 

camera can be connected to a computer to process and enhance the images captured through a 

special software developed for the camera. The high-speed camera is shown in Figure 27. 
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Figure 27: High-speed camera  

3.3.3 Flow Meters 

Flow rates in the experimental setup were monitored via two electromagnetic flow meters. 

A 3-inch (0.076m) flow meter were installed on the pump discharge pipe that fills the upper tank 

and a 2-inch (0.051m) were installed on the overflow line of the upper tank. The difference 

between the two flow rates gives the flow rate going through the turbine while maintaining a 

constant head.  The M-2000 M-series Mag Meter manufactured by Badger Meter were used in the 

experimentation. The meter has two DC-powered electromagnetic coils and set of electrodes that 

create a magnetic field and senses when a conductive fluid like water passes through the meter. 

The voltage difference between the electrodes is directly proportional to the average velocity of 

the fluid and then converted to a flow rate. The meter has an accuracy of ±0.25% [45]. Figure 28 

exhibits the installed flow meters on the system. 
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Figure 28: Flow meters installed on the filling and overflow lines 

3.3.4 Torque Meter and Torque Display 

Torque is measured through an inline torque transducer that is connected to the shaft using 

a non-slip coupling. The Magtrol TM300 series was utilized to obtain the torque and rotational 

speed measurements. The non-contact differential transformer has an integrated conditioning 

electronic module providing a 0 to ±10 VDC torque output as well as a speed output with an 

accuracy less than 0.1% [46]. The torque meter was connected to a torque display device that 

provided the torque, power, and rotational speed measurements. The Magtrol 3411 Torque Display 

was employed and connected to the torque meter to gather the pertinent data. The device uses a 

high-speed processer to display the measurements as well as powering the transducer with an 

accuracy of 0.01% for speed and 0.02% for torque readings [47]. The torque transducer and display 

are shown in Figure 29. 
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Figure 29: Toque transducer and display device 

3.3.5 DC Motor and Motor Controller 

The other side of the torque transducer, as shown in Figure 29, was connected to a 2.25 HP 

(1678 W) DC motor that can be re-wired to be used as a generator. The permanent magnet with 

brushes motor can reach up to 5135 rpm at 130 VDC at no load [48]. The motor can be equipped 

with a Variable Speed Drive (VSD) to control the motor speed. The NEMA 4X/IP65 PENTA-

DRIVE controller utilized in the setup has the capability to control the speed of DC motors from 

sub-fractional up to 5 HP [49]. Figure 30 shows the motor and the VSD that were used in the lab. 

 

Figure 30: DC motor and VSD 
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3.3.6 Variable Speed Driven Pump 

The water was lifted from the lower (sink) tank to the upper tank via a 10 HP (7460 W) 

close-coupled centrifugal pump. The 4250 ATM pump can provide flow rate up to 7.93 m³/s (500 

GPM) and a maximum head of 30 m (98.4 ft) [50]. The pump is equipped with a VSD to provide 

a closed control flow rate during the experimental testing. The ABB ACS310-03U-34A1-2 VSD 

is capable of controlling motors ranging 7.5 – 10 HP with a digital output accuracy of 0.2%  [51]. 

It also has the capability to change the speed manually as well as programmable control to provide 

an energy-efficient operation. The pump and the VSD installed in experimental setup are indicated 

in Figure 31.  

 

Figure 31: Pump-motor set and VSD  

3.4 Numerical – Experimental Validation 

3.4.1 Approach 

The results obtained through the CFD simulations were compared with the measurements 

and data captured during the experimental tests. The verification of the CFD results is necessary 

to ensure the accuracy and credibility of the simulations conducted prior to the experimentations. 
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However, the experimental setup had some limitations in terms of the flow rates and head, thus 

cavitation could not be obtained via running the rotor as a turbine case. Therefore, the DC motor 

was used to induce the cavitation through operating the setup as a propeller to spin the rotor; power 

consumption mode. The propeller was allowed to rotate in the same direction as a turbine would, 

however, with the aid of the motor. The speed of the motor was controlled by the VSD achieving 

2000 and 3000 rpm rotational speed.  

Therefore, new CFD models were executed to simulate the propeller case as conducted in 

the experimental runs. The results from the CFD simulations were used in the comparison and 

validation of the air injection treatment method. The approach of the comparison and validation is 

illustrated in Figure 32. 

 

Figure 32: Results comparison and validation approach 

3.4.2 Visual Validation 

The first step in the comparison of the CFD and experimental results were done through 

analyzing the flow and cavitation patterns. The VVF scenes that were obtained through the 

propeller case CFD simulations were used to find the similarities with the images of the 

experimental testing obtained via the high-speed camera. The visual resemblance provided a 

primitive validation of the CFD results. 
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3.4.3 CFD Simulation Results 

The results obtained through the new set of CFD models that were conducted to simulate 

the propeller case were used as a second step in the comparison and validation. The power 

consumption was monitored and observed throughout the CFD simulations to be compared with 

the values obtained experimentally. The simulations incorporated the same conditions that were 

attained during the experimental run and simulated the same parameters to ensure the accuracy 

and reliability of comparison and validation process. Additionally, the VVF scenes obtained were 

used in the validation process as explained in the following section 3.4.4 Image Processing. 

3.4.4 Image Processing 

The images obtained from the high-speed camera were processed to quantify the 

percentage of the cavitation that occurred during the experimental testing. The grayscale images 

were converted to binary images making it more visible for estimating the cavitation around the 

turbine blades. This process was done using a computer code that enhances the images and quantify 

the different color percentages via signal processing. 

Image processing started with breaking the image into small sections and improve their 

contrast. Then, the color intensity was mapped by setting an upper- and lower-pixel values of the 

grayscale images making the dark spots looks darker and the light spots lighter to enhance the 

contrast. After that, the images were converted from grayscale to binary images using (1) as logical 

true and (0) as logical false for each pixel, where (1) represents cavitation. The threshold value 

between the two values was obtained through iteration and after comparing the cavitation cloud 

size of different threshold values. 
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The area was then determined by the size of the image in pixels. The cavitation area was 

estimated by summing all the true logic (1) values in the image. Then the percentage of the 

cavitation area was obtained by dividing the cavitation area by the total area in pixels. This process 

was repeated for 10 images as to visualize the cavitation propagation at different sections of the 

turbine. Each 10 consecutive images represented one full rotation of the turbine. Finally, a color 

range was applied to represent the grayscale values in 256 colored images for improved 

visualization and providing another enhanced validation technique. 
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4. Results and Discussion 

4.1 CFD Results: Constant Water Inlet Velocity 

4.1.1 General 

The initial CFD simulations, constant water pressure inlet, were not used in the results 

analysis. As mentioned in Chapter 2, they were used to obtain the water inlet velocities per each 

rotational speed. The velocities, indicated in Table 4, were utilized in the second CFD simulations 

as a boundary condition. The result of the cases discussed hereafter are all related to the constant 

water inlet velocity boundary condition simulations. VVF values were used to investigate the 

cavitation and were categorized based on the area: blades and hub. Blades VVF corresponds to the 

vapor volume fraction that formed on the rotor blades, while the hub VVF corresponds to the vapor 

volume fraction that formed on the rotor hub. Also, the CFD scenes and results resemble the 

averaged values of the last two cycles in each simulation. 

4.1.2 Case 1: No Aeration 

The first run of the CFD simulations were conducted without aeration to obtain the data 

pertaining the cavitation and power generation. This case is considered as the “baseline” in which 

the data gathered were compared to the values generated by air injection models. Figure 33 

represents a single-blade VVF scenes for all rotational speeds (1000 to 5000 rpm). The VVF is 

represented on a scale of 0 – 1, where 1 indicates 100% water vapor area and denoted in red color 

as can be seen in Figure 33 (f). The area representing the blades VVF increases with increasing 

the rotational speed as it can be inferred from the VVF scenes. As the rotational speed increases, 
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the pressure drops below the vapor pressure leading to more cavitation. Moreover, the cavitation 

cloud is being “pushed away” towards the upper edge of the blade as the rotational speed increases. 

This phenomenon occurred due to the increase in the centrifugal forces that led to pushing out the 

cavitation cloud as well as having higher velocity at the blade tip.  

 

Figure 33: Blades VVF CFD scenes – no aeration case: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 

rpm, (d) 4000 rpm, (e) 5000 rpm, (f) Mean of volume fraction of water vapor scale  

 

However, the hub VVF showed a different trend. The hub VVF decreased with increasing 

the rotational speed as a result of the centrifugal forces. Additionally, the reduction in the hub VVF 

can be explained by the pressure scenes in Figure 34. The absolute pressure around the hub tends 

to increase as the rotational speed increases. The dark blue areas represent the areas where the 

absolute pressure is equal or less than the water vapor pressure (3170 Pa) as shown in Figure 34(f).  
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Figure 34: Absolute pressure CFD scenes – no aeration case: (a) 1000 rpm, (b) 2000 rpm, (c) 

3000 rpm, (d) 4000 rpm, (e) 5000 rpm, (f) Mean of absolute pressure (Pa) scale  

 

The results of the no aeration case are summarized in Table 5. As indicated previously, the 

blades VVF increased with the increasing the rpm while the hub VVF decreased. The power 

generated through the turbine increased as the rotational speed increased reaching the climax at 

4000 rpm with a value of 1844.4 W then declined to 1728. W at 5000 rpm. 
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Table 5: No aeration case summary of CFD results 

RPM Water Inlet 
Velocity (m/s) 

 Blades 
VVF Hub VVF Power (W) 

1000 2.00 0.0878 0.0851 611.2 
2000 2.15 0.1039 0.0049 1128.7 
3000 2.29 0.1171 5.018E-06 1607.6 
4000 2.45 0.1245 2.746E-09 1844.4 
5000 2.64 0.1460 8.743E-10 1728.3 

 

4.1.3 Case 2: 0 PSI Air Injection 

The first aeration case was conducted with air injection at 0 psig (101.3 kPa) as to 

investigate the effect of adding a minimal amount of air. Same cavitation behavior was observed 

as in the no aeration case. However, it can be inferred from Figure 35 that the areas representing 

the cavitation were reduced in each rotational speed when compared with the no aeration case. The 

reduction in the blades VVF was more noticeable at higher rotational speeds (4000 and 5000 rpm). 

It can be justified by the fact that the blades VVF at the 4000 and 5000 rpm have higher values 

than the remaining rotational speeds. Yet, the blades VVF in the 1000, 2000 and 3000 rpms were 

also reduced. 
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Figure 35: Blades VVF CFD scenes – 0 PSI A.I. case: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, 

(d) 4000 rpm, (e) 5000 rpm, (f) Mean of volume fraction of water vapor scale  

 

As for the hub VVF, higher reduction percentage was observed than in the blades VVF. 

The absolute pressure scenes in Figure 36 indicated that the areas in which the absolute pressure 

is less or equal to the vapor pressure were reduced when compared to the no aeration case. 

Moreover, the reduction of the hub VVF while increasing the rotational speed was also noticeable 

and in concurrence to the no aeration case. Thus, it can be deduced that even a minimal air injection 

can lead to a quantifiable reduction in the cavitation.  
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Figure 36: Absolute pressure CFD scenes – 0 PSI A.I. case: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 

rpm, (d) 4000 rpm, (e) 5000 rpm, (f) Mean of absolute pressure (Pa) scale  

 

Table 6 lists the results of the blades VVF, hub VVF, and the power generation of the 0 

psig air injection case. The blades VVF showed an average reduction of 25.3% when compared to 

the no aeration case, whereas, the hub VVF showed a reduction of 65.1%.  The power was also 

reduced when compared to the no aeration case with an average reduction of 11.4%. The reduction 

in the power is due to introducing another substance, i.e. air, that caused reaction forces opposing 
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the rotation of the turbine. Thus, to maintain the same rotational speed, the power generated was 

reduced. 

Table 6: 0 PSI A.I. case summary of CFD results 

RPM Water Inlet 
Velocity (m/s) 

 Blades 
VVF Hub VVF Power (W) 

1000 2.00 0.0767 0.0646 580.8 
2000 2.15 0.0796 2.17E-05 1045.1 
3000 2.29 0.0857 6.431E-09 1470.1 
4000 2.45 0.0949 7.323E-10 1589.5 
5000 2.64 0.0960 6.251E-10 1446.1 

 

4.1.4 Case 3: 3 PSI Air Injection 

Air pressure was increased in the second case of aeration to 122.0 kPa (3 psig). The 

cavitation pattern did not change from the two previously discussed cases and showed even better 

results. The cavitation cloud is being pushed even farther towards the blades tip with increasing 

the rotational speed. Additionally, the cavitation was increased while the rotational speed goes up. 

Figure 37 indicates a reduction of the blades VVF when compared to the no aeration case. It can 

be observed that the blades VVF is less than the no aeration which is also in agreement with the 0 

psig air injection case.  
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Figure 37: Blades VVF CFD scenes – 3 PSI A.I. case: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, 

(d) 4000 rpm, (e) 5000 rpm, (f) Mean of volume fraction of water vapor scale 

 

The pressure scenes in Figure 38 shows a reduction in the hub VVF with increasing the 

rotational speed. The blue color that refers to the areas in which the absolute pressure is equal or 

less than the water vapor pressure (3170 Pa) was reduced by the air injection. This is confirmed 

when looking at the no aeration case and is more obvious when comparing the pressure at the 1000, 

2000, and 3000 rpm scenes. 
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Figure 38: Absolute pressure CFD scenes – 3 PSI A.I. case: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 

rpm, (d) 4000 rpm, (e) 5000 rpm, (f) Mean of absolute pressure (Pa) scale  

 

The average reduction in the blades VVF is 33.6% with comparison to the no aeration case, 

while the hub VVF was reduced by 73.1%.  The power was also reduced when compared to the 

no aeration case with an average reduction of 8.9%. Although the blades and the hub VVFs, 

resembling the cavitation, were decreased leading to an improved case, however, the power was 

also reduced. The highest power generated while injecting the air at 3 psig 1605.4 W at 4000 rpm 
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was reduced compared to the no aeration case with 1844.4 W. The average reduction in the power 

compared to the no aeration case is 9.5%. The results of the blades VVF, hub VVF, and the power 

generation of the 3 psig air injection case are summarized in Table 7. 

Table 7: 3 PSI A.I. case summary of CFD results 

RPM Water Inlet 
Velocity (m/s) 

 Blades 
VVF Hub VVF Power (W) 

1000 2.00 0.0727 0.0492 591.2 
2000 2.15 0.0749 3.51E-06 1051.7 
3000 2.29 0.0757 2.092E-09 1473.5 
4000 2.45 0.0780 6.150E-10 1605.4 
5000 2.64 0.0835 4.749E-10 1540.0 

 

4.1.5 Case 4: 5 PSI Air Injection 

The last CFD simulations case that was conducted investigated air injection at 135.8 kPa 

(5 psig). The blades VVF scenes of the five rotational speeds for the 5 pisg air injection case are 

shown in Figure 39. As observed, the blades VVF scenes followed the same pattern of the  0 psig 

and 3 psig air injection cases. The cavitating area is being pushed farther reaching to the blades tip 

as the rotational speed increases. Also, the area representing 100% water vapor - red colored areas, 

was decreased in regard to the no aeration case. The cavitation reduction is noticeable at every 

rotational speed and increasing the air pressure is causing the cavitation to diminish by increasing 

the pressure at the suction side of the rotor blades.   
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Figure 39: Blades VVF CFD scenes – 5 PSI A.I. case: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, 

(d) 4000 rpm, (e) 5000 rpm, (f) Mean of volume fraction of water vapor scale 

 

The hub VVF behavior was not deviated from the previously discussed cases. The pattern 

can be explained using the pressure scenes at each rotational speed as indicated in Figure 40. At 

lower speed, 1000 and 2000 rpms, the hub is surrounded by a blue colored area which refers to 

areas where the absolute pressure is around the water vapor pressure. As the speed increases, the 

blue colored area around the hub disappears and just observed around the tip of the rotor blades 

which is in concurrence with the blades VVF scenes shown in Figure 39. Furthermore, the pressure 

in the 5 psig air injection case is higher than the no aeration case at every rotational speed. The 

increase in the pressure led to reducing the hub VVF and thus less cavitation occurred.  
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Figure 40: Absolute pressure CFD scenes – 5 PSI A.I. case: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 

rpm, (d) 4000 rpm, (e) 5000 rpm, (f) Mean of absolute pressure (Pa) scale  

The CFD simulation results of the 5 psig air injection are outlined in Table 8. Compared to 

the no aeration case, the 5 psig air injection case achieved an average blade VVF reduction of 

49.7%, whereas the hub VVF was reduced by 90.6%. For instance, the no aeration blades VVF at 

5000 rpm was 0.1460, while the 5 psi air injection blades VVF was 0.0686 at 5000 rpm. The 

maximum power generated was 1681.6 W at 4000 rpm, whereas 1844.4 W for the no aeration case. 

The 5 psig air injection case led to an average power generated  of 6.6% from the no aeration.   
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Table 8: 5 PSI A.I. case summary of CFD results 

RPM Water Inlet 
Velocity (m/s) 

 Blades 
VVF Hub VVF Power (W) 

1000 2.00 0.0465 0.0282 601.9 
2000 2.15 0.0475 4.420E-08 1066.0 
3000 2.29 0.0633 9.588E-10 1504.1 
4000 2.45 0.0654 9.694E-11 1681.6 
5000 2.64 0.0686 8.939E-11 1610.1 

4.1.6 Results Comparison 

To have a better understanding of the correlation between the cavitation and injecting air 

at different pressures, the blades VVF scenes at the same rotational speed were examined more 

thoroughly. Figures (41 – 45) show the blades VVF scenes of the four cases at 1000, 2000, 3000, 

4000, and 5000 rpm respectively. The Figures indicate that as the rotational speed increased the 

area which has high VVF values expanded leading to more cavitation. Furthermore, the centrifugal 

forces, that are induced by the rotating motion of the turbine, caused the cavitation to occur at the 

tip of the blades, in other words; shifting of the cavitation. This is more distinguished when looking 

at the 4000 and 5000 rpm scenes.   

Moreover, it can be inferred from each Figure that the area of high VVF values were 

reduced while increasing the air injection pressure. The highest reduction achieved is noticeable 

at each rotational speed of the 5 psig A.I. case. Thus, it can be concluded that increasing the air 

injection pressure leads to more treatment of cavitation and improved performance of the turbine 

on the long run. However, it should be noted that air was introduced by the means of compressed 

air system which is a major energy consumer. Hence, it will be an expensive approach to treat the 

cavitation in hydro turbines. Also, increasing the air pressure might lead to air entrainment which 

also impact the component of the hydro turbine system. Therefore, it is worth to investigate the 

impact and the feasibility of increasing the air injection pressure. 
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Figure 41: Blades VVF CFD scenes at 1000 rpm: (a) no aeration, (b) 0 psig A.I., (c) 3 psig A.I., 

(d) 5 psig A.I., (e) Mean of volume fraction of water vapor scale 

 

Figure 42: Blades VVF CFD scenes at 2000 rpm: (a) no aeration, (b) 0 psig A.I., (c) 3 psig A.I., 

(d) 5 psig A.I., (e) Mean of volume fraction of water vapor scale 
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Figure 43: Blades VVF CFD scenes at 3000 rpm: (a) no aeration, (b) 0 psig A.I., (c) 3 psig A.I., 

(d) 5 psig A.I., (e) Mean of volume fraction of water vapor scale 

 

Figure 44: Blades VVF CFD scenes at 4000 rpm: (a) no aeration, (b) 0 psig A.I., (c) 3 psig A.I., 

(d) 5 psig A.I., (e) Mean of volume fraction of water vapor scale 
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Figure 45: Blades VVF CFD scenes at 5000 rpm: (a) no aeration, (b) 0 psig A.I., (c) 3 psig A.I., 

(d) 5 psig A.I., (e) Mean of volume fraction of water vapor scale 

The air injection effect is even more obvious when looking at the Blades VVF against the 

rotational speed presented in Figure 46. The blue line representing the no aeration case, which is 

the baseline case, had the highest blades VVF reaching up to 0.1460 at 5000 rpm. As air is being 

introduced starting from 0 psig up to 5 psig, it can be shown clearly how the air is effectively 

treating the cavitation phenomenon while increasing the air pressure in the system. Even with the 

smallest amount of air being injected at the leading edge, as in the 0 psig A.I. case, can help in 

reducing the cavitation with a considerable amount reaching up to 34.2% at 5000 rpm. The 

behavior of the cavitation treatment in the 0 psig and 3 psig cases at the 1000 and 2000 rpm is 

almost similar  whereas in the 5 psig case the reduction was larger, as shown in the graph. This is 

due to the remarkable increase of the absolute pressure in the system at the 5 psig case as seen in 

the pressure scenes, leading to a better treatment of cavitation. As the rotational speed increased, 

the difference between the three A.I. cases became less than the first two rotational speeds since 
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the cavitation increases at higher speeds. The reduction of the blades VVF at the 5000 rpm was 

42.8% in the 3 psig case while maximizing at 53.0% in the 5 psig case.  

 

Figure 46: Blades VVF versus rotational speed graph 

The VVF comparison was more focused on the blades side than on the hub since the 

cavitation behavior tends to decrease drastically on the hub while increasing the rotational speed. 

The increase in the centrifugal forces as the rotational speed increased led to increase the pressure 

around the hub and thus reducing the cavitation. It was observed in all cases with and without 

aeration, as indicated in Table 9, that the hub VVF decreased considerably with increasing the 

rotational speed. For instance, the hub VVF at 1000 rpm was 0.0851 whereas 8.743×10-8 at 5000 

rpm in the no aeration case which is almost 99.99999% reduction. Even with this huge reduction, 

air injection successfully reduced the hub cavitation when considering each rotational speed by 

itself. For example, at 5000 rpm the hub VVF was reduced by 28.5%, 45.7%, and 89.8% in the 0 

psig, 3 psig, and 5 psig A.I. cases respectively. 
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Table 9: Blades and hub VVF per each rotational speed 

RPM 
VVF Blades 
(VVF Hub) 

No Air 0 PSI 3 PSI 5 PSI 

1000 0.0878 
(0.0851) 

0.0767 
(0.0646)  

0.0727 
(0.0492)  

0.0465 
(0.0282) 

2000 0.1039 
(0.0049) 

0.0796 
(2.173E-05)  

0.0749 
(3.507E-06)  

0.0475 
(4.420E-08) 

3000 0.1171 
(5.018E-06) 

0.0857 
(6.431E-09)  

0.0757 
(2.092E-09)  

0.0633 
(9.588E-10) 

4000 0.1245 
(2.746E-09) 

0.0949 
(7.323E-10)  

0.0780 
(6.150E-10)  

0.0654 
(9.694E-11)  

5000 0.1460 
(8.743E-10) 

0.0960 
(6.251E-10)  

0.0835 
(4.749E-10)  

0.0686 
(8.939E-11)  

 

On the other side, the power generation was affected adversely with the air injection. The 

power was reduced due to introducing air which replaced the water flowing at 2.00 – 2.6 m/s that 

is responsible to rotate the turbine. Additionally, air injection induced more reaction forces on the 

turbine which reduced the output power as to maintain the same rotational speed that was set during 

the simulations. This impact was noticed to be highest at 0 psig A.I. case than the rest of the A.I. 

cases as indicated in Table 10. The effect of the cavitation treatment influenced the power output 

since cavitation reduces the power generation, thus, the 0 psig A.I. case showed the least power 

generation among the A.I. cases. As the air pressure increases, reducing the cavitation, more power 

is being generated from the turbine while maintaining the no aeration case with the highest power 

generation,  as inferred from Figure 47. Also, with increasing the air pressure the turbine retained 

part of the power, that was lost via air injection, since the pressurized air increased the absolute 

pressure in the system as observed from the pressure scenes. 
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Table 10: Generated power per each rotational speed 

RPM 
Generated Mechanical Power (W) 

No Air 0 PSI 3 PSI 5 PSI 
1000 611.2 580.8 591.2 601.9 
2000 1128.7 1045.1 1051.7 1066.0 
3000 1607.6 1470.1 1473.5 1504.1 
4000 1844.4 1589.5 1605.4 1681.6 
5000 1728.3 1446.1 1540.0 1610.1 

 

 

Figure 47: Mechanical power versus rotational speed graph 
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4.2 Experimental Results 

4.2.1 General 

As discussed in Chapter 3,  due to the experimental setup limitation in inducing cavitation 

the turbine was forced to rotate in the same direction using a motor thus acting as a propeller. The 

propeller was forced to rotate at 2000 and 3000 rpm with and without aeration. The air, introduced 

by a compressed air  system that served the lab, was injected at pressures of 0, 3, 5, and 12 psig to 

investigate the air injection effect. The water flow rate and head were maintained per each 

rotational speed case as to eliminate any interaction effect that might impact the cavitation behavior. 

The propeller was speed were controlled using the motor controller and the system was 

allowed to stabilize before collecting the data. Once the head was steady and the readings of the 

different meters were not fluctuating the readings were recorded. The no aeration case data were 

collected first, and then similar procedures were adopted for the air injection cases. The air 

injection was monitored through a pressure gauge installed on the compressed air manifold that 

was also used for air injection. The data collected are water flow rate, head, power, air pressure, 

and the rotational speed. Additionally, the cavitation pattern was observed through video recording 

the propeller in the clear housing using the high-speed camera. 

4.2.2 Propeller Case – 2000 rpm 

The first case of the experimental results is exhibited in Table 11. The power is shown in 

negative value since it represents the power that was consumed to rotate the propeller. In this case, 

the power consumed was increased as the pressure of the air injection was increased. The no 

aeration case had the lowest power consumption and with the addition of the air into the system, 

the power consumption increased to maintain spinning the propeller at the same rotational speed. 
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Table 11: Propeller 2000 rpm case summary of experimental results 

Air pressure 
(psig) 

Water Flow Rate 
(m³/s) 

Head  
(m) 

Power 
(W) 

No air 0.010 2.00 -55.0 
0 0.0099 2.00 -56.5 
3 0.010 2.00 -57.0 
5 0.010 2.00 -58.0 
12 0.010 2.00 -59.5 

 

The cavitation behavior at the runner was also monitored through capturing images and 

video recording using the high-speed camera for comparison purposes. The air injection could be 

distinguished by observing the air bubbles at blades side. Figure 48 exhibits a captured image via 

the high-speed camera of the propeller spinning at 2000 rpm and without aeration. The cavitation 

bubbles can be observed detaching the tip of the blades and forming a cone-like shape “cavitation 

cloud” downstream of the runner as indicated in Figure 48. The air injection cases are shown in 

Figures 49, 50, 51, and 52 representing the 0 psig, 3 psig, 5 psig, and 12 psig A.I. cases respectively. 

When comparing these figures, it can be noticed that with increasing the air injection pressure 

more bubbles were observed at the blades side of the runner, in other words; where the air injection 

ports exist. The cavitation bubbles and the injected air could not be differentiated from looking at 

these figures only. However, it can be inferred that there is a difference between the no aeration 

and air injection cases in terms of the quantity of these bubbles as well as the cone-like cavitation 

cloud mixed with air at the that the downstream of the runner. The size of this cloud is getting 

bigger as the air pressure was increased in addition to covering most of the runner as seen from 

the figures. The cavitation behavior and pattern were studied through the image processing and 

discussed more in the experimental – CFD validation section.   
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Figure 48: Experimental testing image – No air 2000 rpm 

 

Figure 49: Experimental testing image – 0 psig A.I. 2000 rpm 
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Figure 50: Experimental testing image – 3 psig A.I. 2000 rpm 

 

Figure 51: Experimental testing image – 5 psig A.I. 2000 rpm 
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Figure 52: Experimental testing image – 12 psig A.I. 2000 rpm 

4.2.3 Propeller Case – 3000 rpm 

After testing the propeller at 2000 rpm, the rotational speed was increased to 3000 rpm 

using the DC motor controller as to investigate the effect of air injection on the power and 

cavitation behavior at different speeds. The results of the 3000 rpm experimental testing are shown 

in Table 12. Similar to the first experimental case, the power in the propeller scenario is indicated 

in negative since it reflects the power consumption. In this case, more power was consumed than 

in the 2000 rpm case since the rotational speed was increased. The power consumption in the 3000 

rpm varied from 197.0 W to 201.0 W whereas 55.0 W to 59.5 W in the 2000 rpm case. The water 

flow rate and head were increased in the 3000 rpm case to allow for the increase the rotational 

speed. Moreover, the trend between the two cases was analogous showing an increase in the power 

consumption as the air injection pressure increased. This leads to a conclusion that the air injection 
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will affect the power output of the turbine adversely since propellers and turbines have similar 

characteristics and exhibit same performance trend. 

Table 12: Propeller 3000 rpm case summary of experimental results 

Air pressure 
(psig) 

Water Flow Rate 
(m³/s) 

Head  
(m) 

Power 
(W) 

No air 0.0108 2.10 -197.0 
0 0.0108 2.10 -198.0 
3 0.0108 2.10 -198.5 
5 0.0108 2.10 -199.0 
12 0.0108 2.10 -201.0 

 

Similar cavitation behavior as the 2000 rpm case was observed in the 3000 rpm rotational 

speed case. The cavitation cloud mixed with the air injected downstream of the runner followed 

the same pattern in the 2000 rpm rotational speed case. Figures 53 -57 demonstrate the change of 

the cavitation pattern, as well as the stream of the air bubbles that observed in the A.I., between 

the no aeration, 0 psig, 3 psig, 5 psig, and 12 psig A.I. cases. It was observed that the cavitation 

cloud downstream the runner is bigger than in the 2000 rpm cases. 
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Figure 53: Experimental testing image – No air 3000 rpm 

 

Figure 54: Experimental testing image – 0 psig A.I. 3000 rpm 
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Figure 55: Experimental testing image – 3 psig A.I. 3000 rpm 

 

Figure 56: Experimental testing image – 5 psig A.I. 3000 rpm 
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Figure 57: Experimental testing image – 12 psig A.I. 3000 rpm 

4.3 CFD – Experimental Validation Results 

The results comparison and validation between the CFD and experimental work that was 

adhered comprised of three parameters: visual validation, CFD simulation results, and image 

processing. The first case that was investigated is the 2000 rpm no aeration having a water flow 

rate of  0.010 m³/s in the 0.15 m pipe ahead of the propeller. The images of the experimental testing 

captured via the high-speed camera were set along the time averaged VVF scenes to compare the 

cavitation behavior. Figure 58 illustrates an image of the experimental test and a CFD VVF scene 

of the 2000 rpm case. The cavitation formation in the experimental testing, as shown in Figure 58 

(a), started at the blade leading edge and extended towards the succeeding rotor blade before going 

downstream and merging with the cavitation cloud that formed in similar approach. The CFD VVF 
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scene, Figure 58 (b), indicated analogous trend of the cavitation formation at the blades and 

merging with the cavitation cloud downstream as represented in the white colored formation.   

 
(a) 

 
(b) 

Figure 58: Visual comparison no aeration 2000 rpm : (a) experimental (b) CFD VVF scene 

The power consumed to spin the propeller in the experimental case was 55 W whereas 

reaching up to 67 W in the CFD simulation. As inferred, the power consumption has similar order 

of magnitude and showed a deviation of 17.9%. 
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The last step that was used in the validation of this case is the image processing to estimate 

the percentage of the cavitation. This process incorporated cropping the CFD and experimental 

images to include the area between two blades, contrast enhancement, and converting into binary 

images (0 = black and 1 =white) as well as RGB (red, green, and blue) colors to differentiate the 

pixels. This process is illustrated in Figure 59 and 60 for the experimental part and CFD VVF 

scene, respectively. 

 
                                         (a)           (b) 

 
                                (c)               (d) 

Figure 59: Experimental image processing: (a) original image, (b) enhanced contrast, (c) RGB 

converted image, (d) binary converted image 
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                                         (a)           (b) 

 
                                (c)               (d) 

Figure 60: CFD image processing: (a) original image, (b) cropped rotor image, (c) grayscale 

converted image, (d) binary converted image 

The bright colored areas, shown in Figure 59 (c), indicated the cavitation areas whereas the 

dark blue color is the no cavitation zone. The visual indication of this phenomenon led to the 

validation that cavitation started at the leading edge of the blade, extended, and then detached from 

the blade. The same cavitation behavior was observed in the CFD as shown in grayscale image, 

Figure 60 (c). In the CFD case, the cavitation was also generated at the blade leading edge and 

detached later as it extended downstream of the runner. The white pixels in the binary image were 

added, and then divided on the total number of pixels including the white and black. The ratio 

obtained indicated the cavitation area percentage and this procedure was followed in both CFD 

and experimental images. The results showed very close cavitation area percentage between the 

experimental image, 44%, versus 47% for the CFD scene as shown in Figure 61 
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                                (a)               (b) 

Figure 61: 2000 rpm case image processing – binary images: (a) experimental (b) CFD 

The approach detailed previously, was adopted to the 3000 rpm case as well. The water 

flow rate modeled in the CFD was 0.0108 m³/s in the 0.15 m inlet pipe to simulate the same flow 

parameters that were achieved in the experimental testing. The power consumed in the 

experimental part was 197.0 W while the CFD simulation had a power consumption of 220.0 W. 

As for the cavitation area percentage, the image processing of the CFD scene exhibited 59% 

whereas the experimental part indicated 56% cavitation area. The image processing of the 

experimental part and CFD scene for the 3000 rpm case are illustrated in Figure 62. 

 
                                (a)               (b) 

Figure 62: 3000 rpm case image processing – binary images: (a) experimental, (b) CFD 
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5. Conclusions  

In this study, a method to treat the cavitation phenomenon in a hydro turbine was 

introduced. The performance of the turbine and cavitation treatment via air injection were 

investigated numerically and experimentally. The study was conducted on a micro Kaplan hydro 

turbine of 0.076 m (3-inch) diameter with a low-head application, not exceeding 2.50 m (8 ft).  The 

turbine geometrical parameters were designed in house having 9 stator blades and 5 rotor blades. 

The numerical investigations were carried out using CFD modeling software. The experimental 

setup was built up in the Hydro Turbine Lab at the University of Wisconsin-Milwaukee.  

The CFD simulations monitored the power generated through the turbine as well as the 

VVF scenes to study the cavitation behavior. With five rotational speeds per each case, four cases 

were simulated including no aeration and  three air injection cases at different pressures. The first 

case was simulated without air injection as to provide a baseline data for the comparison process. 

Then, air was introduced at 101.3 kPa (0 pisg), 122.0 kPa (3 psig), and 135.8 kPa (5 psig) to 

examine the effect of injecting air at different pressures. The air was injected via one port at the 

suction side of each rotor blade close to the leading edge through a port of 3mm diameter and 

concluding to five ports in total. 

The designed turbine was 3-D printed along with other parts, such as the air injection 

chamber, and were used in building the experimental setup for testing. The experimental setup had 

two reservoirs; elevated tank up-stream of the turbine and down-stream sink with a circulating 

pump in between. The turbine was installed in a clear housing to capture the cavitation by a high-

speed camera. Air was injected using a compressed air system and introduced to the setup via a 

specially designed air-tight chamber attached to the exit elbow of the setup. The air was transferred 
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to the leading edge of the rotor blades through a hollowed stainless-steel shaft and internal channels. 

The setup was tested as a propeller by using a motor to spin the turbine since cavitation was not 

induced naturally due to some setup limitations. The power consumption and the images captured 

by the high-speed camera were used in the validation and comparison process. 

The validation and comparison were accomplished through three steps: visual validation, 

CFD simulation results, and image processing. Another CFD models were conducted to simulate 

the experimental propeller case. The VVF scenes and high-speed camera images were compared 

and validated, visually, the cavitation behavior and pattern. The power consumption measured 

during the experimental runs were matching in terms of order of magnitude to the values obtained 

numerically, however showed acceptable deviations. The image processing confirmed the 

percentages of the cavitation area, numerically and experimentally, with almost matching values. 

As a result, the following can be concluded for the turbine case: 

1- The air injection showed an increase in the absolute pressure in the system offsetting some 

zones pressure above the water vapor pressure. 

2- Air injection at 0 psig showed an average blades VVF reduction of 25.3%, hub VVF reduced 

by 65.1%, and the power generated decreased by 11.4% when compared to no aeration case. 

3- Air injection at 3 psig showed an average blades VVF reduction of 33.6%, hub VVF reduced 

by 73.1%, and the power generated decreased by 9.5% when compared to no aeration case. 

4- Air injection at 5 psig showed an average blades VVF reduction of 49.7%, hub VVF reduced 

by 90.6%, and the power generated decreased by 6.6% when compared to no aeration case. 

5- The cavitation was further reduced while increasing the air injection pressure. 

6- The cavitation reduction was substantial and reached to 50% in some cases. 

7- The turbine power generation was adversely affected by the air injection. 
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8- The 0 psig air injection case had the highest power reduction. 

9- The reduction in the power generated were mitigated as the air injection pressure increased. 

10- The air injection exhibited an effective method in the mitigation and treatment of the cavitation 

phenomenon. 
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Future Work Recommendations 

The work that was completed during this study is promising and can lead to a breakthrough 

in the cavitation treatment technologies, extending the lifespan of the hydro turbines, and 

enhancing their performance over time. Additionally, due to the complexity of the fluid dynamics 

in such systems that involve phase changing and multiple fluids in a rotational domain few studies 

related to air injection treatment had been completed in the past. Thus, more research can be 

conducted to prove the outcomes of this study and lead to a better understanding of the air injection 

effect on the cavitation phenomenon in hydro turbines. Therefore, the following can be 

investigated in the future on the same setup to expand on this study: 

1. Examine the effect of changing the air injection ports size and location. 

2. Introduce the air through the blade walls by increasing the walls thickness and 

incorporate channels in the blades. 

3. Expand the experimental setup by extending the head and increasing the tanks volume 

to enable running it as a turbine case. 
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