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ABSTRACT 

MECHANISM OF ANTI-VIRULENCE COMPOUND 187R INHIBITING 
PSEUDOMONAS AERUGINOSA TYPE III SECRETION SYSTEM 

by	
	

Liwei	Fang	
	

The	University	of	Wisconsin-Milwaukee,	2019	
Under	the	Supervision	of	Ching-Hong	Yang,	Ph.D.	

 
 

Antibiotics have been widely used for treating bacterial infectious diseases. However, the 

rapidly emerging of antibiotic resistance has dramatically decreased the efficacy of antibiotics 

and poses a serious worldwide crisis. In addition, the cell components serving as antibiotics’ 

targets are conserved in many different bacterial species, as a result, antibiotic treatments 

disrupt the host microbiota and negatively influence the hosts health condition. Therefore, new 

alternative strategies for fighting infectious diseases without causing antibiotic resistance and 

disturbing the host microbiota are needed. Type 3 secretion system (T3SS) is a highly 

conserved virulence factor presents in many different Gram-negative pathogens. It is required 

for pathogens such as P. aeruginosa, surviving and initiating infection in their hosts. Therefore, 

targeting the T3SS is a promising alternative strategy for developing new antimicrobial 

therapies without disrupting the hosts’ microbial community. Here, we identified a potent T3SS 

inhibitor, designated 187R, which strongly inhibits the expression of P. aeruginosa T3SS. Our 

data suggests that 187R inhibits T3SS expression through reducing the T3SS master regulator 

ExsA at the post-translational level. The impact of this anti-virulence compound on the hosts’ 

microbial community was also tested using Arabidopsis thaliana phyllosphere as a model. We 

demonstrates that compared to the traditional antibiotics, our T3SS inhibitor 187R can preserve 

the microbial community better than antibiotics. 

  



 iii 

TABLE OF CONTENTS 

LIST OF FIGURES .............................................................................................................................................. V 
LIST OF TABLES ............................................................................................................................................... VI 
ACKNOWLEDGMENTS ................................................................................................................................... VII 
CHAPTER 1 INTRODUCTION ............................................................................................................................. 1 

PSEUDOMONAS AERUGINOSA .............................................................................................................................. 2 
PATHOGENESIS OF P. AERUGINOSA ....................................................................................................................... 3 
T3SS IS A PRIMARY ACUTE VIRULENCE FACTOR......................................................................................................... 4 

Structure of T3SS ..................................................................................................................................... 4 
Effector proteins of P. aeruginosa T3SS.................................................................................................... 5 

THE REGULATORY MECHANISM OF P. AERUGINOSA T3SS ........................................................................................... 5 
T3SS master regulator ExsA ..................................................................................................................... 5 
Transcriptional regulation of ExsA ........................................................................................................... 6 
Post-transcriptional regulation of T3SS .................................................................................................... 7 
Other regulatory components regulate T3SS............................................................................................ 8 

THE CRISIS OF ANTIBIOTIC RESISTANCE ................................................................................................................... 9 
Antibiotic resistance ................................................................................................................................ 9 
Human microbiota and antibiotic therapy ............................................................................................. 10 

TARGETING T3SS ........................................................................................................................................... 11 
CHAPTER 2 : DISCOVERY OF NEW T3SS INHIBITOR AND ITS MECHANISMS OF T3SS INHIBITION ................... 14 

ABSTRACT .................................................................................................................................................... 15 
INTRODUCTION .............................................................................................................................................. 15 
MATERIALS AND METHODS .............................................................................................................................. 19 

Bacterial strains, plasmids, primers, and growth condition. ................................................................... 19 
Screening for P. aeruginosa T3SS inhibitors ........................................................................................... 19 
Western blotting ................................................................................................................................... 20 
HeLa cell cytotoxicity assay ................................................................................................................... 20 
Mutant strain and reporter plasmid construction .................................................................................. 21 
qRT-PCR analysis ................................................................................................................................... 22 
Motility assay ....................................................................................................................................... 22 
Biofilm assay......................................................................................................................................... 22 
Minimal inhibition concentrations (MICs) .............................................................................................. 23 
β-Galactosidase Assays ......................................................................................................................... 23 
Statistical Analysis ................................................................................................................................ 23 

RESULTS ...................................................................................................................................................... 23 
Screening inhibitors of P. aeruginosa T3SS ............................................................................................. 23 
187R impaired T3SS expression and reduced the virulence of P. aeruginosa ........................................... 24 
187R did not affect Vfr-cAMP pathway .................................................................................................. 25 
187R did not inhibit T3SS through Cbr/Crc pathway ............................................................................... 26 
187R increases the RsmY level in P. aeruginosa ..................................................................................... 27 
187R inhibits P. aeruginosa T3SS not through RsmY/Z/A regulatory pathway......................................... 27 
187R inhibits T3SS not through reducing Lon protease activity ............................................................... 28 
187R inhibits T3SS not through increasing the secondary messenger c-di-GMP level .............................. 29 
187R inhibits T3SS through post-translationally regulating the master regulator ExsA ........................... 29 
187R inhibits T3SS not through nitrate reductase (NirS) ......................................................................... 31 
187R inhibits T3SS not through ppGpp ................................................................................................... 31 

DISCUSSION .................................................................................................................................................. 32 
UNDERLINES INDICATES RESTRICTION ENZYME SITES ................................................................................................. 51 

CHAPTER 3 : ANTI-VIRULENCE COMPOUND PRESERVE THE MICROBIAL COMMUNITY BETTER THAN THE 
TRADITIONAL ANTIBIOTICS ........................................................................................................................... 54 

ABSTRACT .................................................................................................................................................... 55 
INTRODUCTION .............................................................................................................................................. 55 



 iv 

MATERIALS AND METHODS .............................................................................................................................. 58 
Phyllosphere collection .......................................................................................................................... 58 
16S rRNA gene illumina sequencing and data analysis ........................................................................... 58 
Testing the impact of 187R on phyllosphere with culture dependent Biolog EcoPlate. ............................ 59 
Testing the expression of T3SS in Erwinia amylovora and Dickeya dadantii ............................................ 60 

RESULTS ...................................................................................................................................................... 60 
Comparison of the impact of 187R and streptomycin on phyllosphere microbe compositions ................. 60 
187R preserved the metabolic functions of the phyllosphere better than antibiotics. .............................. 61 
187R does not inhibits the T3SS of two other bacterial pathogens. ......................................................... 62 

DISCUSSION .................................................................................................................................................. 63 
REFERENCES .................................................................................................................................................. 72 
CURRICULUM VITAE ...................................................................................................................................... 89 

 
  



 v 

LIST OF FIGURES 
 
Figure 1.1 The structure and regulatory of T3SS ................................................................. 12 
Figure 1.2 Major regulatory pathways modulating T3SS in P. aeruginosa. .......................... 13 
Figure 2.1 Effect of 187 on P. aeruginosa exoS promoter activity and growth. .................... 35 
Figure 2.2 187R impairs T3SS expression and reduces the virulence of P. aeruginosa. ........ 36 
Figure 2.3 HeLa cell cytotoxicity assay. .............................................................................. 37 
Figure 2.4  vfr and exsA promoter activity. ......................................................................... 38 
Figure 2.5 exsC promoter activity and amiE ‘-’lacZ translational fusion expression ............ 39 
Figure 2.6 Expression ratio of rsmY and rsmZ mRNA level with the presence of DMSO and 
187R. .................................................................................................................................. 40 
Figure 2.7 Effect of 187R on rsmY/Z/A regulatory pathway. .............................................. 41 
Figure 2.8 Expression ratio of rhlI in 187R/DMSO. ............................................................ 42 
Figure 2.9 Effect of 187R on c-di-GMP level. ..................................................................... 43 
Figure 2.10 Effect of 187R on master regulator exsA. .......................................................... 44 
Figure 2.11 deaD regulates T3SS expression and low temperature growth. ......................... 45 
Figure 2.12 Translation of exsA with the presence of 187R or DMSO................................. 46 
Figure 2.13 187R inhibits T3SS in the presence of SNP (NO donor). P. aeruginosa was 
cultured under T3SS inducing condition. SNP was supplemented in the medium at the 
concentration of 3mM. Water was supplemented as control. ............................................... 47 
Figure 2.14 Biofilm formation of wild type strain with the presence of 187R and DMSO .... 48 
Figure 3.1 Average relative abundance of microbial communities at phylum level. ............. 66 
Figure 3.2 Relative abundance of microbial communities at phylum level. .......................... 67 
Figure 3.3 Principal Coordinate Analysis (PcoA) of microbial communities based on 
weighted Unifrac distance. .................................................................................................. 68 
Figure 3.4 Heatmap with cluster analysis of carbon metabolism profile. .............................. 69 
Figure 3.5 Principal Component Analysis (PCA) of microbial communities carbon 
metabolism profile. ............................................................................................................. 70 
Figure 3.6 hrpA promoter activity of E. amylovora (A) and D. dadantii 3937 (B) in the 
presence of DMSO or 187R. ............................................................................................... 71 
 
  



 vi 

LIST OF TABLES 
 
 
Table 2.1 Bacteria strains and plasmids used in this study. .................................................. 49 
Table 2.2 Oligonucleotide primers utilized in this study, ..................................................... 51 
Table 2.3 Ciprofloxacin susceptibility of P. aeruginosa PAO1 grow with DMSO or 187R ... 53 
 
 
 
  



 vii 

 

ACKNOWLEDGMENTS 
First of all, I would like to express my deepest appreciation to my advisor Dr. Ching-Hong 

Yang for the tremendous support of my Ph.D. study, for his enthusiasm, patience, critical 

thinking and immense knowledge. This thesis would not be possible without his guidance.  

I would like to thank the members of my dissertation committee: Dr. Sonia Bardy, Dr. 

Sandra McLellan, Dr. Stefan Schnitzer, Dr. Douglas Steeber and Dr. Gyaneshwar Prasad for 

generously offering their time, support and valuable suggestions to my research project.  

I would also like to thank our present and formal lab members: Dr. Xiaochen Yuan for 

always answering my questions and providing better solutions for the research project. Dr. 

Xiaogang Wu for teaching me the experimental skills. Dr. William Hutchins for offering me 

teaching suggestions. Daqing Jiang, Biswarup Banerjee and Alaleh Ghasemimianael for 

supporting and assisting my experiments. John Srok and Robert Effinger for offering help in 

my project.  

I am extremely grateful to my family. My wife Shuchen, has been extremely supportive to 

me throughout my graduate study. My son Lukas who is the joy and pride of my life. My mom 

and Dad, who motivated me to pursue the career of science. 

    We thank Dr. Dave Zhao (University of Wisconsin – Milwaukee), Dr. Chao Wang 

(National Cancer Centre Singapore, Singapore), Dr. Dara W. Frank (Medical College of 

Wisconsin, USA), Dr. Elisabeth Sonnleitner (University of Vienna, Australia), Dr. Everett 

Pesci (East Carolina University, USA) and Dr. Matthew Wolfgang (University of North 

Carolina, USA) for providing materials used in this study.  This work was supported by grants 

from the National Science Foundation, the Research Growth Initiative of the University of 

Wisconsin-Milwaukee and T3bioscience. 

 



 1 

 

Chapter 1 : Introduction 
  



 2 

Pseudomonas aeruginosa 

    Pseudomonas aeruginosa is a facultative anaerobic, Gram negative, rod-shaped bacterium 

which belongs to the family of gammaproteobacteria. It is able to survive under a wide range 

of temperatures from 4°C to 42°C. The genome analysis of the PAO1 strain shows that many 

genes function as substrate uptake or catalysis, which enable the bacteria to use various 

substances as nutrients (1). The bacterium is also able to survive under anaerobic conditions 

either by utilizing nitrate or nitrite as alternative external electron acceptors or by fermenting 

arginine or pyruvate as its energy source (2).  All these features allow P. aeruginosa to adapt 

to different types of environments such as soil and water. 

     P. aeruginosa is an opportunistic pathogen causing acute and chronic infections in 

immunocompromised patients (3). It is a major cause of nosocomial infections which affects 2 

millions patients per year. Cystic fibrosis (CF) patients are the group most vulnerable to P. 

aeruginosa. The pathogen is the leading cause of morbidity and mortality in CF patients. In 

healthy individuals, the infection caused by P. aeruginosa tends to occur after skin or eye 

damage (4). Moreover, the bacteria is able to form robust biofilm on the surface of medical 

devices which causes biofilm-mediated infections such as ventilator-associated pneumonia  

and catherter-associated urinary tract infection (5). The biofilm is hard to remove from the 

medical devices and triggers chronic infections. The only solution for stopping the biofilm-

associated infection is to replace the medical devices (6). Hospital-acquired infections caused 

by P. aeruginosa have become a serious concern as the pathogen is resistant to different types 

of antibiotics. As a result, the bacteria is hard to eradicate from the patients and causes serious 

health issues (7). 
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Pathogenesis of P. aeruginosa 

P. aeruginosa has a variety of virulence factors that lead to successful infections. Previous 

research showed that P. aeruginosa isolates from patients with acute infections are generally 

motile and capable of secreting toxins that cause host cell damage (8). These studies indicate 

that motility and toxin secretion are important for P. aeruginosa acute infections. Flagellar and 

type IV pili are bacterial cell surface virulence factors that are responsible for twitching, 

swimming and swarming motilities (9). These virulence factors enable P. aeruginosa to search 

for optimal niches. Type IV pili and flagella also mediate the adhesion to the airway epithelia 

cells, which is the first step towards colonization and disease initiation (10).  

The secretion systems are also crucial for the virulence of P. aeruginosa. This pathogen 

possesses five different classes of secretion systems, all of which enable the pathogen to secrete 

different types of toxins into the environment or into host cells (11). In P. aeruginosa, two 

Type 1 secretion systems (T1SS) named T1SS (Apr) and T1SS (Has) have been discovered 

(12). The first T1SS,  T1SS (Apr), secretes alkaline protease protein which interferes with 

complement activation thereby preventing phagocytosis and the death of P. aeruginosa (13). 

The second T1SS, T1SS (Has) secretes the heme acquisition protein which is crucial for iron 

acquisition from the environment (14). Type 2 secretion systems (T2SS) are important for the 

virulence of P. aeruginosa as the system secretes toxins such as elastase and exotoxin A that 

are believed to cause extensive tissue damage during the infection. It has also been proven that 

the T2SS is highly similar to type 4 pilus assembly system  (T4PS) and can assemble type 2 

pseudopilus. The presence of type 2 pseudopilus on P. aeruginosa increases the bacteria’s 

adhesive ability and elevates the virulence of the bacteria (15). Type 3 secretion system is a 

needle like structure that translocates the effector proteins (toxins) from bacteria cytoplasm 

into the host cell. The effector proteins cause host cell death and tissue damage (16). The Type 

5 secretion system not only secrets toxins such as patatin-like proteins (PLPs) (17), but is also 
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critical for the cell to cell adhesion and biofilm formation (11). The type 6 secretion system 

(T6SS) delivers the toxin into other bacteria cells. T6SS of P. aeruginosa also helps it compete 

with the other bacteria and survive in the microbial community (18).   

 

T3SS is a primary acute virulence factor 

Type 3 secretion system (T3SS) is considered the primary acute virulence factor for P. 

aeruginosa (19). Previous research showed that in both chronic and acute infection models, the 

presence of fully functional T3SS is associated with increased mortality rates (20). The 

increased severity of disease is not only due to tissue damage caused by the T3SS effector 

protein, but also by the cytotoxicity towards the immune cells such as the macrophages (21). 

Additionally, P. aeruginosa T3SS is involved in killing amoebae. Since predation by 

phagotrophic protists is the major cause of bacterial populations decreasing in many 

ecosystems, a fully functional T3SS is required for the bacteria’s higher survival rate in the 

environment (22).  

 

Structure of T3SS 

T3SS is a needle-like structure that directly translocates the effector proteins (toxins) from 

the bacterial cytoplasm into the host cells (23). This multi-protein complex apparatus is 

composed of a needle-like injectisome and a basal body (Fig. 1.1A). The needle-like structure 

anchors on the basal body, which extends through the inner membrane, peptidoglycan layer 

and outer membrane. The basal body and the needle structure is built up under the non-

secreting condition. Once the bacteria make contact with the host cell, PopB, PopD and PcrV 

are secreted directly by the T3SS. These three proteins forms translocation pores on the host 
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cell plasma membrane which allows effector proteins (toxins) transferred directly into the host 

cell through the translocation apparatus into the host cytosol (24). 

 

Effector proteins of P. aeruginosa T3SS 

    In P. aeruginosa, four effector proteins named ExoS, ExoT, ExoY and ExoU have been 

discovered. These four effectors normally are not all present in one single strain; either ExoS 

or ExoU are absent in different strains (25). Studies of the T3SS effector proteins showed that 

these four effectors have different enzyme activity. As the most potent T3SS effector, ExoU 

showed strong phospholipase/lysophospholipase activity and resulted cell lysis through 

destroying host cell membrane (25). Two other effector proteins ExoS and ExoT share highly 

similar amino acids sequences. Both are bifunctional proteins with an GTPase-activating N-

terminal domain and adenosine diphosphate ribosyltransferase (ADPRT) C-terminal domain. 

After injection, these two effector proteins work together, manipulating the host cell signaling 

transduction and causes host cell rounding and cell apoptosis. ExoY is an nucleotidyl cyclase 

toxin that contains ATP binding domains (26). After injection into the host cell cytoplasm, 

ExoY is activated by host cell filamentous actin and increases the intracellular levels of several 

cyclic nucleotides (27). The increased intracellular levels of cyclic nucleotide induces the cell 

death and causes tissue damage (28).  

 

The regulatory mechanism of P. aeruginosa T3SS 

T3SS master regulator ExsA 

The expression of P. aeruginosa T3SS regulon genes is under the control of the 

transcriptional activator ExsA (29). ExsA is an AraC family transcriptional regulator which 

contains a DNA binding domain (30). The master regulator ExsA directly binds to the DNA 
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consensus sequence (TNAAAANA) in the target gene promoter regions and activates the 

transcription of T3SS genes (31).  

The activity and function of ExsA is post-translationally regulated by the ExsCEDA partner 

switch regulatory cascade (Fig. 1.1B) (32). Under non-secreting condition, anti-activator ExsD 

binds to the master regulator ExsA and form a 1:1 complex (33), the binding of ExsD to ExsA 

deactivates the master regulator ExsA (34). The activity of ExsD is modulated by anti-anti-

activator ExsC. ExsC is post translationally regulated by the secret regulator ExsE. Under non-

secreting conditions, ExsE binds to ExsC and prevents the anti-anti-activator binding to ExsD.  

Upon T3SS triggering by a low calcium level or contact to the host cell, ExsE is secreted out 

and frees the anti-anti-activator ExsC. ExsC then binds to the anti-activator ExsD, thus 

releasing ExsA and activating the transcription of T3SS (33).   

Transcriptional regulation of ExsA 

The transcription of exsA is a fine-tuned response to various of environmental changes and 

nutrient sources. The low calcium environment and presence of preferred carbon source can 

activate the transcription of T3SS master regulator ExsA, thus triggering the expression of 

T3SS genes (35, 36). The major regulatory pathways illustrated in Fig. 1. 2. 

The expression of exsA can be activated through two different promoter regions (exsC 

promoter region and exsA promoter region) in exsCEBA operon. ExsA promoter region is 

controlled by Vfr (Virulence factor regulator), a homolog of Escherichia coli CRP (cAMP-

activated global transcriptional regulator) transcriptional activator. In a low calcium 

environment, the adenylate cyclase CyaB (the major adenylate cyclase in P. aeruginosa 

required for the bacterial virulence) responds to the low calcium level and synthesizes cyclic-

AMP. Vfr responds directly to the increasing intracellular cyclic-AMP levels. The Vfr protein 

binds directly to cAMP and undergoes conformational change. The Vfr-cAMP complex then 

activates exsA transcription via binding to exsA promoter region (37, 38).  
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ExsC promoter is ExsA dependent. The master regulator ExsA autoregulates its own 

expression via exsC promoter region (39). Besides ExsCEDA regulatory cascade, the 

transcription of exsCEBA is fine-tuned by the Cbr/Crc regulatory pathway. CbrA/B is a two-

component regulatory system. The sensor kinase CbrA responds to non-preferred carbon 

sources such as mannitol and activates the response regulator CbrB. CbrB then triggers the 

gene expression of a non-coding regulatory RNA gene crcZ. The non-coding regulatory RNA 

CrcZ, RNA chaperone Hfq, and Catabolite repression control protein (Crc) form a complex 

and deactivate Crc activity (40). Since Crc positively regulates T3SS via enhancing the 

transcription of exsCEBA operon, deactivating Crc reduces the expression of T3SS. Although 

the gene expression profile analysis of crc mutant showed that Crc may regulate T3SS through 

various pathways, the underlying regulatory mechanism of Crc to T3SS is largely unknown. 

(36) 

 

Post-transcriptional regulation of T3SS 

RsmA (Repressor of Secondary Metabolism) is a Csr (Carbon storage repressor) family 

protein (41). In P. aeruginosa, RsmA is crucial for regulating different virulence factors such 

as T3SS, T6SS and motility (19, 42, 43). It is also the key regulator for switching the life style 

of P. aeruginosa from planktonic to biofilm through regulating the secondary messenger 

molecule cyclic-di-GMP (44).  

The post-transcriptional regulator RsmA plays an important role in modulating T3SS. 

Previous research demonstrated that deletion of rsmA leads to a defect in exsA at the 

posttranscriptional level (45). The regulation of T3SS by RsmA is similar to the Cbr/Crc 

regulatory pathway. GacS/GacA two component system regulates the T3SS via activating the 

transcription of non-coding regulatory small RNAs RsmY and RsmZ. These two non-coding 

regulatory small RNAs directly bind to, and deactivate RsmA (46), decreasing the intracellular 
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levels of the master regulator ExsA and reducing the T3SS gene expression. There are also 

other regulatory components such as AlgZR two component system and MgtE which regulate 

T3SS via Gac/Rsm system. AlgZR two component system controls the alginate synthesis. Once 

this two component system is activated, the response regulator AlgR increase RsmY/Z levels 

through unknown mechanisms and decreases the expression of T3SS (45). The magnesium 

transporter MgtE can also inhibit T3SS via activating the GacS/GacA two component system 

and increasing the RsmY/Z level (47). These previous studies indicate the Gac/Rsm system is 

crucial for regulating P. aeruginosa T3SS. 

The translation of ExsA mRNA relies on the RNA helicase DeaD which is encoded by the 

gene PA2840 in PAO1 strain (48). The deletion of deaD causes greatly reduced ExsA protein 

levels and results in defects in the virulence of P. aeruginosa (49). P. aeruginosa DeaD is an 

RNA helicase of the DEAD-Box protein family. This group of RNA helicases are present in a 

wide range of bacteria and archaea. In prokaryotic cells, DEAD RNA helicases either unwind 

short duplex RNA or stimulate the RNA degradation (50). Bioinformatic analysis and genetic 

experiments showed that 37nt of exsA mRNA 5’-UTR forms an inhibitory structure that 

prevents translation, however, RNA helicase DeaD relieves the structure and allows the 

translation of exsA mRNA (48). 

 

Other regulatory components regulate T3SS 

    There are several other regulatory components that regulate T3SS - Quorum sensing and 

sigma factors RpoN negatively control the T3SS (51). A gene designated as ptrB (related to 

DNA damage) suppresses the T3SS under the stress of DNA damage (52), and the multi-drug 

efflux pump inhibits the T3SS (53). In addition, some environmental signals such as the oxygen 

and NO level can also affect the expression of P. aeruginosa T3SS (54, 55). However, the 

exact mechanism is unknown.  
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The crisis of antibiotic resistance 

Antibiotic resistance has become a critical public health crisis worldwide. In some areas of 

the world, superbugs resistant to all existing antibiotics have been isolated (56). Therefore, 

alternative anti-infection therapy with new inhibitory mechanisms and lower occurrence of 

antibiotic resistance are needed. Futhermore, since lots of evidence shows that microbiota is 

crucial for the health of their host (57, 58), the preservation of microbiota during infectious 

disease treatments has become a major concern during the development of new anti-infection 

therapy. 

 

Antibiotic resistance 

    Antibiotic therapy is the most effective treatment for bacterial and fungal infectious diseases. 

The current antibiotic therapy targets cellular components which are essential for cell survival 

(i.e. bacterial cell wall and bacteria ribosome), however, the strong selective pressure leads to 

the development of antibiotic resistance (59). Currently, antibiotic resistance has been found 

in nearly all commercially available antibiotics (56). Antibiotic resistance leads to higher 

medical cost, prolonged hospital stays and increased mortality. In the United States, antibiotic 

resistance causes more than 23,000 deaths per year (60). A recent study conducted in America 

demonstrated that from 2002 to 2014, the share of antibiotic resistant bacterial infections rose 

from 5.2% to 11%. The increased antibiotic resistance costs more than $2 billion annually in 

the nation (61).  

P. aeruginosa is intrinsically resistant to antibiotics.  Low cell wall permeability, outer 

membrane and efflux systems all contribute to P. aeruginosa’s innate antibiotic resistance. All 

of the major classes of antibiotics treating P. aeruginosa infection need to cross the bacterial 

cell wall to reach their target, however, the low cell wall permeability limits the amount of 
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antibiotics that can cross the cell wall. The outer membrane is another barrier  that restricts 

antibiotic penetration. Moreover, P. aeruginosa has at least four different antibiotic efflux 

pump systems capable of efficiently exporting antibiotics from the cytoplasm. These three 

resistance mechanisms combine together and keep the intracellular antibiotic concentration at 

low levels. P. aeruginosa can also acquire resistance genes through other organisms or via 

mutation in chromosomal genes (62). 

 

Human microbiota and antibiotic therapy 

Microbiota refers to all the microbes inhabiting many sites in and on multicellular organisms 

(hosts). The microbiota contains host-specific microbes with various of functions. It is essential 

for the health of the hosts in several different ways. It provides nutrients to the hosts, represses 

pathogens and parasites, and stimulates the development of the host’s immune system (63, 64). 

Recent studies done in fish models have proved that the life span of older fish can be extended 

after inoculation of healthy gut microbiota from young fish (65). Other investigations on the 

human microbiome suggest that the microbiota is associated with the severity of infectious 

diseases (66, 67). 

The use of antibiotics, especially the broad spectrum antibiotics, affects a large amount of 

different bacteria species in microbiota and decreases the taxonomic richness, diversity and 

evenness of host-associated microbiota. As a result, negatively impact the health status of hosts. 

For example, disrupting the human microbiota can lead to some serious health problems such 

as gut microbial disorders correlating with Clostridium difficile infection (68) and 

inflammatory bowel disease (69). The recovery of microbiota after treatment with antibiotics 

can take years which affects long term health of the patients (70).  
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Targeting T3SS 

As the T3SS is the primary acute virulence factor in P. aeruginosa, it is not only important 

for initiating and increasing the severity of the disease via the effector protein, but also critical 

for the survival of P. aeruginosa in the early stages of infection (71). Thus, inhibiting the T3SS 

is an excellent strategy for developing new anti-infection therapy. Several studies have shown 

that disarming the pathogen’s T3SS reduces bacterial virulence and disease severity (20). 

Moreover, targeting the virulence factors of the pathogen has the potential advantage to 

minimize the damage to the host microbiota (72). 

    In our lab, we screened a compound library and looked for compounds which inhibits P. 

aeruginosa T3SS but not the bacterial growth. We discovered a potent P. aeruginosa T3SS 

inhibitor named 187R that can silence the T3SS. In this research, we determined the molecular 

mechanism of 187R inhibiting the T3SS. It has been long discussed whether anti-virulence 

drugs can preserve the microbiota better than antibiotics. In this research, we have also explore 

the impact of anti-virulence compound 187R on the microbiota of Arabidopsis thaliana, one 

of the hosts of P. aeruginosa. 

 

 

 

 

 

 

 

 

 



 12 

 

                   

Figure 1.1 The structure and regulatory of T3SS (A) T3SS secretion system of P. aeruginosa. (B) ExsCEBA 
regulatory cascade. ExsA is the master regulator of T3SS. Under non-secretion conditions, ExsE binds to ExsC, 
ExsD binds to ExsA and deactivate ExsA. Once in contact with the host cell, T3SS secretes ExsE and releases 
ExsC. ExsC then binds to ExsD and frees ExsA, as a result, activating the T3SS gene expression. (Galle M. et, 
al., 2012) IM: inner membrane; PG: periplasm; OM: outer membrane. 
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Figure 1.2 Major regulatory pathways modulating T3SS in P. aeruginosa. CbrA/CbrB two component system 
activates CrcZ non-coding small RNA and deactivates Crc which positively regulates T3SS. ExsCEDA 
regulatory cascade positively regulates T3SS by free ExsA. These two pathways activate the T3SS via 
activating the transcription of the exsCEBA operon through the exsC promoter. Vfr-cAMP responds to the 
increasing intracellular cAMP level and binds to the exsA promoter region and activates exsA expression. 
Similar to the Cbr/Crc pathway, two-component system GacS/GacA activates the transcription of two non-
coding small RNA and deactivates the posttranscriptional regulator RsmA which positively regulates T3SS. 
DeaD is the RNA helicase required for stimulating the translation of ExsA mRNA. Dashed line indicates that 
the regulatory mechanism is not completely understood.  
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Abstract 

Antibiotics have been widely used for treating bacterial infectious diseases. However, 

traditional antibiotic therapies target the essential cell components, and this strong selective 

pressure leads to the antibiotic resistance. To overcome or evade the emerging antibiotic 

resistance crisis, new alternative strategies for fighting the bacterial infection is needed. 

Pseudomonas aeruginosa is an opportunistic human pathogen resistant to a variety of 

commonly used antibiotics. According to World Health Organization (WHO) report, P. 

aeruginosa is one of the three ‘top priority antibiotic-resistant pathogens’ that pose the greatest 

threat to human health. Therefore, new antimicrobial agents with new inhibitory mechanisms 

are urgently needed for treating P. aeruginosa infection. Type 3 secretion system (T3SS) is the 

major virulence factor of P. aeruginosa required for the initiation of infection and bacterial 

survival in the epithelial airway. Therefore, targeting T3SS is a promising alternative strategy 

for new drug development. In this study, we identified a potent T3SS inhibitor, designated 

187R, inhibit T3SS but not the growth of P. aeruginosa by screening a compound library. The 

compound greatly reduced the T3SS expression and attenuated P. aeruginosa T3SS-mediated 

cytotoxicity towards HeLa cells. Examining the regulatory components and pathways of P. 

aeruginosa T3SS with the presence of the 187R showed that 187R silences the P. aeruginosa 

T3SS through post-translationally decreasing protein level T3SS master regulator ExsA. The 

inhibitory mechanism of 187R on ExsA is independent of the known major T3SS regulatory 

pathways. 

 

Introduction 

 
Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic 

infections in immunocompromised patients (3). A primary virulence factor for this pathogen is 

the type III secretion system (T3SS). T3SS is a needle-like structure that directly translocates 
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the effector proteins (toxins) from the bacterial cytoplasm into the host cells (23). In P. 

aeruginosa, four effector proteins named ExoS, ExoT, ExoY and ExoU have been discovered 

(25). These effector proteins manipulate signal transduction in the host cells, resulting in 

attenuated host immune responses and increased severity of disease (28).  

P. aeruginosa T3SS consists of over 40 genes organized within 10 transcriptional units. The 

expression of all 10 transcriptional units are under the control of master regulator ExsA - an 

AraC family transcriptional activator (30). Two monomers of ExsA bind to the consensus 

sequence (TNAAAANA) in the target gene promoter regions to recruit RNA polymerase and 

activate the transcription of T3SS genes (31). The activity and function of ExsA is post-

translationally regulated by the ExsCEDA regulatory cascade (32). While triggered by the low 

calcium level or contact to the host cell, ExsE is secreted which frees the anti-anti-activator 

ExsC. ExsC then binds to the anti-activator ExsD which releases ExsA to turn on the expression 

of the T3SS (33).  ExsA also autoregulates the transcription of itself by binding to the promoter 

region of exsCEBA operon (39). Besides the ExsCEDA regulatory cascade, exsA is modulated 

by several other pathways including the Vfr-cAMP pathway, Cbr/Crc pathway, and RsmY/Z/A 

pathway (35, 55, 73). In a low calcium environment, Vfr (Virulence factor regulator) responds 

directly to the increasing intracellular cyclic-AMP levels and activates exsA transcription via 

binding to exsA promoter region (37, 38). Catabolite repression control protein (Crc) is another 

positive regulator that regulates exsA through enhancing exsCEBA expression (36). The activity 

of Crc is controlled by non-coding regulatory small RNA CrcZ (74). The expression of crcZ is 

triggered by the CbrA/B two-component system which senses and responds to non-preferred 

carbon sources such as mannitol. The non-preferred carbon sources stimulate the two 

component system and activates the transcription of crcZ. CrcZ RNA binds to Crc protein and 

deactivates the protein with the assistance of RNA chaperone Hfq (75, 76).  
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The post-transcriptional regulator RsmA also plays an important role in modulating the 

T3SS. Similar to the Cbr/Crc regulatory pathway, the GacS/GacA two component system 

regulates the T3SS via activating the transcription of non-coding small RNAs RsmY and RsmZ. 

These two small RNAs deactivate RsmA which is the posttranscriptional activator for T3SS 

(46). Although the regulatory mechanism is not well understood, previous research 

demonstrated that deletion of rsmA showed a defect in ExsA at the posttranscriptional level 

(45). Another important regulatory component stimulates the translation of exsA independent 

of RsmA is RNA helicase DeaD. DeaD unwinds 5’ UTR of ExsA mRNA and allows the 

imitation of translation. (48). The deletion of deaD greatly reduced ExsA protein levels and 

resulted in defect in the virulence of P. aeruginosa (49).  

Since Alexander Fleming discovered penicillin in 1928, antibiotic therapy has been widely 

used for treating bacterial infections. However, the current antibiotic therapy targets the cellular 

components which are essential for cell survival (i.e. bacterial cell wall and bacteria ribosome). 

The strong selective pressure leads to the development of antibiotic resistance (59). Currently, 

antibiotic resistance has been found in nearly all commercially available antibiotics (56). 

Pseudomonas aeruginosa is resistant to a variety of commonly used antibiotics such as 

carbapenem. According to World Health Organization (WHO) report, P. aeruginosa is one of 

the three ‘top priority antibiotic-resistant pathogens’ that pose the greatest threat to human 

health (77). New antimicrobial agents with new inhibitory mechanisms are urgently needed for 

treating P. aeruginosa infection. In addition, antibiotic therapy can alter human microbiota and 

affects host health status in the long term. In some cases, disturbing the human microbiota is 

associated with several serious diseases; for example, gut microbial disorder correlates with 

Clostridium difficile infection (68) and inflammatory bowel disease (69).  

Therefore, alternative anti-infection therapies, which can preserve the microbiota and lower 

the occurrence of antibiotic resistance, are needed. T3SS is a major virulence factor in P. 
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aeruginosa. It is not only critical for initiating the infection but also responsible for killing the 

hosts’ immune cells. Therefore, inhibiting T3SS decreases the bacterial survival in hosts and 

reduces the severity of the diseases (71). Moreover, targeting the virulence factors of the 

pathogen has the potential advantage of minimizing the damage to the host microbiota (72). 

Various T3SS inhibitors, including several small-molecule inhibitors and a monoclonal 

antibody, have been developed during the last decade. These T3SS inhibitors target for 

different T3SS components, such as the extracellular structural components, effector proteins 

and intracellular regulatory proteins (78). One group of extracellular structural components 

used as targets of the inhibitors is the traslocon proteins. Previous research showed that the 

Phenoxyacetamide inhibitors and monoclonal antibody KB001-A target the needle structural 

protein PscF and needle tip protein PcrV, respectively (21, 79). The interaction of the 

compound and needle structural protein block the translocation of the effector proteins, greatly 

reducing the virulence of P. aeruginosa. The small molecule Pseudolipasin is able to inhibit 

the ExoU PLA2 activity and ExoS ADP-ribosyltransferase activity respectively (80, 81). In 

vitro experiments have proved that these two anti-effector molecules neutralize the toxicity of 

T3SS effector and protect the CHO cells. However, these two strategies all have their 

limitations since 1) inserting the needle of T3SS itself can cause damage to the host cells, and 

2) different P. aeruginosa strains carry different sets of effector proteins (23). An attractive 

target for developing T3SS inhibitors is the master regulator ExsA. Since all the P. aeruginosa 

T3SS genes are ExsA-dependent, inhibiting the synthesis or activity of ExsA would lead to the 

decrease or complete elimination of all T3SS gene expression.  

In the present work, we screened a compound library and search for compounds inhibit P. 

aeruginosa T3SS but not the bacterial growth. We discovered a potent P. aeruginosa T3SS 

inhibitor named 187R. The compound strongly inhibits the T3SS while not affecting the growth 

of P. aeruginosa. In vitro HeLa cell infection assay suggested 187R reduced T3SS-mediated 
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cytotoxicity in the assay. Further research demonstrated that 187R dramatically decreased the 

protein level of ExsA through post-translational mechanism.  

 

Materials and Methods 

 

Bacterial strains, plasmids, primers, and growth condition. 

Bacterial strains and plasmids used in this study are listed in Table 2.1. E. coli and P. 

aeruginosa were routinely cultured in LB medium at 37°C unless otherwise stated. LB 

supplemented with 200 mM NaCl and 10 mM nitrilotriacetic acid (NTA) were used as the 

T3SS inducing medium. Antibiotics were used at the following concentrations: 100 µg/mL of 

carbenicillin (Cb), 10 µg/mL of gentamicin (Gm), 10 µg/mL of tetracycline (Tc) for E. coli and 

100 µg/mL of Cb, 50 µg/mL of Km, 50 µg/mL of Gm and 30µg/mL of Tc for P. aeruginosa. 

Primers used for PCR are listed in Table 2.2. 

 

Screening for P. aeruginosa T3SS inhibitors 

    The P. aeruginosa strain PAO1 harboring exoS-gfp (Green fluorescent protein) 

transcriptional fusion reporter plasmid was used for screening the T3SS inhibitors. Overnight 

culture of PAO1 harboring the reporter plasmid at a 1:1000 was inoculated into T3SS inducing 

medium with 250 µM of the screening compound. P. aeruginosa treated with DMSO (solvent 

for screening compounds) was used as negative control. Bacteria were cultured at 37°C for 

seven hours before harvesting. The harvested bacterial cells were diluted in PBS and the GFP 

intensity was measured using fluorescence-activated cell sorter (FACS) flow cytometry (BD 

Biosciences, CA). 
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Western blotting 

5µL of PAO1 overnight culture was inoculated into 5 mL T3SS inducing medium with 250 

µM of the screening compound. DMSO was used as control. Bacterial cell pellets and 

supernatant were separated by centrifugation at seven hours post-inoculation. For measuring 

the ExoS and ExsA protein in the bacteria cell, the cell pellets were resuspended in 50 µL of 

PBS. 50 µL of 2X SDS-page buffer was added into each sample and followed by boiling for 

10 minutes. For measuring the secreted ExoS protein level in the supernatant, the supernatant 

collected from the previous step was centrifuged again to remove any remaining cells. 

Trichloroacetic acid was added into the supernatant to reach the concentration of 10% and 

followed by centrifugation at 13,500 rpm for 30 min to collect the secreted protein. The protein 

pellets were resuspended in 2x SDS-page buffer. The protein sample from equal amount of 

cells were loaded on SDS page gel. The proteins were transferred to polyvinylidene difluoride 

(PVDF) membrane and probed with a rabbit polyclonal antibody against ExsA or a chicken 

polyclonal antibody against ExoS. A mouse antibody against RNA polymerase was used as 

control for the total protein quantity. 

 

HeLa cell cytotoxicity assay 

    T3SS-mediated cytotoxicity was determined by a cell lifting assay. HeLa cells (1´105) were 

seeded in each well of a 12 well plate and cultured for 18 hours at 37°C with 5% CO2 in DMEM 

medium (Dulbecco's Modified Eagle Medium) supplemented with 10% fetal bovine 

serum, penicillin (100 Units/mL), and streptomycin (100 µg/mL). Before the infection assay, 

the HeLa cell culture medium was removed from the well and the cells were washed twice with 

PBS (Phosphate Buffered Saline). HeLa cell culture medium without antibiotic supplemented 

with 250 µM of compound or DMSO, was added into each well. Bacteria were cultured 

overnight in LB medium at 37 °C. After collecting the overnight culture by centrifugation. The 

bacteria cell pellet was washed with PBS and resuspended in DMEM. HeLa cells were then 
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infected with the bacteria at MOI (Multiplicity of infection) of 30. Three and half hours post 

infection, the medium were removed and the HeLa cells were stained by crystal violet after 

rinsing twice with PBS. The plate was washed twice with PBS and then 200 µL of 95% ethanol 

was added to the wells for dissolving the crystal violet. The OD490 of the ethanol solution with 

dissolved crystal violet was measured to determine the cells that were attached to the surface. 

 

Mutant strain and reporter plasmid construction 

To construct the deaD deletion mutant, a PCR fragment consisting of the flanking region of  

~900 bp up and down stream of deaD were cloned into the HindIII and BamHI restriction site 

of pEX18GM. The plasmid was transferred to P. aeruginosa PAO1 strain by conjugal mating 

as previously described (82).  

The GFP reporter plasmid was constructed by cloning promoter regions of exsC, exsA, exoY 

and exoT into pProbe-AT, a broad host range vector with a promoterless GFP (green 

fluorescent protein) (83), respectively. The promoter activity was monitored by measuring GFP 

intensity using flow cytometry as described earlier. 

For constructing the tssA1‘-’lacZ, exsA‘-’lacZ and exsCEBA‘-’lacZ translational fusion 

reporter plasmid,  5’UTR and first 25 codons of tssA1 gene, 5’UTR and first 52 codons of exsA, 

region between exsC transcriptional start site to 52 codons of exsA were amplified by PCR, 

respectively, and cloned into the translational lacZ fusion vector PSW205 (84). The forward 

oligonucleotide primers for constructing these two translational fusion reporters were 

engineered to include an EcoRI restriction site and a lacUV5 promoter. Since there is no lacI 

gene in P. aeruginosa, IPTG inducing is not necessary. The expression of the translational 

fusion reporters were measured by β-Galactosidase activity as previously described (51). 
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qRT-PCR analysis  

    The mRNA levels of exsA were measured by qRT-PCR. Bacterial cells cultured in T3SS 

inducing medium for 7 h were harvested. RNeasy mini kit (Qiagen, Hilden, Germany) was 

used to isolate the total RNA. cDNA was synthesized using iScript cDNA synthesis kit (Bio-

Rad Laboratories, Hercules, CA). The cDNA level of exsA gene was quantified by qRT-PCR 

using SYBR green master mix (Applied Biosystems, CA). Data were analyzed using a 

Relative Expression Software Tool (85).The expression level of rpsL was used as an 

endogenous control for data analysis (36).  

 
Motility assay 

Swarming. Swarming plates were prepared as previous described (86). 187R (250 µM) or 

DMSO were adding into the medium. P. aeruginosa from overnight LB agar was inoculated 

on the plate. After overnight incubation at 30°C. The diameters were measured. 

Twitching. LB broth solidified with 1% (wt/vol) agar was used for twitching motility. P. 

aeruginosa was stab inoculated to the bottom of the petri-dish. 187R (250 µM) or DMSO was 

added into the medium. After inoculation for 16 hours at 37°C, the medium was removed from 

the plate. The zone of motility at the agar/Petri dish interface was measured after staining with 

crystal violet.  

 

Biofilm assay 

   Quantification of biofilm was performed in 96 well microtiter plates. Bacterial cells from 

overnight cultures were inoculated at 1:100 dilution into T3SS inducing medium or ABTGC 

medium (87). The plate was incubated overnight at 37°C without shaking.  Biofilms were 

stained with 0.1% crystal violet and were washed with water to remove unbound dye, and the 
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crystal violet was dissolved in 95% ethanol and the absorbance at 570 nm was measured. For 

each treatment, six independent experimental repeats were performed. 

 

Minimal inhibition concentrations (MICs) 

    Determination of the minimum inhibitory concentration (MIC) for antibiotics was 

performed in LB broth as previously described (88).The lowest antibiotic concentration that 

showed no growth was considered as the MIC. 

 

β-Galactosidase Assays 

β-Galactosidase assays were carried out in triplicate. The activity was determined as 

described (89). The samples were collected by centrifuge. The cell pellets were rinsed and 

resuspended in PBS to washed off the compound. The expression levels of the reporter 

plasmids were determined by normalization of β-Galactosidase activity (OD420) to the bacterial 

growth (OD600). 

 
Statistical Analysis 

    Two-tailed student’s t-test was used to assess the inhibition of 187R on the T3SS gene 

expression. One way analysis of variance (ANOVA) combined with Tukey-HSD were 

applied for multiple comparisons. The test was performed by statistic software R (90).  

 

Results 

Screening inhibitors of P. aeruginosa T3SS 

To discover the compound inhibit T3SS but not the growth of P. aeruginosa, we screened a 

small molecule compound library. The compound library was consisted by salicylic acid, its 
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precursors and their analogues. A total of 264 small molecule compounds were screened for 

identifying the inhibitors of P. aeruginosa T3SS.  

For monitoring the expression of exoS under the T3SS inducing condition (200 mM NaCl 

and 10 mM nitrilotriacetic acid), a GFP reporter carrying the exoS promoter region (59) was 

used in the screening process. Each compound was dissolved in DMSO and was added into the 

medium at a concentration of 250 µM. Bacteria cells were harvested seven hours post 

inoculation and the Mean Fluorescence Intensity (MFI) was measured by flow cytometry. The 

MFI of DMSO (vehicle dissolve the compound) treated reporter strain was used as control. 

Among all the compounds screened, compound 187 strongly inhibited the expression of exoS 

(90% inhibitory at concentration of 250 µM) in contrast to the DMSO treatment. Further 

analysis of two different 187 conformational isomers showed that only 187R inhibits the exoS 

while 187S does not (Fig. 2.1A). Also, no inhibition of bacterial growth was observed upon 

the addition of 250 µM of compound 187R (Fig. 2.1B). The dose-dependent effectiveness of 

187R on P. aeruginosa exoS promoter activity was examined in a T3SS inducing medium 

supplemented with different concentrations of 187R. As shown in Fig. 2.1C, the minimal 

concentration of 187R required to reach its maximum inhibition of the exoS promoter activity 

is 35 µM.  

 

187R impaired T3SS expression and reduced the virulence of P. aeruginosa 

To further examine the effect of 187R on P. aeruginosa T3SS, the expression levels of two 

effector encoding genes, exoY and exoT, were measured. The results indicated that the promoter 

activities of both genes were decreased when exposed to 187R (Fig.2.2A and B). In addition, 

a Western blot was performed to determine the ExoS protein (48.3kDa) level in the cell pellet 

and the supernatant. An anti-ExoS polyclonal antibody was used in the Western blot. Similar 

to previous studies the anti-ExoS polyclonal antibody also cross-reacted to the ExoT (59, 91) 
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showing another band at around 48kDa. As shown in Fig. 2.2C, consistent with the exoS and 

exoT promoter activity, ExoS and ExoT protein levels were reduced in the presence of 187R 

in both bacteria culture supernatant and cell pellets. 

Previous reports showed that P. aeruginosa T3SS translocates effector proteins into the 

cytoplasm of host cells and causes cell rounding, lifting, and death (92, 93). The infected cells 

detach from the monolayer culture, which allows us to evaluate the efficacy of T3SS inhibitors 

by a HeLa cell lifting assay (93). Briefly, the HeLa cells were infected with P. aeruginosa at a 

multiplicity of infection (MOI) of 30 in the presence of 187R. We added DMSO as a control. 

After incubation for three and half hours, the cell culture was rinsed twice with PBS and the 

living cells attached to the surface were stained with crystal violet. After removing the unbound 

crystal violet, 200 µL of ethanol was added. The dissolved crystal violet was measured by 

absorbance at a wavelength of 490 nm. In this assay, we used PAK strain since 1) it has higher 

and earlier T3SS expression than the PAO1 strain (94); 2) its T3SS repressed by 187R. A T3SS 

defect strain, pscJ mutant strain, was used as a control. pscJ is a gene which encodes a 

lipoprotein component of the T3SS basal substructure of the needle complex. It is required for 

the assembly of a functional T3SS (26). Consistent with the previous research (71), deletion of 

pscJ greatly decreased virulence compared to wild type PAK. In addition, adding 187R 

significantly reduced the cytotoxicity of PAK wild-type while showing no T3SS-mediated 

cytotoxicity to HeLa cells. The cell morphology after P. aeruginosa inoculation also confirmed 

that T3SS-mediated cell rounding greatly reduced when 187R was supplemented (Fig. 2.3B-

D). In conclusion, these results demonstrated 187R is a potent P. aeruginosa T3SS inhibitor. 

 

187R did not affect Vfr-cAMP pathway 

Transcriptional regulator protein Vfr (virulence factor regulator) activates P. aeruginosa 

T3SS through cyclic AMP dependent pathway. Previous research demonstrated that Vfr-cAMP 
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complex autoregulates vfr gene expression by directly binding to its own promoter region (35). 

To test if 187R inhibits T3SS through Vfr-cAMP pathway, vfr promoter activity was measured 

in the present of 187R. vfr mutant was used as a control in the experiment. In agreement with 

the previous research, mutation of vfr greatly reduced vfr promoter activity, indicating that Vfr 

is involved in autoregulation (Fig. 2.4A). However, in the wild-type strain, 187R did not alter 

the vfr promoter activity compared to the DMSO control (Fig. 2.4A). This result suggested that 

187R does not inhibit P. aeruginosa T3SS through Vfr-cAMP pathway. To further confirm 

this conclusion, we tested the exsA promoter activity in the presence of 187R. Previous research 

states that Vfr-cAMP complex directly binds to T3SS master regulator exsA promoter region 

and activates the transcription of exsA. The low exsA promoter activity in vfr mutant was 

observed as previously described (38), which proved that Vfr positivly regulates exsA promoter 

activity. However, we found that there were no significant changes in exsA promoter activity 

when treated with 187R (Fig. 2.4B). These results suggested that 187R did not affect the Vfr-

cAMP pathway. 

 

187R did not inhibit T3SS through Cbr/Crc pathway 

P. aeruginosa regulates T3SS through the Cbr/Crc pathway in which Crc (catabolite 

repression control protein) serves as a positive regulator of T3SS and modulates the 

transcription of exsCEBA (36). Therefore, if 187R inhibits T3SS through the Cbr/Crc pathway, 

exsC promoter activity should reduce. Consistent with the previous results, in a crc mutant 

strain, exsC promoter activity greatly reduced compared to the wild type (Fig 2.5A). However, 

we found that the exsC promoter activity was not altered when treated with 187R (Fig. 2.5B). 

Crc represses the translation of amiE, which encodes an aliphatic amidase (74). Using the 

amiE‘-’lacZ translational fusion reporter, we found that amiE‘-’lacZ expression did not show 

significant differences between DMSO and 187R treated wild type strains (Fig. 2.5C). Similar 
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to previous research, there was a significant increase of amiE‘-’lacZ expression in the crc 

mutant strain (74). In conclusion, these results confirmed that 187R did not inhibit T3SS via 

the Cbr/Crc pathway. 

 

187R increases the RsmY level in P. aeruginosa 

RsmY and RsmZ small RNAs play crucial roles mediating various cellular processes 

including T3SS in P. aeruginosa (45). We first tested the mRNA levels of two regulatory small 

RNAs RsmY and RsmZ via qRT-PCR. As shown in Fig. 2.6, rsmY RNA level increased 

dramatically (four-fold increase in 187R-treated bacteria) while rsmZ RNA level has a 

moderate decreased in the presence of 187R. This result suggested that rsmY could be the 

potential target causing the inhibition of T3SS. 

 

187R inhibits P. aeruginosa T3SS not through RsmY/Z/A regulatory pathway  

Since rsmY small RNA inhibits T3SS by adjusting the activity of RsmA protein, we tested 

the activity of RsmA. Previous studies showed that increased RsmA activity elevates T3SS and 

represses T6SS at the post-transcription level. As a repressor for T6SS, RsmA binds to the 

GGA motif of P. aeruginosa T6SS mRNAs to repress the translation of T6SS genes. The tssA1 

is a gene that encodes a T6SS structural protein. It has a GGA motif and its translation is 

repressed by RsmA (95, 96). To evaluate the RsmA activity, a tssA1‘-’lacZ translational fusion 

reporter was constructed by cloning the 5’ UTR and the first 25 codons of tssA1 into pSW205. 

The tssA1‘-’lacZ translational fusion reporter is driven by lacUV5 promoter.  If 187R inhibits 

T3SS via RsmY/Z/A regulatory pathway, an increasing tssA1‘-’ lacZ expression level will be 

observed in the presence of 187R. However, as shown in figure 2.7A, the expression level of 

tssA1‘-’lacZ  decreased moderately in the presence of 187R, suggesting elevated RsmA activity. 

This data demonstrated that the 187R did not inhibit T3SS through RsmY/Z/A regulatory 

pathway. To further confirm the increased rsmY small RNA in the presence of 187R did not 
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inhibit the T3SS expression, we checked the T3SS expression under a rsmYrsmZ double mutant 

background within the presence of 187R. The result showed that 187R still strongly inhibits 

the exoS promoter activity (Fig. 2.7B), which confirmed that 187R did not inhibit T3SS through 

RsmY/Z/A regulatory pathway. 

 

187R inhibits T3SS not through reducing Lon protease activity 

     Since the increasing RsmY did not affect T3SS, we examined the other regulatory 

components that can increase RsmY RNA levels and are capable of inhibiting T3SS 

independent of RsmA. One possible cellular component that may cause the increase of rsmY 

but not rsmZ RNA and inhibits the T3SS independent of RsmY/Z/A regulatory pathway is the 

Lon protease (97). Lon protease is an important enzyme involved in the protein quality control 

in microorganisms and required for full virulence of P. aeruginosa (98). Previous research 

suggested that Lon protease not only positively regulates T3SS through unknown mechanisms, 

but also negatively regulates the rsmY mRNA level through adjusting the protein level of RNA 

chaperon Hfq (99). If the compound 187R suppressed the T3SS through inhibiting Lon 

protease, the RNA chaperon Hfq would increase and elevate the rsmY but not rsmZ RNA level 

(100). Since Lon protease represses the expression level of quorum sensing autoinducer 

synthetase rhlI (101), we first performed qRT-PCR to find out if the mRNA level of rhlI is 

increased in the presence of 187R. The qRT-PCR results showed that rhlI mRNA levels 

decreased while adding 187R in the medium (Fig. 2.8). Lon protease is also involved in 

fluoroquinolone class antibiotic resistance. Mutation of lon resulted a four times increasing of 

ciprofloxacin susceptibility compared to the wild type (102). If 187R inhibits Lon protease, we 

would observe the reduction of ciprofloxacin MIC while adding 187R. However, the MIC of 

ciprofloxacin did not change after adding 187R (Table 2.3). These results demonstrate that 

187R does not inhibit T3SS through Lon protease. 



 29 

 

187R inhibits T3SS not through increasing the secondary messenger c-di-GMP level 

    Besides the Lon protease, another potential candidate that may cause the increasing  rsmY 

(but not rsmZ) mRNA level is the diguanylate cyclase (DGC) HsbD. HsbD positively regulates 

rsmY transcription through increasing the intracellular c-di-GMP level (103). C-di-GMP is an 

important intracellular secondary messenger that regulates multiple virulence factors. T3SS is 

one of the virulence factors modulated by c-di-GMP. Although the mechanisms how c-di-GMP 

regulates T3SS is not completely understood, c-di-GMP negatively regulates T3SS. To 

measure the c-di-GMP level in the presence of 187R, we examined the cdrA promoter activity, 

which is positively regulated by the intracellular c-di-GMP level (104). Our result showed that 

cdrA promoter activity did not increase in the presence of 187R (Fig. 2.9A). In P. aeruginosa, 

increasing intracellular c-di-GMP represses swarming motility but promotes twitching motility 

(103). In order to further confirm that intracellular c-di-GMP level was not affected by 187R, 

the twitching and swarming motility of P. aeruginosa was examined in the presence of 187R. 

Our results showed that twitching motility (Fig. 2.9B-C) did not change while adding 187R in 

the medium. These results suggested that 187R did not inhibit the T3SS through increasing 

intracellular c-di-GMP level. 

 

 

 187R inhibits T3SS through post-translationally regulating the master regulator ExsA 

For elucidating the impact of 187R on master regulator exsA, Western blots of ExsA was 

performed using anti-ExsA antibody. Western blot of ExsA protein showed that the ExsA 

protein level decreased dramatically in the presence of 187R (Fig. 2.10A). Since our results 

also indicated that exsA and exsC promoter activity was not altered by 187R (Fig. 2.4B & Fig. 

2.5B), we investigated the inhibitory mechanisms of 187R on exsA at post-transcriptional level. 

We measured the exsA mRNA in the presence of 187R or DMSO using qRT-PCR. As shown 
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in Fig. 2.10B, the ratio of mRNA level in the presence of 187R and DMSO is close to one, 

revealing the similar exsA mRNA level in the presence of 187R or DMSO.  

An alternative hypothesis to account for 187R decreasing ExsA protein level could be that 

187R hampered the translation of exsA mRNA. To test this hypothesis, we first tested if 187R 

affects the activity of RNA helicase DeaD. DeaD is the major RNA helicase that stimulates 

exsA translation independent of RsmA (48). To examine whether 187R inhibits the T3SS via 

DeaD, we first determined the T3SS expression level under the deaD mutant background. The 

exoS-gfp transcriptional fusion reporter was introduced into the deaD mutant strain. Consistent 

with previous research, ExsA-dependent exoS gene expression was extremely low in the deaD 

mutant, indicating the T3SS expression was abolished in this mutant (Fig. 2.11A). Therefore, 

we were unable to compare the T3SS expression between 187R and DMSO treatments under 

deaD mutant background.  

An alternative strategy for testing whether DeaD is affected by 187R is observing the growth 

of bacteria at low temperature. P. aeruginosa deaD is a homologue of E.coli deaD which is 

essential for low temperature growth (50). In order to confirm deaD plays the similar role in P. 

aeruginosa, we measured the growth of P. aeruginosa deaD mutant strain under low 

temperature conditions (16°C) in both T3SS inducing medium and non-inducing  (LB) medium. 

Similar to the E.coli deaD mutant, P. aeruginosa deaD mutant showed a growth defect at 16°C 

but not  37°C (Fig. 2.11B-D). Therefore, if 187R inhibits exsA translation by reducing DeaD 

activity, a reduced growth at 16°C would be observed when 187R was added into the growth 

medium. However, adding 187R did not affect the growth of the wild type strains at 16°C in 

both T3SS inducing and non-inducing conditions (Fig. 2.11C-D). As a result, we conclude that 

187R does not inhibit T3SS through affecting the RNA helicase DeaD.  

The transcription of exsA can be activated by ExsA through the exsC promoter region and 

Vfr-cAMP through the exsA promoter region, therefore, generating exsCEBA polycistronic 
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mRNA and exsA mRNA. Since the regulatory mechanisms of these two different mRNAs have 

not been completely understood,  two different translational fusion reporters, exsCEBA‘-’lacZ 

and exsA‘-’lacZ, were constructed. As show in the Fig. 2.12A, exsCEBA‘-’lacZ translational 

fusion reporter was constructed by cloning the region between the transcriptional start site of 

exsC to 52 codons of exsA into pSW205. exsA‘-’lacZ translational fusion reporter was 

constructed by cloning the 5’ UTR of exsA and 52 condons of exsA into pSW205 (Fig. 2.12A). 

These two exsA‘-’lacZ  and exsCEBA‘-’lacZ translational fusion were driven by foreign  

lacUV5 promoter. In the presence of 187R, the expression of exsA‘-’lacZ and exsCEBA‘-’lacZ 

translational fusion reporter were not reduced (Fig. 2.12B-C). In conclusion, the results above 

suggested that compound 187R suppresses ExsA protein but it is not through decreasing the 

transcription and translation of exsA. 

 

187R inhibits T3SS not through nitrate reductase (NirS) 

We also studied whether 187R inhibits the T3SS via nitrate reductase NirS which is required 

for the maximal virulence of T3SS (54). Previous study showed supplementation with sodium 

nitroprusside (SNP) as NO donor restored T3SS in a NirS mutant (54). Therefore, if the 

compound inhibits T3SS via NirS, supplementation with SNP as an NO donor would restore 

the T3SS with the presence of 187R. As shown in Fig. 2.13, supplementation with SNP did not 

restore the T3SS expression in the presence of 187R. In addition, the NirS mutant only showed 

decreased T3SS-mediated cytotoxicity when the MOI = 0.1. In our HeLa cell lifting assay, we 

used much higher MOI (MOI=30) for our assay and 187R showed significant inhibition of 

T3SS-mediated cytotoxicity. Therefore, NirS is not the target of 187R. 

 

187R inhibits T3SS not through ppGpp 

  5’-diphosphate-3’-diphosphate (ppGpp) is another bacteria secondary messenger that 

regulates the virulence of bacteria. Although the regulatory mechanisms is not clear, this 
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secondary messenger is also involved in motility, biofilm formation and T3SS. In a ppGpp 

deficient strains, the swarm motility and biofilm formation are greatly reduced. Since we did 

not observe a reduced swarming motility in the presence of 187R, the compound probably did 

not affect the T3SS by reducing ppGpp level. Our biofilm formation assay (Fig. 2.14A-B) also 

found that the biofilm formation was not altered by 187R in both T3SS-inducing medium and 

ABTGC medium. These results suggested that 187R did not inhibit the T3SS by decreasing 

ppGpp. 

 

Discussion 

P. aeruginosa is resistant to many commonly used antibiotics. Since the T3SS is essential 

for  initiating the acute infection and responsible for bacterial survival in epithelial airway (71), 

it has been considered as a potential alternative target for the development of  new antimicrobial 

therapies. In this study, we screened a compound library to look for the anti-virulence 

compounds that inhibit P. aeruginosa T3SS but do not inhibit the growth of the bacteria. We 

found a potent T3SS inhibitor, 187R, that can suppress the P. aeruginosa T3SS. Our data 

suggested that the compound reduces the T3SS-mediated cytotoxicity towards HeLa cells. 

Further research proved that adding the compound did not inhibit T3SS through the major 

regulatory pathways including Cbr/crc, Vfr/cAMP and RsmY/Z/A regulatory pathway. We 

also confirmed that 187R did not inhibit T3SS through Lon protease, diguanylate cyclase (DGC) 

HsbD, or nitrate reductase NirS. The impact of the compound 187R on the master regulator 

ExsA was also assessed. Our data demonstrated that 187R dramatically reduced protein level 

of ExsA without inhibiting exsA gene expression and translation. These results indicate that 

there may be an unknown regulatory component that post-translationally regulates ExsA 

protein levels independent of the major regulatory pathways.  
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In this study, supplementation of 187R greatly reduced the protein level of ExsA and 

dramatically decreased the expression of ExsA-dependent genes such as exoS and exoY. 

However, the reduced ExsA protein level did not decrease the exsC promoter activity and exsA 

mRNA level. The phenotype was probably caused by the high binding affinity of ExsA to exsC 

promoter region (29). Therefore, the promoter activity of exsC was not affected by the 

decreased ExsA protein level. In addition, we found that although adding 187R elevates the 

RsmY RNA level, the increased RsmY RNA level did not sequester the RsmA and resulted 

defected exsCEBA‘-’lacZ expression. A plausible explanation for this observation is that 187R 

may increase the protein level of the RNA chaperone Hfq. While Hfq and RsmA shared 

overlapping binding sites on rsmY small RNA, the binding affinity of Hfq to rsmY small RNA 

is higher than RsmA to rsmY small RNA. As a result, although the binding of Hfq to RsmY 

increased the RNA stability, it prevents RsmA from binding to rsmY small RNA (105). A 

further study on the effect of 187R on Hfq is needed to confirm the above hypothesis. 

P. aeruginosa uses various planktonic virulence factors to initiate the infection in tissues 

(106). When the bacterium is under stress or unfavorable conditions, it turns off the planktonic 

virulence factors and switches the lifestyle from planktonic to biofilm. Eventually, the 

bacterium establishes the biofilm-based chronic infection. Clinically, treating the biofilm-

associated infections is a tremendous challenge due to its higher tolerance to antibiotics and 

lower susceptibility to the host immune response (107). While P. aeruginosa shifts from 

planktonic lifestyle to biofilm, some regulatory components switch acute virulence factors and 

biofilm formation. For example, RsmA, the positive T3SS posttranscriptional regulator, 

negatively regulates biofilm formation through various regulatory pathways including 

controling intracellular c-di-GMP level (44). Previous research conducted in a murine lung 

infection model showed that although disrupting rsmA reduced the acute virulence factors, the 

mutant showed increased biofilm formation and increased pulmonary inflammation in a 
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chronic infection model (44, 108). Therefore, while screening the anti-virulence compounds 

like T3SS inhibitors, it is important to avoid the compounds impacting the cellular components 

that inversely control acute virulence factors and biofilm formation such as RsmA. Our data 

suggests that 187R did not inhibit T3SS via reducing RsmA activity or increasing c-di-GMP 

level. Further experiments showed that 187R did not promote the biofilm formation compared 

to the DMSO control (Fig. 2.14). Our results suggest that while 187R strongly inhibits the 

T3SS of P. aeruginosa, the compound does not increase biofilm formation.   

    Taken together, our research suggested that the compound 187R inhibits P. aeruginosa T3SS 

through reducing ExsA protein level at post-translational level. After examining the current 

known mechanism, we found that 187R did not inhibit T3SS through major known regulatory 

pathways or components. These results indicate that there is an unknown T3SS regulatory 

pathway way that regulates ExsA protein at the post-translational level. Moreover, 187R has 

not only shown inhibition to T3SS, further research suggested that 187R does not promote the 

other virulence factors such as motility, c-di-GMP and biofilm formation. Overall, 187R is a 

potential compound for further drug development.  
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Figure 2.1 Effect of 187 on P. aeruginosa exoS promoter activity and growth. P. aeruginosa was cultured in 
T3SS inducing media supplemented with 250µM of compound 187R or DMSO. (A) exoS promoter activities 
supplemented with 187R and DMSO respectively. (B) Growth of P. aeruginosa with 250µM of 187R compared 
with DMSO. (C) Evaluation of the dose-dependent effect of 187R on exoS expression. 
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Figure 2.2 187R impairs T3SS expression and reduces the virulence of P. aeruginosa. (A) exoY promoter 
activity with 187R or DMSO. (B) exoT promoter activity with 187R or DMSO. (C) Western blot of the protein 
levels of ExoS and ExoT with 187R and DMSO respectively. Statistical significance was determined using an 
two-tailed student’s t-test (***, P<0.001). 
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Figure 2.3 HeLa cell cytotoxicity assay. A) Cell lifting assay. Strain names: PAK: wild type PAK, pscJ-: PAK 
ΔpscJ, No bacteria: No bacteria but only DMSO or 187R added into the HeLa cell culture. Statistical 
significance was determined using an ANOVA test with Tukey-HSD analysis. Significant differences were 
found between DMSO treated PAK infection group and all other groups (**, P<0.01). No significant differences 
found among all other groups. B) HeLa cell morphology post infection with the present of DMSO (B), 187R 
(C), and D) pscJ mutant 
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Figure 2.4  vfr and exsA promoter activity. (A) exsA promoter activity in wild type with the presence of 187R 
and DMSO respectively. exsA promoter activity of vfr mutant was served as control. (B) vfr promoter activity in 
wild type with the presence of 187R and DMSO, respectively. vfr promoter activity of vfr mutant was served as 
control. 
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Figure 2.5 exsC promoter activity and amiE‘-’lacZ translational fusion expression (A) exsC promoter activity of 
the wild-type P. aeruginosa in the presence of DMSO or187R. (B) exsC promoter activity in wild type and crc 
mutant. (C) amiE‘-’lacZ expression level in the presence of DMSO or 187R, crc mutant was served as control. 
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Figure 2.6 Expression ratio of rsmY and rsmZ mRNA level with the presence of DMSO and 187R. rpsL was 
served as internal control. The fold change was log2 transformed (*, P<0.05). 
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Figure 2.7 Effect of 187R on rsmY/Z/A regulatory pathway. (A) expression of tssA1‘-’lacZ translational fusion 
reporter with 187R and DMSO respectively. (B) exoS promoter activity in in the rsmYZ double mutant with the 
present of 187R and DMSO respectively. Statistical significance was determined using an two-tailed student’s t-
test (**, P<0.01; ***, P<0.001). 

 
  

0

10

20

30

40

50

60

70

80

90

100

DMSO 187R

M
ill

er
Un

it

TssA1'-'LacZ expressionA

0

200

400

600

800

1000

1200

1400

1600

1800

rsmY rsmZ double mutant WT

M
ea

n 
Fl

uo
re

sc
en

ce
 In

te
ns

ity

exoS promoter activity in WT and rsmY rsmZ double 
mutant

DMSO

187R

B

**

***



 42 

 

 
 
 
 
 Figure 2.8 Expression ratio of rhlI in 187R/DMSO. The ratio waslog2 transformed. 
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Figure 2.9 Effect of 187R on c-di-GMP level. (A) cdrA promoter activity level with the presence of DMSO or 
187R. cdrA promoter activity in ABTGC medium was used as a control. (B) Twitching and (C) swarming 
motility of wild-type strain in the presence of DMSO or 187R.  
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Figure 2.10 Effect of 187R on master regulator exsA. A) ExsA protein levels with DMSO and 187R 
respectively. RNA polymerase (RNAP) was used as the loading control. B) qRT-PCR of exsA. Expression ratio 
of exsA in 187R/DMSO. The ratio was log2 transformed. rpsL was served as internal control.  
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Figure 2.11 deaD regulates T3SS expression and low temperature growth. A) exoS promoter activity 
dramatically reduced in deaD mutant, adding 187R did not further reduced the exoS promoter activity. B) deaD 
did not affect the growth of PAO1 at 37°C. The low temperature (16 °C) growth of deaD mutant was measured 
in T3SS inducing medium (C) and LB (D) medium. deaD showed growth defect under the low temperature 
condition. Adding 187R does not affect the growth of PAO1 at 16 °C. Statistical significance was determined 
using an two-tailed student’s t-test (***, P<0.001). 
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Figure 2.12 Translation of exsA with the presence of 187R or DMSO. (A) exsA‘-’lacZ and exsCEBA‘-’lacZ 
translational fusion reporter construction. (B) exsA‘-’lacZ  and (C) exsCEBA‘-’lacZ  expression with the 
presence of 187R or DMSO 
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Figure 2.13 187R inhibits T3SS in the presence of SNP (NO donor). P. aeruginosa was cultured under T3SS 
inducing condition. SNP was supplemented in the medium at the concentration of 3mM. Water was supplemented 
as control. Statistical significance was determined using an two-tailed student’s t-test (**, P<0.01; ***, P<0.001). 
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Figure 2.14 Biofilm formation of wild type strain with the presence of 187R and DMSO in T3SS inducing 
medium (A) and ABTGC medium (B)  
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Table 2.1 Bacteria strains and plasmids used in this study. 

Strain/plasmid Description Reference or source 

Pseudomonas aeruginosa   

PAO1 Wild-type strain (109) 

PAO1Δcrc crc deletion mutant (74) 

PAO1ΔdeaD deaD deletion mutant This study 

PAK Wild-type strain  (26) 

PAKΔpscJ The pscJ mutant (26) 

PAKΔvfr-Pvfr vfr deletion mutant with vfr-lacZ 

transcriptional fusion integrated into 

chromosome 

(35) 

PAK-Pvfr PAK wild type with vfr-lacZ 

transcriptional fusion integrated into 

chromosome 

(35) 

   

 

E. coli  

  

DH5α F80dlacZ∆M15 ∆(lacZYA-argF) U169 

recA1 hsdR17 deoR thi-1 supE44 gyrA96 

relA1 

(110) 

   

Plasmids   

pPROBE-AT Cloning vector for transcriptional gfp 

fusions; Cbr 

(83) 

exoS-gfp pPROBE-AT containing the exoS 

promoter; Cbr 

(59) 

exoY-gfp pPROBE-AT containing the exoY 

promoter; Cbr 

This study 

exoT-gfp pPROBE-AT containing the exoT 

promoter; Cbr 

This study 

exsC-gfp pPROBE-AT containing the exsC 

promoter; Cbr 

This study 
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exsA-gfp pPROBE-AT containing the exsA 

promoter; Cbr 

This study 

pME6013 Cloning vector for translational lacZ 

fusions; Tcr 

(111) 

pME9655 pME6013 with amiE'-'lacZ; Tcr (74) 

pSW205 lacZ translational fusion vector carrying 

the P. aeruginosa 1.8 kb stability 

fragment; Cbr 

(84) 

exsA ‘-’ lacZ pSW205 carry exsA transcriptional start 

site to +52 codon of exsA, driven by 

LacUV5 promoter 

This study 

exsCEBA ‘-’ lacZ pSW205 carry exsC transcriptional start 

site to 52 codons of exsA, driven by 

LacUV5 promoter 

This study 

tssA1 ‘-’ lacZ pSW205 carry +1 to +188 of tssA1, 

driven by LacUV5 promoter 

This study 

pEX18GM P. aeruginosa gene replacement vector; 

sacB, Gmr 

(112) 

pEX18GM-deaD pEX18GM carrying deaD deletion allele This study 
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Table 2.2 Oligonucleotide primers utilized in this study,  

underlines indicates restriction enzyme sites 

Primer Sequence (5′→3′) 

exoY-gfp  

PexoY-F ATGGATCCGACGGTACGTACTTCGCGAC 

PexoY-R ATGAATTCTGCATATCCGCAGGGCGCAG 

exoT-gfp  

PexoT-F TAGGATCCCACCAAGAGCCCGTCGCTGC 

PexoT-R ATGAATTCCCAGGCGCCCGGCCACGGC 

exsC-gfp  

PexsC-F ATTGTCGACGCAGAAGGTCGAGGACCAGATG 

PexsC-R ATTGAATTCGATACGGCCTGCGAACTCGGC 

exsA-gfp  

PexsA-F ATTGTCGACTACATTGCCTGCTGTTTCGG 

PexsA-R ATTGAATTCGGCCAAGAGATTTGGCTCC 
 

cdrA-gfp  

PcdrA-F ATTGTCGACGCAGTTGCAGCTCGTCGAA 

PcdrA-R ATTGAATTCCGGACGGACCATGAAAATCT 

exsA ‘-’ lacZ translational fusion  

Post exsA -F  AAAGAATTCAGGCTTTACACTTTATGCTTCCGGCTCGTAT
AATGTGTGG CGTGCTCATGGCTTTGAAAATC 
 

Post exsA -R AAAGGATCC CGCCAGGCAAAAAGTGGAAT 
 
 

tssA1 ‘-’ lacZ translational fusion  

Post tssA1 F AAAGAATTCAGGCTTTACACTTTATGCTTCCGGCTCGTAT

AATGTGTGGAACCTTTCGAGTCATCCAATAT 
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Post tssA1 R AAGGATCCGCGTCGTACTCCAGATCG 

 

deaD deletion mutant   

deaD Upstream-F AAA AAGCTTCGAGACGATAGGCTTCGTGG 

deaD Upstream-R GGACCTCAGTCCTCGCGAGTCATGGGTTTGCCTCGTAT 

deaD downstream-F ATACGAGGCAAACCCATGACTCGCGAGGACTGAGGTCC 

deaD downstream-R AAAGGATCC ACGACTTCTACGGCTTTCCG 

  

qRT-PCR primer  

rpsL - F TGAAGGTCACAACCTGCAAGAGCA 

rpsL - R AACGACCCTGCTTACGGTCTTTGA 

  

exsA - F CAAGGGAAAGGACAGCCGAA  

exsA - R ACGCTCGACTTCACTCAACA  

  

rsmY-F 
 

TCAGGACATTGCGCAGGAA 

rsmY-R TTTGCAGACCTCTATCCTGACATC 
 
 

rsmZ-F GGAACACGCAACCCCGAAGG 
 

rsmZ-R CCGCCCACTCTTCAGTCCCT 
  
  

rhlI-F ATCCGCAAACCCGCTACATC  
  
rhlI-R TAGGCGAAGACGTCCTTGAG 
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Table 2.3 Ciprofloxacin susceptibility of P. aeruginosa PAO1 grow with DMSO or 187R  

 

Condition DMSO 187R 

MICa 1-2mg/L 1-2mg/L 

   
a MIC of ciprofloxacin was measured with DMSO or 187R (250 µM) supplemented in the growth medium. MIC 

was determined by the minimal concentration of ciprofloxacin without growth.  
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Chapter 3 : Anti-virulence compound 
preserve the microbial community better 
than the traditional antibiotics 
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Abstract 

Antibiotic therapies are known to disrupt the microbiota and have long-term negative 

influence on the hosts’ health status. Anti-virulence compounds target the virulence factors but 

do not affect cell components that are essential for cell survival. Therefore, anti-virulence 

therapies are considered as alternative antimicrobial therapies that can better preserve the host-

associated microbial community. Although several studies evaluating the efficacy of anti-

virulence compounds on infectious diseases have been conducted, the impact of anti-virulence 

compounds on host microbial community has been seldom investigated. In this study, we used 

16S Illumumia sequencing to test the impact of the anti-virulence compound, designated as 

187R, on the composition of a P. aeruginosa hosts microbial community (Arabidopsis 

phyllosphere) in comparison to the treatment of streptomycin. Although the culture 

independent sequencing method is a powerful tool for studying the microbial community, it 

cannot assess the bioactivity and viability of the microbial community. To address this 

limitation, we also used the Biolog EcoPlate assay to compare the viability and metabolic 

function of the 187R-and streptomycin-treated microbial community. After examining the 

Illumina sequencing results and the carbon profile of 187R-, DMSO- and streptomycin-treated 

phyllosphere. We found that microbial community composition and metabolic function of the 

187R-treated phyllosphere were more similar to the DMSO-treated phyllosphere (negative 

control) than the streptomycin-treated group. The results suggest that anti-virulence 

compounds can preserve the microbial community better than antibiotics.  

 

Introduction 

Microorganisms inhabit almost every imaginable environment in the biosphere. These 

microbes play crucial roles in the ecosystems all around the world for cycling elements such 

as carbon, oxygen, nitrogen and metal (113). For example, the soil microbial community is 
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essential for decomposing the organic matters in forest soil, further influencing the carbon 

cycle and nutrient composition in the soil (114). In addition, in many ecosystems such as the 

tropical forest ecology system, the microbial community is considered as a key factor for 

maintaining the bio-diversity through negative feedback mechanisms (i.e., accumulation of 

pathogens inhibits the growth of plant seedlings) (115). The microbial communities in different 

areas, or symbiotic microbes in different hosts, feature their unique compositions and 

diversities (116). These microbial communities also have special functions affecting the hosts’ 

health status. For example, the gut microbial community provides nutrients to the host, 

represses pathogens and parasites, and stimulates the development of the host’s immune system 

(63, 64). Studies have suggested that phyllosphere microbial communities (i.e., microbial 

community on the leaf surface) limit the number of invasive pathogenic bacteria on the leaf 

surface via competition, as a result alleviating diseases (117).  

Antibiotic therapy has been widely applied for treating the bacterial and fungal infections in 

human and animals since Alexander Fleming discovered penicillin in 1928. However, the 

current antibiotic therapy targets the cellular components which are essential for cell survival. 

The strong selective pressure leads to the development of antibiotic resistance and causes the 

accumulation of antibiotic resistant genes in the host gut microbiota. As a result, the host- 

associated microbiota becomes a potential pool of resistant genes and poses public health risk 

(118). Moreover, the cellular components serving as the targets of antibiotics, especially the 

broad-spectrum antibiotics, are conserved in many different bacteria species including both 

pathogenic and nonpathogenic microbes. Therefore, the antibiotic treatment also affects the 

nonpathogenic microbes and disturbs the hosts’ microbial communities (58, 119). The 

disruption of hosts’ microbes sometimes causes severe diseases. For example, gut microbial 

disorder correlates with Clostridium difficile infection (68) and inflammatory bowel disease 

(69). The recovery of microbiota after treatment with antibiotics can take up to years (70), 
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which could potentially shorten the life span of the host (58, 120).  

The anti-virulence therapies target the virulence factors instead of the essential components 

for cell survival. Therefore, it has been expected that the anti-virulence therapies can minimize 

the damage to the hosts’ microbiota (72). However, few studies have been done to prove the 

theory. This study aimed to evaluate the anti-virulence compound impacts on host (i.e., 

Arabidopsis phyllosphere) from the perspective of the microbial community. Three treatments, 

including the virulence compound (i.e., 187R), control group (i.e., DMSO) and antibiotics (i.e., 

streptomycin) were applied to observe the corresponding impacts on phyllosphere microbes. 

Our results showed that 187R treatment group had more similar Arabidopsis phyllosphere to 

the control group compared with streptomycin, indicating less disturbance to host microbiota 

from this anti-virulence compound. This observation suggests such alternate antimicrobial 

therapy may be able to preserve non-pathogen host microbiota, causing less negative impacts 

on the host health condition compared to the widely-applied antibiotics.  

Anti-virulence compound is considered as narrow-spectrum or even species-specific since 

the regulatory of virulence factors such as T3SS are very different in different pathogens. In 

our study, we also tested the spectrum of our anti-virulence compound 187R by testing the 

impact of 187R on a Hrp (Hypersensitive responses and pathogenicity) T3SS. Hrp T3SS is 

conserved among plant pathogens such as D. dadantii, E. amylovora and Psedomonas syringae 

(121). The Hrp T3SS in these three bacteria is activated by alternative sigma factor HrpL. In 

our experiment, we tested if the expression of D. dadantii and E. amylovora hrpA gene, which 

encodes a major component of T3SS pilus, altered by 187R (122, 123). We found that the hrpA 

expression has not changed in both D. dadantii and E. amylovora. These results showed that 

187R is not a broad-spectrum anti-virulence compound. 
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Materials and Methods 

 

Phyllosphere collection 

For testing the effect of 187R on the phyllosphere, eight weeks Arabidopsis thaliana Col-1 

were moved from the pot to 2mL microcentrifuge tubes with the root immersed in water. The 

leaves were sprayed twice (8 hours between each spray) with 187R (35 µM), DMSO (negative 

control) or streptomycin (200 ppm), respectively. DMSO was also added into the streptomycin 

solution before spraying. The leaves were collected after the plants were kept at room 

temperature for overnight. The collected leaves were gently washed in PBS for cleaning the 

remaining compound and antibiotics. The washed leaves were placed in sterile tubes containing 

30 mL PBS. The phyllosphere were collected by sonicating the test tubes in a water bath 

sonicator for 15 minutes. Samples were collected in triplicate for each treatment. A total of 22-

24 plants were used in each treatment.  

 

16S rRNA gene illumina sequencing and data analysis 

PBS containing phyllosphere microbes collected from above were centrifuged and the cell 

pellets were used for microbial DNA extraction with the Qiagen Dneasy Powersoil kit (Qiagen, 

Germany)  following manufacturer’s instructions. The quantities of the genomic DNA were 

measured by Nanodrop spectrophotometer. Approximately 10ng of DNA were added into the 

PCR reaction as template. The V4 region of 16s rRNA gene was amplified using the 16S_515F 

and 16S_806R primers with Illumina sequencing adaptors (16S_515F: TCG TCG GCA GCG 

TCA GAT GTG TAT AAG AGA CAG GTG CCA GCM GCC GCG GTA A; 16S_806R: GTC 

TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGG ACT ACH VGG GTW TCT 

AAT) (124). PCR amplification consisted of 95°C for 45 s, followed by 38 cycles of 95°C for 

15 s, 78°C for 10 s, 60°C for 30 s, and 72°C for 30 s (125). PNA (peptide nucleic acid) clamps 
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mPNA and pPNA clamps (mPNA: GGC AAG TGT TCT TCG GA and pPNA: GGC TCA 

ACC CTG GAC AG) (126, 127), which binds to and blocks the amplification of mitochondria 

and chloroplast DNA, respectively, were added to the PCR reaction at a final concentration of 

0.75 µM. The PCR products was purified by QIAquick Gel Extraction Kit (QIAGEN).  

Microbial community Illumina sequencing data was analyzed by Qiime version 1.9.1 (128). 

Open-reference OTU (Operational Taxonomy Unit) picking method using GreenGenes 

reference database version 13.8 (129) was performed for OTU clustering and taxonomy 

assignments. Principle coordinates analysis (PcoA) of microbial communities was performed 

based on the Unifrac distance matrix (130).  

 

Testing the impact of 187R on phyllosphere with culture dependent Biolog EcoPlate.  

The different members of a microbial community have different growth requirements and 

utilize different carbon sources, therefore, the microbial community can decompose different 

organic carbon and involved in the nutrient cycling. Alternating the microbial community may 

change its carbon utilization. In this assay, the ability of the phyllosphere microbial 

communities treated by 187R, DMSO or streptomycin, utilizing the carbon sources were 

assessed by BioLog EcoPlate. Each EcoPlate has 96 wells containing 31 carbon sources and 

one blank control in three replicas. Tetrazolium violet redox dye was used to evaluate the 

substrate (carbon source) metabolization. For the EcoPlate assay, 2mL of PBS containing the 

suspended phyllosphere was diluted 1:20 (vol:vol) in sterile PBS. PBS contains diluted 

phyllosphere suspension was aliquoted into each well (120µL) of the Biolog EcoPlate. The 

carbon utilization was determined by Telcon plate reader using OD590nm after 48 hours 

incubation. The results were analyzed by Principle Component Analysis (PCA) using R (90) 

package FactoMineR (131). The heatmap with clustering analysis was generated based on 
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average OD590 value of each carbon source within each treatment using R package gplots 

(132). 

 

Testing the expression of T3SS in Erwinia amylovora and Dickeya dadantii  

Erwinia amylovora 273 and Dickeya dadantii 3937 are plant pathogens processing T3SS. 

We tested the T3SS gene expression by measuring the T3SS regulon gene hrpA expression in 

these two strains. E.amylovora 273 and D. didantii 3937 carrying a phrpA reporter plasmid 

were used in this assay. The reporter plasmid phrpA for E. amylovora 273 was constructed by 

cloning E. amylovora hrpA promoter region into pPROBE-NT (123).  The reporter plasmid 

phrpA for D. dadantii 3937 was constructed by cloning D. dadantii 3937 hrpA promoter region 

into pPROBE-AT (133). The strains carrying phrpA reporter plasmid at 1:1000 were 

inoculated into Minimal Medium (133) with 250 µM of 187R. E. amylovora or D. didantii 

3937 harboring the T3SS hrpA -gfp transcriptional fusion reporter treated with DMSO (solvent 

for screening compound) were used as negative control. Bacteria were cultured overnight at 

28°C before harvesting. The harvested bacterial cells were 1:10 diluted in PBS and the GFP 

intensity was measured using fluorescence-activated cell sorter flow cytometry (FACS) (BD 

Biosciences, CA). 

 

Results 

 

Comparison of the impact of 187R and streptomycin on phyllosphere microbe 

compositions 

There were a total of 19 phyla were observed for each treatment group, with Proteobacteria 

and Bacteroidetes as the two most abundant phyla. In the control group, Proteobacteria and 

Bacteroidetes composed on average 67% and 25% of the whole community, respectively. 

Phylum Verrucomicrobia and phylum Firmicutes each occupied about 1% of the whole 
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community (Fig. 3.1).  Compare to the control group, the 187R-treated group, in which 

Proteobacteria and Bacteroidetes composed on average 62% and 30% of the whole community,  

showed similar relative abundances of different phyla (Fig. 3.1 & Fig. 3.2). Compared to the 

DMSO treated group, the antibiotic treated-group showed reduced relative abundance of 

Proteobacteria and increased relative abundance of Bacteroidetes and Verrucomicrobia. In 

particular, the average abundance of Proteobacteria reduced to 37%; Bacteroidetes and 

Verrucomicrobia increased to 51% and 6%, respectively (Fig. 3.1 & Fig. 3.2).  

    To further evaluate similarities of the microbial communities of different treatments, 

principle coordinates analysis (PcoA) was performed based on the Unifrac distance of different 

phyllosphere samples (Fig. 3.3). The antibiotic-treated phyllosphere was well separated from 

the 187R- and DMSO-treated phyllosphere along PC1, indicating antibiotic altered 

phyllosphere to a larger extent compared to 187R. Unifrac monte carlo significance test were 

conducted checking the phylogenetical differences between each pair of samples in our 

experiment. The test confirmed that all the streptomycin-treated phyllosphere are significantly 

different from the DMSO-treated phyllosphere (p < 0.05); however, no significant difference 

was observed when compared 187R-and DMSO-treated phylospheres. Overall, these results 

suggested that anti-virulence compound 187R preserved the microbial community composition 

better than the antibiotics.  

 

187R preserved the metabolic functions of the phyllosphere better than antibiotics. 

The change of microbial metabolic function such as carbon metabolism may reflect the 

viability and metabolism of the microbial community. In order to test whether compositions of 

phyllosphere in 187R and antibiotics treatment groups can comprehensively represent the 

corresponding functional profiles, we used the EcoPlate assay to test the carbon metabolism 

(an important function related to microbe survival and nutrient cycling) of 187R-, DMSO- or 
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streptomycin-treated phyllosphere. The heatmap with clustering analysis was generated based 

on average OD590 of each carbon source within each treatment. The results demonstrated that 

187R-and DMSO-treated phyllospheres shared similar pattern in terms of carbon metabolism 

profile (Fig. 3.4). However, the carbon metabolism profile of streptomycin-treated 

phyllosphere was different from the DMSO-and 187R-treated phyllospheres. Besides 2-

Hydroxy Benzoic Acid and L-Threonine, which cannot be used by phyllosphere microbes as 

carbon sources, 13 out of 29 carbon sources showed more than two-fold reduction of OD590 

(carbon metabolism) compared to those in the DMSO-treated phyllospheres. Moreover, the 

antibiotic-treated phyllospheres even lost the ability of using phenylethylamine as carbon 

source (indicated by arrow in Fig. 3.4). However, 187R-treated phyllosphere, has not shown 

such dramatic change in terms of carbon utilization (Fig. 3.4). The PCA analysis for carbon 

profiles of all 12 samples suggested that the carbon profiles of all three streptomycin-treated 

phyllospheres were greatly differed from the carbon profiles of DMSO-treated (control) 

phyllosphere. The samples were well separated along dimension 1 (Dim1), which explained 

49.69% of the variation. Compared to carbon profiles of streptomycin-treated phyllosphere, 

the carbon profiles of three 187R-treated phyllospheres showed higher similarity to the carbon 

profiles of DMSO-treated (control) phyllospheres (Fig. 3.5). The results confirmed that there 

were drastic changes in antibiotic-treated phyllospheres but not in 187R-treated phyllospheres. 

Moreover, the results also suggested that compared to the antibiotic streptomycin, anti-

virulence compound 187R showed less impact on the microbial community carbon metabolism.  

 

187R does not inhibits the T3SS of two other bacterial pathogens. 

 To test the specificity of 187R on other Gram negative bacteria possessing T3SS, we treated 

the E. amylovora and D. dadantii 3937 with 187R under T3SS inducing conditions. The 

expression of hrpA gene, which encodes the major subunit of the Hrp pilus, is under the 
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regulation of sigma factor HrpL (123, 133). We found that the expression of hrpA was not 

affected by adding 187R (Fig. 3.6), indicating that the anti-virulence compound 187R may be 

specific to the T3SS of P. aeruginosa. 

 

Discussion 

    We found that by targeting the virulence factors of pathogens can reduce their ability to 

cause infections while preserving the host-associated microbiota. In this research, culture-

independent and culture-dependent method were applied for testing the impact of an anti-

virulence compound on P. aeruginosa host microbial community (Arabidopsis phyllosphere). 

Our results suggested that compared to antibiotics, 187R, and likely other anti-virulence 

compounds preserved the microbial community in terms of composition and function better 

than the traditional antibiotics. In addition, our anti-virulence compound did not affect the 

T3SS of E. amylovora and D. dadantii 3937, which indicates 187R-mediated T3SS inhibition 

is specific to P. aeruginosa. 

In this experiment, we observed that the addition of PNAs greatly reduced the amplification 

of hosts’ DNA including the mitochondria and chloroplast DNA (125). In our sequencing 

dataset, two sequences of chloroplast were found and no mitochondria sequences were 

observed, suggesting that supplementation of PNAs decreased the bias of microbial community 

analysis caused by host DNA amplification. 

The EcoPlate assay highlighted the effect of anti-virulence compound on preserving the 

microbial community composition and metabolic functions, suggesting that the anti-virulence 

compound greatly reduced the damage of hosts’ microbial community compared to the 

traditional antibiotics. A major limitation of the using culture-independent method examining 

the microbial community is that it cannot differentiate the viable and dead microbes in the 

ecosystem; therefore, the effects of treatments on the phyllosphere may be underestimated 
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(134). In addition, microbial communities are not only characterized by their species 

composition, they are also featured with different functional genes (for example, genes related 

to carbon and nitrogen metabolism) that are responsible for the microbes’ bioactivities such as 

nutrient cycling and immunomodulation (135, 136). It has always been discussed that changing 

the microbial community composition would not necessarily result in the alternation of 

microbial community function due to its high functional redundancy (137, 138). Therefore, it 

is questionable that whether alternating the species composition would affect the hosts and 

ecosystems. Our culture-dependent EcoPlate method addressed these limitations of how 

antibiotics and anti-virulence compounds affect the viability and metabolic functions microbial 

communities. In this study, the EcoPlate assay testing the carbon metabolism profile of 

microbial communities showed that while 187R-treated samples showed similar carbon 

utilization profile to the DMSO control, the antibiotic-treated phyllosphere showed reduced 

capability of carbon utilization.  

While checking the carbon metabolism profile of different phyllosphere, we observed that 

the carbon utilization profile was greatly altered in the microbial community treated with 

antibiotics. (Fig 3.4 & 5). Besides the altered composition of bacteria in the antibiotic-treated 

samples, the inhibitory mechanism of streptomycin may also contribute to the altered carbon 

metabolism. Streptomycin is a bacteriostatic agent. The research conducted in Gram negative 

bacteria E. coli showed that streptomycin interferes with protein synthesis by disturbing the 

stability of mRNA-ribosomal complex and inducing misreading of genetic code (139). As a 

result, although the bacteria may still survive in the community, the accumulation of mutated 

protein hampered their bioactivity and caused a decreased carbon metabolic rate. Further 

research for elucidating the impact of bacteriostatic agents, such as streptomycin, on the 

metabolic functions need to be done.  
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By testing the T3SS of E. amylovora and D. dadantii 3937, we found that 187R does not 

inhibit the hrp T3SS of these two bacteria, thus indicating that 187R may be a narrow-spectrum 

T3SS inhibitor specific for P. aeruginosa. The narrow-spectrum of 187R may also contributed 

to the preservation of the host microbial community since T3SS may also involve in shaping 

the bacterial habitat via interacting with the fungi and change its morphology (121). 

    In conclusion, using high-throughput sequencing and culture dependent EcoPlate assay, 

we studied the impact of anti-virulence compound on host microbial communities and the host-

associated microbial community composition and metabolic function better than the traditional 

antibiotics. This discovery may allow us to target virulence factors of the pathogen while not 

altering the host microbiota. Our study indicates that anti-virulence compounds are good 

alternative strategy for new antimicrobial therapy development. 
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Figure 3.1 Average relative abundance of microbial communities at phylum level. Legend listed on the right 
side of the figure. 187R, phyllosphere treated by T3SS inhibitor 187R; DMSO, phyllosphere treated by DMSO; 
Streptomycin, phyllosphere treated by antibiotic streptomycin. Each pie graph demonstrates the mean 
abundance of three individual samples.  
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Figure 3.2 Relative abundance of microbial communities at phylum level. Legend listed on the right side of the 
figure. 187R, phyllosphere treated by T3SS inhibitor 187R; DMSO, phyllosphere treated by DMSO; 
Streptomycin, phyllosphere treated by antibiotic streptomycin. 
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Figure 3.3 Principal Coordinate Analysis (PcoA) of microbial communities based on weighted Unifrac distance. 
Legend listed on the right side of the figure. 187R, phyllosphere treated by T3SS inhibitor 187R; DMSO, 
phyllosphere treated by DMSO; Streptomycin, phyllosphere treated by antibiotic streptomycin. 
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Figure 3.4 Heatmap with cluster analysis of carbon metabolism profile. Color key indicates the OD590 value 
listed on the left side of the figure. Carbon source listed on the right side of the figure. 187R, phyllosphere treated 
by T3SS inhibitor 187R; DMSO, phyllosphere treated by DMSO; Streptomycin, phyllosphere treated by antibiotic 
streptomycin. Arrow indicated the phenylethylamine, the carbon source cannot be utilized by streptomycin treated 
phyllosphere. 

 

 

18
7R

str
ep
tom

yci
n

DM
SO



 70 

  

Figure 3.5 Principal Component Analysis (PCA) of microbial communities carbon metabolism profile. Legend 
listed on the  inside of the figure. 187R, phyllosphere treated by T3SS inhibitor 187R; DMSO, phyllosphere 
treated by DMSO; Streptomycin, phyllosphere treated by antibiotic streptomycin. The percentage under the axis 
indicate the variation the axis explained.  
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Figure 3.6 hrpA promoter activity of E. amylovora (A) and D. dadantii 3937 (B) in the presence of DMSO or 
187R.  
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