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ABSTRACT 

LIGHT SCATTERING IN DIFFRACTION LIMIT INFRARED IMAGING 

by 

Ghazal Azarfar 

 

The University of Wisconsin Milwaukee, 2019 

Under the Supervision of Professor Carol J. Hirschmugl 

Fourier Transform Infrared (FTIR) microspectroscopy is a noninvasive technique for chemical 

imaging of micrometer size samples. Employing an infrared microscope, an infrared source and 

FTIR spectrometer coupled to a microscope with an array of detectors (128 x 128 detectors), 

enables collecting combined spectral and spatial information simultaneously. Wavelength 

dependent images are collected, that reveal biochemical signatures of disease pathology and cell 

cycle. Single cell biochemistry can be evaluated with this technique, since the wavelength of light 

is comparable to the size of the objects of interest, which leads to additional spectral and spatial 

effects disturb biological signatures and can confound the understanding and analysis. In the 

present research, the measured signatures are corrected by cleaning the spectra to improve the 

fundamental analysis of single cell samples. 

In diffraction limit FTIR imaging, where the size of the sample is in the same range as the 

incident light, scattering phenomenon appear in spectra as a result of the interaction of light and 

matter. The observed scattering contribution depends on the physical and chemical structure of the 

sample as well as the focusing optics and the light source. 

It is crucial to consider the light source to interpret any image, for example visible images 

taken by a flashlight or a laser provide distinct information about the sample. Synchrotron and 
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thermal light sources are currently employed in FTIR imaging, and infrared laser sources are 

quickly being adopted for future application. Lasers are fully coherent light sources, while 

synchrotron and thermal sources (like flashlights) are partially coherent and non-coherent light 

sources, respectively. Coherency of the light can have a profound effect in the diffraction limited 

imaging and needs to be taken into account when analyzing hyperspectral images.  

The objective of the thesis is to understand and remove scattering contributions in infrared 

hyperspectral images. The first Chapter of the thesis introduces the wide field FTIR imaging 

technique and describes the distinct observations for scattering objects using a large single detector 

vs a focal plane array, that is a two-dimensional array of small detectors. The former has been well 

established with many theories that accurately predict the detected signals, while the latter topic 

regarding what is detected in a single pixel detector is a central question that is addressed in this 

thesis. 

 In Chapter 2, an in-depth analysis of stressed, hydrated algal cells (Thalassiosira weissflogii) 

measured with FTIR spectromicroscopic imaging is presented. The spatially varying, pixelated, 

biochemical response to environmental stresses has been revealed. This prototypical experiment 

shows the potential of such imaging to monitor in-situ biochemical changes, for single cells that 

are maintained in a water environment with minimal scattering, but highlights the need to remove 

inherent spectral and spatial fringes from data that are inherent when maintaining cells in such an 

environment.  

Many Hydrated single cells with distinct biochemistry have important chemical distributions 

(e.g. yeast cells) and are therefore interesting to measure without a hydrated environment. 

However, the infrared measurements of these cells are frequently dominated by scattering, since 



iv 

 

they are similar in size to the wavelength of the probing light. Due to the presence of scattering, 

the individual pixels in wide field FTIR imaging have spectral responses that represent both the 

chemistry and physical response of the sample. Pure absorbance spectra are desired to detect the 

subtle differences in biochemistry that are important. However, the pixelated data contain abrupt 

spectrally dependent inhomogeneities, since samples with geometrical shape, and refractive 

indices that are different from their environment strongly deviate direction of the incident light.  

As a first step to understand the effects of light scattering in pixelated FTIR imaging, 

homogenous microspheres with size similar to the wavelength of light are studied, experimentally 

and theoretically. In Chapter 3 experimental results for polymer (PMMA) microspheres imaged 

with a synchrotron and a thermal source are provided. Interestingly, the pixelated spectra measured 

with synchrotron source are distinct from the ones measured with a thermal source. The distinction 

between the spectra measured with synchrotron and thermal sources is being related to the spatial 

coherency of the light source.   

In Chapter 4, hyperspectral images of the microsphere are simulated using the resonant Mie 

scattering theory. The simulated images give an insight about the experimental results and help 

answer the question of what is detected in a single pixel. A full understanding of the impact of 

scattering effects on spatial and spectral responses will enable us to develop strategies for 

deconvolving the scattering contributions and recovering pure absorbance images.  

With the insight gained from the experiments and simulations, we identified that removing 

scattering from pixelated spectra is feasible by an iterative inverse method. The outcome is 

presented in Chapter 5 as a new algorithm.  It is shown that, the complex refractive index of the 
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sample can be recovered by measuring amplitude and phase of the electric field. The algorithm is 

not sensitive to noise, and it can recover refractive indices of samples with high absorption.  

By incorporating a finite element software and extending the algorithm, recovery of the 

complex refractive index of the sample with super resolution is expected.  
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Chapter 1 

1 Introduction 

1.1 IR Vibrational Spectroscopy 

Infrared spectra result from interaction of infrared light with matter. Molecules can absorb 

photons with energy level that match with their molecular band gap. As a result of the absorption 

of the light, molecules transit between quantized vibrational energy states. Molecular vibrations 

can range from the simple coupled motion of the two atoms of a diatomic molecule to the much 

more complex motion of each atom in a large polyfunctional molecule (Griffiths & de Haseth, 

2007) . 

Figure 1 | Typical biological spectrum showing biomolecular peak assignments from 3,000–800 cm−1, where ν 
= stretching vibrations, δ = bending vibrations, s = symmetric vibrations and as = asymmetric vibrations. The 
spectrum is a transmission-type micro-spectrum from a human breast carcinoma (ductal carcinoma in situ). The 
sample was cryosectioned (8 µm thick) and mounted on BaF2 slides (1 mm thick) before IR microspectroscopy. 
Equipment: Bruker IR scope II, circular diameter of aperture ~60 µm; a.u., arbitrary units. (Baker, et al., Using 
Fourier Transform IR spectroscopy to analyze biological materials, 2014) 
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Mid-IR ( 4000 – 400 cm-1 ≡ 2.5 μm − 25μm ) spectroscopy is a powerful stain-free technique 

for biological analysis. Figure 1 shows a typical biological spectrum showing biomolecular peak 

assignments from 3000-800 cm-1. 

 

1.2 History 

The history of the FTIR spectroscopy goes back to World War II, when Beckman at National 

Technical Laboratories characterized gasses by IR to manufacture rubber for defense purposes, 

concurrently Baird at Dual Beam laboratory used infrared characterization for penicillin 

manufacture. (Tisinger, 2018) 

Figure 2 shows the Prototype Model 12 (1943). These early instruments were splitting up the 

infrared interferogram into wavelength dependent components with a prism. The first commercial 

IR spectrometer was made in 1944, and it was called PE IR12. 

C.R. Burch et al. provided reflective objectives as a solution to optimize the image 

reproduction for reflecting microscopy (Burch, 1947). R. Barer coupled a Burch design reflecting 

Figure 2 (a) One of the First Infrared spectrometers, Prototype Model 12 (1943) (Tisinger, 2018) (b) The first 

commercial IR micro spectrometer PE model 85 (1953) (Tisinger, 2018) 
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microscope to a PE recording IR and invented the first IR micro spectrometer (Barber, Cole, & 

Thompson, 1949). 

At 1950 E. R Blout et al. discussed performance characteristics of IR Microscopes, (Blout & 

Bird, 1950). The first commercial IR Microscope (Perkin-Elmer Model 85) was made by V. J 

Coates in 1953 (Coates, Offner, & Siegler, 1953). 

Commercialization of digital computers, and invention of sensitive detectors lead to fabrication 

of the first FTIR Microscope (Digilab UMA 100) at 1980. In a FTIR micro spectrometer the prism 

of the spectrometer is replaced by a digital Fourier transformer, which decomposes the 

interferogram into the wavelength components.  

The first FTIR Imaging was done at 1995 by E. N. Lewis et al. with resolution of 17.5 µm by 

the first Focal Plane Array (FPA) (Lewis, et al., 1995). Today’s FTIR Imaging systems have 

nominal resolutions of as high as 1.1 µm. 

FPA- FTIR detectors provide the ability to acquire a grid of spectra in the same amount of time 

that it takes single point detectors to acquire one spectrum. The data measured with an FPA is 

called a Chemical Image or a Hyperspectral Cube. This data format is shown in Figure 3. The 

Figure 3 (a) Chemical Image; Sample is imaged onto a FPA detector (nxn pixel array), each pixel has an entire spectrum (~1.1 µm) (b) 
Representation of the FTIR Images in the form of Hyperspectral Cube. (Hyperspectral remote sensing, 2019) 
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hyperspectral image shown is consisted of a series of absorbance images of the same sample at 

different wavelengths. Figure 3 (a) shows infrared spectra extracted from single pixels of the cube. 

Figure 3 (b) shows the hyperspectral cube, and it indicates that the absorbance spectrum of the 

pixel is consisted of the intensity values of the pixel from wavelength dependent absorbance 

images that are placed in series. 

1.3 FTIR Micro-spectroscopy 

Fourier transform spectrometers allow measuring infrared absorption by a sample in three 

different geometries as shown in Figure 4 (a): transmission, transflection and attenuated total 

reflection (ATR). A schematic view of a Fourier transform infrared (FT-IR) micro spectrometer is 

shown in Figure 4. FTIR micro spectrometers allow usually transmission and reflection sampling 

configurations in the same system. A single point detector and a FPA detector are provided for 

both point mapping and imaging technology. An external interferometer and a computer are used 

to record and process data. Figure 4 (c) shows the conceptual optical path from a source to the 

detector. The light after passing through a Michelson interferometer is coupled to the microscope, 

that focuses the light on the sample, and depending on the numerical aperture of the collecting 

Figure 4  The instrumentation underlying the main forms of IR spectroscopic sampling. (a) Schematic of modern FTIR-imaging 
spectrometer (only transmission path is shown). (Baker, et al., Using Fourier Transform IR spectroscopy to analyze biological 
materials, 2014) (b) Schematic representation of the three main sampling modes for FTIR spectroscopy. (c) Conceptually, the optical 
path proceeds from a source to a spectrometer, microscope, sample, and to the detector. The computer serves to operate the 
spectrometer and process signals from the detector into information. (Bhargava, 2012)   
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optics, the scattered light is partially collected. The detected light is an interferogram distorted by 

the sample.  

1.3.1 Mid-infrared light sources 

The light source is a key component in MIR infrared imaging systems and has an impact on 

the design of the rest of the system. Globar (Thermal) and synchrotron light sources are known as 

the two well-established light sources in infrared imaging. Additional light sources such as 

quantum cascade lasers (QCL), MIR super continuum light sources and free electron lasers (FEL) 

have become available in Mid-IR region.  

A globar (thermal) is the simplest and cheapest IR source. It is a filament made of silicon 

carbide that is heated up to 1000-1650 °C by an electric current, and it radiates according to 

Planck’s law. The output radiation is spatially and temporally incoherent and has a large spectral 

emission range (2-25 µm), but low intensity (Hermes, et al., 2018). 

Synchrotron and FEL light sources radiate based on the Bremsstrahlung effect (Abo-Bakr, et 

al., 2003). They can cover the whole MIR spectral range with significantly higher brightness. 

Synchrotron and FEL light sources are big facilities and expensive to maintain. Bremsstrahlung 

radiation that is also called “braking radiation” and “deceleration radiation” is an electromagnetic 

radiation generated by charge particles that are accelerated to a relativistic speed, while their 

transverse motion is modulated by a magnetic field.  Although the synchrotron radiation is 

generally known as incoherent source, some design can achieve coherence in certain spectral 

ranges (Hermes, et al., 2018).  

Quantum cascade lasers are high power (over 200 W) infrared sources. Their emission spectral 

range span from 2.36 µm to 24.4 µm. The QCL chip is pumped by applying a voltage across it. 
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The chip is a carefully designed heterostructure enable electrons to move into an upper laser level 

in the conduction band, where these electrons undergo a radiative transition to a lower state in the 

conduction band. Finally, the electrons exit the lower laser state through a non-radiative transition 

to upper laser state of the next cascade. Typically, there are 30-40 cascades within one laser 

structure. Increasing the number of cascades can technically increase the efficiency of the laser. 

To make a balance between thermal conductance and power efficiency usually 10-15 cascades are 

used for high power applications. These semiconductor lasers are small, they are tuned 

electronically and have mass production potential. The spectral range of the most of the 

commercially available QCL chips does not cover the whole MIR range, so multiple chips are 

combined into a system with a common output port (Hermes, et al., 2018). 

Supercontinuum infrared light sources have high brightness, and a broad spectrum. In a 

supercontinuum laser, narrowband optical pulses pass through a variety of nonlinear optical effects 

that broadens the spectral range. Optical fibers have been proven to be suitable for this purpose, as 

light passes through a long interaction length. Current commercially available MIR 

supercontinuum sources do not extend beyond 2200 cm-1. Supercontinuum laser have a high 

quality beam with spatial coherence, enabling diffraction limit performance.  

1.3.2 MIR Detectors 

MIR detectors compare to the visible detectors are more sensitive to noise. Specially the noise 

resulting from black body-radiation of their own components. As a result, low noise performance 

can only achieve by cryogenic cooling. Cold shielding is also used to minimize radiation from the 

surrounding objects. MIR detectors are generally either of thermal detectors or photonic detectors. 

Thermal detectors are made of materials that absorb light and the increase in their temperature can 
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be detected. Absorption of light in photonic detectors result in creation of electron-hole pairs 

giving rise to a current (Hermes, et al., 2018). 

Bolometers and thermopiles are two kind of thermal detectors. The bolometer sensor has a 

temperature dependent electrical resistance, that can be detected by measuring the voltage across 

the sensor when a constant current is passing through it. The sensitivity of the bolometers depends 

on the temperature coefficient of resistance of the sensor material. IR imaging in the wavelength 

regime of 8-14 µm, is achieved using microbolometer arrays. The arrays are typically 320x240 

pixels, and the individual pixel dimension is of the order of 20µm×20µm. As the size of the 

individual pixels decreases, their sensitivity to IR radiation decreases, that result in a larger noise 

equivalent temperature difference.  Thermopiles are another type of thermal detectors, that 

measure temperature change through a series of thermocouple devices. Thermopiles are less 

sensitive compare to bolometers, nevertheless they are cost effective and have several applications 

in medical, farming and automotive industry (Hermes, et al., 2018). 

 Photodetectors are based on the photon absorption in a semiconductor material resulting in an 

electronic transition generating a free charge carrier. The working wavelength range of the detector 

depends on the band gap of the sensor. Silicon (Si) is the material that is preferred for light 

detection in spectral range of 350 to 1100 nm and is basically a PIN diode (a diode made of three 

layers of material: a wide undoped layer of intrinsic semiconductor sandwiched between a p-type 

semiconductor and a n-type semiconductor).  Longer wavelengths in range of 0.85 to 1.7µm are 

being detected by InGaAs which is made as an avalanche photodiode. Indium antimonide (InSb) 

can be used in the range of 3-5µm, whereas mercury cadmium telluride (MCT) is commonly used 

in the wavelength range of 2-12µm.  InSb and MCT both need to be cooled with liquid nitrogen. 

However, InSb has a better noise performance than an MCT. The relatively large wavelength range 
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of MCT detectors makes them a good candidate for FTIR spectrometry. Focal plane arrays (FPA) 

of MCT are used for FTIR imaging (Hermes, et al., 2018). 

Upconversion based detection is another approach for IR sensing. In upconversion IR sensing 

instead of detecting the low energy IR radiation, the IR radiation is mixed with a high brightness 

laser in a transparent nonlinear medium, shifting both spectral and spatial information from the 

low energy infrared range to the NIR or visible range, for which fast and sensitive detectors exists. 

A transparent medium here means that no black-body radiation from the medium is added to the 

IR signal (Hermes, et al., 2018). 

1.3.3 Optics and Sample Preparation 

The spatial resolution of a MIR microscope depends on the wavelength of the light, the 

collecting optics, and the pixel size of the detector. Schwarzschild optics that consist of a matched 

pair of Cassegrain objectives are used for broadband imaging using incoherent light sources. The 

Cassegrain objective has a central convex mirror that reflects the incoming light toward the 

secondary concave mirror above it. The secondary mirror focuses the light to the sample. 

Schwarzschild optics correct spherical aberration, coma and astigmatism over a wide range of 

wavelengths.  The central mirror of the Schwarzchild objective and its mount cause obscuration 

of the image that can become a problem in coherent imaging. However coherent light sources are 

usually brighter than the incoherent light sources, and therefore losses due to lower optical 

throughput of the refractive optics can be tolerated (Hermes, et al., 2018). 

As shown in Figure 4. FTIR microscopy is done in three different geometries of ATR, 

transmission, and reflection. In transmission configuration light is focused onto the sample by a 

condenser, and the light transmitted in the forward direction is being collected with a second 
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objective. In reflection configuration, sample is mounted on a reflective substrate, and the 

backward light is collected with the illuminating objective. The third way for FTIR imaging is 

ATR using a high refractive index crystal. In this case, the sample is place on an ATR crystal. The 

irradiated IR beam internally reflects at the boundary of the crystal and the sample, resulting in an 

evanescent wave propagating orthogonally to the surface into the sample. The energy of the 

radiated field is partially absorbed by the sample, and as a result the light detected by the sensor is 

attenuated. When the illumination angle is larger than the critical angle between the crystal and 

sample, a purely ATR spectrum is observed (Hermes, et al., 2018). 

For ATR measurements, a thin layer of the sample, usually 1-3µm (practically can be any 

thickness), is pressed onto a crystal. For transmission and reflection measurements, the sample 

needs to be mounted on a transmissive or a reflective substrate. Calcium fluoride (CaF2) and 

barium fluoride (BaF2) are the optimal substrates for IR measurements. For reflection mode 

measurements the substrate is usually a glass slide, coated by gold or a thin aluminum layer 

covered by a thin oxide layer (Hermes, et al., 2018). 

When the size of the sample is in the order of the wavelength spectral features known as Mie 

scattering are observed at the spectra. Bassan et al (Bassan, Light scattering during infrared 

spectroscopic measurements of biomedical samples, 2011) developed an algorithm for scattering 

correction of the spectra for the case where the detector size is larger than the sample size. This 

method is recently optimized by Konveskikh et all (Konevskikh T. , Lukacs, Bl¨umel, Ponossov, 

& Kohler, 2015) (Solheim, et al., 2019) (Konevskikh , Lukacs, & Kohler, 2017). Mie scattering 

features are explained with more detail in Section 1.5.2.  



10 

 

The FTIR measured data is essentially a hyperspectral image with chemical information about 

the sample. There are a range of multivariant analysis techniques to extract the desired chemical 

information from the infrared hyperspectral image. A hyperspectral image is a data cube with two 

spatial dimension (x,y), and one spectral dimension (λ).  

1.4 Analysis of Hyperspectral data cubes 

Several general pre-processing techniques are needed in order to obtain meaningful spectral 

information. For disease pathology applications tissue is sectioned by a microtome. Due to 

variations in thickness of the tissue and due to differences in the effective optical path length, a 

normalization step is needed in the preprocessing. Vector normalization (Brereton, 2009), min-

max normalization, multiplicative scatter correction (MSC) (Geladi, MacDougall, & Martens, 

1985) (Wold, Martens, & Wold, 1983), standard normal variate (SNV)  are some of the established 

normalization techniques.  

For general problems where there is an unwanted signal in the background of the spectra, a 

polynomial is fitted to the baseline and is being subtracted from the spectrum. In histopathology 

application, samples are mostly a mixture of complex biochemical compounds, resulting in 

complex IR spectra with overlapping peaks. In this situation a common approach is to use 

derivative spectra. Derivative spectra have two advantages, firstly the baseline is removed 

automatically and secondly it emphasizes the shoulders of the broad peaks (Hermes, et al., 2018). 

Atmospheric water vapor removal, resonant Mie scatter corrected by EMSC, and paraffin 

removal are some of the specific preprocessing techniques for preprocessing of the IR spectra and 

are application dependent (Hermes, et al., 2018). 
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After preprocessing of the spectral data, in order to improve the understanding of chemical 

information, and correlating the physical parameters to analytical data, multivariant chemometrics 

are used. Chemometrics is the science of extracting information from chemical systems by data-

driven means. Principal components analysis (PCA), and classification methods such as linear 

discriminant analysis (LDA), super vector machines (SVM) and K-means clustering are some of 

the algorithms that are used in chemometrics for extracting information from spectral data 

(Hermes, et al., 2018). 

 

1.5 Applications 

FTIR chemical imaging is widely used for visualization of chemical distribution at the micro 

scale. For example, it is being used for polymer characterization, art conservation and 

pharmaceuticals.  

The ability to detect biologically important chemical bands such as protein (Amide I and 

Amide II), Lipids (CH2 and CH3), and carbohydrate without labeling makes FTIR imaging a 

desirable technique for disease pathology and cell cycle study and tissue imaging. Chapter 2 of the 

thesis is an example of the single live cell imaging by FTIR.  

In Section 1.4 it was mentioned that, there are some undesired features observed in spectra of 

biological sample. Preprocessing techniques are used to remove these features from the spectra. 

These undesired spectral features are called spectral distortion. The physical origin of the spectral 

distortion is not always obvious to the spectroscopist. Depending on the application and the 

sample, a specific signal correction method is needed. Section 1.6 is the summary of some of the 

well-known spectral distortions.  
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1.6 Spectral Distortion 

Spectral features observed in the measured infrared spectra are not always because of chemical 

absorption bands of the molecules. Physical shape and size of an object can distort the measured 

spectra. Spectral distortions happen because of physical phenomena such as scattering, multiple 

internal reflections etc. In the following subsections two forms of spectral distortions are 

introduced.  

1.6.1 Fringes 

Fringes are a form of spectral distortions, which hinder quantitative analysis of the spectra. 

Fringes appear in the spectra of thin films, due to multiple internal reflection of the light in the 

material. Figure 5 shows a spectrum of an algal cell distorted with fringes and a standard algae 

spectrum. Fringes change the relative peak heights of chemical bands and hinder further analysis 

of the spectrum. 

In chapter 2, an Extended Multiplicative Signal Correction method is proposed for removing 

the fringes from hyperspectral cubes.  

With fringe 
Standard 

Figure 5 Spectra of algal cell, with finges and baseline, and the standard algal cell spectrum 



13 

 

1.6.2 Scattering 

Fourier Transform Infrared (FTIR) micro spectroscopy is a powerful technique in chemical 

analysis of micron size biological samples. When the size of an object is in the same order of 

infrared wavelength (3 to 10µm), scattering can distort infrared spectra. In single cell imaging, 

where the diameter of the object is ~10 to 50 µm, the geometrical shape of the object plays a role 

in scattering effects in pixelated infrared spectra.  

Scattering behavior of single particles in the forward direction is explained by means of a 

quantity called Q extinction, which is dependent on the refractive index, and the size of the particle. 

Absorption of a low-absorbing dielectric sphere with radius r, refractive index of n, and magnetic 

permittivity of µ=1, is defined using its scattering, and absorption cross sections. 

In a regime, where the geometric cross section of a sphere 𝑔 =  𝜋𝑟2, is smaller than the area 

of the detector G (G > g), the absorption is calculated as follows (Hulst, 1981). 

 Consider 𝐼0   as the incident intensity, 𝐼𝑠𝑐𝑎  the scattered intensity, 𝐼𝑎𝑏𝑠  as the absorbed 

intensity, and 𝐼  as the un-scattered intensity moving in the forward direction. 

Defining the scattering cross sections as 𝜎𝑠𝑐𝑎  and the absorbing cross section as 𝜎𝑎𝑏𝑠 , the 

extinction cress section is defined as 𝜎𝑒𝑥𝑡 = 𝜎𝑠𝑐𝑎 + 𝜎𝑎𝑏𝑠.  

With the help of G and the cross sections, the associated radiative powers are calculated. 

𝑃0 = 𝐼0𝐺, 𝑃𝑠𝑐𝑎 = 𝐼0𝜎𝑠𝑐𝑎, 𝑃𝑎𝑏𝑠 = 𝐼0𝜎𝑎𝑏𝑠 , and  𝑃 = 𝐼𝐺. 

Due to energy conservation, we can write: 

𝑃0 = 𝑃 + 𝑃𝑠𝑐𝑎 + 𝑃𝑎𝑏𝑠  (1.1) 
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Therefore, 

𝐼0𝐺 = 𝐼𝐺 + 𝐼0𝜎𝑠𝑐𝑎 + 𝐼0𝜎𝑎𝑏𝑠 = 𝐼𝐺 + 𝐼0𝜎𝑒𝑥𝑡  (1.2) 

The apparent absorbance, which is measured in the experiment is defined as: 

𝐴 = − log10(
𝐼

𝐼0
) (1.3) 

 This is called the apparent absorbance because it includes not only the intensity lost due to 

(chemical) absorption but also the intensity lost via scattering. Because of the finite illuminated 

area G of the detector, and because of its finite distance to the scatterer, apart from collecting the 

unscattered intensity 𝐼, the detector collects some scattered light (Blumel, Bagcioglu, Lukaccs, & 

Kohler, 2016). 

The scattering contribution of a single bead with a constant real refractive index, where G > g 

is estimated by Van de Hulst approximation as follows 

𝑄𝑒𝑥𝑡 = 2 −
4

𝜌
𝑠𝑖𝑛𝜌 +

4

𝜌2 (1 − 𝑐𝑜𝑠𝜌) (1.4) 

Figure 6 (a) shows absorbance spectra of a PMMA thin film, while Figure 5 (b) to (d) show spectra of PMMA beads with 
diameters of 5.5µm, 10.8 µm, and 15.7 µm for a single detector. 
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𝜌 = 4𝜋𝑟(𝑛0 − 1)𝜐 (1.5) 

Where 𝑟 is the radius of the sphere, 𝑛0 is the nominal refractive index and 𝜐 is the wavenumber 

(Hulst, 1981). 

Figure 6 shows the infrared spectra of a PMMA thin film compared to spectra of three 

homogenous PMMA beads with different diameter sizes. The variations observed in the spectra 

shown in Figure 6 (a) to (d), are the result of size dependent scattering contributions (Bassan, Light 

scattering during infrared spectroscopic measurements of biomedical samples, 2011). Figure 6 (e) 

to (g) show the 𝑄𝑒𝑥𝑡 or the scattering backgrounds of the corresponding PMMA beads in Figure 6 

(b) to (d). 

While the scattering contributions in infrared spectra obtained with a single detector (where G 

> g) are well understood and can be expressed by Eq. (1.5) and (1.4), the scattering contributions 

in high resolution infrared images, where the detector consists of an array of detectors(pixel), with 

sizes smaller than the sample (where g < G), is not well explained in literature. The scattering in 

hyperspectral infrared images are discussed in more detail in Chapters 3 and 4. 

1.7 Objectives of the thesis 

The objective of the thesis is to understand and remove scattering from hyperspectral infrared 

images and extract pure absorbance spectra from infrared chemical images. 

Time resolved metabolic response of an algal cell (Thalassiosira weissflogii) in a controlled 

microfluidic channel is measured by means of FTIR micro spectroscopy. This prototype 

experiment is indicative of high potentials of the technique in measuring chemical changes of 

biological samples. However, unlike algal cell most of the biological cells have inhomogeneities 

that result in angular scattering of the light. The light that reaches the detector is partially absorbed 
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and partially scattered by the sample, so measuring the pure absorbance in the forward direction is 

not possible for samples with high scattering coefficients. In addition, depending on the properties 

of the source (such as brightness and coherency), the intensity of the light detected by each pixel 

of the detector changes.  

The transmitted intensity through a sample depends strongly on the degree of the coherence of 

the source, when the size of the sample is comparable to the effective transverse coherence of the 

incident light. In order to observe the effect of spatial coherency of the incident light on the images 

measured by the FTIR technique, fringe patterns of a united states air force target (USAF) are 

measured by a synchrotron and thermal source, respectively. In order to measure the effect of the 

source on Mid-Infrared spectra, a 25µm radius polymer (PMMA) sphere is measured again with 

two sources. The result show, that with the current method of data collection, the measured spectra 

are a complex mixture of the sample geometry, spatial coherency of the source and the collective 

optics.  

In order to gain insight on an ideal measurement, the broadband image of a 25µm radius 

PMMA sphere is simulated by Green’s function of the Maxwell’s equation. 

In order to remove scattering, an optimization algorithm is provided for correcting the infrared 

spectra. This algorithm fits the measured electric fields of the sphere to a simulated one through 

an iterative process for finding the complex refractive index of the sample. It is found out that the 

recovery of the pure absorbance of highly scattering samples is possible with the measurement of 

the phase in addition to the amplitude of the electric field.  
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Chapter 2 

2 Fringe Corrections  

In this chapter FTIR hyperspectral images of algal cells (Thalassiosira weissflogii) in a micro 

fluidic channel are presented. The channel is flowed by water and nutrients to provide a controlled 

environment. The micro channel is modeled as a multilayer thin film (see Section 2.4). Although, 

the normal incident light transmits in the forward direction through the sample, the measured 

spectra are hindered by multiple internal reflection of the light from the boundaries of the layers 

of the film. In this chapter, a review on the complexities involved with hyperspectral imaging of 

live cells in a microfluidic channel is presented. Then a method for correcting multiple internal 

reflections from hyperspectral infrared images is introduced, and chemometric analysis of the 

infrared images of an algal cell is provided. The analysis reveals information about the phenotypic 

photosynthesis cycle of the algal cells. 

2.1 Introduction 

By employing a high-resolution microscope equipped with a multi element infrared detector - 

focal plane array (FPA), and a bright infrared source, chemical and structural variation of cells can 

be observed. Here, short-term acclimation of an algal cell responding by stress to its environment 

is revealed by employing synchrotron FTIR imaging combined with a preprocessing approach 

including fringe correction, and data analysis. Live cells must usually be kept in an aqueous 

environment. However, water is highly absorbing in the mid-infrared range (Meglinski, 2015) ( 

Rahmelow & Hubner, 1997). A thin transparent sample is achieved by placing the cell in a 

microfluidic channel. Prior studies of (Kuimova, Chan , & Kazarian, 2009) (Miyamoto, et al., 
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2007) (Wieliczka, Weng, & Querry, 1989) revealed free flotation and mobility of the cell in this 

geometry, that requires rapid measurement so that the sample is stationary during the 

measurement.  Rapid measurement reduces spectral resolution and signal to noise ratio(S/N). Here, 

an assembly with sub-micron thick diamond windows is employed, as shown in Figure 7. (Nasse, 

Ratti, Giordano, & Hirschmugl, 2009) A bright synchrotron source is used to achieve diffraction 

limited spatial resolution (Quaroni, et al., 2014). 

The demountable microfluidic channel is shown in Figure. 7, when the windows of a 

microfluidic cell are separated by a distance close to the wavelength of probing radiation, multiple 

internal reflections are common, and lead to well understood spectral features that hinder the 

analysis of the data. (Ibrahim, Predoi-Cross, & Povey, 2013) These sinusoidal spectral features are 

called fringes.  

There are two categories of fringe correction techniques: software based, and hardware based. 

In hardware-based techniques, the sample is rotated so that the angle of incidence is the Brewster 

angle to achieve maximum transmittance (Farrington, Hill, O'Donnell, & Pomery, 1990) (Harrick, 

1977) (Hetch, 1974). A spectrum measured by this technique is only accurate in low absorptivity 

regions, and this experimental geometry is not always feasible. Various software-based techniques 

for fringe correction exists. Examples are interferogram editing, fringe fitting and subtraction from 

Figure 7 Demountable liquid flow cell using submicrometer thick diamond windows 
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the spectrum (Hirschfeld & Mantz, 1976) (Hirschfeld T. , 1978) ( Clark & Moffatt, 1978) 

(Konevskikh, Ponossov, Blümel, Lukacs, & Kohler, 2015), low frequency filtering (Melin, 

Perromat, & Déléris, 2001), synthetic background generation based on the fringes in a sample 

interferogram, and digital filtering of the spectrum along with Savitzky-Golay algorithm (Savitzky 

& Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures., 1964). 

Here we will introduce an alternative method to remove the spectral fringes and recover high 

quality hyper spectral time dependent chemical images based on Konvskikh et al. (Konevskikh, 

Ponossov, Blümel, Lukacs, & Kohler, 2015).  The hyper spectral time dependent chemical images 

are 4 dimensional (x, y, λ, t) cubes, containing 64x64x1037x5 independent pieces of information. 

To extract statistically reliable information from these large data sets statistical methods must be 

employed. Principal Component Analysis (PCA) has been widely used in spectroscopy to reduce 

data and determine compounds since the nineteen-seventies.  

Recently, Hobro et al. ( Hobro, et al., 2015) has shown, PCA not only resolves the spectral 

features of a hyperspectral cube; it also provides insight into the spatial distribution of the 

compounds. The macromolecules are identified by wavelength dependent PC loadings, that define 

a new coordinate system for the hyperspectral cube. The projections of the measured data onto the 

new coordinate leads to new images (PC scores), that highlight the spatial distribution of largest 

chemical variations in the dataset. PCA is used to demonstrate that the fringe removal of spectral 

fringes is robust. Analysis of the spatial and spectral PCs of the stressed and control algal cells 

provides an interpretation of the short-term acclimation process of the algal cell as it responds to 

a stressed environment. 
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2.2 Methods 

2.3 Experiment 

Batch cultures of Thalassiosira weissflogii acclimated to ambient conditions (30 µM NO3
- ) 

under constant irradiation of 120 µM/(m2s2) photons at 20 °C at CO2 concentration of 390 pmm 

are studied. For single cell measurement, diatoms harvested from the batch cultures are mounted 

in a liquid-flow cell, which supports a controlled aqueous environment. Cells were maintained in 

the 390ppm CO2 conditions by flowing a water medium prepared at ambient conditions, and 

stressed cells were obtained by exposing the cells to water medium pumped with air containing 

5000 ppm CO2, at °20 C and under continuous illumination of photosynthetically active radiation 

(PAR). 

Measurements, both for stressed and control samples, were conducted on three independent 

biological replicates (i.e. three distinct cultures). A synchrotron-based source (IRENI at SRC) 

coupled to a FTIR Bruker Hyperion 3000 microspectrometer with a focal plane array (FPA) 

detector (128 x 128 pixels) was used to collect spectrally resolved images of the algal samples. A 

20x, 0.6 NA objective was used to illuminate the sample, and a 74x objective 0.6 NA objective 

was used to collect and image the transmitted radiation onto the detector, where a geometrical 

sample of 0.54 x 0.54 mm2 per pixel was obtained, collecting images every 15 minutes for at least 

2-hour duration. The short-term acclimation of the algal cell to the two conditions (control and 

stressed) was monitored in the spectral range of 948 cm-1 to 2946 cm-1, with a spectral resolution 

of 4 cm-1. Measured spectra were smoothed using the Savitsky-Golay function of order 2 with 9 

points. 
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Infrared transmission hyperspectral data cubes are obtained by collecting two sets of images, 

one background hyperspectral data cube and one sample data cube. Reference data cubes were 

taken from the aqueous environment of the water as close as possible to the algal cell being studied. 

The second set of data cubes (sample data cubes) was taken from region including the algal cell. 

The division of a sample data cube by the background data cube allowed to remove the background 

effects and resulted in a transmittance data cube. Since the background image must be devoid of 

algal cells, it is not possible to use the identical location for both the sample and background. The 

difference between the two locations leads to slightly different water thicknesses, in the sample 

and background data cubes. This leads to variations in the frequencies of the fringes. Resulting in 

fringes with multiple frequencies. 

2.4 Fringe Simulation in a micro channel  

The matrix theory of optical systems was used to study fringe behavior in a micro fluidic 

channel. In this theory, the complex amplitude of the forward and backward waves through the 

boundaries of an optical system is calculated by use of the matrix method (Saleh & Teich, 2007). 

The wave transfer matrix of a system relates the forward and backward collected waves at input 

and output planes of the system. The forward and backward waves collected at the input plane of 

the system are  shown by 𝑈𝑖
+ , and 𝑈𝑖

− , while 𝑈𝑜
+ and 𝑈𝑜

− denote the forward and backward waves 

collected at the output plane. The wave-transfer matrix M relates these set of forward and backward 

waves as follows: 

[
𝑈𝑜

+

𝑈𝑜
−] = [

𝑀11 𝑀12

𝑀21 𝑀22
] [

𝑈𝑖
+

𝑈𝑖
−] (2.1) 
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The wave transfer matrix of a multilayered medium, made of n layers is described by the matrix 

product of each single medium. If the transmission matrix of each medium is M1, M2, M3, ...Mn, 

then the total transfer matrix is defined as 

𝑀 = 𝑀𝑛 …𝑀2𝑀1 (2.2). 

The transmittance through the multilayered medium is  

|𝑡| =
1

𝑀11
 (2.3) 

By solving the Maxwell’s equations and applying suitable boundary conditions, the transfer 

matrix through a single dielectric boundary as shown in Figure 8 (a), with a refractive index of 

n1, and n2, is calculated as 

𝑀 =
1

2𝑛2
[
𝑛2 + 𝑛1 𝑛2 − 𝑛1

𝑛2 − 𝑛1 𝑛2 + 𝑛1
]  (2.4) 

With the same approach, the transfer matrix through a homogeneous medium with a width of 

d, followed by a boundary as shown in Figure 8 (b) is described by 

(e) 

Figure 8 (a) Single dielectric boundary made of two materials with refractive indexes of n1, and n2. (b) A slab of material with refractive 
index of n1 and width of d followed by a boundary. (e)  The blue curve simulates the absorption through the channel, in the absence of 
algal cell; the red curve simulates the absorption through the channel including the algal cell (the reference transmittance is assumed to be 
1 for red and blue curves). The black curve is calculated by subtracting the blue curve from the red one and simulates the algal cell 

absorbance. 
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𝑀 =
1

2𝑛2
[
(𝑛2 + 𝑛1)exp (−𝑗ϕ) (𝑛2 − 𝑛1)exp (𝑗ϕ)
(𝑛2 − 𝑛1)exp (−𝑗ϕ) (𝑛2 + 𝑛1)exp (𝑗ϕ)

] (2.5) 

where ϕ = n1𝑘0𝑑 , and 𝑘0  is the propagation constant. The reference transmittance was 

modeled as three layers of material, including a 0.5 µm diamond, a 19 µm layer of water and 

another 0.5 µm layer of diamond suspended in air. The first boundary between air and diamond 

was modeled using Eq. (2.4), and the rest was modeled by means of Eq. (2.5) The sample 

transmittance in the micro channel is modeled as five layers of thin film: 0.5 µm layer constituted 

by the top diamond window, represented by the 3.5 µm water layer over the cell, a 12 µm layer 

given by the algae, a 3.5 µm layer of water under the cell, and another 0.5 µm layer given by the 

lower diamond window. The refractive index of diamond (2.4) and air (1) were considered as 

constant values across the entire spectra. Algal cell and water were assumed as absorbing materials 

with complex refractive indexes, which were calculated by the method described in Section 3.3.1 

using a standard spectrum and Kramers-Kronig relation. The water infrared spectrum was 

extracted from the KnowItAll spectral collection (KnowItAll, 2017), and the algal cell standard 

was estimated by the method explained in the supplementary materials. The absorbance is defined, 

starting from transmittance: 

𝐴 = − log (
𝑇𝑟𝑒𝑓

𝑇𝑠𝑎𝑚𝑝
) = log(𝑇𝑠𝑎𝑚𝑝) − log (𝑇𝑟𝑒𝑓), (2.6) 

where 𝐴  is absorbance, 𝑇𝑟𝑒𝑓  is the background transmittance, and 𝑇𝑠𝑎𝑚𝑝  is the sample 

transmittance. 

2.5 Fringe Correction 

Fringes were removed with an Extended Multiplicative Signal Correction (EMSC) method. 

EMSC is a model-based preprocessing technique that is extensively used for preprocessing of IR 
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microspectroscopy data; it is based on Lambert-Beer law on the vibrational absorbance of 

materials. It models the absorption spectrum of a sample as the sum of its theoretical components. 

The EMSC model that is used to remove complex fringe patterns from spectra is the extension of 

the model presented by Konveskikh et al. (Konevskikh, Ponossov, Blümel, Lukacs, & Kohler, 

2015) and is defined as 

𝐴(𝜈) = 𝑎 + 𝑏 ∗ 𝑚(𝜈) + ∑ [𝑑𝑖 cos(𝑥𝑖𝜈) + 𝑑𝑖+1 sin(𝑥𝑖𝜈)]𝑖 + 𝑒 ∗ 𝜈 + 𝜀(𝜈), (2.7) 

where A is the absorption spectrum, 𝜈 is the wavenumber, 𝑚(𝜈) is the standard spectrum, b is 

the scaling factor, 𝑒 ∗ 𝜈  represent the linear effects, and 𝜀(𝜈)  is the noise combined with the 

spectral structures that are not accounted for by the model. One period of the fringe in the 

wavenumber domain is 2π/x. Eq. (2.7) could be written in the matrix format as 

𝐴 = 𝑀𝑠𝑐𝑃 + 𝐸,  (2.8) 

where p is the fitting parameter vector, containing a, b, di, di+1 and e, which is found by least-

squares regression of each spectrum onto Msc. Msc is the matrix of model spectra and is defined as 

𝑀𝑠𝑐 = [

1 𝑚(𝜈1) sin (𝑥1𝜈1)

1 𝑚(𝜈2) sin (𝑥1𝜈2)

cos(𝑥1𝜈1) … 𝑣1

cos(𝑥1𝜈2) … 𝑣2

⋮ ⋮ ⋮
1 𝑚(𝜈𝑘) sin (𝑥1𝜈𝑘)

⋮ ⋮ ⋮
cos(𝑥1𝜈𝑘) … 𝑣𝑘

],  (2.9) 

where k is the number of wavenumbers. The standard spectrum 𝑚(𝜈) is being approximated 

in 5 steps: 

1) Water absorption regions of 2946-2489 cm-1, 2219-1702 cm-1, and 1581 to 950 cm-1 are 

set to zero. 
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2) The average spectrum of the hyperspectral data is calculated, as the base of the standard 

spectrum. It is considered that there are minimum fringes present in the average spectrum. 

3) Regions of [1585, 962] and [ 2780, 1766] cm-1 are baseline corrected, separately. 

4) The region of 1766 to 2790 cm-1 is replaced with corresponding region of standard 

Matrigel, that is a gelatinous protein mixture (Matrigel, n.d.). 

5) The resulting spectrum is normalized at Si-O peak at 1076 cm-1. 

For the case of two parallel windows, with a distance d, a sinusoid with a constant frequency 

depending on the optical parameters of the assembly is added to the spectrum. Thus  

𝑑 =
𝑁

2𝑛Δ𝜈
 (2.10) 

Δ𝜈, and n is the refractive index of the water layer. The water thickness was determined to be 

between 20 to 25 µm in the measurements. The corresponding angular frequency of the fringe is 

0.0052 to 0.0465 rad/cycle. The Fast Fourier transform (FFT) of the absorbance spectrum for the 

spectral region between 1766 to 2790 cm-1, where the signal is dominated by the fringe effect, was 

calculated to determine the fringe frequencies of each spectrum, since there are no absorption 

bands in this spectral range. A short spectral region in the absorbance spectrum was chosen to 

calculate the FFT, and then used to calculate the frequencies that expand across the entire spectral 

range. To accurately detect the frequency components for such a short range of information, many 

frequency components are required. Spectra are zero padded in the wavenumber domain to 

increase the frequency resolution in the Fourier domain. In the Fourier domain, the first 10 

dominant frequencies between 0.0052 to 0.0465 rad/cycle are chosen as the fringe frequencies. In 

the result and discussion section, we show that the dispersion impact was negligible in the micro 

channel, and the fringe pattern could be estimated by inserting these frequencies into Eq. (2.7). To 
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 remove the fringes, the approximated fringe pattern was subtracted from the raw spectrum. This 

procedure was repeated until no fringes were observed across the region of 1766 to 2790 cm-1. 

Figure 9 (a) shows the simulated algae spectrum. The red box shows the region chosen for 

estimating fringe frequencies. Figure 9 (b) shows the FFT of the spectrum in the red box in  Figure 

9 (a). Red circles show the frequencies that are chosen for calculating the fringe pattern. Figure 9 

(c) shows the estimated spectral fringes pattern (red) and the simulated algae spectrum (black). 

Figure 9 (d) shows the corrected spectrum after the first iteration(black) and the estimated fringe 

pattern at the second iteration(red). Figure 9 (e) shows the FFT of the black curve in spectral region 

Figure 9 (a) Simulated algae spectrum with the method of Section 2.2. The red box shows the region chosen for estimating 
fringe frequencies. (b) FFT of the spectrum shown in red box in  Figure 9 (a). Strength of the frequency components 

determined from the FFT. Red circles show the frequencies that are chosen for calculating the fringe pattern. (c) The 
estimated spectral fringes pattern (red) and the simulated algae spectrum (black). (d) Corrected spectrum after the first 
iteration(black) and the estimated fringe pattern at the second iteration(red). (e) FFT of the black curve in spectral region 
of 1766 to 2790 cm-1. (f) EMSC corrected signal(red) after two iterations compared to the standard algae spectrum (black). 
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of 1766 to 2790 cm-1. Figure 9 (f) shows the EMSC corrected signal (red) after two iterations 

compared to the standard algae spectrum (black). 

 

2.6 Chemogram Image 

To understand spatial variation of overall absorption of the sample, an integration under the 

spectral region (2947 cm-1 – 1693 cm-1 and 1585 cm-1 - 952 cm-1), excluding the water region is 

calculated for each pixel. The resulting images, the so-called chemograms, reveal the overall 

absorption bands and the fringes. Examples are displayed in Figure 10 (a), with black to green 

scale bar (black-green, low-high). 

 

Figure 10 (a) The chemogram images for the two cases, before, and after correction, with black to green scale bar (black-green, low-high) 
(b) Pixels which are classified as cell by Otsu’s method (c) Pixels which are classified as background. (d) Average spectra before and 
after fringe correction. 
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2.7 Image Segmentation 

Fringes dominate the spectra in the regions of the image where there are no algal cells, since 

there are no relevant chemical absorption bands at that point in space. A mask selects pixels that 

contain algal cell absorption signature for further chemical analysis. Our uniform approach for 

each IR image is as follows: 1) The integrated image of Si-O peak image at 1074 cm-1 is calculated 

2) integrated image of silicate region 1058 to 1089 cm-1 is determined, 3) summation of these two 

integrated images is computed, 4) pixel spectra are divided into two class of cell and non-cell 

pixels. 

Otsu’s method is used to divide the images into two classes, defined as C1 = cell, and C2= 

background. Otsu’s method is an optimum global thresholding method based on Bayes decision 

rule, which maximizes between class variance of 1D array, which is the normalized histogram of 

the images, in this study. The threshold found by this algorithm, selects 20% of the total pixel 

spectra, that are aligned with the visible images, and are known to be part of the algal cell. This 

approach facilitates automatic identification of all pixels for each cell at each time point. 

2.8 Principal Component Analysis (PCA) 

PCA reduces dimensionality of the data and facilitates further chemical analysis. It helps us to 

visualize chemical responses of algal cell to elevated CO2. Spectra of the masked cube are 

decomposed into their largest variance components by PCA. Wavenumbers are considered as the 

PCA parameters. Approximately 5000 spectra are extracted from each individual algal cell 

replicate (8 measurements over time span of two hours) to identify the average spectrum and 

largest variance spatial components (PC2 and PC3). These spectra are fed into the MATLAB 

Statistics and Machine Learning Toolbox for PCA. To remove the effects of water and CO2 
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absorption bands, only wavenumber ranges of 2946 to 2489 cm-1, 2219 to 1702 cm-1, and 1581 to 

950 cm-1 are considered as PCA variable. 

2.9 Results and Discussions 

Two different cases of fringes are observed in the experiments. Case I: Fringes appear with a 

high amplitude in the average spectrum and a low contrast in the chemogram (Figure 10, Case I). 

Case II: Fringes appear with a low amplitude in the average spectrum and a high contrast in the 

images (Figure 10, Case II). The strength of the fringe pattern present in the data depends on the 

placement of the two diamond windows with respect to each other in replicates of the experiment. 

Figure 10 (a) shows the chemogram images, before and after fringe correction. The images are 

classified into two regions of cell, and non-cell by Otsu’s method. Figure 10 (b) shows pixels 

considered as cell, and Figure 10 (c) shows pixels considered as background pixels. The average 

spectra before and after fringe correction are plotted in Figure 10 (d). Note that there are smaller 

spectral and spatial fringes in the chemogram images and the average spectra after correction. 

Importantly, fringe correction preserves the strong spectral features and even reveals peaks, such 

as the CO2 band at 2360 cm-1 (due to varying atmospheric CO2 in the optical beam path). In Figure 

10 c), the background variation decreases after fringe correction in both cases and demonstrates 

that the spatial fringes attenuate after spectral fringe correction. Figure 10 (f) and (g) shows the 

simulated absorbance through the channel in two conditions. In Figure 10 (f), refractive index of 

the diamond is considered as 2.4, while in Figure 10 (g), the refractive index of the diamond is 1.5. 

In Figure 10 (f) and (g), the red spectrum shows the simulated transmittance through the channel 

by means of matrix theory of optical systems and considering the micro channel as a seven-layer 

system. The blue spectrum shows the result of Beer’s law, considering the total absorption of the 

micro channel as addition of the absorbances of each single layer. The green spectra which looks 
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like sinusoidal is the subtraction of blue from red and demonstrates the fringe pattern all over the 

spectrum. Although the amplitude of the green fringe pattern changes with the wavenumber as 

shown in Figure 10 (f), the fringe pattern estimated by EMSC (shown by purple), accurately 

models the fringes. Dispersion effect is minimum in both cases, and estimated fringes in region of 

1766 to 2790 cm-1 can be extended to all the spectral region. Konvskikh et al. showed that 

dispersion effect is minimum for samples with constant refractive index of less than 2.4. 

(Konevskikh, Ponossov, Blümel, Lukacs, & Kohler, 2015) 

Reducing the data to principal components allows an overall assessment of data before and 

after correction. The PCA before and after fringe correction are shown in Figure 11 for two 

different CO2 condition (ambient – control & LtoH – 5000 ppm). Figure 11 (a) and (b) show the 

first, second, and third principal components of the hyperspectral cube before any corrections. 

Figure 11 (c) and (d) shows the first, second, and third principal components after fringe correction. 

Original data variances were dominated by fringes. (Similar results were obtained for PCA of 

spectra with significant scattering contributions. Scattering features can dominate spectral 

principal components before preprocessing corrections). Once the spectral fringes were removed 

for each individual spectrum, spatial variations and spectral fringes were greatly reduced in the 

frequency dependent loadings of principal components (average, second and third principal 

components). After removing the fringes and applying PCA, the frequency dependent variance 

spectra showed signatures corresponding to lipid and carbohydrate associated bands of the spectra 

(Figure 11 (d)). The contributions of the second and third principal components to describing the 

overall spectra are less than 2% of the total variation. This result suggests that changes in the lipid 

and carbohydrate macromolecular pools are minimal, as one would expect for a cell maintained at 

constant, controlled conditions, and measured over a period of 75 minutes. Detecting these small 
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variations is possible only after applying data preprocessing algorithms. The results (PC loadings) 

of the analysis on three replicates are consistent and prove the reliability of the procedure. 

While it is desirable to evaluate the distribution and time resolved modifications of 

macromolecular pools under controlled hydrated environment in viable algal cells, there are some 

challenges. The geometry of the microfluidic channel lead to infrared images that contain both 

spatial and spectral fringes. Interpretation and statistical analysis of spectra with fringes can be 

misleading and even impossible. Appropriately executed fringe correction substantially improves 

the quality of images and spectra and facilitates the analysis of the hyperspectral cube.  
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Chapter 3 

3 Spatial Coherence of the light source  

A prototype measurement indicative of the ability of the FTIR imaging in revealing the 

phonotypic changes in cells was provided in Chapter 2. However, there are some limitation with 

this technique. For example, when the sample has semi-spherical inhomogeneities (that is the case 

for most of the biological materials), the measured spectra are distorted with scattering 

contributions.  

In this chapter, it is shown that the scattering contributions in the pixelated spectra are related 

to the spatial coherency of the light source. United states air force (USAF) targets are measured 

with synchrotron and thermal sources. The results show evidence of distinct complex coherency 

factors in vertical and horizontal direction for synchrotron source, without this knowledge a 

spectroscopist might misinterpret the spectral information.  

3.1 Introduction 

Conventional Synchrotron Fourier transform infrared (FTIR) microscopy, along with 

advanced methods of data analysis has become an established method for chemical imaging of live 

biological cells (Holman H.-Y. N., Bechtel, Hao, & Martin, 2010) ( Loutherback, Birarda, Chen, 

& Holman, 2016) (Miller, et al., 2006) ( Didonna, Vaccari, Bek, & Legname, 2011) (Hirschmugl 

& Gough, 2012). However, scattering and absorption signatures (Bassan, et al., Resonant Mie 

Scattering (RMieS) correction of infrared spectra from highly scattering biological samples, 

2009)in infrared microscopic imaging (pixelated data) are not well understood. 



34 

 

There are several studies about the mechanisms of light scattering from biological cells (Liu, 

Capjack, & Rozmus, 2005) (Su, Capjack, Rozmus, & Backhouse, 2007). It is shown that the non-

homogeneities in cells are equivalent to spheres with relevant sizes and refractive indexes ( 

Mourant, et al., 1998) (Tao Su, Capjack, Rozmus, & Backhouse, 2007).The results show that small 

organelles play a significant role in light scattering from cells, and the volume fraction of 

organelles affects both the total amount of the scattered light and the angular distribution of 

scattered light (Dunn & Richards-Kortum, 1996).  

Several Mie scattering correction techniques for infrared spectroscopy of single cells have been 

published (Bassan, et al., 2010) (KOHLER, et al., 2008) ( Dijk, Mayerich, Carney, & Bhargava, 

2013) (Konevskikh T. , Lukacs, Bl¨umel, Ponossov, & Kohler, 2015). There is a tendency to apply 

these algorithms for correcting the scattering contributions in the pixelated spectra. While these 

algorithms have successfully corrected the scattering in the spectral microscopic imaging, we have 

encountered many situations where they failed. Scattering is dependent on the chemical and 

physical properties of the sample, and the apparent scattering contribution in the measured 

pixelated spectra is dependent on the numerical aperture and the point spread function of the 

microscope. In this chapter we are pointing to the source contribution in the apparent scattering. 

Here, the relation between the spatial coherency of the source and the spatial contribution of the 

scattering in the pixelated data is highlighted. 

The light observed at the detector is the interference pattern of the incident light and the light 

scattered by the sample. Scattering is angular dependent as shown in Figure 12 (a). In a regime 
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where the geometric cross section of a sample 𝑔 is smaller than the area of the detector G (G > g) 

for rotationally invariant scatterers, the extinction cross section does not depend on the spatial 

coherence of the source (Greffet, Cruz-Gutierrez, Ignatovich, & Radunsky, 2003). In the case of 

chemical imaging, the light is detected by an array of detectors (G < g). In this regime (G < g) the 

amount of the scattered light is spatially varying Figure 12 (b), and the observed interference 

pattern is dependent on the tendency of the incident light to interfere with the scattered light 

(Fischer, Dijk, Visser, & Wolf). 

Spatial coherence is a property of light that describes the correlation between two points in the 

space and the ability of the two points to interfere in extent of wave in averaged time (Deng & 

Chu, 2017).  Consider two analytic signals 𝒖(𝑟1, 𝑡) and 𝒖(𝑟2, 𝑡) observed at two space points 𝑟1 

and 𝑟2 with zero relative time delay. When 𝑟1 = 𝑟2, the two waveforms are perfectly correlated. 

As 𝑟1 moves further away from 𝑟2 some degree of correlation loss can be expected.  

The mutual intensity of the light at pinholes 𝑟1 and 𝑟2 is defined as  

𝐽12 = 〈𝒖(𝑟1, 𝑡)𝒖
∗(𝑟2, 𝑡)〉.  (3.1) 

Figure 12 Interference of the scattered light and incident light is spatially varying. 
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𝐽12 shows the degree of correlation between two signals. The complex coherence factor of 

the light is  

𝜇 ≜  
𝐽12

[𝐼(𝑟1)𝐼(𝑟2)]1/2,  (3.2) 

where 𝐼(𝑟1) and 𝐼(𝑟2) are the intensity of the light at points 𝑟1 and 𝑟2. Van Cittret-Zernike 

theorem  (Zernike, 1938) (Cittert, 1934) (Dorrer, 2004) relates the spatial coherence between two 

points of the wavefront with the shape and the intensity of the light source as well as the 

wavelength and distance of the propagation. This theory defines a quantity of Eq. (3.2) as follows, 

𝜇(𝑟1 − 𝑟2, 𝑧) = exp (𝑗2𝜋
|𝑟1

2−𝑟2
2|

2𝜆𝑧
) ×

∬ 𝐼(𝑥,𝑦) exp[−𝑗2𝜋(
𝑥2−𝑥1

𝜆𝑧
𝑥+

𝑦2−𝑦1
𝜆𝑧

𝑦)]𝑑𝑥𝑑𝑦
𝑠

∬ 𝐼(𝑥,𝑦)𝑑𝑥𝑑𝑦
𝑠

. (3.3) 

where 𝑟1⃗⃗⃗  = 𝑥1𝑖 + 𝑦1𝑗, and 𝑟2⃗⃗  ⃗ = 𝑥2𝑖 + 𝑦2𝑗, are two points in space, 𝑠 is source size and 𝐼(𝑥, 𝑦) 

is the intensity distribution of the light source. For a uniform square non coherent source of a side 

length of 𝑎, and place a set of double slits of pitch 𝑏 after the source at distance z, when 𝐼(𝑥, 𝑦) =

1 within the emitting area, Eq. (3.1) becomes 

𝜇(𝜆) = |
sin(

𝑎𝑏𝜋

𝜆𝑧
)

𝑎𝑏𝜋/𝜆𝑧
| (3.4) 

Notice that the |𝜇|depends only on the (Δ𝑥, Δ𝑦). The coherence area 𝐴𝑐 is defined as: 

𝐴𝑐 ≜ ∬ |𝜇( Δ𝑥, Δ𝑦)|2Δ𝑥Δ𝑦
∞

−∞
 (3.5) 

Synchrotron radiation has spatial coherence properties (Coisson, 1995) (Huang, 2013), while 

thermal radiation, consisting of a large number of independent spontaneous emission from a 

collection of excited atoms or molecules, shows very small spatial coherence properties. 

(Goodman, Statistical Optics, 1985)  Gonzaga-galeana has shown that absorption of a sphere is 
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controllable by changing the spatial coherence of the source (GONZAGA-GALEANA & 

ZURITA-SÁNCHEZ, 2018). It is crucial to consider the light source in interpretation of any 

image. Synchrotron and thermal light sources are currently employed in FTIR imaging, and 

broadband infrared laser sources are in their early stages of production. Lasers are known as fully 

coherent light sources, while synchrotron and thermal sources (like flashlights) are partially 

coherent and non-coherent respectively. Coherency of the light can have profound effect in the 

diffraction limited imaging, and it is important to be acknowledged in the analysis of hyperspectral 

cubes of data. 

The spatial coherence property of a synchrotron and a globar source is investigated by looking 

at the visibility of the fringe pattern in Young’s experiment with 3 slits. In order to understand the 

effect of the spatial coherency on the broadband infrared images, the chemical images of a 

microsphere measured by both sources are presented.  

It is shown that in diffraction limit imaging, that the size of the sample is in the same range as 

the wavelength of the light, a source with a higher complex coherence factor can more profoundly 

stimulate electromagnetic shape resonances inside of the sample, resulting in spatially varying 

spectra for a homogenous sample. 

Figure 13 Fringe pattern of a Yong's double slit 
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3.1.1 Experiment 

A FTIR Bruker Hyperion 3000 microspectrometer with a focal plane array (FPA) detector is 

used for the measurements. The source of the microspectrometer was switch between a thermal 

source and synchrotron source (Infrared Environmental Imaging at the synchrotron radiation 

center) for the measurements. A 20x (0.6 NA) condenser objective and a 74x objective (0.6 NA) 

was used for illumination and collecting the transmitted radiation onto the detector, where a 

geometrical sample of 0.54x0.54 µm2 per pixel was obtained.   

A positive high-resolution USAF target is measured and the fringe pattern of the element 1 of 

group 8 with bar thickness of 3.9μm is investigated. Due to the Van Cittret-Zernike theorem the 

wave fronts smooth out as they propagate away from the source. Degree of spatial coherence 𝜇 or 

visibility of a source is measured as follows: 

𝜇 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
  (3.6) 

Where 𝐼𝑚𝑎𝑥 is the maximum observed intensity and 𝐼𝑚𝑖𝑛 is the first observed minimum in the 

fringe patters as shown in Figure 13. A high value of visibility implies that the light beam passed 

through each bar of the target can interfere more strongly at the image plane. The calculated 
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visibility is smoothed out with Savitzky- Golay filter with polynomial order of 3 and frame length 

of 31. 

For the microsphere measurements, A 20µl droplet of a solution containing Poly (methyl 

methacrylate) PMMA microsphere with 16-40 µm radius was dropped on a glass slide. A single 

bead with 25 µm radius was casted by a small hook that was dipped in glue.  Measurements were 

done by a FTIR Bruker Hyperion 3000 micro spectrometer, coupled to a source channel, which 

could be switched between a globar source and a Synchrotron (SRC at IRENI). A focal plane array 

detector (128 x 128 pixels) with a 20x (0.6 NA) condenser, and A 36x (0.5 NA) objective were 

used to reach pixel sizes of 1.1x1.1 µm2.  

3.1.2 Results  

Figure 14 (a) and (b) shows the images of the USAF target at 2499 cm-1 and 4499cm-1 measured 

by a synchrotron and a globar source respectively. The images measured by synchrotron has higher 

Figure 14 Synchrotron Vs Globar measurements. (a) Synchrotron image at 2499 cm-1. (b) Globar image at 2499 cm-1. (c) 
Synchrotron image at 4499 cm-1. (d) Globar image at 4499 cm-1. (f) Line scans through vertical slits of element 1 Group 
8 at wavenumbers of 2499, 3001, 3500 and 4499 cm-1. (e) Line scans through Horizontal slits of element 1 Group 8 at 
wavenumbers of 2499, 3001, 3500 and 4499 cm-1. 

 

(d) 
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quality compare to the globar. Looking at the synchrotron image at 2499 cm-1, where the element 

1 of group 8 is present, extra side lobes are observed especially for the horizontal bars. Figure 14 

(c) shows the line scans through the vertical bars of group 8 element 1 for both synchrotron and 

globar at 2499 cm-1, 3001 cm-1, 3500 cm-1, 4000 cm-1 and 4499 cm-1 wavenumbers, the line scans 

are along the yellow arrow shown in the images. Three fringe peaks corresponding to the three 

bars are observed in the line scans.  Figure 14 (d) shows the line scans through yellow arrow along 

the vertical bar for four different wavenumbers, 2499 cm-1, 3001 cm-1, 3500 cm-1 and 4499 cm-1. 

3 peaks corresponding to the 3 vertical bars of the USAF target are present in the line scan of the 

images measured with globar source at 2499 cm-1 and 3001 cm-1, 3500 cm-1, 4000 cm-1 and 4499 

cm-1. The line scans through the vertical bars for the synchrotron source has 5 peaks at 2499 cm-1, 

3001 cm-1, 3500 cm-1, 4000 cm-1 and 4499 cm-1. 

 Figure 15 (a) shows the calculated visibility of the synchrotron source in horizontal and 

vertical directions. The visibility of the vertical bars is constant between 4499 cm-1 and 3950 cm-

Figure 15 (a) Visibility of the synchrotron source as a function of wavelength for group 8- element 1 of the USAF 
target in horizontal and vertical directions. (b) Visibility of the thermal source as a function of wavelength for group 
8- element 1 of the USAF target in horizontal and vertical directions. 

 Globar 
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1, and then starts to decrease with the wavenumber (resolution decreases). The visibility of the 

horizontal bars remains constant between 4500 cm-1 and 4300 cm-1. It increases from 4300 cm-1 to 

3050 cm-1, and then reduces from 3050 cm-1 to 2877 cm-1, then goes up till 2703 cm-1, and finally 

it decreases till 2500 cm-1. Figure 15 (b) shows the vertical and horizontal visibility for the globar 

source in the vertical and horizontal direction. The measured visibility is noisy for the globar 

source. The visibility trend is similar in both vertical and horizontal directions. It reduces from 

4500 cm-1 to ~4050 cm-1 and then start to incline from 4050 cm-1 to 3500 cm-1 and then it decreases 

from 3500 cm-1 to 2500 cm-1.  

Figure 16 shows the measurements of the 25µm radius PMMA bead with the synchrotron and 

globar light sources. Figure 16 (a) shows the absorption image of the PMMA bead at 1728 cm-1 

measured by synchrotron. Figure 16 (b) shows the corresponding PMMA image by a globar 

source. Figure 16 (c), and 15 (d) shows a stack of spectra from center to the edges of the sphere, 

along vertical and horizontal direction. The top panel is a spectrum from the pixel at the edge of 

the sample, that is marked with a yellow square in the image. The chemical images measured by 

the globar source are noisier compare to the synchrotron source. In Figure 16 (c) and (d) the 

measured spectra with globar are plotted with blue and the ones measured with synchrotron are 

plotted with red color. Slow oscillatory variations (wiggles) are observed in the baseline of the 

spectra measured with the synchrotron source, these baseline variations in the synchrotron results 

are dependent on the location of the pixel. A constant baseline is observed in all the pixels 

measured by the globar source. High frequency ripple structure features are observed at spectra of 

the close to the edges of the sample for the synchrotron source, these structures cannot be detected 

by the globar source, because of the low signal to noise ratio. The absorption peaks of the PMMA 

at low frequency region in both horizontal and vertical directions are attenuated.  
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3.1.3 Discussion 

The extra side lobes in the line scans through the horizontal bars of the group 8 element 1, that 

are shown in Figure 14 (d) are related to the higher spatial coherency of the synchrotron source 

along the red arrow. Using multibeam synchrotron source result in different spatial coherency 

factors along different directions. At the IRENI beamline a large fan of radiation from a dedicated 

bending magnet was splitted into 12 beams and subsequently rearranged these into a 3x4 matrix 

beam bundle to illuminate a large field of view ( Nasse, et al., 2011). Freitas et al., report an 

important improvement related to the beamline optics by extracting only one beam along the 

bending magnet radiation. (FREITAS, et al., 2018).  

Figure 16 Heper spectral Image of a 25 um radius Poly(methyl methacrylate) (PMMA) microsphere (a) Absorbance 
image at 1728 cm-1 measured with a synchrotron source. (b) Absorbance image at 1728 cm-1 measured with a 

thermal (Globar) source. (c) Infrared specra along the red arrow. The top panel shows the spectra from the center 
of the sphere located at 0x0 and the bottom panel shows the spectra at 0x20.9. 
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The visibility trends shown in Figure 15 (a) are consistent with the claim that the spatial 

coherency of the light source is not constant in the whole field of view along vertical and horizontal 

directions. It is expected that the visibility of the fringes (resolution) decreases with a decrease in 

the frequency of the light. However, for the synchrotron source the visibility along the horizontal 

bars increases as the frequency of the light decreases. The visibility trend for the globar source 

shown in Figure 15 (b) is distorted by noise, but with a rough estimate we could say that the 

visibility of the globar source is linearly decreasing with frequency of the light. The visibility of 

the globar source for wavenumbers larger than 3500 cm-1 is larger than synchrotron, the fringe 

pattern of the globar source shown in Figure 14 verifies that the fringe patterns of the globar source 

at wavenumbers 3500 cm-1  , 4000 cm-1 and 4499 cm-1 has five peaks instead of two. The presence 

of the peaks at the fringe pattern of the globar source is explained by the fact that the coherency of 

the signals passing through bars depends on the distance between the bars, the size of the source, 

so it is expected that the globar source show spatial coherent properties at some wavenumbers.   

The visibility trends for other elements of the group 8 are also calculated and the result show  

similar behavior. 

In Figure 16 (b) and (c) the spectra that are measured from the center of the sample have larger 

absorption peaks, compare to the one that are close to the edge. The baseline of the spectra 

measured with the globar are constant across the spectral range, while the baseline of the spectra 

measured with synchrotron changes pixel to pixel. We relate this phenomenon to the difference in 

spatial coherence of the two sources. If the diameter of the sphere is smaller than the skin depth 

(𝛿 =
𝜆

4𝜋𝑛𝑖
), the absorbed power by the sphere depends complicatedly on the complex coherence 

factor of the source (GONZAGA-GALEANA & ZURITA-SÁNCHEZ, 2018). The sample that is 
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illuminated with a globar (non-coherent) source is responding to the randomly oriented plane 

waves, as a result the spectra are free of wiggle structures, that are due to the interference of the 

illuminated and the scattered light (Bl¨umel, Ba˘gcıo˘glu, Lukacs, & Kohler, 2016). On the other 

hand, the spectra that are measured by the synchrotron source have spatially varying wiggle 

structures.  For a homogenous sphere imaged with a partially coherent source it is expected to 

observe similar wiggles structures in the spectra that are along the vertical and horizontal direction. 

However, the spectra measured with synchrotron source do not have similar wiggle structure along 

vertical and horizontal directions. Alike the extra side lobes observed for the fringe patterns of the 

USAF target along the horizontal direction, we relate this to the nature of light collection from the 

bending magnet at IRENI beamline ( Nasse, et al., 2011). The appearance of the ripple structures 

at the spectra close to the edges of the sphere are the result of formation of electromagnetic shape 

resonances in the sphere. 

Apart from the brightness (incident power), the globar and synchrotron sources, are distinct by 

their spatial coherency factor. Hence, the spatial interference patterns that are observed in the 

pixelated images measured by a synchrotron source are distinct from the ones measured with a 

globar source.  

Figure 17 (a) USAF Target. (b) Simplified optical system made of a source, two positive lenses with focal length of f 

and three pinholes. 

(a) (b) 
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3.2 2D Measurement of spatial coherence for 3 slits 

In order to gain insight on the amount of the spatial coherence of the sources, the fringe patterns 

of USAF target are fitted to the Fraunhofer diffraction pattern of three slits.  

The imaging system used for measuring the USAF targets is simplified to the optical system 

shown in Figure 17 (b).  

For three slits with width 𝛿 , and equal intensities 𝐼(𝑟1) = 𝐼(𝑟2) = 𝐼(𝑟3) = 𝐼 , and 

monochromatic light, the interference pattern calculated by Fraunhofer diffraction pattern 

becomes:  

𝐼(𝑥) = (
𝐴

𝜆𝑓
)

2

𝑠𝑖𝑛𝑐 (
𝛿

𝜆𝑓
𝑥)

2

× {3 + 4𝜇12 cos(
2𝜋

𝜆𝑓
(∆𝜉12𝑥 + 𝛼12)) + 2𝜇13 cos (

2𝜋

𝜆𝑓
(∆𝜉13𝑥 + 𝛼13))} 

 (3.5) 

Where A is the area of the pinholes, f is the focal distance of the lens, 𝜆 is the wavelength, 𝜇12 

is the complex coherence factor between pinholes 1 and 2, and 𝜇13 is the complex coherence factor 

Figure 18 Fringe pattern at λ=4 µm, for slit width of 1.95 µm. 
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between pinholes 1 and 3. 𝛼12 is the phase difference of the light fields passing through pinhole 1 

and 2.  𝛼13 is the phase difference of the light fields passing through pinhole 1 and 3.  ∆𝜉 is the 

corresponding distances between the pinholes. 

To understand the effect of spatial coherence factors (𝜇12 and 𝜇13), a set of simulations for 

Element 1 of group 8 of the USAF (width of 1.9 µm) at λ = 4 µm is done.  Figure 17 shows that 

as the fringe patterns for 3 different values of effective focal distances. The FWHM of the fringe 

pattern at f = 10 µm is ~10 µm, which is corresponding to the magnification of ~1, so f = 10 µm 

chosen for the rest of the analysis. 

Figure 19 (a) shows the interference pattern as the coherency between slit 1 and 2 increases. 

We can see that for µ13 < 0.5, only three strong interference patterns are observed, while for larger 

values of µ13 extra side lobes at ~ ±5 µm become present. 

Figure 19 (b) shows the situation, where there is 100 % coherency between slits 1 and 3, and 

the value of µ12 is increasing from 0 to 1. Although the number of fringes remain constant in all 

cases, the intensity of the interference pattern increases as µ12 increases.  

Figure 19 Interference pattern of 3 slits for slit width of 1.95µm at λ= 4 µm. (a) 100% coherency between slit 1 and 2, 
while the coherency between slit 1 and 3 is increasing. (b) 100% coherency between slit 1 and 3, while the coherency 
between slit 1 and 2 is increasing. 

(a) (b) 
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3.2.1 Curve Fitting 

To measure spatial coherency factors, 𝜇12  and 𝜇13  for globar and synchrotron sources, the 

measured interference patterns (shown in Figure 14) at the center of a slit are normalized and then 

fitted to Eq. (3.5).  

The fitting is done by least square linear regression. Eq. (3.5) is decomposed to its orthogonal 

components by forming matrix M as follows: 

𝑀 =

[
 
 
 
 
 1 4𝑆 𝑐𝑜𝑠 (

2𝜋

𝜆𝑓
∆𝜉12𝑥1) 4𝑆𝑠𝑖𝑛 (

2𝜋

𝜆𝑓
∆𝜉12𝑥1)

1 4𝑆 𝑐𝑜𝑠 (
2𝜋

𝜆𝑓
∆𝜉12𝑥2) 4𝑆𝑠𝑖𝑛 (

2𝜋

𝜆𝑓
∆𝜉12𝑥2)

2𝑆 𝑐𝑜𝑠 (
2𝜋

𝜆𝑓
∆𝜉13𝑥1) 2𝑆 𝑠𝑖𝑛 (

2𝜋

𝜆𝑓
∆𝜉13𝑥1) 3𝑆

2𝑆 𝑐𝑜𝑠 (
2𝜋

𝜆𝑓
∆𝜉13𝑥2) 2𝑆 𝑠𝑖𝑛 (

2𝜋

𝜆𝑓
∆𝜉13𝑥2) 3𝑆

⋮ ⋮ ⋮

1 4𝑆 𝑐𝑜𝑠 (
2𝜋

𝜆𝑓
∆𝜉12𝑥𝑛) 4𝑆 𝑠𝑖𝑛 (

2𝜋

𝜆𝑓
∆𝜉12𝑥𝑛)

⋮ ⋮ ⋮

2𝑆 𝑐𝑜𝑠 (
2𝜋

𝜆𝑓
∆𝜉13𝑥𝑛) 2𝑆 𝑠𝑖𝑛 (

2𝜋

𝜆𝑓
∆𝜉13𝑥𝑛) 3𝑆]

 
 
 
 
 

 (3.6) 

Where 𝑆 = 2 (
𝐴

𝜆𝑓
)
2
[𝑠𝑖𝑛𝑐(

𝛿

𝜆𝑓
𝑥)]

2

.   

By solving the equation of  

𝐼𝑛𝑡(𝑥) = 𝑀𝑝  (3.7) 

where 𝐼𝑛𝑡 is the wavelength dependent interference pattern passing through the center of the 

slit, and 𝑃 = [𝑝1 𝑝2 𝑝3 𝑝4]  is the parameter vector. Then  𝜇12 = √𝑝2
2 + 𝑝3

2 , 𝛼12 =

𝑡𝑎𝑛−1 (
𝑝3

𝑝2
) ,  𝜇13 = √𝑝4

2 + 𝑝5
2, 𝛼13 = 𝑡𝑎𝑛−1 (

𝑝5

𝑝4
). 

Apart from the p, there is another unknown in Eq. (3.6) 𝑓, which is the focal length of the 

simplified imaging system shown in Figure 17 (b). To select a f value following steps are done: 
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1) A range of 𝑓 values (1 to 40 µm, with step size of 1 µm) are selected. 

2) Curve fitting is done for each of these f values 

3) The best fitted fringe and the corresponding f,  μ12 and μ13 are selected based on 

minimum error between the fitted interference pattern and the measured one. 

 

3.2.1.1 Results 

The values of 𝜇12 and 𝜇13  for a non-coherent light source after passing through slits are 

predicted by Eq. (3.2) as shown in Figure 20 (a). In the simulations it is considered that the 

condenser focuses the light in an area of 140x140 µm2 (a = 140 µm), the sample (USAF, Group 8-

element1, b = 3.9 µm) has been moved up out of the focus of the condenser for roughly about 100 

Figure 20 Spatial Coherence Factor for synchrotron source. (a) Simulated spatial Coherence factor 𝜇12  (𝛿 =

3.9 𝜇𝑚), and  𝜇13  (𝛿 = 7.8 𝜇𝑚). (b) Fitted values of spatial coherence factors for horizontal bars (group 8 – 

element 1). (c) Fitted values of 𝛼12 and 𝛼12 for horizontal bars (group 8 – element 1). (d) Fitted values of spatial 

coherence factors for vertical bars (group 8 – element 1). (b) Fitted values of 𝛼12 and 𝛼12 for horizontal bars 
(group 8 – element 1). 
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µm (z= 100 µm) to compensate for the light diffraction in the glass. Figure 20 (a) shows the 

simulated values for 𝜇12 and 𝜇13 for a non-coherent light source.  

Figure 20 (b) to (e) shows the fitted values of  𝜇12 and 𝜇13 to horizonal and vertical bars of 

group 8 – element 1 with the method discussed in Section 3.2.1. The 𝜇12 and 𝜇13 curves measured 

for horizontal and vertical of bars have similar behavior . 

Figure 21 shows the result of the same analysis for a globar source.  

 

 

 

 

 

Figure 21 Spatial Coherence Factor for globar source. (a) Fitted values of spatial coherence factors for 

horizontal bars (group 8 – element 1). (b) Fitted values of 𝛼12 and 𝛼12 for horizontal bars (group 8 – element 
1). (c) Fitted values of spatial coherence factors for vertical bars (group 8 – element 1). (d) Fitted values of 

𝛼12 and 𝛼12 for horizontal bars (group 8 – element 1). 
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Chapter 4 

4 Coherent Hyperspectral Image simulations 

The hyperspectral image of a 25µm PMMA sphere is simulated by Green’s function of the 

Maxwell’s equation. The incident light is an ideal coherent plane wave propagating in the direction 

of the optical axis. The simulated image that is called a true image gives an insight on how a perfect 

hyperspectral infrared cube must looks like apart from the complexities introduced by measuring 

optics and the source. This information will guide us toward designing a new instrument for 

measuring infrared spectra.  

Atomic force microscopy and infrared-spectroscopy (AFM-IR) is a method for measuring 

infrared spectra at the surface of a sample with nanometer spatial resolution. This method is 

derived by combining infrared spectroscopy and scanning probe microscopy. The spectra 

measured with this method have rapid sharp peaks that are usually considered as noise and are 

being smoothed out. Our simulations show that this spike features measured with AFM-IR are 

related to the nearfield components of the absorbed light. The measured spectral spikes possess 

information regarding to the physical shape of the sample, and they could be used for 3-

dimensional reconstruction of the samples with super resolution. 

Figure 22 A visible image of the 25µm PMMA bead measured at IRENI. The scale 
bar is 20 µm. 
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On the other hand, it is considered that conventional FTIR measures only the far field 

components of the electric field. In order to gain an insight about the differences between the near 

field and far field spectra, the near field and far field spectra of a 25µm radius PMMA are simulated 

at the same image plane. In calculation of the far field spectra only the far field components of the 

Green’s function are used.  

4.1 Introduction 

FTIR hyperspectral images are difficult to simulate and visualize. The result is inherently high-

dimensional (𝑥, 𝑦, 𝑧, 𝜆)  and needs a huge computational power.  The Mie theory provides a 

rigorous solution to Maxwell’s equations for a spherical scatterer. The theory has been used to 

characterize absorption in atmospheric simulations, to approximate cellular structures in 

spectroscopic imaging of biological tissues. (Berisha, Dijk, Bhargava, Carney, & Mayerich, 2017) 

In this chapter Green’s function of the Maxwell’s equation is provided to extend the former 

applications to non-spherical objects for infrared imaging.  

In order to evaluate the numerical result calculated with the Green’s function, a spherical scatterer 

is chosen, and the results are confirmed with Mie theory. The simulations are compared with 

experiment as well. The differences between the theoretical and the experimental results are 

explained by the fact that in the experiments the incident light is a partially coherent synchrotron 

beam, and the numerical aperture of the collective optics is not infinite.  
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4.2 2D Image simulation 

To simulate the broadband infrared images of a micrometer size bead, first the complex 

refractive index of the material is measured by infrared spectroscopy of the corresponding thin 

films. By knowing the complex refractive index, the distribution of the electric field is simulated 

by Green’s function of the Maxwell’s equation (Economou, 1979) (Goedecke & O’Brien, 1988), 

and the results are confirmed by Mie theory (Bohren & Huffman, 1998).  

The image is formed in the far field, where the near field components of the electric and 

magnetic field are considered as zero. The far field approximation of the electric field distribution 

is calculated by means of the free space Green’s function of the Maxwell’s equation.  

To consider the nonidealities involved with the imaging system, the point spread function 

(PSF) - impulse response of the microscope - of the system is measured and convolved with the 

simulated images. The refractive index measurement, far field Green’s integration and PSF 

convolution is explained in Sections 4.3.1, and 4.3.2. Finally, at the result section calculated 

images of a PMMA bead with 25 µm radius are shown.  
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4.2.1 Refractive Index Calculation from Measured Spectra 

In broadband infrared imaging, the refractive index of the material cannot be considered as a 

constant real value. The complex refractive index of a material can be obtained by knowing the 

constant real part of the refractive index and the pure infrared absorbance spectrum. The complex 

refractive index is defined as 𝑛(𝜈) = 𝑛𝑟(𝜈) + 𝑖𝑛𝑖(𝜈) , where 𝑛𝑟  is the real part and 𝑛𝑖  is the 

imaginary part. The imaginary part of a refractive index of a thin film is proportional to its 

absorbance spectrum by Beer’s law as follows 

𝑛𝑖 =
𝐴𝑙𝑛(10)

4𝜋𝑙𝜈
  (4.1) 

where A is the absorbance spectrum, 𝑙 is the thickness of the film, and 𝜈 is the wavenumber. 

Knowing the imaginary part, the real part of the refractive index is calculated by the Kramers-

Kronig relation, 

𝑛𝑟(𝜈) = 𝑛0 +
2

𝜋
 𝑃 ∫

𝑠𝑛𝑖(𝑠)

𝑠2−𝜈2 𝑑𝑠
∞

0
  (4.2) 

Figure 23 Complex refractive indexes of PMMA and PS thin film, calculated by absorption spectrum and the Kramers-Kronig’s relation. 
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where 𝑛0 is the constant part of the real part of the refractive index, and P denotes the Cauchy 

principal value of the integral.  Figure 23 (a) and (b) show the real and imaginary part of the 

refractive index for PS and PMMA thin films calculated by this method.  

4.2.2 Wave Propagation by Far-field Green’s Integral 

4.2.2.1 The Green’s function of the Maxwell’s equation in free space 

In mathematics, a Green’s function is the impulse response of an inhomogeneous linear 

differential equation defined on a domain, with specified initial and boundary conditions. This 

method allows us to compute the electric and magnetic fields explained by Maxwell’s equations. 

The electric and magnetic-field vectors in a free space satisfy Maxwell’s equations 

∇. 𝐸⃗ (𝑟 , 𝑡) = 0,  (4.3) 

∇. 𝐵⃗ (𝑟 , 𝑡) = 0  (4.4) 

∇ × 𝐸⃗ (𝑟 , 𝑡) = −
𝜕𝐵⃗ 

𝜕𝑡
,  (4.5) 

∇ × 𝐵⃗ (𝑟 , 𝑡) =
1

𝑐2

𝜕𝐸⃗ 

𝜕𝑡
  (4.6) 

A necessary condition for 𝐸⃗  and 𝐵⃗  to satisfy Maxwell’s equations is that each of their 

components satisfy the wave equation 

∇2𝑢(𝑟, 𝑡) −
1

𝑐2

𝜕2𝑢(𝑟,𝑡)

𝜕𝑡2 = 0 (4.7) 

The scalar function 𝑢(𝑟, 𝑡) represents any of the three components of the 𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧  or the 

three components of the 𝐵𝑥, 𝐵𝑦, 𝐵𝑧 , Where 𝐸⃗  is the electric field, and 𝐵⃗  is the magnetic field, and 
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c is the speed of light. In a linear, homogeneous, and isotropic media, where we have stationary 

state, we can write 

𝐸⃗ (𝑟 , 𝑡) = 𝐸⃗ (𝑟 )𝑒𝑖𝜔𝑡,   (4.8) 

𝐵⃗ (𝑟 , 𝑡) = 𝐵⃗ (𝑟 )𝑒𝑖𝜔𝑡.  (4.9) 

where 𝜔 =
2𝜋𝑐

𝜆
. Stationary Maxwell equations are 

𝐵⃗ (𝑟 ) =
1

𝑖𝜔
∇ × 𝐸⃗ (𝑟 ),  (4.10) 

𝐸⃗ (𝑟 ) = −
𝜇

𝑖𝜔𝜀
∇ × 𝐵⃗ (𝑟 ),  (4.11) 

where 𝜇 is the magnetic permeability and 𝜀 is the electric permittivity. Applying ∇ × to the 

stationary Maxwell Eq. (4.10) and Eq. (4.11) yields the field equations. 

∇ × [∇ × 𝐸⃗ (𝑟 )] − 𝑛2(𝑟 )𝑘0
2𝐸⃗ (𝑟 ) = 0,  (4.12) 

∇ × [∇ × 𝐵⃗ (𝑟 )] − 𝑛2(𝑟 )𝑘0
2𝐵⃗ (𝑟 ) = 0,  (4.13) 

where k is the wave vector 𝑘 =
𝜔

𝑐
= 𝑛𝑘0 and 𝑘0 =

2𝜋

𝜆0
 , where 𝑛(𝑟 ) is the complex refractive 

index and 𝜆0 is the wavelength of the light in free space. Substituting the electric and magnetic 

fields 𝐸⃗ (𝑟 ), and 𝐵⃗ (𝑟 ) into the wave Eq. (4.12) yields the Helmholtz equations 

∇2𝑈 + 𝑘2𝑈 = 0 (4.14) 

To solve the Helmholtz Eq. (4.14), the Green’s function method can be used. The E&M 

Green’s function is a 3 × 3 matrix (a tensor) given by 

𝐺(𝑟 , 𝑟 ′) = {(
3

𝑘2𝑅2 −
3𝑖

𝑘𝑅
− 1) 𝑅̂𝑅̂ + (1 +

𝑖

𝑘𝑅
−

1

𝑘2𝑅2)𝐼}𝑔(𝑅), (4.15) 
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where, 

𝑅̂ =
𝑟 −𝑟 ′

|𝑟 −𝑟 ′|
,  (4.16) 

𝑔(𝑅) =
1

4𝜋

𝑒𝑖𝑘|𝑟⃗⃗ −𝑟⃗⃗ ′|

|𝑟 −𝑟 ′|
=

1

4𝜋

𝑒𝑖𝑘𝑅

𝑅
,  (4.17) 

and, 

𝐼 = [
1 0 0
0 1 0
0 0 1

],  (4.18) 

is the unit tensor. The Green’s function defined in (4.15) satisfies the field equation  

∇ × [∇ × 𝐺 (𝑟 , 𝑟 ′)] − 𝑘2𝐺 (𝑟 , 𝑟 ′) = 𝐼𝛿(𝑟 − 𝑟 ′). (4.19) 

The 𝑅̂𝑅̂∗components of 𝐺(𝑟 , 𝑟 ′) is 

𝑅̂𝑅̂ = [

𝑅̂𝑥𝑅̂𝑥 𝑅̂𝑥𝑅̂𝑦 𝑅̂𝑥𝑅̂𝑧

𝑅̂𝑦𝑅̂𝑥 𝑅̂𝑦𝑅̂𝑦 𝑅̂𝑦𝑅̂𝑧

𝑅̂𝑧𝑅̂𝑥 𝑅̂𝑧𝑅̂𝑦 𝑅̂𝑧𝑅̂𝑧

],  (4.20) 

where 𝑅̂𝑥 = (𝑥 − 𝑥′)/𝑅, 𝑅̂𝑦 = (𝑦 − 𝑦′)/𝑅, 𝑅̂𝑧 = (𝑧 − 𝑧′)/𝑅. In the absence of magnetic 

properties of the sample the electric field 𝐸⃗ (𝑟 ) satisfies the Lippmann-Schwinger equation 

𝐸⃗ (𝑟 ) = 𝐸⃗ (𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)(𝑟 ) + 𝑘2 ∫ [𝑛2(𝑟 ′) − 1]𝐺(𝑟 , 𝑟 ′). 𝐸⃗ (𝑟 ′)𝑑3
𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

𝑟 ′, (4.21) 

where the integral extends over all space, 𝐸⃗ (𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)(𝑟 ) is the incident field (which can take 

any shape or form), 𝑘 =  
2𝜋

𝜆
 is the angular wavenumber, and 𝜆  is the wavelength. The validity of 

(4.21) can be verified by inserting (4.21) into the field Eq. (4.12) using the theory of distributions 

for 𝐸⃗  and observing (4.19). 
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In the case of interest in biology and chemistry, the index of refraction outside of the sample 

is n = 1. Using this information, we see immediately that the integral in (4.21) does not give any 

contributions outside of the sample, since outside of the sample the term (𝑛2 − 1)  is identically 

zero. Therefore, if we restrict our attention to the case where n = 1 outside of the sample, the 

Lippmann-Schwinger Eq. (4.21) simplifies to 

𝐸⃗ (𝑟 ) = 𝐸⃗ (𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)(𝑟 ) + 𝑘2 ∫ 𝐺(𝑟 , 𝑟 ′)[𝑛2(𝑟 ′) − 1]𝐸⃗ (𝑟 ′)𝑑3
𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝑟 ′, 

 (4.22) 

This is the key observation, which we are going to use for imaging. According to (4.22) we 

can obtain the electric field anywhere in space by knowing the inside field of the sample.  

To obtain the field inside the sample, the scatterer is subdivided into several small volume 

elements in which the electric field vector is approximated by a constant value. This leads to the 

following discretized version of Eq. (4.22), that is 

𝐸𝑚 = 𝐸0,𝑚 + ∑ 𝐺𝑚𝑗𝑗 (𝑛𝑚
2 − 1). 𝐸𝑚, (4.23) 

where  𝐸𝑚 and 𝑛𝑖 are the electric field, and complex refractive index at volume element of 𝑚, 

and  𝐺𝑚𝑗 is defined as 

𝐺𝑚 = ∫ 𝐺(𝑟𝑚 , 𝑟′)𝑘0
2𝑑3𝑟′

𝑉𝑗
,  (4.24) 

where the position 𝑟𝑚 represent the center of volume element 𝑚 and 𝑉𝑗 denotes that the 

integral is over volume 𝑗. In case with 𝑚 ≠ 𝑗, it can be acceptable to use the approximation  

𝐺𝑚𝑗 = 𝐺(𝑟𝑚 , 𝑟𝑗)𝑘0
2𝑉𝑗.  (4.25) 

In the case when 𝑚 = 𝑗 , it is necessary to use a more precise method. In order to avoid 

integrating over the very strong singularity of G, the volume integral (4.24) is transformed to a 

surface integral ( YAGHJIAN, 1980) (Lavrinenko, Laegsgaard, Gregersen, Schmidt, & 
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Sondergaard, 2017). By using (4.15) and (4.17) and the Gauss law 𝐺𝑖𝑗 at the source region could 

be calculated by 

𝐺𝑚𝑚 = −𝐼 + ∮ (𝑛̂′∇′ − 𝐼𝑛̂′. ∇′)𝑔(𝑟𝑚 , 𝑟′)𝑑𝐴′
𝜕𝑉𝑚

,  (4.26) 

where 𝜕𝑉𝑚 is the surface of the volume element 𝑚. 𝑛̂′ is the outward surface normal vector 

of volume element 𝑚 at the position on the surface 𝑟′. 𝑑𝐴′ is the infinitesimal surface area. 𝐺𝑚𝑚 

depends only on the shape of element 𝑚, and its position (Lavrinenko, Leagsgaard, Gregersen, 

Schmidt, & Sondergaard, 2014). 

Integral (4.22) in spherical coordinate has the following form 

𝐸⃗ (𝑟 ) = 𝐸⃗ (𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)(𝑟 ) + 𝑘2 ∫ 𝐺(𝑟 , 𝑟 ′)[𝑛2(𝑟 ′) − 1]𝐸⃗ (𝑟 ′)𝑟2𝑠𝑖𝑛𝜃𝑑𝜑𝑑𝜃𝑑𝑟
𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

. 

(4.27) 

For a spherical sample, Eq. (4.23) is 

𝐸⃗ (𝑟 ) = 𝐸⃗ (𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)(𝑟 ) + 𝑘2 ∫ ∫ ∫ 𝐺(𝑟 , 𝑟 ′)[𝑛2(𝑟 ′) − 1]𝐸⃗ (𝑟 ′)𝑟2𝑠𝑖𝑛𝜃𝑑𝜑𝑑𝜃𝑑𝑟
2𝜋

0

𝜋

0

𝑎

0
. 

 (4.28) 

To calculate the image only far field components are considered. The terms with 𝑅2 in the 

denominator vanish in the far field, and the Green’s function of (Eq. (4.15)) reduces to 

 𝐺(𝑟 , 𝑟 ′) = {−𝑅̂𝑅̂ + 𝐼}𝑔(𝑅).   (4.29) 

Knowing the electric field, the magnetic field, 𝐻 can be calculated by means of Eq. (4.11) 

and knowing 𝐻⃗⃗ = 𝐵⃗ /𝜇0. 

The intensity of the electromagnetic field is defined by mean of the pointing vector 𝑆 (𝑟 ) as 

followed 
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𝐼 𝑡𝑟𝑢𝑒(𝑟 ) = 〈𝑆 (𝑟 )〉 =
1

2𝜇0
ℛ[𝐸⃗ (𝑟 ) × 𝐵⃗ (𝑟 )∗], (4.30) 

where the angular brackets indicate cycle averaging (Hetch, 1974). 

For imaging purposes that the detector is located at the far field. The detected image is the 

dissipated power at the surface of FPA  

𝑃(𝑟 ) = 𝐼 𝑡𝑟𝑢𝑒(𝑟 ). 𝐴  . (4.31) 

4.2.2.2 Integration Method: Gaussian Quadrature 

In numerical analysis, a quadrature rule approximates the definite integral of a function, usually 

stated as a weighted sum of function values at specified points within the domain of integration. 

The integrand in Eq. (4.22) is periodic with respect to 𝜑, with period of 0 to 𝜋 , so the trapezoidal 

rule integration can be used along 𝜑 direction. 𝜃 is chosen as the Gaussian quadrature variable and 

𝑤 is an array containing the corresponding weight factors, so Eq. (4.22) is modified as follows 

𝐸⃗ (𝑟 ) = 𝐸⃗ (𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)(𝑟 ) + 𝑘2 ∫ ∫ ∫ 𝐺(𝑟 , 𝑟 ′)[𝑛2(𝑟 ′) − 1]𝐸⃗ (𝑟 ′)𝑟2𝑠𝑖𝑛𝜃𝑤𝑑𝜑𝑑𝑟
2𝜋

0

𝜋

0

𝑎

0
. (4.32) 

Eq. (4.32) is implemented in MATLAB. The convergence of the technique is evaluated by Mie 

theory for spherical objects (Walter & Patch, 2018).   

The convergence analysis of the integral is done in 3 dimensions, for 3 spheres with radius of 

1, 3 and 25 µm at the shortest wavelength of 4000 cm-1 and complex refractive index of 1.3+0.1i.  

Nr is the discretization in r, Nφ is the discretization in φ, and Nθ is the discretization in θ. The 

percentage error is calculated by calculating real part of 𝐸𝑥  with different discretization (doubling 

in each dimension until the integral converges at each dimension) and then the relative error is 

𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑒{
𝐸𝑥(𝑛)−𝐸𝑥(𝑛−1)

𝐸𝑥(𝑛)
} × 100 . 
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As an example, the convergence analysis for the 1µm sphere is reported. First by keeping the 

value of Nr and Nθ constant the minimum value of Nφ , that makes the integral convergent along 

φ is chosen. The errors analysis for Nφ values are summarized in Table. 1. 

Table 1 Convergence analysis for a 1µm sphere with refractive index of 1.3+0.1i at 4000 wavenumbers along φ 

Nr Nφ Nθ max (𝑅𝑒{𝐸𝑥(𝑛) − 𝐸𝑥(𝑛 − 1)}) error CPU time (s) 

129 9 9 3.58e-03 0.46 11 

129 18 9 4.62e-09 0.00 38 

Nφ = 18 is chosen, and then the convergence along r is checked. The result is summarized in 

Table. 2.  

Table 2 Convergence analysis for a 1µm sphere with refractive index of 1.3+0.1i at 4000 wavenumbers along r 

Nr Nφ Nθ max (𝑅𝑒{𝐸𝑥(𝑛) − 𝐸𝑥(𝑛 − 1)}) error CPU time (s) 

17 18 9 6.03e-2 5.04 4 

33 18 9 1.77e-2 1.50 7 

65 18 9 4.41e-3 0.38 16 

129 18 9 1.10e-3 0.09 29 

257 18 9 2.74e-04 0.02 37 

513 18 9 6.84e-05 0.01 53 

1025 18 9 1.71e-05 0.00 46 

 

Now the value of  Nr = 1025 is chosen, and the convergence along the θ is analyzed as shown 

in Table. 3.  
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Table 3 Convergence analysis for a 1µm sphere with refractive index of 1.3+0.1i at 4000 wavenumbers along θ 

Nr Nφ Nθ max (𝑅𝑒{𝐸𝑥(𝑛) − 𝐸𝑥(𝑛 − 1)}) error CPU time (s) 

1025 18 9 2.01e-2 1.68 108 

1025 18 18 3.21e-3 0.27 338 

1025 18 36 1.35e-04 0.01 356 

 

The value of Nθ = 36 is chosen. Now for minimizing the value of Nr while we are sure that 

the integral is convergent along the other directions the convergence is checked by reducing the 

value of Nr as shown in Table. 4. 

Table 4 Reducing the value of Nr for an efficient calculation for a 1µm sphere with refractive index of 1.3+0.1i at 

4000 cm-1. 

Nr Nφ Nθ max (𝑅𝑒{𝐸𝑥(𝑛) − 𝐸𝑥(𝑛 − 1)}) error CPU time (s) 

1025 18 36 7.24e-8 0.00 356 

513 18 36 2.88e-7 0.00 162 

257 18 36 1.16e-6 0.00 102 

129 18 36 1.85e-05 0.01 50 

 

Finally the values of Nr = 257, Nφ = 18 and Nθ = 36 are chosen so the Green’s integral 

converges for the sphere with radius of 1µm, refractive index of 1.3 + 0.1i at 4000 cm−1 ≡ 𝜆 =

2.5 μm. 

The same analysis is performed for spheres with radius of 3μm and 25 μm, the corresponding 

values of Nr, Nφ and Nθ are showin in Table.5.  
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Table 5 Convergence Analysis for the Green's function for a sphere with refractive index of 1.3+0.1i at 4000 cm-1. 

r(µm) Nr Nφ Nθ CPU time (s) 

1 257 18 36 102 

3 257 36 36 194 

25 513 72 144 1320 

 

4.3 Experiment 

A 20µl droplet of a solution containing Poly (methyl methacrylate) PMMA microsphere with 

16-40 µm radius was dropped on a glass slide. A single bead with 25 µm radius was casted by a 

small hook that was dipped in glue.  Measurements were done by a FTIR Bruker Hyperion 3000 

micro spectrometer, coupled to a source channel, which could be switched between a Globar 

source and a Synchrotron (SRC at IRENI). A focal plane array detector (128 x 128 pixels) with a 

20x (0.6 NA) condenser, and a 36x (0.5 NA) objective were used to reach pixel sizes of 1.1x1.1 

µm2. The measurement was done with two sources to compare the results. 

 

4.3.1 Point Spread Function  

PSF is the response of an imaging system to a point source. It shows the degree of spreading 

(blurring) of the point object and is a measure for quality of an imaging system. 

PSF mimics diffraction effects, chromatic aberrations and other factors that distort the true 

image of the sample. Mathematically, the measured image, and the true form of the object, are 

related by the following equation 

https://en.wikipedia.org/wiki/Point_source
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𝐼𝑚𝑒𝑎𝑠(x, y) = 𝐼𝑡𝑟𝑢𝑒(x, y) ∗ 𝑃𝑆𝐹(𝑥, 𝑦), (4.25)   

where 𝐼𝑚𝑒𝑎𝑠(x, y) is the measured image, and 𝐼𝑡𝑟𝑢𝑒(x, y) is the ideal image of the sample. By 

measuring the PSF for a given optical system, and convolving the ideal image with the PSF, the 

blurring effects of the system are considered. The wavelength dependent PSF of the Bruker 

Hyperion 3000 IR microscope for a 36x (0.5 NA) Schwarzschild objective was measured by a 2 

μm pinhole, which approximates a point source object. The Schwarzschild objective is made of 

two concave/convex concentric parabolic mirrors, offset from one another as shown in Figure 24. 

The wave propagation through a Schwarzschild objective can be crudely modeled by plane 

wave transmission through an annulus at the image plane and is described by the equation 

𝐼(𝜃) = 𝐼0(
2𝐽1(𝑥)

𝑥
−

2𝜀𝐽1(𝜀𝑥)

𝑥
)2,  (4.26) 

where 𝐽1 is first order Bessel function,  𝑥 = 𝑘𝑟2𝑠𝑖𝑛𝜃; 𝑘 is 
2𝜋

𝜆
; 𝑟2 is the radius of the primary 

mirror( Figure 24 (b)); 𝜃 is the angular position at the image plane with respect to the central axis 

Figure 24 (a) Three-dimensional schematic of objective (top) and condenser (bottom) Schwarzschild optics used at IRENI. (b) 

Schematic diagram showing cross-section of a cylindrically symmetric Schwarzschild optic. (c) PSFs for the 74× objective lens 
within the Hyperion 3000 IR microscope. Center profiles through measured PSFs at 3500, 3000, and 2500 cm−1 are overlaid 
with simulated curves resulting from the fitting results. (Mattson, Nasse, Rak, Gough, & Hirschmugl, 2012) 
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of Schwarzschild objective; 𝑟1 is the radius of the secondary mirror, and 𝜀 =
𝑟2

𝑟1
 (Mattson, Nasse, 

Rak, Gough, & Hirschmugl, 2012). 

4.4 Results 

4.4.1 Simulations 

To model optical properties of cells and cell nuclei in the infrared region, poly (methyl 

methacrylate) (PMMA) microspheres are chosen for further studies. To understand the 

complexities involved with the scattering features of the spectra in the diffraction limit, where the 

ratio of wavelength and radius of the sample is 0.1 < λ/r < 10, the hyperspectral image of a PMMA 

bead is simulated. 

 Figure 25 (a) shows the image simulation path: first electric field distribution is calculated for 

a sphere, then the intensity at a detector close to the sphere is convolved with the measured PSF to 

consider the blurring effects of the microscope. Figure 25 (b) shows the absorbance distribution 

calculated on the XY plane at z = 25.6 for a PMMA sphere with a radius of 25µm. Energy 

distribution is shown in the form of -log(|E|2) for four different wavenumbers, 1148 cm-1, 1732 cm-

1, 2508 cm-1 and 2952 cm-1. 1148 cm-1 and 1732 cm-1 are a low frequency (λ/r = 0.35), and mid 

frequency (λ/r = 0.23) absorption band respectively. The energy is distributed uniformly at these 

two absorption bands.  Figure 25 (b) shows that an electric field shape resonance happens at 2508 

cm-1(λ/r = 0.16), where there is no absorption band. Inspecting visually the electric field at 2508 

cm-1 in Figure 25 (b), enhancement of the electric field at the edges of the sphere, and its 

suppression at the center are observed. Figure 25 (b) shows the energy distribution at a weak 

absorption band-2952 cm-1 (λ/r = 0.14), although the shape resonances are present at low 

absorbance peaks, they are less dominant compare to the 2508 cm-1.  Hence, in addition to 
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scattering, presence of shape resonances can lead to variation in the spectra from one pixel to 

another.  

Figure 25 (c) shows -log(|E|2) for four different wavenumbers, namely 1148 cm-1, 1732 cm-1, 

2508 cm-1 and 2952 cm-1 at the position of the virtual detector, z = 25.6 µm. Figure 14 ( d) 

illustrates -log(|E|2|) for four different wavenumbers, namely 1148 cm-1, 1732 cm-1, 2508 cm-1 and 

2952 cm-1 at the position of the virtual detector.  

Figure 25 (d) show the corresponding images after convolution with the PSF (Impulse response 

of the system). Comparing Figure 25 (c) and (d), the images shown in Figure 25 (d) are blurred 

compare to the images of Figure 25 (c). Figure 25 (e) shows the spectra extracted from the 

simulated hyperspectral cubes at the virtual detector, and after convolving with the PSF. It is shown 

that the near field features observed at the virtual detector are blurred after passing through the 

microscope. Figure 25 (d) also shows that the spectrum from the center of the sphere looks like 

the absorption spectrum of a PMMA thin film. However, by moving further away from the center, 

the spectra become distorted. This is due to light scattering, and enhancement of the electric fields 

at the edges of the sphere. For example, in Figure 25 (e) the spectrum corresponding to the pixel 

at (x = 0 µm, y = 20.9µm) does not have any of the PMMA absorption peaks. 

The simulated images of a 25 µm radius PMMA bead show that homogeneity in the absorption 

images of a solid sphere is not expected in the measurements for all wavenumbers. The absorbance 

images look homogenous only in large absorption bands, such as 1732 cm-1 (when λ/r = 0.35). In 

addition, the spectra of a PMMA bead are space dependent, and the shape of the spectra changes 

by moving away from the center of the solid sphere.   
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Figure 26 shows the near field and far filed spectra of the 25µm radius sphere at z location of 

25.6µm for two simulations. The blue curve shows the result of the near field simulation, while 

the red curve shows the spectra calculated by far field tensor Green’s function. The spectra shown 

in Figure 26 (a) to (f) show pixelated spectra of the sphere from center to the edge with radial 

distance of 5µm. It is considered that intensity is equal to the square of the absolute value of normal 

component of the electric field to the detector. The near field spectrum at the center of the sphere 

has a negative baseline, and it is free of any ripple or wiggles.  

A negative baseline in the absorbance spectrum might seem unusual at very first and one could 

claim that the sphere is generating energy, and this disagrees with conservation of the energy. A 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

(e) 

 

 

(f) 

 

 

Figure 26 Farfield spectra Vs Nearfield spectra of a 25µm radius PMMA sphere at z = 25.6µm. (a) at 
center of the sphere. (b) radial distance of 5µm. (c) at radial distance of 10µm. (d)  at radial distance of 

15µm. (e) at radial distance of 20µm. (d) at radial distance of 25µm. 
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negative baseline is indicative of presence of shape resonances inside of the sphere, or it might 

simply happen because the scattering off the sphere will result in bending the light and focusing 

the light at a specific position. By integrating the energy over an area larger than the scattering 

area of the sphere, one could see that the law of conservation of the energy is valid. The ripples 

(fast varying signatures) appear at the spectra that are close to the edge of the sphere in the nearfield 

spectra. Apart from the ripples, wiggles are observed at Figure 26 (e).  

The spectrum that is calculated by the far field Green’s function at the center of the sphere 

shown in Figure 26 (a) has a linear slope that is decreasing with wavenumber, while this slope 

vanishes toward the edges of the sphere. The ripples are not preserved at the simulated far filed 

spectra, even at the pixels close to the edges. The absorbance bands at Figure 26 (e), and (f) are 

distorted, these spectra are at radial distances of 20µm, and 25µm respectively. There is no 

absorbance band in the near field spectra, although some spectral features are present in the far-

field spectra.  

Figure 27 Measurement VS simulation, 25µm radius PMMA bead. (a) Projection Images measure at of 1148 cm-1, 1732 cm-

1, 2508 cm-1 and 2952 cm-1. (b) Simulated spectra compare to measure spectra of the 25µm radius PMMA bead. The x-y 
location of each spectrum is written on the title of the image. 
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The spectra shown in Figure 26 are calculated by considering that intensity is simply square of 

the absolute value of the electric field.  

Figure 27 (a) shows the measured chemical images (hyperspectral images or a broadband 

image) of a 25µm PMMA sphere at 1148 cm-1, 1732 cm-1, 2508 cm-1 and 2952 cm-1. The red 

spectra shown in Figure 27 (b) show the measured spectra. The black spectra show the 

corresponding near field simulated spectra, that are convolved with the PSF, and have the most 

similarity between the measurement and the simulations.  Although the object is homogenous like 

the simulations, the measured images show some variation in the absorption image across the 

sphere. PMMA does not have any absorption band at 2508 cm-1, but the measured image at 

2508cm-1 looks hollow. This is the result of the presence of shape resonances at this wavenumber. 

There is an agreement between the simulated and measured spectra at the center of the sphere.  

The absorption peaks both in simulation and experiment vanish at distances larger than 20µm 

away from the center of the sphere. However, the baseline of the simulated and measured spectra 

is different. It is shown that as we move from the center to the edges of the sphere there is more 

wiggles (slow oscillatory variation due to the interference of the incident and scattered wave) in 

the measured spectra compare to the simulations. Also, more ripple structure (high frequency 

oscillatory variations due to the electromagnetic resonances) (Blumel, Bagcioglu, Lukaccs, & 

Kohler, 2016) is observed in the simulation compare to the experiment. It is assumed that the 

incident light is fully coherent for the simulations, while the measurement is done by the 

synchrotron source at IRENI, that is considered as a partially coherent source. In addition, if the 

incident light was not normal to the sphere, different shape resonances might be excited compare 

to the situation that incident light is normal to the sphere (which is the case in the simulations).  
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With the insight gained from the simulations and the experiment, we concluded that the 

scattering features observed in the pixels are the results of two phenomena, (I) resonance of the 

light in the 3 dimensional geometry of the sample, and (II) bending of the light as the result of a 

sudden change in the value of the refractive index at the boundaries of the sample.  

The conclusion is that for removing the scattering from pixelated data, an inverse scattering 

method is needed. An inverse method that maps a 2-dimnesional image to a 3-dimensional volume 

of the sample. In the next chapter an inverse method for removing scattering from pixelated 

broadband images is provided. 
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Chapter 5 

5 Super Resolution 3D Refractive Index Recovery   

The results of Chapters 3 and 4 show that in diffraction limit, scattering is a function of axial 

position of the image plane, geometrical shape of the sample and coherency of the light source. In 

addition, depending on the numerical aperture of the collecting optics (ability of the lens to collect 

scattered light), the spatially resolved scattering contribution in the spectra is changing.  

In this chapter an algorithm for recovery of the true complex refractive index of the highly scatterer 

is presented. It is first demonstrated that the real part of the refractive index has the main role in 

the spectral scattering contributions.  Then it is shown that the constant real part of the refractive 

index can be estimated by spectral information at regions far from the absorption bands. Then by 

rephrasing the Green’s function of the Maxwell’s equation as a state space equation, and by using 

the electric field images instead of intensity images, the true complex refractive index of a 

homogenous sphere (a standard material that is a gelatinous protein mixture) is recovered by an 

iterative algorithm.  

Then it is shown that the algorithm can be extended for recovery of the refractive index of samples 

with inhomogeneities. The result show that by employing a suitable mesh grid for the Green’s 

integration, the refractive index of the sample could be recovered with super resolution. 

In order to evaluate the robustness of the algorithm for handling real data, the sensitivity of the 

algorithm to noise is tested. Then the algorithm is applied to broadband holographic images of a 

melanosome. The recovered refractive indexes are promising. However, due to the lack of 
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information about the axial position of the image plane the imaginary part of the refractive index 

of the melanosome are not recovered.  

Consider that the algorithm uses the electric field of the sample at the image plane not the intensity. 

Phase microscopy is a method for measuring amplitude and phase of the electric field, and we 

propose that instead of conventional FTIR, for truly remove the scattering form the hyperspectral 

images, the broadband phase microscopy is necessary.  

5.1 Introduction 

Many samples in microscopy are largely transparent, thus absorbing little or no light. When 

light passes through such an object, the predominant effect is the generation of a spatially varying 

phase shift. This effect is not directly observable with a conventional microscope and a sensor that 

responds to light intensity (Goodman, Fourier Optics, 2005). Traditionally, dye labels and other 

contrast agents are used in conventional optical microscopy and fluorescence techniques; however, 

these usually degrade the sample and are limited to known molecular species. Vibrational 

spectroscopic imaging techniques, such as infrared hyperspectral imaging allow, for nonperturbing 

molecular study of micrometer-thick samples (Yeh, Kenkel, Liu, & Bhargava, 2015).  

Fourier transform infrared (FT-IR) imaging technology along with advance methods of data 

analysis is one of the most powerful techniques for identification and localization of chemical 

compounds. This technique has numerous applications in life sciences such as chemistry, biology, 

agronomy, and medicine.  Improving the resolution of conventional FT-IR microscopes is 

associated with two main parameters: (i) the numerical aperture of the imaging systems and (ii) 

the properties of the light source, such as total flux, directionality and coherency.  
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Hyperspectral infrared imaging is now used more often for single cell cycle study and disease 

pathology (Baker, et al., Using Fourier transform IR spectroscopy to analyze biological materials, 

2014) (Fernandez, Bhargava, Hewitt, & Levin, 2005) (Heraud, et al., 2010) (Mattson, et al., 2013) 

(Holman H.-Y. N., Bechtel, Hao, & Martin, 2010) (Vaccari, Birarda, Businaro, Pacor, & Grenci, 

2012) (Tobin, et al., 2010). Size of the non-homogeneities in tissues and biological cells is in the 

same order as the mid-IR wavelength, light behaves as a wave in interaction with tissue, as a result 

strong scattering features are observed in infrared microscopy spectra of tissues specifically single 

cells. There are complexities with scattering correction of microscopy spectra, for instance 

Schwarzschild objective partially block the scattered light by the obscuration of the small mirror. 

The scattered light that does not reach the detector leads to apparent absorption signature in the 

measured spectra. (Konevskikh T. , Lukacs, Bl¨umel, Ponossov, & Kohler, 2015). Several Mie 

scattering correction methods for infrared spectroscopy of single cells have been published 

(Bassan, et al., Resonant Mie Scattering (RMieS) correction of infrared spectra from highly 

scattering biological samples, 2009) (KOHLER, et al., 2008) ( Dijk, Mayerich, Carney, & 

Bhargava, 2013) (Konevskikh T. , Lukacs, Bl¨umel, Ponossov, & Kohler, 2015) (Solheim, et al., 

2019). These algorithms are based on fitting the measured data to a known reference spectrum, 

that is not spatially varying. Applying the same algorithms to hyperspectral images washes out the 

slight spatial changes in the microscopy spectra and blurs the corresponding chemical images.  

Although Schwarzschild objective partially blocks the scattered light, it can be considered as 

a one to one mapping of the sample voxels to the image voxels. The scattering contribution 

observed at 2D pixels are the result of the interference pattern of the light scattered from all voxels 

within the sample, so for correcting the spectral scattering features and solving the inverse 

problem, 3D structure of the sample must be considered. Martin, et al.  (Martin, et al., 2013) 
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initially reported spectro-microtomography (a mapping of 2D intensity images to 3D intensity 

inside the sample) by means of filtered back-projection algorithm and full FPA field of view IR 

images taken as a function of sample orientation for full tomographic reconstruction. However, 

filtered back-projection does not consider diffraction. This result in an enhanced reconstruction of 

the refractive index. Diffraction tomography is an algorithm that incorporates wave nature of the 

light. Diffraction tomography recovers the 3D refractive index of the sample by mapping 2D 

measured images consist of amplitude and phase of the electric field to 3D map of the refractive 

index of the sample (Muller, Schurmann, & Guck, 2016).  

Employing infrared lasers in infrared imaging (Yeh, Kenkel, Liu, & Bhargava, 2015) , and 

advent of the infrared refractive optics made of Zinc Selenide (ZnSe) pave the way for the next 

generation of IR microscope that deploy the coherent imaging methods such as diffraction 

tomography. Tomographic phase microscopy is based on phase-shifting laser interferometric 

microscopy  (Choi, et al., 2007). A tomographic phase microscope is generally consisting of two 

parts, (i) a microscope based on a Mach-Zehnder heterodyne interferometer, that provides 

quantitative phase images and (ii) a device that controls the angle of coherent illumination 

impinging the sample. Point spread function (PSF) of a tomographic phase microscope depends 

on the method chosen for controlling the angle of illumination. The hybrid method of data 

collection explained by Park, et all (PARK, SHIN, & PARK, 2018) result in minimum loss of 

information in the measured phase images.  

The main purpose in infrared chemical imaging is to recover the spatially varying map of the 

imaginary part of the refractive index at sample position. This map is used for determination of 

the chemistry at every pixel, and ultimately at every voxel within the sample. Current diffraction 

tomography algorithm cannot accurately recover the imaginary part of the refractive index. Here 
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a new algorithm based on solving a system of linear equations for solving the inverse scattering 

problem for a homogenous sample is presented.  It is demonstrated that this algorithm has super 

resolution capabilities. 

 

5.2 Methods 

Electric permittivity is a property of a material that measures the resistance of the material in 

forming an electric field inside it. This quantity, that is described by Lorentz oscillator model 

provides the underlying rational for the presence of frequency-dependent absorption and 

scattering. Electric permittivity 𝜀 is a complex variable, showing the magnitude and phase of the 

displacement of the oscillator (nucleus and electron binding forces behave like a spring). The real 

and imaginary part of the 𝜀 are related to resonance angular frequency of the oscillator 𝜔0, and 

plasma frequency of the material 𝜔𝑝 by 

Figure 28 Visualization of the scattering off a sphere of radius 3 µm as a function of the wavenumber, observed in a plane orthogonal 
to the optical axis, located  at a distance of 20µm from the center of the sphere. The vertical displacement from the optical axis is 

denoted by x. Four cases are shown(a) and (c) Material 1: constant real refractive index of 1.35. (b) and (g) Material 2: Absorption 
peak at 2500cm-1 with FWHM of 300 cm-1 (c) Material 3: Absorption peak at 2500cm-1 with FWHM of 175 cm-1 (d) and (h) Material 4: 
Absorption peak at 2500cm-1 with FWHM of 87.5 cm-1.  
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𝜀𝑟(𝜔) = 1 +
𝜔𝑝

2(𝜔0
2−𝜔2)

(𝜔0
2−𝜔2)

2
+𝜔2𝛾2

,  (5.1) 

and 

𝜀𝑖(𝜔) =
𝜔𝑝

2𝛾𝜔

(𝜔0
2−𝜔2)

2
+𝜔2𝛾2

.  (5.2) 

Where 𝛾 is a constant. The complex refractive index is related to the electric permittivity by 

𝑛(𝜔) =  √𝜀.  (5.3 (a)) 

𝜀 = 𝜀𝑟(𝜔) + 𝑖𝜀𝑖(𝜔) + 0.8 (5.3 (b)) 

Where  𝑛  is the complex refractive index and 𝜀  is the complex electric permittivity. The 

constant value of 0.8 is added to the 𝜀, so that the constant real part of the refractive index becomes 

~1.33, which is the value for most of the biological samples. Lorentz oscillator model provides the 

underlying rational for the presence of frequency-dependent absorption and scattering (Almog, 

Bradley, & Bulovi´c). 

In order to visualize broadband scattering and absorption by microspheres, broadband 

chemical images of 4 spheres are simulated with the method of Chapter 4. The radius of all the 

microspheres is 3µm under irradiation of a horizontally polarized plane wave, each microsphere 

has a complex refractive index as shown in Figure 28 (a) to (d). The results are shown in Figure 

28 (e) to (h). 

Figure 28 (a) to (d) show the real and imaginary part of the refractive index of the 4 simulated 

spheres. Figure 28 (a) shows a material with a constant refractive index in Mid-IR range of the 

spectrum. The materials shown in  Figure 28 (b) to (d) have an absorption peak at 2500 cm-1. The 

materials are defined by the Lorentzian function described by Eq. (5.3). The Lorentzian function 
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describing these materials are manipulated so that the full width half maximum of the peaks divides 

by 2 from Figure 28 (b) to (c). Figure 28 (e) to (h) shows the horizontal line profile of the 

absorbance through the center of the images of the spheres made of the materials with refractive 

indices shown in Figure 28 (a) to (d). The image plane is located 20µm away from the center of 

the sphere.  Relating scattering to the real part of the refractive index and absorption to the 

imaginary part, Figure 28 (e) shows the wavelength dependent scattering as a function of 

wavenumber for a non-absorbing material. Figure 28 (g) shows the case for a material with a wide 

absorption band. The broadband intensity profile shown at Figure 28 (g) has a local minimum at 

2500 cm-1, but the overall shape of the scattering in Figure 28 (e) and (g) are similar. This shows 

that the dispersion resulted from the absorption peak does not affect the overall scattering. As the 

absorption peak becomes sharper and sharper - Figure 28 (g) to (h) - the dispersion effect 

demonstrates itself as a jump in the scattering distribution of the sample, but the general 

distribution of the scattering is preserved. This result illustrates that scattering is mostly dependent 

on the constant real part of the refractive index. This leads us toward identifying an optimization 

algorithm for finding the imaginary part of the refractive index, using the forward scattered light 

and the real part of the refractive index.    

5.2.1 Recovering absorptivity by inverse scattering 

In the absence of scattering, absorbance is related to the imaginary part of the refractive index 

by 

𝑛𝑖 =
𝐴 𝑙𝑛(10)

4𝜋𝑙𝑣
.  (5.4) 

where 𝑛𝑖 is the imaginary part of the refractive index, 𝐴 is the absorbance, and 𝑙 is the effective 

thickness of the absorbing material. Scattering can dominate infrared spectra of samples with the 
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sizes in the order of infrared wavelength (3 to 10 µm), and as a result Eq. (5.4) does not hold 

anymore. 

Recovering 𝑛𝑖  from measurements and removing the scattering features helps with 

chemometric analysis and makes us one step closer to quantitative infrared spectroscopy. We show 

below that recovering the exact value of 𝑛𝑖 at the presence of scattering is possible, if the amplitude 

and phase of the electric field at the FPA and an approximation of the real part of the refractive 

index 𝑛𝑟 are known. The presented algorithm for 𝑛𝑖 recovery is demonstrated in Figure 29. 

In order to reduce the number of iterations of the algorithm, a 3D mask of the sample is 

obtained through a structural imaging technique, for example visible microscopy. In wide field 

FTIR infrared micro-spectroscopy, the beam width covers the whole field of view at the focal 

plane, so it is assumed that the sample is irradiated by a plane broadband infrared source. For 

recovering the value of 𝑛𝑖 in frequency range of 1000 cm-1 to 4000 cm-1 the measured phase images 

are fitted to the simulated phase images by an iterative optimization algorithm. In order to simulate 

Figure 29 Flowchart of the inverse scattering method for recovering 𝑛𝑖 
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the phase image, the electric and magnetic field of the sample is approximated by a numerical 

method such as Green’s function (according to Chapter 4), Finite-Difference Time Domain 

(FDTD) or Finite Element Method (FEM) at the image plane. 

Discretized Green’s integral considers the effect of each voxel of the sample separately in the 

image formation. By reformulating the Green’s integral in a matrix format, as explained in Section 

5.2.2, the state Matrix 𝐺 (free space Green’s function limited to the constraint of the sample) and 

state variables 𝑋  (complex electric susceptibility) are defined, and a linear system of equations is 

formed. Solving the linear system of the equations for 𝑋 , and comparing the results with the initial 

refractive index we can recover the spatially resolved complex refractive index in an iterative 

algorithm, which is summarized as follows: 

Algorithm  

Input: 𝑛0(𝑟 
′), 𝑜(𝑟 ′), N  

𝑛0(𝑟 
′)    - initial guess for the refractive index 

𝑜(𝑟 ′) - object function 

𝑟 ′ - vector position inside of the sample 

N – number of voxel discretization of the sample 

Output: 𝑛(𝑟 ′) 

𝑛(𝑟 ′)   - complex refractive index 

Initialization. Choose 𝑛𝑚(𝑟 ′) = 𝑛0(𝑟 
′) for 𝑚 = 0, discretize the sample to N voxels 

General Step (𝑚 = 0, 1, 2,…): 

 1) Simulating the internal field for the object 𝑜(𝑟 ′) with 𝑛𝑖(𝑟 
′) 

 2) Integration and forming matrix G 

 3) Solving the equation 𝐺𝑋 = 𝐸⃗ 𝑠  by SVD 

 4) Calculating 𝑛𝑚+1 

 5) Go to 1 

Until |𝑛𝑚+1 − 𝑛𝑚| ≤ 𝜀  
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5.2.2 Green’s integral as a state-space equation 

As it is explained in Chapter 4, the Green's function method allows us to compute the electric 

and magnetic fields explained by Maxwell equations. Defining 𝑜(𝑟 ′) as the object function or 3D 

geometrical shape of a homogenous sample, the field observed at the position 𝑟   𝐸𝐹𝑃𝐴, is calculated 

according to 

𝐸⃗ 𝐹𝑃𝐴(𝑟 ) = 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) + 𝑘2 ∫(𝑛(𝑟 ′)2 − 1)𝐺̿(𝑟  − 𝑟 ′)𝐸⃗ 𝑖𝑛𝑡(𝑟 ′)𝑜(𝑟 ′)𝑑3𝑟 ′,  (5.5) 

Where 𝑟 = (𝑥, 𝑦, 𝑧) is the coordinate of the image plane, and the sample coordinate is 𝑟 ′ =

(𝑥′, 𝑦′, 𝑧′), and 𝑛(𝑟 ) = 𝑛𝑟(𝑟 ) + 𝑗𝑛𝑖(𝑟 ) is the complex refractive index at the position 𝑟 . 𝐸𝑖𝑛𝑡(𝑟 ′) 

is the internal field of the sample 𝑜(𝑟 ′), 𝑘 =
2𝜋

𝜆
 and 𝐺̿(𝑟  − 𝑟 ′) is the tensor free space Green’s 

function of the Maxwell’s equation. Since, the image plane is located at the far field, only the far 

field terms of the Green’s function are considered in the calculations. The tensor Green’s function 

is defined in subsection 4.3.2.1. Defining 𝑋(𝑟 ′) = 𝑛(𝑟 ′)2 − 1, we have  

𝐸⃗ 𝐹𝑃𝐴(𝑟 ) − 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) = 𝑘2 ∫𝑋(𝑟 ′)𝐺̿(𝑟  − 𝑟 ′)𝐸⃗ 𝑖𝑛𝑡(𝑟 ′)𝑜(𝑟 ′)𝑑3𝑟 ′.  (5.6) 

For the pixel 𝑟 𝑗 at the image plane, Eq. (5.5) in discretized format is 

𝐸⃗ 𝐹𝑃𝐴(𝑟 𝑗) − 𝐸⃗ 𝑖𝑛𝑐(𝑟 𝑗) =  𝑘2 ∑ 𝑋𝑙𝐺̿(𝑟 𝑗, 𝑟 𝑙
′)𝐸⃗ 𝑖𝑛𝑡(𝑟 𝑙

′)𝑜(𝑟 𝑙
′)Δ𝑉𝑟 𝑙

′ ,  (5.7) 

where 𝑗 = 1, 2,…𝑀, shows the index of the pixels at the image plane and 𝑙 = 1, 2,…𝑁 , the 

indexes of the sample voxels, and Δ𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 . Defining the scattering vector as 

𝐸⃗ 𝑠 = 𝐸⃗ 𝐹𝑃𝐴(𝑟 𝑗) − 𝐸⃗ 𝑖𝑛𝑐(𝑟 𝑗) = (

𝑒𝑥𝑗

𝑒𝑦𝑗

𝑒𝑧𝑗

),  (5.8) 

where 𝑒𝑥𝑗
, 𝑒𝑦𝑗

 , 𝑒𝑧𝑗
 are the three components of the scattered field, and considering 
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𝑘2𝐺̿(𝑟 𝑗, 𝑟 𝑙
′)𝐸⃗ 𝑖𝑛𝑡(𝑟 𝑙

′)Δ𝑉 =  (

𝑔𝑥𝑗𝑙

𝑔𝑦𝑗𝑙

𝑔𝑧𝑗𝑙

),  (5.9) 

For each pixel at the image plane we have 

∑ 𝑔𝑥𝑗𝑙
𝑋𝑙

𝑁𝑣𝑜𝑥𝑒𝑙𝑠
𝑙=1 = 𝑒𝑥𝑗

,  (5.10) 

∑ 𝑔𝑦𝑗𝑙
𝑋𝑙

𝑁𝑣𝑜𝑥𝑒𝑙𝑠
𝑙=1 = 𝑒𝑦𝑗

,  (5.11) 

∑ 𝑔𝑧𝑗𝑙
𝑋𝑙

𝑁𝑣𝑜𝑥𝑒𝑙𝑠
𝑙=1 = 𝑒𝑧𝑗

,  (5.12) 

or, 

𝐺𝑥𝑋 = 𝐸⃗ 𝑠𝑥  ,  (5.13) 

𝐺𝑦𝑋 = 𝐸⃗ 𝑠𝑦 ,  (5.14) 

𝐺𝑧𝑋 = 𝐸⃗ 𝑠𝑧,  (5.15) 

Merging equations of (5.13) to (5.15), 

𝐺𝑋 = 𝐸⃗ 𝑠 ,  (5.16) 

where 𝐺 is a 3𝑀 × 𝑁 matrix, and 𝑋  and 𝐸⃗ 𝑠  are vectors with dimensions of 𝑁 × 1 and 3𝑀 × 1, 

respectively. If 3𝑀 > 𝑁, then the system of linear equations is overdetermined, by solving the 

equation for 𝑋  we can calculate 𝑛(𝑟 ′). 

5.2.3 Real part of the refractive index 𝒏𝒓 

By measuring the average infrared spectrum of the sample and removing scattering features 

by EMSC method, we can obtain a global standard spectrum. This is adequate to determine a 
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frequency dependent complex refractive index by means of Eq. (5.4). and the Kramers-Kronig 

relation. The real part of the refractive index 𝑛𝑟 is  

𝑛𝑟(𝜈) = 𝑛𝑐𝑜𝑛 +
2

𝜋
𝑷∫

𝑠𝑛𝑖(𝑠)

𝑠2−𝑣2 𝑑𝑠
∞

0
,  (5.17) 

where 𝜈 is the wavenumber, 𝑛𝑐𝑜𝑛 is the real constant part of the refractive index, and 𝑷 denotes 

the Cauchy principal value of the integral.This value of 𝑛𝑟(𝜈) is used as an initial guess for the 

refractive index. As we show below the starting values for 𝑛𝑟(𝜈) only needs to be within a factor 

of 2 of the experimental values for 𝑛𝑟(𝜈) to be able to start the iterative method and converge to 

acceptable values across the entire spectrum. 

5.2.4 Calculation of the internal and scattered fields 

For an arbitrary sample, the internal field and scattered field of the sample can be simulated by 

one of the numerical methods such as FDTD or FEM. The focus of the current paper is on a 

rotationally symmetric objects, such as sphere which their forward projections are invariable along 

angular direction. Absorption and scattering of spheres are described by the method explained in 

Chapter 4. Convergence of the Green’s integral Eq. (5.5) is investigated for a homogenous sphere 

with radius of 3µm. The internal field of the sphere is simulated in spherical coordinate with 

discretization of 𝑁𝑟 × 𝑁𝜙 × 𝑁𝜃 = 257 × 36 × 36 = 333072 nodes, where 𝑁𝑟 is the discretization 

along radial distance, 𝑁𝜙  discretization along the azimuth angle, and 𝑁𝜃 is the discretization along 

the polar angle.  

The scattered field 𝐸⃗ 𝑠 is calculated at a 20 × 20 µm2 window located 20µm away from the 

sample. The energy evaluation of the field at image plane shows that the window is large enough 

that we could consider most of the light is captured, and the window is a good approximation of a 
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4𝜋 detector (supplementary materials B). The scattered field is calculated by Eq. (5.5), by inserting 

the calculated internal field in Eq. (5.5). 

5.2.5 Solving the system of linear equations by singular value decomposition 

(SVD) 

Singular value decomposition is used for solving Eq. (5.16).  Singular value decomposition of 

any 𝑚 × 𝑛 matrix such as 𝐺 with 𝑚 ≥ 𝑛 is the product of three matrices 𝐺 = 𝑈𝑆𝑉𝑇  where the 

columns of U and V are orthonormal, and the matrix S is a diagonal with positive real entries. 

Diagonal elements of 𝑆 are called singular values of matrix 𝐺, and the columns of matrix 𝑈 are 

called right singular values of Matrix 𝐺 and columns of matrix 𝑉 are called left singular values of 

𝐺. The Moore-Penrose Pseudoinverse of matrix 𝐺 is 

𝐺−1 = 𝑉𝑆−1𝑈∗. (5.18) 

then, Eq. (5.13) is solved as 

𝑋 (𝑟) = 𝐺−1𝐸𝑠 , (5.19) 

𝑛⃗ (𝑟) =  √𝑋 (𝑟) + 1.  (5.20) 

5.2.6 Noise Analysis 

In order to evaluate the ability of the algorithm in handling real data, noise analysis are done. 

Digital measured images are degraded by several types of noise, such as, salt and pepper noise, 

Gaussian noise, Poisson noise (Photon-noise), and speckle noise. [1][2]. 

 Poisson noise is a basic form of uncertainty associated with the measurement of light. It 

originates from discrete nature of light, and photon counting. Image sensor measure the irradiance 
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by counting the number of photons that reached the detector in a given time interval. The photons 

captured by the detector turn into electron charges by the photoelectric effect. The random 

individual arrival of the photons leads to noise. Photon arrival can be treated as independent events 

that follow random temporal distribution. As a result, photon counting is a classic Poisson process, 

and the number of photons N measured by a given sensor element over time interval t is described 

by the discrete Poisson probability distribution [3] 

Pr(𝑁 = 𝑘) =
𝑒−𝜆𝑡(𝜆𝑡)𝑘

𝑘!
 (5.21) 

Where λ is the expected number of photons per unit time interval, which is proportional to the 

incident irradiance. This is a standard Poisson distribution with a rate parameter λt that corresponds 

to the expected incident photon count. The uncertainty described by this distribution is known as 

photon noise [3].  

In order to investigate the ability of the algorithm to handle noise, Poisson noise is added to 

the simulated images. Real and imaginary part of the electric field are first normalized between 0, 

and 1. The result is then scaled by 
𝑁𝑝ℎ𝑜𝑡𝑜𝑛

1012  , where 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 is the number of photon counts. Next, 

Poisson noise is added to the real part and imaginary part of the refractive index separately by 

using the imnoise MATLAB command. Then the electric filed image is scaled back to its original 

value. Noise analysis are done for the case where 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 = ∞ (no noise), and for three other 

cases where 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 = 125,250, 500. A 75 nm radius sphere with complex refractive index of 

1.45+0.1i is chosen for the noise analysis. The radiated light has a wavelength of 532 nm, and the 

size of the image window is 1060 × 1060 nm2, and the image is placed 20µm away from the 

center of the sphere. 
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5.3 Results 

The algorithm is evaluated by recovering the complex refractive index of a homogenous 

sphere. Convergence of the method is dependent on the value of the refractive index, wavenumber, 

radius of the sphere, gap between the sample and screen, size of the screen and its pixels. To mimic 

the realistic experiment, where we are limited to far field geometry, the screen is placed far enough 

from the sample that the nearfield components do not contribute significantly to the result (Bansal, 

1999).  

The algorithm is used to recover the refractive index of a homogenous sphere with radius of 

1.5 µm and refractive index of 𝑛 = 𝑛𝑟 + 𝑛𝑖𝑖 =  1.45 + 0.1𝑖 at 2500 cm-1. The simulated image 

plane is a 20 × 20 μm2 window placed 20 µm away from the centre of the sphere, far enough from 

the sample that near field effects are reduced in strength to be within the measurement noise, size 

of the pixels at the image plane are 
𝜆

10
×

𝜆

10
 μm2. The radius of the convergence of the algorithm is 

larger than 3𝑛. For 𝑛0 = 3𝑛 the algorithm converges after 15 iterations (~220 mins - Mortimer) 

Figure 30 (a) Convergent with initial value of 4.35+0.3i, (b) error of the algorithm with initial value of = 4.35+0.3i. 
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with 3 digits of precision. If 𝑛𝑟 is known, then the algorithm converges after 13 iterations (191 

mins - Mortimer) with 3 digits of precision, with increasing the number of iterations, we reached 

accuracy of the machine precision. Figure 30 (a) shows the convergent of the real and imaginary 

part of the refractive index with initial guess of 𝑛0 = 4.53 + 01𝑖, and Figure 30 (b) shows the 

corresponding error. The algorithm converges with 3 digits of precision after 15 iterations. The 

algorithm is convergent for larger distance between the sample and the detector, we have test this 

by increasing the gap between the sample and detector as much as 5mm (larger than the distance 

between the sample and the objective).  The algorithm is also convergent for smaller size spheres. 

We have tested the convergence for spheres radius of as small as 50 nm at 2500 cm-1. The extend 

of the image plane must be increased for spheres with diameter of larger than 4 μm. 

The spectral validation is done by testing the algorithm for a 3µm radius sphere made of Matrigel 

(a gelatinous protein mixture). Figure 31 shows the complex refractive index of matrigel (blue 

curve), and the recovered complex refractive index by the presented method. The fingerprint 

region of the spectrum is recovered with precision of 10-3. Refractive index of the material is a 

Figure 31 (a) Real part of the refractive index of Matrigel. Blue curve shows the standard spectrum and red shows the estimated 
version by the algorithm. (b) Imaginary part of the refractive index of the matrigel, standard versus estimated by the algorithm. 
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continues function of the wavenumber, so the initial guess for 𝑛0(𝑟 
′) is obtained by the nearest 

calculated wavenumber. At each time 16 spectral calculations were running in parallel on 

Mortimer, the high-performance computing system at UWM. 

Figure 32 shows the simulated images of a 75 nm radius sphere with complex refractive index 

of 1.45+0.1i as the noise increases. Independent of the number of the photons that reach the 

detector the algorithm converges after 3 iteration with precision of 10-3 for the initial value of 1.33. 

The convergence is independent of the pixel sizes. The algorithm converges for nodes (pixels) that 

are λ/10 away from each other. Table 6 shows the ability of the algorithm to recover large 

imaginary part of the refractive index at presence of noise. The algorithm can recover imaginary 

part of the refractive index as large as 3. For the convergence analysis of the table. 6, the radius of 

the sphere is 0.6µm, the wavelength of the incident light is 4µm, the window of the image plane 

is 8.5 × 8.5 𝜇𝑚2 and the initial guess is 𝑛0 = 1.33. 

Table 6 Convergence of the algorithm for materials with large imaginary part of refractive index 

nsphere #photons/pixel Iterations Converge to 

1.45+0.1i 125 3 1.4488+0.1023i 

1.45+1i 125 7 1.4465+1.0018i 

1.45+2i 125 18 1.4515+1.9915i 

1.45+3i 125 85 1.4546+3.0206i 

1.45+4i not convergent 
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Figure 32 Poisson noise in the field images. The simulated images are for a 75 nm radius sphere with complex 
refractive index of 1.45+0.1i. The wavelength of the irradiated light is 532 nm, and the window size is 1060x1060 
nm^2. The images are simulated 20 um away from the sample. (a) Original simulated field image with no noise. (b) 
The field image with 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 = 500. (c)  The field image with 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 = 250. (d) The field image with 𝑁𝑝ℎ𝑜𝑡𝑜𝑛 =

125. 
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5.4 Discussion 

Advent of broadband infrared laser sources, and optical materials such as ZnS leads to 

development of new infrared microscopy techniques enabling scientists to measure the complex 

electric field in infrared. For example, an infrared tomographic phase microscope (Choi, et al., 

2007) can be designed to measure phase and amplitude of the transmitted light. Here we presented 

a new reconstruction algorithm for 3-dimensional (3D) recovery of the complex refractive index 

of the sample. The result show that our algorithm has super resolution capability. We have shown 

that our method removes the undesired scattering spectral features present in the infrared 

hyperspectral images. The heart of the algorithm is a Green’s Integral that is rephrased as a state 

space equation. The optics are considered as a linear space-invariant system, where the sample is 

the input of the system and image is the output. 

3D infrared spectral imaging was reported by Martin et al. (Martin, et al., 2013) for the first 

time. Although Martin, et al. could successfully resolve spectral features at specific positions of 

the sample, hollow regions were present in their reconstructed images. In diffraction limit where 

the size of the sample is in the same order as the incident light, light behaves as a wave, and it does 

not travel in straight line through the sample. This explicit wave nature of the light results in 

enhanced reconstruction of the refractive index at some positions (Muller, Schurmann, & Guck, 

2016). Diffraction tomography algorithms based on Born and Rytov approximations are currently 

being used for 3D diffraction tomography. Fundamental to diffraction tomography is the Fourier 

diffraction theorem, that relates the Fourier transform of the measured forward scattered data with 

the Fourier transform of the object. The theory is valid when the inhomogeneities in the object are 

only weakly scattering (Kak & Slaney, 1988). In addition, the imaginary part of the refractive 

index cannot be recovered accurately with the diffraction tomography algorithm.  
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3D spatial resolution of an optical diffraction tomography (ODT) setup depends on the point 

spread function (PSF) of its microscope as well as its reconstruction algorithm. Fourier diffraction 

theory assumes that the scattered light is passed through a thin slice of the sample, and as the result 

the axial resolution of the algorithm depends on the depth of field, and scanning capabilities of the 

microscope (PARK, SHIN, & PARK, 2018), (Krauze, Kus´, S´ ladowski, Skrzypek, & Kujawin´ 

ska, 2018). In the presented algorithm, it is considered that measured electric field at each pixel of 

the detector is the result of the interference pattern of all the voxels of the sample. This result in 

higher lateral and specifically axial resolution.   

In a real experiment, the measured complex electric field 𝐸𝑠̃
⃗⃗⃗⃗  is the result of the convolution of 

the PSF with 𝐸⃗ 𝑠, in other words 𝐸𝑠̃
⃗⃗⃗⃗ =  𝐸⃗ 𝑠 ∗ 𝑃𝑆𝐹, and depending on the numerical aperture of the 

microscope objective, the scattered light is partially missing, by rotating the sample and also the 

direction of the incident light, the missing cone spatial frequency information is being imaged. 3D 

point spread function of the microscope could be measured to recover the exact value of 𝐸⃗ 𝑠 

(PARK, SHIN, & PARK, 2018). 

For biological sample, dispersion effect is negligible independent of the full width half 

maximum of the absorption band, and the scattered signal could be related to only the real part of 

the refractive index (Figure 28), so initiating the algorithm with only the real part of the refractive 

index helps in finding the local solution of the problem.  

Figure 29 summarizes the algorithm for the case where the geometrical shape and the real part 

of the refractive index are known. However, the algorithm could be applied to a sample with 

unknown shape. knowing the geometrical shape and the real part of the refractive index helps the 

algorithm to converge faster. Figure 30 shows that the algorithm is convergent for 3n radius of 
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convergent. In most cases, the average infrared spectrum of the sample is known, so there is a very 

low chance that the initial guess ends up out of the radius of convergence. Figure 31 shows the 

ability of the method to remove the scattering features present in the spectral data and recover the 

complex refractive index with a high accuracy. The algorithm converges to the complex value of 

the refractive index after 15 iterations with 10−3 accuracy, by increasing the number of iterations, 

the algorithm converges to the value of the refractive index with machine precision.  

In the result section it is shown that the algorithm is convergent for a sphere with radius of 

1.5 μm, at 2500 cm-1, which is less than the diffraction limit ~ 4 μm. This shows that the algorithm 

has the potential to reconstruct super resolution 3D images taken by a conventional diffraction-

limited tomographic phase microscope.  

The extent of the screen is chosen depending on the physical properties of the problem. 

Properties such as the distance between the sample and screen, the refractive index of the sample 

and size of the sample. For the homogenous sphere studied in Figure 30 the algorithm is convergent 

disregard to the extend and pixelization of the screen. This is because the sphere is homogenous 

and the number of equations is more than the number of unknowns. 

It is shown that the algorithm can be applied to non-homogenous spheres as well and the results 

are provided in Section 5.5.1. The algorithm is also being applied to experimental holographic 

images measured by a visible diffraction tomography microscope, and the preliminary results are 

provided in Section 5.5.2. 

The reconstruction algorithm presented here is an optimization problem, that is trying to 

minimize the error between the measured complex electric field and its simulated value. However, 

intensity is the only quantity, that is measured by conventional infrared microscopes. In section 
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5.5.3 the algorithm is adjusted so that it is applicable to the infrared hyperspectral cubes which are 

measured by the conventional infrared microscopes.  

5.5 Appendix 

5.5.1 Extending the algorithm for a non-homogenous sphere 

For a non-homogenous sample, the sphere is discretized to voxels. Depending on the number 

of the voxels and their shape, matrix 𝐺 in Eq. (5.16) changes. Convergence of the algorithm, and 

finding a solution for Eq. (5.19) relies on stability of the matrix G.  

The stability analysis of matrix 𝐺  is done by calculating its condition number. Consider 

computing matrix-vector product 𝐸⃗ 𝑠 = 𝐺𝑋 , where 𝐺 ∈  ℝ𝑛×𝑛:  

Let 𝑋 = 𝑠1⃗⃗  ⃗. Suppose we can compute 𝐸⃗ 𝑠
̃

= 𝐺𝑋 ̃ with 𝑋 ̃ = 𝑠1⃗⃗  ⃗ +  𝜖𝑠𝑛⃗⃗  ⃗.  𝑠1⃗⃗  ⃗ is the right singular 

vector corresponding to the smallest singular value, say 𝜎1 = 1.  

Then 𝐺 𝑋 ̃ = 𝜎1𝑠1⃗⃗  ⃗ +  𝜎𝑛𝜖𝑠𝑛⃗⃗  ⃗. If 𝜎𝑛 ≫ 1/𝜖, then ‖𝐺𝑋 ̃ − 𝐺𝑋 ‖ will be quite large. This is the 

same as having large 𝒦 =
𝜎1

𝜎𝑛
, where 𝒦 is the condition number of matrix 𝐺. 

A 3-layer sphere is used for stability analysis of the algorithm. The sphere has a radius of 3 

µm, and each layer of the sphere is 1µm thick. The core, the central layer and the shell have the 

refractive indices of 1.5, 1.4, and 1.3 respectively, and the surrounding material has a refractive 

index of 1.33. The internal field of the sphere is calculated for 257×36×36 nodes inside of the 

sphere at 2000 cm-1. The image plane is inserted 20µm away from the sample and its area is 20×20 

µm2, it is divided to 41×41 pixels. For this analysis because of the limitation of the Mie, the voxels 

have a geometrical shape of a shell. 
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The rank of a matrix is the maximal number of linearly independent columns of the matrix. If 

the rows of matrix 𝐺 are linearly independent, then matrix 𝐺 is called full ranked. For the linear 

system of 𝐺𝑋 = 𝐸⃗ 𝑠 , and the augmented matrix of (𝐺|𝐸⃗ 𝑠),  

• If 𝑟𝑎𝑛𝑘(𝐺) = 𝑟𝑎𝑛𝑘(𝐺|𝐸⃗ 𝑠) = the number of rows in 𝑋 , then the system has a 

unique solution 

• If 𝑟𝑎𝑛𝑘(𝐺) = 𝑟𝑎𝑛𝑘(𝐺|𝐸⃗ 𝑠) < the number of rows in 𝑋 , then the system has many 

solutions 

• If 𝑟𝑎𝑛𝑘(𝐺)  < 𝑟𝑎𝑛𝑘(𝐺|𝐸⃗ 𝑠), then the system is inconsistent. 

Rank of the matrix 𝐺 as a function of the voxels of the sphere is shown in Figure 33. As the 

number of voxels inside of the sphere increases, the rank of the matrix increases as well.  

Figure 33 Rank of G as a function of number of the voxels 
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This is expected, because the individual elements of the matrix 𝐺 are the integration of the electric 

field that is present in that location multiplied by the Green’s function.  

For the stability analysis the minimum and maximum singular value, and the condition number 

of matrix 𝐺 are calculated. Figure 34 (a) shows the minimum of the singular value of matrix 𝐺 as 

a function of 𝑝𝑖𝑡𝑐ℎ/𝜆. Pitch here means the thickness of the layer voxel, and 𝜆  is the wavelength. 

The value of the condition number is shown for 6 different value of the refractive index.  When 

the imaginary part of the refractive index increases the condition number decrease, meaning that 

the algorithm becomes more stable. The imaginary part of the refractive index is doubled in each 

round of the simulations. The value of 𝑛𝑖 is 0.02, 0.01 and 0.005 for core, the central layer and the 

Figure 34 Stability analysis (a) Minimum of the singular values of the matrix G. (b) Maximum of the singular values of matrix G. 
(c) The condition number of the matrix G, when the imaginary part of the refractive index increases. (d) Condition number as 
different wavenumbers. 
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shell respectively. Figure 34 (b) shows the maximum of the singular value of the matrix G. Figure 

34 (c) shows the condition number of the matrix G for different refractive indices. Figure 34 (d)  

demonstrates the condition number for the case that the refractive indices of the layers are kept 

at the constant values of 1.5+0.02i, 1.4+0.01i, and 1.3+0.005i, while the wavelength of the incident 

light is changing.  

In order to obtain a better understanding about the effect of the size and shape of the voxels on 

the condition number of the matrix G, the condition value of the matrix is calculated for different 

discretization. Then the convergence of the algorithm for each case is tested. The results are 

summarized in tables 7 to 9. Each cell of the table that is filled with green color is indicative of the 

specific case, where the algorithm converged with radius of convergence of at least zero. The 

condition number of the matrix change as the shape or the number of the voxels change, so it is 

concluded that the convergence of the algorithm is dependent on the shape and the number of the 

voxels inside of the sphere.  

 

Table 7 Condition number of the matrix G for the voxels that look like water melon slice. 

𝑁𝜙 

𝑁𝑟 

1 2 4 

3 1.5717e3 7.0031e3 1.2877e4 

6 1.6521e6 1.6906e6 1.0335e7 
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Table 8 Condition number of matrix G for the case where 𝑁𝜙 = 1. 

𝑁𝜃 

𝑁𝑟 

1 2 4 

3 1.5717e3 5.4947e5 7.4716e11 

6 1.6521e6 7.4079e12 - 

 

 

Table 9 Condition number of matrix G for the voxels with shape of volume element in spherical 

coordinate 

𝑁𝑟 𝑁𝜃 𝑁𝜙 𝒦 

3 2 2 5.5009e5 

3 2 4 1.8771e6 

6 2 2 7.4116e12 

 

The radii of the convergence for the green cells of tables 7 to 9 are evaluated. The radius of the 

convergent and the error in each case are summarized in table 4. In these set of calculations, it is 

expected that the real part of the refractive index 𝑛𝑟  is known and the initial guess 𝑛0 = 𝑛𝑟 . 

max(𝑛𝑠) is the radius of the convergence for the initial guess of 𝑛0 = 𝑛𝑟. For example, the first 

row of the table shows that, for the case where (𝑁𝑟 , 𝑁𝜃, 𝑁𝜙) = (3,1,1), the condition number has 

a value of 1571, and the radius of the convergence is 64𝑛𝑖, and the algorithm converges after 1 

iteration. The errors are shown in the last three columns. 𝑛 is the complex refractive index of the 
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sample, and 𝑛𝑝𝑒𝑟 is the predicted value by the algorithm. For the first two rows, where there is no 

discretization in 𝜃 direction the error in predicting the imaginary part of the refractive index is less 

than 0.11%, and for the other cases where 𝑁𝜃  > 1, the algorithm does not converge. 

Table 2 radius of the convergence for a non-homogenous sphere. Itr is an abbreviation for iterations 

𝑁𝑟 𝑁𝜃 𝑁𝜙 𝒦 max(𝑛) itr |𝑛 − 𝑛𝑝𝑒𝑟|

|𝑛|
 

𝑅𝑒{𝑛 − 𝑛𝑝𝑒𝑟}

𝑅𝑒{𝑛}
 

𝑖𝑚𝑎𝑔{𝑛 − 𝑛𝑝𝑒𝑟}

𝑖𝑚𝑎𝑔{𝑛}
 

3 1 1 1571 𝑛𝑟 + 64𝑛𝑖 1 0.0735 0.0116 0.1124 

3 1 2 7003 𝑛𝑟 + 64𝑛𝑖 1 0.0771 0.0142 0.1177 

3 2 1 54947 𝑛𝑟 + 8𝑛𝑖  1 0.0538 0.0489 0.5006 

3 2 2 55009 𝑛𝑟 + 8𝑛𝑖  1 0.0546 0.0489 0.955 

 

 

5.5.2 Experimental Evaluation of the algorithm 

Melanocyte reside in the lower layers of the skin’s epidermis. These cells produce 

melanosomes, which contain light absorbing melanin pigment. Melanoma is a tumor of 

melanocyte, usually caused by long-term exposure to UV radiation. Changes in the chemical 

content of the cell affect the refractive index of the cell, so refractive index can be used as a 

diagnostic indicator and the progress of the cancerous cell can be detected by monitoring the 

refractive index of the cell. Figure 35 shows the wide field images of the measured melanoma cell. 

The spherical black objects shown in the figure are called melanosomes. In this chapter we are 

trying to measure the refractive index of the melanosomes by fitting the simulated holographic 

images with the measured ones.  
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To evaluate the algorithm, broadband phase images of a Melanoma cell is measured in Spectral 

range of 450-700 nm with a holographic method (Lauer, 2002) (Charrière, et al., 2006) (Choi, et 

al., 2007). The spectral resolution of the measurement was 5 nm, and the spatial resolution was 

0.067 µm.  

Digital holography (DH) is one the most effective methods for refractive index measurement. 

However due to the coherent nature of the required light sources holographic images are hindered 

by speckle artifact. (Bianco, et al., 2018) As the result Melanosomes are hidden in the speckle 

pattern as it is shown in Figure 36 (a) and (b).  To reduce the noise present in the measure amplitude 

and phase images, the pixelated spectra are first filtered by Savitzky-Golay digital filter. Then the 

average size parameter, and the average scattering contribution of the melanosome is calculated 

by Mie scattering theory.  Next, an isolated melanosome inside the cell is selected by means of 

cross correlation of the Mie scattering with the pixelated spectra. As the next step propagation 

(a) (b) 

Figure 35 Widefield images of melanoma cell. The black microsphere shape objects are melanosomes(a) Focused 
at the edge of the cell. (b) Out of focus wide field image 
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distance of the measured image is approximated. Finally, the complex refractive index of the 

melanosome is reconstructed as a function of wavelength.   

5.5.3 Spectral Filtering 

Savitzky-Golay (SG) (Savitzky & Golay, Smoothing and Differentiation of Data by Simplified 

Least Squares Procedures, 1964) is a digital filter used in spectrometric applications. It 

approximates the data within a moving window by a polynomial mostly quadratic or cubic. The 

importance of the SG filtering lies in its ability to preserve higher order moments of the signal. In 

other words, SG preserves the widths and heights of the spectral peaks, while minimizing the 

random noise.  A SG smoothing filter of polynomial order 3 and frame length of 11 is applied to 

the pixelated spectra of phase and amplitude separately. Filtering the spectral information, result 

Figure 36 Light Field at the image plane at 𝜆 = 575 𝑛𝑚 (a) Amplitude without filtering. (b) Amplitude after SG 

filtering. (c) Phase without filtering (d) Phase after SG filtering 
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in reduction of the speckle pattern in the amplitude and phase images. The result of the SG filtering 

on the spatial and spectral information is shown in Figure 36 and Figure 37, respectively. 

5.5.4 Melanosome Detection  

The average diameter and refractive index of the melanosomes are reported to be 1.2 𝜇𝑚 and 

1.6 respectively (Seet, Nieminen, & Zvyagin, 2009). Knowing the size parameter of a sphere that 

is defined as 

𝜌 = 4𝜋𝑟(
𝑛𝑠

𝑛𝑚
− 1)𝜐 (5.24) 

Where 𝑟  is the radius,  𝑛𝑠 is the sample refractive index, 𝑛𝑚 is the refractive index of the 

medium, 𝜐 =
1

𝜆
, and 𝜆 is the wavelength, the scattering behavior of the particle is explained by 

𝑄𝑒𝑥𝑡 = 2 −
4

𝜌
𝑠𝑖𝑛𝜌 +

4

𝜌2
(1 − 𝑐𝑜𝑠𝜌). (5.25) 

Considering the melanosome as a sphere with diameter of 1.2 𝜇𝑚 and refractive index of 1.6, 

suspended in a medium with refractive index of 1.37, its 𝑄𝑒𝑥𝑡 can be predicted by equation 

Figure 37 (a)Theoretical complex refractive index of the melanosome in retinal pigmented epithelium. (SONG, ZHANG, NESS, & YI, 

2017) (b) Measured absorbance spectra of the melanoma cell and melanosome before and after filtering. 
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(5.25). In order to find an isolated melanosome inside the melanoma cell, the cross-correlation 

of the predicted 𝑄𝑒𝑥𝑡 with the pixelated spectra is calculated. The result is shown in Figure 38. An 

isolated melanosome is chosen and highlighted at the region enlarged in Figure 38. Figure 39 

shows the corresponding amplitude and phase images of the isolated melanosome at 500, 575, and 

600 nm wavelength. The measured images are dominated by speckle pattern even after SG 

filtering. The algorithm has applied to the detected melanosome, although the results are promising 

due to the complexity of the sample, and not having enough information. The correct values of the 

refractive index is not reconstructed yet. The workflow of these study is going to be added as an 

appendix at the end of thesis. 

Figure 38 Cross-Correlation of the 𝑄𝑒𝑥𝑡  of a spherical particle with diameter of 1.2𝜇𝑚 and refractive index of 1.2 with the 

pixelated spectra. The enlarged area shows an isolated melanosome. 

 

Figure 39 Light Field measured at the position of the isolated melanosome shown in Figure 38. (a) Amplitude at 

500nm, (b) Amplitude at 575nm, (c) Amplitude at 600nm, (d) Phase at 500nm, (e) Phase at 575 nm, (f) Phase at 600 nm. 
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5.5.5 Extending the algorithm for Intensity Measurements 

In conventional FTIR imaging, intensity and not the electric field is measured at the detector. 

Here we have shown that, in this case linear Eq. (5.13) changes to a non-linear optimization 

problem. If the refractive index is a real value starting from we have 

𝐸⃗ 𝐹𝑃𝐴(𝑟 ) = 𝐸⃗ 𝑖𝑛𝑐(𝑟 ) + 𝑘2 ∫(1 − 𝑛(𝑟 ′)2)𝐺𝑟𝑛(𝑟  − 𝑟 ′)𝐸⃗ 𝑖𝑛𝑡(𝑟 ′)𝑑
3𝑟 ′, (5.26) 

where 𝐸⃗ 𝐹𝑃𝐴 is the field observed at the position 𝑟 ,  𝑟 = (𝑥, 𝑦, 𝑧) is the coordinate of the image 

plane, and the sample coordinate is 𝑟 ′ = (𝑥′, 𝑦′, 𝑧′) . 𝑛(𝑟 ) = 𝑛𝑟(𝑟 ) + 𝑗𝑛𝑖(𝑟 )  is the complex 

refractive index at the position 𝑟 . 𝐸𝑖𝑛𝑡(𝑟 ′)  is the internal field of the sample, 𝑘 =
2𝜋

𝜆
 and 

𝐺𝑟𝑛(𝑟  − 𝑟 ′) is the tensor free space Green’s function of the Maxwell’s equation. Considering 

simulated intensity as 𝐼𝐹𝑃𝐴 ≈ |𝐸⃗ 𝐹𝑃𝐴|
2
. We would like to minimize 

𝐹 =  ∑ [𝐼𝑚𝑒𝑎𝑠(𝑟 𝑗) − 𝐼𝐹𝑃𝐴(𝑟 𝑗)]
2𝑁𝑝𝑖𝑥𝑒𝑙

𝑗=1
 (5.27) 

Where 𝑗 = 1, 2, 3,…𝑁𝑝𝑖𝑥𝑒𝑙  is the number of pixels. 𝐼𝐹𝑃𝐴(𝑟 𝑗) and 𝐼𝑚𝑒𝑎𝑠(𝑟 𝑗) show simulated 

intensity at the detector and the measured intensity, respectively. In practice, there is always an 

experimental error, which differentiates between 𝐼𝑚𝑒𝑎𝑠(𝑟 𝑗) and 𝐼𝑚𝑒𝑎𝑠(𝑟 𝑗). The best n(𝑟 ) is chosen, 

such that 𝐹 is minimized. We have 

𝐸⃗ 𝑗
𝐹𝑃𝐴 = 𝐸⃗ 𝑗

𝑖𝑛𝑐 + 𝑘2 ∑ 𝐺(𝑟 𝑗, 𝑟 𝑙)𝑋𝑙𝐸⃗ 𝑙
𝑖𝑛𝑡

Δ𝑉
𝑁𝑣𝑜𝑥𝑒𝑙
𝑙=1 , (5.28) 

assuming 𝑋𝑙 = 𝑛2(𝑟 𝑙) − 1, 

 

𝐼𝑗
𝐹𝑃𝐴 = |𝐸⃗ 𝑗

𝐹𝑃𝐴|
2

= [𝐸⃗ 𝑗
𝑖𝑛𝑐 + 𝑘2 ∑ 𝐺𝑗𝑙𝑋𝑙𝐸⃗ 𝑙

𝑖𝑛𝑡
Δ𝑉

𝑁𝑣𝑜𝑥𝑒𝑙

𝑙=1

]

∗

. [𝐸⃗ 𝑗
𝑖𝑛𝑐 + 𝑘2 ∑ 𝐺𝑗𝑚𝑋𝑚𝐸⃗ 𝑚

𝑖𝑛𝑡
Δ𝑉

𝑁𝑣𝑜𝑥𝑒𝑙

𝑚=1

] 
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= |𝐸⃗ 𝑗
𝑖𝑛𝑐|

2
+ 𝑘2Δ𝑉 ∑ 𝐸⃗ 𝑗

𝑖𝑛𝑐𝐺𝑗𝑚𝑋𝑚𝐸⃗ 𝑚
𝑖𝑛𝑡𝑁𝑣𝑜𝑥𝑒𝑙

𝑚=1 + 𝑘2Δ𝑉 ∑ 𝐸⃗ 𝑗
𝑖𝑛𝑐

∗
𝐺𝑗𝑙

∗𝑋𝑙
∗𝐸⃗ 𝑙

𝑖𝑛𝑡∗
𝑁𝑣𝑜𝑥𝑒𝑙
𝑙=1 +

𝑘4Δ𝑉2 ∑ ∑ 𝐺𝑗𝑙
∗𝐺𝑗𝑚𝑋𝑚𝑋𝑙

∗𝐸⃗ 𝑙
𝑖𝑛𝑡∗

𝐸⃗ 𝑚
𝑖𝑛𝑡𝑁𝑣𝑜𝑥𝑒𝑙

𝑚=1
𝑁𝑣𝑜𝑥𝑒𝑙
𝑙=1  (5.29) 

defining: 

𝑃𝑗𝑙 = 𝑘2Δ𝑉 {𝐸⃗ 𝑗
𝑖𝑛𝑐

∗
𝐺𝑗𝑙𝐸⃗ 𝑙

𝑖𝑛𝑡
+ 𝐸⃗ 𝑙

𝑖𝑛𝑡
𝐺𝑗𝑙

∗ 𝐸⃗ 𝑗
𝑖𝑛𝑐} (5.30) 

and 

𝑄𝑗𝑙𝑚 = (𝐸⃗ 𝑙
𝑖𝑛𝑡∗

𝑘4Δ𝑉𝐺𝑗𝑙
∗𝐺𝑗𝑚𝐸⃗ 𝑚

𝑖𝑛𝑡
) 𝑘4Δ𝑉 (5.31) 

We have 

𝐼𝑗
𝐹𝑃𝐴 = |𝐸⃗ 𝑗

𝑖𝑛𝑐|
2
+ ∑ 𝑃𝑗𝑙𝑋𝑙

𝑁𝑣𝑜𝑥𝑒𝑙
𝑙=1 + ∑ ∑ 𝑄𝑗𝑙𝑚𝑋𝑙𝑋𝑚

𝑁𝑣𝑜𝑥𝑒𝑙
𝑚=1

𝑁𝑣𝑜𝑥𝑒𝑙
𝑙=1   (5.32) 

The variables 𝑋𝑙 and 𝑋𝑚 are unknowns. Therefore, 

𝐹 = 𝐹(𝑋 ) = 𝐹(𝑋1, 𝑋2, … , 𝑋𝑁𝑣𝑜𝑥𝑒𝑙
)  (5.33) 

To minimize Eq. (B.8), we need to find  

𝜕𝐹

𝜕𝑋𝑙
= 0, (5.34) 

For all 𝑙 = 1, 2,… , 𝑁𝑣𝑜𝑥𝑒𝑙. 

Having 

 

𝜕𝐹

𝜕𝑋𝑙
=

𝜕

𝜕𝑋𝑙
∑ [𝐼𝑗

𝑚𝑒𝑎𝑠 − 𝐼𝑗
𝐹𝑃𝐴]

2
= 2∑ [𝐼𝑗

𝑚𝑒𝑎𝑠 − 𝐼𝑗
𝐹𝑃𝐴]

𝜕𝐼𝑗
𝐹𝑃𝐴

𝜕𝑋𝑙
= 0

𝑁𝑝𝑖𝑥𝑒𝑙

𝑗=1

𝑁𝑝𝑖𝑥𝑒𝑙

𝑗=1
 (5.35) 

And, 

𝜕𝐼𝑗
𝐹𝑃𝐴

𝜕𝑋𝑙
= 𝑃𝑗𝑙 + ∑ ∑ 𝑄𝑗𝑙𝑚́(𝛿𝑙𝑙𝑋𝑚́ + 𝛿𝑚́𝑙𝑋𝑙)

𝑁𝑣𝑜𝑥𝑒𝑙
𝑚́=1

𝑁𝑣𝑜𝑥𝑒𝑙

𝑙=1
= 𝑃𝑗𝑙 + ∑ 𝑄𝑗𝑙𝑚́𝑋𝑚́

𝑁𝑣𝑜𝑥𝑒𝑙
𝑚́=1 + ∑ 𝑄𝑗𝑙𝑙́𝑋𝑙

𝑁𝑣𝑜𝑥𝑒𝑙

𝑙=1
  

 

= 𝑃𝑗𝑙 + ∑ [𝑄𝑗𝑙𝑚 + 𝑄𝑗𝑚𝑙]𝑋𝑚
𝑁𝑣𝑜𝑥𝑒𝑙
𝑚=1  (5.36) 
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All required quantities are now expressed in form of the unknown 𝑋𝑙 . Thus, F can be 

minimized with respect to the 𝑁𝑣𝑜𝑥𝑒𝑙 unknowns 𝑋𝑙.    

This optimization problem could also be formulated for a complex refractive index as well. 
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6 Conclusions  

Wide field FTIR imaging is a powerful technique for chemical imaging of micro-meter size 

samples. Wide field FTIR imaging in diffraction limit is restricted to samples that the derivative 

of their refractive index is a continues function of position. For example, there is no sudden change 

in the value of the refractive index of the algal cell presented in Chapter 2. This prototype 

experiment shows the potential of FTIR imaging in revealing information about chemistry of 

biological samples. However, most of the biological samples are highly scattering.  

In order to better understand the scattering phenomena in the pixelated FTIR images, 

hyperspectral image of a 25 µm polymer bead was measured and simulated. The result shows that 

apart from the numerical object of the focusing optics, the scattering contributions are highly 

dependent on the focal depth of the objective and the axial position of the image. Comparing the 

measured images of thermal and synchrotron sources indicated that pixelated scattering 

contributions are also dependent on the spatial coherency of the light source. The insight gained 

from these observations leads us toward implementing an inverse scattering method for recovery 

of the pure absorbance spectra. 

Our iterative inverse scattering method is an optimization algorithm for removing the 

scattering from the spectra. The algorithm fits the measured field images to a simulated field 

images in an iterative process and recovers the refractive index of the sample. The method can 

recover the pure absorptivity of the samples (with imaginary part of the refractive index as high as 

3) in presence of Poisson noise. The algorithm is being tested on real experimental data and will 

be extended for refractive index recovery of inhomogeneous samples. 
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