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ABSTRACT 

EQUILIBRIUM MODELING AND POLICY ANALYSIS OF A BIOFUEL 

SUPPLY CHAIN WITH A HYDROELECTRIC RESERVOIR 

by 

Jinwoo Bae 

 

The University of Wisconsin-Milwaukee, 2019  

Under the Supervision of Professor Jaejin Jang 

 

This research proposed a game theoretic model of a biofuel supply chain (BSC) where a 

utility company supplies reservoir water to two farmers, located in downstream and upstream 

of a hydropower dam. The decision-making process of the model is formulated as a three-

stage Stackelberg game. We analyze the equilibrium of the decentralized systems and the 

effect of the government subsidy on energy crop (switchgrass) production for cellulosic 

biofuel industries, with two forms of subsidy: (1) discriminated subsidies and (2) equalized 

subsidies.  

The results show that both forms of subsidy improve social welfare in the BSC unless the 

amount of subsidy exceeds certain limits, in which case there are negative margins for the 

farmers, and disappearance or monopoly of the markets. Increasing the subsidy to the 

upstream farmer is more efficient in improving social welfare than equalizing the subsidies to 

the two farmers. Increasing the subsidy to the downstream farmer shows the least efficiency 

in improving social welfare. 
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1. INTRODUCTION 

Water, energy, and food are essential resources. Since demand for these resources for 

human activities, technologies, industries, and even survival. Since the demand for these 

resources has been rising steadily with increase in the world’s population and industrial 

development, resource security is becoming a major issue for policymakers and government 

departments. Currently, the rapid population growth in many regions of the world and 

associated economic development are increasing demand for electricity and putting pressure 

on freshwater resources (IEA, 2012). The population increase could also threaten food security. 

It is estimated that energy consumption worldwide in particular will have increased by 50% 

upto 2030 (Hightower and Pierce, 2008). These factors will exacerbate the energy crises and 

water shortages in the world (Zhang and Vesselinov, 2016). Thus, we need to approach the 

water-energy-food nexus through an understanding of the interaction between the water, 

energy, and food sectors in order to improve their security. 

Security of water, energy, and food is inextricably linked, and therefore they should not 

only be carefully managed as individual resources but also be understood in the perspective of 

the interaction between them. The proper management of their connection should be given 

priority, as it has significant potential to increase the efficiency of resource allocation and 
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utilization and to reduce social costs. A comprehensive understanding of the resource use and 

flow would help induce and maintain equilibrium of supply and demand, as against an 

imbalance that may result in inefficient resource allocation and the consequent excessive social 

costs. Efficiency of use of the water, energy, and food system could be improved and managed 

effectively through an analysis of the interaction between the three resource sectors. 

Conventional policy and decision-making processes need to adopt a nexus approach which 

would reduce the trade-offs and build synergies across whole sectors through integration (Hoff, 

2011). The water–energy–food (WEF) nexus is an approach to assessment, policy 

development, and implementation that focuses on water, energy, and food security 

simultaneously (Bizikova et al., 2014). The 2011 Bonn conference provides evidence that 

improved water, energy, and food security can be achieved through the nexus approach that 

integrates management and governance across the three sectors, supporting the transition to a 

green economy that has greater policy coherence and uses resources more efficiently (Hoff, 

2011). 

Amidst research on the water-energy-food nexus, research on the biofuel supply chain 

(BSC) is one of the most rapidly developing areas, since biofuel is a promising renewable 

energy source that can substitute for scarce fossil fuels. Until now, it has been produced mainly 
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from food (first-generation) crops such as corn. In recent years, 40% of US corn was converted 

into ethanol (GRACE, 2014). However, biofuels are responsible for a 25–60% increase in corn 

prices (Sexton et al., 2009). In addition to price, land availability is an important factor affecting 

food security (Cobuloglu and Büyüktahtakın, 2015). Dependence on biofuel from food crops 

could undermine the security of food supplies such as corn (Cobuloglu and Büyüktahtakın, 

2017). 

Cellulosic ethanol, refined from energy (second-generation) crops, is one of the most 

promising alternatives to food-based bioethanol. Switchgrass, especially, one of the cellulosic 

feedstocks, is widely recognized as a leading crop for ethanol production in the U.S. according 

to social, economic, and environmental criteria (Bai et al., 2010). Based on life cycle 

assessment (LCA), the production of switchgrass ethanol has been shown to cause lower 

greenhouse gas (GHG) emissions than that of corn-based ethanol, because of higher yield, 

ability to store carbon in soil, and fewer fertilizer and energy inputs (Davis et al., 2012; Larson, 

2006; Wright, 2010).  

Security of water supply is vital for both first-generation and second-generation biofuel 

crops, since a huge amount of water is consumed by irrigation. Agriculture accounts for the 

largest consumptive water use which is not returned to a water source. If the return flow is 
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polluted or heated, that may also be considered consumptive use because the changed water 

properties compromise further uses (Hoff, 2011). Agriculture consumes about 70% of fresh 

water in the world and accounts for 80–90% of consumptive water use in the United States 

(Pimentel et al., 2004; Schaible and Aillery, 2012). 

As one of the largest consumers of water, agriculture competes directly with the energy 

sector for water resources. However, agriculture also contributes indirectly to the energy sector 

through biofuel production. Both connections will be strained by increasing concerns over 

water availability and quality (U.S. Department of Energy, 2014). 

Hydropower is another major source of renewable energy. In 2012, global hydroelectricity 

generation reached 3,646 TWh, which accounted for about 77% of total renewable electricity 

generation and it supplied 18% of the total electricity consumed (Zhang et al., 2018). Since 

they are usually a domestic source of energy and water, hydropower plants with reservoirs 

could help manage energy security and water security if the hydropower systems could be 

developed as integrated systems for hydroelectricity generation and water supply (IEA, 2012). 

Water stored in a hydropower reservoir can be used for irrigation, industry and domestic supply. 

Since hydropower plants are usually located in upstream regions, the water released to generate 

hydroelectricity can be made available for irrigation in the downstream regions (Zhang et al., 
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2018). In other words, the water stored in reservoirs and the water released to the downstream 

areas can be used for irrigation in upstream regions and downstream regions, respectively. So, 

considering hydropower systems with water supply for irrigation could improve food security 

(Water Resources and Environment Administration, 2008).  

Water systems supply water for human use such as drinking, irrigation, or industry. 

Although water is a public resource for everyone, excessive use and unequal water supply 

would cause scarcity of water and compromise the right to equal access to water. Water pricing 

could be a key factor in promoting efficient resource allocation and preventing anyone’s 

exclusive possession of water. In this context, the price does not need to be the same for all 

units sold; non-linear pricing is shown to permit people to enjoy low prices for their essential 

uses of water but pay higher prices if they consume beyond a certain threshold quantity. Non-

linear marginal cost pricing of water permits separation of the relatively more essential (low 

volume, low demand elasticity) uses of water from the more optional (high volume, higher 

demand elasticity) uses of water. On the supply side, many sources of water are shared in 

“common” and therefore unregulated markets tend to deplete and degrade sources of water at 

rates greater than the efficient rates (Holahan, 2010). In this research, it is assumed that water 
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price is imposed in the form of a convex quadratic price function to reconcile the supply 

imbalance. 

In this research, our model considers a utility company as a private water supply firm that 

tries to maximize its own profit rather than other values such as social welfare. In economics, 

a private firm maximizes its own profit while a public firm maximizes social welfare, in general. 

However, in the privatization neutrality theorem, social welfare is the same before and after 

privatization when the government gives optimal subsidies to both public and private firms. 

Fulton and Karp (1989) studied the performance of a public firm in a natural-resource industry 

and concluded that the public firm pursues objectives other than welfare maximization. As 

shown in previous research, private firms and public firms may make decisions for the same 

objective of profit maximization. Thus, while this research assumes that the utility company is 

a private firm, it could be regarded as a kind of public firm under certain conditions. However, 

this paper only focuses on the situation in which the utility company pursues profit 

maximization rather than social welfare maximization.  
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2. LITERATURE REVIEW 

This section reviews research on the biofuel supply chain (BSC) and game theory in water-

energy-food nexus.  

2.1. Biofuel Supply Chain 

The BSC, one of the most popular research areas in the water- energy-food nexus, had been 

developing even before the concept of the water-energy-food nexus appeared. Our model is 

also based on the BSC and incorporates the conventional BSC with water supply and 

hydropower generation.  

Several studies on the BSC have been formulated in centralized optimization models, 

where a single decision maker makes a decision to maximize or minimize the objective 

function (Del-Mas et al., 2011; Awudu and Zhang, 2013; Marufuzzaman et al., 2014; Xie et 

al., 2014; Cobuloglu and Büyüktahtakın, 2014; Kim et al., 2011). For example, Xie et al. (2014) 

proposed a mixed-integer linear programming (MILP) model to minimize transportation costs 

of cellulosic feedstock through optimal location of biorefineries, hubs, and terminals. 

Cobuloglu and Büyüktahtakın (2014) developed a MILP model to find best decisions on 

seeding method, harvesting time, and land types, while considering the economic and 
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environmental impacts of switchgrass biomass production. Kim et al. (2011) developed a MILP 

model to maximize profits of biofuel production through best transportation method, biomass 

locations, and biorefinery capacity and technologies. Cobuloglu and Büyüktahtakın, (2015) 

proposed a multi-objective mixed-integer optimization model to maximize economic and 

environmental benefits with optimal decisions on land allocation, seeding time, harvesting time 

and amount, and budget allocation. Cobuloglu and Büyüktahtakın (2017) extended their 

previous model to a two-stage stochastic mixed-integer programming model. Azadeh et al. 

(2014) proposed a stochastic linear programming model within a multi-period planning 

framework to maximize the expected profit. Papapostolou et al. (2011) proposed a mixed 

integer linear programming model to maximize performance of the BSC. 

Compared to the centralized framework, the BSC model with a decentralized framework 

could better consider and analyze rational behaviors of each entity in the BSC (e.g. farmers 

and refineries). The entities, as decision makers in the model, make decisions independently to 

optimize their own objectives which can be in conflict with one another. Bai et al. (2012) 

proposed a bilevel Stackelberg leader-follower game theoretic model of an integrated BSC 

with farmers’ decision on land uses and markets, and dynamic feedstock prices under market 

equilibrium. Under the decentralized framework, the government policy can be applied to the 



 

9 

 

 

BSC model as a form of regulation or subsidy. Bai et al (2016) proposed a Stackelberg game 

theoretic model to incorporate more options on land use and possibility of marginal land 

reclamation in a land market, with cap-and-trade regulatory mechanism for land-use constraints. 

Luo and Miller (2013) proposed a game theoretic model of Cournot competition between 

farmers and Stackelberg between switchgrass and corn ethanol producers, while considering 

the farmers and the ethanol producers. However, this research does not study the socio-

economic impact of the subsidies on the BSC. Another game theoretical model, proposed by 

Bajgiran (2018), is modeled as a Cournot-Stackelberg game between a farmer and multiple 

biofuel refineries, and analyzes the effect of government subsidies on the BSC.  

Besides the abovementioned research, mathematical programming models of the BSC 

have been developed, in a variety of research papers. Sharma et al. (2013) reviewed 32 research 

papers to analyze mathematical programming models for the BSC with focus on facility 

location and capacity. De Meyer et al. (2014) reviewed 71 research papers on biomass-for-

bioenergy supply chain with focus on optimization methods used in the BSC. Ghaderi et al. 

(2016) reviewed 146 research papers on biomass supply chain network design (BSCND) and 

classified them into three classes: facility-related, biomass-related, and final product-related. 

Of the 146 papers, none considers decisions regarding water supply and irrigation for biomass 
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production with BSC. Most of the research studied determination of facility capacity and 

location, biomass type, land allocation, and final products type.  

Although there is a variety of research on the mathematical modeling of the BSC, Ghaderi 

et al. (2016) addressed the lack of multi-objective problem research which accounts for only 

22.6% of the BSC papers. Out of the 146 papers, only 14 papers (9.6%) proposed non-linear 

programming, which is more flexible and practical to deal with real-world problems than 

mixed-integer linear programming (MILP), which is applied in 109 papers (74.6%) (Ghaderi 

et al., 2016). Consequently, the BSC field needs more research on multi-objective problems 

and non-linear programming approaches.  

Hydropower systems can be integrated with irrigation for the biomass crops. For example, 

Lacombe et al. (2014) studied the effect of hydropower development on irrigation in the Nam 

Ngum River Basin. The research found that full hydropower development could increase river 

flow during the dry season and improve water availability for irrigation. Since this research 

only considers the impacts of development within the Nam Ngum sub-basin, additional 

analysis of collective influences in the wider Mekong basin needs further research (Zhang et 

al., 2018). However, to our knowledge, only a few researchers have studied the BSC with 

hydropower systems and water supply systems for irrigation, although the integrated system 
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has a high potential to simultaneously consider a water system and the BSC in the water-

energy-food nexus. 

In this research, we propose a mathematical model for decision-making on biomass type 

and land allocation. Our BSC model also deals with hydropower generation and water supply 

for irrigation, which has not been dealt with much in previous BSC research. The BSC model 

is formulated as a non-linear programming with a three-stage Stackelberg game, where three 

players maximize their own objectives (profits) in the game and the government also promotes 

its objective (social welfare) out of the game. The Stackelberg game theoretic approach is 

proposed to solve multi-objective problems. Moreover, our BSC model consists of two biomass 

suppliers (farmers), two kinds of biofuel producers (biomass refineries) as a corn market and a 

switchgrass market, and a water supplier (utility company) that operates a hydropower plant 

and supplies water to the farmers for irrigation.   

 

2.2. Game Theory in Water-Energy-Food Nexus 

More than one decision maker can be involved, in the water-energy-food nexus. The 

decision makers take decisions to achieve their own objectives, interacting with each other. 
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Game theory can provide a framework to study the strategic actions of individual decision 

makers to develop acceptable solutions when the decisions of multiple firms mutually affect 

the outcomes of other decision makers. Also, game theory could derive practical results under 

conditions of competition between firms, since this method reflects the interaction between the 

involved parties, which is often neglected by conventional optimization methods of solving 

multi-criteria multi-decision-maker problems (Madani, 2010).  

Hence, game theoretic approaches can be used to analyze the Nash equilibrium in a multi-

stakeholder model for the water-energy-food nexus. Especially if one entity is more influential 

than the others or is an external arbiter such as a regulating agent, and they want to manage 

water, energy, and food flows between other parties, a leader-follower type game could prove 

valuable (Garcia and You, 2016). The mathematical models could describe and explain the 

rationalization of the players’ decisions and their results in the water-energy-food nexus. 

There are three traditional competition models in game theory: a Cournot model, a 

Bertrand model, and a Stackelberg model. The Bertrand model addresses price competition 

between firms in a simultaneous game, while the Cournot model and the Stackelberg model 

compete on the quantity produced in a simultaneous game and a sequential game, respectively. 
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 The Cournot model was first proposed by a French mathematician, Antoine Augustin 

Cournot in 1838 (Siriruk, 2009). The basic Cournot model is a static model where each firm 

rationally forecasts other firms’ decisions. Given the forecast, firms simultaneously make the 

decision to maximize their own profit (Varian, 2006). The Cournot competition is a quantity 

competition where the firms make decisions on quantity rather than on price. In each firm’s 

problem, the quantities supplied by other firms are assumed to be fixed and do not change 

depending on price change (Siriruk, 2009). The Cournot model derives a Nash equilibrium 

solution for the optimal quantities produced by each firm. The market price of the output is 

determined by the equilibrium solution with a given demand function of the market. When 

solving the single-level game, we can solve an optimization problem through putting together 

KKT conditions of each firm’s problem. 

 The Bertrand competition was first studied by Joseph Bertrand who pointed out that firms 

compete primarily in prices (Prokop et al., 2015). In the static model of price competition in 

duopoly, two firms produce a homogeneous good at identical and constant marginal cost. This 

game theoretical model is assumed to have no capacity constraint, so that each firm can satisfy 

the entire demand of the market. The firms set prices of their products simultaneously and 

independently. With identical prices quoted by the firms, the demand is split equally between 
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the two firms. On the other hand, with discriminated prices, a firm that quotes lower price takes 

all the demand in the market since consumers would purchase the good at the lowest price. In 

the case of the Bertrand game, the winner takes all demand while the other firm takes nothing.   

The Stackelberg was first described by a German economist, Heinrich Freiherr von 

Stackelberg, who in 1934 studied competition between two firms selling a homogeneous good 

(Von Stackelberg et al., 2010). The concept of the Stackelberg game is extended to various 

research areas to study situations containing a leader–follower relationship (Chu and You, 2014; 

Chu et al., 2014). In a standard Stackelberg game, a leader takes actions first, and then a 

follower makes best responses to the leader’s decisions rationally. Hence, the two players make 

their best decisions sequentially in the Stackelberg game. In the game, the follower observes 

the leader’s decisions and the leader knows the follower’s best responses to its decisions. The 

leader has the advantage of moving first and the advantage lets the leader gain a larger profit 

than the follower. On the other hand, if the leader does not guarantee a certain degree of 

incentives to the follower, the follower may refuse to participate in the supply chain and the 

leader’s strategic plan may become infeasible or unprofitable (Yue and You, 2014). 

 For example, a single-leader-single-follower Stackelberg game can be formulated as a 

bilevel programming problem (Bard, 1998; Colson et al., 2007), as follows: 
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max
𝑥∈𝑋

𝐹(𝑥, 𝑦)  

s. t. 𝐴𝑖(𝑥, 𝑦) ≤ 0 𝑖 = 1, ⋯ , 𝑚   

s. t. 𝐵𝑗(𝑥, 𝑦) = 0 𝑗 = 1, ⋯ , 𝑛   

  where 𝑦 solves  max
𝑦∈𝑌

𝐺(𝑥, 𝑦) 

s. t. 𝐶𝑘(𝑥, 𝑦) ≤ 0 𝑘 = 1, ⋯ , 𝑟   

s. t. 𝐷𝑙(𝑥, 𝑦) = 0 𝑙 = 1, ⋯ , 𝑠   

In this Stackelberg game, the leader’s decision variables are denoted by 𝑥 ∈ 𝑋 and the 

follower’s decision variables are denoted by 𝑦 ∈ 𝑌. The leader’s objective function, inequality 

constraints, and equality constraints are denoted by 𝐹(𝑥, 𝑦) , 𝐴𝑖(𝑥, 𝑦) , and 𝐵𝑗(𝑥, 𝑦) , 

respectively. The function and the constraints depend on both the leader’s decisions, 𝑥, and 

the follower’s decisions, 𝑦 . The follower’s objective function, inequality constraints, and 

equality constraints are denoted by 𝐺(𝑥, 𝑦), 𝐶𝑘(𝑥, 𝑦), and 𝐷𝑙(𝑥, 𝑦), respectively.  

The bilevel program is also called a “mathematical program that contains an optimization 

problem in the constraints” (Bracken and McGill, 1973), because the value of 𝑦 in the leader’s 

problem is obtained by solving the follower’s optimization problem. The leader’s decision 
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variables 𝑥 are treated as given parameters in the follower’s optimization problem since the 

leader’s decisions have already been made at the time when the follower takes actions.  

When solving a bilevel game such as a leader-follower game, a lower-level optimization 

problem usually can be embedded as constraints in an upper-level optimization problem. In 

case the lower-level optimization problem is replaced with the form of equivalent variational 

inequalities or KKT conditions, we can transform the bilevel problem into a single level 

optimization problem that consists of equilibrium constraints (Bajgiran, 2018). Such single 

level problems are called mathematical programs with equilibrium constraints (MPEC) (Luo 

et al. 1996). MPECs have been extensively employed in various research areas and industries 

including energy, transportation, and production. For example, Koh (2012), Allevi et al. (2018), 

and Siddiqui and Christensen (2016) considered MPECs as non-linear programming (NPL), 

and special algorithms have been developed to solve them. 

In our biofuel supply chain, the two farmers compete for water allocations of the utility, 

and each farmer solves a trilevel problem where the farmers (leaders) maximize their own 

profit at the upper level problems and the lower level problems, and the utility company 

(follower) maximizes its own profit at the middle level problem. Because of the convexity of 

the farmers’ problems in the third stage, we can replace the problems with their KKT conditions 
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and embed them in the utility company’s problem in the second stage as new constraints and 

solve the resultant single level problem (MPEC). Likewise, because of the convexity of the 

utility company’s problem in the second stage, we can replace the problem with its KKT 

conditions and embed the KKT conditions in the farmers’ problems in the first stage as new 

constraints and solve the resultant single level problem (MPEC). Having derived the MPEC 

for each of the farmers, we need to jointly consider all MPECs to obtain the generalized Nash 

equilibrium, which is one of the main objectives of this research. For that, we obtain the KKT 

conditions of each single level problem and combine them into one single optimization 

problem. The new problem is called equilibrium problem with equilibrium constraints (EPEC), 

which has been previously addressed in other works and industries, especially the electricity 

market (e.g, Pozo and Contreras 2011; Ruiz et al., 2012; and Kazempour et al., 2013), but not 

much in research on biofuel supply chain. 

The Cournot game, the Stackelberg game, and the Bertrand game can be combined to 

model complicated game theoretic problems. For example, Assila et al. (2017), Caldentey and 

Haugh (2017), and Ruiz-Hernández et al. (2017) studied the combined Cournot-Stackelberg 

game to deal with game theoretic models with more than one leader, follower or both. Ma and 
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Li (2014) and Zhang et al. (2015) studied the combined Stackelberg-Bertrand game to deal 

with pricing game models with more than one leader, follower or both.  

In this research, we study a biofuel supply chain where two farmers and a utility company 

independently make their own decisions throughout three stages. At the first stage, the farmers 

quote water prices to the utility company. In the second stage, the utility company allocates 

water to the farmers, based on their price announcements. In the third stage, the farmers 

produce crops and sell them at a corn market and a switchgrass market, competing against each 

other. Our mathematical model consists of a Bertrand game and a Cournot game between the 

two farmers in the first stage and the third stage, respectively, and a Stackelberg game between 

the farmers and the utility company. Our model is formulated as a three-stage Cournot-

Stackelberg-Bertrand game.  
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3. MODEL DESIGN 

3.1. Comprehensive Problem Description 

This research models the equilibrium of a biofuel supply chain (BSC) with three stages of 

the decision-making process, which consists of three entities (players): a downstream farmer 

(𝐹𝑑), an upstream farmer (𝐹𝑢), and a utility company (𝑈0).  

In this BSC, the two farmers are located in two discrete regions; the downstream side and 

the upstream side of a hydroelectric reservoir. Each of the abovementioned farmers could be 

regarded as a farmer union of small farmers in each region. Forming a union can bring them 

benefits such as having a more advantageous position in contract negotiation with refineries, 

avoiding unproductive competition with each other, and protecting themselves against large 

corporates.  

Both farmers produce corn and switchgrass and sell their crops at a corn market consisting 

of corn-based refineries and at a switchgrass market consisting of switchgrass-based refineries. 

So, both markets are duopolies. The farmers compete against each other in the two markets. 

The downstream and upstream farmers both have identical technology, equipment, and 

capability to cultivate corn and switchgrass. The outputs of the farmers are homogenous. Both 
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farmers make decisions to maximize their own profits, competing against each other at the corn 

market and the switchgrass market. The farmers quote the water prices at which they want to 

buy at the beginning of a season to secure the amount of water they will use during the season. 

The utility company manages the reservoir, operates the hydropower dam, and sells water 

to both farmers. The amount of water the utility company sells to the farmers is determined 

based on the water prices quoted by the farmers. In addition to the revenue from the water sales 

to the farmers, the utility company also earns revenue from selling hydroelectricity at an 

electricity market. The utility company has a low market share and little power to influence the 

electricity price at the market; the utility company is a price-taker. 
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Figure 1. The entire framework of the interactive decision-making in the model  

(the numbers in parentheses are the order of decision-making in the BSC) 

The structure of the BSC is depicted in Figure 1. The sequence of the decision process in 

the BSC is as follows: 

(0) Out of the BSC and before the game, the government announces subsidies to the 

farmers (𝑠𝑑, 𝑠𝑢). 
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(1) In the first stage, the farmers decide water prices (𝑝𝑑, 𝑝𝑢) and announce them to the 

utility company for procurement. At this stage, they do not yet decide the land allocation to 

corn and switchgrass. 

(2) In the second stage, after observing the price announcement, the utility company 

decides water quantities (𝑤𝑑, 𝑤𝑢) to allocate to the farmers. The company knows that they can 

generate hydroelectricity using the water released to the downstream of the dam and sell the 

electricity to an electricity market. 

(3) In the third stage, after observing the water allocation, the farmers decide land 

allocations (𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 , 𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 ) for corn and switchgrass production in order to compete against 

each other in the corn market and the switchgrass market. 

The utility company decides the water allocations to the two farmers depending on the 

water prices announced from the farmers. The water allocations are affected not only by the 

water prices but also by the sale of hydroelectricity generated by water released to the 

downstream. The amounts of water allocated affect the farmers’ land allocation for the crops, 

since the two crops have different water requirements and different prices in the markets. At 

the two markets, the prices of the products are determined by the total amounts of commodities 

(corn and switchgrass) provided by the farmers and available at the markets. 
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This study analyzes the interdependency of the decisions and models the decision process 

as a three-stage Stackelberg game. At the first stage, the amount of water released to farmers 

depends not only on their own quote of the water price, but also on the water price quoted by 

the competitor. So, there is a Bertrand game between the downstream farmer and the upstream 

farmer for water allocation. At the third stage, since the revenues from the sales of corn and 

switchgrass by farmers are determined not only by their decisions on the crops’ production 

amounts, but also by the market prices of the commodities, we have a Cournot game at both 

the corn market and the switchgrass market. Since we have a sequence of decision-making 

throughout the three stages, where decisions in a stage affect decisions in the following stages, 

we have a leader-follower Stackelberg game.  

In this game, the decisions at each stage affect the decisions of other stages in a cyclic 

feedback structure. The farmers’ decisions on the water prices (𝑝𝑑, 𝑝𝑢) in the first stage affect 

the utility company’s decisions on water allocation (𝑤𝑑, 𝑤𝑢) in the second stage. The utility 

company’s decisions affect the farmers’ decisions on land allocation (𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 , 𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 ) in the 

third stage. Then, the water allocation in the second stage and the land allocation in the third 

stage affect the farmers’ decisions on water prices in the first stage. In this decision cycle, 

players’ decisions at each stage are dependent on those in other stages.  
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In the model, we assume that the farmers’ land sizes are big enough so that they can 

consume any amount of water allocated by the utility company based on their quoted water 

prices. If the farmers are small and the utility company has enough water to meet the demands 

of the farmers, there will be no game between the farmers for water; in such as case only the 

Cournot competition exists at the corn market and the switchgrass market.  

Due to the societal benefits of cellulosic bioethanol, the government subsidizes the energy 

crop (switchgrass) production rather than the food crop (corn) production in the BSC. Because 

the government subsidies affect the decisions of the firms in the BSC, we consider the subsidies 

in the model. In the model, the government is not a player in the game, but an entity that sets 

the condition of the game environment before the game begins.  

Farmers are willing to produce corn rather than switchgrass, since corn supply chains are 

well developed, contrary to the only recently currently emerging switchgrass supply chains. 

Since the government should consider not only energy security but also food security, the 

amounts of the subsidies are determined to prevent the corn market and the switchgrass market 

from disappearing or becoming monopolistic markets. We assume that the government decides 

the amounts of the subsidies to induce the farmers to produce both corn and switchgrass 
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because consumer surplus and social welfare under duopoly would be higher than those under 

monopoly. 

 The decision variables and parameters are shown in Table 1 and Table 2, respectively. 

Table 1. Decision variables 

Decision Variables Unit 

𝑝𝑑 Water price the downstream farmer offers to the utility company $/gal 

𝑝𝑢 Water price the upstream farmer offers to the utility company $/gal 

𝑤𝑑 Water quantity the utility company allocates to the downstream farmer gal 

𝑤𝑢 Water quantity the utility company allocates to the upstream farmer gal 

𝑞𝑑
𝑐  Land area of the downstream farmer for corn production  ha 

𝑞𝑑
𝑠  Land area of the downstream farmer for switchgrass production ha 

𝑞𝑢
𝑐  Land area of the upstream farmer for corn production ha 

𝑞𝑢
𝑠  Land area of the upstream farmer for switchgrass production ha 

 

Table 2. Parameters 

Parameters Unit 

𝑤 Water capacity of the utility company gal 

𝛼𝑐 Amount of corn grown in unit land  t/ha 
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𝛼𝑠 Amount of switchgrass grown in unit land  t/ha 

𝛼𝑒 Amount of hydroelectricity generated by release of unit water kWh/gal 

𝑝𝑒 Price of the hydroelectricity at an electricity market  $/kWh 

𝑐𝑐 Cost of corn production $/t 

𝑐𝑠 Cost of switchgrass production $/t 

𝑐𝑤 Cost of processing water supply  $/gal2 

𝛿𝑐 Water requirement per unit land for corn production gal/ha 

𝛿𝑠 Water requirement per unit land for switchgrass production  gal/ha 

𝑎𝑐 Reservation price at a corn market $/t 

𝑏𝑐 Marginal price per unit quantity at a corn market $/t2 

𝑎𝑠 Reservation price at a switchgrass market $/t 

𝑏𝑠 Marginal price per unit quantity at a switchgrass market $/t2 

𝑃𝑐(∙) Inverse demand function at a corn market $/t 

𝑃𝑠(∙) Inverse demand function at a switchgrass market $/t 

𝑠𝑑 Subsidy to the downstream farmer for switchgrass production  $/ha 

𝑠𝑢 Subsidy to the upstream farmer for switchgrass production $/ha 
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3.2. Mathematical Model 

In this section, we introduce the objective functions, constraints, and decision variables of 

the players in the three stages of the decision process in the BSC. The farmers are leaders in 

the first stage and followers in the third stage: they decide water prices, 𝑝𝑑 and 𝑝𝑢, in the first 

stage, and land allocation for crop production, 𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 , 𝑞𝑢
𝑐 , and 𝑞𝑢

𝑠 , in the third stage. The utility 

company is a follower and decides water allocation, 𝑤𝑑 and 𝑤𝑢, in the second stage.  

We find the equilibrium of the farmers’ decisions in the first stage and the third stage, and 

the utility company’s decision in the second stage by the backward induction procedure using 

their best response (BR) functions. First, we derive the best responses of the farmers through 

Karush-Kuhn-Tucker (KKT) conditions of their problems for the decision variables of the third 

stage. Second, we derive the best response of the utility company through KKT conditions of 

its problems for the decision variables of the second stage. Third, we derive leaders’ optimal 

decisions through KKT conditions of their problems for the decision variables of the first stage.  

In this section, the backward induction solution process is followed in this order:  

(1) We derive the best responses of the farmers in the third stage.  

(2) We derive the best responses of the utility company in the second stage.  
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(3) We derive the optimal decision of the farmers in the first stage by using the utility 

company’s best responses in the second stage and the farmers’ best responses in the third 

stage. 

(4) Then, we find the equilibrium of the farmers and the utility company by substituting 

the optimal decisions in the first stage into the best responses in the second and third 

stages.  

 

3.2.1. Farmers’ decision on land use in the third stage  

In this section, we introduce the objective functions of the downstream and upstream 

farmers that maximize their own profits through their best decisions on land allocation, 

(𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 ) and (𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 ) respectively. The water capacity constraints are also introduced. In this 

third stage, the farmers make their best responses for land allocation based on the decision of 

the utility company on water allocation (𝑤𝑑, 𝑤𝑢)  in the second stage and each other’s 

decisions on land allocation (𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 , 𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 ). 

All parameters in the model are strictly positive. However, water allocation (𝑤𝑑, 𝑤𝑢) 

from the second stage can be zero. We have four cases to consider based on the positivity of 
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the water allocation in the third stage: Case [1] 𝑤𝑑 = 0, 𝑤𝑢 = 0; Case [2] 𝑤𝑑 > 0, 𝑤𝑢 > 0; 

Case [3] 𝑤𝑑 = 0, 𝑤𝑢 > 0; and Case [4] 𝑤𝑑 > 0, 𝑤𝑢 = 0. The best responses for these cases of 

this third stage subgame are derived below and summarized in Table 3 and the derivation is 

presented in Appendix A. It is assumed that the parameter values meet the non-negativity 

conditions of the land allocation (𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 , 𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 ) and two shadow prices (𝜆1, 𝜆4) shown in the 

second column of Table 3.   

 

3.2.1.1. Best response for Case [1] (𝑤𝑑 = 0, 𝑤𝑢 = 0) 

In this case neither the downstream farmer nor the upstream farmer produces any crop 

(𝑞𝑑
𝑐 = 𝑞𝑑

𝑠 = 𝑞𝑢
𝑐 = 𝑞𝑢

𝑠 = 0), since the farmers cannot utilize water (𝑤𝑑 = 𝑤𝑢 = 0). They do 

not make profit (𝜋𝑑 = 𝜋𝑢 = 0).  

 

3.2.1.2. Best response for Case [2] (𝑤𝑑 > 0, 𝑤𝑢 > 0) 

(1) Formulation  

For the downstream farmer, we have 
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max
𝑞𝑑

𝑐 ,𝑞𝑑
𝑠

𝜋𝑑 = [𝑎𝑐 − 𝑏𝑐𝛼𝑐(𝑞𝑑
𝑐 + 𝑞𝑢

𝑐 )]𝛼𝑐𝑞𝑑
𝑐 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠(𝑞𝑑

𝑠 + 𝑞𝑢
𝑠 )]𝛼𝑠𝑞𝑑

𝑠 − 𝑐𝑐𝛼𝑐𝑞𝑑
𝑐     

−𝑐𝑠𝛼𝑠𝑞𝑑
𝑠 + 𝑠𝑑𝑞𝑑

𝑠 − 𝑤𝑑𝑝𝑑             (1) 

𝛿𝑐𝑞𝑑
𝑐 + 𝛿𝑠𝑞𝑑

𝑠 ≤ 𝑤𝑑   (𝜆1)    water capacity constraint   (2) 

𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 ≥ 0    (𝜆2, 𝜆3)   non-negativity constraints   (3,4) 

and, for the upstream farmer, we have 

max
𝑞𝑢

𝑐 ,𝑞𝑢
𝑠

𝜋𝑢 = [𝑎𝑐 − 𝑏𝑐𝛼𝑐(𝑞𝑑
𝑐 + 𝑞𝑢

𝑐 )]𝛼𝑐𝑞𝑢
𝑐 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠(𝑞𝑑

𝑠 + 𝑞𝑢
𝑠 )]𝛼𝑠𝑞𝑢

𝑠 − 𝑐𝑐𝛼𝑐𝑞𝑢
𝑐    

−𝑐𝑠𝛼𝑠𝑞𝑢
𝑠 + 𝑠𝑢𝑞𝑢

𝑠 − 𝑤𝑢𝑝𝑢             (5) 

𝛿𝑐𝑞𝑢
𝑐 + 𝛿𝑠𝑞𝑢

𝑠 ≤ 𝑤𝑢   (𝜆4)    water capacity constraint   (6) 

𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 ≥ 0    (𝜆5, 𝜆6)   non-negativity constraints         (7,8) 

 In Equation (1) and Equation (5), the first two terms are the farmers’ revenues from the 

corn market and the switchgrass market, respectively. The next two terms are the costs of crop 

production. The last two terms are the government subsidy for the switchgrass production and 

cost of water purchased from the utility company. In Equations (2) – (4) and (6) – (8), 𝜆s’ are 

KKT multipliers, or the shadow prices, of the constraints. 
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(2) KKT condition 

Now, we use KKT conditions to derive the best responses of the downstream farmer and the 

upstream farmer in the third stage. The KKT conditions of the problems are as follows:  

For the downstream farmer,   

ℒ1 = 𝜋𝑑 + 𝜆1(𝑤𝑑 − 𝛿𝑐𝑞𝑑
𝑐 − 𝛿𝑠𝑞𝑑

𝑠 ) + 𝜆2𝑞𝑑
𝑐 + 𝜆3𝑞𝑑

𝑠          (9) 

𝜕ℒ1

𝜕𝑞𝑑
𝑐 = (𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐

2𝑞𝑢
𝑐 ) − 2𝑏𝑐𝛼𝑐

2𝑞𝑑
𝑐 − 𝛿𝑐𝜆1 + 𝜆2 = 0      (10) 

𝜕ℒ1

𝜕𝑞𝑑
𝑠 = (𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠

2𝑞𝑢
𝑠 + 𝑠𝑑) − 2𝑏𝑠𝛼𝑠

2𝑞𝑑
𝑠 − 𝛿𝑠𝜆1 + 𝜆3 = 0     (11) 

0 ≤ 𝜆1 ⊥ [𝑤𝑑 − 𝛿𝑐𝑞𝑑
𝑐 − 𝛿𝑠𝑞𝑑

𝑠 ] ≥ 0           (12) 

0 ≤ 𝜆2 ⊥ [𝑞𝑑
𝑐 ] ≥ 0               (13) 

0 ≤ 𝜆3 ⊥ [𝑞𝑑
𝑠 ] ≥ 0,               (14) 

and, for the upstream farmer,                 

ℒ2 = 𝜋𝑢 + 𝜆4(𝑤𝑢 − 𝛿𝑐𝑞𝑢
𝑐 − 𝛿𝑠𝑞𝑢

𝑠 ) + 𝜆5𝑞𝑢
𝑐 + 𝜆6𝑞𝑢

𝑠         (15) 

𝜕ℒ2

𝜕𝑞𝑢
𝑐 = (𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐

2𝑞𝑑
𝑐 ) − 2𝑏𝑐𝛼𝑐

2𝑞𝑢
𝑐 − 𝛿𝑐𝜆4 + 𝜆5 = 0      (16) 

𝜕ℒ2

𝜕𝑞𝑢
𝑠 = (𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠

2𝑞𝑑
𝑠 + 𝑠𝑢) − 2𝑏𝑠𝛼𝑠

2𝑞𝑢
𝑠 − 𝛿𝑠𝜆4 + 𝜆6 = 0     (17) 

0 ≤ 𝜆4 ⊥ [𝑤𝑢 − 𝛿𝑐𝑞𝑢
𝑐 − 𝛿𝑠𝑞𝑢

𝑠 ] ≥ 0           (18) 
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0 ≤ 𝜆5 ⊥ [𝑞𝑢
𝑐 ] ≥ 0               (19) 

0 ≤ 𝜆6 ⊥ [𝑞𝑢
𝑠 ] ≥ 0               (20) 

 

(3) Best response 

Because the lands of the farmers are large, the farmers consume all the water allocated to 

them by the utility company, and the water capacity constraints of the farmers are binding. So, 

from the complementary slack conditions of the KKT conditions of the water capacity 

constraints shown above, we have [𝑤𝑑 − 𝛿𝑐𝑞𝑑
𝑐 − 𝛿𝑠𝑞𝑑

𝑠 ] = 0, [𝑤𝑢 − 𝛿𝑐𝑞𝑢
𝑐 − 𝛿𝑠𝑞𝑢

𝑠 ] = 0, 𝜆1 ≥

0, and 𝜆4 ≥ 0.  

The downstream and upstream farmers’ land allocations for both corn and switchgrass are 

equal to or greater than zero (𝑞𝑑
𝑐 > 0, 𝑞𝑑

𝑠 > 0, 𝑞𝑢
𝑐 > 0, 𝑞𝑢

𝑠 > 0). So, we assume 𝜆2 = 0, 𝜆3 =

0, 𝜆5 = 0, and 𝜆6 = 0 . In summary, we have these conditions in Case [2]: 𝜆1 ≥ 0, 𝜆2 =

0, 𝜆3 = 0, 𝜆4 ≥ 0, 𝜆5 = 0, and 𝜆6 = 0.   

These conditions are used to solve the KKT conditions, and the results are shown in Table 

3. 
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3.2.1.3. Best response for Case [3] 𝑤𝑑 = 0, 𝑤𝑢 > 0 

(1) Formulation  

In this case, the downstream farmer does not produce any crop (𝑞𝑑
𝑐 = 𝑞𝑑

𝑠 = 0), since the 

downstream farmer cannot utilize water (𝑤𝑑 = 0). Also, the downstream farmer does not 

make profit (𝜋𝑑 = 0). In this case, the corn market and the switchgrass market are monopoly 

markets of the upstream farmer without competition. The objective function and the constraints 

of the upstream farmer are as follows:   

max
𝑞𝑢

𝑐 ,𝑞𝑢
𝑠

𝜋𝑢 = (𝑎𝑐 − 𝑏𝑐𝛼𝑐𝑞𝑢
𝑐 )𝛼𝑐𝑞𝑢

𝑐 + (𝑎𝑠 − 𝑏𝑠𝛼𝑠𝑞𝑢
𝑠 )𝛼𝑠𝑞𝑢

𝑠 − 𝑐𝑐𝛼𝑐𝑞𝑢
𝑐 − 𝑐𝑠𝛼𝑠𝑞𝑢

𝑠 + 𝑠𝑢𝑞𝑢
𝑠 − 𝑤𝑢𝑝𝑢 (5’) 

𝛿𝑐𝑞𝑢
𝑐 + 𝛿𝑠𝑞𝑢

𝑠 ≤ 𝑤𝑢   (𝜆4)    water capacity constraint   (6’) 

𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 ≥ 0    (𝜆5, 𝜆6)   non-negativity constraints     (7’,8’) 

 

(2) KKT condition 

Now, we use KKT conditions to derive the best responses of the upstream farmer in the third 

stage. The KKT conditions of the problems are as follows:  

ℒ2′ = 𝜋𝑢 + 𝜆4(𝑤𝑢 − 𝛿𝑐𝑞𝑢
𝑐 − 𝛿𝑠𝑞𝑢

𝑠 ) + 𝜆5𝑞𝑢
𝑐 + 𝜆6𝑞𝑢

𝑠         (21) 
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𝜕ℒ
2′

𝜕𝑞𝑢
𝑐 = (𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 2𝑏𝑐𝛼𝑐

2𝑞𝑢
𝑐 − 𝛿𝑐𝜆4 + 𝜆5 = 0        (22) 

𝜕ℒ
2′

𝜕𝑞𝑢
𝑠 = (𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 + 𝑠𝑢) − 2𝑏𝑠𝛼𝑠

2𝑞𝑢
𝑠 − 𝛿𝑠𝜆4 + 𝜆6 = 0       (23) 

0 ≤ 𝜆4 ⊥ [𝑤𝑢 − 𝛿𝑐𝑞𝑢
𝑐 − 𝛿𝑠𝑞𝑢

𝑠 ] ≥ 0           (24) 

0 ≤ 𝜆5 ⊥ [𝑞𝑢
𝑐 ] ≥ 0               (25) 

0 ≤ 𝜆6 ⊥ [𝑞𝑢
𝑠 ] ≥ 0               (26) 

 

(3) Best response 

Because the land of the upstream farmer is large, the upstream farmer consumes all the 

water allocated by the utility company, and the water capacity constraint of the farmer is 

binding. So, from the complementary slack conditions of the KKT conditions of the water 

capacity constraint shown above, we have [𝑤𝑢 − 𝛿𝑐𝑞𝑢
𝑐 − 𝛿𝑠𝑞𝑢

𝑠 ] = 0 and 𝜆4 ≥ 0.  

The upstream farmer’s land allocations for both corn and switchgrass are equal to or 

greater than zero (𝑞𝑢
𝑐 > 0, 𝑞𝑢

𝑠 > 0). So, we assume 𝜆5 = 0, and 𝜆6 = 0. In summary, we have 

these conditions in Case [3]: 𝜆4 ≥ 0, 𝜆5 = 0, and 𝜆6 = 0.  

These conditions are used to solve the KKT conditions, and the results are shown in Table 

3. 
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3.2.1.4. Best response for Case [4] 𝑤𝑑 > 0, 𝑤𝑢 = 0 

(1) Formulation 

In this case, the upstream farmer does not produce any crop (𝑞𝑢
𝑐 = 𝑞𝑢

𝑐 = 0), since the 

farmer cannot utilize water (𝑤𝑢 = 0). Also, the upstream farmer does not make profit (𝜋𝑢 =

0). In this case, the corn market and the switchgrass market are monopoly markets of the 

downstream farmer without competition. The objective function and the constraints of the 

downstream farmer are as follows:   

max
𝑞𝑑

𝑐 ,𝑞𝑑
𝑠

𝜋𝑑 = [𝑎𝑐 − 𝑏𝑐𝛼𝑐𝑞𝑑
𝑐 ]𝛼𝑐𝑞𝑑

𝑐 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠𝑞𝑑
𝑠 ]𝛼𝑠𝑞𝑑

𝑠 − 𝑐𝑐𝛼𝑐𝑞𝑑
𝑐 − 𝑐𝑠𝛼𝑠𝑞𝑑

𝑠 + 𝑠𝑑𝑞𝑑
𝑠 − 𝑤𝑑𝑝𝑑 (1’) 

𝛿𝑐𝑞𝑑
𝑐 + 𝛿𝑠𝑞𝑑

𝑠 ≤ 𝑤𝑑   (𝜆1)    water capacity constraint    (2’) 

𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 ≥ 0    (𝜆2, 𝜆3)   non-negativity constraints       (3’,4’) 

 

(2) KKT condition 

Now, we use KKT conditions to derive the best responses of the downstream farmer in the 

third stage. The KKT conditions of the problems are as follows:  
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ℒ1′ = 𝜋𝑑 + 𝜆1(𝑤𝑑 − 𝛿𝑐𝑞𝑑
𝑐 − 𝛿𝑠𝑞𝑑

𝑠 ) + 𝜆2𝑞𝑑
𝑐 + 𝜆3𝑞𝑑

𝑠         (27) 

𝜕ℒ
1′

𝜕𝑞𝑑
𝑐 = (𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 2𝑏𝑐𝛼𝑐

2𝑞𝑑
𝑐 − 𝛿𝑐𝜆1 + 𝜆2 = 0        (28) 

𝜕ℒ
1′

𝜕𝑞𝑑
𝑠 = (𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 + 𝑠𝑑) − 2𝑏𝑠𝛼𝑠

2𝑞𝑑
𝑠 − 𝛿𝑠𝜆1 + 𝜆3 = 0       (29) 

0 ≤ 𝜆1 ⊥ [𝑤𝑑 − 𝛿𝑐𝑞𝑑
𝑐 − 𝛿𝑠𝑞𝑑

𝑠 ] ≥ 0           (30) 

0 ≤ 𝜆2 ⊥ [𝑞𝑑
𝑐 ] ≥ 0               (31) 

0 ≤ 𝜆3 ⊥ [𝑞𝑑
𝑠 ] ≥ 0               (32) 

 

(3) Best response 

Because the land of the downstream farmer is large, the downstream farmer consumes all 

the water allocated by the utility company, and the water capacity constraint of the farmer is 

binding. So, from the complementary slack conditions of the KKT conditions of the water 

capacity constraint shown above, we have [𝑤𝑑 − 𝛿𝑐𝑞𝑑
𝑐 − 𝛿𝑠𝑞𝑑

𝑠 ] = 0 and 𝜆1 ≥ 0.  

The downstream farmer’s land allocations for both corn and switchgrass are equal to or 

greater than zero (𝑞𝑑
𝑐 > 0, 𝑞𝑑

𝑠 > 0). So, we assume 𝜆2 = 0, and 𝜆3 = 0. In summary, we have 

these conditions in case [4]: 𝜆1 ≥ 0, 𝜆2 = 0, and 𝜆3 = 0. These conditions are used to solve 

the KKT conditions, and the results are shown in Table 3. 
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3.2.1.3. Solution  

From the subgame, we obtain the farmers’ best response in the third stage towards the 

utility company’s decision in the second stage. Cases with the conditions of water allocation, 

and the farmers’ best responses and profits are shown in Table 3. The calculation and the proof 

of Table 3 are shown in Appendix A. 

 

Table 3. Cases with conditions of water allocation, and the farmers’ best responses and profits in the third stage 

Case Condition 
Best Response and Profits of the Farmers in the Third Stage 

(𝑞𝑑
𝑐 )𝐵𝑅 , (𝑞𝑑

𝑠)𝐵𝑅 , (𝑞𝑢
𝑐)𝐵𝑅 , (𝑞𝑢

𝑠)𝐵𝑅 , 𝜋𝑑 , 𝜋𝑢 

[1] 
𝑤𝑑 = 0 

𝑤𝑢 = 0 

(𝑞𝑑
𝑐)𝐵𝑅 = 0 

(𝑞𝑑
𝑠)𝐵𝑅 = 0 

(𝑞𝑢
𝑐)𝐵𝑅 = 0 

(𝑞𝑢
𝑠)𝐵𝑅 = 0 

𝜋𝑑 = 0 

𝜋𝑢 = 0 

  [2] 

𝑤𝑑 > 0 

𝑤𝑢 > 0 

𝜆1 > 0 

𝜆2 = 0 

𝜆3 = 0 

𝜆4 > 0 

(𝑞𝑑
𝑐 )𝐵𝑅 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑑−𝛿𝑐𝛿𝑠(2𝑠𝑑−𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  

(𝑞𝑑
𝑠 )𝐵𝑅 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤𝑑+𝛿𝑐
2(2𝑠𝑑−𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  

(𝑞𝑢
𝑐 )𝐵𝑅 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑢−𝛿𝑐𝛿𝑠(−𝑠𝑑+2𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  
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𝜆5 = 0 

𝜆6 = 0 
(𝑞𝑢

𝑠 )𝐵𝑅 =
−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐

2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑢+𝛿𝑐

2(−𝑠𝑑+2𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  

𝜆1 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝑏𝑠𝛼𝑐

2𝛼𝑠
2(2𝑤𝑑+𝑤𝑢)+𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜆4 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝑏𝑠𝛼𝑐

2𝛼𝑠
2(𝑤𝑑+2𝑤𝑢)+𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜋𝑑 = [𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐
2{(𝑞𝑑

𝑐 )𝐵𝑅 + (𝑞𝑢
𝑐 )𝐵𝑅}](𝑞𝑑

𝑐)𝐵𝑅 

𝜋𝑑 = +[𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠
2{(𝑞𝑑

𝑠 )𝐵𝑅 + (𝑞𝑢
𝑠 )𝐵𝑅}](𝑞𝑢

𝑠)𝐵𝑅 + 𝑠𝑑(𝑞𝑢
𝑠)𝐵𝑅 − 𝑤𝑑𝑝𝑑 

𝜋𝑢 = [𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐
2{(𝑞𝑑

𝑐)𝐵𝑅 + (𝑞𝑢
𝑐 )𝐵𝑅}](𝑞𝑢

𝑐 )𝐵𝑅 

𝜋𝑑 = +[𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠
2{(𝑞𝑑

𝑠 )𝐵𝑅 + (𝑞𝑢
𝑠 )𝐵𝑅}](𝑞𝑢

𝑠)𝐵𝑅 + 𝑠𝑢(𝑞𝑢
𝑠 )𝐵𝑅 − 𝑤𝑢𝑝𝑢 

[3] 

𝑤𝑑 = 0 

𝑤𝑢 > 0 

𝜆4 > 0 

𝜆5 = 0 

𝜆6 = 0 

(𝑞𝑑
𝑐 )𝐵𝑅 = 0 

(𝑞𝑑
𝑠 )𝐵𝑅 = 0  

(𝑞𝑢
𝑐 )𝐵𝑅 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑢−𝛿𝑐𝛿𝑠𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
≥ 0  

(𝑞𝑢
𝑠 )𝐵𝑅 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤𝑢+𝛿𝑐
2𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
≥ 0  

𝜆4 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−2𝑏𝑐𝛼𝑐

2𝑏𝑠𝛼𝑠
2𝑤𝑢+𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
> 0  

𝜋𝑑 = 0 

𝜋𝑢 = [𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐
2(𝑞𝑢

𝑐 )𝐵𝑅](𝑞𝑢
𝑐 )𝐵𝑅 + [𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠

2(𝑞𝑢
𝑠)𝐵𝑅](𝑞𝑢

𝑠)𝐵𝑅 

𝜋𝑑 = +𝑠𝑢(𝑞𝑢
𝑠)𝐵𝑅 − 𝑤𝑢𝑝𝑢 

[4] 

𝑤𝑑 > 0 

𝑤𝑢 = 0 

𝜆1 > 0 

𝜆2 = 0 

𝜆3 = 0 

 

(𝑞𝑑
𝑐 )𝐵𝑅 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑑−𝛿𝑐𝛿𝑠𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
≥ 0  

(𝑞𝑑
𝑠 )𝐵𝑅 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤𝑑+𝛿𝑐
2𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
≥ 0  

(𝑞𝑢
𝑐 )𝐵𝑅 = 0 

(𝑞𝑢
𝑠 )𝐵𝑅 = 0 
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𝜆1 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−2𝑏𝑐𝛼𝑐

2𝑏𝑠𝛼𝑠
2𝑤𝑑+𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
> 0  

𝜋𝑑 = [𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐
2(𝑞𝑑

𝑐)𝐵𝑅](𝑞𝑑
𝑐 )𝐵𝑅 + [𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠

2(𝑞𝑑
𝑠 )𝐵𝑅](𝑞𝑢

𝑠)𝐵𝑅 

𝜋𝑑 = +𝑠𝑑(𝑞𝑢
𝑠 )𝐵𝑅 − 𝑤𝑑𝑝𝑑  

𝜋𝑢 = 0 

 

In Case [2], the best responses of the farmers’ land use are feasible only when the 

government subsidies meet following conditions. 

2𝑠𝑑 − 𝑠𝑢 ≥
𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐

2(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑑

𝛿𝑐
2  

2𝑠𝑑 − 𝑠𝑢 ≤
𝛿𝑠

2(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑑

𝛿𝑐𝛿𝑠
 

−𝑠𝑑 + 2𝑠𝑢 ≥
𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐

2(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑢

𝛿𝑐
2  

−𝑠𝑑 + 2𝑠𝑢 ≤
𝛿𝑠

2(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑢

𝛿𝑐𝛿𝑠
 

𝑠𝑑 >
𝑏𝑐𝑏𝑠𝛼𝑐

2𝛼𝑠
2(2𝑤𝑑 + 𝑤𝑢) − 𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠)

𝑏𝑐𝛼𝑐
2𝛿𝑠

 

𝑠𝑢 >
𝑏𝑐𝑏𝑠𝛼𝑐

2𝛼𝑠
2(𝑤𝑑 + 2𝑤𝑢) − 𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠)

𝑏𝑐𝛼𝑐
2𝛿𝑠

 

In Case [3], the best responses of the farmers’ land use are feasible only when the 

government subsidies meet following conditions. 
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𝑠𝑢 ≤
𝛿𝑠

2(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 2𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑢

𝛿𝑐𝛿𝑠
 

𝑠𝑢 ≥
𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐

2(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 2𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑢

𝛿𝑐
2  

𝑠𝑢 >
2𝑏𝑐𝛼𝑐

2𝑏𝑠𝛼𝑠
2𝑤𝑢 − 𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠)

𝑏𝑐𝛼𝑐
2𝛿𝑠

 

In Case [4], the best responses of the farmers’ land use are feasible only when the 

government subsidies meet following conditions. 

𝑠𝑑 ≤
𝛿𝑠

2(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 2𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑑

𝛿𝑐𝛿𝑠
 

𝑠𝑑 ≥
𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐

2(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 2𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑑

𝛿𝑐
2  

𝑠𝑑 >
2𝑏𝑐𝛼𝑐

2𝑏𝑠𝛼𝑠
2𝑤𝑑 − 𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠)

𝑏𝑐𝛼𝑐
2𝛿𝑠

 

 

3.2.1.4. Analysis 

 We analyze the effect of the utility company’s water allocation (𝑤𝑑, 𝑤𝑢) in the second 

stage on the farmers’ land allocation (𝑞𝑑
𝑐 , 𝑞𝑑

𝑠 , 𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 ) in the third stage. The best response of 

the farmers could be derived from the KKT conditions of their profit functions. In Case [1], 

Case [3], and Case [4], the land allocation is determined as a given value and not as a function 

of water allocation (𝑤𝑑, 𝑤𝑢). So, the land allocation is not affected by the water allocation in 
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case [1], [3], and [4], where the company either allocates all the water to a single farmer or 

does not allocate water to any farmer. Hence, we could analyze Case [2] with the effect of the 

water allocation. 

 

Corollary 1. If the farmers’ land capacity is enough to utilize all the water they purchase and 

the utility company allocates water to both farmers in Case [2] (𝑤𝑑 ≥ 0, 𝑤𝑢 ≥ 0) , the 

following holds for the effect of the utility company’s decision in the second stage on the 

farmers’ decisions in the third stage: 

(1) 
𝜕(𝑞𝑑

𝑐 )
𝐵𝑅

𝜕(𝑤𝑑)𝐵𝑅 =

𝑏𝑠𝛼𝑠
2

𝛿𝑠
𝑏𝑐𝛼𝑐

2

𝛿𝑐

∙
𝜕(𝑞𝑑

𝑠 )
𝐵𝑅

𝜕(𝑤𝑑)𝐵𝑅 > 0 (2) 
𝜕(𝑞𝑢

𝑐 )𝐵𝑅

𝜕(𝑤𝑑)𝐵𝑅 =
𝜕(𝑞𝑢

𝑠 )𝐵𝑅

𝜕(𝑤𝑑)𝐵𝑅 = 0 

(3) 
𝜕(𝑞𝑑

𝑐 )
𝐵𝑅

𝜕(𝑤𝑢)𝐵𝑅 =
𝜕(𝑞𝑑

𝑠 )
𝐵𝑅

𝜕(𝑤𝑢)𝐵𝑅 = 0  (4) 
𝜕(𝑞𝑢

𝑐 )𝐵𝑅

𝜕(𝑤𝑢)𝐵𝑅 =

𝑏𝑠𝛼𝑠
2

𝛿𝑠
𝑏𝑐𝛼𝑐

2

𝛿𝑐

∙
𝜕(𝑞𝑢

𝑠 )𝐵𝑅

𝜕(𝑤𝑢)𝐵𝑅 > 0 

Proof is shown in Appendix B. 

Corollary 1 reveals the reaction of the farmers to the utility company’s decision, as 

(𝑤𝑑)𝐵𝑅 and (𝑤𝑢)𝐵𝑅 . (2,3) The land allocation of the downstream farmer is not directly 

affected by the water allocation to the upstream farmer, and vice versa. (1,4) The farmers would 

use more land to produce both corn and switchgrass in case of higher water allocation to them. 

The ratio of marginal land allocation between corn and switchgrass is determined by 
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𝑏𝑠𝛼𝑠
2

𝛿𝑠
 and 

𝑏𝑐𝛼𝑐
2

𝛿𝑐
 for both farmers. The meaning of the coefficients is division of the marginal 

crop market price per unit land use for the corresponding crop (𝑏𝑠𝛼𝑠
2 and 𝑏𝑐𝛼𝑐

2) by the water 

requirement of the crop per unit land (𝛿𝑠 and 𝛿𝑐), of the switchgrass and the corn respectively. 

 

3.2.2. Utility company’s decision on water allocation in the second stage 

Here, we introduce the objective function of the utility company that maximizes its profit 

through its best decisions on water allocation (𝑤𝑑, 𝑤𝑢) in the second stage. The constraints of 

water capacity and non-negativity of the decision variables used in the second stage are also 

introduced. In the second stage, the company makes its best response for water allocation 

(𝑤𝑑, 𝑤𝑢), based on the decision of the farmers in the first stage.  

 

3.2.2.1. Formulation 

The objective function and the constraints of the utility company in the second stage are shown 

as follows: 

max
𝒘𝒅,𝒘𝒖

𝜋ℎ = 𝑝𝑑𝒘𝒅 + 𝑝𝑢𝒘𝒖 − 𝑐𝑤[(𝒘𝒅)2 + (𝒘𝒖)2] + 𝑝𝑒𝛼𝑒𝒘𝒅      (33) 

𝒘𝒅 + 𝒘𝒖 ≤ 𝑤    (𝜆7)    water capacity constraint   (34) 
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𝒘𝒅, 𝒘𝒖 ≥ 0    (𝜆8, 𝜆9)   non-negativity constraints    (35,36) 

In Equation (33), the first two terms are revenue from sale of water to the downstream 

farmer and the upstream farmer, respectively. The third term is cost of crop production, and 

the last term is revenue from the sale of hydroelectricity generated by water release from the 

dam, at an electricity market. In equations (34) – (36), 𝜆s are KKT multipliers or the shadow 

price of the constraints. 

 

3.2.2.2. KKT Conditions 

Best responses of the utility company in the second stage could be derived by using the 

KKT conditions of the utility company’s problem as follows:  

ℒ3 = 𝜋ℎ + 𝜆7(𝑤 − 𝒘𝒅 − 𝒘𝒖) + 𝜆8𝒘𝒅 + 𝜆9𝒘𝒖         (37)  

𝜕ℒ3

𝜕𝒘𝒅
= 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 − 𝜆7 + 𝜆8 = 0          (38)  

𝜕ℒ3

𝜕𝒘𝒖
= 𝑝𝑢 − 2𝑐𝑤𝒘𝒖 − 𝜆7 + 𝜆9 = 0           (39)  

0 ≤ 𝜆7 ⊥ [𝑤 − 𝒘𝒅 − 𝒘𝒖] ≥ 0            (40) 

0 ≤ 𝜆8 ⊥ [𝒘𝒅] ≥ 0               (41) 
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0 ≤ 𝜆9 ⊥ [𝒘𝒖] ≥ 0               (42) 

 

3.2.2.3. Solution 

From the subgame, we obtain four domains, as shown in Figure 2 and Table 4, where the 

best response (BR) function of the company exists with five borders including x-axis and y-

axis. The derivation of the best responses and the border lines are shown in Appendix B. 

 

 

Figure 2. Domains of the Nash equilibria for the utility company’s best response 
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Table 4. Best responses of the utility company and their conditions in the second stage 

 

Domain 𝜆7, 𝜆8, 𝜆9 Conditions 
Best Responses of the Utility 

Company (𝑤𝑑
𝐵𝑅, 𝑤𝑢

𝐵𝑅) 

KKT Multiplier 

(𝜆7, 𝜆8, 𝜆9) 
Profit of the Utility Company (𝜋ℎ) 

[1] 

𝜆7 = 0 

𝜆8 = 0 

𝜆9 = 0 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 ≤ 2𝑐𝑤𝑤 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 ≥ 0 

𝑝𝑢 ≥ 0 

𝑤𝑑
𝐵𝑅 =

𝑝𝑑 + 𝑝𝑒𝛼𝑒

2𝑐𝑤

> 0 

𝑤𝑢
𝐵𝑅 =

𝑝𝑢

2𝑐𝑤

> 0 
− 

𝑝𝑑
2 + 𝑝𝑢

2 + 2𝑝𝑒𝛼𝑒𝑝𝑑 + (𝑝𝑒𝛼𝑒)2

4𝑐𝑤

 

[2] 

𝜆7 > 0 

𝜆8 = 0 

𝜆9 = 0 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 > 2𝑐𝑤𝑤 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 ≥ −2𝑐𝑤𝑤 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 ≤ 2𝑐𝑤𝑤 

𝑤𝑑
𝐵𝑅 =

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 + 2𝑐𝑤𝑤

4𝑐𝑤

 

𝑤𝑢
𝐵𝑅 =

−𝑝𝑑 − 𝑝𝑒𝛼𝑒 + 𝑝𝑢 + 2𝑐𝑤𝑤

4𝑐𝑤

 
𝜆7 =

𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 − 2𝑐𝑤𝑤

2
 

𝑝𝑑
2 + 𝑝𝑢

2 + 2𝑝𝑒𝛼𝑒(𝑝𝑑 − 𝑝𝑢) − 2𝑝𝑑𝑝𝑢 + 4𝑐𝑤𝑤(𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 + 𝑐𝑤𝑤) + (𝑝𝑒𝛼𝑒)2

8𝑐𝑤

 

[3] 

𝜆7 > 0 

𝜆8 > 0 

𝜆9 = 0 

𝑝𝑢 > 2𝑐𝑤𝑤  

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 < −2𝑐𝑤𝑤 

𝑤𝑑
𝐵𝑅 = 0 

𝑤𝑢
𝐵𝑅 = 𝑤 > 0 

𝜆7 = 𝑝𝑢 − 2𝑐𝑤𝑤 

𝜆8 = −𝑝𝑑 − 𝑝𝑒𝛼𝑒 + 𝑝𝑢 − 2𝑐𝑤𝑤 

𝑤𝑝𝑢 − 𝑐𝑤𝑤2 

[4] 

𝜆7 > 0 

𝜆8 = 0 

𝜆9 > 0 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 > 2𝑐𝑤𝑤  

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 > 2𝑐𝑤𝑤 

𝑤𝑑
𝐵𝑅 = 𝑤 > 0 

𝑤𝑢
𝐵𝑅 = 0 

𝜆7 = 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝑤 

𝜆9 = 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 − 2𝑐𝑤𝑤 

𝑤𝑝𝑑 − 𝑐𝑤𝑤2 

• Domain [1] and Domain [2] result in Case [2] (𝑤𝑑 > 0, 𝑤𝑢 > 0) in the third stage. 

• Domain [3] results in Case [3] (𝑤𝑑 = 0, 𝑤𝑢 > 0) in the third stage. 

• Domain [4] results in Case [4] (𝑤𝑑 > 0, 𝑤𝑢 = 0) in the third stage. 

• All the parameters used in Table 4 are strong positive. 

• The calculation and the proof of Table 4 are shown in Appendix D. 

4
5
 



 

46 

 

 

Domain [1] result in Case [2] of the best responses of the farmers in the third stage under 

the conditions of 𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 ≤ 2𝑐𝑤𝑤. In this domain, the utility company utilizes its 

entire water capacity only if the sum of the prices per unit water from the farmers (𝑝𝑑, 𝑝𝑢) and 

the revenue from sale of hydroelectricity per unit water (𝑝𝑒𝛼𝑒) is equal to the marginal cost of 

supplying all the water to a single farmer (2𝑐𝑤𝑤) . In other words, the utility company 

completely utilizes its entire water to allocate to the farmers under the condition 𝑝𝑑 + 𝑝𝑒𝛼𝑒 +

𝑝𝑢 = 2𝑐𝑤𝑤. Otherwise, when the sum of the prices and the revenue is less than the marginal 

cost under a condition of 𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 < 2𝑐𝑤𝑤 , and the utility company does not 

completely allocate all of its water to the farmers. The farmers receive as much water as they 

want without competition against each other in the second stage. This case implies that the 

farmers do not compete on water price under a game in the first stage. 

Domain [2] can results in a case among Case [2], Case [3], and Case [4] of the best 

responses of the farmers in the third stage under the conditions of 𝑝𝑑 + 𝑝𝑢 > 2𝑐𝑤𝑤 − 𝑝𝑒𝛼𝑒, 

𝑝𝑑 − 𝑝𝑢 ≥ −2𝑐𝑤𝑤 − 𝑝𝑒𝛼𝑒 , and 𝑝𝑑 − 𝑝𝑢 ≤ 2𝑐𝑤𝑤 − 𝑝𝑒𝛼𝑒 . In Domain [2], the downstream 

farmer and the upstream farmer would produce both crops (𝑞𝑑
𝑐 + 𝑞𝑑

𝑠 ≥ 0, 𝑞𝑢
𝑐 + 𝑞𝑢

𝑠 ≥ 0) in the 

third stage, since the utility company allocates water to both farmers (𝑤𝑑
𝐵𝑅 > 0, 𝑤𝑢

𝐵𝑅 > 0) in 

the second stage.  
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Domains [3] and [4] result in cases [3] and [4] respectively of the best responses of the 

farmers in the third stage. In Domain [3], the downstream farmer cannot cultivate any crop 

(𝑞𝑑
𝑐 = 𝑞𝑑

𝑠 = 0) to make profit (𝜋𝑑 = 0) in the third stage, since the utility company does not 

allocate water to the downstream farmer (𝑤𝑑
𝐵𝑅 = 0, 𝑤𝑢

𝐵𝑅 = 𝑤) under the condition of 𝑝𝑑 −

𝑝𝑢 < −2𝑐𝑤𝑤 − 𝑝𝑒𝛼𝑒,  in the second stage. On the other hand, in Domain [4], the upstream 

farmer cannot cultivate any crop (𝑞𝑢
𝑐 = 𝑞𝑢

𝑠 = 0) to make profit (𝜋𝑢 = 0) in the third stage, 

since the utility company does not allocate water to the upstream farmer (𝑤𝑑
𝐵𝑅 = 𝑤, 𝑤𝑢

𝐵𝑅 = 0) 

under the condition of 𝑝𝑑 − 𝑝𝑢 > 2𝑐𝑤𝑤 − 𝑝𝑒𝛼𝑒 in the second stage.  

Among all possible solutions of the above problem, we are interested only in the cases 

where additional water capacity of the dam increases the profit of the utility company, i.e., 

when 𝜆7 > 0. In this case, the water capacity constraint of the utility company becomes binding. 

Domains [2], [3], and [4] belong to this case whereas Domain [1] does not belong to this case. 

If the water capacity constraint is not binding, with there being enough water to meet the 

demand, the price competition between the farmers does not occur.  

In domains [2], [3], and [4], we could analyze the result of a Bertrand game between the 

downstream farmers and the upstream farmers toward price-bidding for water allocation. In 

Domain [1], the downstream farmer and the upstream farmer share the water from the utility 
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company after the competitive bidding. On the other hand, in domains [3] and [4], one of the 

farmers takes all the water from the utility company after winning the bidding against the other 

farmer. The upstream farmer and the downstream farmer are the winner in Domain [3] and 

Domain [4], respectively. 

 

3.2.2.4. Analysis 

 We analyze the effect of the farmers’ decision regarding water prices (𝑝𝑑, 𝑝𝑢) in the first 

stage on the utility company’s water allocation (𝑤𝑑, 𝑤𝑢) in the second stage. The best response 

of the company could be derived from the KKT conditions. In domains [3] and [4], the water 

allocation to each farmer is 𝑤 or 0, and not a function of the water prices from the farmers. 

The water allocation is not affected by the water prices in domains [3] and [4], where the utility 

company allocates all the water to only one of the farmers. Hence, we analyze Domain [2] with 

the effect of the water price from the farmers. 
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Corollary 2. If the farmers’ land capacity is enough to utilize the water that they purchase from 

the utility company in Domain [2], the following holds for the effect of the farmers’ decisions 

in the first stage on the utility company’s decision in the second stage: 

 (1) 
𝜕𝑤𝑑

𝐵𝑅

𝜕𝑝𝑑
= −

𝜕𝑤𝑢
𝐵𝑅

𝜕𝑝𝑑
> 0     (2) 

𝜕𝑤𝑑
𝐵𝑅

𝜕𝑝𝑢
= −

𝜕𝑤𝑢
𝐵𝑅

𝜕𝑝𝑢
< 0    

Proof is shown in Appendix D. 

Corollary 2 reveals the reaction of the utility company, 𝑤𝑑
𝐵𝑅 and 𝑤𝑢

𝐵𝑅, in the second stage 

to the farmers’ decision, 𝑝𝑑 and 𝑝𝑢, in the first stage. The company would allocate more water 

to a farmer when that farmer is offering a higher price. Consequently, announcement of a higher 

price offer by one farmer decreases the water allocation to each other. 

 

3.2.3. Farmers’ decision on bidding water price in the first stage 

In this subsection, we introduce the objective functions of the downstream farmer and the 

upstream farmer that maximize their own profits through their best decisions on the water price 

(𝑝𝑑)  and (𝑝𝑢)  respectively, in the first stage. Non-negativity constraints of the decision 

variables used in the first stage are also introduced.  
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We also find equilibrium of the supply chain’s decision through the best decision of the 

farmers in the first stage, the best response of the utility company in the second stage, and the 

best responses of the farmers in the third stage.  

In the first stage, the downstream farmer and the upstream farmer compete in water price 

under a Bertrand game. After the bidding competition, the farmers share the water from the 

utility company or one of the farmers takes all the water after winning the bidding. Both farmers 

make their decisions on water price in the belief that the corn market and the switchgrass market 

are duopolistic rather than monopolistic, since each farmer believes that the other may want to 

sell both corn and switchgrass at each market. After the farmers announce their water prices to 

the utility company in the first stage, the company decides the water allocation. In the price-

bidding competition, the result shows that the farmers share water (Domain [1] and Domain [2] 

of the second stage), the downstream farmer is a winner of the bidding and takes all the water 

(Domain [3] of the second stage) or the upstream farmer is a winner of the bidding and takes 

all the water (Domain [4] of the second stage).  

 

3.2.3.1. Formulation 
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In the first stage, the farmers make their best decisions for water prices (𝑝𝑑, 𝑝𝑢) by using 

the best responses of the utility company in the second stage and of the farmers in the third 

stage. The objective function and the constraint of the farmers in the first stage are formulated 

as follows: 

For the downstream farmer, 

max
𝒑𝒅

𝜋𝑑 = [𝑎𝑐 − 𝑏𝑐𝛼𝑐{(𝑞𝑑
𝑐 )𝐵𝑅 + (𝑞𝑢

𝑐 )𝐵𝑅}]𝛼𝑐(𝑞𝑑
𝑐 )𝐵𝑅 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠{(𝑞𝑑

𝑠 )𝐵𝑅 +

aaaaaaaaa(𝑞𝑢
𝑠 )𝐵𝑅}]𝛼𝑠(𝑞𝑑

𝑠 )𝐵𝑅 − 𝑐𝑐𝛼𝑐(𝑞𝑑
𝑐 )𝐵𝑅 − 𝑐𝑠𝛼𝑠(𝑞𝑑

𝑠 )𝐵𝑅 + 𝑠𝑑(𝑞𝑑
𝑠 )𝐵𝑅 − 𝑤𝑑

𝐵𝑅𝒑𝒅  (43) 

𝒑𝒅 ≥ 0     (𝜆10)   non-negativity constraint   (44) 

and, for the upstream farmer, 

max
𝒑𝒖

𝜋𝑢 = [𝑎𝑐 − 𝑏𝑐𝛼𝑐{(𝑞𝑑
𝑐 )𝐵𝑅 + (𝑞𝑢

𝑐 )𝐵𝑅}]𝛼𝑐(𝑞𝑢
𝑐 )𝐵𝑅 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠{(𝑞𝑑

𝑠 )𝐵𝑅 +

aaaaaaaaa(𝑞𝑢
𝑠 )𝐵𝑅}]𝛼𝑠(𝑞𝑢

𝑠 )𝐵𝑅 − 𝑐𝑐𝛼𝑐(𝑞𝑢
𝑐 )𝐵𝑅 − 𝑐𝑠𝛼𝑠(𝑞𝑢

𝑠 )𝐵𝑅 + 𝑠𝑢(𝑞𝑢
𝑠 )𝐵𝑅 − 𝑤𝑢

𝐵𝑅𝒑𝒖  (45) 

𝒑𝒖 ≥ 0     (𝜆11)   non-negativity constraint   (46) 

 

Then, we reformulate the above problems in each scenario into their KKT conditions to 

derive the best responses of the players in the problems of the downstream farmer and the 

upstream farmer in the third stage. 
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3.2.3.2. KKT Conditions 

Best responses of the downstream farmer and the upstream farmer in the third stage could 

be derived by using the KKT conditions of its problems as follows:  

For the downstream farmer’s problem, 

ℒ4 = 𝜋𝑑 + 𝜆10𝑝𝑑               (47) 

𝜕ℒ4

𝜕𝑝𝑑
= [𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐

2(𝑞𝑑
𝑐 + 𝑞𝑢

𝑐 )]
𝜕𝑞𝑑

𝑐

𝜕𝑝𝑑
− 𝑏𝑐𝛼𝑐

2 (
𝜕𝑞𝑑

𝑐

𝜕𝑝𝑑
+

𝜕𝑞𝑢
𝑐

𝜕𝑝𝑑
) 𝑞𝑑

𝑐 + [𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 −
𝜕ℒ5

𝜕𝑝𝑢
=

𝜕ℒ5

𝜕𝑝𝑢
= 𝑏𝑠𝛼𝑠

2(𝑞𝑑
𝑠 + 𝑞𝑢

𝑠 )]
𝜕𝑞𝑑

𝑠

𝜕𝑝𝑑
− 𝑏𝑠𝛼𝑠

2 (
𝜕𝑞𝑑

𝑠

𝜕𝑝𝑑
+

𝜕𝑞𝑢
𝑠

𝜕𝑝𝑑
) 𝑞𝑑

𝑠 + 𝑠𝑑
𝜕𝑞𝑑

𝑠

𝜕𝑝𝑑
− 𝑤𝑑 −

𝜕𝑤𝑑

𝜕𝑝𝑑
𝑝𝑑 + 𝜆10 = 0 (48) 

0 ≤ 𝜆10 ⊥ [𝑝𝑑] ≥ 0              (49) 

and, for the upstream farmer’s problem, 

ℒ5 = 𝜋𝑢 + 𝜆11𝑝𝑢               (50) 

𝜕ℒ5

𝜕𝑝𝑢
= [𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐

2(𝑞𝑑
𝑐 + 𝑞𝑢

𝑐 )]
𝜕𝑞𝑢

𝑐

𝜕𝑝𝑢
− 𝑏𝑐𝛼𝑐

2 (
𝜕𝑞𝑑

𝑐

𝜕𝑝𝑢
+

𝜕𝑞𝑢
𝑐

𝜕𝑝𝑢
) 𝑞𝑢

𝑐 + [𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 −
𝜕ℒ5

𝜕𝑝𝑢
=

𝜕ℒ5

𝜕𝑝𝑢
= 𝑏𝑠𝛼𝑠

2(𝑞𝑑
𝑠 + 𝑞𝑢

𝑠 )]
𝜕𝑞𝑢

𝑠

𝜕𝑝𝑢
− 𝑏𝑠𝛼𝑠

2 (
𝜕𝑞𝑑

𝑠

𝜕𝑝𝑢
+

𝜕𝑞𝑢
𝑠

𝜕𝑝𝑢
) 𝑞𝑢

𝑠 + 𝑠𝑢
𝜕𝑞𝑢

𝑠

𝜕𝑝𝑢
− 𝑤𝑢 −

𝜕𝑤𝑢

𝜕𝑝𝑢
𝑝𝑢 + 𝜆11 = 0 (51) 

0 ≤ 𝜆11 ⊥ [𝑝𝑢] ≥ 0              (52) 
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From the above problems converted to their KKT conditions, we could find Nash 

equilibrium of the Cournot competition game between the downstream farmer and the upstream 

farmer by putting their KKT conditions, equations (48), (49), (51), and (52), together. 

  

[(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2(𝑞𝑑

𝑐 + 𝑞𝑢
𝑐 )]

𝜕𝑞𝑑
𝑐

𝜕𝑝𝑑
+ [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 𝑠𝑑 − 𝑏𝑠𝛼𝑠

2(𝑞𝑑
𝑠 + 𝑞𝑢

𝑠 )]
𝜕𝑞𝑑

𝑠

𝜕𝑝𝑑
−

𝑤𝑑 −
𝜕𝑤𝑑

𝐵𝑅

𝜕𝑝𝑑
𝑝𝑑 + 𝜆10 = 0             (53) 

𝜆10[𝑝𝑑] = 0                (54) 

𝑝𝑑 ≥ 0                 (55) 

[(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2(𝑞𝑑

𝑐 + 𝑞𝑢
𝑐 )]

𝜕𝑞𝑢
𝑐

𝜕𝑝𝑢
+ [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 𝑠𝑢 − 𝑏𝑠𝛼𝑠

2(𝑞𝑑
𝑠 + 𝑞𝑢

𝑠 )]
𝜕𝑞𝑢

𝑠

𝜕𝑝𝑢
−

𝑤𝑢 −
𝜕𝑤𝑢

𝜕𝑝𝑢
𝑝𝑢 + 𝜆11 = 0              (56) 

𝜆11[𝑝𝒖] = 0                (57) 

𝑝𝑢 ≥ 0                 (58) 

 

The downstream and upstream farmers’ water price bids to the utility company are greater 

than zero (𝑝𝑑 > 0, 𝑝𝑢 > 0), since the utility company does not sell its water at a non-positive 
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price. So, we assume that Equation (55) and Equation (58) are not binding, and 𝜆10 =

0 and 𝜆11 = 0.  

 

3.2.3.3. Solution 

The Nash equilibrium of the farmers’ decisions in the first stage could be derived from the 

KKT conditions.  

 

Proposition 1. Through the farmers’ best responses in the third stage and the utility company’s 

best response in the second stage, Nash equilibrium of the decisions of the farmers in the first 

stage is as follows: 

(1) 𝑝𝑑
𝑁𝐸 = 𝐴 − 2𝑐𝑤𝑤 +

2𝐵𝑑+𝐵𝑢−𝑝𝑒𝛼𝑒

3
     

(2) 𝑝𝑢
𝑁𝐸 = 𝐴 − 2𝑐𝑤𝑤 +

𝐵𝑑+2𝐵𝑢+𝑝𝑒𝛼𝑒

3
 

, where 

𝐴 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝑏𝑠𝛼𝑐

2𝛼𝑠
2𝑤

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
, 

𝐵𝑑 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
,  
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and 𝐵𝑢 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
. 

The calculation and the proof of deriving the Nash equilibrium for Proposition 1 are shown in 

Appendix E. 

 

3.2.4. Nash equilibrium of the farmers’ and the utility company’s decisions in the BSC 

We derive the equilibria of the farmers’ and the utility company’s decisions by substituting 

the best responses. 

 After the downstream farmer and the upstream farmer decide their water prices, the utility 

company makes a decision on water allocation based on the prices. The farmers’ best decisions 

in the first stage result in one of the four domains in the second stage: Domain [1], Domain [2], 

Domain [3], and Domain [4]. Among the four domains, we do not consider Domain [1], since 

this domain does not generate a competitive game in water prices between the farmers. 

Domain [2] happens in the second stage only if the farmers’ decisions on water prices meet 

the following Condition [2] which consists of three sub-conditions derived in the second stage: 

Condition [2]:  
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𝑝𝑑
𝑁𝐸 + 𝑝𝑢

𝑁𝐸 + 𝑝𝑒𝛼𝑒 > 2𝑐𝑤𝑤       (2-1) 

𝑝𝑑
𝑁𝐸 − 𝑝𝑢

𝑁𝐸 + 𝑝𝑒𝛼𝑒 ≥ −2𝑐𝑤𝑤       (2-2) 

𝑝𝑑
𝑁𝐸 − 𝑝𝑢

𝑁𝐸 + 𝑝𝑒𝛼𝑒 ≤ 2𝑐𝑤𝑤       (2-3) 

In Condition [2], sub-condition (2-1) presents that the utility company utilizes its entire 

water capacity and does not leave over its water since the revenue per unit water is greater than 

the marginal cost of supplying all the water. Moreover, sub-condition (2-2) and sub-condition 

(2-3) present that the utility company allocates its water to both downstream farmer and 

upstream farmer since the water prices from the farmers do not have significant difference in 

the second stage.  

Domain [3] happens in the second stage only if the farmers’ decisions on water prices meet 

the following Condition [3] derived in the second stage: 

Condition [3] 𝑝𝑑
𝑁𝐸 − 𝑝𝑢

𝑁𝐸 + 𝑝𝑒𝛼𝑒 < −2𝑐𝑤𝑤 

Condition [2] presents that the utility company allocates all the water to the upstream 

farmer since the water price from the upstream farmer is significantly higher than that from the 

downstream farmer. So, the upstream farmer is a winner who takes all the water from the utility 

company in the price-bidding for water allocation in the second stage.  
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Domain [4] happens in the second stage only if the farmers’ decisions on water prices meet 

the following Condition [4] derived in the second stage: 

Condition [4] 𝑝𝑑
𝑁𝐸 − 𝑝𝑢

𝑁𝐸 + 𝑝𝑒𝛼𝑒 > 2𝑐𝑤𝑤 

Condition [4] presents that the utility company allocates all the water to the downstream 

farmer since the water price from the downstream farmer is significantly higher than that from 

the upstream farmer. So, the downstream farmer is a winner who takes all the water from the 

utility company in the price-bidding for water allocation in the second stage. 

 

Proposition 2-1. When 𝑝𝑑
𝑁𝐸  and 𝑝𝑢

𝑁𝐸 meet Condition [2] of Domain [2], Nash equilibrium 

of the decisions of the utility company in the second stage and the farmers in the third stage, 

and their profits are as follows: 

(1) Best decisions of the utility company in the second stage: 

(𝑤𝑑)𝑁𝐸1 =
𝐵𝑑−𝐵𝑢+𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤

12𝑐𝑤
=

(𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

(𝑤𝑢)𝑁𝐸1 =
−𝐵𝑑+𝐵𝑢−𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤

12𝑐𝑤
=

(−𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)−𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

 (2) Best decisions of the farmers in the third stage: 



 

58 

 

 

(𝑞𝑑
𝑐 )𝑁𝐸1 =

4𝑐𝑤[𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑠𝛼𝑠

2𝛿𝑐(𝐵𝑑−𝐵𝑢+𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)−4𝑐𝑤𝛿𝑐𝛿𝑠(2𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

> 0  

(𝑞𝑑
𝑠 )𝑁𝐸1 =

−4𝑐𝑤[𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑐𝛼𝑐

2𝛿𝑠(𝐵𝑑−𝐵𝑢+𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)+4𝑐𝑤𝛿𝑐
2(2𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

> 0  

(𝑞𝑢
𝑐 )𝑁𝐸1 =

4𝑐𝑤[𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑠𝛼𝑠

2𝛿𝑐(−𝐵𝑑+𝐵𝑢−𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)+4𝑐𝑤𝛿𝑐𝛿𝑠(𝑠𝑑−2𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

> 0  

(𝑞𝑢
𝑠 )𝑁𝐸1 =

−4𝑐𝑤[𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑐𝛼𝑐

2𝛿𝑠(−𝐵𝑑+𝐵𝑢−𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)−4𝑐𝑤𝛿𝑐
2(𝑠𝑑−2𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

> 0  

where    

𝐴 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝑏𝑠𝛼𝑐

2𝛼𝑠
2𝑤

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
, 

𝐵𝑑 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
,  

and 𝐵𝑢 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
. 

(3) Profit of the farmers and the utility company: 

𝜋𝑑
[1] = [𝑎𝑐 − 𝑏𝑐𝛼𝑐{(𝑞𝑑

𝑐 )𝑁𝐸1 + (𝑞𝑢
𝑐 )𝑁𝐸1}]𝛼𝑐(𝑞𝑑

𝑐 )𝑁𝐸1 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠{(𝑞𝑑
𝑠 )𝑁𝐸1 + 𝑎𝑎𝑎𝑎𝑎𝑎 +

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑢
𝑠 )𝑁𝐸1}]𝛼𝑠(𝑞𝑑

𝑠 )𝑁𝐸1 − 𝑐𝑐𝛼𝑐(𝑞𝑑
𝑐 )𝑁𝐸1 − 𝑐𝑠𝛼𝑠(𝑞𝑑

𝑠 )𝑁𝐸1 + 𝑠𝑑(𝑞𝑑
𝑠 )𝑁𝐸1 − 𝑤𝑑

𝑁𝐸1𝑝𝑑
𝑁𝐸  

𝜋𝑑
[1] = [(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐

2{(𝑞𝑑
𝑐 )𝑁𝐸1 + (𝑞𝑢

𝑐 )𝑁𝐸1}](𝑞𝑑
𝑐 )𝑁𝐸1 + [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) −

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑠𝛼𝑠
2{(𝑞𝑑

𝑠 )𝑁𝐸1 + (𝑞𝑢
𝑠 )𝑁𝐸1}](𝑞𝑑

𝑠 )𝑁𝐸1 + 𝑠𝑑(𝑞𝑑
𝑠)𝑁𝐸1 − 𝑤𝑑

𝑁𝐸1𝑝𝑑
𝑁𝐸   

𝜋𝑢
[1] = [𝑎𝑐 − 𝑏𝑐𝛼𝑐{(𝑞𝑑

𝑐 )𝑁𝐸1 + (𝑞𝑢
𝑐 )𝑁𝐸1}]𝛼𝑐(𝑞𝑢

𝑐 )𝑁𝐸1 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠{(𝑞𝑑
𝑠 )𝑁𝐸1 + 𝑎𝑎𝑎𝑎𝑎𝑎 +

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑢
𝑠 )𝑁𝐸1}]𝛼𝑠(𝑞𝑢

𝑠)𝑁𝐸1 − 𝑐𝑐𝛼𝑐(𝑞𝑢
𝑐 )𝑁𝐸1 − 𝑐𝑠𝛼𝑠(𝑞𝑢

𝑠 )𝑁𝐸1 + 𝑠𝑢(𝑞𝑢
𝑠 )𝑁𝐸1 − 𝑤𝑢

𝑁𝐸1𝑝𝑢
𝑁𝐸  
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𝜋𝑢
[1] = [(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐

2{(𝑞𝑑
𝑐 )𝑁𝐸1 + (𝑞𝑢

𝑐 )𝑁𝐸1}](𝑞𝑢
𝑐 )𝑁𝐸1 + [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) −

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑠𝛼𝑠
2{(𝑞𝑑

𝑠 )𝑁𝐸1 + (𝑞𝑢
𝑠 )𝑁𝐸1}](𝑞𝑢

𝑠 )𝑁𝐸1 + 𝑠𝑢(𝑞𝑢
𝑠 )𝑁𝐸1 − 𝑤𝑢

𝑁𝐸1𝑝𝑢
𝑁𝐸  

𝜋ℎ
[1] = (𝑝𝑑

𝑁𝐸 + 𝑝𝑒𝛼𝑒)𝑤𝑑
𝑁𝐸1 + 𝑝𝑢

𝑁𝐸𝑤𝑢
𝑁𝐸1 − 𝑐𝑤[(𝑤𝑑

𝑁𝐸1)2 + (𝑤𝑢
𝑁𝐸1)2]  

The calculation and the proof of deriving the Nash equilibrium for Proposition 1-1 are shown 

in Appendix F.1. 

 

Proposition 2-2. When 𝑝𝑑
𝑁𝐸  and 𝑝𝑢

𝑁𝐸 meet Condition [3] of Domain [3], Nash equilibrium 

of the decisions of the utility company in the second stage and the farmers in the third stage, 

and their profits are as follows: 

(1) Best decisions of the utility company in the second stage: 

(𝑤𝑑)𝑁𝐸2 = 0     

(𝑤𝑢)𝑁𝐸2 = 𝑤 > 0  

(2) Best decisions of the farmers in the third stage: 

(𝑞𝑑
𝑐 )𝑁𝐸2 = 0  

(𝑞𝑑
𝑠 )𝑁𝐸2 = 0  
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(𝑞𝑢
𝑐 )𝑁𝐸2 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤−𝛿𝑐𝛿𝑠𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
> 0   

(𝑞𝑢
𝑠 )𝑁𝐸2 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤+𝛿𝑐
2𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
> 0  

(3) Profit of the farmers and the utility company: 

𝜋𝑑
[2] = 0    

𝜋𝑢
[2] = [𝑎𝑐 − 𝑏𝑐𝛼𝑐(𝑞𝑢

𝑐 )𝑁𝐸2]𝛼𝑐(𝑞𝑢
𝑐 )𝑁𝐸2 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠(𝑞𝑢

𝑠 )𝑁𝐸2]𝛼𝑠(𝑞𝑢
𝑠 )𝑁𝐸2 −

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝛼𝑐(𝑞𝑢
𝑐 )𝑁𝐸2 − 𝑐𝑠𝛼𝑠(𝑞𝑢

𝑠 )𝑁𝐸2 + 𝑠𝑢(𝑞𝑢
𝑠 )𝑁𝐸2 − 𝑤𝑢

𝑁𝐸2𝑝𝑢
𝑁𝐸   

𝜋𝑢
[2] = [(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐

2(𝑞𝑢
𝑐 )𝑁𝐸2](𝑞𝑢

𝑐 )𝑁𝐸2 + [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) −

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑠𝛼𝑠
2(𝑞𝑢

𝑠 )𝑁𝐸2](𝑞𝑢
𝑠 )𝑁𝐸2 + 𝑠𝑢(𝑞𝑢

𝑠 )𝑁𝐸2 − 𝑤𝑢
𝑁𝐸2𝑝𝑢

𝑁𝐸  

𝜋ℎ
[2] = 𝑝𝑢

𝑁𝐸𝑤 − 𝑐𝑤𝑤2  

where 

𝐵𝑑 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
,  

and 𝐵𝑢 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
. 

The calculation and the proof of deriving the Nash equilibrium for Proposition 1-2 are shown 

in Appendix F.2. 

 



 

61 

 

 

Proposition 2-3. When 𝑝𝑑
𝑁𝐸  and 𝑝𝑢

𝑁𝐸 meet Condition [4] of Domain [4], Nash equilibrium 

of the decisions of the utility company in the second stage and the farmers in the third stage, 

and their profits are as follows: 

(1) Best decisions of the utility company in the second stage: 

(𝑤𝑑)𝑁𝐸3 = 𝑤 > 0  

(𝑤𝑢)𝑁𝐸3 = 0  

(2) Best decisions of the farmers in the third stage: 

(𝑞𝑑
𝑐 )𝑁𝐸3 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤−𝛿𝑐𝛿𝑠𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
> 0  

(𝑞𝑑
𝑠 )𝑁𝐸3 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤+𝛿𝑐
2𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
> 0  

(𝑞𝑢
𝑐 )𝑁𝐸3 = 0   

(𝑞𝑢
𝑠 )𝑁𝐸3 = 0  

(3) Profit of the farmers and the utility company: 

𝜋𝑑
[3] = [𝑎𝑐 − 𝑏𝑐𝛼𝑐(𝑞𝑑

𝑐 )𝑁𝐸3]𝛼𝑐(𝑞𝑑
𝑐 )𝑁𝐸3 + [𝑎𝑠 − 𝑏𝑠𝛼𝑠(𝑞𝑑

𝑠 )𝑁𝐸3]𝛼𝑠(𝑞𝑑
𝑠 )𝑁𝐸3 − 𝑐𝑐𝛼𝑐(𝑞𝑑

𝑐 )𝑁𝐸3 −

𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑠𝛼𝑠(𝑞𝑑
𝑠 )𝑁𝐸3 + 𝑠𝑑(𝑞𝑑

𝑠 )𝑁𝐸3 − 𝑤𝑑
𝑁𝐸3𝑝𝑑

𝑁𝐸  
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𝜋𝑑
[3] = [(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐

2(𝑞𝑑
𝑐 )𝑁𝐸3](𝑞𝑑

𝑐 )𝑁𝐸3 + [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) −

𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑠𝛼𝑠
2(𝑞𝑑

𝑠 )𝑁𝐸3](𝑞𝑑
𝑠 )𝑁𝐸3 + 𝑠𝑑(𝑞𝑑

𝑠 )𝑁𝐸3 − 𝑤𝑑
𝑁𝐸3𝑝𝑑

𝑁𝐸   

𝜋𝑢
[3] = 0  

𝜋ℎ
[3] = (𝑝𝑑

𝑁𝐸 + 𝑝𝑒𝛼𝑒)𝑤𝑑
𝑁𝐸3 − 𝑐𝑤(𝑤𝑑

𝑁𝐸3)2  

𝜋ℎ
[3] = (𝑝𝑑

𝑁𝐸 + 𝑝𝑒𝛼𝑒)𝑤 − 𝑐𝑤𝑤2  

, where 

𝐵𝑑 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
,  

and 𝐵𝑢 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
. 

The calculation and the proof of deriving the Nash equilibrium for Proposition 1-3 are shown 

in Appendix F.3. 

 

3.2.3.3. Analysis 

Depending on the government subsidy, the Nash equilibrium of the water prices (𝑝𝑑
𝑁𝐸 ,

𝑝𝑢
𝑁𝐸) can meet one of Condition [2], Condition [3], and Condition [4] in the first stage. Then, 

based on the satisfied condition, the Nash equilibrium of the water allocation (𝑤𝑑
𝑁𝐸 , 𝑤𝑑

𝑁𝐸) is 

determined among Domain [2], Domain [3], and Domain [4] in the second stage. Then, based 
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on the determined domain of the water allocation, the Nash equilibrium of the land uses is 

determined among Case [2], Case [3], and Case [4] in the third stage. In other words, when the 

Nash equilibrium of the water prices meets Conditions [2], the Nash equilibrium of the water 

allocation corresponds to Domain [2] and the Nash equilibrium of the land uses corresponds to 

Case [2], Case [3], or Case [4]. When the Nash equilibrium of the water prices meets Conditions 

[3], the Nash equilibrium of the water allocation corresponds to Domain [3] and the Nash 

equilibrium of the land uses corresponds to Case [3]. When the Nash equilibrium of the water 

prices meets Conditions [4], the Nash equilibrium of the water allocation corresponds to 

Domain [4] and the Nash equilibrium of the land uses corresponds to Case [4].  

In Chapter 4, we use the results in this chapter for a policy analysis to study the effect of 

the government subsidy on the decisions and outputs of the BSC. In the policy analysis, we 

consider that the Nash equilibrium of the water prices (𝑝𝑑
𝑁𝐸 , 𝑝𝑢

𝑁𝐸) meets Condition [2] of 

Domain [2] since this case is the most representative case in our research. In this case, 

depending on the government subsidy, the downstream and upstream farmers may produce both 

corn and switchgrass after both farmers receive water from the utility company.  
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4. POLICY ANALYSIS 

In Chapter 3, we presented mathematical models of the BSC, where two farmers purchase 

water from a utility company, produce two kinds of biomass, corn and switchgrass, and sell the 

crops at a corn market and a switchgrass market. We derived the best decisions of the farmers 

and the utility company at each stage and found the Nash equilibrium of the BSC. 

In this chapter, we analyze the effect of the government subsidy on the BSC, with the Nash 

equilibrium of the farmers’ and the utility company’s decisions (𝑝𝑑
𝑁𝐸 , 𝑝𝑢

𝑁𝐸 , 𝑤𝑑
𝑁𝐸 ,

𝑤𝑢
𝑁𝐸 , (𝑞𝑑

𝑐 )𝑁𝐸 , (𝑞𝑑
𝑠 )𝑁𝐸 , (𝑞𝑢

𝑐 )𝑁𝐸 , (𝑞𝑢
𝑠 )𝑁𝐸)  which meets Condition [2] of Domain [2]. The 

government subsidy affects the decisions and profits of the downstream farmers, the upstream 

farmers and the utility company (𝜋𝑑 , 𝜋𝑢, and 𝜋ℎ), the producer surplus (𝑃𝑆𝜋), the consumer 

surplus (CS) in a corn market (𝐶𝑆𝑐) and a switchgrass market (𝐶𝑆𝑠), and total social welfare 

(𝑆𝑊) in the BSC. Producer surplus is the difference between the price the producers are willing 

to supply their product for and the actual price of the product at a market. Consumer surplus is 

the difference between the price consumers are willing to pay for a product and the actual price 

of the product at a market. At a market with a linear inverse demand function, 𝑃(𝑄) = 𝑎 − 𝑏𝑄, 

where Q is the total quantity of the product sold at the market, producer surplus is the sum of 
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the profits of the producers and consumer surplus can be obtained by 
𝑏𝑄2

2
. Government 

expenditure (S𝑔𝑜𝑣) is the sum of the subsidies provided to the two farmers and is 𝑠𝑑𝑞𝑑
𝑐 + 𝑠𝑢𝑞𝑢

𝑐 . 

In a market analysis, economic welfare (social welfare) at an equilibrium is the sum of producer 

surplus and consumer surplus. In our model, we estimate economic performance of the subsidy 

policy through subtracting the government expenditure on the subsidy from the social welfare. 

𝑃𝑆𝜋 = 𝜋𝑑 + 𝜋𝑢 + 𝜋ℎ : Producer surplus in the BSC 

𝐶𝑆𝑐 =
𝑏𝑐(𝑞𝑑

𝑐 +𝑞𝑢
𝑐 )2

2
  : Consumer surplus at a corn market in the BSC 

𝐶𝑆𝑠 =
𝑏𝑠(𝑞𝑑

𝑠 +𝑞𝑢
𝑠 )2

2
  : Consumer surplus at a switchgrass market in the BSC 

S𝑔𝑜𝑣 = 𝑠𝑑𝑞𝑑
𝑐 + 𝑠𝑢𝑞𝑢

𝑐   : Government expenditure on the subsidy 

𝑆𝑊 = 𝑃𝑆𝜋 + 𝐶𝑆𝑐 + 𝐶𝑆𝑠 : Social welfare in the BSC 

∆𝑆𝑊= 𝑆𝑊 − S𝑔𝑜𝑣  : Social welfare subtracted by the government expenditure 

In this research, we study two forms of subsidy policy to the two farmers: [1] Different 

amounts of subsidies per unit output quantity to the farmers (subsidy discrimination), [2] Equal 

amounts of subsidies per unit output quantity to the farmers (subsidy equalization). Subsidy 

equalization is a special case of subsidy discrimination. 
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Furthermore, we conduct a parametric analysis for the two forms of the subsidy policy by 

using realistic parameters from literature. The effect of the subsidy amount on the profits of the 

players and the social welfare subtracted by the government expenditure of the BSC is analyzed. 

We analyze efficiencies of the two subsidy forms under the same budget limit. The values used 

in the parameter analysis are shown in Table 5.  

 

Table 5. Parameters values from literature reviews 

 Value Unit Source 

𝑝𝑒 0.010 $/kWh Uria-Martinez et al (2018) 

𝑐𝑤 3.5 × 10−10 $/gal2 Wichelns (2010) 

𝛼𝑐 6-10 t/ha Liska et al. (2009), Pordesimo et al. (2004), U.S. Department of Energy (2011) 

𝛼𝑠 14-22 t/ha Spatari et al. (2005) 

𝑎𝑐 176 $/t Bai et al. (2012) 

𝑏𝑐 6.4 × 10−5 $/t2 Bai et al. (2012) 

𝑐𝑐 76-88 $/t Purdue Crop Cost and Return Guide (2011), U.S. Department of Energy (2011) 

𝑐𝑠 38-48 $/t Kumar and Sokhansanj (2007), U.S. Department of Energy (2011)  

𝛿𝑐 1,260,100 gal/ha Hamilton et al. (2015) 

𝛿𝑠 1,439,737 gal/ha Hamilton et al. (2015) 
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In addition to the data set in Table 5, we need more information about values of two 

parameters, 𝛼𝑒 and 𝑐𝑤. Since there are many hydroelectric dams with a range of properties, 

the amount of electricity generated varies much. Water flow, height of the dam, turbine 

efficiency, and other factors affect hydroelectricity generation. In case of the Hoover Dam, one 

cubic foot (7.48 gallon) of water falling 8.81 feet per second generates one horsepower (0.7457 

kilowatt) at 100 percent efficiency. Average head (the vertical distance water travels) the 

turbine operates at is 510 to 530 feet (Colorado River and Hoover Dam, 2017). For example, 

when a gallon of water falls 530 feet, it generates 6.00  kilowatt-seconds which can be 

approximately converted to 0.0017 kWh/gal (𝛼𝑒 = 1.7 ∙ 10−3).   

Given the multiplicity of water rights, allocations, and contractual arrangements that 

characterize irrigation in the Unites States, there is considerable variation in the prices paid for 

irrigation water. Some farmers with riparian water rights or exchange agreements with the 

federal government receive water at very low cost [$5 to $10 per 1,000 m3(264,172 gallon)], 

while other farmers with less favorable contracts or those who purchase water from some state-

level irrigation agencies pay much higher prices ranging from $20 to more than $100 per 

1,000 m3  (Wichelns, 2010). The government is willing to charge $5 per 1,000 m3 , 

approximately $1.89 × 10−5 per gallon as water price, and this value can be converted to 
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$3.5 ∙ 10−10/gal2. We assume this cost to be the water supply cost in our model (𝑐𝑤 = 3.5 ∙

10−10). 

In parameter analysis, we use the following parameters: 𝑝𝑒 = 0.01, 𝑐𝑤 = 3.5 ∙

10−10, 𝛼𝑐 = 10, 𝛼𝑠 = 22, 𝛼𝑒 = 1.7 ∙ 10−3, 𝑎𝑐 = 176, 𝑏𝑐 = 6.4 ∙ 10−5, 𝑐𝑐 = 76, 𝑐𝑠 = 48, 𝑐𝑤 =

3.5 ∙ 10−10, 𝛿𝑐 = 1,260,100, 𝛿𝑠 = 1,439,737, 𝑤 = 8 ∙ 105, 𝑎𝑠 = 180, 𝑏𝑠 = 8. 

 Moreover, for policy analysis in this chapter, we only consider a situation, where the utility 

company allocates its water to both farmer (Domain [2]) in the second stage, and the two 

farmers compete in both corn and switchgrass markets (Case [2]) in the third stage. The 

situation satisfies following conditions: 

(1) 𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 ≥ 2𝑐𝑤𝑤 

(2) 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 ≥ −2𝑐𝑤𝑤 

(3) 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 ≤ 2𝑐𝑤𝑤 

(4) 𝛿𝑠
2(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 3𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑑 − 𝛿𝑐𝛿𝑠(2𝑠𝑑 − 𝑠𝑢) ≥ 0 

(5) −𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) + 𝛿𝑐
2(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 3𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤𝑑 + 𝛿𝑐
2(2𝑠𝑑 − 𝑠𝑢) ≥ 0 

(6) 𝛿𝑠
2(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 3𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑢 − 𝛿𝑐𝛿𝑠(−𝑠𝑑 + 2𝑠𝑢) ≥ 0 

(7) −𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) + 𝛿𝑐
2(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) + 3𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤𝑢 + 𝛿𝑐
2(−𝑠𝑑 + 2𝑠𝑢) ≥ 0 
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(8) 𝑏𝑠𝛼𝑠
2𝛿𝑐(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) + 𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 𝑏𝑐𝑏𝑠𝛼𝑐
2𝛼𝑠

2(2𝑤𝑑 + 𝑤𝑢) +

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑑 ≥ 0 

(9) 𝑏𝑠𝛼𝑠
2𝛿𝑐(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) + 𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 𝑏𝑐𝑏𝑠𝛼𝑐
2𝛼𝑠

2(𝑤𝑑 + 2𝑤𝑢) +

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑢 ≥ 0 

Conditions (1 ~ 3) imply Domain [2] in the second stage and Conditions (4 ~ 9) imply Case 

[2] in the third stage. Through these conditions, we could find the effect of the government 

subsidy on the three-stage BSC with two duopolistic markets. These conditions are applied to 

Proposition 3, Proposition 4, Corollary 3, Corollary 4, Corollary 5, and Corollary 6, which we 

discuss throughout this chapter. 

 

4.1. Subsidy Discrimination 

In this section, we analyze the effect of the discriminated government subsidy on the BSC. 

The government makes the decision to provide different subsidies to recipients who have 

different conditions. The policymakers may like to consider discriminating the subsidies 

depending upon the recipients’ background and the holistic perspectives on the systems in order 

to ensure efficient results, better output from less income. In this research, the downstream 
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farmer may have an advantage, in that the utility company can earn additional profit from 

hydroelectricity generation by water release to the downstream.  

 

Corollary 3. If six times the supply cost per unit water from the utility company is greater than 

the revenue from sale of hydroelectricity generated by unit water (6𝑐𝑤𝑤 > 𝑝𝑒𝛼𝑒) , the 

following holds for the effect of the policies on the supply chain’s decision variables: 

(1) 
𝜕𝑝𝑑

𝜕𝑠𝑑
=

𝜕𝑝𝑢

𝜕𝑠𝑢
= 2 ∙

𝜕𝑝𝑢

𝜕𝑠𝑑
= 2 ∙

𝜕𝑝𝑑

𝜕𝑠𝑢
> 0  (2) 

𝜕𝑤𝑑

𝜕𝑠𝑑
=

𝜕𝑤𝑢

𝜕𝑠𝑢
= −

𝜕𝑤𝑢

𝜕𝑠𝑑
= −

𝜕𝑤𝑑

𝜕𝑠𝑢
> 0  

(3) 
𝜕𝑞𝑑

𝑐

𝜕𝑠𝑑
=

𝜕𝑞𝑢
𝑐

𝜕𝑠𝑢
= −2 ∙

𝜕𝑞𝑢
𝑐

𝜕𝑠𝑑
= −2 ∙

𝜕𝑞𝑑
𝑐

𝜕𝑠𝑢
< 0 (4) 

𝜕𝑞𝑑
𝑠

𝜕𝑠𝑑
=

𝜕𝑞𝑢
𝑠

𝜕𝑠𝑢
= −2 ∙

𝜕𝑞𝑢
𝑠

𝜕𝑠𝑑
= −2 ∙

𝜕𝑞𝑑
𝑠

𝜕𝑠𝑢
> 0 

The proof of Corollary 3 is shown in Appendix G. 

Corollary 3 reveals the reaction of the farmers and the utility company to the discriminated 

government subsidies per unit output quantity to the downstream farmer (𝑠𝑑) and the upstream 

farmer (𝑠𝑢). (1) The farmers would announce a higher price of water for more amounts of 

subsidies per unit output quantity. A farmer in particular would announce a higher price when 

subsidy to that farmer increases than when subsidy to the other farmer increases. (2) The utility 

company would increase water allocation to a farmer when subsidy to that farmer increases, 

whereas the water allocation to a farmer would decrease when subsidy to the other farmer 
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increases. (3) A farmer would decrease corn production when subsidy to that farmer increases, 

whereas a farmer would increase corn production when subsidy to the other farmer increases. 

(4) On the other hand, a farmer would increase switchgrass production when subsidy to that 

farmer increases, whereas a farmer would decrease switchgrass production when subsidy to the 

other farmer increases. 

 

Proposition 3. Under the discriminated government subsidies to each farmer (𝑠𝑑 ≠ 𝑠𝑢), the 

Nash equilibrium of the BSC is as follows:  

For decision variables of the BSC, 

𝑝𝑑
𝑁𝐸 = 1.769205591 ∙ 10−4 + 4.995691093 ∙ 10−13(2𝑠𝑑 + 𝑠𝑢)     

𝑝𝑢
𝑁𝐸 = 2.902538925 ∙ 10−4 + 4.995691093 ∙ 10−13(𝑠𝑑 + 2𝑠𝑢)  

(𝑤𝑑)𝑁𝐸1 = 4.404761904 ∙ 105 + 3.568350781 ∙ 10−4(𝑠𝑑 − 𝑠𝑢)  

(𝑤𝑢)𝑁𝐸1 = 3.595238096 ∙ 105 − 3.568350781 ∙ 10−4(𝑠𝑑 − 𝑠𝑢)  

(𝑞𝑑
𝑐 )𝑁𝐸1 = 1.762994846 ∙ 10−1 − 9.836019102 ∙ 10−5(2𝑠𝑑 − 𝑠𝑢)  

(𝑞𝑑
𝑠 )𝑁𝐸1 = 1.516396465 ∙ 10−1 + 8.608796850 ∙ 10−5(2𝑠𝑑 − 𝑠𝑢)  
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(𝑞𝑢
𝑐 )𝑁𝐸1 = 1.120568006 ∙ 10−1 + 9.836019102 ∙ 10−5(𝑠𝑑 − 2𝑠𝑢)  

(𝑞𝑢
𝑠 )𝑁𝐸1 = 1.516393456 ∙ 10−1 − 8.608796850 ∙ 10−5(𝑠𝑑 − 2𝑠𝑢)  

For outcomes of the BSC, 

𝜋𝑑 = 3.606615295 ∙ 102 + 2.869598951 ∙ 10−5(4𝑠𝑑
2 + 𝑠𝑢

2) + 1.010931575 ∙

10−1(2𝑠𝑑 − 𝑠𝑢) − 1.147839580 ∙ 10−4𝑠𝑑𝑠𝑢  

𝜋𝑢 = 2.699945523 ∙ 102 + 2.86959895 ∙ 10−5(𝑠𝑑
2 + 136𝑠𝑢

2) − 1.010930167 ∙

10−1(𝑠𝑑 − 35𝑠𝑢) − 2.008719264 ∙ 10−3𝑠𝑑𝑠𝑢  

𝜋ℎ = 2.571634314 ∙ 102 + 1.782637822 ∙ 10−16(𝑠𝑑 − 𝑠𝑢)2 + 6.399242400 ∙

10−7𝑠𝑑 + 5.590416224 ∙ 10−7𝑠𝑢  

𝐶𝑆𝑐 = 3.2 ∙ 10−5[2.883562852 − 9.836047418 ∙ 10−4(𝑠𝑑 + 𝑠𝑢)]2  

𝐶𝑆𝑠 = 4 ∙ [6.672137826 + 1.893935307 ∙ 10−3(𝑠𝑑 + 𝑠𝑢)]2  

S𝑔𝑜𝑣 = 1.721759370 ∙ 10−4(𝑠𝑑
2 + 𝑠𝑢

2 − 𝑠𝑑𝑠𝑢) + 1.516396465 ∙ 10−1𝑠𝑑 +

1.516393456 ∙ 10−1𝑠𝑢  

∆𝑆𝑊= 1065.889472 − 1.43479947 ∙ 10−5𝑠𝑑
2 + 3.773522620 ∙ 10−3𝑠𝑢

2 +

5.05464494 ∙ 10−2𝑠𝑑 + 3.386611930𝑠𝑢 − 1.922631296 ∙ 10−3𝑠𝑑𝑠𝑢  
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Proposition 3 reveals the effect of the subsidies on the BSC. We could analyze the 

decisions on water allocations of the utility company and the land allocations of the farmers.  

For the utility company’s water allocation, the utility company allocates the entire water 

to the upstream farmer with (𝑠𝑑 − 𝑠𝑢) ≤ −1.234397113 ∙ 109 , while the utility company 

allocates the entire water to the downstream farmer with (𝑠𝑑 − 𝑠𝑢) ≥ 1.007534941 ∙ 109. The 

utility company would allocate water to both the downstream farmer and the upstream farmer 

in case of −1.234397113 ∙ 109 < (𝑠𝑑 − 𝑠𝑢) < 1.007534941 ∙ 109.  

For the downstream farmer’s land allocation, the farmer produces only corn with 

(2𝑠𝑑 − 𝑠𝑢) ≤ −1.761449935 ∙ 103 , while the farmer produces only switchgrass with 

(2𝑠𝑑 − 𝑠𝑢) ≥ 1.792386562 ∙ 103 . The downstream farmer would produce both corn and 

switchgrass in case of −1.761449935 ∙ 103 < (2𝑠𝑑 − 𝑠𝑢) < 1.792386562 ∙ 103.  

For the upstream farmer’s land allocation, the farmer produces only corn with 

(𝑠𝑑 − 2𝑠𝑢) ≥ 1.761446440 ∙ 103 , while the farmer produces only switchgrass with 

(𝑠𝑑 − 2𝑠𝑢) ≤ −1.139249522 ∙ 103 . The upstream farmer would produce both corn and 

switchgrass in case of −1.139249522 ∙ 103 < (𝑠𝑑 − 2𝑠𝑢) < 1.761446440 ∙ 103. 
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Corollary 4. In the case of the discriminated government subsidy to the farmers, the following 

holds for the effect of the policies on the outcome of the supply chain: 

𝜕𝜋𝑑

𝜕𝑠𝑑
= 2.021858750 ∙ 10−1 + 1.147839580 ∙ 10−4(2𝑠𝑑 − 𝑠𝑢)      

𝜕𝜋𝑑

𝜕𝑠𝑢
= −1.010931575 ∙ 10−1 − 1.147839580 ∙ 10−4(2𝑠𝑑 − 𝑠𝑢)     

𝜕𝜋𝑢

𝜕𝑠𝑑
= −1.010930167 ∙ 10−1 + 5.7391979 ∙ 10−5(𝑠𝑑 − 35𝑠𝑢)   

𝜕𝜋𝑢

𝜕𝑠𝑢
= 3.538251276 − 5.7391979 ∙ 10−5(35𝑠𝑑 − 136𝑠𝑢)      

𝜕𝜋ℎ

𝜕𝑠𝑑
= 6.399242400 ∙ 10−7 + 3.565275644 ∙ 10−16(𝑠𝑑 − 𝑠𝑢)      

𝜕𝜋ℎ

𝜕𝑠𝑢
= 5.590416224 ∙ 10−7 − 3.565275644 ∙ 10−16(𝑠𝑑 − 𝑠𝑢)      

𝜕∆𝑆𝑊

𝜕𝑠𝑑
= 5.05464494 ∙ 10−2 − 2.86959894 ∙ 10−5(𝑠𝑑 + 67𝑠𝑢)    

𝜕∆𝑆𝑊

𝜕𝑠𝑢
= 3.38661193 − 1.922631296 ∙ 10−3(𝑠𝑑 − 3.925373𝑠𝑢)     

 

Corollary 4 reveals the effect of the government subsidies on the profits of the players, and 

on the total social welfare in the BSC. We find that the effect has to do with the relation between 

the subsidy to the downstream farmer (𝑠𝑑) and the upstream farmer (𝑠𝑢).  
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Increasing 𝑠𝑑 in case of (2𝑠𝑑 − 𝑠𝑢) > −1.761447144 ∙ 103 and increasing 𝑠𝑢 in case 

of (2𝑠𝑑 − 𝑠𝑢) < −8.80725488 ∙ 102  would improve the downstream farmer’s profit. 

Increasing 𝑠𝑑  in case of (𝑠𝑑 − 35𝑠𝑢) > 1.76144852 ∙ 103  and increasing 𝑠𝑢  in case of 

(35𝑠𝑑 − 136𝑠𝑢) < 6.16506232 ∙ 104 would improve the upstream farmer’s profit. Increasing 

𝑠𝑑  in case of (𝑠𝑑 − 𝑠𝑢) > −1.79488013 ∙ 109 ,  and increasing 𝑠𝑢  in case of (𝑠𝑑 − 𝑠𝑢) <

1.56801795 ∙ 109  would improve the utility company’s profit. Increasing 𝑠𝑑  in case of 

(𝑠𝑑 + 67𝑠𝑢) < 1.76144648 ∙ 103  and increasing 𝑠𝑢  in case of (𝑠𝑑 − 3.925373𝑠𝑢) <

1.76144638 ∙ 103 would improve social welfare of the BSC. 

 

4.2. Subsidy Equalization 

In this section, we analyze the effect of equalized government subsidy on the BSC. The 

government makes the decision to provide equal subsidies to the recipients under subsidy 

equalization which is a special case of subsidy discrimination. Subsidy equalization could be 

considered when policy equity is prioritized over policy efficiency, or when the advantage of 

the discrimination is regarded as being insignificant. In this research, subsidy equalization could 

be the justifiable policy, since both farmers produce homogeneous final products (corn and 
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switchgrass) through identical technology. Note that, under this policy, if a farmer receives 

subsidy, the other farmer also receives the same amount of subsidy for the same output quantity. 

Here, we set 𝑠𝑠 = 𝑠𝑢 = 𝑠. 

 

Corollary 5. If six times the supply cost per unit water from the utility company is greater than 

the revenue from sale of hydroelectricity generated by unit water (6𝑐𝑤𝑤 > 𝑝𝑒𝛼𝑒) , the 

following holds for the effect of the policies on the supply chain’s decision variables: 

(1) 
𝜕𝑝𝑑

𝜕𝑠
=

𝜕𝑝𝑢

𝜕𝑠
> 0    (2) 

𝜕𝑤𝑑

𝜕𝑠
=

𝜕𝑤𝑢

𝜕𝑠
= 0  

(3) 
𝜕𝑞𝑑

𝑐

𝜕𝑠
=

𝜕𝑞𝑢
𝑐

𝜕𝑠
< 0    (4) 

𝜕𝑞𝑑
𝑠

𝜕𝑠
=

𝜕𝑞𝑢
𝑠

𝜕𝑠
> 0 

The proof of Corollary 5 is shown in Appendix H. 

Corollary 5 reveals the reaction of the farmers and the utility company to the equalized 

government subsidies to both farmers (𝑠). (1) The farmers would announce a higher price of 

water for more subsidies. (2) The change in value of the equalized subsidy does not affect the 

water allocation of the utility company to the farmers. (3,4) Both farmers produce less corn and 

more switchgrass for a higher subsidy. 
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Proposition 4. Under equalized government subsidies to both farmers (𝑠𝑑 = 𝑠𝑢 = 𝑠), the Nash 

equilibrium of the BSC is as follows:  

For decision variables of the BSC, 

𝑝𝑑
𝑁𝐸 = 1.769205591 ∙ 10−4 + 1.498707328 ∙ 10−12𝑠     

𝑝𝑢
𝑁𝐸 = 2.902538925 ∙ 10−4 + 1.498707328 ∙ 10−12𝑠  

(𝑤𝑑)𝑁𝐸1 = 4.404761904 ∙ 105  

(𝑤𝑢)𝑁𝐸1 = 3.595238096 ∙ 105  

(𝑞𝑑
𝑐 )𝑁𝐸1 = 1.762994846 ∙ 10−1 − 9.836047419 ∙ 10−5𝑠  

(𝑞𝑑
𝑠 )𝑁𝐸1 = 1.516396465 ∙ 10−1 + 8.608796850 ∙ 10−5𝑠  

(𝑞𝑢
𝑐 )𝑁𝐸1 = 1.120568006 ∙ 10−1 − 9.836047419 ∙ 10−5𝑠  

(𝑞𝑢
𝑠 )𝑁𝐸1 = 1.516393456 ∙ 10−1 + 8.608796850 ∙ 10−5𝑠  

For outcomes of the BSC, 

𝜋𝑑 = 3.606615295 ∙ 102 + 1.010927174 ∙ 10−1𝑠 + 2.86959895 ∙ 10−5𝑠2  

𝜋𝑢 = 2.699945523 ∙ 102 + 3.437158260 ∙ 100𝑠 + 1.922631297 ∙ 10−3𝑠2  
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𝜋ℎ = 2.571634314 ∙ 102 + 1.198965862 ∙ 10−6𝑠  

𝐶𝑆𝑐 = 1.238372209 ∙ 10−10(1465.813822 − 𝑠)2  

𝐶𝑆𝑠 = 5.739185516 ∙ 10−7(1761.448187 + 𝑠)2  

S𝑔𝑜𝑣 = 1.721759370 ∙ 10−4(s + 1761.448187)s  

∆𝑆𝑊= 1065.889472 + 3.437158379𝑠 + 1.836543328 ∙ 10−3𝑠2   

 

Proposition 4 reveals the effect of equalized subsidy on the BSC. We can analyze the 

decisions on water allocation of the utility company and the land allocation of the farmers. Both 

the downstream farmer and the upstream farmer cultivate corn with 0 ≤ 𝑠 < 1.139246242 ∙

103 , while no farmer cultivates corn with 𝑠 ≥ 1.792381402 ∙ 103 . In the case of 

1.139246242 ∙ 103 ≤ 𝑠 < 1.792381402 ∙ 103, the upstream farmer does not cultivate corn 

while the downstream farmer still cultivates corn. 

 

Corollary 6. In the case of government subsidy of equal value to the farmers, the following 

holds for the effect of the policy on the outcome of the supply chain: 
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(1) 
𝜕𝜋𝑑

𝜕𝑠
= 1.010927174 ∙ 10−1 + 5.7391979 ∙ 10−5𝑠      

(2) 
𝜕𝜋𝑢

𝜕𝑠
= 3.437158260 ∙ 100 + 3.845262594 ∙ 10−3𝑠  

(3) 
𝜕𝜋ℎ

𝜕𝑠
= 1.198965862 ∙ 10−6  

(4) 
∂∆𝑆𝑊

∂s
= 3.437158379 + 3.673086656 ∙ 10−3𝑠   

 

Corollary 6 reveals the effect of the equalized subsidy on the profits of the supply chain, 

customer surplus in switchgrass markets, and total social welfare. According as the amount of 

the equalized subsidy increases, the social welfare subtracted by the government expenditure, 

and the profits of the farmers and the utility company would increase. 

 

4.3. Results 

In Chapter 4, we analyzed the effect of government subsidies on the BSC. The subsidies 

are classified into two forms: (1) discriminated subsidies to the farmers (subsidy discrimination) 

and (2) equal subsidies to the farmers (subsidy equalization).  
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Under subsidy discrimination, the results show that the government subsidy increases 

farmers’ water prices, their switchgrass production, and the utility company’s water allocation 

to a farmer who receives higher subsidy than the other farmer. Depending on the relation 

between the two discriminated subsidies, the subsidy policy can increase or decrease the players’ 

profits and the social welfare in the BSC. Also, an excessive amount of subsidy to a farmer can 

cause disappearance of the corn market or monopoly of the corn market and the switchgrass 

market. 

Under subsidy equalization, the results show that the government subsidy to the farmers 

increases farmers’ water prices and switchgrass production, and the social welfare subtracted 

by the government expenditure, whereas increasing subsidy decreases corn production and does 

not affect water allocation by the utility company. Compared to the discriminated subsidies, a 

higher equalized subsidy would improve the farmers’ profits and the social welfare subtracted 

by the government expenditure, in any case. However, excessive amount of subsidy could cause 

disappearance or monopoly of a corn market. 

Through parametric analysis, we found the effect of the government subsidy on the social 

welfare subtracted by the government expenditure under subsidy equalization, as shown in 

Figure 3, and under subsidy discrimination, as shown in Figure 4. In Figure 3, a solid line, 
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Curve (1), represents the change in social welfare subtracted by government expenditure 

according as the amount of the equalized subsidy to the farmers increases from 0 to 400. In 

Figure 4, a dotted line, Curve (2), represents the change in social welfare subtracted by 

government expenditure according as the amount of the discriminated subsidy to the upstream 

farmer increases from 0 to 800.  

In Figure 1, Point [A] addresses the social welfare without any subsidy. Point [B] 

represents social welfare under subsidy equalization with 𝑠𝑑 = 𝑠𝑢 = 400. In Figure 2, Point 

[C], Point [D], and Point [E] represent social welfare under subsidy discrimination with the 

budget of 800 for the sum of unit subsidy to the two farmers (𝑠𝑑 + 𝑠𝑢 = 800). Point [C] shows 

a case where the government provides subsidy only to the downstream farmer (𝑠𝑑 = 800, 𝑠𝑢 =

0), while Point [E] shows the opposite case where the government provides subsidy only to the 

upstream farmer (𝑠𝑑 = 800, 𝑠𝑢 = 0). Point [D] shows a case where the government provides 

an equal amount of subsidy to both farmers (𝑠𝑑 = 400, 𝑠𝑢 = 400), which is also represented 

by Point [B] in Figure 1.  
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Figure 3. Social welfare subtracted by government expenditure under subsidy equalization 

 

Figure 4. Social welfare subtracted by government expenditure under subsidy discrimination 
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From the parametric analysis, we found that both forms of subsidy policy improve social 

welfare. From the perspective of the sum of the unit subsidies to the farmers, increasing the 

sum of the subsidies induces higher social welfare. Under a constrained budget for the sum of 

unit subsidy to the two farmers, subsidy discrimination shows higher social welfare in case of 

𝑠𝑑 < 𝑠𝑢 and lower social welfare in case of 𝑠𝑑 > 𝑠𝑢 compared to subsidy equalization (𝑠𝑑 =

𝑠𝑢). Increasing the subsidy to the upstream farmer is more efficient in improving social welfare 

than increasing the subsidy to the downstream farmer. 

Therefore, the government needs to decide the amount of the subsidies while also 

considering the dilemma between efficiency and equity of the policy. The effect of the subsidy 

on the BSC could vary depending on policy priorities. 
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5. CONCLUSIONS AND FUTURE RESEARCH 

We proposed a game theoretical model of a biofuel supply chain (BSC) where two farmers, 

located in the downstream and the upstream, and a utility company make decisions throughout 

a three-stage leader-follower Stackelberg game. In the first stage, the two farmers compete on 

water price under Bertrand competition. In the second stage, the utility company allocates its 

water to the two farmers based on the quoted water price by the farmers. In the third stage, the 

two farmers compete on corn quantity and switchgrass quantity at a corn market and a 

switchgrass market under Cournot competition. We solved the problem by using backward 

induction method after deriving the KKT optimality conditions of the subproblems in each stage. 

We found the equilibrium of the decisions in the BSC and conducted sensitivity analysis to 

study the effect of the government subsidy on the BSC. Furthermore, we performed parametric 

analysis using realistic values from the literature. The result shows that the subsidies could 

improve social welfare unless they exceed certain limit that causes negative profits for farmers. 

Subsidy discrimination, especially, with higher subsidy to the upstream farmer than the 

downstream farmer is more efficient in improving social welfare than subsidy equalization. 
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 Although our model considers many realistic conditions, there are a possibility of making 

the model even closer to real-world problems. In future, we could replace the corn market and 

the switchgrass market with corn refineries and switchgrass refineries that are considered as 

players in the game of the BSC. Water consumption in biofuel production could affect the water 

supply and biomass prices. Through these extensions, we could analyze the reaction of the 

refineries to the decisions of the farmers and the utility company. Moreover, future research 

could consider the land type, yield amount, precipitation along with uncertainty in crop 

production for a multi-period model. This problem can be modeled through stochastic 

programming which is rarely used in research on the BSC. 

  



 

86 

 

 

REFERENCES 

Allevi, E., Conejo, A. J., Oggioni, G., Riccardi, R., Ruiz, C. (2018). Evaluating the strategic 

behavior of cement producers: An equilibrium problem with equilibrium constraints, 

European Journal of Operational Research, 264(2), 717-731.  

Assila, B., Kobbane, A., Elmachkour, M., Koutbi, M. E. (2017). A dynamic stackelberg-

cournot game for competitive content caching in 5G networks. 2017 International 

Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, 1-

6. doi: 10.1109/WINCOM.2017.8238184 

Awudu, I., & Zhang, J. (2013). Stochastic production planning for a biofuel supply chain under 

demand and price uncertainties. Applied Energy, 103, 189-196. 

Azadeh, A., Arani, H. V., Dashti, H. (2014). A stochastic programming approach towards 

optimization of biofuel supply chain. Energy, 76(1), 513-525. 

Bai, Y., Luo, L., Voet, E. (2010). Life Cycle Assessment of Switchgrass-derived Ethanol as 

Transport Fuel. The International Journal of Life Cycle Assessment, 15 (5), 468-477.  

Bai, Y., Ouyang, Y., Pang, J. (2012). Biofuel supply chain design under competitive 

agricultural land use and feedstock market equilibrium. Energy Economics, 34(5), 

1623-1633. 

Bai, Y., Ouyang, Y., Pang, J. (2016). Enhanced models and improved solution for competitive 

biofuel supply chain under land use constraints. European Journal of Operations 

Research, 249(1), 281-297. 



 

87 

 

 

Bajgiran, A. H. (2018), A Biofuel Supply Chain Equilibrium Analysis with Subsidy 

Consideration, Ph.D. Dissertation. University of Wisconsin Milwaukee. 

Bard, J. F. (1998). Practical bilevel optimization: algorithm and applications. Springer US, 30. 

Bizikova, L., Crawford, E., Nijnik, M., Swart, R. (2014). Climate change adaptation planning 

in agriculture: processes, experiences and lessons learned from early adapters. 

Mitigation and Adaption Strategies for Global Change, 19(4), 411-430. 

https://doi.org/10.1007/s11027-012-9440-0 

Bizikova, L., Roy, D., Venema, H., McCandless, M., Swanson, D., Khachtryan, A., Borden, C., 

Zubrycki, K. (2014). Water – Energy – Food Nexus and Agricultural Investment: A 

Sustainable Development Guidebook. International Institute for Sustainable 

Development, Canada. 

Bracken, J., McGill, J. T. (1973) Mathematical problem with optimization problems in the 

constraints. Operations Research, 21(1), 37-44. 

Caldentey, R., Haugh, M. (2017). A Cournot-Stackelberg Model of Supply Contracts with 

Financial Hedging and Identical Retailers. Foundations and Trends(R) in Technology, 

Information and Operations Management, 11(1-2), 124-143. 

http://dx.doi.org/10.1561/0200000075 

Chu, Y., You, F. (2014). Integrated scheduling and dynamic optimization by Stackelberg game: 

bilevel model formulation and efficient solution algorithm. Industrial & Engineering 

Chemistry Research, 53(13), 5564-5581. 

https://doi.org/10.1007/s11027-012-9440-0
http://dx.doi.org/10.1561/0200000075


 

88 

 

 

Chue, Y., You, F., Wassick, J. M., Agarwal, A. (2015). Integrated planning and scheduling 

under production uncertainties: bi-level model formulation and hybrid solution method. 

Computer & Chemical Engineering, 72(2), 255-272. 

Cobuloglu, H. I., Büyüktahtakın, İ. E. (2014). A mixed-integer optimization model for the 

economic and environmental analysis of biomass production. Biomass and Bioenergy, 

67, 8-23. doi: 10.1016/j.biombioe.2014.03.025 

Cobuloglu, H. I., Büyüktahtakın, İ. E. (2015). Food vs. biofuel: An optimization approach to 

the spatio-temporal analysis of land-use competition and environmental impact. 

Applied Energy, 140, 418-434.  

Cobuloglu, H. I., Büyüktahtakın, İ. E. (2017). A two-stage stochastic mixed-integer 

programming approach to the competition of biofuel and food production. Computer & 

Industrial Engineering, 107, 251-263. 

Colson, B., Marcotte, P., Savard, G. (2007). An overview of bilevel optimization. Annals of 

Operations Research, 153(1), 235-256. 

Dal-Mas, M., Giarola, S., Zamboni, A., & Bezzo, F. (2011). Strategic design and investment 

capacity planning of the ethanol supply chain under price uncertainty. Biomass and 

Bioenergy, 35(5), 2059-2071. 

Davis, A. S., Hill, J. D., Chase, C. A., Johanns, A. M., Liebman, M. (2012). Increasing Cropping 

Systems Diversity Balances Productivity. Profitability and Environmental Health, PLoS 

ONE,7(10). doi:10.1371/journal.pone.0047149 



 

89 

 

 

Fulton, M., Karp, L. (1989). Estimating the Objective of a Public Firm in a Natural Resource 

Industry. Journal of Environmental Economics and Management, 78(1), 233-255. 

Ghaderi, H., Pishvaee, M. S., Moini, A., (2016). Biomass supply chain network design: An 

optimization-oriented review and analysis, Industrial Crops and Products, 94, 972-1000.   

GRACE. (2014). Meet the Nexus: How Food, Water and Energy are Connected. GRACE 

Communications Foundation. 

Hamilton, S. K., Hussain, M. Z., Bhardwaj, A. K., Basso, B., Robertson, G. (2015). 

Comparative water use by maize, perennial crops, restored prairie, and poplar trees in 

the US Midwest. Environmental Research Letters, 10(4).   

Hightower, M., Pierce, S. A. (2008). The energy challenge. Nature, 452(7185), 285-286. 

Hoff, H. (2011). Understanding the Nexus. Background paper for the Bonn 2011 Nexus 

Conference: The Water, Energy and Food Security Nexus. Stockholm Environment 

Institute, Stockholm.   

Holahan, W. L. (2010). Microeconomics of Reliable Urban Water Supply: The Comparative 

Economic Advantage of Great Lake Cities. Center for Economic Development 

Publication, 47. https://dc.uwm.edu/ced_pubs/47 

IEA (2012). Technology Roadmap: Hydropower. International Energy Agency, Paris, France. 

IRENA (2018). Renewable Power Generation Costs in 2017. International Renewable Energy 

Agency, Abu Dhabi. 



 

90 

 

 

Kim, J., Realff, M. J., Lee, J. H., Whittaker, C., Furtner, L. (2011). Design of biomass 

processing network for biofuel production using an MILP model. Biomass and 

Bioenergy, 35(2), 853-871. https://doi.org/10.1016/j.biombioe.2010.11.008 

Koh, A. (2012). An evolutionary algorithm based on Nash Dominance for Equilibrium 

Problems with Equilibrium Constraints. Applied Soft Computing, 12(1), 161-173. 

Kumar and Sokhansanj (2007). Switchgrass (Panicum Vigratum, L.) delivery to a biorefinery 

using integrated biomass supply analysis and logistics (IBSAL) Model. Bioresource 

Technology, 98(5), 1033-1044. doi: 10.1016/j.biortech.2006.04.027 

Lacombe, G., Douangsavanh, S., Baker, J., Hoanh, C. T., Bartlett, R., Jeuland, M., 

Phongpachith, C. (2014). Are hydropower and irrigation development complements or 

substitute? The example of the Nam Ngum River in the Mekong Basin. Water 

International, 39(5), 649-670. doi:10.1080/02508060.2014.956205 

Larson, E. (2006). A Review of Life-cycle Analysis Studies on Liquid Biofuel Systems for the 

Transport Sector. Energy for Sustainable Development, 10 (2), 109-126. 

Liska, A. J., Yang, H.S., Bremer, V. R., Klopfenstein, T. J., Walters, D. T., Erickson, G. E., 

Cassman, K. G. (2009). Improvements in life cycle energy efficiency and greenhouse 

gas emissions of corn-ethanol. Journal of Industrial Ecology, 13(1), 58-74. 

https://doi.org/10.1111/j.1530-9290.2008.00105.x 

Luo, Y., Miller, S. (2013). A game theory analysis of market incentives for US switchgrass 

ethanol. Ecological Economics, 93, 42-56. 

https://doi.org/10.1016/j.biombioe.2010.11.008


 

91 

 

 

Luo, Z., Pang, J., Ralph, D. (1996). Mathematical Programs with Equilibrium Constraints. 

Cambridge: Cambridge University Press. doi:10.1017/CBO9780511983658.  

Ma, J., Li, Q. (2014). The Complex Dynamics of Bertrand-Stackelberg Pricing Models in a 

Risk-Averse Supply Chain. Discrete Dynamics in Nature and Society, 2014(4). 1-14. 

doi:10.1155/2014/749769. 

Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381(3-4), 225-

238. https://doi.org/10.1016/j.jhydrol.2009.11.045 

Marufuzzaman M., Eksioglu S. D., Hernandez R., 2014, Environmentally Friendly Supply 

Chain Planning and Design for Biodiesel Production via Wastewater Sludge, Journal of 

Transportation Science 

Papapostolou, C., Kondili, E., Kaldellis, J. K. (2011). Development and implementation of an 

optimization model for biofuels supply chain. Energy, 36(10), 6019-6026. 

Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, 

E., Abbett, E., Nandagopal, S. (2004). Water Resources: Agricultural and 

Environmental Issues. BioScience, 54(10), 909–918. https://doi.org/10.1641/0006-

3568(2004)054[0909:WRAAEI]2.0.CO;2 

Pordesimo, L. O., Edens, W. C., Sokhansanj, S. (2004). Distribution of aboveground biomass 

in corn stover. Biomass and Bioenergy, 26(4), 337-343.  

Pozo, D., Contreas, J. (2011). Finding Multiple Nash Equilibrium in Pool Based Market: A 

Stochastic EPEC Approach, IEEE Transactions on Power Systems, 26(3), 1744-1752, 

doi: 10.1109/TPWRS.2010.2098425 

https://doi.org/10.1016/j.jhydrol.2009.11.045
https://doi.org/10.1641/0006-3568(2004)054%5b0909:WRAAEI%5d2.0.CO;2
https://doi.org/10.1641/0006-3568(2004)054%5b0909:WRAAEI%5d2.0.CO;2


 

92 

 

 

Prokop, J., Ramsza, M., Wiśnicki, B. (2015). A Note on Bertrand Competition under Quadratic 

Cost Functions, Gospodarka Narodowa, Warsaw School of Economics, issue 2, 5-14. 

Purdue extension ID-166-W, (2011). Purdue crop cost & return guide. https:// 

ag.purdue.edu/agecon/Documents/2011%20Purdue%20Crop%20Cost%20and%20Ret

urn%20Guide.pdf 

Ruiz-Hernández, D., Elizalde, J., Delgado-Gómez, D. (2017).  Cournot-Stackelberg games in 

competitive delocation. Annals of Operations Research, Springer, 256(1), 149-170. DOI: 

10.1007/s10479-016-2288-z 

Schaible, G., Aillery, M. (2012). Water Conservation in Irrigated Agriculture: Trends and 

Challenges in the Face of Emerging Demands. SSRN Electronic Journal. 

doi:10.2139/ssrn.2186555  

Sexton, S., Zilberman, D., Rajagopal, D., Hochman, G. (2009). The Role of Biotechnology in 

a Sustainable Biofuel Future. AgBioForum, 12. 

Siddiqui, S., Christensen, A. (2016). Determining energy and climate market policy using 

multiobjective programs with equilibrium constraints, Energy, 94(C), 316-325. 

Siriruk, P. (2009). Cournot competition under uncertainty in power market, Ph.D. Dissertation. 

Auburn University. 

Spatari, S., Zhang, Y., MacLean, H. L. (2005). Life Cycle Assessment of Switchgrass- and 

Stover-Derived Ethanol-Fueled Automobiles. Environmental Science & Technology, 

39(24), 9750-9758. 

https://www.researchgate.net/profile/Bartlomiej_Wisnicki?_sg=3zYNmr5llREaDzXrOoKYFU8ZZGdEtV8dm0dp8LWpn0YKtBBbU_KV2wM4vfXCuN0xzO10jLI.-783nOYFs8RxJVXxi36YorB-LN8mJoHuCPuVZnvxDvdaziEF-dKokeS5_02lwTSZ4HXnyn4wkMpvTdNunFiLwA


 

93 

 

 

Stackelberg, H., Bazin, D., Hill, R., Urch, L. (2011). Market structure and equilibrium. 

Springer-Verlag Berlin Berlin Heidelberg. doi: 10.1007/978-3-642-12586-7 

U.S. Department of Energy (2011). U.S. Billion-ton Update: Biomass Supply for a Bioenergy 

and Bioproducts Industry. U.S. Department of Energy. doi:10.2172/1219219 

U.S. Department of Energy (2014). The Water-Energy Nexus: Challenges and Opportunities. 

U.S. Department of Energy, DOE/EPSA-0002.  

Uria-Martinez, R., Johnson, M., Oconnor, P. (2018). 2017 Hydropower Market Report. 

doi:10.2172/1513459 

Varian, H. R. (2006). Intermediate Microeconomics, Seventh Edition, W.W. Norton and 

Company.  

Water Resources and Environment Administration, Hydrological Analysis of Development 

Scenarios, Nam Ngum River Basin, Agence Française de Dévelopement and Asian 

Developing Bank, Vientiane, 2008. 

Wichelns, D. (2010). Agricultural water pricing: United States. 

https://www.oecd.org/unitedstates/45016437.pdf  

Wright, L., Turhollow, A., 2010. Switchgrass Selection as a ‘Model’ Bioenergy Crop: A 

History of the Process. Biomass and Bioenergy, 34 (6), 851-868. 

Xie, F., Huang, Y., Eksioglu, S. (2014). Integrating multimodal transport into cellulosic biofuel 

supply chain design under feedstock seasonality with a case study based on California, 

Bioresource Technology, 152, 15-23. https://doi.org/10.1016/j.biortech.2013.10.074. 

https://doi.org/10.1007/978-3-642-12586-7


 

94 

 

 

Yue, D., You, F., (2014). Game-theoretic modeling and optimization of multi-echelon supply 

chain design and operation under Stackelberg game and market equilibrium, 71(4), 347-

361. 

Zhang, C., Gu, B., Yamori, K., Xu, S., Tanaka, Y. (2015). A Novel Stackelberg-Bertrand Game 

Model for Pricing Content Provider. EAI Endorsed Transactions on Collaborative 

Computing. 1. doi:10.4108/icst.mobimedia.2015.259082 

Zhang, X., Li, H., Deng, Z., Ringler, C., Gao, Y., Hejazi, M., Leung, R. (2018). Impacts of 

climate change, policy and Water-Energy-Food nexus on hydropower development. 

Renewable Energy, 116 (A), 827-834. https://doi.org/10.1016/j.renene.2017.10.030 

Zhang, X., Vesselinov, V. V., (2016). Energy-water nexus: Balancing the tradeoffs between 

two level decision makers. Applied Energy, 183, 77-87. 

doi:10.1016/j.apenergy.2016.08.156 

 

 

https://doi.org/10.1016/j.renene.2017.10.030


 

95 

 

 

APPENDICES  

Appendix A. 

 Appendix A shows the calculation and the proof for derivation used in Section 3.2.1.3.  

Appendix A.1. 

Appendix A.1. represents proof of Case [2] in Table 3.  

(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐
2𝒒𝒖

𝒄 ) − 2𝑏𝑐𝛼𝑐
2𝒒𝒅

𝒄 − 𝛿𝑐𝜆1 = 0       (A-1-1) 

(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠
2𝒒𝒖

𝒔 + 𝑠𝑑) − 2𝑏𝑠𝛼𝑠
2𝒒𝒅

𝒔 − 𝛿𝑠𝜆1 = 0      (A-1-2) 

(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐
2𝒒𝒅

𝒄 ) − 2𝑏𝑐𝛼𝑐
2𝒒𝒖

𝒄 − 𝛿𝑐𝜆4 = 0       (A-1-3) 

(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠
2𝒒𝒅

𝒔 + 𝑠𝑢) − 2𝑏𝑠𝛼𝑠
2𝒒𝒖

𝒔 − 𝛿𝑠𝜆4 = 0      (A-1-4) 

𝑤𝑑 − 𝛿𝑐𝒒𝒅
𝒄 − 𝛿𝑠𝒒𝒅

𝒔 = 0             (A-1-5) 

𝑤𝑢 − 𝛿𝑐𝒒𝒖
𝒄 − 𝛿𝑠𝒒𝒖

𝒔 = 0             (A-1-6) 

From Equation (A-1-1), Equation (A-1-3), Equation (A-1-2), and Equation (A-1-4), we 

derive outputs from the duopolistic corn market and the duopolistic switchgrass market, 

respectively. 

𝑞𝑑
𝑐 =

(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)

3𝑏𝑐𝛼𝑐
2 +

𝛿𝑐(−2𝜆1+𝜆4)

3𝑏𝑐𝛼𝑐
2     𝑞𝑢

𝑐 =
(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)

3𝑏𝑐𝛼𝑐
2 +

𝛿𝑐(𝜆1−2𝜆4)

3𝑏𝑐𝛼𝑐
2  

𝑞𝑑
𝑠 =

(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

3𝑏𝑠𝛼𝑠
2 +

(2𝑠𝑑−𝑠𝑢)

3𝑏𝑠𝛼𝑠
2 +

𝛿𝑠(−2𝜆1+𝜆4)

3𝑏𝑠𝛼𝑠
2   𝑞𝑢

𝑠 =
(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

3𝑏𝑠𝛼𝑠
2 +

(−𝑠𝑑+2𝑠𝑢)

3𝑏𝑠𝛼𝑠
2 +

𝛿𝑠(𝜆1−2𝜆4)

3𝑏𝑠𝛼𝑠
2

 Then we derive 𝜆2 and 𝜆4  by putting the above outputs into Equation (A-1-5) and 

Equation (A-1-6) as follows: 

𝜆1 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
−

𝑏𝑐𝛼𝑐
2𝑏𝑠𝛼𝑠

2(2𝑤𝑑+𝑤𝑢)

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑑

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

𝜆4 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
−

𝑏𝑐𝛼𝑐
2𝑏𝑠𝛼𝑠

2(𝑤𝑑+2𝑤𝑢)

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑢

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

Then the best responses are follows:  
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(𝑞𝑑
𝑐 )𝐵𝑅 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑑

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝛿𝑐𝛿𝑠(−2𝑠𝑑+𝑠𝑢)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

(𝑞𝑑
𝑠 )𝐵𝑅 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑑

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝛿𝑐
2(2𝑠𝑑−𝑠𝑢)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

(𝑞𝑢
𝑐 )𝐵𝑅 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑢

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝛿𝑐𝛿𝑠(𝑠𝑑−2𝑠𝑢)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

(𝑞𝑢
𝑠 )𝐵𝑅 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑢

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝛿𝑐
2(−𝑠𝑑+2𝑠𝑢)

3(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
   

 

Appendix A.2. 

 Appendix A.2. represents proof of Case [3] in Table 3. 

(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 2𝑏𝑐𝛼𝑐
2𝒒𝒖

𝒄 − 𝛿𝑐𝜆4 = 0         (A-2-1) 

(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 + 𝑠𝑢) − 2𝑏𝑠𝛼𝑠
2𝒒𝒖

𝒔 − 𝛿𝑠𝜆4 = 0        (A-2-2) 

𝑤𝑢 − 𝛿𝑐𝒒𝒖
𝒄 − 𝛿𝑠𝒒𝒖

𝒔 = 0             (A-2-3) 

From Equation (A-2-1) and Equation (A-2-2), we derive a new equation as follows: 

𝑏𝑐𝛼𝑐
2𝛿𝑠𝒒𝒖

𝒄 − 𝑏𝑠𝛼𝑠
2𝛿𝑐𝒒𝒖

𝒔 =
𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠+𝑠𝑢)

2
      (A-2-4) 

𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 , and 𝜆4 are derived by solving the simultaneous equations, Equation (A-2-3) and 

Equation (A-2-4), as follows: 

𝒒𝒖
𝒄 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

2𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

−𝛿𝑐𝛿𝑠𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

𝒒𝒖
𝒔 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

2𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝛿𝑐
2𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

𝜆4 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

−2𝑏𝑐𝛼𝑐
2𝑏𝑠𝛼𝑠

2𝑤𝑢

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑢

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

 

Appendix A.3. 

Appendix A.3. represents proof of Case [4] in Table 3. 
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(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐 − 𝑏𝑐𝛼𝑐
2𝒒𝒖

𝒄 ) − 2𝑏𝑐𝛼𝑐
2𝒒𝒅

𝒄 − 𝛿𝑐𝜆1 = 0       (A-3-1) 

(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠 − 𝑏𝑠𝛼𝑠
2𝒒𝒖

𝒔 + 𝑠𝑑) − 2𝑏𝑠𝛼𝑠
2𝒒𝒅

𝒔 − 𝛿𝑠𝜆1 = 0      (A-3-2) 

𝑤𝑑 − 𝛿𝑐𝒒𝒅
𝒄 − 𝛿𝑠𝒒𝒅

𝒔 = 0             (A-3-3) 

From Equation (A-3-1) and Equation (A-3-2), we derive a new equation as follows: 

𝑏𝑐𝛼𝑐
2𝛿𝑠𝒒𝒖

𝒄 − 𝑏𝑠𝛼𝑠
2𝛿𝑐𝒒𝒖

𝒔 =
𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠+𝑠𝑢)

2
      (A-3-4) 

𝑞𝑢
𝑐 , 𝑞𝑢

𝑠 , and 𝜆4 are derived by solving the simultaneous equations, Equation (A-3-3) and 

Equation (A-3-4), as follows: 

𝒒𝒅
𝒄 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

2𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

−𝛿𝑐𝛿𝑠𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

𝒒𝒅
𝒔 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

2𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝛿𝑐
2𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

𝜆1 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

−2𝑏𝑐𝛼𝑐
2𝑏𝑠𝛼𝑠

2𝑤𝑑

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
+

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑑

(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

 

Appendix B. 

 Appendix B shows the calculation and the proof for derivation used in Corollary 1 in 

Subsection 3.2.1.4. 

𝜕(𝑞𝑑
𝑐 )

𝐵𝑅

𝜕𝑤𝑑
=

𝑏𝑠𝛼𝑠
2𝛿𝑐

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜕(𝑞𝑑
𝑠 )

𝐵𝑅

𝜕𝑤𝑑
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜕(𝑞𝑢
𝑐 )𝐵𝑅

𝜕𝑤𝑑
= 0  

𝜕(𝑞𝑢
𝑠 )𝐵𝑅

𝜕𝑤𝑑
= 0  

𝜕(𝑞𝑑
𝑐 )

𝐵𝑅

𝜕𝑤𝑢
= 0  
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𝜕(𝑞𝑑
𝑠 )

𝐵𝑅

𝜕𝑤𝑢
= 0  

𝜕(𝑞𝑢
𝑐 )𝐵𝑅

𝜕𝑤𝑢
=

𝑏𝑠𝛼𝑠
2𝛿𝑐

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜕(𝑞𝑢
𝑠 )𝐵𝑅

𝜕𝑤𝑢
=

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

 The above results are only applied to a case of: 

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑑−𝛿𝑐𝛿𝑠(2𝑠𝑑−𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0   

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤𝑑+𝛿𝑐
2(2𝑠𝑑−𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤𝑢−𝛿𝑐𝛿𝑠(−𝑠𝑑+2𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤𝑢+𝛿𝑐
2(−𝑠𝑑+2𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  

𝑏𝑠𝛼𝑠
2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝑏𝑠𝛼𝑐
2𝛼𝑠

2(2𝑤𝑑+𝑤𝑢)+𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0   

𝑏𝑠𝛼𝑠
2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝑏𝑠𝛼𝑐
2𝛼𝑠

2(𝑤𝑑+2𝑤𝑢)+𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
≥ 0  

 

Appendix C. 

 Appendix C shows the calculation and the proof for derivation used in Table 4 in 

Subsection 3.2.2.4. Best responses of the utility company in the second stage could be derived 

by using the KKT conditions of the utility company’s problem as follows:  

ℒ3 = 𝜋ℎ + 𝜆7(𝑤 − 𝒘𝒅 − 𝒘𝒖) + 𝜆8𝒘𝒅 + 𝜆9𝒘𝒖        (C-1) 

𝜕ℒ3

𝜕𝒘𝒅
= 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 − 𝜆7 + 𝜆8 = 0         (C-2) 

𝜕ℒ3

𝜕𝒘𝒖
= 𝑝𝑢 − 2𝑐𝑤𝒘𝒖 − 𝜆7 + 𝜆9 = 0          (C-3) 

0 ≤ 𝜆7 ⊥ [𝑤 − 𝒘𝒅 − 𝒘𝒖] ≥ 0           (C-4) 
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0 ≤ 𝜆8 ⊥ [𝒘𝒅] ≥ 0              (C-5) 

0 ≤ 𝜆9 ⊥ [𝒘𝒖] ≥ 0              (C-6) 

We have eight cases for positivity of 𝜆7, 𝜆8, and 𝜆8, since each lambda can be equal to or 

greater than zero.  

(1) 𝜆7 = 0, 𝜆8 = 0, 𝜆9 = 0    

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 = 0            (C-1-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 = 0              (C-1-3) 

𝑤 − 𝒘𝒅 − 𝒘𝒖 ≥ 0              (C-1-4) 

𝒘𝒅 ≥ 0                (C-1-5) 

𝒘𝒖 ≥ 0                (C-1-6) 

𝒘𝒅 =
𝑝𝑑 + 𝑝𝑒𝛼𝑒

2𝑐𝑤
, 𝒘𝒖 =

𝑝𝑢

2𝑐𝑤
, 𝜆7 = 0, 𝜆8 = 0, 𝜆9 = 0 

 

(2) 𝜆7 = 0, 𝜆8 = 0, 𝜆9 > 0   

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 = 0            (C-2-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 + 𝜆9 = 0             (C-2-3) 

𝑤 − 𝒘𝒅 − 𝒘𝒖 ≥ 0              (C-2-4) 

𝒘𝒅 ≥ 0                (C-3-5) 

𝒘𝒖 = 0                (C-2-6)

  

𝒘𝒅 =
𝑝𝑑 + 𝑝𝑒𝛼𝑒

2𝑐𝑤
, 𝒘𝒖 = 0, 𝜆7 = 0, 𝜆8 = 0, 𝜆9 = −𝑝𝑢 

This solution is infeasible, since 𝑝𝑢 > 0 results in 𝜆9 < 0. 
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(3) 𝜆7 = 0, 𝜆8 > 0, 𝜆9 = 0   

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 + 𝜆8 = 0           (C-3-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 = 0              (C-3-3) 

𝑤 − 𝒘𝒅 − 𝒘𝒖 ≥ 0              (C-3-4) 

𝒘𝒅 = 0                (C-3-5) 

𝒘𝒖 ≥ 0                (C-3-6) 

𝒘𝒅 = 0, 𝒘𝒖 =
𝑝𝑢

2𝑐𝑤
, 𝜆7 = 0, 𝜆8 = −𝑝𝑑 − 𝑝𝑒𝛼𝑒 , 𝜆9 = 0 

This solution is infeasible, since 𝑝𝑑 > 0 and 𝑝𝑒𝛼𝑒 > 0 result in 𝜆8 < 0. 

 

(4) 𝜆7 > 0, 𝜆8 = 0, 𝜆9 = 0   

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 − 𝜆7 = 0           (C-4-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 − 𝜆7 = 0             (C-4-3) 

𝑤 − 𝒘𝒅 − 𝒘𝒖 = 0              (C-4-4) 

𝒘𝒅 ≥ 0                (C-4-5) 

𝒘𝒖 ≥ 0                (C-4-6) 

𝒘𝒅 =
𝑝𝑑+𝑝𝑒𝛼𝑒−𝑝𝑢+2𝑐𝑤𝑤

4𝑐𝑤
, 𝒘𝒖 =

−𝑝𝑑−𝑝𝑒𝛼𝑒+𝑝𝑢+2𝑐𝑤𝑤

4𝑐𝑤
, 𝜆7 =

𝑝𝑑+𝑝𝑒𝛼𝑒+𝑝𝑢−2𝑐𝑤𝑤

2
, 𝜆8 = 0, 𝜆9 = 0  

 

(5) 𝜆7 = 0, 𝜆8 > 0, 𝜆9 > 0  

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 + 𝜆8 = 0           (C-5-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 + 𝜆9 = 0             (C-5-3) 

𝑤 − 𝒘𝒅 − 𝒘𝒖 ≥ 0              (C-5-4) 

𝒘𝒅 = 0                (C-5-5) 
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𝒘𝒖 = 0                (C-5-6) 

𝒘𝒅 = 0, 𝒘𝒖 = 0, 𝜆7 = 0, 𝜆8 = −𝑝𝑑 − 𝑝𝑒𝛼𝑒 , 𝜆9 = −𝑝𝑢 

This solution is infeasible, since 𝑝𝑑 > 0, 𝑝𝑒𝛼𝑒 > 0, and 𝑝𝑢 > 0 result in 𝜆8 < 0 and 𝜆9 < 0. 

 

(6) 𝜆7 > 0, 𝜆8 > 0, 𝜆9 = 0  

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 − 𝜆7 + 𝜆8 = 0          (C-6-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 − 𝜆7 = 0             (C-6-3) 

𝑤 − 𝒘𝒅 − 𝒘𝒖 = 0              (C-6-4) 

𝒘𝒅 = 0                (C-6-5) 

𝒘𝒖 ≥ 0                (C-6-6) 

𝒘𝒅 = 0, 𝒘𝒖 = 𝑤, 𝜆7 = 𝑝𝑢, 𝜆8 = −𝑝𝑑 − 𝑝𝑒𝛼𝑒 + 𝑝𝑢, 𝜆9 = 0 

 

(7) 𝜆7 > 0, 𝜆8 = 0, 𝜆9 > 0   

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 − 𝜆7 = 0           (C-7-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 − 𝜆7 + 𝜆9 = 0            (C-7-3) 

𝑤 − 𝒘𝒅 − 𝒘𝒖 = 0              (C-7-4) 

𝒘𝒅 ≥ 0                (C-7-5) 

𝒘𝒖 = 0                (C-7-6) 

𝒘𝒅 = 𝑤, 𝒘𝒖 = 0, 𝜆7 = 𝑝𝑑 + 𝑝𝑒𝛼𝑒 , 𝜆8 = 0, 𝜆9 = 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 

 

(8) 𝜆7 > 0, 𝜆8 > 0, 𝜆9 > 0  

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑐𝑤𝒘𝒅 − 𝜆7 + 𝜆8 = 0          (C-8-2) 

𝑝𝑢 − 2𝑐𝑤𝒘𝒖 − 𝜆7 + 𝜆9 = 0            (C-8-3) 
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𝑤 − 𝒘𝒅 − 𝒘𝒖 = 0              (C-8-4) 

𝒘𝒅 = 0                (C-8-5) 

𝒘𝒖 = 0                (C-8-6) 

𝒘𝒅 = 0, 𝒘𝒖 = 0 

This solution is infeasible, since 𝑤 should be positive. 

 

Appendix D. 

Appendix D shows the calculation and the proof for derivation used in Corollary 2 in 

Section 3.2.2.4. 

𝜕𝑤𝑑
𝐵𝑅

𝜕𝑝𝑑
=

1

4𝑐𝑤
> 0  

𝜕𝑤𝑢
𝐵𝑅

𝜕𝑝𝑑
=

−1

4𝑐𝑤
< 0  

𝜕𝑤𝑑
𝐵𝑅

𝜕𝑝𝑢
=

−1

4𝑐𝑤
< 0  

𝜕𝑤𝑢
𝐵𝑅

𝜕𝑝𝑢
=

1

4𝑐𝑤
> 0  

 The above results are only applied to a case of: 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 + 𝑝𝑢 ≥ 2𝑐𝑤𝑤, 

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 ≥ −2𝑐𝑤𝑤,  

and  

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 𝑝𝑢 ≤ 2𝑐𝑤𝑤. 
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Appendix E. 

 Appendix E shows the calculation and the proof for derivation used in Proposition 1 in 

Section 3.2.3.3. From the farmers’ KKT conditions in the first stage, Equations (53), (54), (55), 

and (56), we have two equations for 𝑝𝑑 and 𝑝𝑢.  

[(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2{(𝑞𝑑

𝑐 )𝐵𝑅 + (𝑞𝑢
𝑐 )𝐵𝑅}]

𝜕(𝑞𝑑
𝑐 )

𝐵𝑅

𝜕𝑝𝑑
+ [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 𝑏𝑠𝛼𝑠

2{(𝑞𝑑
𝑠 )𝐵𝑅 +

(𝑞𝑢
𝑠 )𝐵𝑅}]

𝜕(𝑞𝑑
𝑠 )

𝐵𝑅

𝜕𝑝𝑑
+ 𝑠𝑑

𝜕(𝑞𝑑
𝑠 )

𝐵𝑅

𝜕𝑝𝑑
− 𝑤𝑑

𝐵𝑅 −
𝜕𝑤𝑑

𝐵𝑅

𝜕𝑝𝑑
𝑝𝑑 = 0       (E-1) 

[(𝑎𝑐𝛼𝑐 − 𝑐𝑐𝛼𝑐) − 𝑏𝑐𝛼𝑐
2{(𝑞𝑑

𝑐 )𝐵𝑅 + (𝑞𝑢
𝑐 )𝐵𝑅}]

𝜕(𝑞𝑢
𝑐 )𝐵𝑅

𝜕𝑝𝑢
+ [(𝑎𝑠𝛼𝑠 − 𝑐𝑠𝛼𝑠) − 𝑏𝑠𝛼𝑠

2{(𝑞𝑑
𝑠)𝐵𝑅 +

(𝑞𝑢
𝑠 )𝐵𝑅}]

𝜕(𝑞𝑢
𝑠 )𝐵𝑅

𝜕𝑝𝑢
+ 𝑠𝑢

𝜕(𝑞𝑢
𝑠 )𝐵𝑅

𝜕𝑝𝑢
− 𝑤𝑢

𝐵𝑅 −
𝜕𝑤𝑢

𝐵𝑅

𝜕𝑝𝑢
𝑝𝑢 = 0       (E-2) 

We have the following results from the best responses of the utility company in the second 

stage and the farmers in the third stage: 

(𝑞𝑑
𝑐 )𝐵𝑅 + (𝑞𝑢

𝑐 )𝐵𝑅 =
2𝛿𝑠

2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−2𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤−𝛿𝑐𝛿𝑠(𝑠𝑑+𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

  

(𝑞𝑑
𝑠 )𝐵𝑅 + (𝑞𝑢

𝑠 )𝐵𝑅 =
−2𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+2𝛿𝑐

2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤+𝛿𝑐

2(𝑠𝑑+𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

  

𝜕(𝑞𝑑
𝑐 )

𝐵𝑅

𝜕𝑝𝑑
=

𝑏𝑠𝛼𝑠
2𝛿𝑐

4𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)
  

𝜕(𝑞𝑑
𝑠 )

𝐵𝑅

𝜕𝑝𝑑
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

4𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)
  

𝜕(𝑞𝑢
𝑐 )𝐵𝑅

𝜕𝑝𝑢
=

𝑏𝑠𝛼𝑠
2𝛿𝑐

4𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)
  

𝜕(𝑞𝑢
𝑠 )𝐵𝑅

𝜕𝑝𝑢
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

4𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)
  

𝜕𝑤𝑑
𝐵𝑅

𝜕𝑝𝑑
=

1

4𝑐𝑤
  

𝜕𝑤𝑢
𝐵𝑅

𝜕𝑝𝑢
=

1

4𝑐𝑤
  

We substitute the above values into Equation (E-1) and Equation (E-2) as follows: 
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𝑏𝑠𝛼𝑠
2𝛿𝑐[(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝑏𝑐𝛼𝑐

2(
2𝛿𝑠

2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−2𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤−𝛿𝑐𝛿𝑠(𝑠𝑑+𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
)]

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+

𝑏𝑐𝛼𝑐
2𝛿𝑠[(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑠𝛼𝑠

2(
−2𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+2𝛿𝑐

2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤+𝛿𝑐

2(𝑠𝑑+𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2
+𝑏𝑐𝛼𝑐

2𝛿𝑠
2

)
)]

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

−

2𝑝𝑑 − 𝑝𝑒𝛼𝑒 + 𝑝𝑢 − 2𝑐𝑤𝑤 = 0            (E-1’) 

𝑏𝑠𝛼𝑠
2𝛿𝑐[(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝑏𝑐𝛼𝑐

2(
2𝛿𝑠

2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−2𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤−𝛿𝑐𝛿𝑠(𝑠𝑑+𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
)]

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+

𝑏𝑐𝛼𝑐
2𝛿𝑠[(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑠𝛼𝑠

2(
−2𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+2𝛿𝑐

2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤+𝛿𝑐

2
(𝑠𝑑+𝑠𝑢)

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
)]

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+

𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑝𝑢 − 2𝑐𝑤𝑤 = 0            (E-2’) 

 

Then we can simplify Equation (E-1’) and Equation (E-2’) as follows: 

𝑏𝑠𝛼𝑠
2𝛿𝑐[(3𝑏𝑠𝛼𝑠

2𝛿𝑐
2+𝑏𝑐𝛼𝑐

2𝛿𝑠
2

)(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+2𝑏𝑐𝛼𝑐
2𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+𝑏𝑐𝛼𝑐

2(−3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤+𝛿𝑐𝛿𝑠(𝑠𝑑+𝑠𝑢))]

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

2 +

𝑏𝑐𝛼𝑐
2𝛿𝑠[(𝑏𝑠𝛼𝑠

2𝛿𝑐
2+3𝑏𝑐𝛼𝑐

2𝛿𝑠
2

)(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠
2𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑠𝛼𝑠

2(−3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤−𝛿𝑐

2(𝑠𝑑+𝑠𝑢))]

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

2 +

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

− 2𝑝𝑑 − 𝑝𝑒𝛼𝑒 + 𝑝𝑢 − 2𝑐𝑤𝑤 = 0        (E-1’’) 

𝑏𝑠𝛼𝑠
2𝛿𝑐[(3𝑏𝑠𝛼𝑠

2𝛿𝑐
2+𝑏𝑐𝛼𝑐

2𝛿𝑠
2

)(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+2𝑏𝑐𝛼𝑐
2𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+𝑏𝑐𝛼𝑐

2(−3𝑏𝑠𝛼𝑠
2𝛿𝑐𝑤+𝛿𝑐𝛿𝑠(𝑠𝑑+𝑠𝑢))]

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

2 +

𝑏𝑐𝛼𝑐
2𝛿𝑠[(𝑏𝑠𝛼𝑠

2𝛿𝑐
2+3𝑏𝑐𝛼𝑐

2𝛿𝑠
2

)(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠
2𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑠𝛼𝑠

2(−3𝑏𝑐𝛼𝑐
2𝛿𝑠𝑤−𝛿𝑐

2(𝑠𝑑+𝑠𝑢))]

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

2 +

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+ 𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑝𝑢 − 2𝑐𝑤𝑤 = 0        (E-2’’) 

 

Then we can simplify Equation (X-1’’) and Equation (X-2’’) further as follows: 

𝑏𝑠𝛼𝑠
2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝛼𝑐
2𝑏𝑠𝛼𝑠

2𝑤

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+ (−2𝑝𝑑 − 𝑝𝑒𝛼𝑒 + 𝑝𝑢 −

2𝑐𝑤𝑤) = 0              (E-1’’’) 
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𝑏𝑠𝛼𝑠
2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝛼𝑐
2𝑏𝑠𝛼𝑠

2𝑤

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

+ (𝑝𝑑 + 𝑝𝑒𝛼𝑒 − 2𝑝𝑢 −

2𝑐𝑤𝑤) = 0              (E-2’’’) 

 

Then we find the equilibrium values of 𝑝𝑑 and 𝑝𝑢  after solving the above simultaneous 

equations, as follows: 

𝑝𝑑
𝑁𝐸 = 𝐴 − 2𝑐𝑤𝑤 +

2𝐵𝑑+𝐵𝑢−𝑝𝑒𝛼𝑒

3
     

𝑝𝑢
𝑁𝐸 = 𝐴 − 2𝑐𝑤𝑤 +

𝐵𝑑+2𝐵𝑢+𝑝𝑒𝛼𝑒

3
  

, where  

𝐴 =
𝑏𝑠𝛼𝑠

2𝛿𝑐(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝑏𝑐𝛼𝑐
2𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)−𝑏𝑐𝛼𝑐

2𝑏𝑠𝛼𝑠
2𝑤

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)

, 

𝐵𝑑 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑑

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)
,  

and 𝐵𝑢 =
𝑏𝑐𝛼𝑐

2𝛿𝑠𝑠𝑢

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2
)
. 

 

Appendix F. 

 Appendix F shows the calculation and the proof for derivation used in Section 3.2.4.  

Appendix F.1.  

Appendix F.1 represents proof of Proposition 2-1 which demonstrates Equilibrium of 

Domain [2]. Under the conditions of (2-1) 𝐵𝑑 + 𝐵𝑢 ≥ 6𝑐𝑤𝑤 − 𝑝𝑒𝛼𝑒 − 2𝐴, (2-2) 𝐵𝑑 − 𝐵𝑢 ≥

−𝑝𝑒𝛼𝑒 − 6𝑐𝑤𝑤 , and (2-3)  𝐵𝑑 − 𝐵𝑢 ≤ −𝑝𝑒𝛼𝑒 + 6𝑐𝑤𝑤 , the best responses of the utility 

company for the water allocation of Domain [2] in the second stage are as follows: 

𝑤𝑑
𝐵𝑅 =

𝑝𝑑+𝑝𝑒𝛼𝑒−𝑝𝑢+2𝑐𝑤𝑤

4𝑐𝑤
   

𝑤𝑢
𝐵𝑅 =

−𝑝𝑑−𝑝𝑒𝛼𝑒+𝑝𝑢+2𝑐𝑤𝑤

4𝑐𝑤
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In Domain [2], we find the equilibrium values of the utility company’s decision on water 

allocation by substituting 𝑝𝑑
𝑁𝐸 and 𝑝𝑢

𝑁𝐸 into the best responses of the water allocations in 

the second stage, as follows: 

(𝑤𝑑)𝑁𝐸1 =
𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
+

(𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
  

(𝑤𝑢)𝑁𝐸1 = −
𝑏𝑐𝛼𝑐

2𝛿𝑠(𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
+

(−𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
  

Then, we find the equilibrium values of the farmers’ decisions on land allocation by 

substituting (𝑤𝑑)𝑁𝐸1 and (𝑤𝑢)𝑁𝐸1 into the best responses of the land allocation in the third 

stage, as follows: 

(𝑞𝑑
𝑐 )𝑁𝐸1 =

4𝑐𝑤[𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑠𝛼𝑠

2𝛿𝑐(𝐵𝑑−𝐵𝑢+𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)−4𝑐𝑤𝛿𝑐𝛿𝑠(2𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
  

(𝑞𝑑
𝑠 )𝑁𝐸1 =

−4𝑐𝑤[𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑐𝛼𝑐

2𝛿𝑠(𝐵𝑑−𝐵𝑢+𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)+4𝑐𝑤𝛿𝑐
2(2𝑠𝑑−𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
  

(𝑞𝑢
𝑐 )𝑁𝐸1 =

4𝑐𝑤[𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑠𝛼𝑠

2𝛿𝑐(−𝐵𝑑+𝐵𝑢−𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)+4𝑐𝑤𝛿𝑐𝛿𝑠(𝑠𝑑−2𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
  

(𝑞𝑢
𝑠 )𝑁𝐸1 =

−4𝑐𝑤[𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)]+𝑏𝑐𝛼𝑐

2𝛿𝑠(−𝐵𝑑+𝐵𝑢−𝑝𝑒𝛼𝑒+6𝑐𝑤𝑤)−4𝑐𝑤𝛿𝑐
2(𝑠𝑑−2𝑠𝑢)

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
  

 

Appendix F.2. 

Appendix F.2 represents proof of Proposition 2-2 which demonstrates Equilibrium of 

Domain [3]. Under Condition (3-1) of  𝐵𝑑 − 𝐵𝑢 ≤ −𝑝𝑒𝛼𝑒 − 6𝑐𝑤𝑤, the equilibrium values of 

the utility company’s decision on the water allocations of Domain [3] in the second stage are 

as follows: 

(𝑤𝑑)𝑁𝐸2 = 0  

(𝑤𝑢)𝑁𝐸2 = 𝑤  
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In Domain [3], the corn market and the switchgrass market are the monopoly of the 

upstream farmer since the downstream farmer does not produce any crop in the third stage. The 

equilibrium values of the farmers’ decision on the land allocation of Domain [3] in the third 

stage are as follows: 

(𝑞𝑑
𝑐 )𝑁𝐸2 = 0  

(𝑞𝑑
𝑠 )𝑁𝐸2 = 0  

(𝑞𝑢
𝑐 )𝑁𝐸2 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤−𝛿𝑐𝛿𝑠𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
   

(𝑞𝑢
𝑠 )𝑁𝐸2 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤+𝛿𝑐
2𝑠𝑢

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

 

Appendix F.3. 

Appendix F.3 represents proof of Proposition 2-2 which demonstrates Equilibrium of 

Domain [4]. Under Condition (3-1) of  𝐵𝑑 − 𝐵𝑢 ≥ −𝑝𝑒𝛼𝑒 + 6𝑐𝑤𝑤, the equilibrium values of 

the utility company’s decision on the water allocations of Domain [4] in the second stage are 

as follows: 

(𝑤𝑑)𝑁𝐸3 = 𝑤  

(𝑤𝑢)𝑁𝐸3 = 0  

In Domain [4], the corn market and the switchgrass market are the monopoly of the upstream 

farmer since the downstream farmer does not produce any crop in the third stage. The 

equilibrium values of the farmers’ decision on the land allocation of Domain [4] in the third stage are 

as follows: 

(𝑞𝑑
𝑐 )𝑁𝐸3 =

𝛿𝑠
2(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)−𝛿𝑐𝛿𝑠(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑠𝛼𝑠

2𝛿𝑐𝑤−𝛿𝑐𝛿𝑠𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  



 

108 

 

 

(𝑞𝑑
𝑠 )𝑁𝐸3 =

−𝛿𝑐𝛿𝑠(𝑎𝑐𝛼𝑐−𝑐𝑐𝛼𝑐)+𝛿𝑐
2(𝑎𝑠𝛼𝑠−𝑐𝑠𝛼𝑠)+2𝑏𝑐𝛼𝑐

2𝛿𝑠𝑤+𝛿𝑐
2𝑠𝑑

2(𝑏𝑐𝛼𝑐
2𝛿𝑠

2+𝑏𝑠𝛼𝑠
2𝛿𝑐

2)
  

(𝑞𝑢
𝑐 )𝑁𝐸3 = 0   

(𝑞𝑢
𝑠 )𝑁𝐸3 = 0  

 

Appendix G. 

Appendix G shows the calculation and the proof for derivation used in Corollary 3 in 

Section 4.1. 

𝜕𝑝𝑑

𝜕𝑠𝑑
=

2𝑏𝑐𝛼𝑐
2𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0    

𝜕𝑝𝑢

𝜕𝑠𝑑
=

𝑏𝑐𝛼𝑐
2𝛿𝑠𝑠𝑑

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜕𝑝𝑑

𝜕𝑠𝑢
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0    

𝜕𝑝𝑢

𝜕𝑠𝑢
=

2𝑏𝑐𝛼𝑐
2𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜕𝑤𝑑

𝜕𝑠𝑑
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0   

𝜕𝑤𝑢

𝜕𝑠𝑑
=

−𝑏𝑐𝛼𝑐
2𝛿𝑠

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0  

𝜕𝑤𝑑

𝜕𝑠𝑢
=

−𝑏𝑐𝛼𝑐
2𝛿𝑠

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0   

𝜕𝑤𝑢

𝜕𝑠𝑢
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

12𝑐𝑤(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜕𝑞𝑑
𝑐

𝜕𝑠𝑑
=

−2𝛿𝑐𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0   

𝜕𝑞𝑑
𝑠

𝜕𝑠𝑑
=

2𝛿𝑐
2

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0   

𝜕𝑞𝑢
𝑐

𝜕𝑠𝑑
=

𝛿𝑐𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0   
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𝜕𝑞𝑢
𝑠

𝜕𝑠𝑑
=

−𝛿𝑐
2

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0  

𝜕𝑞𝑑
𝑐

𝜕𝑠𝑢
=

𝛿𝑐𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0   

𝜕𝑞𝑑
𝑠

𝜕𝑠𝑢
=

−𝛿𝑐
2

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0  

𝜕𝑞𝑢
𝑐

𝜕𝑠𝑢
=

−2𝛿𝑐𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0   

𝜕𝑞𝑢
𝑠

𝜕𝑠𝑢
=

2𝛿𝑐
2

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

 

Appendix H. 

Appendix H shows the calculation and the proof for derivation used in Corollary 4 in 

Section 4.2. 

𝜕𝑝𝑑

𝜕𝑠
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0    

𝜕𝑝𝑢

𝜕𝑠
=

𝑏𝑐𝛼𝑐
2𝛿𝑠

(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  

𝜕𝑤𝑑

𝜕𝑠
= 0   

𝜕𝑤𝑢

𝜕𝑠
= 0  

𝜕𝑞𝑑
𝑐

𝜕𝑠
=

−𝛿𝑐𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0   

𝜕𝑞𝑑
𝑠

𝜕𝑠
=

𝛿𝑐
2

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0   

𝜕𝑞𝑢
𝑐

𝜕𝑠
=

−𝛿𝑐𝛿𝑠

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
< 0   

𝜕𝑞𝑢
𝑠

𝜕𝑠
=

𝛿𝑐
2

3(𝑏𝑠𝛼𝑠
2𝛿𝑐

2+𝑏𝑐𝛼𝑐
2𝛿𝑠

2)
> 0  
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