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ABSTRACT

OUTLIER-RESISTANT MODELS FOR DOUBLY
STOCHASTIC POINT PROCESSES

by

Leo Elsaesser

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Daniel Gervini

This thesis proposes an outlier-resistant multiplicative component model for doubly

stochastic point processes. The model is based on a principal component decomposition

of the log-intensity functions, using heavy-tailed t-distributions for the component scores.

As an example of application, the temporal distribution of bike check-out times in the

Divvy bike sharing system of Chicago is analyzed using the t-model.
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1 Introduction

Point processes are a well studied area in probability and statistics and are the basis

for models in many applications. While mostly single-realization cases are considered,

situations where several replications of the underlying point process are available are

relatively rarely explored in the literature [Gervini, 2017]. In this thesis, we focus on

point processes which have a low intensity that gives rise to only few events but has many

replications in turn. Wu et al. [2013] proposes a model to estimate realization-speci�c

intensity functions with a functional principal component analysis (FPCA) approach, in

which one estimates a covariance function by borrowing strength across all replications.

For our applications, however, some realizations contain such a small number of events,

that even this method is inadequate. Therefore, Gervini [2017] proposes an alternative

FPCA model, which has, among others, the advantage be able to deal with that challenge.

In this thesis, we will study this model and propose an adjustment to better deal with

outliers among the replications.

This thesis is organized as follows. In Chapter 2, we will introduce fundamental ideas

of functional data analysis, which are necessary to understand the model and its charac-

teristics. We will then present the model and our adjustments in Chapter 3. In Chapter

4, we will consider an application to compare the performances of the two models.

Throughout this thesis, we will refer to a realization of the whole process, which is the

set of all events given on the underlying interval, by 'realization' or 'replication'. We will

indicate vectors and matrices by bold symbols. However, the symbol for one realization,

which is a set, will be non-bold to distinguish it from a vector of several replications.
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2 Functional data analysis

In this Chapter, we want to present some topics of functional data analysis to give a

mathematical basis for the model introduced in Chapter 3. In Section 2.1, we will focus

on smoothing data in terms of basis expansions followed by an introduction to principal

component analysis for functional data in Section 2.2.

2.1 Smoothing functional data

Functional data analysis mainly studies discrete data measurements which we assume to

be realizations of a smooth, latent function f . Examples could be height measurements of

children or weather indicators over the year [see Ramsay and Silverman, 2005, Chap. 2].

In practice, we can see functional data as m discretely observed pairs (tj, xj), where xj

is a snapshot of the function at time tj, maybe blurred by measurement error [Ramsay

and Silverman, 2005]:

xj = f(tj) + εj j = 1, . . .m

When we �nd that underlying function, we can further analyze the data and highlight

characteristics or study patterns among the data. We usually assume that the underlying

function is smooth, so that we are able to calculate derivatives. For �nding and investigat-

ing the function f , it would be nice to use techniques of the framework of linear models.

Therefore, we want to express f in terms of a basis function system β = {β1, . . . , βq},

where the basis functions βl are mathematically independent and can approximate f

arbitrarily well by a linear combination of a su�cient number of these functions. We

have

f(t) =

q∑
l=1

clβl(t) or f = cTβ

where c is a vector of coe�cients/parameters cl, which we can �nd with usual regression

techniques. Let's de�ne the m× q matrix B as containing the values βl(tj). Minimizing
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the least-squares criterion

(x−Bc)T (x−Bc) (1)

gives us the known least-square estimator [Montgomery et al., 2012, p. 73]

ĉ =
(
BTB

)−1
BTx.

The di�erence with multivariate data analysis is the basis system β, that we need to

choose. Its choice is important, since the function f inherits attributes of the basis, for

example

Df(t) = cTDβ.

We present here the B-spline basis system, which we are using in our model and because it

is the most common choice for approximating (non-periodic) functional data [Ramsay and

Silverman, 2005, p. 46]. Splines are piece-wise polynomial curves, which pass through

a given set of points and have a certain number of continuous derivatives [cf. Hastie

et al., 2008, chap 5]. The B-spline basis system is a numerically convenient basis for

the spline space. Cubic splines are cubic polynomials on the regions between a certain

number of knots which are connected in a way, such that the spline has continuous second

derivatives on the whole interval (see Figure 1). Since linear combination of splines are

again splines of the same order and the same sequence of knots, the basis system are

splines for themselves [Ramsay and Silverman, 2005, p. 49]. Now, the question is how

many basis function do we need to construct a speci�c cubic spline f with K knots. We

have K + 1 regions with respectively a cubic function fk,

fk(x) = a0k + a1kx+ a2kx
2 + a3kx

3, k = 1, ..., K + 1

3



Figure 1: [Hastie et al., 2008, Fig. 5.2]; Illustration of piece-wise cubic polynomials
(green), with increasing orders of continuity, which �t some arti�cial data. The
blue curve represents the true function, from which the data were generated
with Gaussian noise. The broken vertical lines indicate the positions of two
knots ξ1 and ξ1
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so this gives us 4(K + 1) parameters. On the other hand, we have the K knots εk with

respectively 3 constraints:

fk(εk) = fk+1(εk), f
′

k(εk) = f
′

k+1(εk), f
′′

k (εk) = f
′′

k+1(εk), k = 1, .., K

So we need q = 4(K + 1)− 3K = K + 4 parameter cq, which means that we need K + 4

basis functions. There are many ways to construct such a basis system but the B-spline

basis is popular because it allows e�cient computations even for large number of knots

K [Hastie et al., 2008, p. 144]. An explanation of how it is constructed is given in Hastie

et al., 2008, Appendix Chap. 5.
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Figure 2: B-spline basis functions for �tting the data in Chapter 4.

Figure 2 shows an example of 14 B-splines basis functions, which were created with 10

equally spaced knots. Notice that the functions are only positive on a small part of the

interval. When choosing a B-spline basis system, we can decide on the position as well

as on the number of knots. Techniques for improving knot placement are discussed in de

Boor [2001].

Choosing an amount of knots means to choose q, the number of basis functions and

dimension of the basis expansion. When we choose q large, we get a better �t to data
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and the bias

Bias[f̂(t)] = f(t)− E[f̂(t)]

is small. For q = m, we even achieve interpolation but in that case we are also �tting

noise and we wish to ignore that. For smaller q, we get a smoother function and the

variance of the estimate

Var[f̂(t)] = E[
{
f(t)− E[f̂(t)]

}2

]

goes down. Then, we can e.g. compute sharper con�dence intervals [cf. Montgomery

et al., 2012, ch. 3.4]. This dilemma is called bias-variance trade-o� and often solved by

minimizing the mean-squared error

MSE[f̂(t)] = E[{f(t)− f(t)]}2] =
(
Bias[f̂(t)]

)2
+ Var[f̂(t)].

The smoothness of function f , we get with adjusting q, is often gained by unnecessarily

sacri�cing bias [Ramsay and Silverman, 2005, p. 84]. Therefore, smoothness is often

achieved by using a roughness penalty for a given amount of basis functions. Ramsay

and Silverman [2005] measures the roughness of a function by the integrated squared

second derivative

Pen(f) =

∫
(D2f)2 =

∫
(D2cTβ)2 =

∫
cTD2βD2βTc = cTRc

with R =
∫
D2βD2βT . Since the second derivative exists for cubic splines, we can add

Pen(f) as a penalty term to the least square criterion (1) multiplied by a smoothing

parameter v.

(y −Bc)T (y −Bc) + vcTRc (2)
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By minimizing (2), we obtain the estimated coe�cient vector

ĉ =
(
BTB + vR

)−1
BTy.

[Ramsay and Silverman, 2005, p. 87]. This gives a direct optimization of smoothness in

the function instead of implicitly in term of the number q of basis functions. When we

choose v large, this means that the smoothness of f is more stressed than �tting the data.

For v →∞, f would get linear.

A typical strategy for selecting v is cross-validation. In general, this means to split the

data into training and validation samples, to �t the model to the training samples and

check the result with validation samples. A common technique is to optimize (2) for a

speci�c v with only leaving out one observation and to calculate the resulting error sum

of squares for this observation. When we do this for all data points and sum up the

results, we get a criterion for each v, which we want to minimize [Ramsay and Silverman,

2005, p. 96]. There are also other, faster ways to choose v with cross-validation, like the

GCV-method, which is based on the degrees of freedom for a spline smooth [see Ramsay

and Silverman, 2005, Chap. 5.4.3].

2.2 Principal component analysis for functional data

Let's assume, we got n functions fi after smoothing n replications and we want to explore

the features, which are characterizing most of these functions. With principal component

analysis (PCA), which is a very common concept in multivariate statistics [e.g. see

Izenman, 2008, Chap. 7], we can do this in a very informative and e�ective way.

Here, we will apply methods, known from multivariate statistics, to our functional

analysis. Let's also assume, that the mean of our functions fµ := 1
n

∑n
i=1 fi is zero. We

can achieve this, by subtracting fµ from each function. Ramsay and Silverman [2005]

presents three ways to motivate PCA:
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The �rst is to introduce a weighting function φ, with which we can calculate score values

ui =

∫
φfi, i = 1, . . . , n. (3)

We want to choose a φ, that highlights strongly represented types of variation in the

functions fi. Therefore, we maximize

n∑
i=1

u2i , s.t.

∫
φ2 = 1 (4)

and get our �rst component φ1. Since the mean of our functions is zero, it holds that

nVar(u) =
n∑
i=1

u2i −
1

n

(
n∑
i=1

ui

)2

=
n∑
i=1

u2i −
1

n

(∫
φ

n∑
i=1

fi

)2

=
n∑
i=1

u2i

and thus, maximizing (4) is equal to maximize the variance of u. To get more components,

we can repeat this with the restriction that new components are orthogonal to the existing

ones, i.e.
∫
φkφm = 0. With each component, we get new modes of variation, but Var(u)

will decline with each step and we will stop at a maximum index p.

A second characterization of PCA is in terms of an eigenanalysis of the covariance function

v(s, t) =
1

n

n∑
i=1

fi(s)fi(t). (5)

Let's assume fi ∈ L2 and we can de�ne the linear covariance operator V as

V : L2 → L2, φ 7→ V φ =

∫
v(·, t)φ(t)dt.

Let's also assume that there exits an orthonormal basis of eigenfunctions {φk} of L2 which

ful�lls the eigenequations

V φk = ρkφk (6)
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By (3) we could write fi as

fi =
∞∑
k=1

uikφk

where uik is the respective score of φk. Since

V φk(s) =

∫
1

n

n∑
i=1

fi(s)fi(t)φk(t)dt =
1

n

n∑
i=1

fi(s)

∫
fi(t)φk(t)dt =

1

n

n∑
i=1

fi(s)uik, (7)

we have

ρk = ρk

∫
φkφk =

∫
φkV φk =

∫
φk

1

n

n∑
i=1

fiuik =
1

n

n∑
i=1

uik

∫
φkfi =

1

n

n∑
i=1

u2ik.

So, (4) turns into �nding the eigenvector φk with the largest eigenvalue ρk.

We can solve (6) by discretizing our functions. Therefore, we turn our functions fi into

vectors, by evaluating them on a grid of N equally spaced values on the interval of

interest. V is then a N ×N covariance matrix. Now, we can solve (6), e.g. by singular-

value decomposition, and then, approximate the eigenfunctions φk with interpolation of

the solutions.

To visualize the results, we can plot fµ and functions obtained by adding/subtracting a

multiple of the components βl to/from fµ (e.g. see Figure 5 of Chapter 4).

Another but also equivalent way to motivate principal components is to approximate all

fi as closely as possibly with a set of p orthonormal basis functions φk, i.e. �nd

argmin
φk

n∑
i=1

∫ (
fi −

p∑
k=1

uikφk

)2

. (8)

Seen in that way, PCA is a dimension-reduction technique, which projects the fis into

an optimal p-dimensional subspace. Since

∫
φlfi =

∫
φl

(
p∑

k=1

uikφk +

(
fi −

p∑
k=1

uikφk

))
=

∫
uiklφlφl = uil

we can refer to the uik of (8) as the component scores of (3).
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In our model, we will assume that the fis are realizations of a random process f with µ =

Ef and v(s, t) = cov(f(s), f(t)). Then by (6) we would get the so-called Karhunen�Loève

representation [cf. Wu et al., 2013, p. 4]

f = µ+
∞∑
k=1

Ukφk, (9)

where the component scores Uk are uncorrelated random variables with EUk = 0 and

EU2
k = ρk.

10



3 Multiplicative component models for replicated

point processes

In this Chapter, we give an introduction to the multiplicative component model for

replicated point processes of Gervini [2017], and propose an adjustment to better model

data-sets with outliers.

3.1 The model

A point process X is a random countable set in a space S. We call it locally �nite if

P (#(X ∩B) <∞) = 1 for all bounded B ⊂ S and de�ne XB := X ∩ B [Gervini, 2017,

p. 2]. Realizations of such processes are often modeled as (inhomogeneous) Poisson point

processes:

De�nition 1

[cf. Gervini, 2017, p. 2] Let λ : S → [0,∞) be a locally integrable function on a space

S. Then, a point process X on S is called Poisson point process (PPP) with intensity

function λ, if for any bounded B ⊂ S it holds that

(i) N(B) := #(X ∩B) has Poisson distribution with rate
∫
B
λ.

(ii) Given N(B) = m, the m points in XB are i.i.d. with density λ̃ = λ/
∫
B
λ

Thus, for a PPP X, the density of XB at xB = {t1, . . . , tm} with t1, . . . , tm ∈ B and

m ∈ N is given by

f(xB) = f(xB | m)f(m) with

f(m) = exp

(
−
∫
B

λ(t)dt

) (∫
B
λ(t)dt

)m
m!

f(xB | m) =
m∏
j=1

λ(tj)∫
B
λ(t)dt

.

(10)

When we get several replications of a point process X, it would be very restrictive to

model them with a unique underlying intensity function λ. Therefore, we assume that

11



there are subject-speci�c λ's for every realization, which occur as latent random e�ects

[Gervini, 2017, p. 3]. We get the doubly stochastic process (X,Λ), where Λ is a latent

intensity process, which characterizes the distribution of X.

In the following, we assume that all realizations of X are observed on the same region

B ⊂ S and neglect the index B.

Our aim is to �nd a model for Λ, which gives us reasonable intensity functions λ1, . . . , λn

for n independent realizations x1, . . . , xn of X and highlights their variation. Since the

intensity function of a PPP takes only non-negative values, we model Λ as the exponential

of an unconstrained function log Λ. Let's assume that we can write log Λ as in (9). When

we also assume that log Λ − E[log Λ] is Gaussian, we have that the component scores

Uk are also Gaussian and stochastically independent. This leads us to the following

multiplicative component model [Gervini, 2017, p. 3]

Λ = λ0

p∏
k=1

ξUk
k or log Λ = µ+

p∑
k=1

Ukφk (11)

where λ0 = expµ is the baseline intensity and ξk = log φk, k = 1, . . . p are multiplicative

components. µ ∈ L2(B) and φ1, . . . , φp are orthonormal functions in L2(B). The Uks

are independent N(0, σ2
k) random variables. For a realization x of X, we have a latent

realization u := (u1, . . . , up) of U := (U1, . . . , Up) which gives us the respective latent

intensity λ.

3.2 Fitting the model

After de�ning our general model, we want to �t the model for n independent real-

izations x1, . . . , xn. We model µ = cT0 β and
{
φk = cTkβ

}
k=1,...,p

in term of a basis

β := (β1, . . . , βq)
T . For temporal processes, where S = R, we can use a B-spline basis

(see Chapter 2.1). If we choose a speci�c number of components p, we get the following

vector of parameters

θ = (c0, c1, . . . , cp, σ
2
1, . . . , σ

2
p)
T . (12)
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We estimate θ by penalized maximum likelihood:

θ̂ = argmax
θ

ρn(θ)

where

ρn(θ) =
1

n

n∑
i=1

log fθ(xi)− ν1P (µ)− ν2
p∑

k=1

P (φk) (13)

We have two di�erent smoothing parameters ν1 and ν2 for µ and the φks, because the

φks are orthonormal functions with unit norm and µ has no unit norm.

We will proceed as follows: We update θ in the order c0, c1, σ
2
1, . . . , cp, σ

2
p with a Newton-

Raphson algorithm to maximize ρn(θ). For a given θ, we can also approximate fθ(xi)

and ûi = Eθ [U | xi]. The latter gives us estimates for the latent variables λ1, . . . , λn (see

Chapter 3.5). Then, we choose smoothing parameters by cross-validation.

3.3 Modeling Λ with t-distributed component scores

For our model in (11), we were assuming that log Λ− E[log Λ] is Gaussian and got that

the component scores are independent N(0, σ2
k) random variables. This makes the ML-

Estimation easy, however, for some applications it is not appropriate to assume that the

underlying distribution is light-tailed.

In this thesis, we model the Uks in term of p independent t-distributed random variables.

This gives us the following density for U:

f(u) =

p∏
k=1

c

σk

(
1 +

1

v

(
uk
σk

)2
)− v+1

2

with c =
Γ
(
v+1
2

)
Γ
(
v
2

)√
πv

v ∈ N is the number of degrees of freedom and the σk ∈ R+ are scaling parameters

for each Uk. Even though, the σ2
ks are not the variances of the component scores (it's

V ar(Uk) = σ2
k

v
v−2 for v > 2), they will take over the role of the variances of the normal

distributed component scores in θ. For our calculations, we manually choose v (mostly

v = 1) and write fθ(u) instead of f(u; v, σ1, . . . , σp). Since we are still using ML-

13



Estimation, we also need to calculate

log fθ(u) =

p∑
k=1

log c− 1

2
log σ2

k −
v + 1

2
log

(
1 +

1

v

(
uk
σk

)2
)
. (14)

3.4 Updating σ2k

We want to maximize ρn(θ) and we are doing this for one parameter at a time. In our

t-model, we have the same calculations for the cks (except for the Laplace approximation,

see Chapter 3.5) but the ones for the σ2
ks are changing.

For the normal distributed Uks, we were able to explicitly solve

∂

∂σ2
k

ρn(θ) = 0

and got the formula

(
σ2
k

)new
=

1

n

n∑
i=1

Eθold

[
U2
k | xi

]
. (15)

Eθ [Uk | xi] can be found with the Laplace approximation (see Chapter 3.5). For the

t-distributed Uks, we get

0
!

=
∂

∂σ2
k

ρn(θ) =
1

n

n∑
i=1

∂

∂σ2
k

log fθ(xi)

=
1

n

n∑
i=1

Eθ

[
∂

∂σ2
k

log fθ(U) | xi
]

For the second transformation see Gervini [2017, p. 4]. By di�erentiating (14), we get

∂

∂σ2
k

log fθ(u) = − 1

2σ2
k

− v + 1

2

1

1 + 1
v
(uk
σk

)2
(−1)

u2k
vσ4

k

= − 1

2σ2
k

+
(v + 1)u2k
vσ2

k + u2k

1

2σ2
k

=
1

2σ2
k

(
(v + 1)u2k
vσ2

k + u2k
− 1

)

14



which gives us

0
!

=
∂

∂σ2
k

ρn(θ) =
1

n

n∑
i=1

1

2σ2
k

(
Eθ

[
(v + 1)U2

k

vσ2
k + U2

k

| xi
]
− 1

)

Here, σ2
k is inside the expected value, so, we cannot �nd a explicit solution like in (15).

Therefore, we approximate

Eθ

[
(v + 1)U2

k

vσ2
k + U2

k

| xi
]
≈ (v + 1)Eθ [U2

k | xi]
vσ2

k + Eθ [U2
k | xi]

to keep the calculations simple. For �xed k, we de�ne u2i := Eθ[U2
k | xi] and we get

0
!

=
1

n

n∑
i=1

1

2σ2
k

(
(v + 1)u2i
vσ2

k + u2i
− 1

)
n

!
=

n∑
i=1

(v + 1)u2i
vσ2

k + u2i

σ2
k

!
=

1

n

n∑
i=1

(v + 1)u2i
v + u2i /σ

2
k

This is a recursive formula for σ2
k and we hope to get close to a �x point after some

iterations. Let's de�ne the function

g(x) :=
1

n

n∑
i=1

(v + 1)u2i
v + u2i /x

Obviously, g is strictly monotonously increasing in x and g : (0,∞)→ (0, v+1
v

1
n

∑n
i=1 u

2
i ).

So, g must have at least one �x point (ref: Brouwer �x-point theorem). We can estimate

g(x) =
1

n

n∑
i=1

(v + 1)u2i
v + u2i /x

= x
1

n

n∑
i=1

(v + 1)u2i
vx+ u2i

> x
1

n

n∑
i=1

(v + 1)u2i
vx+ u2max

> x
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for

(v + 1) 1
n

∑n
i=1 u

2
i

vx+ u2max

> 1

(v + 1)
1

n

n∑
i=1

u2i > vx+ u2max

v + 1

v

1

n

n∑
i=1

u2i −
u2max

v
> x

Thus, there is a �x point of g in the interval

(
v + 1

v

1

n

n∑
i=1

u2i −
u2max

v
,
v + 1

v

1

n

n∑
i=1

u2i

)
.

3.5 The Laplace approximation

When we model the intensity functions of a PPP X as a stochastic process, there exist

no closed form for the density fθ(x) [Gervini, 2017, p. 7]. However, we would like to

get a value for fθ(x) for a given θ to compute the score ρn(θ) (see (13)). Therefore, we

compute it by Laplace approximation of the integral overU [cf. Gervini, 2017, Chap. 1.5].

By doing so, we also get values for the �rst two moments of U | x. We need these to

update our parameters (see Chapter 3.4). We can write

fθ(x) =

∫∫
fθ(x | u)fθ(u)du =

∫∫
exp g(x,θ)(u)du

with

g(x,θ)(u) = log fθ(x | u) + log fθ(u) (16)

For û = argmax g(x,θ)(u), we have∇g(x,θ) (û) = 0. Thus, we get the Taylor approximation

g(x,θ)(u) ≈ g(x,θ)(û) + .5 (u− û)T Hg(x,θ)(û) (u− û)
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and we can approximate

fθ(x) =

∫∫
exp g(x,θ)(u)du

≈
∫∫

exp
(
g(x,θ)(û) + .5 (u− û)T Hg(x,θ)(û) (u− û)

)
du

= exp
(
g(x,θ)(û)

) ∫∫
exp

(
−.5 (u− û)T S−1 (u− û)

)
du

= exp
(
g(x,θ)(û)

)
(2π)p/2 det(S)1/2

(17)

with S =
{
−Hg(x,θ)(û)

}−1
. In the last step, we used integration over the density of

a multivariate normal distribution Np(û,S). Note, that S should be positive-de�nite

[Chuong, 2008]. So, to approximate fθ(x), we need to �nd û and S.

We �nd û = argmax g(x,θ)(u) by a few steps of Newton-Raphson:

ûnew = ûold −
(
Hg(x,θ)(û

old)
)−1∇g(x,θ) (ûold)

We need to calculate ∇g(x,θ) and Hg(x,θ), which we get by �nding ∇u log fθ(x | u),

∇ log fθ(u), Hu log fθ(x | u), and ∇ log fθ(u) (see (16)).

fθ(x | u) is just the density of x for a given λu. We have its formula in (10). Thus,

log fθ(x | u) = −
∫
B

λu(t)dt− logm! +
m∑
j=1

log λu(tj)

If we write φ := (φ1, . . . , φp)
T , we have by (11) that

log λu = µ+ uTφ and λu = exp
(
µ+ uTφ

)
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and so

∇u log λu = φ

Hu log λu ≡ 0

∇uλu = λuφ

Huλu = λuφφ
T .

With this, we can calculate

∇u log fθ(x | u) = −
∫
B

λu(t)φ(t)dt+
m∑
j=1

φ(tj)

and

Hu log fθ(x | u) = −
∫
B

λu(t)φ(t)φ(t)Tdt. (18)

log fθ(u) is the marginal density of U (or Λ). With normal distributed Uks, we got that

∂

∂uk
log fθ(u) = −uk

σ2
k

and
∂2

∂2uk
log fθ(u) = − 1

σ2
k

k = 1, . . . , p. (19)

When we model the component scores by independent t-distributed random variables,

we derive from (14) that

∂

∂uk
log fθ(u) = −v + 1

2

1

1 + 1
v
(uk
σk

)2
2uk
vσ2

k

= −(v + 1)uk
vσ2

k + u2k
k = 1, . . . , p.

For H log fθ(u), we derive

∂2

∂2uk
log fθ(u) = −(v + 1)

(vσ2
k + u2k)− uk2uk
(vσ2

k + u2k)
2

= −(v + 1) (vσ2
k − u2k)

(vσ2
k + u2k)

2 k = 1, . . . , p

(20)
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and

∂2

∂uk1∂uk2
log fθ(u) = 0 k1, k2 = 1, . . . , p; k1 6= k2.

Now, we can also calculate S with Hg(x,θ)(û).

Moreover, we get by (17), that one could write

fθ(x | u)fθ(u) = exp g(x,θ)(u) ≈ exp
(
g(x,θ)(û)

)
(2π)p/2 det(S)1/2ϕ(û,S)(u) (21)

where ϕ(û,S) denotes the density of a Np(û,S) random variable. By Bayes formula, we

derive that

fθ(x)fθ(u | x) = fθ(x | u)fθ(u)

fθ(x)fθ(u | x) ≈ exp
(
g(x,θ)(û)

)
(2π)p/2 det(S)1/2ϕ(û,S)(u)

fθ(x)fθ(u | x) ≈ fθ(x)ϕ(û,S)(u)

fθ(u | x) ≈ ϕ(û,S)(u)

and thus,

Lθ (U | x) ≈ Np(û,S). (22)

From (22), we can approximate the moments

Eθ [U | x] ≈ û

Eθ

[
UUT | x

]
≈ S + ûûT

(23)

which we use to update the parameters (see Chapter 3.4) and to get estimates for the

latent variables λ1, . . . , λn (see Chapter 3.2).
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3.6 Computational problems

When we �tted the t-model to our data, we got computational errors for some combi-

nations of the parameters v and p. It seemed that for small values of v one could only

compute a small number of components p. We found the following reason:

When we approximate fθ(x), we need to �nd the determinant of S =
{
−Hg(x,θ)(û)

}−1
(see (17)). In the Gaussian model, where Λ is assumed to be Gaussian, S is calculated

with the Cholesky decomposition of −Hg(x,θ)(û). To �nd a Cholesky decomposition,

a matrix has to be positive �nite [Higham, 2011]. In the Gaussian model, −Hg(x,θ) is

positive de�nite for all u, as one can see by (18) and (19). In our t-model, however,

∂2

∂2uk
log fθ(u) gets positive whenever vσ2

k < u2k (see (20)). So, −Hg(x,θ)(û) may not be

positive de�nite if v is small. Since the t-distribution converges to the normal distribution

for v →∞, we have to decide whether we want to compute many components or getting

results which di�er much from the Gaussian model by keeping v small.
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4 Application: Chicago Bike-sharing System

In this Chapter, we analyze the check-out times of bike trips that took place between

April 1 and November 31 of 2016 in Chicago's Divvy system and compare the results of

the Gaussian model and the t-model. In this time period, 458 bike stations were active.

For a single station, we consider the daily check-out times as a temporal point process, for

which we have 244 realizations, and we model it as the replicated Poisson point process

X of Chapter 3. It makes sense not to assume a �xed intensity function λ, since the bike

demand strongly varies under the in�uence of external factors. For example, the weather

will have an impact on the demand and there will be di�erences between weekdays and

the weekend.

To illustrate the di�erences of the Gaussian and the t-model, we present the results for

station 166, which has median annual count of check-outs [Gervini and Khanal, 2018,

p. 15]. As spline basis for our functional parameters µ and {φk}, we use cubic splines

on (0,24) with ten equally spaced knots. According to Gervini and Khanal [2018], p = 6

components are su�cient to capture the most important modes of variation in the data.

To compute p = 2 components, our t-model works only for v = 3 or more degrees

of freedom of the t-distribution (see Chapter 3.6). For the given data, however, a t-

distribution of three degrees of freedom for the component scores gives already very

similar results to the normal distribution. For that reason and since two components are

su�cient to show the di�erences between the models, we choose v = 1 and p = 2.

The estimated baseline intensity function λ̂0 is equal for both models and shown in

Figure 3. We see one main peak in morning between 7 am and 8 am, where the maximum

intensity is 2.5 check-outs per hour. There is one very small peak around midday and

one last, small peak in the afternoon. In the night, the intensity is very low. The integral

of λ̂0 over [0, 24] is 17.5, close to the mean daily count of 17.6.

One can see in Figure 4 that the components of the t-model tend to be closer to one

in most areas but highlight areas with much variation even more. However, the �rst and

the second component are very similar for the two models.

As one can see in Figure 5, the �rst component reduces the main peak we have in the
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Figure 3: Baseline intensity function of daily bike demand for Divvy station 166.
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(a) First multiplicative components
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(b) Second multiplicative components

Figure 4: Multiplicative components {ξ̂k}k=1,2 estimated with the Gaussian model
(dashed line) and the t-model (dotted line) of daily bike demand for Divvy
station 166.
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(a) First component Gaussian model
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(b) First component t-model
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(c) Second component Gaussian model
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(d) Second component t-model

Figure 5: Illustration of the multiplicative components: Baseline (solid line) and baseline
multiplied by a positive (dotted line) and a negative (dashed line) exponent of
the component. For the �rst component we used ±2 and for the second ±1.
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(b) Weekdays, t-model
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(c) Weekends, Gaussian model
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(d) Weekends, t-model

Figure 6: Daily intensity functions of bike demand seperated between weekdays and week-
ends.

morning and increases the peak around midday for positive component scores ui1. The

�rst component of the t-model is more focused on the main peak. In the illustration of

the second component one can barely see di�erences.

It is also interesting to compare the daily intensity functions of the two models. In

Figure 6 they are separated between weekdays and weekends. Their intensity functions

look di�erent and it seems as if there was more variability for the intensity functions of

the weekends. For weekdays, the two models don't di�er a lot. For weekend intensity

functions, the t-model seems to get more variability than the Gaussian one. This could

mean that the t-model can better �t atypical realizations of the point process.

To compare the performance of the two models, one could also think about comparing

the calculated density values fθ(xi) of each day. As one can see in Figure 7a, there are
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Figure 7: (a) shows log f(xi) for the �rst 30 days of the time interval computed with the
Gaussian model (dashed line) and with the t-model (dotted line).
(b) shows log f(xi) (dashed line) and log f(xi | ui) (solid line) computed with
the Gaussian model.

almost no di�erences between the models. It also seems that the values of the density

function do not really depend on the realizations of Λ. Figure 7b compares the values of

the density for not knowing the daily intensity functions and conditioned on the estimated

λ̂i. Even there, the di�erences aren't large.

In Figure 8, one can see that the values of the log density mainly depend on the number

of check-outs on the speci�c day. As one would expect, the density is smaller when there

were more check-outs. This gives the idea of comparing the results of days with the same

amount of check-outs.

This is done in Figure 9a and 9b. Where 9b shows a typical weekday check-out pattern,

9a's is irregular, maybe more typical for weekends. In 9b, the two density functions are

almost the same, in 9a the t-model seems to give the better �t. This �ts to the thought

we had for Figure 6 that the t-models can �t outlier better. We can also see this for the

extreme scenarios 9c and 9d. Let's give the values calculated with the Gaussian model

index 1 and the ones calculated with the t-model index 2. We have the following results:

i = 38 77 67 238
log f1(xi) -55.9 -56.2 -102 -13.5
log f2(xi) -55.5 -56.6 -102 -6.29∫
[024]

λ1i 20.5 17.7 32.0 10.1∫
[024]

λ2i 21.8 18.9 34.5 1.4

We can see that the values of the density function are still very close. Only for November
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Figure 8: Here, the 244 days of our time interval are ordered by the total amount of daily
check-outs. (a) shows log f(xi) computed with the Gaussian model. (b) shows
the total amount of check-outs for each day.

24 there is a signi�cant di�erence. It is also interesting to compare the integral of the

intensities over [0 24]. These values should be close to the number of check-outs and also

here the t-model seems to work a bit better.

In Figure 10 one can see that the t-model gets smaller scores (absolute value) for more

typical data but more extreme scores for outlier. This �ts to the image we got so far that

the t-model better �ts outliers.

In a good model, one would also expect that the distribution of the calculated scores

behave like the estimated distribution of Uks. In Figure 11, we can see that the computed

density functions of the t-model �t better to the histogram of the respective scores values

than the ones of the Gaussian model.

It also seems that the empirical distributions of the component scores are skewed.
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(c) Monday, June 6 2016; i = 67
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(d) Thursday, November 24 2016; i = 238

Figure 9: Histogram of the check-outs of a speci�c day vs. the baseline intensity (solid
line) and the intensity computed with Gaussian model (dashed line) and with
the t-model (dotted line).
(a) and (b) had both 19 check-outs. (c) shows the day with most check-outs
(35) and (d) shows the days with least check-outs (0)
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(b) Scores of the second component

Figure 10: Component scores of the Gaussian model (dashed line) and the t-model (dotted
line) for the �rst 50 days of our time interval
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(c) Second component, Gaussian model
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Figure 11: Histogram of the component scores vs. the computed density of Uk.
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5 Conclusion

The aim of adjusting the model was to make it outlier-resistant. We have seen in the anal-

ysis of the data of the Chicago's Divvy bike sharing system that the t-model doesn't di�er

much from the Gaussian one, especially for typical course of check-out times. However,

the t-model seems to �t these outliers better and also seems to represent the intensity

functions of check-outs better in general. So, it would be interesting to �t the two model

to other replicated point processes, which have more outliers than the Chicago bike data,

and to see whether one gets greater di�erences. To the computational problems (see

Chapter 3.6), the t-model is not really of use for modeling the bike data because for the

degrees of freedom needed to compute more components, the two model are too similar.
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6 MATLAB code

In this section, we present the MATLAB code, which was used to do the calculations

of this thesis. The �rst part includes the general program and the following parts the

functions used.

The main program:

data=importdata('station_166.txt');

% Create input cell array x for the functions

n=data(length(data),1);

days=data(:,1);

times=data(:,2);

x = cell(n,1);

for i = 1:n

x{i,1}=times(days==i);

end

% Creat indexes for weekdays and weekends

ind_weekdays = zeros(174,1);

ind_weekends = zeros(70,1);

we1 = 1;

we2 = 1;

for i = 1:n

if ismember(mod(i+3,7),[0,1,2,3,4])

ind_weekdays(we1,1) = i;

we1 = we1+1;

elseif ismember(mod(i+3,7),[5,6])

ind_weekends(we2,1) = i;

we2 = we2+1;

else

disp('Error')

end

end

% Find smoothing parameters

basis = struct('rng',[0 24],'or',4,'nk',10);

p=2;

[sm1,sm2,other] = cv_mcatpp_cyc(x,basis,p);

% Fit Gaussian model

itmax=50;

[c0,C,s2,u,logf] = mcatpp_cyc(x,basis,p,sm1,sm2,itmax);

% Fit t-model
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v=1;

[c0t,Ct,s2t,ut,logft] = mcatpp_cyc_student(x,basis,p,sm1,sm2,itmax,v);

% Plot Baseline and components

t = linspace(basis.rng(1),basis.rng(2),100);

knots = linspace(basis.rng(1),basis.rng(2),basis.nk+2);

B = bspl(t,basis.or,knots,0);

plot(t,exp(B*c0),'-k','linewidth',2);

% Compare components normal and t

plot(t,exp(B*C(:,1)),'--k',t,exp(B*Ct(:,1)),':k','linewidth',2);

yline(1);

plot(t,exp(B*C(:,2)),'--k',t,exp(B*Ct(:,2)),':k','linewidth',2);

yline(1);

% Plot interpretation of components

vart1 = var(ut(:,1));

varn1 = var(u(:,1));

vart2 = var(ut(:,2));

varn2 = var(u(:,2));

splot = [2 1];

plot_component(1,B,c0,splot,C,t,'');

ylim([0 10]);

plot_component(1,B,c0t,splot,Ct,t,'st: ');

ylim([0 10]);

plot_component(2,B,c0,splot,C,t,'');

ylim([0 4]);

plot_component(2,B,c0t,splot,Ct,t,'student: ');

ylim([0 4]);

plot(t,exp(B*(c0+C*u(ind_weekdays,:)')));

plot(t,exp(B*(c0+Ct*ut(ind_weekdays,:)')));

plot(t,exp(B*(c0+C*u(ind_weekends,:)')));

ylim([0 3.5]);

plot(t,exp(B*(c0+Ct*ut(ind_weekends,:)')));

ylim([0 3.5]);

% Plot values of log density

zoom = 1:30;

plot(zoom,logf(zoom,1),'--k',zoom,logft(zoom,1),':k','linewidth',2);

% Create values of density given u / lambda

m=sum(exp(B*c0)/100*24);

d=zeros(i,1);

for k=1:i

d(k)=den_eva(x{k},u(k,:),t,B,c0,C);

end
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dt=zeros(i,1);

for k=1:i

dt(k)=den_eva(x{k},ut(k,:),t,B,c0t,Ct);

end

dB=zeros(i,1);

uB=zeros(i,2);

for k=1:i

dB(k)=den_eva(x{k},uB(k,:),t,B,c0t,Ct);

end

% Plot denstiy and density given u in one graph

plot(zoom,logf(zoom,1),'--k',zoom,log(d(zoom,1)),'-k','linewidth',2);

% Find x sorted by the amount of points and the respective indixes

x_lengths = zeros(n,1);

for ind = 1:n

x_lengths(ind,1) = length(x{ind,1});

end

[x_sort,x_ind] = sort(x_lengths);

% Plot values of log density sorted by amount of points

plot(1:244,logf(x_ind,1),'k');

plot(1:244,x_sort,'k');

% Plot daily component scores (normal vs t)

zoom2 = 1:50;

plot(zoom2,u(zoom2,1),'--k',zoom2,ut(zoom2,1),':k','linewidth',2);

yline(0);

plot(zoom2,u(zoom2,2),'--k',zoom2,ut(zoom2,2),':k','linewidth',2);

yline(0);

% Plot component scores vs distribution

norm1 = makedist('Normal','mu',0,'sigma',s2(1));

plot_comparepdf(u(:,1),norm1,"Normal Dist: U-values of 1st component"...

,['N(0,',num2str(s2(1),2),')']);

t1 = makedist('tLocationScale','mu',0,'sigma',s2t(1),'nu',1);

plot_comparepdf(ut(:,1),t1,"t-Dist: U-values of 1st component"...

,['t-dist, \sigma=',num2str(s2t(1),2)]);

norm2 = makedist('Normal','mu',0,'sigma',s2(2));

plot_comparepdf(u(:,2),norm2,"Normal Dist: U-values of 2nd component"...

,['N(0,',num2str(s2(2),2),')']);

t2 = makedist('tLocationScale','mu',0,'sigma',s2t(2),'nu',1);

plot_comparepdf(ut(:,2),t2,"t-Dist: U-values of 2nd component"...

,['t-dist, \sigma=',num2str(s2t(2),2)]);

% Plot Basis fcts

plot(t,B);

% Plot density vs points where #points is 19
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anzges = x_ind(x_sort==19)' ;

plotday(anzges(1),u,ut,logf,logft,d,dt,B,c0,C,Ct,x,t);

%38 - its Sunday may 8 -2016

plotday(anzges(2),u,ut,logf,logft,d,dt,B,c0,C,Ct,x,t);

%77 - its a Thursday june 16 -2016

anzges = x_ind(x_sort==35)' ;

plotday(anzges(1),u,ut,logf,logft,d,dt,B,c0,C,Ct,x,t);

anzges = x_ind(x_sort==0)' ;

plotday(anzges(1),u,ut,logf,logft,d,dt,B,c0,C,Ct,x,t);
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These functions were used to create plots:

function plot_comparepdf(u,pd,titl,distName)

low = min(u,-7);

upp = max(u,7);

binWidth = 1;

binCtrs = low:binWidth:upp; %Bin centers, same thing, it depends on your data

counts = hist(u,binCtrs);

prob = counts / (244 * binWidth);

H = bar(binCtrs,prob,'hist');

set(H,'facecolor',[0.5 0.5 0.5],'DisplayName','assigned u-values');

% get the N(0,1) pdf on a finer grid

hold on;

gri = low:.1:upp;

mypdf = pdf(pd,gri); %requires Statistics toolbox

plot(gri,mypdf,'k','linewidth',2,'DisplayName',distName);

% title(titl);

% legend;

hold off;

end

function plot_component(k,B,c0,s2,C,t,S)

lmb0 = exp(B*c0);

lmbplus = exp(B*c0+2*sqrt(s2(k))*B*C(:,k));

lmbmin = exp(B*c0-2*sqrt(s2(k))*B*C(:,k));

plot(t,lmb0,'-k','linewidth',2);

hold on;

plot(t,lmbmin,'--k','linewidth',2);

plot(t,lmbplus,':k','linewidth',2);

hold off;

% title([S,'Interpretation of component ',int2str(k)]);

end

function [den]=den_eva(xi,ui,t,B,c0,C)

lam = exp(B*c0+ui(1)*B*C(:,1)+ui(2)*B*C(:,2));

int = sum(lam/100*24);

m = length(xi);

den = exp(-int)/factorial(m);

for j = 1:m

[ ~, ix ] = min( abs( t-xi(j) ) );

den=den*lam(ix);

end

end

function plotday(anz,u,ut,logf,logft,d,dt,B,c0,C,Ct,x,t)

u(anz,:)

ut(anz,:)

logf(anz)

logft(anz)
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log(d(anz))

log(dt(anz))

lam_B = exp(B*c0);

sum(lam_B/100*24)

lam_n = exp(B*(c0+C*u(anz,:)'));

sum(lam_n/100*24)

lam_t = exp(B*(c0+Ct*ut(anz,:)'));

sum(lam_t/100*24)

binCtrs = 0:1:24;

counts = hist(x{anz,1},binCtrs);

H = bar(binCtrs,counts,'hist');

set(H,'facecolor',[0.5 0.5 0.5],'DisplayName','assigned u-values');

xlim([0 25])

ylim([0 6])

hold on;

plot(t,exp(B*(c0)),'-k','linewidth',2); %blue

plot(t,exp(B*(c0+C*u(anz,:)')),'--k','linewidth',2); %red

plot(t,exp(B*(c0+Ct*ut(anz,:)')),':k','linewidth',2);

hold off;

end
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These functions were used to �t the Gaussian model:

function [optsm1,optsm2,other] = cv_mcatpp_cyc(x,basis,p)

% [optsm1,optsm2,other] = cv_mcatpp_cyc(x,basis,p)

%

% Cross-validation search of smoothing parameters for temporal MCA

% with cyclic border condition

% (Five-fold cross-validation is used)

%

% INPUT:

% x: Observed time points (n x 1 cell).

% Each x{i} is a vector containing the data from replication i.

% basis: B-spline basis parameters. Struct with the following fields:

% rng: Time range (1 x 2 vector).

% or: Spline order (integer; 4 is cubic splines).

% nk: Number of knots (integer). Knots will be equally spaced.

% p: Number of model components (integer>=0).

%

% OUTPUT:

% optsm1: Optimal smoothing parameter for the mean (scalar>=0)

% optsm2: Optimal smoothing parameter for components (scalar>=0)

% (Returns [] if p=0).

% other: Additional output. Struct with the following fields:

% optOF1: Optimal value of the objective function at optsm1.

% optOF2: Optimal value of the objective function at optsm2.

% (Returns [] if p=0).

% smgrid: Grid of smoothing parameters used.

% OF1grid: Objective function at smgrid for mean-only models.

% OF2grid: Objective function at smgrid for p-component models.

% (Returns [] if p=0).

%

% Programs called: MCATPP_CYC, PRED_MCATPP

%

% Version: June 2018

% Cross-validation

itmax = 10;

smgrid = 10.^(-7:.5:-1)';

Ng = length(smgrid);

% Find optimal sm for mean

disp('Finding optimal sm1')

OF1grid = -Inf(Ng,1);

optOF1 = -Inf;

optsm1 = -Inf;

for i = 1:Ng

disp(['Cross-validating for grid point ' num2str(i) ' of ' num2str(Ng)])

logf = cv_5f(x,basis,0,smgrid(i),0,itmax);

OF1grid(i) = mean(logf);

if OF1grid(i)>optOF1
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optOF1 = OF1grid(i);

optsm1 = smgrid(i);

end

end

% Find optimal sm for components

disp(' ')

disp('Finding optimal sm2')

if p==0

optOF2 = [];

optsm2 = [];

OF2grid = [];

else

OF2grid = -Inf(Ng,1);

optOF2 = -Inf;

for i = 1:Ng

disp(['Cross-validating for grid point ' num2str(i) ' of ' num2str(Ng)])

logf = cv_5f(x,basis,p,optsm1,smgrid(i),itmax);

OF2grid(i) = mean(logf);

if OF2grid(i)>optOF2

optOF2 = OF2grid(i);

optsm2 = smgrid(i);

end

end

end

% Output

other = struct('optOF1',optOF1,'optOF2',optOF2,'smgrid',smgrid,...

'OF1grid',OF1grid,'OF2grid',OF2grid);

end

%%%% -------- AUXILIARY FUNCTIONS

function logf = cv_5f(x,basis,p,sm1,sm2,itmax)

% Five-fold cross-validation for MCATPP

% Computes cross-validated log-densities

% Programs called: MCATPP_CYC, PRED_MCATPP

n = length(x);

logf = -Inf(n,1);

B = round(n/5);

for i = 1:5

itest = ((i-1)*B+1):(i*B);

if i==5

itest = ((i-1)*B+1):n;

end

itrain = setdiff(1:n,itest);

try

[T,c0,C,s2] = evalc('mcatpp_cyc(x(itrain),basis,p,sm1,sm2,itmax)');

catch ME1

c0 = [];
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C = [];

s2 = [];

end

if ~isempty(c0)

[T,logf(itest)] = evalc('pred_mcatpp(x(itest),basis,c0,C,s2)');

end

end

end

function [c0,C,s2,u,logf] = mcatpp_cyc(x,basis,p,sm1,sm2,itmax)

% [c0,C,s2,u,logf] = mcatpp_cyc(x,basis,p,sm1,sm2,itmax)

%

% Multiplicative Component Analysis for Temporal Point Processes

% (PCA of log-intensities) with cyclic border condition

%

% INPUT:

% x: Observed time points (n x 1 cell).

% Each x{i} is a vector containing the data from replication i.

% basis: B-spline basis parameters. Struct with the following fields:

% rng: Time range (1 x 2 vector).

% or: Spline order (integer; 4 is cubic splines).

% nk: Number of knots (integer). Knots will be equally spaced.

% p: Number of model components (integer>=0).

% sm1: Smoothing parameter for the mean (scalar>=0).

% sm2: Smoothing parameter for the components (scalar>=0).

% (All components have norm 1 but the mean does not, so different

% sm's may be needed to attain the same degree of smoothness).

% itmax: Maximum number of iterations (integer).

%

% OUTPUT:

% c0: Mean basis coefficients (q x 1).

% C: Component basis coefficients (q x p).

% s2: Component variances (p x 1).

% u: Individual component scores (n x p).

% logf: Individual log-densities (n x 1).

%

% External calls: BSPL

%

% Version: June 2018

% Input check

c0 = [];

C = [];

s2 = [];

u = [];

logf = [];

if ~iscell(x)

disp('Error: X must be cell array')

return
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else

[mx,nx] = size(x);

if (mx>1 && nx>1)

disp('Error: X must be a one-dimensional cell array')

return

end

end

n = length(x);

% Data filtering (elimination of data outside RNG)

m = zeros(n,1);

a = basis.rng(1);

b = basis.rng(2);

for i = 1:n

x{i}(x{i}<a) = [];

x{i}(x{i}>b) = [];

m(i) = length(x{i});

end

if any(m==0)

disp('Warning: Some x{i}s have no data within basis range')

end

if any(m>=200)

disp('Warning: Some x{i}s have more than 200 observations')

disp('This may cause Inf values in the likelihood function')

disp('This method is intended for relatively small x{i}s')

disp('For large x{i}s you can just use kernel smoothing')

end

% Initialization

q = basis.or + basis.nk;

t = linspace(a,b,300);

dt = t(2)-t(1);

knt = linspace(a,b,basis.nk+2);

B0 = bspl(t,basis.or,knt,0);

J0 = (B0'*B0)*dt;

if basis.or>2

B2 = bspl(t,basis.or,knt,2);

J2 = (B2'*B2)*dt;

else

J2 = zeros(q,q);

end

sumB = zeros(n,q);

for i = 1:n

B_i = bspl(x{i},basis.or,knt,0);

sumB(i,:) = sum(B_i,1);

end

Bab0 = bspl([a b],basis.or,knt,0);

Bab1 = bspl([a b],basis.or,knt,1);
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Cyc = [Bab0(1,:)-Bab0(2,:); Bab1(1,:)-Bab1(2,:)];

Pcyc = null(Cyc);

% -----> Initial mean-only model

c0 = (Pcyc*Pcyc')*log(mean(m)/(b-a))*ones(q,1);

logf = complogf0(sumB,c0,dt,B0,m);

OF = mean(logf)-sm1*c0'*J2*c0;

disp('---> Computing mean')

disp(['Iteration: 0, Pen. loglik: ' num2str(OF)])

err = 1;

iter = 0;

while err>1e-3 && iter<itmax

iter = iter + 1;

c00 = c0;

OF0 = OF;

[gc,Hc] = derivc0(sumB,c0,dt,B0);

gpll = gc-2*sm1*J2*c0;

Hpll = Hc-2*sm1*J2;

direction = Pcyc*((Pcyc'*Hpll*Pcyc)\(Pcyc'*gpll));

OF = -Inf;

k = 0;

while OF<=OF0 && k<6

step = 0.7^k;

c0 = c00-step*direction;

logf = complogf0(sumB,c0,dt,B0,m);

OF = mean(logf)-sm1*c0'*J2*c0;

k = k+1;

end

% Stopping criterion

if OF<=OF0 || ~all(isfinite(c0))

disp('No further improvement in obj. func. is possible')

c0 = c00;

OF = OF0;

end

err = norm(c0-c00)/norm(c00);

disp(['Iteration: ' num2str(iter) ', Pen. loglik: ' ...

num2str(OF) ', Error: ' num2str(err)])

end

% -----> Sequential PC estimation

C = zeros(q,p);

s2 = zeros(p,1);

u = zeros(n,p);

u2 = zeros(n,p);

for ic = 1:p

if ic==1

P = Pcyc;
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else

P = null([Cyc; C(:,1:ic-1)'*J0]);

end

% Initial estimators

C(:,ic) = (P*P')*ones(q,1);

C(:,ic) = C(:,ic)/sqrt(C(:,ic)'*J0*C(:,ic));

if ic==1

Ilmb0 = sum(exp(B0*c0))*dt;

u(:,ic) = sqrt(b-a)*log(max(m,1)/Ilmb0);

s2(ic) = var(u(:,ic));

else

s2(ic) = s2(ic-1)/2;

end

[u(:,1:ic),u2(:,1:ic),logf] = ...

compeff(sumB,c0,C(:,1:ic),s2(1:ic),dt,B0,m,u(:,1:ic));

OF = mean(logf)-sm1*c0'*J2*c0-sm2*sum(diag(C(:,1:ic)'*J2*C(:,1:ic)));

disp(['---> Computing component ' num2str(ic)])

disp(['Iteration: 0, Pen. loglik: ' num2str(OF)])

err = 1;

iter = 0;

% Iterations

while err>1e-3 && iter<itmax

iter = iter + 1;

% Update C

c00 = C(:,ic);

u00 = u;

u200 = u2;

OF0 = OF;

[gc,Hc] = derivc(sumB,c0,C(:,1:ic),dt,B0,u(:,1:ic),u2(:,1:ic));

gpll = gc-2*sm2*J2*C(:,ic);

Hpll = Hc-2*sm2*J2;

direction = P*((P'*Hpll*P)\(P'*gpll));

OF = -Inf;

k = 0;

while OF<=OF0 && k<6

step = 0.7^k;

C(:,ic) = c00-step*direction;

C(:,ic) = C(:,ic)/sqrt(C(:,ic)'*J0*C(:,ic));

[u(:,1:ic),u2(:,1:ic),logf] = ...

compeff(sumB,c0,C(:,1:ic),s2(1:ic),dt,B0,m,u00(:,1:ic));

OF = mean(logf) - sm1*c0'*J2*c0 ...

-sm2*sum(diag(C(:,1:ic)'*J2*C(:,1:ic)));

k = k+1;

end

if OF<=OF0 || ~all(isfinite(C(:,ic)))

disp('No further improvement in obj. func. is possible')

C(:,ic) = c00;

u = u00;
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u2 = u200;

end

% Update s2

s2 = mean(u2,1)';

% Stopping criterion

err = norm(C(:,ic)-c00)/norm(c00);

disp(['Iteration: ' num2str(iter) ', Pen. loglik: ' ...

num2str(OF) ', Error: ' num2str(err)])

end

end

end

%%%%%%%------ AUXILIARY FUNCTIONS

function logf = complogf0(sumB,c0,dt,B0,m)

%Computes log-densities for mean-only model

logf = -sum(exp(B0*c0))*dt + sumB*c0 - gammaln(m+1);

end

function [gc0,Hc0] = derivc0(sumB,c0,dt,B0)

% Derivatives of loglik/n w.r.t c0

q = size(B0,2);

Hc0 = -(B0'*((exp(B0*c0)*ones(1,q)).*B0))*dt;

gc0 = -B0'*exp(B0*c0)*dt + mean(sumB,1)';

end

function [u,u2,logf] = compeff(sumB,c0,C,s2,dt,B0,m,u_ini)

%Computes random effects and log-pdf using Laplace approximation

[n,p] = size(u_ini);

Phi = B0*C;

logf = zeros(n,1);

u = u_ini;

u2 = u_ini.^2;

for i = 1:n

% Compute log(f(x))

uL = u_ini(i,:);

D_gi = zeros(1,p);

H_gi = eye(p);

for steps = 1:5

uL = uL - D_gi/H_gi;

lmbi = exp(B0*c0+B0*C*uL');

D_gi = -lmbi'*Phi*dt + sumB(i,:)*C - uL./s2';

H_gi = -Phi'*((lmbi*ones(1,p)).*Phi)*dt - diag(1./s2);

end

gi = -sum(lmbi)*dt + sumB(i,:)*(c0+C*uL') - gammaln(m(i)+1) ...

-sum(uL.^2./(2*s2')) - .5*sum(log(2*pi*s2));

logf(i) = gi + (p/2)*log(2*pi) - .5*logdet(-H_gi);

S = (-H_gi)\eye(p);
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u(i,:) = uL;

u2(i,:) = diag(S)' + uL.^2;

end

end

function [gc,Hc] = derivc(sumB,c0,C,dt,B0,u,u2)

% Derivatives of loglik/n w.r.t C(:,end)

% Uses ad-hoc approx of second derivatives and plug-in scores for integrals

[n,p] = size(u);

q = length(c0);

ng = size(B0,1);

lmb = exp(B0*c0*ones(1,n)+B0*C*u');

ulmb = (ones(ng,1)*u(:,p)').*lmb;

u2lmb = (ones(ng,1)*u2(:,p)').*lmb;

gc = (-B0'*mean(ulmb,2))*dt + (sumB'*u(:,p)/n);

Hc = -(B0'*((mean(u2lmb,2)*ones(1,q)).*B0))*dt;

end

function y = logdet(A)

% log(det(A)) for symmetric non-neg A

R = chol(A);

y = 2*sum(log(diag(R)));

end
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These functions were used to �t the t-model:

function [c0,C,s2,u,logf] = mcatpp_cyc_student(x,basis,p,sm1,sm2,itmax,v)

% [c0,C,s2,u,logf] = mcatpp_cyc(x,basis,p,sm1,sm2,itmax)

%

% Multiplicative Component Analysis for Temporal Point Processes

% (PCA of log-intensities) with cyclic border condition

%

% INPUT:

% x: Observed time points (n x 1 cell).

% Each x{i} is a vector containing the data from replication i.

% basis: B-spline basis parameters. Struct with the following fields:

% rng: Time range (1 x 2 vector).

% or: Spline order (integer; 4 is cubic splines).

% nk: Number of knots (integer). Knots will be equally spaced.

% p: Number of model components (integer>=0).

% sm1: Smoothing parameter for the mean (scalar>=0).

% sm2: Smoothing parameter for the components (scalar>=0).

% (All components have norm 1 but the mean does not, so different

% sm's may be needed to attain the same degree of smoothness).

% itmax: Maximum number of iterations (integer).

%

% OUTPUT:

% c0: Mean basis coefficients (q x 1).

% C: Component basis coefficients (q x p).

% s2: Component variances (p x 1).

% u: Individual component scores (n x p).

% logf: Individual log-densities (n x 1).

%

% External calls: BSPL

%

% Version: June 2018

% Input check

c0 = [];

C = [];

s2 = [];

u = [];

logf = [];

if ~iscell(x)

disp('Error: X must be cell array')

return

else

[mx,nx] = size(x);

if (mx>1 && nx>1)

disp('Error: X must be a one-dimensional cell array')

return

end

end
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n = length(x);

% Data filtering (elimination of data outside RNG)

m = zeros(n,1);

a = basis.rng(1);

b = basis.rng(2);

for i = 1:n

x{i}(x{i}<a) = [];

x{i}(x{i}>b) = [];

m(i) = length(x{i});

end

if any(m==0)

disp('Warning: Some x{i}s have no data within basis range')

end

if any(m>=200)

disp('Warning: Some x{i}s have more than 200 observations')

disp('This may cause Inf values in the likelihood function')

disp('This method is intended for relatively small x{i}s')

disp('For large x{i}s you can just use kernel smoothing')

end

% Initialization

q = basis.or + basis.nk;

t = linspace(a,b,300);

dt = t(2)-t(1);

knt = linspace(a,b,basis.nk+2);

B0 = bspl(t,basis.or,knt,0);

J0 = (B0'*B0)*dt;

if basis.or>2

B2 = bspl(t,basis.or,knt,2);

J2 = (B2'*B2)*dt;

else

J2 = zeros(q,q);

end

sumB = zeros(n,q);

for i = 1:n

B_i = bspl(x{i},basis.or,knt,0);

sumB(i,:) = sum(B_i,1);

end

Bab0 = bspl([a b],basis.or,knt,0);

Bab1 = bspl([a b],basis.or,knt,1);

Cyc = [Bab0(1,:)-Bab0(2,:); Bab1(1,:)-Bab1(2,:)];

Pcyc = null(Cyc);

% -----> Initial mean-only model

c0 = (Pcyc*Pcyc')*log(mean(m)/(b-a))*ones(q,1);

logf = complogf0(sumB,c0,dt,B0,m);
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OF = mean(logf)-sm1*c0'*J2*c0;

disp('---> Computing mean')

disp(['Iteration: 0, Pen. loglik: ' num2str(OF)])

err = 1;

iter = 0;

while err>1e-3 && iter<itmax

iter = iter + 1;

c00 = c0;

OF0 = OF;

[gc,Hc] = derivc0(sumB,c0,dt,B0);

gpll = gc-2*sm1*J2*c0;

Hpll = Hc-2*sm1*J2;

direction = Pcyc*((Pcyc'*Hpll*Pcyc)\(Pcyc'*gpll));

OF = -Inf;

k = 0;

while OF<=OF0 && k<6

step = 0.7^k;

c0 = c00-step*direction;

logf = complogf0(sumB,c0,dt,B0,m);

OF = mean(logf)-sm1*c0'*J2*c0;

k = k+1;

end

% Stopping criterion

if OF<=OF0 || ~all(isfinite(c0))

disp('No further improvement in obj. func. is possible')

c0 = c00;

OF = OF0;

end

err = norm(c0-c00)/norm(c00);

disp(['Iteration: ' num2str(iter) ', Pen. loglik: ' ...

num2str(OF) ', Error: ' num2str(err)])

end

% -----> Sequential PC estimation

C = zeros(q,p);

s2 = zeros(p,1);

u = zeros(n,p);

u2 = zeros(n,p);

for ic = 1:p

if ic==1

P = Pcyc;

else

P = null([Cyc; C(:,1:ic-1)'*J0]);

end

C(:,ic) = (P*P')*ones(q,1);

C(:,ic) = C(:,ic)/sqrt(C(:,ic)'*J0*C(:,ic));

if ic==1

Ilmb0 = sum(exp(B0*c0))*dt;
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u(:,ic) = sqrt(b-a)*log(max(m,1)/Ilmb0);

s2(ic) = var(u(:,ic));

else

s2(ic) = s2(ic-1)/2;

end

[u(:,1:ic),u2(:,1:ic),logf] = ...

compeff(sumB,c0,C(:,1:ic),s2(1:ic),dt,B0,m,u(:,1:ic),v);

OF = mean(logf)-sm1*c0'*J2*c0-sm2*sum(diag(C(:,1:ic)'*J2*C(:,1:ic)));

disp(['---> Computing component ' num2str(ic)])

disp(['Iteration: 0, Pen. loglik: ' num2str(OF)])

err = 1;

iter = 0;

while err>1e-3 && iter<itmax

iter = iter + 1;

c00 = C(:,ic);

u00 = u;

u200 = u2;

OF0 = OF;

[gc,Hc] = derivc(sumB,c0,C(:,1:ic),dt,B0,u(:,1:ic),u2(:,1:ic));

gpll = gc-2*sm2*J2*C(:,ic);

Hpll = Hc-2*sm2*J2;

direction = P*((P'*Hpll*P)\(P'*gpll));

OF = -Inf;

k = 0;

while OF<=OF0 && k<6

step = 0.7^k;

C(:,ic) = c00-step*direction;

C(:,ic) = C(:,ic)/sqrt(C(:,ic)'*J0*C(:,ic));

[u(:,1:ic),u2(:,1:ic),logf] = ...

compeff(sumB,c0,C(:,1:ic),s2(1:ic),dt,B0,m,u00(:,1:ic),v);

OF = mean(logf) - sm1*c0'*J2*c0 ...

-sm2*sum(diag(C(:,1:ic)'*J2*C(:,1:ic)));

k = k+1;

end

if OF<=OF0 || ~all(isfinite(C(:,ic)))

disp('No further improvement in obj. func. is possible')

C(:,ic) = c00;

u = u00;

u2 = u200;

end

u2m = mean(u2,1)';

s2(ic)=u2m(ic);

for k=1:10

s2(ic)=fixs2(s2(ic),u2(:,ic),v);

end

err = norm(C(:,ic)-c00)/norm(c00);

disp(['Iteration: ' num2str(iter) ', Pen. loglik: ' ...

num2str(OF) ', Error: ' num2str(err)])
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end

end

end

%%%%%%%------ AUXILIARY FUNCTIONS

function logf = complogf0(sumB,c0,dt,B0,m)

logf = -sum(exp(B0*c0))*dt + sumB*c0 - gammaln(m+1);

end

function [gc0,Hc0] = derivc0(sumB,c0,dt,B0)

q = size(B0,2);

Hc0 = -(B0'*((exp(B0*c0)*ones(1,q)).*B0))*dt;

gc0 = -B0'*exp(B0*c0)*dt + mean(sumB,1)';

end

function [u,u2,logf] = compeff(sumB,c0,C,s2,dt,B0,m,u_ini,v)

[n,p] = size(u_ini);

Phi = B0*C;

logf = zeros(n,1);

u = u_ini;

u2 = u_ini.^2;

for i = 1:n

uL = u_ini(i,:);

uL2 = u_ini(i,:);

D_gi = zeros(1,p);

H_gi = eye(p);

for steps = 1:5

uL = uL - D_gi/H_gi;

uL2 = uL.^2;

lmbi = exp(B0*c0+B0*C*uL');

D_gi = -lmbi'*Phi*dt + sumB(i,:)*C - (v+1).*uL./(v.*s2'+uL2);

H_gi = -Phi'*((lmbi*ones(1,p)).*Phi)*dt - diag((v+1)...

.*(v.*s2'-uL2)./(v.*s2'+uL2).^2);

end

gi = -sum(lmbi)*dt + sumB(i,:)*(c0+C*uL') - gammaln(m(i)+1) ...

+ p*gammaln((v+1)/2) - p*gammaln(v/2) - p/2*log(pi*v) ...

- .5*sum(log(s2)) - (v+1)/2*sum(log(1.+(1/v).*uL2./s2'));

logf(i) = gi + (p/2)*log(2*pi) - .5*logdet(-H_gi);

S = (-H_gi)\eye(p);

u(i,:) = uL;

u2(i,:) = diag(S)' + uL.^2;

end
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end

function [gc,Hc] = derivc(sumB,c0,C,dt,B0,u,u2)

[n,p] = size(u);

q = length(c0);

ng = size(B0,1);

lmb = exp(B0*c0*ones(1,n)+B0*C*u');

ulmb = (ones(ng,1)*u(:,p)').*lmb;

u2lmb = (ones(ng,1)*u2(:,p)').*lmb;

gc = (-B0'*mean(ulmb,2))*dt + (sumB'*u(:,p)/n);

Hc = -(B0'*((mean(u2lmb,2)*ones(1,q)).*B0))*dt;

end

function y = logdet(A)

R = chol(A);

y = 2*sum(log(diag(R)));

end

function [s2new]=fixs2(s2alt,u,v)

s2new = mean((1+v).*u./(v+u./s2alt));

end
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