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ABSTRACT 

RESPONSE TRANSMISSIBILITY FOR LOAD IDENTIFICATION 

IMPROVED BY OPTIMAL SENSOR LOCATIONS 

 

by 

Hana’a M. Alqam 

The University of Wisconsin - Milwaukee, 2019 

Under the Supervision of Professor Anoop K. Dhingra 

 

A knowledge of loads acting on a structure is important for analysis and design. 

There are many applications in which it is difficult to measure directly the dynamic loads 

acting on a component. In such situations, it may be possible to estimate the imposed 

loads through a measurement of the system output response. Load identification through 

output response measurement is an inverse problem that is not only ill-conditioned, but 

in general leads to multiple solutions. Therefore, additional information, such as number 

and locations of the imposed loads must be provided ahead of time in order to allow for 

a unique solution. This dissertation focuses on cases where such information is not 

readily accessible and presents a method for identification of loads applied to a structure 

using the concept of response transmissibility. The solution approach is divided into two 

phases that involve finding the number and location of forces first followed by a 

reconstruction of the load vector. To achieve the first phase, a complete description of the 

structure in terms of degrees of freedom needs to be specified and a numerical model, 

usually a finite element model is built. In order to determine the number of forces and their 

locations, the proposed algorithm combines the dynamic responses measured 
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experimentally along with the transmissibility matrices obtained from the numerical model. 

Once the number of loads and their locations are known, a regeneration of the load vector 

is achieved during the second phase by combining the measured dynamic responses 

with the transmissibility matrix from the numerical model. 

In this dissertation, identification of loads through measurement of structural 

response at a finite number of optimally selected locations is also investigated. Optimum 

sensor locations are identified using the D-optimal design algorithm. Two different types 

of measurements are considered, acceleration measurements using accelerometers and 

the strain measurements using strain gages.  

 A series of simulated results on multi-degree of freedom (MDOF) discrete and 

continuous systems are presented to illustrate the load identification technique based on 

response transmissibility. One of the factors that affects the accuracy of load 

reconstruction is the number of vibration modes included in the analysis, which can be a 

large number. Improvements using model order reduction, not only help reconstruct the 

input forces accurately, but it also reduces the computational burden significantly. 

The developed algorithms are implemented using the finite element tool ANSYS 

in conjunction with MATLAB software. Numerical sensitivity analysis is also implemented 

to examine the effect of presence of uncertainties (noise) in experimental data. The 

results obtained confirm that the techniques presented are robust even in the presence 

of simulated noise; it is seen that the applied loads are recovered accurately. 
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Chapter 1 - Introduction 

1.1 Load Identification Problem 

The process of determining applied loading (locations and magnitudes) from 

response measurements is not a new concept. However, while indirect measurement of 

loads has a lot of potential, but it also has lot of problems. It is, in fact, the basis for every 

type of load transducer ever devised, such as those used for measurement of cutting 

forces on a machine tool, reaction forces in engine mounts, and supporting forces on 

bearings. So, for a reliable and cost effective design and analysis of structures or 

engineering equipment, it is desirable to know at the design stage the locations and 

magnitudes of the external loads transmitted to the structure. These loads may be static 

or time varying dynamic loads. The stresses induced in the structure are a function of the 

applied loads. Knowledge of the loads early in the design process is vital for design 

optimization and effective analysis that ensures the structural integrity of the product. 

Accurate prediction of the loads leads to greater confidence in numerical simulation such 

as finite element analysis which, in turn, significantly reduces the reliance on expensive 

and time consuming experimental testing. 

 

1.2 Restrictions of Load Transducers  

There are some situations where the direct measurement of loads using load 

transducers is difficult or even impossible. For example, it is not feasible to place load 

cells for certain types of loads imposed on the structure such as aerodynamic loads, 
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seismic loads, etc. or when the loads which are not in direct contact with the structure. 

Furthermore, the inaccessibility of load transferring locations may restrict the user from 

introducing a load transducer which makes the direct method difficult to use. Under these 

circumstances, indirect identification of input loads from dynamic responses of the 

structure offers a valuable alternative as such response can generally be easily acquired. 

 

1.3 Indirect Load Identification 

The basic idea of the indirect load identification problem is to determine the system 

input via the knowledge of system output. The system input can be various forms of loads 

with time or frequency variant characteristics while several types of sensors can be used 

to detect the system response as shown in Fig.1.1. When the structure is subject to an 

unknown load, a knowledge of the mathematical model to represent the structure and the 

measured response due to the unknown load is essential so as to develop the load 

prediction model for determining the load contents. In general, the load contents can be 

the magnitude, direction and location of imposed loads. The external loads can be divided 

into three groups. One is the spatial-variant type such as point loads and distributed loads. 

Another load type is the time-variant form such as impact, harmonic, periodic and random 

loads. The time history or the frequency spectra of the load may be of interest. The third 

load type is the spatial- and time-variant form such as moving loads. 

The mathematical model of the structure is required in order to predict the load 

contents. The modelling process can be treated in different points of views. First, in terms 

of the representation of system response, the time- or the frequency-domain model can 

be adopted. For time-domain approach, the convolution integral equation that correlates 
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the input load and output response can generally be formulated. While Green’s function 

is mainly used for the propagation wave response, impulse-response function (IRF) can 

be of interest for structural vibration. For frequency-domain approach, frequency-

response function (FRF) can be obtained. In some circumstances, the modal approach, 

i.e. where the system response is expressed in terms of modal parameters, can also be 

developed to determine the system response. Second, solution methods for the system 

equations of motion can be done using finite element method, state-space equation 

approach or dynamic programming, convolution and deconvolution methods and modal 

analysis. A measurement of the system response due to the load excitation is also needed 

for force prediction models. Various kinds of sensors have been used, such as strain 

gages, accelerometers, slope sensors, laser vibrometer and piezoelectric sensors. 

Normally, the adoption of different types of sensors and mathematical models as well as 

the solution techniques will result in different approaches for load-prediction. 

It is important to mention at this point that the type of loads to be identified (static 

or time varying dynamic) plays a major role on the procedures adopted to get good load 

estimates. Basically, for given input time varying loads, structure response can be easily 

obtained by using principles of elasticity and equations from dynamics. This is known as 

the “forward problem.” In theory, the other way should then be possible to determine the 

input forces from a measurement of structure response. This is known as the “inverse 

problem.”  Unfortunately, solving the inverse problem in most cases encounters 

numerous difficulties and tends to be highly ill-conditioned, i.e., even very small variations 

(noise) in the response measurement can cause large errors in the force estimation.  
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When it comes to solving the forward problem, the excitation forces are 

concentrated at a few locations on the structure and therefore, information about the 

forces is well known all over the structure. On the other hand, in the inverse problem, 

although a non-zero response is present over most of the structure, they can only be 

measured at a finite number of selected locations, with the response at the rest of the 

locations left untapped. Therefore, the forward problem can be solved directly for the 

response, while the inverse problem poses significant challenges to solve for the input 

forces. Since a combination of different loads at different locations can result in the same 

level of response, the solution to the inverse problem, still, may not be unique.  

Various research works in this area have been developed and proposed to counter 

the challenges posed by the inverse problem which will be discussed in Chapter 2. The 

present work is another attempt to develop techniques to identify the number, locations 

and the magnitudes of the input loads applied to a structure from its measured response, 

i.e., to solve the inverse problem. In this dissertation, the terms loads and forces are used 

interchangeably. Similarly, estimation, identification and recovery mean the same in the 

context of this document.   
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1.4 Organization of the Dissertation  

Chapter 1 explains the significance of this dissertation and presents a brief 

introduction of the load identification problem along with the challenges involved to 

address it.  

Chapter 2 presents a literature review that gives detailed summary of the available 

work done by other researchers on the recovery of the number of loads, their locations 

and their magnitudes in frequency, modal and time domains, and discusses the strength 

and the drawbacks for each technique. All algorithms have advantages and 

disadvantages of their own and the need for a new algorithm for load identification is 

clearly explained under this chapter. 

 Chapter 3 presents an optimization approach that can predict simultaneously the 

amplitude and location of a harmonic force acting on a component. Different cases have 

been presented along with a discussion to address the limitations of this approach. 

In Chapter 4, the transmissibility concepts for multi-degrees of freedom systems 

and its application in the estimation of the applied loads are explained. Furthermore, to 

help improve the load identification using the motion transmissibility concept, a novel 

approach is presented which utilizes the D-optimal design algorithm in conjunction with 

finite element method to determine the optimum sensor locations.  

 Chapter 5 develops another technique based on transmissibility concept for 

identifying dynamic load components exciting a structure from measured response. This 

technique uses strain measurements at a finite number of optimally placed strain gages 

on the structure.  
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In Chapter 6, three techniques based on frequency response and optimum 

locations of sensors have been presented and compared numerically for load 

identification problem. Different cases have been implemented to study the effect of 

sensor type along with the number of modes retained in the accuracy of load estimation. 

Chapter 7 presents a comprehensive technique for load identification based on 

transmissibility concept that utilizes the D-optimal algorithm to determine optimum sensor 

locations, and the technique of model order reduction to keep the computational cost low 

without compromising on the accuracy. This is especially useful when finite element 

modeling is used to study dynamics of continuous system.  

Finally, Chapter 8 presents some concluding remarks on this research. In addition, 

potential areas of future research on this topic are also identified.  
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Figure 1.1 Basic Ideas of Force-Prediction Problem 
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Chapter 2 – Literature Review 

Because the estimation of the excitation loads is an important issue in the dynamic 

analysis of structures, several methods have been developed that can estimate the forces 

acting on the structure from its measured response without the use of intermediate load 

cells. There are several aspects of input force estimation from measured responses (e.g., 

acceleration, displacement, or strain) that have been explored to arrive at an efficient and 

accurate load estimation technique. In general, the force contents can be the magnitude, 

direction and location of the imposed load. The external forces can be categorized into 

three forms. One is the spatial-variant type such as point forces or distributed forces. 

Another is the time-variant type such as impact, harmonic, periodic and random forces. 

The time history or the frequency spectra of the force may be of interest. The other is the 

spatial- and time-variant type such as moving forces. Therefore, many approaches have 

been proposed in the literature dealing with the force identification problems for different 

kinds of forces but there is no general model suitable for all kinds of problems 

encountered in practice. A brief overview of many of the load estimation techniques is 

presented in this chapter. 

 

2.1 Load Magnitude Identification Literature  

In the literature, most of the inverse problems for force identification assume that 

the load locations are known ahead of time. This information is needed to determine a 

unique solution in an otherwise general case, and the problem type is usually referred to 

as indirect force measurement. 
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Hillary and Ewins (1984) used accelerometers and strain gages to measure the 

frequency response function (FRF) and estimated two simultaneous sinusoidal input 

forces on a uniform cantilever beam as test piece by employing the least-squares 

technique. They found that the strain related model gave more accurate results than the 

acceleration related model because the strain responses are more influenced by the 

higher modes at low frequencies; therefore, they capture the effect of higher modes better 

than the acceleration responses. 

The process of indirect load identification in the frequency domain, using the FRF, 

yields a linear relationship between the measured response and the excitation load. 

However, the FRF matrix is nearly singular and ill-conditioned. Starkey and Merrill (1989) 

investigated the reasons for errors encountered in predicting the forces using the inverse 

method. They concluded that inverse method suffers from ill-conditioning because the 

(FRF) matrix is frequently near singular with the worst condition number near the natural 

frequencies of the system. The FRF matrix tends to be dominated by rank-one component 

corresponding to the dominant mode near resonance. 

Lee and Park (1995) present an error analysis that shows that frequencies close 

to a resonance or an antiresonance frequency are prone to result in an inaccurate  

determination of force magnitude. In the former case the stability problem is caused by 

inaccuracies in the frequency response function (FRF) matrix, while at antiresonance 

problems arise from rank deficiency of the FRF submatrix. Numerical results that conform 

to this error analysis may be found in Okubo et al. (1985). 

Carne et al. (1992) proposed a technique referred to as the Sum of Weighted 

Acceleration Technique (SWAT) that estimates the input forces by summing the weight  



 
 

10 

 

scaled measured accelerations. The weighting factors can be determined either from 

inverting the modal matrix or from the free-decay response of the structure. They 

successfully applied this technique to estimate the impact force applied by the nose of a 

weapon mockup to the weapon body. This technique suffers with a drawback that only 

sum of the input forces can be determined without any estimation of the applied individual 

loads. 

Bateman et al. (1992) and Carne et al. (1992) determined the forces on an 

unsupported structure subjected to an impact, from calculated eigen modes and 

measured accelerations. In this case the load location is either known or without interest, 

and the evaluated magnitudes are those of the load resultants. 

Karlsson (1996) assumed the force spatial distribution available a priori and 

predicted the complex amplitudes of harmonic forces. Ma and Lin (1997) applied the 

Kalman filter with a recursive estimator to determine the harmonic forces of an equipment 

isolator. 

 

2.2 Load Magnitude and Location Identification Literature 

The knowledge of locations of loads under investigation is not always available in 

several examples which leads many researchers to work on simultaneous determination 

of load magnitudes and load location prediction.   

D'Cruz et al. (1992) studied a rectangular viscoelastic plate with a single transverse 

harmonic point load and showed that it is sufficient to measure the transverse 

displacement at three discrete points to determine the magnitude, phase, and location of 
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the force. It is of some interest to note that in an earlier paper D'Cruz et al. (1991) 

concluded that with an elastic plate, it takes at least four displacement readings to 

calculate the force location and magnitude. 

 Choi and Chang (1996) determined the location and magnitude of an impact load 

on a beam in a nested loop algorithm. In the outer loop, the load location is estimated by 

minimizing a nonlinear function with a quasi-Newton method, while the load magnitude is 

calculated in the inner loop. 

Shih et al. (1989) and Zhang et al. (1990) use the "Best Approximation Subspace" 

technique, described by Zhang et al. (1988) to locate a given number of incoherent forces. 

It is noted that this approach presumes that the number of sources is known and that 

there is a candidate set of points for their locations. 

Moller (1999) tentatively gave the spatial shape and position of the harmonic point 

load and applied Betti reciprocal theorem with a reference load case to calculate the 

magnitude and match the load location. 

Wang (2002) developed an optimization approach for both time- and frequency 

domain to predict the unknown force amplitude and location simultaneously for an 

arbitrary structure subject to impact and harmonic forces. 

 

2.3 Transmissibility in Load Identification Literature 

Prior to 1998, the concept of transmissibility was largely limited to single degree of 

freedom (SDOF) systems and generally denotes the relationship between the input and 

the output displacements. Since 1998, the concept of transmissibility has been extended 
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to multi degree of freedom (MDOF) systems by several researchers such as Riberio et 

al. (2000), and Liu and Ewins (1998). Varoto and McConnell (1998) discussed motion 

transmissibility concepts in the context of industrial applications and developed a matrix 

to characterize transmissibility of MDOF systems. In a multi degree of freedom system, 

there are many input and output responses. Therefore, the transmissibility matrix is not 

unique for MDOF systems. This means that for MDOF systems, the number of 

generalized forces and their locations must be equal. Such a generalization can be and 

has been not only developed in terms of a relation between two sets of harmonic 

responses for a given loading, but also between applied harmonic forces and 

corresponding reactions. Extensions to comply with random motions and random forces 

have also been achieved. From the establishment of the various formulations, it was 

possible to deduce and understand several important properties, which allow for diverse 

applications that have been envisaged, such as evaluation of unmeasured frequency 

response functions (FRFs), estimation of reaction forces and detection of damage in 

structure.  

An application where the transmissibility seems of great interest is when in field 

service one cannot measure the response at some coordinates of the structure. If the 

transmissibility could be evaluated in the laboratory or theoretically (numerically) 

beforehand, then by measuring some responses in service one would be able to estimate 

the responses at inaccessible coordinates. 

Several studies done by Maia and his collaborators (1999-2014) have focused on 

an estimation of location, number, and magnitude of loads imposed on multi -degree of 

freedom systems using the concept of transmissibility. The reconstruction of loads is done 



 
 

13 

 

in two successive phases. In the first phase, the location and number of applied loads are 

estimated by using a transmissibility model. In the second phase, the load vector is 

reconstructed by multiplying the inverse of the structural FRF matrix with the system’s 

measured response. This approach uses system response, such as accelerations, to 

predict the load magnitudes and locations. While this technique provides promising 

results, the question of sensor placement was not addressed and was left as user’s 

choice. 

 

2.4 Optimum Location of Sensors 

Practically, there are many locations on a structure where the accelerometers or 

strain gages can be mounted for measurement of the system response. Due to financial 

constraints and/or restrictions on potential sensor locations, the number and the locations 

of sensors are limited. In previous as well as recent works that use the concept of 

transmissibility for load prediction, the number of sensors used was addressed, but little 

attention was paid to their locations. The placements of sensors were left to the 

engineering experience or judgement of the user. According to Masroor and Zachary 

(1991), the accuracy of load estimation is strongly influenced by location of sensors. They 

showed that a random placement of sensors increases problem ill-conditioning whereas 

a proper selection of sensor locations decreases problem ill-conditioning and improves 

the accuracy of load estimation.  

Recently, Gupta and Dhingra (2013) used the D-optimal algorithm to identify 

accelerometer locations to estimate magnitudes of dynamic loads. Based on the D-
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optimal criteria developed by Mitchell (1974), Galil (1980) and Johnson et al. (1983). D-

optimal (Determinant-optimal) methods utilize sequential exchange on k-exchange 

algorithms to select optimum sensor locations. By using these algorithms for location 

selection, the best sensor locations are identified from all available locations. However, 

since the approach presented by Gupta and Dhingra assumes that the load locations are 

known in advance, their method is limited to certain applications.  

The limitation of the approach mentioned above is that the number of loads and 

their locations are assumed to be known ahead of time.  The only unknowns are load 

magnitudes.  

 

2.5 Motivation for this Dissertation 

Load identification has received considerable attention for design, control and 

health monitoring of structures. A number of studies focused on determining the load 

magnitudes; in these cases, the locations and the number of the applied loads are 

assumed to be known in advance. Some studies addressed finding the loads magnitudes 

and location simultaneously assuming the knowledge of the type of the load applied such 

harmonic or impact loads. 

Some recent works based on the concept of motion transmissibility addressed 

estimation of locations, number and magnitudes of loads for multi degree of freedom 

systems. This technique uses system responses such accelerations to predict the loads 

magnitudes and locations. In these studies, the number of sensors were addressed but 

not their locations. Since the locations of the sensors have a very important effect on the 
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prediction accuracy of the load locations and magnitudes, therefore, it is important to 

locate these sensors at the optimum locations.  

The main novelty of this dissertation lies in the fact that using the concept of 

response transmissibility, we can solve the load identification problem wherein all three 

load components: number of applied loads, load locations, and load magnitudes are 

unknown. We also provide an answer to the question of sensor placement for improved 

load prediction. This is especially important when multiple loads are applied to the 

structure. It is seen that the efficacy of load estimation is improved when sensors are 

placed at optimum locations. These optimum sensor locations are determined using the 

D-optimization technique. 

Furthermore, the transmissibility concepts presented in the literature are based on 

using the displacement responses and the displacement frequency response functions. 

On the other hand, previous studies have suggested that by using strain gages for 

measurement of vibration response, more accurate force identification results have been 

reported compared to traditionally used accelerometers.  Therefore, in this dissertation, 

an effort towards overcoming this gap will be studied and the use of strain frequency 

response functions and the strain gages to achieve improvements in the problem of load 

identification using the transmissibility concept. 

Another factor along with the type and locations of sensors on the structure which 

affects the precision of load estimates is the accuracy of the frequency response function 

that is obtained from the finite element model. Implementing the response transmissibility 

on complex systems requires larger models that lead to a large number of calculations 

and more computational times. As a result, Model Order Reduction (MOR) techniques 
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are commonly used to reduce the full finite element model. In this dissertation a MOR  

technique will be presented to reduce the number of degrees of freedom in a model 

without changing the systems dynamic characteristics significantly so that the applied 

load locations and magnitudes can be predicted accurately while improving the overall  

computational time efficiency. 
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Chapter 3 - Prediction of Harmonic Forces 

Many mechanical components are subject to harmonic excitation conditions, in 

particular, rotating machinery. Such harmonically excited forces, for example may be due 

to imbalance or hydraulic flow, cannot measured easily but their magnitudes are crucial 

for structural design or analysis. Some researchers worked on identification of harmonic 

loads. By measuring the transverse displacement, D'Cruz et al. (1992) were able to 

determine not only the magnitude but also the location and the phase of a transverse 

harmonic point load applied on a viscoelastic plate. Karlsson (1996) presented the 

prediction of complex amplitudes of harmonic force by assuming the force spatial 

distribution available apriori. 

An application of Betti reciprocal theorem with a reference load case to estimate 

the magnitude and location for an assumed spatial load shape of the harmonic point load 

was presented by Moller (1999). Based on an optimization approach that can be 

implemented in time or frequency domain, Wang and Chiu (2004) simultaneously 

predicted the amplitude and location of load applied on an arbitrary structure subjected 

to impact and harmonic loading.  

Wang (2002) developed an optimization method for predicting the unknown impact 

and harmonic forces acting on arbitrary structures. The force contents including the force 

amplitude and its location can be determined simultaneously. This chapter is an initial 

attempt in the determination of location and magnitude of a harmonic force acting on a 

simple beam system. The following section will introduce the theoretical background of 

the beam response analysis and the development of harmonic response. Then the 



 
 

18 

 

sections after that describe the implementation of prediction program and the numerical 

prediction results that demonstrate the feasibility of the developed force prediction model.  

 

3.1 Theoretical Analysis 

Beam Response Analysis 

A uniform cantilever beam is considered and shown in Fig. 3.1. The beam is 

subjected to a harmonic force whose location is unknown. The equation of motion for 

lateral vibration analysis for the system can be written: 

𝑌𝑏𝐼𝑏
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4
+𝐵𝑏

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
+ 𝜌𝑏𝐴𝑏

𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
= 𝐹(𝑥, 𝑡)                  (3.1) 

where 𝑌𝑏 is Young’s Modulus of beam, 𝐼𝑏 is the cross-sectional moment of inertia of the 

beam, 𝑢(𝑥, 𝑡) is the beam lateral displacement, 𝐵𝑏damping coefficient of beam, 𝜌𝑏 is the 

beam density and 𝐴𝑏  is the cross-sectional area of beam. 

Assuming a harmonic force is acting at location x = xn so the force function can be 

stated: 

𝐹(𝑥, 𝑡) = 𝐹𝑛  𝛿(𝑥 − 𝑥𝑛) 𝑒
𝑖𝜔𝑠𝑡                                           (3.2) 

where the harmonic force location is represented as delta function 𝛿(𝑥 − 𝑥𝑛) . Using 

Modal expansion theorem or Principle of Modal Superposition, which represents the basis 

of all Modal Analysis procedures for linear mechanical systems, the beam response can 

be expressed as: 

𝑢(𝑥, 𝑡) = ∑  𝜙𝑗(𝑥) 𝑞𝑗
∞
𝑗=1 (𝑡) = ∑  𝜙𝑗(𝑥) 𝑄𝑗 𝑒

𝑖𝜔𝑠𝑡∞
𝑗=1                (3.3) 
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where 𝜙𝑗(𝑥) is the jth displacement mode shape of beam, 𝑞𝑗(𝑡) is modal coordinate. 

By substituting Eqn. (3.3) into Eqn. (3.1), the beam displacement at location x = xk 

can be derived: 

𝑢(𝑥, 𝑡) = ∑ 𝜙𝑗(𝑥)𝑄𝑗𝑒
𝑖𝜔𝑠𝑡∞

𝑗=1 = 𝑒𝑖𝜔𝑠𝑡 ∑
𝐹𝑛𝜙𝑗(𝑥𝑗)𝜙𝑗(𝑥𝑘)

(𝜔𝑗
2−𝜔𝑠

2)+𝑖(2𝜉𝑗𝜔𝑗𝜔𝑠)

∞
𝑗=1               (3.4) 

It is easy to notice that beam displacement is a function of modal parameters, i.e., 

𝜔𝑗 , 𝜉𝑗  and 𝜙𝑗  as well as the harmonic force amplitude Fn, excitation frequency 𝜔𝑠 and 

force location xn. The beam acceleration can also be found: 

𝑎(𝑥𝑘 , 𝑡) = 𝑎𝑘(𝑡) = 𝐴𝑒
𝑖𝜔𝑠𝑡                                 (3.5) 

where 

𝐴 = −𝜔𝑠
2 ∑

𝐹𝑛  𝜙𝑗(𝑥𝑛) 𝜙𝑗(𝑥𝑘)

(𝜔𝑗
2−𝜔𝑠

2)+𝑖(2𝜉𝑗𝜔𝑗𝜔𝑠)

∞
𝑗=1                                   (3.6) 

In numerical simulation a limited number of m modes are included to calculate the 

beam acceleration. 

 

3.2 Harmonic Load Prediction Model 

The prediction model for harmonic load is described in Fig. 3.2. A structure is 

subjected to unknown harmonic load; the input to the prediction model is the structural 

response that can be obtained by sensors as accelerometers. Along with the system 

modal parameters which can be obtained experimentally or numerically the force 
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contents, including force amplitude and its location can be determined simultaneously. 

The optimization problem to predict the unknown harmonic force is formulated as follows, 

Objective Function and Design Variables: 

The objective function Qt is defined as the sum of square errors between the 

measured acceleration 𝑎𝑘̂(𝑡𝑟) and the predicted acceleration 𝑎𝑘(𝑡𝑟) over the time range 

from t1 to tNt as shown in Eqn. (3.7): 

𝑄𝑡 = ∑ [𝑎𝑘(𝑡𝑟)− 𝑎𝑘̂(𝑡𝑟)]
2𝑁𝑡

𝑟=1 = ∑ [−𝜔𝑠
2∑

𝐹𝑛𝜙𝑗 (𝑥𝑛)𝜙𝑗(𝑥𝑘)

(𝜔𝑗
2−𝜔𝑠

2 )+𝑖(2𝜉𝑗𝜔𝑗𝜔𝑠 )
𝑒𝑖𝜔𝑠𝑡  − 𝑎𝑘̂(𝑡𝑟)

∞
𝑗=1 ]

2
𝑁𝑡
𝑟=1        (3.7) 

 

where the predicted acceleration 𝑎𝑘(𝑡𝑟) is a function of structural modal parameters and 

force contents as shown in Eqn. (3.5). Structural modal parameters, including natural 

frequencies, damping ratios and mode shapes can be obtained by modal analysis. The 

unknown force contents are the force amplitude Fn and its location xn. The design 

variables for the objective function are the force amplitude 𝐹𝑛 and its location index 𝑛. 

When n = 1,  𝜙𝑗  (xn) equal to  𝜙𝑗  (x1), j=1,2,...,N, and etc. The index n related to 

the location xn will result in  𝜙𝑗  (xn), j = 1,2,...,N . By formulating the force determination 

problem as an optimization problem, the unknown harmonic force amplitude and its 

location index n can be determined simultaneously. The objective of the optimization 

problem is, therefore, to find Fn and n so as to minimize the sum of square errors between 

𝑎𝑘̂(𝑡𝑟) and 𝑎𝑘(𝑡𝑟). 

 



 
 

21 

 

3.3 Prediction Program 

The load prediction program was developed in MATLAB. The optimization 

subroutine Patternsearch based on direct search complex algorithm was used to solve 

general optimization problem for the design variables, the force amplitude Fn and its 

location index n. With the help of ANSYS software, a finite element model of the beam 

was assembled to get the modal parameters and generate the beam acceleration 

response to represent the measured response 𝑎𝑘̂(𝑡𝑟). 

Simulation Setup 

In order to perform the simulation, ANSYS-APDL software is employed to design the 

cantilever beam and then to extract the acceleration data. The material used was steel with 

material properties listed in Table. 3.1. The thickness of the beam, 0.0394 m is constant 

throughout the length of 0.3 m. The beam height is 0.0016 m, and is considered isotropic in 

nature, i.e. the material has uniform properties in all the three coordinate directions. The 

structure shown in Fig. 3.3 is map meshed with Solid45 element in ANSYS. A modal analysis 

is carried out to obtain the beam modal parameters. The first five natural frequencies of 

bending modes are listed in Table 3.2.  

 

3.4 Results and Discussion 

 3.4.1 Theoretical Prediction Results  

This section presents the results obtained using the algorithm described 

previously. The measured acceleration is replaced by the numerically generated 

response using ANSYS to validate the prediction model and to simulate the real-world 
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scenario where the accelerations are measured experimentally and measurement errors 

maybe present, each element in 𝑎𝑘̂(𝑡𝑟) was corrupted with normally distributed random 

errors with zero mean and standard deviation of 10% of its value. Tables 3.3, 3.4, 3.5 and 

3.6 show the prediction results for different cases to check the effects of different force 

amplitudes, locations on the prediction model also the effect of the sensor location. The 

excitation frequency is chosen to be fs=28 Hz, between the first and second natural 

frequencies. i.e. close to the first natural frequency. Both harmonic force amplitude and 

its location index converge to the actual values very well too. The force prediction model 

works well for different force amplitudes and force locations as well as different sensor 

locations.  

3.4.2 Example: Cantilevered Beam 

Case1: Prediction of a harmonic load using different sensor locations. 

Table 3.3 shows the results for the harmonic load amplitude and location prediction 

using different locations for sensor. For example, the load is applied on node (81) 𝑓81(𝑡) =

−1cos(2𝜋28𝑡) that has location index=15 and the prediction algorithm tested once when 

sensor is placed on location node number 96 which has index 14. The algorithm is also 

tested by placing the sensor on different location such as on node 89 which has index 7. 

Both results show the force prediction model works well for different sensor locations. 

Case 2: Prediction of a harmonic load for different load location. 

Table 3.4 shows the results for the harmonic load amplitude and location prediction 

using different load locations. For example, the sensor location is fixed on node 96 that 

has index (14) and the prediction algorithm tested once when load is applied on location 
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node number 81 which has index 15. The load is also applied on different location such 

as on node 88 which has index 6. Both results show the force prediction model works well 

for different load locations. 

Case 3: Prediction of a harmonic load for different load amplitudes and different 

sensor locations. 

Table 3.5 shows the results for the harmonic load amplitude and location prediction 

using different load amplitudes and different sensor locations. For example, the sensor 

location is fixed on node 89 that has index (7) and the prediction algorithm tested once 

when load is applied on location node number 3 which has index (16) with amplitude = -

10 then with different amplitude = -1. Finally, the algorithm is tested for the load with 

amplitude -10 but this time by placing the sensor on node 84 which has index (2). All 

results show the force prediction model works well for different load amplitudes and 

different sensor locations. 

Case 4: Prediction of a harmonic load for different load amplitudes and different 

locations but fixed sensor location. 

Table 3.6 show the results for different force amplitudes and different force 

locations, but the sensor location is fixed on node 88 which has index (6). All results show 

the force prediction model works well for different load amplitudes and fixed sensor 

locations. 
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3.5 Conclusions and Summary 

This chapter presented the harmonic force prediction algorithm applied to a 

cantilever beam structure. The algorithm presented can predict the harmonic force 

amplitude and its location simultaneously. Some conclusions are made as follows: 

1. The prediction model is validated through numerical simulation and 

successfully predicts the harmonic force amplitude and its location. 

2. The effects of different force amplitudes, locations on the prediction model are 

also studied with the proper selection of sensor location. It is seen that the 

prediction model works well. 

3. The drawback of this algorithm is its limitation for one kind of harmonic loads 

with fixed amplitude and one excitation frequency which leads the research to 

look for other algorithm to predict the load magnitudes and locations. 
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Table 3.1 Material Property of Cantilever Beam 

Material Property Value (SI Unit) 

Young’s Modulus 207 GPa 

Poisson’s ratio 0.292 

Density 7870 

 

Table 3.2 Natural Frequencies of Cantilever Beam 

Mode Natural Frequency (Hz) 

1 15.074      

2 95.158 

3 248.78 

4 273.49 

5 361.39 

 

Table 3.3 Prediction of a Harmonic Load Using Different Sensor Locations 

Sensor location 
(index) 

Predicted Force 

 Amplitude 

Predicted 
Force Location 

96 (14) -0.9896 15 

89 (7) -0.9911 15 
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Table 3.1 Prediction of a Harmonic Load for Different Load Locations 

Load location 
(index) 

Predicted Force 
Amplitude 

Predicted 
Force Location 

88 (6) -0.9877 6 

81 (15) -0.9896 15 

 

Table 3.4 Prediction of a Harmonic Load for Different Load Amplitudes and Different 

Sensor Locations 

Sensor 
location       

(index) 

Applied 
Force 

Amplitude 

Predicted Force 
Amplitude 

Predicted 
Force 

Location 

89 (7) -10 -9.87366 16 

89 (7) -1 -0.99116 16 

84 (2) -10 -9.8426 16 

 

Table 3.5 Prediction of a Harmonic Load for Different Load Amplitudes and Different 

Locations but Fixed Sensor Location 

Applied force Applied Force 

location (index) 

Predicted 

Force 
Amplitude 

Predicted 

Force 
Location 

𝑓(𝑡) = −0.9cos(2𝜋30𝑡) 84 (2) -0.8998 2 

𝑓(𝑡) = 0.7cos(2𝜋30𝑡) 92 (10) 0.6925 10 

𝑓(𝑡) = 0.9cos(2𝜋30𝑡) 81(15) 0.8877 15 
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Figure 3.1 Cantilever Beam System 

 

 

 

Figure 3. 2 Conceptual Diagram for Force Prediction 

 

Figure 3. 3 Finite Element Model of Cantilever Beam 
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Chapter 4 - Force Identification Using Motion Transmissibility  

The algorithm discussed in the previous chapter was limited to identification of two 

of the load’s contents (amplitude and location) for simple harmonic loads with one 

excitation frequency. However, the solution for the force identification problem may 

require identifying more of the load’s contents such as; the number, magnitude, direction 

and location. To overcome this limitation, this chapter presents a general overview on the 

concept of transmissibility and its potential application and limitations in the context of a 

force identification problem. 

The notion of transmissibility is discussed in almost every textbook on vibrations. 

It is explained in the context of a single degree-of-freedom system when the system base 

is moving harmonically. As mentioned earlier in chapter 2, the transmissibility denotes the 

relationship between the input and the output response. Based on that; two types of 

transmissibility can be defined; the transmissibility of motion and the transmissibility of 

forces. The transmissibility of motion is defined as the ratio between the modulus of the 

response amplitude and the modulus of the imposed amplitude of motion. Usually, the 

transmissibility of forces, defined as the ratio between the modulus of the transmitted 

force magnitude to the ground and the modulus of the imposed force magnitude, is also 

deduced and the conclusion is that the mathematical formula of the transmissibility of 

forces is exactly the same as for the transmissibility of displacements. As will be explained 

in this chapter, this is not the case for multiple degree of freedom systems. The question 

that arises is how to extend the idea of transmissibility to a system with N degrees-of-

freedom, i.e., how to relate a set of unknown responses to another set of known 

responses, for a given set of applied forces, or how to evaluate a set of reaction forces 
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from a set of applied ones. It is worthwhile to mention the first time that a general answer 

to the problem has been given was in 1998, by Ribeiro (1998).  

In a multi degree of freedom system, there are many input and output responses. 

Therefore, the transmissibility matrix is not unique for MDOF systems. This means that 

for MDOF systems, the number of generalized forces and their locations must be equal. 

Such a generalization can be and has been not only developed in terms of a relation 

between two sets of harmonic responses for a given loading, but also between applied 

harmonic forces and corresponding reactions. Extensions to comply with random motions 

and random forces have also been achieved. From the establishment of the various 

formulations, it was possible to deduce and understand several important properties, 

which allow for diverse applications that have been envisaged, such as evaluation of 

unmeasured frequency response functions (FRFs), estimation of reaction forces and 

detection of damage in structure.  

So for MDOF systems, the relationships among the responses at various co-

ordinates will depend on the number and coordinates of the applied forces. This is a 

minimum mathematical requirement, as can be appreciated from the formulation 

presented Sec.4.1. 

Several researchers as Maia and his collaborators (1999-2014) have focused on 

an estimation of location, number, and magnitude of loads imposed on multi -degree of 

freedom systems using the concept of transmissibility. The reconstruction of loads is done 

in two successive phases. In the first phase, the location and number of applied loads are 

estimated by using a transmissibility model. In the second phase, the load vector is 

reconstructed by multiplying the inverse of the structural FRF matrix with the system’s 
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measured response. This approach uses system response, such as accelerations, to 

predict the load magnitudes and locations. While this technique provides promising 

results, the question of sensor placement was not addressed and was left as user’s 

choice. 

The main purpose of this chapter is to improve the use of the transmissibility 

concepts in conjunction with a two-step methodology for determination of force number, 

locations and magnitudes. 

 

4.1 Transmissibility of Motion in MDOF Systems 

In this section and next sub-sections, the main definitions, properties and 

applications of the transmissibility of motion in multi degree of freedom system will be 

presented. 

4.1.1 Fundamental Formulation 

The transmissibility function is traditionally defined as the ratio of two different 

output spectra. For a MDOF system, it is better to divide the system coordinates into 

three groups as shown in Fig. 4.1. Here 𝑃 coordinates correspond to locations where 

the forces 𝐹𝑃  could be applied to the structure whereas I coordinates are locations 

where the displacement responses DI are known or measured. The J coordinates are 

locations where the displacement responses DJ are unknown. 

One of the approaches to determine the transmissibility of motion for MDOF 

systems is based on a use of (FRF) matrix [𝐻𝑑(𝜔)] which relates the dynamic 
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displacement amplitudes D to the applied force amplitudes F. This matrix is also known 

as receptance frequency response matrix.  

The receptance frequency response matrix [𝐻𝑑(𝜔)] relates the dynamic 

displacement amplitudes D with the external force amplitudes F as (using harmonic 

excitation, in steady-state conditions) as in Eqn. (4.1): 

 {𝐷(𝜔)} = [𝐻𝑑(𝜔)]{ 𝐹(𝜔)}↔ {𝐷(𝜔)} = [([𝐾] −𝜔2[𝑀]+ 𝑖𝜔[𝐶])]−1{𝐹(𝜔)} (4.1) 

Here [𝐾], [𝑀] and [𝐶] are the stiffness, mass and damping matrices respectively and can 

be generated from the finite element model of the structure. [𝐻𝑑(𝜔)] includes all the 

degrees of freedom in which the system is discretized. It may be noted that the mass-

normalized orthogonality properties are observed here: 

 [𝜙]𝑇[𝑀][𝜙] = [𝐼] (4.2) 

 [𝜙]𝑇[𝐾][𝜙] = 𝑑𝑖𝑎𝑔(𝜔𝑟
2) (4.3) 

In case of damped system with proportional damping, 𝐶 = 𝛼𝐾 + 𝛽𝑀 could be 

assumed and therefore, 

{𝐷(𝜔)} = [𝜙][𝑑𝑖𝑎𝑔(𝜔𝑟
2 − 𝜔2) + 𝑖𝜔(𝛼𝑑𝑖𝑎𝑔(𝜔𝑟

2)+ 𝛽𝐼)]−1[𝜙]𝑇{𝐹(𝜔)} (4.4) 

where [𝜙] is the mode shape matrix, 𝜔𝑟 is the rth natural frequency and 𝛼 and 𝛽 are 

constants. 

From Eqn. (4.1) it is easy to understand that if the response {𝐷(𝜔)} at the 

discretization points are known, then the force reconstruction (in frequency-domain) 

would be given by: 

{𝐹(𝜔)} = [𝐻𝑑(𝜔)]−1{𝐷(𝜔)} (4.5) 
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4.1.2 Transmissibility of Motion in Terms of FRFs 

Based on harmonically applied forces at coordinates 𝑃, one may establish that 

displacements at coordinates 𝐽 and 𝐼 are related to the applied forces at coordinates 𝑃 by 

the following relationships: 

{𝐷(𝜔)}𝐽 = [𝐻𝑑(𝜔)]𝐽𝑃{𝐹(𝜔)}𝑃  (1.6) 

{𝐷(𝜔)}𝐼 = [𝐻
𝑑(𝜔)]𝐼𝑃{𝐹(𝜔)}𝑃 (4.7) 

From Eqn. (4.7), using  {𝐹(𝜔)}𝑃 = [𝐻
𝑑(𝜔)]𝐼𝑃

+
{𝐷(𝜔)}𝐼  and substituting in Eqn. (4.6) 

yields: 

 {𝐷(𝜔)}𝐽 = [𝐻
𝑑(𝜔)]𝐽𝑃[𝐻

𝑑(𝜔)]𝐼𝑃
+ {𝐷(𝜔)}𝐼 = [𝑇𝑑(𝜔)]𝐽𝐼

𝑃  {𝐷(𝜔)}𝐼 (4.8) 

where [𝐻(𝜔)]𝐼𝑃
+   denotes the pseudo-inverse of the FRF matrix and the transmissibility 

matrix which relates both sets of displacements is defined as: 

 [𝑇𝑑(𝜔)]𝐽𝐼
𝑃 = [𝐻𝑑(𝜔)]𝐽𝑃[𝐻

𝑑(𝜔)]𝐼𝑃
+  (4.9) 

The sub-matrix [𝐻𝑑(𝜔)]𝐼𝑃 and can be obtained experimentally or analytically. The only 

required condition for the pseudo inverse to exist in Eqn. (4.9) is the number of response 

measurements at I coordinates should be greater than or equal to the number of applied 

point loads at P coordinates, i.e.  𝑁𝐼 ≥ 𝑁𝑃. 

 An important property of the transmissibility matrix to be used here is that it does 

not depend on the magnitude of the involved forces and only requires the knowledge of 

a set of coordinates that include all the coordinates where the forces are applied.  
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4.1.3 Transmissibility of Motion in Terms of Dynamic Stiffness 

There exists another method to obtain the transmissibility matrix for the 

displacements, using the dynamic stiffness matrices. Assuming again harmonic loading 

and defining two subsets, A and B, A being the set where the dynamic loads may be 

applied and B the set formed by the remaining coordinates, where no forces are applied 

({𝐹(𝜔)}𝐵 = 0), one can obtain (after grouping adequately the degrees of freedom of the 

problem): 

 
[
[𝑍(𝜔)]𝐴𝐼 [𝑍(𝜔)]𝐴𝐽
[𝑍(𝜔)]𝐵𝐼 [𝑍(𝜔)]𝐵𝐽

] {
𝐷(𝜔)𝐼
𝐷(𝜔)𝐽

} = {
{𝐹(𝜔)}𝐴

0
} (4.10) 

 

Developing Eqn. (4.10), it follows that 

 [𝑍(𝜔)]𝐴𝐼{𝐷(𝜔)}𝐼 + [𝑍(𝜔)]𝐴𝐽{𝐷(𝜔)}𝐽 = {𝐹(𝜔)}𝐴 (4.10a) 

[𝑍(𝜔)]𝐵𝐼{𝐷(𝜔)}𝐼 + [𝑍(𝜔)]𝐵𝐽{𝐷(𝜔)}𝐽 = 0 (4.10b) 

From Eqn. (4.10b) one obtains the transmissibility in term of the dynamic stiffnesses: 

{𝐷(𝜔)}𝐽 = −[𝑍(𝜔)]𝐵𝐽
+ [𝑍(𝜔)]𝐵𝐼{𝐷(𝜔)}𝐼 = [𝑇𝑑(𝜔)]𝐽𝐼

𝐴 {𝐷(𝜔)}𝐼 (4.11) 

where [𝑍(𝜔)]𝐵𝐽
+  is the pseudo-inverse of [𝑍(𝜔)]𝐵𝐽 . 

From Eqn. (4.11) it is possible to obtain the response at the unknown coordinates J, as 

long as the pseudo-inverse is feasible, which requires that NB is greater or equal to NJ.  

Indeed, the conditions from the two formulations can be summarized as: 



 
 

34 

 

[𝑇𝑑(𝜔)]𝐽𝐼
𝐴 = −[𝑍(𝜔)]𝐵𝐽

+ [𝑍(𝜔)]𝐵𝐼 = [𝐻𝑑(𝜔)]𝐽𝐴 [𝐻
𝑑(𝜔)]𝐼𝐴

+     𝑁𝐵 ≥ 𝑁𝐽 𝑎𝑛𝑑 𝑁𝐼 ≥ 𝑁𝐴 (4.12) 

 

4.2 Transmissibility of Forces in MDOF Systems 

To present the transmissibility of forces for MDOF systems a similar procedure is 

followed to the one used in the previous sub-sections. The problem now consists of 

relating the set of known applied forces to a set of unknown reactions (or the other way 

around), relating the set of known applied forces (set I) with a set of unknown reaction 

forces (set J), which are illustrated in Fig. 4.1. For set J it will be assumed that {𝐷(𝜔)}𝐽 

equals 0. In general, there will be other coordinates, where neither there are any applied 

forces nor there are any reactions that shall constitute the set K. 

 

4.2.1 Transmissibility of Forces in Terms of FRFs 

With the definition of the new sets I, J and K, the problem may be defined in the 

following way: 

{

{𝐷(𝜔)}𝐼
{𝐷(𝜔)}𝐽
{𝐷(𝜔)}𝐾

} = [

[𝐻𝑑(𝜔)]𝐼𝐼 [𝐻𝑑(𝜔)]𝐼𝐽
[𝐻𝑑(𝜔)]𝐽𝐼 [𝐻𝑑(𝜔)]𝐽𝐽

[𝐻𝑑(𝜔)]𝐾𝐼 [𝐻𝑑(𝜔)]𝐾𝐽

] {
{𝐹(𝜔)}𝐼
{𝐹(𝜔)}𝐽

} (4.13) 

Imposing{𝐷(𝜔)}𝐽 = 0, it follows that 

[𝐻𝑑(𝜔)]𝐽𝐼{𝐹(𝜔)}𝐼 + [𝐻
𝑑(𝜔)]𝐽𝐽{𝐹(𝜔)}𝐽 = 0 (4.14) 

Therefore, 



 
 

35 

 

{𝐹(𝜔)}𝐽 = [𝑇𝑓(𝜔)]𝐽𝐼{𝐹(𝜔)}𝐼                                                       (4.15) 

where 

[𝑇𝑓(𝜔)]𝐽𝐼 = −[𝐻𝑑(𝜔)]𝐽𝐽
−1[𝐻𝑑(𝜔)]𝐽𝐼                                               (4.16) 

is the force transmissibility matrix. 

This is the direct force identification method, i.e., one knows the applied forces and 

calculate the reactions at the supports, where the displacements are assumed as zero. 

The inverse problem is also possible, if one can measure the reaction forces and if their 

number is greater than or equal to the number of applied forces, one can calculate the 

pseudo-inverse of [𝐻(𝜔)]𝐽𝐼: 

{𝐹(𝜔)}𝐼 = [𝑇𝑓(𝜔)]𝐽𝐼
+ {𝐹(𝜔)}𝐽                                                        (4.17) 

where 

[𝑇𝑓(𝜔)]𝐽𝐼
+ = −[𝐻𝑑(𝜔)]𝐽𝐼

+ [𝐻𝑑(𝜔)]𝐽𝐽                                              (4.18) 

In the inverse problem, one may not know how many applied forces exist and 

where they are applied. If that is the case, one must follow a different approach.  

If the condition {𝐷(𝜔)}𝐽= 0 is relaxed, from Eqn. (4.13) it follows that: 

{𝐷(𝜔)}𝐽 = [𝐻
𝑑(𝜔)]𝐽𝐼 {𝐹(𝜔)}𝐼 + [𝐻

𝑑(𝜔)]𝐽𝐽{𝐹(𝜔)}𝐽 (4.19) 

{𝐹(𝜔)}𝐽 = [𝑇𝑓(𝜔)]𝐽𝐼
{𝐹(𝜔)}I + [𝐻

𝑑(𝜔)]𝐽𝐽
−1{𝐷(𝜔)}𝐽 (4.20a) 

and  

{𝐹(𝜔)}𝐼 = [𝑇𝑓(𝜔)]𝐽𝐼
+ {𝐹(𝜔)}𝐽 + [𝐻

𝑑(𝜔)]𝐽𝐼
+ {𝐷(𝜔)}𝐽 (4.20b) 
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4.2.2 Transmissibility of Forces in Terms of Dynamic Stiffness 

As mentioned earlier, there is an alternative approach to obtain the force 

transmissibility matrix, using the dynamic stiffness matrices. 

Assuming harmonic loading and the mentioned sets I, J and K, one can obtain 

(after grouping adequately the degrees of freedom of the problem) the following result: 

[

[𝑍(𝜔)]𝐼𝐼 [𝑍(𝜔)]𝐼𝐾 [𝑍(𝜔)]𝐼𝐽
[𝑍(𝜔)]𝐾𝐼 [𝑍(𝜔)]𝐾𝐾 [𝑍(𝜔)]𝐾𝐽
[𝑍(𝜔)]𝐽𝐼 [𝑍(𝜔)]𝐽𝐾 [𝑍(𝜔)]𝐽𝐽

] {

{𝐷(𝜔)}𝐼
{𝐷(𝜔)}𝐾
{𝐷(𝜔)}𝐽

} = {

{𝐹(𝜔)}𝐼
{𝐹(𝜔)}𝐾
{𝐹(𝜔)}𝐽

} (4.21) 

By joining the sets, I and K together in a new set E makes it easier to see that 

imposing {𝐷(𝜔)}𝐽 = 0 one obtains the following relationships: 

[
[𝑍(𝜔)]𝐸𝐸 [𝑍(𝜔)]𝐸𝐽
[𝑍(𝜔)]𝐽𝐸 [𝑍(𝜔)]𝐽𝐽

] {
{𝐷(𝜔)}𝐸
{0}

} = {
{𝐹(𝜔)}𝐸
{𝐹(𝜔)}𝐽

} (4.22) 

from which it is clear that: 

[𝑍(𝜔)]𝐸𝐸{𝐷(𝜔)}𝐸 = {𝐹(𝜔)}𝐸 (4.23a) 

[𝑍(𝜔)]𝐽𝐸{𝐷(𝜔)}𝐸 = {𝐹(𝜔)}𝐽 (4.23b) 

Eliminating  {𝐷(𝜔)}𝐸 between Eqn. (4.23.a) and Eqn. (4.23.b), it turns out that 

 {𝐹(𝜔)}𝐽 = [𝑇𝑓(𝜔)]𝐽𝐸{𝐹(𝜔)}𝐸  (4.24) 

where 

[𝑇(𝜔)𝑓]𝐽𝐸 = [𝑍(𝜔)]𝐽𝐸[𝑍(𝜔)]𝐸𝐸
−1 (4.25) 
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The inverse problem corresponds to 

{𝐹(𝜔)}𝐸 = [𝑇𝑓(𝜔)]𝐽𝐸
+ {𝐹(𝜔)}𝐽 (4.26) 

with 

[𝑇𝑓(𝜔)]𝐽𝐸
+ = [𝑍(𝜔)]𝐸𝐸[𝑍(𝜔)]𝐽𝐸

−1 (4.27) 

It is important to note that only some of the coordinates of the set E have applied forces. 

This means that in Eqn. (4.23) part a and b, some rows of {𝐹(𝜔)}𝐸 are zero and only the 

columns (in [𝑍(𝜔)]𝐸𝐸) whose coordinates have applied forces (set I) are needed for the 

transmissibility matrix. In other words, from the set E only the coordinates corresponding 

to the I set are used. 

So as a conclusion from sections (4.2.1) and (4.2.2), that for the direct problem of 

transmissibility of forces there is no restrictions on the number of coordinates used in Eqn. 

(4.16) and Eqn. (4.18). For the inverse problem of transmissibility of forces, there are 

some restrictions that can make this option not very useful in practice, especially when 

using the dynamic stiffnesses. Since one needs to calculate the pseudo-inverse matrices 

in Eqn. (4.16) and Eqn. (4.18), it is not possible to perform the pseudoinverse of the 

transmissibility matrix if the number of applied forces is greater than the number of 

reactions. In this case, the condition to perform the pseudoinverse is #J ≥ #I. So for these 

reasons the transmissibility of motion will be developed and used in this research for the 

inverse problem of force Identification. 
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4.3 Transmissibility in Terms of the Numerical Model 

As stated previously, the transmissibility matrices may be obtained from a 

numerical model (which should be updated for the range of frequencies involved) or from 

results obtained experimentally. In this section, the transmissibility of motion is used as it 

is described in Sec. 4.1 and will be illustrated through different examples. 

For the numerical model, one needs the knowledge of the structure within the 

discretization chosen, to create the receptance matrix[𝐻𝑑(𝜔)], which is the inverse of the 

corresponding dynamic stiffness matrix [𝑍(𝜔)]. Here, the numerical model is created 

using the Finite Element Method (FEM) with the help of ANSYS tool. As seen before, the 

dynamic stiffness matrix for a damped system is defined as: 

[𝑍(𝜔)] = ([𝐾] −𝜔2[𝑀] + 𝑖𝜔[𝐶]) (4.28) 

where [𝐶] represents the viscous damping matrix, often of the proportional type, i.e., 

C=αK+βM, where α and β are constants to be evaluated experimentally. For undamped 

system the dynamic stiffness matrix can be written as:  

[𝑍(𝜔)] = [𝐾] − 𝜔2[𝑀] (4.29) 

To build the dynamic stiffness matrix, a specific structural finite element is chosen 

according to the approximation considered. For example, in the case of a reasonably long 

and slender beam one can use the Euler-Bernoulli beam element (instead of a shell or 

solid structural element). Then, the global mass and stiffness matrices are assembled for 

the chosen discretization of the structure. 
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Although the receptance matrix [𝐻𝑑(𝜔)] is the inverse of the corresponding 

dynamic stiffness matrix, one should avoid such direct numerical inversion (frequency by 

frequency). Instead, [𝐻𝑑(𝜔)] is calculated from Eqn. (4.4), after a modal analysis of the 

free vibration problem. The maximum number of modes returned from a finite element 

model is equal model degrees of freedom, which can be a large number. Therefore, in 

many problems, numerical considerations make it impractical to retain all modes. Hence, 

a limited number (m) of modes are retained that are “enough” to approximate the 

receptance matrix.  In this work, the decision on the number modes retained depends on 

the cumulative mass fraction captured by retained modes. For reasonable accuracy, an 

adequate number of (m) modes should be retained such that at least 90% of the 

cumulative mass fraction is captured by the retained modes. Then, using Eqn. (4.9) or 

Eqn. (4.16) one can calculate the needed transmissibility matrices.  

 

4.4 Force Localization Based on the Transmissibility of Motion and 

Force Reconstruction 

This section shows the force localization algorithm based on the transmissibility of 

motion and reconstruction using the measured responses and the updated numerical 

model. The force identification problem is a difficult problem, as one has a limited 

knowledge of the measured responses, due to structural complexity and lack of access 

to some locations for placements of sensors. In other words, there are difficulties due to 

the incompleteness of the model. 
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Due to this difficulty in estimating the load vector directly, the solution process is 

divided into two distinct phases as proposed by Lage et al. (2013):  

1.  The localization of the forces, i.e. the identification of the number (N) and locations 

(P) of the applied forces using the concept of transmissibility of motion. 

2. Estimation of magnitudes of the loads identified in phase one.  

For the first phase, a search for the number (N) and locations (P) of forces using 

the transmissibility of motion is performed. Essentially, this step consists of searching for 

the transmissibility matrix correspondent to the dynamics of the system and using the 

available measured data and the numerical model involved (Neves and Maia 2010). Once 

the corresponding transmissibility matrix is found, one has a solution for the number and 

locations of the forces applied to the structure. 

The second phase consists of reconstructing the load vector with the results 

obtained in the first step. A more detailed description about this methodology is given in 

the following subsections. 

4.4.1 Force Localization 

At the first stage, the number (N) of the applied loads could be unknown along with 

their locations (P). Therefore, the search process for the transmissibility matrix 

[𝑇(𝜔)]𝐽𝐼 
𝑃 transforms the dynamic responses {𝐷(𝜔)}𝐼 into {𝐷(𝜔)}𝐽 examining all 

possibilities until the predicted response {𝐷(𝜔)}𝐽 matches the measured response 

{𝐷̃(𝜔)}𝐽 . Based on the assumption made regarding the number of applied loads, various 

combinations of the test nodes are checked. For the case where it is assumed that only 

one load applied N=1, the search process will start from the first node until the last node 



 
 

41 

 

(n) on the structure is traversed; the combinations of tested nodes will be: {(1), ...  n}. For 

the case with two applied loads N=2, the combinations of tested nodes will be: {(1,2), ... 

(1, n); (2,3), … (2, n); (3,4),…(3,n); to (n-1,n)}. For the case with three applied loads N=3, 

the combinations of tested nodes will be: {(1,2,3),…,(1,2,n); …}. This approach can be 

extended to cover all possible combinations of load locations P and number of applied 

loads N.  

The error in each combination is kept in a vector to identify the combination with 

the least associated error (in absolute value). Firstly, the algorithm scrolls through the 

possible combinations of position and number of forces. For each combination, the 

associated error between the calculated response vector {𝐷(𝜔)}𝐽 and the measured 

response vector {𝐷̃(𝜔)}𝐽 is calculated; this is carried out over a frequency range defined 

by the user. The error between the predicted and the measured dynamic response at 

each coordinate k can be defined as: 

𝐸𝑘 = ∑(log(𝑎𝑏𝑠(𝐷̃𝐽𝑘 (𝜔))) − log (𝑎𝑏𝑠 (𝐷𝐽𝑘 (𝜔)) ))
2

𝜔

 (4.30) 

For each combination, the calculated error is kept in an entry of the error vector and 

analyzed later: 

{𝑣} = {𝐸𝑘}                                                         (4.31) 

The accumulated error for a given combination of coordinates where F can be 

located is the norm of 𝑣 . The calculations are repeated for successive combinations of 

number and position of forces. The combination of the force locations that gives the lowest 

error leads to the number and position of the forces applied to the structure. As already 
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mentioned, the maximum number of forces that can be found is equal to the dimension 

of the known dynamic response vector. 

As one does not know in advance how many forces exist, one has to follow a trial 

and error procedure that consists basically in assuming an increasing number of forces 

and the corresponding number of measurements; if the right number of forces is N, one 

has a minimum error 𝑣  for a certain set of coordinates. When one proceeds and assumes 

N +1 forces and measurements, the error will be higher than 𝑣, telling the user that the 

right answer was effectively N forces at a certain set of coordinates. 

It is clear that all the combinations of the N +1 forces that contain the right 

combination of the N forces should exhibit a local minimum, though not the absolute one. 

4.4.2 Force Reconstruction 

In the second step, the reconstruction of the force amplitudes consists of solving 

an inverse problem using the measured dynamic responses {𝐷(𝜔)}𝐼. 

{𝐹(𝜔)}𝑃 = [𝐻
𝑑(𝜔)]𝐼𝑃

+   {𝐷(𝜔)}𝐼                                         (4.32) 

Note that for the given system to be invertible, the number of dynamic responses 

to be used (set I) must be higher or equal than the number of applied forces (set P). 

However, this is always verified, as in the first step of the solution process already forces 

a satisfaction of this requirement. 
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4.5 Examples 

4.5.1 15-DOF Spring-Mass System with One Applied Load 

To illustrate the load estimation using the concept of motion transmissibility 

discussed above, a fifteen degree of freedom system shown in Fig. 4.2 was analyzed with 

the following assumptions: 

• The system is undamped; 

• The first and the last mass are connected to fixed boundaries; 

• Masses are assigned arbitrary values starting from 20 kg for m1 to 160 kg 

for m15 in 10 kg increments; 

• Springs constants are assigned arbitrary values starting from 1 × 108 N/m 

for k1 to 8 × 108 N/m for k16 in increments of 0.5 × 108 N/m; 

• One sinusoidal forcing function applied to mass m7; 𝑓7(𝑡) =

500sin(30𝜋𝑡) + 350cos(20𝜋𝑡). 

The task is to determine the location and the magnitude of applied force. It is 

divided into two phases as described in Sec. 4.4 where phase one aims to determine the 

location of this input load by looking for the transmissibility matrix in Eqn. (4.9) that 

transforms the dynamic responses {𝐷(𝜔)}𝐼 into {𝐷(𝜔)}𝐽 with minimum error as in Eqn. 

(4.30). So, for this attempt the I and J coordinates are chosen randomly as in Table 4.1. 

In the absence of any experimental data, the system responses at I and J coordinates 

were obtained by solving the differential equations of motion numerically. All numerical 

computations were performed in a MATLAB programming environment using the built-in 



 
 

44 

 

command (ode45) to get the system responses in time domain {𝐷(𝑡)}. Next using (fft) 

command the frequency responses {𝐷(𝜔)} were obtained.  

The frequency response functions [𝐻𝑑(𝜔)] were obtained by using the modal 

system parameters, the modal matrix [𝜙] and 𝜔𝑟 after solving the eigenvalue problem for 

the system. Using modal analysis, it is found that the cumulative mass fraction (Irvine 

2015) captured by the first five modes is 97% as shown in Table 4.2. Based on this 

observation, it was decided to retain five modes to reconstruct the receptance 

matrix [𝐻𝑑(𝜔)]. Following the procedure described in subsection 4.4.1 the accumulated 

error for a single load applied is shown in Fig. 4.3 and it displays the minimum error occurs 

at the combination number 7, means the applied load is on mass number 7. 

After finding the location of the applied load, reconstruction of the load magnitude 

as in Eqn. (4.32) comes as the last phase. The applied and reconstructed forces are 

plotted in Fig. 4.4. According to the results shown in the Figs. 4.3 and 4.4, the following 

can be concluded: 

1. The load location identification based on transmissibility of motion seems a 

good approach to estimate the location of a single load applied. 

2. The load magnitude identification using randomly selected accelerometer 

locations is very poor and does not yield acceptable results. 

Based on these conclusions, two points will be investigated. First checking the 

efficacy of the algorithm in case of multiple loads are applied, second improving the 

accuracy of the load estimation by studying the effect of the number and the locations of 

sensors used. 
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4.5.2 15-DOF Spring-Mass System with Two Applied Loads 

The previous example is extended to the case when two applied loads are present.  

Two loads 𝑓5(𝑡) = 500sin(30𝜋𝑡) + 350 cos (20𝜋𝑡) and 𝑓10(𝑡) = 250 sin(25𝜋𝑡) +

450 cos (15𝜋𝑡) are applied to masses m5  and m10 , respectively. The first task is to 

determine the number and the locations of the applied loads using the localization method  

described earlier in Sec. 4.4.1, where the sensors locations in I coordinates are chosen 

to be uniformly distributed along the system. The I and J parameters are shown in Table 

4.3. 

It is seen that the proposed approach can correctly find the number of applied 

loads, i.e. two applied loads. As can be seen from Fig. 4.5, the accumulated errors have 

significantly low values for load combinations that correspond to two applied loads, which 

gives an accurate prediction for the number of loads applied. However, the locations of 

the two applied loads are not predicted accurately. The right combination of two applied 

loads at masses 5 and 10 is 70. Using five retained modes and a non-optimal placement 

of sensors, the minimum error is seen at combination number 60 which corresponds to 

load location on masses 4 and 10. 

Another attempt was made to improve the prediction of load locations by 

increasing the number of retained modes from 5 modes to all 15 modes. As can be seen 

in Fig. 4.6, the minimum error occurs at combination number 79 which corresponds to the 

case when the loads are located at masses 6 and 10. It may be noted here that these 

minima have one load location correctly identified while the other one is near the actual 

location of node 5.  
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To examine the effect of sensor placement on prediction of load locations, several 

attempts were made for different sets of arbitrary locations for sensor positioning. The 

result for each set of sensor locations are shown in Table 4.4. Based on the results 

presented in Table 4.4, it can be seen that none of these attempts led to accurate load 

location prediction. An arbitrary selection of sensor locations is likely to get trapped at a 

local minimum of the error function and doesn’t provide correct load locations. Since load 

identification is a two-phase sequential process, if the first phase doesn’t yield accurate 

predictions for load locations, then the second phase is quite likely lead to inaccurate 

prediction for loads magnitudes.  

An important conclusion that can be drawn from this example is that to improve 

the localization approach using the transmissibility of motion, it is important to pick the 

locations of the sensors (I coordinates) carefully. 

 

4.6 Transmissibility of Motion Based on D-optimal Design 

According to the study of Masroor and Zachary in (1991), they show that the 

location of sensor has significant effect on the accuracy of recovered load. The placement 

of sensor at a low sensitivity location may result in ill-conditioning. They defined a 

statistical parameter which directly relates the variance of load estimates and sensor 

locations. The minimization of this parameter leads to the minimization of variance of load 

estimates. Masroor and Zachary expected the user to select the sensor locations 

manually while estimating the loads. An arbitrary selection of sensor locations by the user 
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may not produce the right combination of sensors which produces least variance in load 

estimates, and thus they might not yield the optimal sensor locations. 

As shown in the previous section, random selection of the sensor locations to 

localize the applied loads by using the transmissibility concept may lead to inaccurate 

prediction. For measurement of the acceleration response, there can be a large number 

of locations on the structure where the accelerometers can be mounted, and the precision 

with which the applied loads are estimated from measured acceleration response is 

strongly influenced by the locations selected for accelerometer placements. A solution 

approach, based on the construction of D-optimal designs, is presented to determine the 

number and optimum locations of accelerometers that will provide the most precise load 

identification estimates. The D-optimal criteria developed by Mitchell (1974), Galil (1980) 

and Johnson et al. (1983). D-optimal (Determinant-optimal) methods utilize sequential 

exchange as well as k-exchange algorithms to select optimum sensor locations. By using 

these algorithms for location selection, the best sensor locations are identified from all 

available locations.  

4.6.1 D-optimal Design for Sensors Locations 

To understand the logic behind the D-optimal design in determining the optimum 

locations of the sensors, it is worthwhile to mention the basic idea behind this approach 

is to minimize the determinant of  (ATA) −1, or equivalently that maximize the determinant 

of the information matrix ATA of the design. For our problem, the system matrix A 

corresponds to the modal matrix [𝜙] .  

In the problem of load localization and reconstruction using the concept of 

transmissibility of motion, where limited number of sensors in I coordinates are used, the 

https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Information_matrix
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objective is to look for the best transmissibility that gives the minimum error. The system 

response can be transformed by using the following modal transformations: 

{𝐷̈ (𝑡)} = [𝜙]{𝑞̈ (𝑡)} 

{𝐷̇(𝑡)} = [𝜙]{𝑞̇(𝑡)}                                              (4.33) 

{𝐷(𝑡)} = [𝜙]{𝑞(𝑡)} 

where [𝜙] is the modal matrix with the dimension equal to the number of total degrees of 

freedom of the structure. This modal matrix is considered to be the [A] matrix which will 

be used in the D-optimal design to look for the optimal sensor locations {𝐷̈(𝑡)}𝑜𝑝𝑡. . In Eqn. 

(4.33), {𝑞(𝑡)}  are the Modal Participation Factors (MPF).  

The least-squares estimate of {𝑞̈  (𝑡)} is given by: 

{𝑞̈(𝑡)} = ([𝜙]𝑇[𝜙])−1 [𝜙]𝑇{𝐷̈(𝑡)}                                             (4.34) 

This criterion results in maximizing the differential Shannon information content of 

the parameter estimates and this usually constructed by algorithms that sequentially add 

and delete points from a potential design by using a candidate set of points spaced over 

the region of interest.  

In fact, the acceleration vector is disposed to measurement errors. Based on the 

statistical study of Masroor and Zachary (1991), if the random errors in acceleration 

measurements are mutually independent and have the same standard deviation σ, then 

the variance-covariance matrix for the predicted load is given as: 

𝑣𝑎𝑟({𝐹}) = 𝜎2([𝜙]𝑇[𝜙])−1                                            (4.35) 

https://en.wikipedia.org/wiki/Differential_entropy
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The matrix ([𝜙]𝑇[𝜙])−1 is known as the sensitivity of matrix [𝜙]. The precision of 

load estimates depends on the variance in the acceleration measurements 𝜎2 and the 

conditioning of the sensitivity matrix. The accuracy of load estimates can be improved by 

improving the conditioning of matrix ([𝜙]𝑇[𝜙])−1. Two factors that affect the sensitivity 

matrix are, the number of sensors used and their locations on the structure. Therefore, 

choosing the optimum location and the suitable number of sensors can minimize the 

sensitivity of [𝜙]; consequently, the variation in the load estimate will be minimized. 

A solution procedure exists that can be used to provide the most precise estimates 

of the applied loads by the optimal selection of the locations and the number of 

accelerometers on the structure. This can be divided into three steps: 

i) Generation of the candidate set. 

ii) Determination of the number of accelerometers to be used. 

iii) Determination of the D-optimal design. 

The discussion for these steps is explained in detail in the following subsections. 

4.6.2 Generation of the Candidate Set 

Using the finite element method, the full structure can be meshed into numerous 

finite elements. The meshing should be done such that distance between a node where 

a sensor (accelerometers) placed, and its adjacent neighbors is not less than the physical 

size of the sensor. Initially all elements have equal potential to become an optimum 

location. Based on certain criteria, the designer needs to identify the possible locations 

where the accelerometer can be mounted. So all inaccessible locations are eliminated 

from the total because there are certain locations where it is impossible to mount 
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accelerometer and record measurements. The remaining sets of locations are called a 

candidate set for optimum sensor placement. The following section will detail the 

procedure to construct [𝜙] candidate matrix. 

The matrix [𝜙]optimum ∈ 𝑅(𝑁𝐼  𝑥 𝑚)  is such a subset of the candidate set [𝜙]candidate 

matrix that provides the most precise estimates of the applied loads. The number of rows 

NI of the matrix [𝜙]optimum represents the number of accelerometers mounted on the 

structure and the number of columns m represents the number of modes retained. The 

element in each row of the matrix [𝜙] optimum represents the response of an accelerometer 

at a particular location for each mode shape. 

4.6.3 Determination of Number of Accelerometers 

The accuracy of load estimation will improve by including more accelerometers. 

Adding more accelerometers offsets the cost effectiveness of the proposed procedure. 

Furthermore, practical and financial constraints place limitations on the number of 

accelerometers to be used. Since the algorithm uses left pseudo inverse to recover the 

load, the general condition is that the number of accelerometers on I coordinates (NI) 

should be greater than or equal to the number of loads to be identified on P coordinates 

(NP). If the maximum number of forces to be estimated is NP, then the number of 

accelerometers NI must satisfy the criterion NI ≥ NP. 
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4.6.4 Determination of the D-optimal Design 

To find optimum locations for a given number of accelerometers NI, the candidate 

set is searched to determine NI accelerometers locations that provide the least variance 

in the load estimates. Based on the required number of optimum accelerometers, an 

algorithm should select the optimum NI accelerometers from [𝜙 ] candidate which satisfy the 

condition stated above. 

If the candidate points to be included in matrix [𝜙 ] candidate such that the sensitivity 

of [𝜙] is minimized are determined by trial and error, the set so obtained may not be the 

optimum set and would lead to a higher variability in the estimated loads. Also, it would 

be too time consuming to take into account all the possible combinations of 

accelerometers placements to arrive at the set that would produce the best estimates of 

the forces. 

Several statisticians have done research to improve the algorithm, which reduces 

the variance of a matrix [𝜙]. (Kammer,1991; Atkinson and Donev,1992). The criterion of 

most relevance to the current application involves the maximization of |[𝜙]𝑇[𝜙]| the 

determinant of [𝜙]𝑇[𝜙]. Design that maximizes |[𝜙]𝑇[𝜙]| is called D-optimal design. The 

D-optimal designs guarantee low variance among parameters and low correlation 

between parameters. The major difficulty is the existence of local maxima, which can only 

be handled by an efficient algorithm. 

In order to construct NI -point D-optimal design, the NI accelerometers locations 

that maximize |[𝜙]𝑇[𝜙]|  must be selected from the candidate set. To select the NI -point 
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D-optimal design, algorithms based on the principles of optimal augmentation and 

reduction of an existing design can be implemented. With optimal augmentation, the 

candidate point with maximum prediction variance is added as a row to the matrix. 

Similarly, optimal reduction of the augmented design is achieved by eliminating the 

candidate point or row of the matrix having minimum prediction variance. This process of 

augmenting and deleting candidate points in an optimal fashion continues until no further 

improvement in the objective function can be made. Such procedures are called 

exchange algorithms; two such types of procedures are the sequential exchange 

algorithm (Galil and Keifer,1980) and the k-exchange algorithm (Johnson and 

Nachtsheim,1983). 

The basic idea behind the sequential exchange algorithm is as follows. Given the 

candidate set, the number of accelerometer NI and the number of modes retained m, the 

first step is to randomly select NI distinct candidate points from the candidate set to 

initialize the (NI × m) matrix [𝜙]. Out of the remaining candidate set, a candidate point is 

then selected and the corresponding row is augmented to the matrix [𝜙] to form matrix 

[𝜙]+ such that |[𝜙]+
𝑇 [𝜙]+| is maximum. Next, out of the NI +1 rows in matrix [𝜙]+, a row is 

deleted to arrive at matrix[𝜙]− such that |[𝜙]−
𝑇 [𝜙]−| is maximum. This process of 

augmenting and deleting rows continues until there is no further improvement in the value 

of |[𝜙]𝑇[𝜙]|. The final D-optimal design [𝜙] optimum is matrix [𝜙] and provides the information 

on the optimum accelerometers’ locations. A flowchart depicting this algorithm is shown 

in Fig. 4.7. 
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As the candidate set gets bigger and bigger, it is very expensive to compute the 

determinant at each step. So by using 𝑅 = [𝜙]𝑇[𝜙] and then calculate the determinant |𝑅|. 

An alternate method for calculating the determinant |𝑅+ | =|[𝜙]+
𝑇 [𝜙]+|  from that of |𝑅| when 

a row 𝑑𝑇  is added to the matrix [𝜙] is: 

|𝑅+| = |𝑅|(1[+]𝑑
𝑇𝑅−1𝑑)                                                  (4.36) 

where [+] denotes addition and is replaced by subtraction in the case of deleting a row 𝑑𝑇 

from [𝜙]+. In order to be able to use Eqn. (4.36) 𝑅−1 can be maintained and updated as 

the row 𝑑𝑇 is augmented to the matrix [𝜙] by: 

|𝑅+|
−1 =  |𝑅|−1[−]

(𝑅−1𝑑)(𝑅−1𝑑)𝑇

(1[+]𝑑𝑇𝑅−1𝑑)
                                   (4.37) 

where [-] denotes subtraction and is replaced by addition in the case of deleting a row 𝑑𝑇 

from [𝜙]+ . 

Once the optimum accelerometers locations are determined [ϕ]opt, accelerometers 

are mounted at those locations on the structure before the application of the unknown 

loads. The measured accelerations {𝐷̃̈ (𝜔)} 𝐼(𝑜𝑝𝑡.), together with the optimum 

[𝜙] computed, are then used to estimate the unknown forces {𝑓(𝜔)} in accordance with 

Eqn. (4.32). 

The next example deals with numerical validation of the D-optimal algorithm 

presented above in the load identification problem using motion transmissibility. The 
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example also illustrates the effectiveness of using the optimal sensor locations to identify 

the loads applied to the structure. 

4.6.5 15 DOF System Example Revisited-Load Identification with Optimal Sensor 

Locations 

The numerical example dealing with 15 DOF spring-mass system described in 

Sec. 4.5 was revisited and load identification using the concept of transmissibility of 

motion in conjunction with the D-optimal design for optimum sensor location was applied. 

The inputs for the load recovery problem are tabulated in Table 4.5. 

The result in Fig. 4.8 shows that by using the optimal locations for the 

accelerometers, the minimum accumulated error occurs at the right combination number 

(70) for the two applied loads at masses 5 and 10. This, in turn, leads to more accurate 

prediction for the loads magnitudes as shown in Figs. 4.9 and 4.10. 

To simulate an experimental situation where the accelerations are measured 

experimentally, and measurement errors may be present, each element of response 

measurement in  {𝐷̃(𝜔)}
𝐼(𝑜𝑝𝑡.)

  was corrupted with normally distributed random errors with 

zero mean and standard deviation of 10% of its value. 

Using the algorithm described above, five optimum locations for accelerometers 

are found while j coordinates were chosen arbitrarily for same load locations. The data is 

given in Table (4.6). 

The results in Fig. 4.11 show that by using the optimal locations for accelerometers 

and with errors present in response measurements, the minimum accumulated error 

occurs at the right combination number (70) for two applied loads at masses 5 and 10. It 
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may be noted that due to the presence of measurement errors in accelerometer readings, 

the absolute values of the accumulated errors have increased. As shown in Figs. 4.12 

and 4.13, it can be seen that the applied loads are recovered accurately despite the 

presence of measurement errors. 

Based on a close agreement between applied and predicted loads, the results of 

this example indicate that the proposed approach was in this case effective in not only 

determining load magnitudes but also unknown load locations. An example dealing with 

an application of proposed approach to a continuous system is presented next. 

 

4.6.6 Load Identification for 3D Cantilever Beam 

The numerical example discussed previously dealt with a discrete system. Next a 

continuous system is considered where two dynamic loads are applied to a 0.25 m long, 

0.05 m wide and 0.005 m thick cantilevered steel beam. The material used is steel which 

has Young’s modulus 𝘠= 209 GPa and Poisson’s ratio equal to 0.29. (See Fig. 4.14). 

Without loss of generality, the system is assumed to be undamped.  

Using ANSYS, a finite element model of the beam was developed and meshed 

with SHELL181 elements. The beam has 36 nodes and each node has six degrees of 

freedom. Six of these nodes are completely constrained; so the structure has 30 

unconstrained nodes with 180 degrees of freedom. 

At the free end of the beam, a vertical load is applied on node 19 described as 

𝑓19(𝑡) = 500sin(30𝜋𝑡) + 350cos(20𝜋𝑡) with another vertical load applied on node 24  

given as 𝑓24(𝑡) = 200cos(60𝜋𝑡). 
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As shown earlier for the discrete system, the solution approach will involve a 

prediction of the locations of the applied loads followed by a reconstruction of the load 

magnitudes by using the motion transmissibility and optimum locations for the sensors. A 

modal analysis was performed on the FE model of the beam to obtain the modal matrix 

for the structure. For this 180-dof example, the modal matrix is [𝜙](180x180). The mass 

[M](180x180) and stiffness [K](180x180) matrices were obtained using finite element method. 

ANSYS provides data for [M] and [K] matrices in the Harwell-Boeing file format. A program 

was written in MATALB to convert them into the matrix format suitable for current 

application. 

As discussed earlier, a limited subset of modes is retained to reconstruct the 

applied loads. The retained modes should capture at least 90% of the cumulative mass 

fraction. 

If only m modes are retained to reconstruct system response, the condensed 

modal matrix is an mxm matrix. If the direction of the applied loads is known a priori, then 

as a first step it may be adequate to construct the reduced modal matrix such that it has 

only the modes in the same direction as the applied loads. For this example, the reduced 

modal matrix will have thirty normal modes in the Y direction, [𝜙𝑌 ](30x30). Therefore, the 

candidate modal matrix will be [𝜙𝑌 ](30x30) , and this will be the input for D-optimal program. 

Following the D-optimal design algorithm described previously, the candidate set 

[𝜙𝑌 ](30x30)  is searched to determine its optimum subset [𝜙𝑌 ]opt. After [𝜙𝑌 ]opt is found, the 

optimum accelerometer locations are determined. The accelerometers are mounted at 

the identified optimum locations and the acceleration {𝐷̈(𝑡)} 𝐼(𝑜𝑝𝑡) is measured, which can 
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be then be successively numerically integrated to obtain { 𝐷̇(𝑡)}
𝐼(𝑜𝑝𝑡)

 and {𝐷(𝑡)} 𝐼(𝑜𝑝𝑡). If 

using the finite element model in ANSYS, the displacement vector can be found directly 

from ANSYS at the optimal locations. From {𝐷(𝑡)} 𝐼(𝑜𝑝𝑡), one can use MATLAB program 

to get the responses in the frequency domain {𝐷(𝜔)} 𝐼(𝑜𝑝𝑡)  which represent the 

displacement vector at optimal I coordinate𝑠 {𝐷̃(𝜔)}
𝐼(𝑜𝑝𝑡)

 and will be used later in the force 

reconstruction step as shown in Eqn. (4.32). Table (4.7) shows the optimal I coordinates 

for the cantilevered beam. 

To find the locations of the applied forces, both measured and predicted 

displacement vectors at J coordinates should be known to look for the minimum error as 

in Eqn. (4.30). For the measured responses at J coordinates {𝐷̃(𝜔)}
𝐽
, one can arbitrarily 

pick any locations. For the example considered here, J coordinates are assumed to be 

same I coordinates as shown in Table (4.7). 

For the predicted response at J coordinates, all possibilities were explored until the 

calculated response matched the measured ones. This method was implemented in 

MATLAB. The algorithm scrolls through possible combinations of applied force locations. 

For each combination, it calculates the associated error between the calculated vector 

{𝐷(𝜔)}𝐽 and the measured responses vector  {𝐷̃(𝜔)}
𝐽
; this is done over the range of 

frequencies defined by the user. For each combination, the calculated error is saved in 

an error vector and plotted as shown in Fig. 4.15. For this example, the total number of 

combinations explored for the case of two applied loads is 465. The applied load locations 

at nodes 19 and 24 correspond to combination number 364. It can be seen from Fig. 4.15 
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there is a minimum value at this combination number which corresponds to the load 

location being predicted correctly. 

It is worth mentioning that in Fig. 4.15, there are three other minima which belong 

to the following combination numbers: (i) 276 which corresponds to the case when two 

loads are applied on nodes 14 and 15, (ii) combination number 284 which corresponds 

to loads on nodes 14 and 24, and (iii) combination number 298 and which corresponds 

to loads being applied on nodes 15 and 19. It can be seen from Fig. 4.14 that node 19 

lies above node 14 while node 24 lies above node 15. Since both nodal pairs share the 

same applied load location, the algorithm is likely to pick one node from each of the two 

pairs. 

During the next step, the load magnitudes were reconstructed using Eqn. (4.32) 

and transformed into time domain using Inverse Fourier Transform (IFT). To get an 

acceptable accuracy for reconstructed loads, it was decided to retain all 30 modes in the 

Y direction. The reconstructed loads are plotted along with applied loads as shown in 

Figs. 4.16 and 4.17. It can be seen from both figures that the load trends are recovered 

with reasonable accuracy.  

As previously mentioned, to simulate a more realistic scenario where acceleration 

is measured experimentally, each element in  {𝐷̃(𝜔)}
𝐼(𝑜𝑝𝑡.)

was corrupted with normally 

distributed random errors with zero mean and standard deviation of 10% of its value. The 

applied and recovered loads, with errors in acceleration measurements, are plotted in 

Figs. 4.18 and 4.19. Once again, it can be seen that the proposed approach is able to 

recover the applied loads fairly accurately by retaining all 30 modes in the Y direction.  
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Practically, due to the limitations on the number of modes that can be retained, an 

improvement in the prediction of load magnitudes will be discussed in chapter 7 that 

utilizes a model order reduction technique. The objective of this technique is to reduce 

the number of degrees of freedom in a model without changing the system’s dynamic 

characteristics significantly such that we can predict the applied load locations and 

magnitudes while improving the computational time required to solve the problem. 

 

4.7 Conclusions and Summary 

In this chapter, load identification (load location as well as magnitude) by using the 

concept of motion transmissibility has been examined for two different multi degree of 

freedom systems; a discrete system and a continuous system. Based on the results 

presented, it is shown that to improve the accuracy of the load location prediction problem, 

the placement of sensors at correct locations is important. Using optimum locations of 

accelerometers as determined by the D-optimal algorithm improves the identification for 

the unknown loads especially when multiple loads are applied and when the error function 

has multiple local minima. In addition, it has been shown numerically that even in the 

presence of simulated measurement errors, the proposed method yields promising 

results. However, two points need to be addressed: 

1. It was seen that to obtain reasonably accurate load identification results, a large 

number of modes need to be retained during the load reconstruction process. 

Practically there are limitations on the number of modes whose MPF can be 
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estimated from sensor measurements. To overcome this limitation, the model 

order reduction techniques are proposed in Chapter 7. 

2. The method proposed in this chapter uses acceleration measurements for load 

prediction. To improve the accuracy of load prediction, the next chapter 

investigates the feasibility of using strain gages and proposes a new approach 

based on the concept of strain transmissibility for force prediction. 
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Table 4.1 Input Data for Spring-Mass System with One Load Applied 

I coordinates [2,3,10,13] 

J coordinates [4,11] 

P coordinate [7] 

 

 

Table 4.2 Modal Analysis for 15-DOF Spring-Mass System 

Mode Frequency 
[Hz] 

Effective 
Mass 

Cumulative 
Mass Fraction 

1 61.8641 1085.03 0.803727 

2 129.202 87.0485 0.868208 

3 194.776 93.2697 0.937296 

4 258.197 20.1218 0.952201 

5 318.968 28.9669 0.973658 

 

 

Table 4.3 Input Data for Load Identification with Uniformly Distributed Sensor 

Spring-Mass System 
 

I coordinates [3,6,9,12,15] 

J coordinates [4,13] 

P coordinates [5,10] 
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Table 4.4 Predicted Load Locations Using Arbitrary Locations for Sensor 

Placement for Spring-Mass System 
 

Arbitrary selections of I and J 
coordinates 

 

Predicted load 
locations 

I = [2,4,9,11,14], J = [3,9] 

 

(6,12) 

I = [3,6,9,12,15], J = [3,9] 
 

(5,11) 

I = [3,4,6,8,12], J = [3,12] 

 

(5,8) 

I = [1,3,7,9,12], J = [3,12] 
 

(6,8) 

I = [2,6,8,12,14], J = [4,13] 

 

(3,9) 

 

 

 

Table 4.5 Input Data for Spring-Mass System 

 

Optimal I coordinates  [4,6,8,11,15] 

J coordinates [3,9] 

P coordinates [5,10] 
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Table 4.6 Input Data for Spring-Mass System with Measurement Errors 

 

Optimal I coordinates  [2,6,8,12,14] 

J coordinates [3,9] 

P coordinates [5,10] 

 

 

 

 

Table 4.7 Input Data for Cantilevered Beam 

Optimal I coordinates  [11,12,16,18] 

J coordinates [11,12,16,18] 

P coordinate [19,24] 
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Figure 4.1 Elastic Body with the Three Sets of Coordinates I, J and P 

 

 

 

Figure 4.2 15-DOF Spring-Mass System 
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Figure 4.3 Accumulated Error for Single Load Application 

 

Figure 4.4 Applied and Recovered Load at Mass 7 with Random Sensors Locations 
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Figure 4.5 Accumulated Error in Case of Retaining 5 Modes and 5 Uniformly Distributed 

Sensors 

 

 

 

Figure 4.6 Accumulated Error in Case of Retaining 15 Modes and 5 Uniformly 

Distributed Sensors 
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Figure 4.7 Flow Chart of The Sequential Exchange Algorithm 
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Figure 4.8 Accumulated Error in Case of Retaining 5 Modes and Using 5 Optimum 

Sensor Locations 

 

 

Figure 4.9  Applied and Reconstructed Load at Mass 5 Using 5 Optimum Sensor 

Locations with 5 Modes Retained 
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Figure 4.10 Applied and Reconstructed Load at Mass 10 Using 5 Optimum Sensor 

Locations with 5 Modes Retained 

 

 

Figure 4.11 Accumulated Error with 5 Optimally Placed Sensors and Measurement 

Errors 
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Figure 4.12 Applied and Reconstructed Load at Mass 5 with Measurement Errors 

 

 

Figure 4.13 Applied and Reconstructed Load at Mass 10 with Measurement Errors 
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Figure 4.14 Finite Element Model of a 3D Cantilevered Beam 

 

 

Figure 4.15 Accumulated Error in Frequency for 3D Cantilevered Beam 
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Figure 4.16 Applied and Reconstructed Load on Node 19 for 30 Retained Modes 

 

Figure 4.17 Applied and Reconstructed Load on Node 24 for 30 Retained Modes 
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Figure 4.18 Applied and Reconstructed Load on Node 19 for 30 Retained Modes and 

with Measurement Errors 

 

 

Figure 4.19 Applied and Reconstructed Load on Node 24 for 30 Retained Modes and 

with Measurement Errors 
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Chapter 5 - Load Identification Using Strain Transmissibility 

Concept and Optimum Sensor Placement  

A detailed explanation of the load identification problem using motion 

transmissibility was presented in the previous chapter. The results from indirect force 

measurements as in Eqn. (4.5), are often highly sensitive to measurement noise and 

errors in structural modeling. An interesting observation was made by Hillary and Ewins 

(1984), who found that the measurements of strain may lead to more accurate results 

than measurements of acceleration for a beam-like structure. This is explained by the fact 

that for such structures, there are generally more vibrational eigen modes significantly 

contributing to the strain response than to the acceleration response. This sensitivity of 

the results to the number of participating structural modes has been investigated in detail 

by Fabunmi (1986), who suggested a scalar measure of the sensitivity based on this 

modal participation. Measures of the sensitivity have also been suggested by Starkey and 

Merrill (1989). In the work of Gupta (2013), it was also seen that strain-based load 

estimations lend themselves to better load estimates than acceleration-based 

approaches. 

This chapter presents a frequency domain technique for predicting dynamic loads 

acting on a structure from a strain frequency response function (SFRF) measured at a 

finite number of optimally placed strain gages on the structure. The proposed technique 

uses a transmissibility concept to predict load locations and magnitudes. The structure 

basically acts as its own load transducer. The approach is based on the fact that the strain 

response of an elastic vibrating system can be expressed as a linear superposition of its 
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strain modes. Since the strain modes as well as the normal displacement modes are 

fundamental dynamic characteristics of a system, the dynamic loads exciting a structure 

are estimated by measuring induced strain fields. 

As already discussed in the previous chapter, the accuracy of estimated loads  

depends on two factors: 

1. The number and placement of sensors on the instrumented structure. 

2. The number of retained displacement modes obtained from modal analysis.  

Considering these two factors, a solution procedure based on strain modal 

analysis to obtain strain modes and the construction of a D-optimal design is applied to 

determine the optimum locations of strain gages that will provide the most precise load 

prediction for both location and magnitude. The concepts of a D-optimal design algorithm 

and candidate set have already been presented in the previous chapter. A novel approach 

is proposed in this chapter that makes use of a transmissibility concept resulting in 

significant improvement in accuracy in the dynamic load prediction. Validation of the 

proposed approach through numerical example problems is also presented, which 

illustrates the effectiveness and robustness of the technique. 

 

5.1 Theoretical Background 

According to the theory of modal analysis for vibrating elastic structures subject to 

dynamic loading, the structural displacement can be approximated by superposition of 

contributions from natural modes. The displacement can then be estimated by the 

obtained normal mode shapes and mode participation factors as: 
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𝑢(𝑡) = ∑𝜙𝑖

𝑚

𝑖=1

𝑞𝑖(𝑡) (5.1) 

In Eqn. (5.1), the displacement response in x direction is 𝑢, the ith (displacement) 

vibration mode is 𝜙𝒊 , the generalized modal coordinate is 𝑞𝑖   whereas the time is denoted 

by 𝑡.  

Corresponding to Eqn. (5.1), the strain field in the structure can be expressed as: 

𝜀(𝑡) =∑𝜓𝑖

𝑚

𝑖=1

𝑞𝑖(𝑡) (5.2) 

where 𝜓𝑖 is the strain mode. Assuming small displacements, the strains and 

displacements are related as:  

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
 (5.3) 

Consequently, the strain modes and normal modes are also related, and the strain 

mode function is obtained by differentiating the displacement mode function with respect 

to x: 

𝜓𝑖 =
𝜕𝜙𝑖
𝜕𝑥

 (5.4) 

Assuming a harmonic excitation input load F, the generalized modal coordinate 𝑞𝑖 is 

expressed as: 

  𝑞𝑖 = Δ𝑖
−1𝜙𝑖  𝐹 (5.5) 

 

where Δ can be defined for a damped system and undamped system as in Eqns. (5.5a) 

and (5.5b) below 
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Δ𝑖    = (−𝜔
2𝑚𝑖 + 𝑗𝜔𝑐𝑖 +𝑘𝑖) (5.5a) 

Δ𝑖    = (−𝜔2𝑚𝑖+ 𝑘𝑖) (5.5b) 

 

Here  𝑚 𝑖  , 𝑐𝑖  and 𝑘𝑖  are the ith modal mass, modal damping and modal stiffness, and ω is 

the excitation frequency. By substituting Eqn. (5.5) into Eqn. (5.2), a relationship between 

the input force and the strain output can be obtained: 

𝜀𝑖(𝜔) =∑𝜓𝑖

𝑚

𝑖=1

Δ𝑖
−1𝜙𝑖𝐹(𝜔) (5.6) 

When written in matrix form, the expression above is called the strain frequency response 

function (SFRF) and is represented by: 

[𝐻𝜀(𝜔)] =∑Δ𝑖
−1{𝜓𝑖}{𝜙𝑖} = [𝜓]

𝑚

𝑖=1

[Δ]−1[𝜙]𝑇 (5.7) 

where [𝜓] denotes the modal strain matrix containing the strain modes. [𝜙]denotes the 

modal matrix containing the displacement normal modes.  

Expanding the matrix form yields: 

  

[
 
 
 
 
𝐻11
𝜀 (𝜔) 𝐻12

𝜀 (𝜔) ⋯ 𝐻1𝑁𝑖
𝜀 (𝜔)

𝐻21
𝜀 (𝜔) 𝐻22

𝜀 (𝜔) ⋯ 𝐻2𝑁𝑖
𝜀 (𝜔)

⋮ ⋮ ⋮ ⋮
𝐻𝑁𝑜1
𝜀 (𝜔) 𝐻𝑁𝑜2

𝜀 (𝜔) ⋯ 𝐻𝑁𝑜𝑁𝑖
𝜀 (𝜔)]

 
 
 
 

= ∑ Δ𝑖
−1.𝑚

𝑖=1

[
 
 
 
𝜓1𝑖𝜙1𝑖 𝜓1𝑖𝜙2𝑖 ⋯ 𝜓1𝑖𝜙𝑁𝑖 𝑖
𝜓2𝑖𝜙1𝑖 𝜓2𝑖𝜙2𝑖 ⋯ 𝜓2𝑖𝜙𝑁𝑖 𝑖
⋮ ⋮ ⋮ ⋮

𝜓𝑁𝑜 𝑖𝜙1𝑖 𝜓𝑁𝑜 𝑖𝜙2𝑖 ⋯ 𝜓𝑁𝑜 𝑖𝜙𝑁𝑖 𝑖]
 
 
 

   (5.8)                                                        

where the number of strain gauge measurements is represented by 𝑁𝑜 and the number 

of excitation points is represented by 𝑁𝑖. 

From Eqn. (5.8) it is seen that each row of the SFRF matrix contains information 

related to the displacement modes (𝜙), and each column in the SFRF matrix contains 

information related to the strain modes (𝜓).  Basically, the strain mode shapes can be 
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obtained by fixing an excitation point and measuring the strain responses. Meanwhile, the 

displacement mode shapes can be obtained by moving the excitation point and using the 

strain gage as a fixed reference sensor. 

Therefore, SFRF may be applied in two ways, to predict structural stresses due to 

various loading conditions, as well as to predict the load applied using the output response 

of the strain gages. A system modeled using SFRF has its input-output relationship as 

given in Eqn. (5.9): 

{
 

 
𝜀1(𝜔)

𝜀2(𝜔)

⋮
𝜀𝑁𝑜 (𝜔)}

 

 
=  

[
 
 
 
 
𝐻11
𝜀 (𝜔) 𝐻12

𝜀 (𝜔) ⋯ 𝐻1𝑁𝑖
𝜀 (𝜔)

𝐻21
𝜀 (𝜔) 𝐻22

𝜀 (𝜔) ⋯ 𝐻2𝑁𝑖
𝜀 (𝜔)

⋮ ⋮ ⋮ ⋮
𝐻𝑁𝑜1
𝜀 (𝜔) 𝐻𝑁𝑜2

𝜀 (𝜔) ⋯ 𝐻𝑁𝑜𝑁𝑖
𝜀 (𝜔)]

 
 
 
 

 {

𝐹1(𝜔)

𝐹2(𝜔)
⋮

𝐹𝑁𝑖(𝜔)

} (5.9) 

where 𝐹𝑁𝑖 (𝜔) is the Fourier spectrum of the excitation force at point 𝑁𝑖, 𝜀𝑁𝑜 (𝜔) is the 

Fourier spectrum of the response at point 𝑁𝑜 , 𝐻𝑁𝑜𝑁𝑖
𝜀 (𝜔) is the SFRF with input point 𝑁𝑖 

and response point 𝑁𝑜 . Rewriting Eqn. (5.9) gives: 

{𝜀(𝜔)} = [𝐻𝜀(𝜔)]{𝐹(𝜔)} (5.10) 

If the number of excitation points 𝑁𝑖 and the number of response points 𝑁𝑜 are the same 

(𝑁𝑖 = 𝑁𝑜), force spectra are identified by pre-multiplying the inverse of the frequency 

response function matrix 𝐻𝜀 with the strain vector as follows: 

{𝐹(𝜔)} = [𝐻𝜀(𝜔)]−1 {𝜀(𝜔)} (5.11) 

On the other hand, to improve the identification accuracy of the force spectra, it is 

common that the number of response points is usually more than the number of excitation 

points (𝑁𝑖 < 𝑁𝑜). In this case, the excitation force is identified using the least squares 

method. This condition is desirable to increase the accuracy of identification. The 

excitation force is identified as follows: 
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{𝐹(𝜔)} = [𝐻𝜀(𝜔)]+ {𝜀(𝜔)} (5.12) 

where 𝐻𝜀(𝜔)+  is pseudo-inverse matrix given by: 

(𝐻𝜀(𝜔)+ = (𝐻𝜀(𝜔)𝐻𝐻𝜀(𝜔))−1𝐻𝜀(𝜔)𝐻) (5.13) 

The superscript H indicates the conjugate transpose. The excitation force is 

estimated by using Eqn. (5.11) or (5.12). 

 

5.2 Strain Transmissibility for MDOF system  

To develop the strain transmissibility for MDOF system, one can take advantage 

of the similarity between Eqn. (4.5) and Eqn. (5.11) so the procedure described earlier in 

Sec. 4.1 can be used. 

Based on harmonically applied forces at coordinates P, one may establish that 

strains at coordinates J and I are related to the applied forces at coordinates P by the 

following relationships: 

{𝜀(𝜔)}𝐽 = [𝐻
𝜀(𝜔)]𝐽𝑃{𝐹(𝜔)}𝑃  (5.14) 

{𝜀(𝜔)}𝐼 = [𝐻
𝜀(𝜔)]𝐼𝑃{𝐹(𝜔)}𝑃 (5.15) 

From Eqn. (5.15) using  {𝐹(𝜔)}𝑃 = [𝐻𝜀(𝜔)]𝐼𝑃
+ {𝜀(𝜔)}𝐼  and substituting in Eqn. (5.14) 

yields: 

 {𝜀(𝜔)}𝐽 = [𝐻
𝜀(𝜔)]𝐽𝑃[𝐻

𝜀(𝜔)]𝐼𝑃
+ {𝜀(𝜔)}𝐼 = [𝑇𝜀(𝜔)]𝐽𝐼

𝑃  {𝜀(𝜔)}𝐼 (5.16) 

where [𝐻𝜀(𝜔)]𝐼𝑃
+   denotes the pseudo-inverse of the SFRF matrix and the strain 

transmissibility matrix that relates both sets of strains is defined as: 



 
 

80 

 

 [𝑇𝜀(𝜔)]𝐽𝐼
𝑃 = [𝐻𝜀(𝜔)]𝐽𝑃[𝐻

𝜀(𝜔)]𝐼𝑃
+  (5.17) 

Here [𝐻𝜀(𝜔)]𝐼𝑃
+  is the pseudo-inverse of the sub-matrix [𝐻𝜀(𝜔)]𝐼𝑃 and can be obtained 

experimentally or analytically. The only required condition for the pseudo inverse to exist 

in Eqn. (5.17) is that the number of strain data measurements on I coordinates should be 

greater than or equal to the number of applied point loads on P coordinates i.e.,  𝑁𝐼 ≥ 𝑁𝑃. 

 An important property of the strain transmissibility matrix to be used here is that it 

does not depend on the magnitude of the involved forces and only requires the knowledge 

of a set of coordinates that include all the coordinates where the forces are applied. One 

important aspect of this definition is that submatrices [𝐻𝜀(𝜔)]𝐽𝑃 and  [𝐻𝜀(𝜔)]𝐼𝑃 may be 

obtained experimentally or analytically. 

 

5.3 Force Localization Based on Strain Transmissibility and Force 

Reconstruction 

This section shows the force localization algorithm based on the strain 

transmissibility and reconstruction using the measured strains and the updated numerical 

model. As discussed earlier in Sec. 4.4 from the previous chapter, the force identification 

problem is divided into two distinct steps. The localization of the forces, i.e., the 

identification of the number and location of the applied forces using the strain 

transmissibility concept, followed by estimation of magnitudes of the loads at those 

predicted locations.  
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Based on the measured strain data, a search for the number and location of forces 

is performed using strain transmissibility. Basically, this step consists of searching for the 

strain transmissibility matrix that corresponds to the dynamics of the system and using 

the available measured strain data and the numerical model involved. Once the 

corresponding strain transmissibility matrix is found, one has a solution for the number 

and location of the forces applied to the structure. 

The second phase consists of reconstructing the load vector with the results 

obtained in the first phase. A more detailed description about this methodology is given 

in the following sections. 

5.3.1 Force Localization 

At the first stage, to apply the method suggested in the previous section, one finds 

the strain transmissibility matrix that transforms the dynamic strains {𝜀(𝜔)}𝐼 into {𝜀(𝜔)}𝐽. 

As one does not know the location of the applied forces, all the possibilities should be 

covered until the calculated strains {𝜀(𝜔)}𝐽 match the measured ones {𝜀̃(𝜔)}𝐽 over a 

range of frequencies. Then calculation of vector {𝜀(𝜔)}𝐽 is done by using Eqn. (5.16)  

The maximum number of forces must be less than or equal to the dimension of the 

known dynamic strain vector {𝜀(𝜔)}𝐼. 

The successive combinations of the tested nodes are obtained as described in 

Sec. 4.4.1. The error in each combination is kept in a vector to identify the combination 

with the least associated error (in absolute value). Firstly, the algorithm scrolls through 

the possible combinations of position and number of forces. For each combination, the 

associated error between the calculated vector {𝜀(𝜔)}𝐽 and the measured strain vector 
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{𝜀̃(𝜔)}𝐽 is calculated; this is carried out over a frequency range defined by the user. The 

error between the predicted and the measured dynamic strain at each coordinate k can 

be defined as: 

 𝑆𝑘 = ∑(log(𝑎𝑏𝑠(𝜀̃𝐽𝑘 (𝜔))) − log (𝑎𝑏𝑠 (𝜀𝐽𝑘 (𝜔)) ))
2

𝜔

 (5.18) 

For each combination, the calculated error is kept in an entry of the error vector and 

analyzed later. The accumulated error for a given combination of coordinates where F 

can be located is the norm of 𝑒: 

 {𝑒} = {𝑆𝑘} (5.19) 

The calculations are repeated for successive combinations of the number and the 

position of forces. The combination of the force locations that gives the lowest error leads 

to the number and position of the forces applied to the structure. As already mentioned, 

the maximum number of forces that can be found is equal to the dimension of the known 

dynamic strain vector. 

5.3.2 Force Reconstruction 

In a second phase, the reconstruction of the force amplitudes consists of solving 

an inverse problem using the measured dynamic strains {𝜀(𝜔)}𝐼 as in Eqn. (5.20). 

{𝐹(𝜔)}𝑃 = [𝐻
𝜀(𝜔)]𝐼𝑃

+   {𝜀(𝜔)}𝐼                                                      (5.20) 

Note that for the given system to be invertible, the number of dynamic strains to 

be used (set I) must be higher than or equal to the number of applied forces (set P). 
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However, this is always verified, as the first step of the solution process already forces a 

satisfaction of this requirement. 

 

5.4 Strain Transmissibility and D-optimal design 

As shown in Sec. 4.5.2 in the previous chapter, using the non-optimal locations of 

sensors (set I) does not provide correct load locations since the error function is likely to 

get trapped at a local minimum. In this section, an approach based upon the D-optimal 

design and the strain transmissibility concept is proposed to help select the optimum 

locations of the strain gages such that precise load estimates are obtained.  

It is well known that strain data in {𝜀(𝜔)}𝐼 is prone to measurement errors and the 

inverse problem identified by Eqn. (5.20) tends to be ill-conditioned. The precision with 

which {𝐹(𝜔)}𝑃 is estimated from a measured strain response depends on the number, 

the locations of strain gages on the structure, and the number of retained modes. For a 

given number of strain gages g, and a given number of retained modes m, following the 

D-optimal design algorithm described at length in Sec. 4.6.4, the candidate set from the 

strain modal matrix [𝜓]𝑐𝑎𝑛𝑑. is searched to determine its optimum subset [𝜓]𝑜𝑝𝑡.. Then 

the strain frequency response functions (SFRF) at optimum locations Iopt. for all possible 

load locations for a given range of frequencies can be calculated to get [𝐻𝜀(𝜔)]𝑜𝑝𝑡 . 

Based on these optimum locations, the strain data will be measured to get  {𝜀(𝜔)}𝐼(𝑜𝑝𝑡). 

Following the procedure described in subsection 4.4.1 the accumulated errors for 

all possible applied loads are calculated as given in Eqn. (5.18) and saved in a vector 
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error to be analyzed later such that the minimum error will give the combination number 

that corresponds to the right load locations.  

As a result, from the first phase, applying the second phase to estimate load 

magnitudes can be done using Eqn. (5.21): 

{𝐹(𝜔)}𝑃 = [𝐻
𝜀(𝜔)]𝐼𝑃(𝑜𝑝𝑡)

+   {𝜀(𝜔)}𝐼(𝑜𝑝𝑡)   (5.21) 

Two examples dealing with numerical validation of the proposed approach are 

presented to illustrate the effectiveness of using the optimal strain gages’ locations to 

identify the loads applied to the structure. In addition, the effect of the number of modes 

retained on the accuracy of the recovered load is also presented. 

 

5.5 Examples 

Two numerical examples are presented next to identify the loads applied to a structure 

using the concept of strain transmissibility. Optimum locations of strain gages are 

determined using the D-optimal algorithm programmed in MATLAB. The first example 

deals with the prediction of a point load acting on a motorcycle horn bracket whereas the 

second example addresses the prediction of two loads applied to a simply supported 

beam. The influence of the number of retained modes on the quality of the load estimates 

is also demonstrated. The finite element (FE) models of the test components were 

created using the ANSYS-APDL software.  

5.5.1 Motorcycle Horn Bracket 

This example deals with the prediction of a point load acting on a motorcycle horn 

bracket. A finite element model of the bracket was developed in ANSYS using SHELL181 
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elements. Without loss of generality, the system is assumed to be undamped. The finite 

element model including boundary conditions and the applied load is shown in Fig. 5.1. 

All degrees of freedom at the two holes were restrained. The model consists of 198 shell 

elements and has 233 unconstrained nodes with 6 degrees of freedom per node. The 

total number of degrees of freedom was 1398. A single point force on Y direction was 

applied to node number 142 and is given as: 

𝐹(𝑡) = 5000sin(60𝑡) + 8000sin (40𝑡) 

In this example, assuming the number of applied loads is known in advance, two cases 

were implemented. The first case is using the strain transmissibility for the load location 

and the magnitude prediction assuming the load direction is known in advance. The 

second case is using the strain transmissibility for the load location and the magnitude 

prediction when the load direction is assumed to be unknown. 

 

Case 1: Point-load prediction using strain transmissibility and optimum strain 

gages locations for a known load direction 

In the first phase, the  search process to predict  the load direction and the location 

on the structure depends on the degree of freedom for each node ; knowing the number 

and the direction of the applied load ahead of time will shorten the search process and 

save the computational time, so as a first step; it may be suitable to construct the reduced 

strain modal matrix such that it has only the strain modes in the same direction as the 

applied load. For this example, the reduced strain-modal matrix will have 233 strain 
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normal modes in the Y direction. Therefore, the candidate strain-modal matrix 

[𝜓𝑌 ]𝑐𝑎𝑛𝑑.will be [𝜓𝑌 ]233𝑥233 , and this will be the input for the D-optimal program. 

Using the D-optimal algorithm to find the optimum locations for ten strain gages 

(g=10), and for a given number of retained Y strain modes m that capture at least 90% 

of the cumulative mass fraction, the candidate set from the strain modal matrix [𝜓𝑌 ]𝑐𝑎𝑛𝑑.is 

searched to determine its optimum subset [𝜓𝑌]𝑜𝑝𝑡 . . After [𝜓𝑌 ]𝑜𝑝𝑡 .is found, the optimum 

strain gages locations are determined (Iopt). Then the strain frequency response functions 

at optimum locations for all possible load locations for a given range of frequencies are 

calculated using a MATLAB program to get [𝐻𝑌
𝜀(𝜔)]𝑜𝑝𝑡. Based on these optimum 

locations, the strain data are measured to get  {𝜀𝑌(𝑡)}𝐼(𝑜𝑝𝑡) . For the measured strains at 

J coordinates  {𝜀𝑌(𝑡)}𝐽, one can arbitrarily pick any locations. In the example considered 

here, J coordinates are assumed to be the same I coordinates. (See Table 5.1).  

The strain vector can be found directly from the finite element model in ANSYS at 

the optimal I coordinates  {𝜀𝑌(𝑡)}𝐼(𝑜𝑝𝑡)  and at J coordinates {𝜀𝑌(𝑡)}𝐽. From  {𝜀𝑌(𝑡)}𝐼(𝑜𝑝𝑡)  

and {𝜀𝑌(𝑡)}𝐽 , a MATLAB program is used to get the strain data in a frequency 

domain {𝜀𝑌(𝜔)}𝐼(𝑜𝑝𝑡) and {𝜀𝑌(𝜔)}𝐽 using (fft) command. Then the procedure described in 

subsection 4.4.1 is implemented to calculate the accumulated errors for all possible 

applied load locations as given in Eqn. (5.18) and plotted as shown in Fig. 5.2. For this 

case where the load direction is known a priori, the total number of combinations explored 

for one applied load is 233. The applied load location at node 142 corresponds to 

combination number 142. It can be seen from Fig. 5.2 that there is a minimum value at 

this combination number that corresponds to the load location being predicted correctly.  
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Next, the second phase is implemented to reconstruct the load magnitude for a 

chosen number of retained modes (m=25 modes); those retained modes should capture 

at least 90% of the cumulative mass fraction. Using Eqn. (5.21) and transforming into a 

time domain using an Inverse Fourier Transform (IFT), the reconstructed load is plotted 

along with the applied load as shown in Fig.5.3. It can be seen from the figure that the 

load trends are covered with reasonable accuracy. 

 

Case 2: Point-load prediction using strain transmissibility and optimum strain 

gages locations for an un-known load direction 

There are some applications where the directions of loads under consideration are 

unknown. In this case, to use the strain transmissibility for load prediction, the same 

procedure will be followed except that the number of combinations to be tested will be 

increased. In this example where there are 233 unconstrained nodes, each node has 

three possible directions for the applied load (X, Y, and Z) directions, so the total number 

of combinations is 699. Therefore, the candidate strain-modal matrix [𝜓]𝑐𝑎𝑛𝑑.will be 

[𝜓𝑋𝑌𝑍]699x699 , and this will be the input for the D-optimal program. 

Applying the D-optimal algorithm to find the optimum locations for ten strain gages 

(g=10), and for a given number of retained strain modes m, the candidate set from the 

strain modal matrix [𝜓]𝑐𝑎𝑛𝑑.is searched to determine its optimum subset [𝜓]𝑜𝑝𝑡 .. After 

[𝜓]𝑜𝑝𝑡 .is found, the optimum strain gages locations are determined (Iopt). Then the strain 

frequency response functions at optimum locations for all possible load locations for a 

given range of frequencies are calculated to get [𝐻𝑋𝑌𝑍
𝜀 (𝜔)]𝑜𝑝𝑡, based on these optimum 

locations (Iopt) and choosing J coordinates for this example as I coordinates. (see Table 
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5.2). The strain data  {𝜀𝑋𝑌𝑍(𝑡)}𝐼(𝑜𝑝𝑡) and  {𝜀𝑋𝑌𝑍(𝑡)}𝐽  could be measured experimentally or 

found directly from the finite element model in ANSYS. Later, all strain data 

 {𝜀𝑋𝑌𝑍(𝑡)}𝐼(𝑜𝑝𝑡)and {𝜀𝑋𝑌𝑍(𝑡)}𝐽 are transformed to a frequency domain through a MATLAB 

program using (fft) command to get  {𝜀𝑋𝑌𝑍(𝜔)}𝐼(𝑜𝑝𝑡) and {𝜀𝑋𝑌𝑍(𝜔)}𝐽.  

Following the procedure described in subsection 4.4.1 the accumulated errors for 

all possible applied load locations are calculated as given in Eqn. (5.18) and plotted as 

shown in Fig. 5.4. For this case where the load direction is unknown, the total number of 

combinations explored for one applied load is 699. The applied load location at node 142 

on Y direction corresponds to combination number 425. It can be seen from Fig. 5.4 there 

is a minimum value at this combination number that corresponds to the load location and 

direction being predicted correctly. 

It is worth mentioning that in Fig.5.4, there are other two minima that belong to the 

following combination numbers, 410, which corresponds to the load on the Y direction for 

node 137 and, 440, which corresponds to the load on the Y direction for node 147. Both 

nodes are very close from the exact applied load location. (See Fig. 5.1).  

In phase two, the load magnitude on the predicted load location is constructed 

using Eqn. (5.21) for a chosen number m of retained modes and transformed into a time 

domain using (IFT). To study the effect of the number of the retained modes m on the 

accuracy of the prediction process, two options were explored, one with 15 retained 

modes (m=15), and the second one with 25 retained modes (m=25). The reconstructed 

loads are plotted along with the applied load as shown in Figs. 5.5 and 5.6. It can be seen 

from the figures that the load trends are covered with reasonable accuracy and increasing 

the number of retained modes increases the prediction accuracy. 
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5.5.2 3D Cantilevered Beam 

The numerical example discussed previously dealt with a single load prediction. 

Next a cantilevered beam is considered where two dynamic loads in different directions 

are applied to the cantilevered steel beam described in Sec. 4.6.5 (see Fig. 5.7). One of 

the loads is applied in the  Z direction on node 3 and described as 𝑓3(𝑡) = 500 sin (3𝜋𝑡), 

and the other applied load is a vertical load in the Y direction on node 22 and given as 

𝑓22(𝑡) = 500 cos (3𝜋𝑡). 

As shown in the previous example, the load identification process will involve two 

phases. The first phase is to estimate the number, the locations, and the directions of the 

applied loads. The second phase is to reconstruct the loads’ magnitudes by using the 

strain transmissibility and optimum locations for the strain gages. As discussed earlier, a 

limited subset of modes is retained to reconstruct the applied loads. The strain modal 

matrix of the FE model of the beam can be obtained from the strain modal analysis using 

ANSYS.  

Considering the modes in the Y and Z directions only, the reduced strain modal 

matrix will have 60 strain normal modes. Therefore, the candidate strain-modal matrix 

[𝜓]𝑐𝑎𝑛𝑑.will be [𝜓𝑌𝑍 ]60x60 , which will be the input for the D-optimal program. 

Using the D-optimal algorithm to find the optimum locations for five strain gages 

(g=5), and for a given number of retained strain modes m the candidate set from the 

strain modal matrix [𝜓]𝑐𝑎𝑛𝑑. is searched to determine its optimum subset [𝜓]𝑜𝑝𝑡 .. After 

[𝜓]𝑜𝑝𝑡 .is found, the optimum strain gages locations are determined (Iopt). Then the strain 

frequency response functions at optimum locations for all possible load locations for a 
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given range of frequencies are calculated to get [𝐻𝑌𝑍
𝜀 (𝜔)]𝑜𝑝𝑡 . Based on these optimum 

locations and choosing J coordinates to be as I coordinates for this example (see Table 

5.3), the strain vector is obtained for   {𝜀𝑌𝑍(𝑡)}𝐼(𝑜𝑝𝑡) and  {𝜀𝑌𝑍(𝑡)}𝐽 from the finite element 

model in ANSYS, then transformed to  {𝜀𝑌𝑍(𝜔)}𝐼(𝑜𝑝𝑡) and {𝜀𝑌𝑍(𝜔)}𝐽  by using a MATLAB 

program.  

Next, the accumulated errors for all possible applied load locations and directions 

are calculated as given in Eqn. (5.18) and plotted as shown in Fig. 5.8. For this example, 

there are 30 unconstrained nodes, so the number of combinations with the assumption 

of one load applied in the Y or Z direction is 60 combinations. While the number of 

combinations with the assumption of two loads applied in the Y and/or Z direction is 1769 

combinations, so the total number of combinations to cover these two assumptions is 

1829 combinations. The combination number that corresponds to the case of two applied 

loads on node 3 in the Z direction and on node 22 in the Y direction is 152. It can be seen 

from Fig. 5.8 that there is a minimum value at this combination number that corresponds 

to the load’s locations and directions being predicted correctly. Other local minima can 

be seen in Fig. 5.8, these are the following: 

i.) At combination number 144 that corresponds to the case of two loads 

applied on (3Z,17Y). 

ii.) At combination number 669 that corresponds to the case of two applied 

loads on (8Z,17Y). 

iii.) At combination number 679 that corresponds to the case of two loads 

applied on (8Z,22Y). 
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From Fig.5.7 it is shown that node 3 lies on top of node 8 and node 22 lies on top of node 

17, which explains why there are minimum errors are observed at these combination 

numbers. 

One more point can be clarified from Fig. 5.8 regarding the errors’ values for 

combination numbers ranging from 1 to 60 that belong to the assumption of a single load 

applied. The errors values in that range have significant large magnitudes compared with 

the errors’ magnitudes for combination numbers that belong to the case of two loads 

applied, which assure that this structure is subjected to two loads. 

Next, the load magnitude reconstruction phase is implemented by using Eqn. 

(5.21) and transforming into a time domain using Inverse Fourier Transform (IFT). The 

reconstructed loads are plotted along with applied loads as shown in Figs. 5.9 and 5.10 

It can be seen from the figures that the load trends are covered with reasonable accuracy.  

It may be noted that these figures correspond to the case when no error was assumed 

to be present in strain measurements. Therefore, to simulate a more realistic scenario 

where strains are measured experimentally, each element in {𝜀𝑌𝑍(𝑡)} was corrupted with 

normally distributed random errors with zero mean and standard deviation of 10% of its 

value. The applied and recovered loads, with errors in strain measurements, are plotted 

in Figs. 5.11 and 5.12. Once again, it can be seen that the proposed approach is able to 

recover the applied loads fairly accurately. It is worth mentioning that due to the difference 

in the magnitudes of moments of inertia about y- and z-axes, the strains induced due to 

loads about y- and z-directions are quite different in magnitudes. Since the strain induced 

to load in the y-direction is significantly larger than the strain induced by a load in the z-
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direction, the load estimates in z-direction are more susceptible to errors compared to 

imposed loads in y-direction.  

 

5.6 Conclusions and Summary 

In this chapter, load identification (load location, direction and magnitude) by using 

the concept of strain transmissibility has been proposed and examined for two different 

multi degree of freedom continuous systems. Based on the results presented, using 

optimum locations of strain gages as determined by the D-optimal algorithm improves the 

identification for the unknown loads especially when multiple loads are applied and when 

the error function has multiple local minima. In addition, it was seen that increasing the 

number of retained modes to reconstruct the response improves the accuracy of load 

identification results. Practically there are limitations on the number of modes whose MPF 

can be estimated from strain gages measurements.  This issue on model condensation 

will be conducted in chapter 7 to overcome this limitation and so that the accuracy of load 

identification results can be improved further. 

Using strain gages as system responses has been verified numerically for its 

effectiveness in solving the load identification problem based on the strain transmissibility 

even in the presence of simulated measurement errors, the proposed method yields 

promising results. In the interest of studying the effect of using different types of sensors 

in the accuracy of load prediction; a computational comparison for load magnitudes’ 

identification using accelerometers and strain gages will be presented in the coming 

chapter.  
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Table 5.1 Input Data for Motorcycle Horn Bracket with Known Load Direction 

Optimal I coordinates  [14,30,75,83,106,168,191,193,228,239] 

J coordinates [14,30,75,83,106,168,191,193,228,239] 

P coordinate [142] 

 

 

 

Table 5.2 Input Data for Motorcycle Horn Bracket with Unknown Load Direction 

Optimal I coordinates  [14,75,83,106,159,191,193,200,228,238] 

J coordinates [14,75,83,106,159,191,193,200,228,238] 

P coordinate [142] 

 

 

 

Table 5.3 Input Data for 3D Cantilevered Beam with Two Loads Applied in Different 

Directions 

Optimal I coordinates  [11,14,16,19,24] 

J coordinates [11,14,16,19,24] 

P coordinate [3Z,22Y] 
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Figure 5.1 Finite Element Model for Motorcycle Horn Bracket 

 

 

Figure 5.2 Accumulated Error for Motorcycle Horn Bracket Example Case 1 
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Figure 5.3 Applied and Predicted Loads Using Strain Transmissibility with 25 Retained 

Modes and 10 Strain Gages  

 

 

Figure 5.4 Accumulated Error for Motorcycle Horn Bracket Example Case 2 
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Figure 5.5 Applied and Predicted Loads Using Strain Transmissibility with 15 Retained 

Modes and 10 Strain Gages  

 

 

Figure 5.6 Applied and Predicted Loads Using Strain Transmissibility with 25 Retained 

Modes and 10 Strain Gages 
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Figure 5.7 Finite Element Model of a 3D Cantilevered Beam with Two Loads Applied in 

Different Directions 

 

 

Figure 5.8 Accumulated Error for The Cantilever Beam with Two Loads 
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Figure 5.9 Applied and Reconstructed Load on Node 3 in Z Direction 

 

Figure 5.10 Applied and Reconstructed Load on Node 22 in Y Direction 
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Figure 5.11 Applied and Reconstructed Load on Node 3 in Z Direction with Strain Errors 

 

 

Figure 5.12 Applied and Reconstructed Load on Node 22 in Y Direction with Strain 

Errors 
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Chapter 6 - Frequency Response Based Indirect Load 

Identification Using Optimum Placement of Strain Gages and 

Accelerometers 

The previous chapters presented load identification using motion and strain 

transmissibility; both approaches are based on the concept of FRF. The process of 

indirect load identification in the frequency domain, using the FRF, yields a linear 

relationship between the measured response and the excitation load. However, the FRF 

matrix is nearly singular and ill-conditioned. A review of approaches proposed to address 

the problem ill-conditioning in frequency domain has been recently presented by Hui et 

al. (2017). 

One of the main features that affects the accuracy of the load prediction is the type 

of sensor used for output response measurements. As mentioned earlier, Hillary and 

Ewins (1984) investigated the effect of sensor type on the accuracy of load prediction. 

They concluded that the strain-based model gave more accurate results than the 

acceleration-based model because the strain responses are more influenced by higher 

modes at low frequencies; therefore, they capture the effect of higher modes better than 

the acceleration responses. Han and Wicks (1990) also studied the application of 

displacement and strain measurements. As a conclusion from both studies, it is apparent 

that selection of an appropriate type of sensor can improve the condition of the frequency 

response function matrix, thereby leading to better force predictions. 

Yang et al. (2014) compared a use of two types of sensors, strain gages and 

accelerometers. They showed experimentally that using strain gages for load 
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identification improves the condition of the solution thereby resulting in a more robust 

solution. Another study done by Manzato et al. (2014) compared strain based modal 

analysis with modal analysis using accelerometers and presented the possibility of 

combining strain and acceleration signals to derive a common model. 

This chapter presents a comparative study for indirect identification of dynamic 

loads acting on a structure through different types of measurement of structural response 

at a finite number of optimally selected locations. Two different types of sensors are 

investigated to measure the structural response. These include a use of accelerometers 

that leads to the identification of the displacement mode shapes as explained in Chapter 

4. The second measurement approach involves a use of strain gages as done in Chapter 

5 since strain measurements are directly related to imposed loads. A use of mixed strain-

acceleration measurements is also presented in this chapter.  Optimum sensor locations 

are determined herein using the D-optimal design algorithm that provides most precise 

load estimates. The similarities and differences between acceleration-based load 

identification and strain-based load identification are discussed through numerical 

examples. The effect of the number of retained modes on the accuracy of load recovered 

is also investigated. 

From chapters 4 and 5, the two approaches based on response (displacement and 

strain) transmissibility give accurate load location prediction when using optimum 

locations of sensors. The comparison between the two approaches will be done utilizing 

the assumption if load location is known a priori such that the magnitude prediction will 

be tested for different number of modes retained.  
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6.1 Theoretical Development  

Consider the inverse problems defined in Eqn. (4.5) and Eqn. (5.12) and expand 

them in matrix format so the excitation force is identified as follows: 

{

𝐹1(𝜔)

𝐹2(𝜔)
⋮

𝐹𝑁𝑖 (𝜔)

} =

[
 
 
 
 𝐻11

𝑑 (𝜔) 𝐻12
𝑑 (𝜔) ⋯ 𝐻1𝑁𝑖

𝑑 (𝜔)

𝐻21
𝑑 (𝜔) 𝐻22

𝑑 (𝜔) ⋯ 𝐻2𝑁𝑖
𝑑 (𝜔)

⋮ ⋮ ⋮ ⋮
𝐻𝑁𝑜1
𝑑 (𝜔) 𝐻𝑁𝑜2

𝑑 (𝜔) ⋯ 𝐻𝑁𝑜𝑁𝑖
𝑑 (𝜔)]

 
 
 
 
+

{
 

 
𝑑1(𝜔)

𝑑2(𝜔)
⋮

𝑑𝑁𝑜 (𝜔)}
 

 
 

(6.1) 

{

𝐹1(𝜔)

𝐹2(𝜔)
⋮

𝐹𝑁𝑖 (𝜔)

} =   

[
 
 
 
 
𝐻11
𝜀 (𝜔) 𝐻12

𝜀 (𝜔) ⋯ 𝐻1𝑁𝑖
𝜀 (𝜔)

𝐻21
𝜀 (𝜔) 𝐻22

𝜀 (𝜔) ⋯ 𝐻2𝑁𝑖
𝜀 (𝜔)

⋮ ⋮ ⋮ ⋮
𝐻𝑁𝑜1
𝜀 (𝜔) 𝐻𝑁𝑜2

𝜀 (𝜔) ⋯ 𝐻𝑁𝑜𝑁𝑖
𝜀 (𝜔)]

 
 
 
 
+

 

{
 

 
𝜀1(𝜔)

𝜀2(𝜔)

⋮
𝜀𝑁𝑜 (𝜔)}

 

 
 

(6.2) 

where [𝐻𝑁𝑜𝑁𝑖
𝑑 (𝜔)] is the displacement frequency response function DFRF with input 

point 𝑁𝑖 and response point 𝑁𝑜, and  [𝐻𝑁𝑜𝑁𝑖
𝜀 (𝜔)] is the strain frequency response function 

SFRF with input point 𝑁𝑖 and response point 𝑁𝑜. Both of the DFRF and SFRF can be 

found by using the displacement mode shape matrix [𝜙] and strain mode shape matrix 

[𝜓] as shown in Eqn. (4.4) and Eqn. (5.7) respectively. 

It is conjectured that combining strain gage and accelerometer measurements can 

lead to many benefits. It is known the strain modes can provide valuable information that 

otherwise is not obtainable by exclusively using accelerometers. But in some complex 

structures, interpreting the strain modes can be very hard. Therefore, using both strain 

gage and accelerometer measurements, one can combine the ease of interpretation that 

comes from displacement mode shapes, to the additional strain information provided by 

the strain modes.  
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The combined strain and displacement frequency response function (SDFRF) has 

the same format but is composed of the displacement and strain parts and can also be 

viewed in matrix form as: 

{
 
 

 
 
𝐹1(𝜔)
𝐹2(𝜔)
⋮

𝐹𝑁(𝜔)
⋮

𝐹𝑁𝑖 (𝜔)}
 
 

 
 

=

[
 
 
 
 
 
 
𝐻11
𝜀 (𝜔) 𝐻12

𝜀 (𝜔) ⋯ 𝐻1𝑁𝑖
𝜀 (𝜔)

𝐻21
𝜀 (𝜔) 𝐻22

𝜀 (𝜔) ⋯ 𝐻2𝑁𝑖
𝜀 (𝜔)

⋮ ⋮ ⋮ ⋮
𝐻𝑁1
𝑑 (𝜔) 𝐻𝑁2

𝑑 (𝜔) ⋯ 𝐻𝑁𝑁𝑖
𝑑 (𝜔)

⋮ ⋮ ⋮ ⋮
𝐻𝑁𝑜1
𝑑 (𝜔) 𝐻𝑁𝑜2

𝑑 (𝜔) ⋯ 𝐻𝑁𝑜𝑁𝑖
𝑑 (𝜔)]

 
 
 
 
 
 
+

 

{
 
 

 
 
𝜀1(𝜔)

𝜀2(𝜔)

⋮
𝑑𝑁(𝜔)

⋮
𝑑𝑁𝑜

(𝜔)}
 
 

 
 

 

 

(6.3) 

  Rewriting Eqn. (6.3): 

{𝐹(𝜔)} = [𝐻𝜀𝑑(𝜔)]+ {𝜀𝑑(𝜔)} (6.4) 

where [𝐻𝜀𝑑(𝜔)] is the SDFRF and {𝜀𝑑(𝜔)} is the strain response and the displacement 

response measurements vector. 

 

6.2 D-optimal Design for Sensors Placement in FRF 

The previous section presents the inverse problem whether using displacement 

measurement or strain measurements as in Eqn. (6.1) and Eqn. (6.2) or using the mixed 

measurements as in Eqn. (6.3). As shown earlier, to improve the accuracy of the load 

location prediction problem, the placement of sensors at correct locations is important. 

Implementing the D-optimal algorithm explained earlier to get the optimum locations of 

sensors and re- writing Eqn. (6.1), Eqn. (6.2) and Eqn. (6.3) give: 

{𝐹(𝜔)} = [𝐻𝑑(𝜔)]𝑜𝑝𝑡
+  {𝑑(𝜔)}𝑜𝑝𝑡 (6.5) 
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{𝐹(𝜔)} = [𝐻𝜀(𝜔)]𝑜𝑝𝑡
+  {𝜀(𝜔)}𝑜𝑝𝑡 (6.6) 

{𝐹(𝜔)} = [𝐻𝜀𝑑(𝜔)]𝑜𝑝𝑡
+  {𝜀𝑑(𝜔)}𝑜𝑝𝑡 (6.7) 

  

6.3 Numerical Examples 

Two numerical examples are presented next to identify the loads applied to a structure 

using the concepts of DFRF, SFRF, as well as the SDFRF. Optimum locations of sensors 

are determined using the D-optimal algorithm programmed in MATLAB. A comprehensive 

flow chart of the solution procedure is given in Fig. 6.1 that describes the steps followed 

to identify the loads applied to a structure. The first example deals with estimation of point 

load applied to a simply supported beam whereas the second example addresses the 

estimation of load acting on a motorcycle horn bracket. The influence of the number of 

retained modes on the quality of load estimates is also demonstrated. The finite element 

(FE) models of the test components were created using the ANSYS-APDL software.  

 

6.3.1 Cantilevered Beam 

A cantilevered steel beam with same physical properties mentioned in Sec. 4.6.6 

is used and modeled using Solid45 element in ANSYS (See Fig.6.2). Without loss of 

generality, the system is assumed to be undamped. All degrees of freedom at the left end 

of the beam were constrained. The model consists of 200 free nodes with three degrees 

of freedom per node, i.e., the total number of degrees of freedom in the FE model is 600. 
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The FE meshing should be done such that the distance between a node where a sensor 

placed, and its adjacent neighbors is not less than the physical size of the sensor. 

The system mass and stiffness matrices were generated using data provided by 

ANSYS in the Harwell-Boeing format. A harmonic point load was applied at the free end 

of the beam on node number 149 and is given as: 

𝐹(𝑡) = 500sin(30𝜋𝑡) + 350 cos (20𝜋𝑡) 

 

6.3.2 Numerical Results-Cantilevered Beam 

Three cases, based on a use of DFRF, SFRF, and SDFRF were chosen to 

illustrate load identification using optimal locations for strain gages and accelerometers. 

The influence of number of retained modes on the quality of load estimate is examined 

by looking at the root mean square (RMS) error between the applied load and the 

predicted load. The RMS error is calculated as: 

𝑅𝑀𝑆 = √
∑ (𝐹𝑡 − 𝐹̃𝑡 )

2𝑁
𝑡=1

𝑁
 

(6.8) 

where 𝐹𝑡  is the magnitude of the applied load at time= t and 𝐹̃𝑡  is the magnitude of the 

predicted load. 

Case I: Load identification using SFRF and optimum strain gage locations 

Using the D-optimal algorithm and Eqn. (6.6), the optimum locations for seven 

strain gages are identified to be node numbers [7,22,24,45,60,80,184]. The load 

prediction model is tested for varying number of modes retained in dynamic analysis. 
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Numerical results from use of strain frequency response function are given in Table 6.1. 

The applied and the recovered loads for ten and twenty retained modes are plotted in 

Figs. 6.3 and 6.4. Based on the results obtained (Fig. 6.4), it is seen that the applied load 

can be identified using the SFRF and the optimal locations for the strain gages. Further, 

it can be concluded that the accuracy of the proposed approach is improved by increasing 

the number of the modes retained in Eqn. (6.6). 

A sensitivity analysis was performed by varying the number of sensors as well 

retained modes. The results are presented in Table 6.2. Based on the results presented 

in Table 6.2, it can be seen that (i) as the number of sensors used increases and/or (ii) 

as the number of retained modes increases, the RMS error reduces. 

Case II: Load identification using DFRF and optimum accelerometer locations 

Using the D-optimal algorithm and Eq. (6.5), the following nodes numbers 

[29,44,48,52,64,69,102] are identified as the optimum locations for seven 

accelerometers. The influence of number of retained modes on the accuracy of load 

estimates is examined. Results from use of displacement frequency response function 

are also given in Table 6.1. The applied and recovered loads are plotted in Figs. 6.5 and 

6.6. Based on the results obtained, it is seen that while the trends in the load applied are 

captured accurately using DFRF, the magnitude estimates are still off. As with the SFRF 

based approach, it is seen that the accuracy of the load estimates is improved by 

increasing the number of the modes retained in Eqn. (6.5).  

Comparing the results obtained using accelerometers with the previous case 

where strain gages are used, it is seen that the load identification using SFRF yields better 

results than those obtained using DFRF. One of the underlying reasons is that the 
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condition number value of SFRF matrix (Eq. 6.6) is smaller than the condition number 

value of the DFRF matrix (Eq. 6.5). 

Case III: Load identification using SDFRF and optimum strain gage and 

accelerometer locations 

Next, the D-optimal algorithm is used in conjunction with Eq. (6.7) to find the 

optimal locations for seven sensors that consist of five strain gages and two 

accelerometers. Nodes [9,22,30,45,83] are identified as optimum locations for the five 

strain gages whereas nodes [19,182] are identified as optimum accelerometer locations. 

As before, two results cases are presented to examine the influence of number of retained 

modes on the quality of results. Numerical results from combined use of strain and 

displacement frequency response functions are presented in Table 6.1. The applied and 

recovered loads are plotted in Fig. 6.7 and 6.8. 

Based on the results obtained, the load applied can be identified using the SDFRF 

and the optimal locations for both strain gages and accelerometers. Comparing the 

results for Case (iii) with the previous two cases, it is seen that the load identification using 

SDFRF has a better accuracy than using SFRF or DFRF for all three cases with 10, 15 

and 20 retained modes.  For the cases with 10, 15 and 20 retained modes presented in 

Table 6.1, when the RMS error values between SFRF and SDFRF approaches are 

compared, the results show that the average RMS error is reduced by 8% when using the 

SDFRF. Likewise, when comparing the RMS error values using SDFRF and DFRF 

approaches, the average RMS error is reduced by 40% when using SDFRF. 

An additional check on the recovery procedure using SDFRF is done by using non-

optimal locations for the strain gages and the accelerometers. Results for RMS error 
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values are shown in Table 6.3. The applied and the recovered loads are plotted in Figs.6. 

9 and 6.10. Based on the results and comparing them with the previous cases, it is clear 

that using non-optimal locations for sensors degrades the accuracy of the load 

identification. 

While is the loading used in this example has a zero mean, it was also seen that 

when a DC component is present in the applied load leading to a non-zero mean, the 

observed trends discussed above as well as the accuracy of load estimates does not 

change. 

 

6.3.3 Motorcycle Horn Bracket 

The next example deals with determination of a point load acting on a motorcycle 

horn bracket. The same model described in Sec. 5.5.1 is used (See Fig. (5.1)) with a 

single point force being applied to node number 142 and is given as: 

𝐹(𝑡) = 5000sin(60𝑡) + 8000sin (40𝑡) 

Using the D-optimum design algorithm, the optimum locations for the strain gages 

and the accelerometers were determined for different number of retained modes in the 

dynamic model. The results obtained using SFRF, DFRF and SDFRF approaches are 

presented next. 
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6.3.4 Numerical Results-Horn Bracket  

Case I: Load identification using SFRF and optimum strain gage locations 

Using Eqn. (6.6) and the D-optimal algorithm to find optimum locations for ten 

strain gages, the algorithm yielded the following nodes numbers 

[14,75,83,106,159,191,193,200,228,238] for sensor placement. The load prediction 

model is tested for varying number of modes retained in dynamic analysis. Numerical 

results from use of strain frequency response function are shown in Table 6.4. The applied 

and the recovered loads for fifteen and twenty-five retained modes are plotted in Figs. 

6.11 and 6.12. Based on the results obtained (Fig. 6.12), it is seen that the applied load 

can be identified using the SFRF and the optimal locations for the strain gages. Once 

again it is seen that the accuracy of the proposed approach is improved by increasing the 

number of the modes retained in Eqn. (6.6). 

Case II: Load identification using DFRF and optimum accelerometer locations 

Using Eqn. (6.5) and the D-optimal algorithm to find optimum locations for sensors, 

the following nodes numbers [6,23,26,50,76,104,118,122,200,208] are identified as the 

optimum locations for ten accelerometers. The influence of number of retained modes on 

the accuracy of load estimates is examined. The results are also given in Table 6.4 and 

plotted in Figs. 6.13 and 6.14. Based on the results obtained, it is seen that while the 

trends in the load applied are captured accurately using DFRF, the magnitude estimates 

are still off.  Comparing the DFRF results with those obtained using SFRF, it is seen that 

SFRF approach yields better results with a 60% reduction in the RMS error. 
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Case III: Load identification using SDFRF and optimal strain gage and 

accelerometer locations 

Next, the D-optimal algorithm is used in conjunction with Eq. (6.7) to find the 

optimal locations for ten sensors that consist of seven strain gages and three 

accelerometers. Nodes [30,75,83,159,168,199,239] are identified as optimum locations 

for the seven strain gages whereas nodes [132,209,211] are identified as optimum 

accelerometer locations. As before, two results cases are presented to examine the 

influence of number of retained modes on the quality of results. Numerical results from 

combined use of strain and displacement frequency response functions are presented in 

Table 6.4. The applied and recovered loads are plotted in Fig. 6.15 and 6.16. 

For the case with 15, 18 and 25 retained modes presented in Table 6.4, when the 

RMS error values between SFRF and SDFRF approaches are compared, the results 

show that the average RMS error is reduced by 62% when using the SDFRF. Likewise, 

when comparing the RMS error values using SDFRF and DFRF approaches, the average 

RMS error is reduced by 86% when using SDFRF.   

 

6.4 Conclusions and Summary 

In this chapter, it was shown that strain modal analysis, in combination with 

displacement modal analysis, can be used to develop modal models and a strain to 

displacement transformation. A computational technique in the frequency domain is then 

presented that allows for indirect measurement of dynamic loads acting on a structure. 

This allows the structure to act as its own transducer as long as the deformations remain 
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within elastic range and the principle of linear superposition holds. The results of two 

numerical examples using SFRF, DFRF and SDFRF in conjunction with optimum sensor 

placement constitute a powerful set of tools for load identification applications. The results 

show that if only one type of sensor is used, strain gages, in general, give better results 

than accelerometers alone, hence, their use as sensors for load identification is attractive. 

It was seen that the condition number of a SFRF matrix is several order magnitudes lower 

than condition number of DFRF matrix. Therefore, the SFRF matrix poses a less ill-

conditioned inverse operation for the loading cases than would be the case for the DFRF 

matrix. Strain modal analysis thus provides an improved force estimated ability compared 

for displacement modal analysis.  

Furthermore, the chapter also investigated load identification based on response 

measurements using both strain gages and accelerometers. It is seen that the combined 

SDFRF approach yields results that are good as if not better than those obtained using 

pure SFRF or DFRF approaches. This method has a better identification accuracy than 

using SFRF or DFRF even while retaining a limited number of modes.  

Results of a limited investigation on the number of retained modes and number of 

sensors used on accuracy of recovered loads are also presented. Acceptable load 

estimates may only be obtained by retaining a high number of modes in the analysis, 

which is not often possible in real world problems. To overcome this restriction, a different 

approach, which utilizes model order reduction, is proposed next chapter. The approach, 

which when applied to the load identification procedure, results in significant 

improvements in load estimation.   
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Table 6.1 RMS Error Values for Different Number of Retained Modes 

 

 

Table 6.2 RMS Error with Varying Number of Sensors and Retained Modes 

# of strain 
gages 

10 modes 
retained 

15 modes 
retained 

20 modes 
retained 

5 261.12 249.77 190.01 

7 172.82 161.26 48.41 

10 156.35 114.09 35.87 

 

 

 

 

 

 

 

 

 

 
Modes retained 

Error 

Case (i) 

 

Error 

Case (ii) 

Error 

Case (iii) 

10 172.85 231.77 154.60 

15 161.26 222.89 151.11 

20 48.41 101.2 45.23 
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Table 6.3 RMS Error Values with Non-Optimal Sensor Locations Using SDFRF 

Modes retained RMS 

10 256.31 

20 161.71 

 

 

 

Table 6.4 RMS Error Values for Different Number of Retained Modes - Horn Bracket 

 

Modes retained 

Error 

Case (i) 

Error 

Case (ii) 

Error 

Case (iii) 

15 128.52 387.75 53.028 

18 123.65 321.53 43.397 

25 111.10 281.18 40.59 
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Figure 6.1 Complete Description of Indirect Load Identification in Frequency Domain 

 

 

Figure 6.2 Finite Element Model of a Cantilevered Beam 



 
 

115 
 

 

 

 

Figure 6. 3 Difference Between Applied Load and Predicted Load Using SFRF 10 

Retained Modes and 7 Strain Gages 

 

 

Figure 6.4 Difference Between Applied Load and Predicted Load Using SFRF 20 

Retained Modes and 7 Strain Gages 
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Figure 6.5 Difference Between Applied Load and Predicted Load Using DFRF-10 

Retained Modes and 7 Accelerometers 

 

 

Figure 6.6 Difference Between Applied Load and Predicted Load Using DFRF-20 

Retained Modes and 7 Accelerometers 
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Figure 6.7 Difference Between Applied Load and Predicted Load Using SDFRF-10 

Retained Modes with 5 Strain Gages and 2 Accelerometers 

 

 

Figure 6.8 Difference Between Applied Load and Predicted Load Using SDFRF-20 

Retained Modes with 5 Strain Gages and 2 Accelerometers 
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Figure 6.9 Difference Between Applied Load and Predicted Load Using SDFRF-10 

Retained Modes with Non-Optimally Placed Sensors 

 

 

Figure 6.10 Difference Between Applied Load and Predicted Load Using SDFRF-20 

Retained Modes with Non-Optimally Placed Sensors 
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Figure 6.11 Difference Between Applied Load and Predicted Load Using SFRF-15 

Retained Modes and 10 Strain Gages 

 

 

Figure 6.12 Difference Between Applied Load and Predicted Load Using SFRF-25 

Retained Modes and 10 Strain Gages 
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Figure 6.13 Difference Between Applied Load and Predicted Load Using DFRF-

15 Retained Modes and 10 Accelerometers 

 

 

Figure 6.14 Difference Between Applied Load and Predicted Load Using DFRF-25 

Retained Modes and 10 Accelerometers 
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Figure 6.15 Difference Between Applied Load and Predicted Load Using SDFRF-15 

Retained Modes with 7 Strain Gages and 3 Accelerometers 

 

 

Figure 6.16 Difference Between Applied Load and Predicted Load Using SDFRF-25 

Retained Modes with 7 Strain Gages and 3 Accelerometers 
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Chapter 7 - Load Identification Based on Response 

Transmissibility and Model Reduction 

This chapter proposes a development of the response (motion and strain) 

transmissibility using model reduction. Examples considered in previous chapters show 

that the quality of results obtained depends on how accurately the mathematical model 

represents the real physical system. As the structural complexity grows, so does the 

number of degrees of freedom in the structure. As a result, the number of modes, as well 

as the time required, to solve the free vibration problem grows. The objective is to able to 

approximate the structural response while using a limited number of modes; this also has 

an influence on the accuracy of the frequency response function that is obtained from the 

finite element model. As a result of these reasons the Model Order Reduction (MOR) 

techniques are commonly used to reduce the full finite element model (Paz, 1985). In 

addition, the choice of the sensor locations to be determined has a major influence on the 

quality of results. The issue of sensor locations will be handled using the D-optimal 

methods discussed earlier.  

As mentioned earlier, there is a need to simplify dynamical models that may 

contain many equations and/or variables. Such simplification is needed to perform 

simulations within an acceptable amount of time and storage capacity, but with a reliable 

outcome. Model order reduction tries to capture the essential features of the structure. 

This means that the most basic properties of the original model must also be present in 
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the smaller approximation. As the model is reduced more and more, there is a loss of 

accuracy and the process of reduction is stopped. At that point, all necessary properties 

of the original model must be captured in the reduced model with sufficient precision.  

There are many MOR techniques (Qu, 2004), such as static 

condensation/reduction (Guyan, 1965), dynamic condensation, and Component Mode 

Synthesis (CMS). The basic idea of these techniques involves dividing the coordinates 

as master and slave DOF. In this chapter, dynamic condensation techniques will be 

investigated to improve usage of the transmissibility of response for load identification.  

The overall objective is to reduce the number of degrees of freedom in a model 

without changing the system’s dynamic characteristics significantly such that we can 

predict the applied load locations and magnitudes while improving the computational time 

required to solve the problem. Throughout this chapter, it is assumed that structures 

under investigations are linear in nature. 

 

7.1 Component Mode Synthesis 

Hurty (1965) developed a dynamic condensation method called the component 

mode synthesis (CMS). This method has significant condensation advantages and can 

be used for modeling and simulation of large and complex structures. The main idea of 

CMS is to divide the large system into N subsystems that can be analyzed separately and 

then combining them together by an assembly algorithm. Based on that idea, many CMS 
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techniques were developed such as the free interface CMS and the fixed interface CMS. 

The latter one is considered one of the most accurate and widely used CMS methods, 

known as Craig-Bampton model reduction method. This method uses the sub-structuring 

of the complete structure into small sub-structures. Using the finite element method or 

other discretization means, the DOF of the system can be divided into two groups, 

boundary degrees of freedom b and internal degrees of freedom i, (Craig and Bampton 

1968).  

Boundary degrees of freedom are those that are shared with other substructures 

and the internal degree of freedom are those belonging only to the related substructure. 

In the Craig-Bampton method, the normal modes of the component models will be used, 

along with the constrained modes.  

The CMS methods can be classified into two different approaches in terms of the 

representation of system response: 

1. Time-domain based approach; 

2. Frequency-domain based approach. 

In the time-domain based approach, each substructure is described by mass [M], stiffness 

[K], and damping [C] matrices while in the frequency-based approach, each substructure 

is described in terms of FRF’s of the uncoupled sub-structures. In this chapter, the 

frequency-based Craig-Bampton reduction method will be used to predict the magnitudes 

of the load applied on structure under investigation. 
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7.2 Frequency-Based Craig-Bampton Reduction Method 

The objective of the frequency-based Craig-Bampton condensation method is to 

predict the magnitudes of loads applied on a structure that is discretized using FEM based 

on free-interface FRF of the uncoupled components. 

7.2.1 Fundamental Formulation  

Assuming r-DOF undamped linear structure discretized using FEM, Eqn. (4.1) can 

be written as: 

{𝐷(𝜔)}𝑟𝑥1 = [𝐻𝑑(𝜔)]𝑟𝑥𝑟{ 𝐹(𝜔)}𝑟𝑥1 (7.1.a) 

{𝐷(𝜔)}𝑟𝑥1 = [([𝐾]𝑟𝑥𝑟− 𝜔
2[𝑀])𝑟𝑥𝑟]

−1{𝐹(𝜔)}𝑟𝑥1 (7.1.b) 

In order to accomplish model reduction using sub-structuring, the degrees of 

freedom of each substructure can be divided into internal degrees of freedom i and 

boundary degrees of freedom b as mentioned earlier. Re-writing Eqn. (7.1.b) using 

partitioning matrices as: 

{
{𝐷(𝜔)}𝑏

…
{𝐷(𝜔)}𝑖

} = ([

[𝐾]𝑏𝑏 ⋮ [𝐾]𝑏𝑖
⋯ ⋮ ⋯
[𝐾]𝑖𝑏 ⋮ [𝐾]𝑖𝑖

] −𝜔2 [

[𝑀]𝑏𝑏 ⋮ [𝑀]𝑏𝑖
⋯ ⋮ ⋯

[𝑀]𝑖𝑏 ⋮ [𝑀]𝑖𝑖

])

−1

{
{𝑓(𝜔)}𝑏
…

{𝑓(𝜔)}𝑖

}   

(7.2) 

 

where {𝐷(𝜔)}𝑏 is the displacement vector corresponding to the boundary degrees of 

freedom and {𝐷(𝜔)}𝑖 is the displacement vector corresponding to the internal degrees of 

freedom.  



 
 

126 
 

 

 

In this dynamic reduction method, two different types of modes are considered: 

1. Normal modes or constrained normal modes of a substructure; these modes 

can be defined by motion of interior coordinates, relative with all boundaries 

fixed {𝐷(𝜔)}𝑏 = {0} and no force acts on the substructure {𝑓(𝜔)}𝑏 = {0}. 

2. Static modes of substructure can be defined as the static deformation of a 

substructure when a unit displacement is applied to each boundary degree of 

freedom while the remaining boundary degrees of freedom are restrained and 

all internal degrees of freedom of the sub-structure are free. 

The sum of normal modes and static modes is the displacement of the internal degrees 

of freedom as in Eqn. (7.3): 

{𝐷(𝜔)}𝑖= {𝐷(𝜔)}𝑖
𝑛 + {𝐷(𝜔)}𝑖

𝑠  (7.3) 

where static modes  {𝐷(𝜔)}𝑖
𝑠  can be obtained from Eqn. (7.2), assuming zero inertia 

effects and  {𝑓(𝜔)}𝑖 = {0}, as in Eqn. (7.4): 

{𝐷(𝜔)}𝑖
𝑠 = −[𝐾]𝑖𝑖

−1[𝐾]𝑖𝑏{𝐷(𝜔)}𝑏   (7.4) 

Solving the eigenvalue problem of Eqn. (7.5) provides the constrained modal matrix [𝜙]𝑐 

which is used to calculate the constrained normal modes  {𝐷(𝜔)}𝑖
𝑛 as in Eqn. (7.6). 

−[𝜆2][𝑀]𝑖𝑖 + [𝐾]𝑖𝑖 = {0} (7.5) 
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{𝐷(𝜔)}𝑖
𝑛 = [𝜙]𝑐{𝑞(𝜔)}ℛ (7.6) 

where [𝜆2] is the diagonal matrix of eigen-values, ℛ is the number of constrained Craig-

Bampton (CB) normal modes and usually very less compared with the internal degrees 

of freedom, and  {𝑞(𝜔)}ℛ is the column vector of the reduced CB normal modes. The 

complete displacement vector {𝐷(𝜔)} can be expressed as: 

{𝐷(𝜔)} = {
{𝐷(𝜔)}𝑏
{𝐷(𝜔)}𝑖

} = {
{𝐷(𝜔)}𝑏

−[𝐾]𝑖𝑖
−1[𝐾]𝑖𝑏 {𝐷(𝜔)}𝑏 + [𝜙]𝑐{𝑞(𝜔)}ℛ

} 

= [𝛾]𝐶𝐵 {
{𝐷(𝜔)}𝑏
{𝑞(𝜔)}ℛ

} 

 

 (7.7) 

where [𝛾]𝐶𝐵  represents the transformation matrix that transforms the full model DOF to 

the CB reduced model and can be given for the Nth substructure as: 

[𝛾]𝐶𝐵 = [
[𝐼] [0]

−[𝐾]𝑖𝑖
−1[𝐾]𝑖𝑏 [𝜙]𝑐

] 
(7.8) 

Using the transformation matrix [𝛾]𝐶𝐵  along with the full system matrices; the reduced 

system matrices [𝑀]𝐶𝐵 , [𝐾]𝐶𝐵 , and [𝐶]𝐶𝐵 can be expressed as: 

 [𝑀]𝐶𝐵 = [𝛾]𝐶𝐵
𝑇 [𝑀][𝛾]𝐶𝐵 

 [𝐾]𝐶𝐵 = [𝛾]𝐶𝐵
𝑇 [𝐾][𝛾]𝐶𝐵 

 [𝐶]𝐶𝐵 = [𝛾]𝐶𝐵
𝑇 [𝐶][𝛾]𝐶𝐵 

 

(7.9) 
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Transforming the equation of motion of the full model for undamped system (Eqn. (7.1.b)) to 

the reduced model using the CB reduction gives: 

{
{𝐷(𝜔)}𝑏
{𝐷(𝜔)}𝑖

} = [𝛾]𝐶𝐵 {
{𝐷(𝜔)}𝑏
{𝑞(𝜔)}ℛ

} = [([𝐾]𝐶𝐵 −𝜔
2[𝑀])𝐶𝐵]

−1 {
{𝑓(𝜔)}𝑏
{𝑓(𝜔)}ℛ

} 
(7.10) 

Here [([𝐾]𝐶𝐵 −𝜔
2[𝑀])𝐶𝐵]

−1 is defined as the reduced receptance matrix [𝐻𝑑(𝜔)]𝐶𝐵 or the 

CB reduced DFRF. Re-writing Eqn. (7.10): 

{
{𝐷(𝜔)}𝑏
{𝐷(𝜔)}𝑖

} = [𝛾]𝐶𝐵 {
{𝐷(𝜔)}𝑏
{𝑞(𝜔)}ℛ

} = [𝐻𝑑(𝜔)]𝐶𝐵 {
{𝑓(𝜔)}𝑏
{𝑓(𝜔)}ℛ

} 
(7.11) 

The inverse problem can be defined by rewriting Eqn. (7.11) as the following: 

{
{𝑓(𝜔)}𝑏
{𝑓(𝜔)}ℛ

} = [𝐻𝑑(𝜔)]𝐶𝐵
+  [𝛾]𝐶𝐵 {

{𝐷(𝜔)}𝑏
{𝑞(𝜔)}ℛ

} 
(7.12) 

where [𝐻𝑑(𝜔)]𝐶𝐵
+  is pseudo-inverse matrix given by 

[𝐻(𝜔)𝑑]𝐶𝐵
+ = ([𝐻𝑑(𝜔)]𝐶𝐵

𝐻  [𝐻𝑑(𝜔)]𝐶𝐵)
−1[𝐻(𝜔)𝑑]𝐶𝐵

𝐻  (7.13) 

Because of the similarities between strain modal and displacement modal analysis 

discussed in chapters 5 and 6, the same dynamic condensation method can be used 

when using strain modal analysis and strain measurements. Eqn. (7.14) shows the CB 

reduced system model using SFRF. 
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{
{𝜀(𝜔)}𝑏
{𝜀(𝜔)}𝑖

} = [𝑇]𝐶𝐵 {
{𝜀(𝜔)}𝑏
{𝑞(𝜔)}ℛ

} = [𝐻𝜀(𝜔)]𝐶𝐵 {
{𝑓(𝜔)}𝑏
{𝑓(𝜔)}ℛ

} 
(7.14) 

The load identification model can be defined by re-writing Eqn. (7.14) as: 

{
{𝑓(𝜔)}𝑏
{𝑓(𝜔)}ℛ

} = [𝐻𝜀(𝜔)]𝐶𝐵
+ [𝑇]𝐶𝐵 {

{𝜀(𝜔)}𝑏
{𝑞(𝜔)}ℛ

} 
(7.15) 

where [𝐻(𝜔)𝜀]𝐶𝐵
+  is the pseudo-inverse matrix of the CB reduced SFRF [𝐻𝜀(𝜔)]𝐶𝐵and 

defined as: 

[
[𝐻𝜀]𝑏𝑏 ⋮ [𝐻𝜀]𝑏𝑖
⋯ ⋮ ⋯

[𝐻𝜀]𝑖𝑏 ⋮ [𝐻𝜀]𝑖𝑖

] = [

[𝜓]𝑏𝑏 ⋮ [𝜓]𝑏𝑖
⋯ ⋮ ⋯
[𝜓]𝑖𝑏 ⋮ [𝜓]𝑖𝑖

] [

[Δ]𝑏𝑏 ⋮ [Δ]𝑏𝑖
⋯ ⋮ ⋯
[Δ]𝑖𝑏 ⋮ [Δ]𝑖𝑖

]

−1

[

[𝜙]𝑏𝑏 ⋮ [𝜙]𝑏𝑖
⋯ ⋮ ⋯

[𝜙]𝑖𝑏 ⋮ [𝜙]𝑖𝑖

]

𝑇

 

(7.16) 

Based on displacement modal and strain modal analysis, the CB reduced SFRF [𝐻𝜀(𝜔)]𝐶𝐵 

can be calculated as in Eqn. (7.17): 

[𝐻𝜀(𝜔)]𝐶𝐵 = [𝜓]𝐶𝐵[Δ]𝐶𝐵
−1[𝜙]𝐶𝐵

𝑇  (7.17) 

where [𝜙]𝐶𝐵,  [∆]𝐶𝐵  can be obtained from the condensed system matrices;  [𝑀]𝐶𝐵 and 

 [𝐾]𝐶𝐵 , while [𝜓]𝐶𝐵 is given as: 

[𝜓]𝐶𝐵 = [𝑇]𝐶𝐵
𝑇 [𝜓][𝑇]𝐶𝐵 (7.18) 

where [𝑇]𝐶𝐵 represents the transformation matrix and can be given for the Nth 

substructure as: 
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[𝑇]𝐶𝐵 = [
[𝐼] [0]

−[𝜓]𝑖𝑖
−1[𝜓]𝑖𝑏 [𝜓]𝑖𝑖

] 
(7.19) 

 

The inverse problem defined in Eqns. (7.12) and (7.15) represents the case of the 

CB reduced model where the number of condensed DOFs is purposely made equal (or 

nearly equal) to the number of MPFs available for the full model. In such a case, the 

number of modes is equal to the number of DOFs of the reduced model, all of whose 

MPFs are previously estimated. In other words, more dynamic information is condensed 

into fewer numbers of modes of the reduced model than the information contained in the 

same number of modes of the full model. Therefore, Eqns. (7.12) and (7.15) are 

dynamically more complete and are expected to produce better load estimates than Eqn. 

(6.1) and (6.2) for the same number of available/retained modes. 

 

7.2.2 D-Optimal Design in Frequency-based Craig-Bampton Reduced Model for 

Load Estimation 

As described earlier, D-optimal design is used to determine optimum locations for 

given numbers of sensors and modes retained to get {𝐷(𝜔)}𝑜𝑝𝑡, and  [𝜙]𝑜𝑝𝑡 in the case 

of using acceleration measurements and {𝜀(𝜔)}𝑜𝑝𝑡 and [𝜓]𝑜𝑝𝑡 in the case of using strain 

measurements. Regarding the type of sensors used, the optimum mode participation 

factor for retained modes can be calculated as: 
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{𝑞(𝜔)}𝑜𝑝𝑡 = ([𝜙]𝑜𝑝𝑡
𝑇 [𝜙]𝑜𝑝𝑡)

−1[𝜙]𝑜𝑝𝑡
𝑇 {𝐷(𝜔)}𝑜𝑝𝑡  (7.20) 

{𝑞(𝜔)}𝑜𝑝𝑡 = ([𝜓]𝑜𝑝𝑡
𝑇 [𝜓]𝑜𝑝𝑡)

−1[𝜓]𝑜𝑝𝑡
𝑇 {𝜀(𝜔)}𝑜𝑝𝑡 (7.21) 

The full displacement vector {
{𝐷(𝜔)}𝑏
{𝐷(𝜔)}𝑖

} and the strain vector {
{𝜀(𝜔)}𝑏
{𝜀(𝜔)}𝑖

} can be 

identified and transformed to the CB reduced vectors using the Eqn. (7.7) and (7.14) 

respectively, as well as the CB reduced DFRF matrix [𝐻𝑑(𝜔)]𝐶𝐵 as in Eqn. (7.10) and the 

CB reduced SFRF matrix as in Eqn. (7.17). It is to be noted that the DOFs corresponding 

to the load application locations must be a subset of the boundary DOFs. Based on that 

condition, the CB reduced model can be implemented after determining the location of 

the applied load, i.e., after implementing the first phase of the response transmissibility 

algorithm.  

7.2.3 Example: Frequency-based Craig-Bampton Reduced Model- Motorcycle Horn 

Bracket 

From the example discussed in subsection 6.3.3 and shown in Fig. 5.1, it was 

concluded that the load estimation accuracy depends on the number of modes retained. 

Acceptable load estimates may only be obtained by retaining a high number of modes in 

the analysis, which is not often possible in real world problems. To overcome this 

restriction, this example was revisited and load identification procedure using the CB 

reduction method in conjunction with the D-optimal algorithm was applied. For 

comparison purposes, two cases were solved. The first one is based on the acceleration 
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measurements whereas the second one is based on strain measurements. Again, all 

DOFs, except the DOF where the load was applied, were selected to be the locations 

where sensors can potentially be mounted, i.e., the DOF corresponding to the applied 

load did not form a part of the candidate set. When subjected to the D-optimal design 

algorithm, the optimal sensors locations were found for each case and tabulated with 

additional inputs for the load recovery problem in Tables 7.1 and 7.2. Using Eqns. (7.20) 

and (7.21) the modal participation factor of the retained modes can be calculated from 

the response measurements at the optimum locations.  

The system response for the full model {𝐷(𝜔)} or {𝜀(𝜔)} can be identified and 

transformed to match the CB reduced system matrices by using Eqns. (7.7) and (7.14) 

respectively. The applied load was finally recovered by using Eqns. (7.12) and (7.15).  

The applied and recovered loads are plotted in Figs. 7.1 and 7.2. It can be seen that both 

cases have excellent agreements in the applied and recovered loads when the CB model 

reduction is implemented to the load recovery procedure. Next, to simulate a more 

realistic scenario where accelerations and strains are measured experimentally, each 

element in {𝐷(𝑡)} and {𝜀(𝑡)} was corrupted with normally distributed random errors with 

zero mean and standard deviation of 10% of its value. The applied and recovered loads, 

with errors in acceleration and strain measurements, are plotted in Figs. 7.3 and 7.4. 

Once again, it can be seen that the proposed approach is able to recover the applied 

loads fairly accurately. 
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The influence of the sensor type on the quality of load estimate is examined by 

calculating the RMS error values between the applied and the predicted loads for both 

cases. For the first case, the RMS error value is 18.26 while it is reduced to 14.55 for the 

second case. Comparing the RMS error values obtained, it can be concluded that using 

the strain measurements yields better results than using the acceleration measurements 

by about 20% for this example. 

Finally, comparing these results with results obtained for load prediction without 

model reduction for the Horn Bracket (Table 6.4), it can be seen that, the load’s magnitude 

prediction without model reduction needed 10 sensors and 25 retained modes to have 

RMS error values 281.18 and 111.1 using accelerometers and strain gages respectively. 

However, for the same load prediction problem but using MOR technique, only 7 sensors 

and 5 retained modes are needed to have the RMS error values being reduced to 18.26 

and 14.55 using the acceleration and strain measurement respectively. So, with a smaller 

number of sensors used and a smaller number of modes retained, the accuracy of load 

prediction is improved significantly for this example. 

 

7.3 Response Transmissibility for Load Identification Improved by D-

Optimal Design and Frequency-Based Craig-Bampton Reduced Model 

This section presents a complete algorithm to determine the unknown load location 

and magnitude based on response transmissibility. The algorithm is divided into two 
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phases; the first phase concerns the load location determination based on the use of the 

response transmissibility concept and the optimum location of sensors. The second 

phase is to reconstruct the applied load magnitudes using the reduced CB model defined 

in Eqn. (7.12) or (7.15) based on the type of sensors being used. A comprehensive flow 

chart for load identification using the response transmissibility concept and CB reduction 

is shown in Fig. 7.5. 

Presented next is a numerical example demonstrating the efficacy of the proposed 

approach on a problem where it is shown that the applied load is recovered accurately. 

 Example: Load Identification for 3D cantilevered Beam 

The numerical example of a 3D cantilevered beam described in Sec. 4.6.5 is 

considered to demonstrate the solution procedure for load identification. The initial step 

starts with building an FE model of the structure under consideration, since the first phase 

concerns the determination of the load location by using the response transmissibility 

concept. The algorithm searches all possible locations. One important factor affectings 

the complexity of the search algorithm is the number of nodes of the FE model; therefore, 

a finer mesh makes the search algorithm longer. It is suggested that a coarse mesh can 

be used in the first phase to determine the load location; then in the second phase a finer 

mesh can be used in the reduced CB model to reconstruct the load magnitude.  

 To apply the solution procedure described in Fig. 7.5 for a cantilevered beam, two 

cases were implemented. The first case is based on acceleration measurements and the 

second case is based on strain measurements. Both cases were compared by calculating 
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the RMS error values between the actual and the predicted magnitudes of the applied 

load for the same number of sensors and retained modes. In both cases a point load is 

applied on the middle node of the free end.  

7.3.1 Case I: Displacement transmissibility for load identification using optimum 

location of accelerometers and frequency-based Craig-Bampton reduced model 

 Phase I: Load location prediction. 

This phase starts by building the FE model of the beam, as suggested earlier. A 

coarse mesh is implemented along with modal analysis using ANSYS software to get [M], 

[K], and [𝜙]. For this example, the beam is meshed using SOLID45 elements. All degrees 

of freedom at the left end of the beam are constrained. The model consists of 30 free 

nodes with three degrees of freedom per node; i.e., the total number of degrees of 

freedom in the FE model is 90. A harmonic point load is applied on the middle of the 

beam’s free end on node number 31 and is given as: 𝐹(𝑡) = 500 sin (3𝜋𝑡). (See Fig. 7.6).  

Using the D-optimal algorithm described previously for 10 modes retained, the 

optimum locations for five accelerometers (Iopt) are identified to be node numbers 

[3,4,15,17,28]. Then the DFRF at optimum locations for all possible load locations and 

directions for a given range of frequencies are calculated using a MATLAB program to 

get [𝐻𝑑(𝜔)]𝑜𝑝𝑡. Based on these optimum locations, the accelerometers’ data {𝐷(𝑡)}𝐼(𝑜𝑝𝑡)  

are obtained from ANSYS. A MATLAB program is used to get the acceleration data in 

frequency domain {𝐷(𝜔)}𝐼(𝑜𝑝𝑡)  using (fft) command. For the accelerometers data at J 
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coordinates {𝐷(𝜔)}𝐽, it is assumed to be the same as  {𝐷(𝜔)}𝐼(𝑜𝑝𝑡) . (See Table 7.3). Then 

the procedure described in subsection 4.4.1 is implemented to calculate the accumulated 

errors for all possible applied load locations and directions as given in Eqn. (4.31) and 

plotted as shown in Fig. 7.7. For this case where the load direction is unknown a priori, 

the total number of combinations explored for one applied load is 90. The applied load 

location at node 31 on the Y direction corresponds to combination number 77. It can be 

seen from Fig. 7.7 there is a minimum value at this combination number that corresponds 

to the load location and direction being predicted correctly. Another minimum value is 

shown at combination number 62 that corresponds to the applied load on node 26 on the 

Y direction, which makes sense since node 31 lies above node 26.  

 

Phase II: Load reconstruction using the D-optimal algorithm and the CB reduced model. 

In this phase load magnitude is reconstructed using a smaller number of modes 

retained. To achieve a good accuracy, the model is built and re-meshed in ANSYS 

software using a SOLID45 element type (see Fig. 7.8). This model has 200 free nodes, 

and each node has three degrees of freedom; i.e., the total number of degrees of freedom 

in the FE model is 600. The updated node number of the applied load is 149 and the DOF 

of the applied load on the Y direction is 425. This DOF will be used as one of the boundary 

degrees of freedom in the CB reduction method as discussed earlier. For a small number 

of modes retained (m=7), a modal analysis is implemented to get the updated modal 
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matrix. After eliminating the degree of freedom at which the load is applied from the 

updated modal matrix, the D-optimal algorithm is used to identify ten optimum 

accelerometers locations. Additional inputs for the load reconstruction problem are 

tabulated in Table 7.5. By using Eqn. (7.20), the modal participation factor of the retained 

modes can be calculated from the acceleration measurements at optimum locations.  

The system response for the full model can be identified and then transformed to 

match the CB reduced system matrices as in Eqn. (7.10). The applied load is finally 

recovered by using Eqn. (7.12). The applied and recovered loads using the technique of 

model reduction are plotted in Fig. 7.9. It can be seen that a good agreement is achieved 

in the applied and recovered loads when the CB model reduction is applied to the load 

recovery procedure. The RMS error value between the applied and the recovered loads 

is calculated and it is found to be 6.25. 

7.3.2 Case 2: Strain transmissibility for load identification using optimum location 

of strain gages and frequency-based Craig-Bampton reduced model 

In this case the two-phase procedure for the load identification problem is 

implemented based on the strain measurements and the strain modal analysis as follows: 

Phase I: load location prediction.  

Following the same procedure described in the first phase of case 1, the D-optimal 

algorithm described previously is applied for the 10 modes retained. Nodes 

[9,22,30,45,83] are identified as optimum locations for the five strain gages (Iopt). Then 
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the SFRF at the optimum locations for all possible load locations and directions for a given 

range of frequencies are calculated using a MATALB program to get [𝐻𝜀(𝜔)]𝑜𝑝𝑡. Based 

on these optimum locations, the strain data {𝜀(𝑡)}𝐼(𝑜𝑝𝑡)   are obtained from ANSYS and a 

MATLAB program is used to get the strain data in frequency domain {𝜀(𝜔)}𝐼(𝑜𝑝𝑡) using 

(fft) command. For the strain data at J coordinates {𝜀(𝜔)}𝐽, it is assumed to be same as 

 {𝜀(𝜔)}𝐼(𝑜𝑝𝑡). (See Table 7.6). Then the procedure described in subsection 5.3.1 is 

implemented to calculate the accumulated errors for all possible applied load locations 

and directions as given in Eqn. (5.18) and plotted as shown in Fig. 7.10. As in case 1, the 

total number of combinations explored for one applied load is 90. The applied load 

location at node 31 on the Y direction corresponds to combination number 77. It can be 

seen from Fig. 7.10 there is a minimum value at this combination number, which 

corresponds to the load location and the direction being predicted correctly. Another 

minimum value is shown at combination number 62, which corresponds to the applied 

load on node 26 on the Y direction, which make sense since node 31 lies above node 26.  

Phase II: Load reconstruction using D-optimal locations and CB reduced model. 

In this phase the load magnitude is reconstructed using a smaller number of modes 

retained. For the same purpose mentioned in phase II of case 1 the model is built and re-

meshed in ANSYS software using SOLID45 element type (see Fig. 7.8). Using the 

updated node number of the applied load (149) and knowing that the DOF of the applied 

load on the Y direction is 425, this DOF will be used as one of the boundary degrees of 
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freedom in the CB reduction method as discussed earlier. For a small number of modes 

retained (m=7), a modal analysis along with a strain modal analysis are implemented to 

get the updated modal matrix and the strain modal matrix. After eliminating the degree of 

freedom at which the load is applied from the updated modal matrices, the D-optimal 

algorithm is used to identify ten optimum strain gages locations. Additional inputs for load 

reconstruction problem are tabulated in Table 7.6. By using Eqn. (7.21), the modal 

participation factor of the retained modes can be calculated from the strain measurements 

at optimum locations.  

The system response for the full model can be identified and then transformed to 

match the CB reduced system matrices as in Eqn. (7.14). The applied load is finally 

recovered by using Eqn. (7.15). The actual applied load and the recovered load using the  

technique of model reduction are plotted in Fig. 7.11. It can be seen that a good 

agreement is achieved in the applied and recovered loads when the CB model reduction 

is applied to the load recovery procedure. The RMS error value is calculated, and it is 

found 2.46. Comparing this value with RMS value using the accelerometers, it can be 

concluded that using the strain measurement improves the accuracy by about 60% for 

this example. 

Finally, comparing these results with the results obtained for the same problem but 

without using model reduction technique. (See Table 6.2), it can be seen that for the same 

number of sensors (accelerometers or strain gages) the load prediction needed 20 

retained modes such that the RMS error values are 101.2 and 48.41 in case of using 



 
 

140 
 

 

 

accelerometers and strain gages respectively. By using model reduction technique, the 

number of retained modes reduced to 7 and the RMS error values to 6.25 and 2.46 in 

case of using acceleration and strain measurements respectively. It can be concluded 

that using the model reduction technique improved the accuracy of load prediction and 

saved computational time. 

 

7.4 Conclusions and Summary 

A computational method is presented that allows for load component prediction 

(number, direction, location, and magnitude) of dynamic loads applied on a structure 

based on model reduction technique. This is achieved by using the response 

measurements at optimum sensor locations along with response transmissibility concept  

retaining a small number of modes. The Craig-Bampton reduction model technique is 

proposed to reduce the size of the system matrices.  Implementing the model reduction 

in the load magnitude reconstruction phase results in significant improvement in the 

dynamic load estimates while simultaneously reducing the computational times. 

Numerical example results illustrate the effectiveness of the proposed approach in 

recovering dynamic loads that induce significant levels of vibrations in the structure. The 

robustness of the approach has been demonstrated through two cases wherein the 

applied loads are recovered accurately despite the presence of simulated measurement 

errors in acceleration and strain measurements. 
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The proposed approach is also implemented for two different types of sensors, 

accelerometers and strain gages. A comparison between these cases has been 

presented by comparing the RMS error values between the applied and predicted loads. 

Based on that comparison, it can be concluded that both cases show accurate results for 

load location prediction, but better results have been shown for the load magnitude 

reconstruction phase when strain gages are used.  
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Table 7.1 Input Data for the Horn bracket with CB Reduction Case 1 

Variable Value 

Total DOF (n) 1398 

Retained modes (m) 5 

CB constrained modes (ℛ) 3 

Boundary DOF (b) [214   403   425   753] 
 

Optimum locations for 7 

accelerometers 
[6    14    18    23    50    75   209] 

 

 

Table 7.2 Input Data for the Horn bracket with CB Reduction Case 2 

Variable Value 

Total DOF (n) 1398 

Retained modes (m) 5 

CB constrained modes (ℛ) 3 

Boundary DOF (b) [58    425   713   1313] 

 

Optimum locations for 7 
strain gages 

  

[14    75   106   134   193   221   237] 
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Table 7.3 Displacement Transmissibility Data for Cantilevered Beam Case 1 

Optimal I coordinates  [3,4,15,17,28] 

J coordinates [3,4,15,17,28] 

P coordinate [31] 

 

 

Table 7.4 Input Data for a Cantilevered Beam with CB Reduction Case 1 

Variable value 

Total DOF (n) 600 

Retained modes (m) 7 

CB constrained modes (ℛ)  3 

Boundary DOF (b) [12   173   425   480] 

 

Optimum locations for 10 
accelerometers (Iopt) 

[3,13,55,73,124,129,130,172,177,189] 
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Table 7.5 Strain Transmissibility Data for Cantilevered Beam Case 2 

Optimal I coordinates  [9,22,30,45,83] 

J coordinates [9,22,30,45,83] 

P coordinate [31] 

 

 

Table 7.6 Input Data for CB Reduced Model of Cantilevered Beam Case 2 

Variable Value 

Total DOF (n) 600 

Retained modes (m) 7 

CB constrained modes (ℛ) 3 

Boundary DOF (b) [64,137,353,425] 

Optimum locations for 10 

strain gages (Iopt) 

[3,20,45,51,113,115,125,190,200,201] 
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Figure 7. 1 Applied and Recovered Loads Using Acceleration Measurements 

 

 

Figure 7.2 Applied and Recovered Loads Using Strain Measurements 
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Figure 7.3 Applied and Recovered Loads Using Accelerometers with 

Measurement Errors 

 

 

Figure 7.4 Applied and Recovered Loads Using Strain Gages with Measurement Errors 
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Figure 7.5 Flow Chart for Two Cases Load Identification  
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Figure 7.6 Finite Element Model of a 3D Cantilevered Beam (Coarse-mesh) for Phase1 

 

 

Figure 7.7 Accumulated Error for Cantilevered Beam-Case 1 
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Figure 7.8 Finite Element Model of a 3D Cantilevered Beam (Fine-mesh) for Phase II 

  

 

Figure 7. 9 Applied and Recovered Loads on Node 149 with Optimum Accelerometer 

Placements 
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Figure 7.10 Accumulated Error for Cantilevered Beam-Case 2 

 

Figure 7.11 Applied and Recovered Loads on Node 149 with Optimum Strain gages 

Placements 
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Chapter 8 - Summary and Future Research 

The primary goal of this dissertation was to develop as well as bring together 

efficient algorithms and novel techniques to identify dynamic loads acting on a structure 

from measured structural response (strain, acceleration, etc.). Chapter 1 described the 

problem statement and the requirements of this dissertation in detail. Load identification 

through output response measurement is an inverse problem in which a structure itself is 

converted into a transducer or so-called “self-transducer”. Solving inverse problems is 

challenging not only due to the ill-conditioning, but, in general, leads to multiple solutions. 

Therefore, additional information such as the number and the locations of the imposed 

loads must be provided ahead of time in order to allow for a unique solution. This 

dissertation focuses on cases where such information is not readily available. 

Identification of the accurate location, direction, and magnitude of a dynamic load are 

important for an optimized design solution.  

A discussion of several former methods is provided in chapter 2. Some studies 

work on load magnitude identification only, assuming load location is known in advance, 

which makes these methods limited to certain applications. Other studies work on more 

challenging cases where neither the load location or the magnitude are known. Chapter 

3 presented one of these methods to predict the location and magnitude of a harmonic 

load. The approach is based on a direct search complex algorithm to solve the general 

optimization problem for the force amplitude and its location index. This method is limited 
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for one kind of harmonic loads with fixed amplitude and one excitation frequency. To deal 

with the aforementioned shortcoming, an alternate algorithm is presented in chapter 4 for 

identifying dynamic loads acting on the structure from acceleration responses using the 

motion transmissibility concept for MDOF systems. The reconstruction of loads is done in 

two successive phases. In the first phase, the location and the number of applied loads 

are estimated by using a transmissibility model. In the second phase, the load vector is 

reconstructed by multiplying the inverse of the structural FRF matrix with the system’s 

measured response. This approach uses system response, such as accelerations, to 

predict the load magnitudes and locations. While this technique provides promising 

results, the question of sensor placement was not addressed and was left as the user’s 

choice. 

In previous as well as recent works that use the concept of transmissibility for load 

prediction, the number of sensors used was addressed, but little attention was paid to 

their locations. The placements of sensors were left to the engineering experience or 

judgement of the user. The accuracy of load estimation is strongly influenced by the 

location of sensors and a random placement of sensors increases problem ill-conditioning 

whereas a proper selection of sensor locations decreases problem ill-conditioning and 

improves the accuracy of the load estimation.  

 The motivation of this dissertation lies in the fact that using the concept of motion 

transmissibility, a solution procedure is presented for the load identification problem 

wherein all three load components, the number of applied loads, the load locations, and 
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the load magnitudes, are unknown. The solution also provides an answer to the question 

of sensor placement for improved load prediction. This is especially important when 

multiple loads are applied. It is seen that the efficacy of load estimation is improved when 

sensors are placed at optimum locations. These optimum sensor locations are 

determined using the D-optimization technique. 

Using optimum locations of accelerometers as determined by the D-optimal 

algorithm allows for improvement in the identification for the unknown loads especially 

when multiple loads are applied. In this dissertation it has been verified numerically that 

even in the presence of simulated measurement errors, the proposed method was able 

to achieve promising results. 

Another approach has been proposed in chapter 5 using the strain transmissibility 

concept for MDOF system in conjunction with the D-optimal algorithm for strain gages 

locations. The approach is based on the fact that the measurements of strain may lead 

to more accurate results than measurements of acceleration for a beam-like structure.  

This is explained by the fact that, for such structures, there are generally more vibrational 

eigen modes significantly contributing to the strain response than to the acceleration 

response. Using strain gages in strain transmissibility has been verified numerically for 

its effectiveness in load identification as using the motion transmissibility.  

A computational comparison in frequency domain for load magnitudes 

identification using two different types of sensors i.e., accelerometers and strain gages, 
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is presented in chapter 6. The concepts of strain frequency response function and 

displacement frequency response function are explained and used along with the 

optimum sensors’ locations determined by the D-optimal algorithm. The similarities and 

differences between acceleration-based load identification and strain-based load 

identification are discussed through numerical examples. A use of mixed strain-

acceleration measurements is also considered in this chapter.  The results of numerical 

examples using SFRF, DFRF and SDFRF in conjunction with optimum sensor placement 

form a powerful set of tools for load identification applications. Other important 

observations can be concluded from this comparison study and can be summarized as: 

• Using strain gages, in general, gives better results than accelerometers 

alone; hence, their use as sensors for load identification is attractive.  

• The condition number of a SFRF matrix is several order magnitudes lower 

than the condition number of the DFRF matrix. Therefore, the SFRF 

matrix poses a less ill-conditioned inverse operation for the loading cases 

than would be the case for the DFRF matrix.  

• Strain modal analysis provides an improved force estimation ability 

compared to displacement modal analysis.  

• The combined SDFRF approach yields results that are as good as, if not 

better than, those obtained using pure SFRF or DFRF approaches. This 

method has a better identification accuracy than using SFRF or DFRF 

even while retaining a limited number of modes.  
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An investigation on the number of retained modes and the number of sensors used 

on the accuracy of recovered loads is also presented. It was found that acceptable load 

estimates may only be obtained by retaining a high number of modes in the analysis, 

which is not often possible in real world problems. To overcome this restriction, a different 

approach, which uses the technique based on Craig-Bampton model order reduction is 

proposed in chapter 7. It is observed that the load recovered using the reduced model 

shows an initial discrepancy, but later follows the applied load closely. It is inferred that 

with the introduction of model order reduction and without compromising the quality of 

load estimates, the computation time can be reduced significantly.  

To present a complete procedure for load identification problems using response 

transmissibility along with the frequency-based CB reduction method and the D-optimal 

algorithm for sensors location, two cases have been implemented with explanation for all 

steps required to achieve better accuracy for load identification problem. The first case is 

based on using accelerometers’ measurements and the second case is based on using 

strain measurements. In both cases; the solution procedure is divided into two phases. 

The first phase uses the transmissibility concept in conjunction with the D-optimal 

algorithm to determine the optimum location of sensors, so the most accurate predictions 

of load location and direction are achieved. Based on the results, both cases show a good 

accuracy for load location and direction prediction. The second phase is load magnitude 

reconstruction in which the CB reduction model in conjunction with the D-optimal 

technique is implemented. Based on the results, both cases show a good agreement 
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between the load applied and the load reconstructed.  Comparing the RMS errors 

between the magnitudes of the applied and the predicted loads for both cases and using 

same number of sensors and modes retained, it can be concluded that a better result has 

been shown in the load magnitude reconstruction phase when strain gages are used.  

Finally, the load identification techniques developed and proposed in this dissertation 

using the response transmissibility concept rely on so many factors: 

• The description of the structure in terms of the degrees of freedom where 

usually a finite element tool is used. Although using fine mesh for FEM is 

recommended to get the best accuracy in load identification, it will increase the 

computational time for the search process to cover all possibilities for load 

locations and directions. So to avoid this, it is suggested to use coarse mesh 

for FEM in the first phase and fine mesh in the second phase of load 

identification process. 

• The D-optimal algorithm for the determination of optimum sensor locations 

such that accurate load location and magnitude are obtained. Additional 

improvement in the quality of the load estimates is achieved through the Craig-

Bampton model order reduction. The sequential exchange D-optimum design 

algorithm is efficient and quite popular among the design optimization 

community. However, it suffers from the restriction of often getting stuck in local 

optima, which may not yield the best possible locations for sensor placements. 

Future research in this area will focus on experimenting with more efficient and 
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robust optimization techniques that can be applied to determine optimal sensor 

locations on the structure. 

• Although the Craig-Bampton model order reduction technique worked well 

when applied in the context of load identification schemes, experimenting with 

several other well-established model order reduction techniques and studying 

their effect on the load estimates is further suggested. 

• Application of the load identification techniques developed in this dissertation 

has been studied numerically using discrete systems such as the Spring-mass 

system and continuous systems as cantilevered beam, all and other simple 

geometries, where one or two sinusoidal loads are exciting the structure. All 

are assumed to be undamped linear systems. The real interest of the proposed 

techniques lies in the case of complicated structures (non-linear, composite, 

and damped structures) where complex loads are acting. Implementation and 

testing of the proposed approaches on complicated structures towards 

identification of multiple complex loads forms another potential area of 

research. 

• Finally, the solution techniques developed are based on the assumption of 

harmonic excitation applied force. Other types of non-harmonic excitation 

forces (Impulse or Random) can be considered as future works. 
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