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ABSTRACT

SENSING WITH GEOMETRY-DEPENDENT
MAGNETOSTRICTION VIA AN EMBEDDED FIBER BRAGG

GRATING

by

David Frailey

The University of Wisconsin-Milwaukee, 2019

Under the Supervision of Professor Chiu Tai Law

Fiber optic current sensors (FOCSs) have unique advantages in electromagnetic interfer-

ence immunity and direct current measurements. Here, magnetostrictive composites and

their interactions with embedded fiber Bragg gratings (FBG) were explored to form novel

FOCSs with predictable and temperature-independent sensitivity. Magnetostrictive, par-

ticularly Terfenol-D/epoxy, composites maintain the mangetostrictive expansion under an

external magnetic field while gaining flexibility in engineering. In contrast to ordinary strain

gauges, an embedded FBG can provide an optical signal inferring simultaneously a strain

and its gradient inside a composite. In principle, the sensing of strain gradient is thermally

independent. Creating appropriate geometries for magnetostrictive composites enables the

conversion of a uniform external magnetic field into an internal one with a certain field gra-

dient that enacts a strain distribution inside the composite transferred to the FBG. Hence,

the strain gradient sensing with the FBG can be exploited for temperature independent

measurement of the external magnetic field. Such a strain gradient will alter the spectral

properties of the FBG, such as the power and bandwidth of the returned optical signal. The

experimental results from two separate sensors have confirmed the trend that is predicted

by the theory and simulations. They will substantiate the claim of sensitivity tuning solely
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with geometry. These FOCSs will provide reliable reading for wide operating temperatures

if the underlying materials allow.

iii



c© Copyright by David Frailey, 2019
All Rights Reserved

iv



TABLE OF CONTENTS

1 Introduction 1

1.1 Background on Optical Current Sensors and Fiber Bragg Gratings . . . . . 1

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Magnetostriction 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Stoner-Wohlfarth Model . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Magneto-Elastic Energy . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Terfenol-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Strain Properties of Terfenol-D . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Terfenol-D Resin Compound . . . . . . . . . . . . . . . . . . . . . . 15

3 Fiber Bragg Grating 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Theoretical Analysis 25

4.1 Magnetization Due to Geometry . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Magnetic Field Inside a Magnetic Body . . . . . . . . . . . . . . . . 25

4.2 Optical Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Polarization Vector as a Source of Coupling . . . . . . . . . . . . . . 38

4.3 Modeling of FBG - Counterpropagating Coupled Waves . . . . . . . . . . . 41

v



4.3.1 Theoretical Spectrum Shift Due to Strain . . . . . . . . . . . . . . . 46

4.3.2 Optical Properties From Strain Coupling to FBG . . . . . . . . . . . 49

5 Experimental Results 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Fabrication of Magnetostrictive Slabs . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Attaching of Fiber Bragg Grating . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Optical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Spectral Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Optical Power versus Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Estimation of Magnetostriction Coefficients from Data . . . . . . . . . . . . 67

6 Conclusion 71

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 74

vi



LIST OF FIGURES

2-1 Magnetic Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2-2 Aligned Particles in Terfenol-D/Epoxy Composite . . . . . . . . . . . . . . 16

3-1 Transfer Matrix and Scattering Matrix . . . . . . . . . . . . . . . . . . . . . 18

3-2 M-Matrix for a Propagation Distance of d and Dielectric Boundary between

Media with Refractive Indices n1 and n2 . . . . . . . . . . . . . . . . . . . . 20

3-3 Cascading of Identical M-Matrices M0 . . . . . . . . . . . . . . . . . . . . . 21

3-4 Reflectance From Cascaded Partial Reflective Mirrors . . . . . . . . . . . . 23

3-5 Reflectance From Cascaded Dielectric Boundaries . . . . . . . . . . . . . . . 24

4-1 Trapezoidal Slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4-2 Internal Magnetic Field of Trapezoid Slab . . . . . . . . . . . . . . . . . . . 32

4-3 COMSOL Comparison to Theoretical Predictions . . . . . . . . . . . . . . . 33

4-4 Approximately Acute Saccharin Quadrilateral Slab . . . . . . . . . . . . . . 34

4-5 Internal Magnetic Field of Approximately Acute Saccharin Quadrilateral

Slab with Different L′s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4-6 Internal Magnetic Field of Approximately Acute Saccharin Quadrilateral

Slab with Optimal Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 35

4-7 COMSOL Comparison to Analytical Approximation . . . . . . . . . . . . . 36

4-8 Initial Conditions for FBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-9 Power Reflectance of 3cm FBG Interaction . . . . . . . . . . . . . . . . . . 46

4-10 Spectra of a 3cm FBG with Linear Chirping Effect . . . . . . . . . . . . . . 49

vii



4-11 Theoretical Estimation of Magnetostrictive Effect on Grating Period as a

Function of z under Various External Magnetic Fields . . . . . . . . . . . . 51

4-12 Theoretical Reflection Spectra under Various External Magnetic Fields . . . 52

4-13 Theoretical Reflected Optical Power as a Function of the External Magnetic

Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5-1 Production of Mold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5-2 Fabrication of Magnetostrictive Composite with an Embedded FBG . . . . 57

5-3 Rectangular Terfenol-D/Epoxy Slab Fabrication Process . . . . . . . . . . . 58

5-4 Curing and Extraction of Composites . . . . . . . . . . . . . . . . . . . . . 60

5-5 Sensors in Various Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5-6 Optical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5-7 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5-8 Spectral Shift From Curing . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5-9 Spectral Shift From Thermal Testing . . . . . . . . . . . . . . . . . . . . . . 63

5-10 Experimental Spectral Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5-11 Experimental Reflected Power under Various External Magnetic Fields . . . 65

5-12 Experimental Reflected Power under Various External Magnetic Field . . . 66

5-13 Experimental Reflected Power under Various External Magnetic Field . . . 66

5-14 Experimental Reflected Power under Various External Magnetic Field . . . 66

5-15 Strain vs Applied Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . 67

5-16 Theoretical power reflectance with Updated Magnetostriction Coefficients . 68

5-17 Theoretical power reflectance with Updated Magnetostriction Coefficients . 68

5-18 Variation of Linewidth with External Magnetic Field . . . . . . . . . . . . . 69

viii



ACKNOWLEDGEMENTS

First, a thank you to my advisor Dr. Chiu Law. It has been an honor to be able to have

you as my advisor. From the courses that you have taught me, to working on this thesis, I

truly appreciate everything you have done for me. I look forward to PhD studies with you

as my continuing advisor.

I would also like to thank Dr. George Hanson. While the study of electromagnetics is

one of the most difficult challenges among the electrical engineering community, it was a

pleasure to take all the classes I have taken with you since I started graduate school.

Thank you, Dr. Rani El-Hajjar for not only providing much of the equipment that I used

in the lab, but also the advice you have given me.

Thank you to my labmates, Esteban Jimenez and Nathan Swanson. From collaborating on

projects, to regular conversations, I enjoyed every moment of working in the lab together.

I look forward to engaging in future projects with the both of you.

Lastly, I would like to thank the people that made me a better person throughout my

current journey of electrical engineering: Ana Tomaich, Casey Marnocha, Devon Zarcone,

Gabe Merriman, Sabrina Wolf, Rob Koltz, and Ivan Lopez. I wish you all nothing but the

best in life.

ix



Chapter 1

Introduction

1.1 Background on Optical Current Sensors and Fiber Bragg

Gratings

The ubiquitous influence of the power grid is obvious. The blackout on August 14, 2003 that

caused major power outage in large areas of the northeastern United States and Canada

highlights the vulnerability of the intricate power transmission system. It is absolutely im-

possible to overlook the astronomical cost of an outage. For examples, the August 14, 2003

blackout impacted 50 million people and its economic loss was estimated to be between $6

and $10 billion. To address that, companies, such as ABB and Rockwell Automation, have

actively researched and developed solutions for power system protection. Key components

for these solutions are sensors that can detect anomalies in a power system. Optical sensors

are unique in terms of their immunity from electromagnetic interference (EMI). Hence, they

are excellent candidates to operate at high voltage and current environment. Recently, a

research group at ABB has integrated a fiber optical current sensor (FOCS) with a 420 kV

circuit breaker [1]. The applications of optical sensors for power distribution systems have

been proposed [2], [3]. Currently, the proliferation of connected systems and Internet of

things, including smart grids, will requires more sensors but at various voltage and current

levels.

Optical current sensors can be grouped into four main categories. The first category uses
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an optical fiber as the sensing element, which may consist of single-mode, multi-mode, or

Bragg grating fibers. The second method involves a bulk glass to sense a current. The

third employs an electro-optic hybrid method where optical energy and electrical energy

are converted back and forth as needed. This method is good for retrofitting optical sensor

to existing infrastructure but has slow response. Lastly, optical current sensors are based

on certain physical process in coupling magnetic field to optical properties of devices. This

can be done with the Faraday effect to change the polarization of the measured light, or

through an optical sensor interfacing with a magnetostrictive transducer [4].

Fiber-based sensors are useful in applications where traditional transducers are subjected

to strong EMI. Additionally, they are much lighter in weight, take up less space, and use

less material. Corrosion does not occur within the fiber since it is made of silica. Fur-

ther more, this allows for the material to be more sustainable than common transducers.

Faraday-effect-based FOCS requires polarization maintaining fibers and elaborate scheme to

mitigate various environmental disturbances while detecting changes within a limited range

of polarization angle [5]. On the other hand, magnetostriction-based FOCS has been shown

to have more pronounced effect [6]. The magnetostrictive transducer can be interfaced with

a fiber Bragg grating (FBG) [7] - [12]. or an optical fiber extrinsic Fabry-Perot interfero-

metric (EFPI) [13], [14]. FOCSs with EFPI have higher sensitivity but more complicated

device structures. FOCSs with FBG usually are simpler in construction and easily to form a

sensor network that can be readily integrated with an optical fiber communication system.

This thesis discusses the modeling and fabrication of magnetostriction-based FOCSs with

FBG. Thermal drift is a common problem for the sensor design. For thermal compensa-

tion, various groups [7], [8], [9] have used non-magnetostrictive materials with almost the

same thermal expansion coefficient as their magnetostrictive counterparts, such as the use

of MONEL 400 as a thermal compensator for Terfenol-D. By replacing the cladding of an

FBG with a Terfenol-D thin film, the sensitivity of a magnetostriction-based FOCS can be

enhanced [11].

Fault detection of power distribution systems have conceptually utilized sensor network with

2



Terfenol-D-based FOCSs [3] that replace conventional current transformers or potential

transformers in breakers and reclosers. With the speed of the propagating light, real time

measurements are able to be performed which do not depend on past events. Another

advantage of this sensor network is the absence of both saturation and hysteresis of the

current transformers during large current faults. To further extend the operating frequency

of a magnetostriction-based FOCS, Terfenol-D composite can be used [12]. However, the use

of Terfenol-D composite reduced the size of magnetostriction, i.e. the sensitivity of sensors.

For applications with systems at various voltage levels, an effective means for control and

enhancement of sensitivity becomes necessary. New opportunities for achieving these goals

and thermal independent sensing arise when the operation of an FBG is revisited. An FBG

is a periodic modulation of the refractive index along the core of an optical fiber. Depending

on the grating (modulation) period and uniformity of the refractive indices, different effects

can be seen in terms of reflectance and transmittance. By applying a strain on the FBG

axis, these optical properties can be altered. The strain applied to the FBG can be due to

an external magnetic field, thermal expansion, and external stress [15]. Small differences in

grating period caused by the strain on the FBG can create large differences in the output of

the FBG in both the reflected spectrum and reflected optical power since both wavelength

and bandwidth are sensitive to strain and its distribution. In fact, it has been shown that

changes in bandwidth can be decoupled from those in the length for the FBG so that a sensor

can be designed for detection of both stress and temperature [15]. This unique property of

the FBG as a strain gauge is caused by the frequency chirping associated with the strain

distribution. Similarly, attaching the FBG to a composite slab in certain shape that can be

geometrically deformed differently under various level of external magnetic fields enables

the design of a temperature independent FOCS. Particularly, the geometry of the slab is a

key design consideration for enhancing sensor sensitivity.
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1.2 Thesis Objectives

This thesis will demonstrate the sensing of magnetic field with an FBG coupled to a mag-

netostrictive composite. As mentioned in the previous section, the use of composite enables

fast detection of magnetic field while the geometry of the composite slab determines the

sensor sensitivity. FOCSs under consideration are based on the formation of chirped FBGs

induced by strain distribution along its axis. Such a sensing principle is inherently not

affected by temperature and enables the inference of the magnetic field in terms of optical

power. Particularly, a Terfenol-D/epoxy composite slab is fabricated with an embedded

FBG. Terfenol-D exhibits a very large magnetostriction effect which will result in a strain

along the longitudinal axis of the Terfenol-D/epoxy composite slab. The geometry of the

slab dictates the demagnetization field inside the slab in reaction to an external magnetic

field. As a result, the internal magnetic field is reduced and varies along the FBG axis

establishing a strain distribution. Theoretical model for the internal magnetic field will be

calculated analytically and numerically. Since the use of Terfenol-D/epoxy facilitates the

shaping of the slab into an arbitrary geometry, two particular shapes (trapezoid and approx-

imately acute Saccheri quadrilateral) of the slab are investigated. With a non-rectangular

slab composite, a non-uniform magnetic field is created and resulted in a non-uniform mag-

netostriction effect. Owing to a non-uniform magnetostriction, the FBG encounters differ-

ent strains at different points along the longitudinal axis as the FBG is directly bonded to

the composite during the curing process. During FOCS characterization, reflection spectra

and power are recorded for each magnetic field level. These transfer characteristics will be

used to corroborate with the theory. The comparison between results for trapezoid and

approximately acute Saccheri quadrilateral will demonstrate the control of sensitivity via

slab geometry. Through these modeling and experimenting processes, the understanding of

the FOCS theory, fabrication and physics will be enriched and refined.
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1.3 Thesis Structure

Chapter 2 will include the origin of magnetostriction and how it applies to magnetic bodies.

Terfenol-D will be introduced and the properties such as strain will be shown. Additional

comparisons between bulk material monolithic Terfenol-D and Terfenol-D/epoxy compos-

ites will be examined.

Chapter 3 will introduce the concept of an FBG and its optical properties.

Chapter 4 will cover the theoretical analysis of the experiment. This will consist of the

derivation of the magnetization of a magnetic body. The modeling of an FBG without

strain will be simulated first. Next, an FBG with non-uniform strain will be evaluated.

The non-uniform strain can be modeled from the magnetization of the body and relating

that to the magnetostrictive effect. From this non-uniform strain, the power reflected by

the FBG can also be calculated. Finally, the theoretical results will be discussed with im-

plications for sensor implementations.

Chapter 5 will discuss the experimental setup. This will entail the process of making

the magnetostrictive composite, along with its attachment to an FBG. Additional details

of the experiment will also be discussed if the experiment is desired to be reproduced by

others, or as an aid for considering different geometries. Also, the experimental procedure

and results will be shown, and compared to the theoretical results.

Chapter 6 will summarize and state the implication of experimental results collected during

the thesis research period. Additionally, future work that may be interesting to pursue for

further optimization and other application beyond sensing will be elucidated.
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Chapter 2

Magnetostriction

2.1 Introduction

For certain materials, when there is a change in their magnetization, a geometrical de-

formation can occur which is classified as a magnetostrictive effect. This change in the

magnetization (magnetic moment per unit volume) is present when the material is placed

in a magnetic field. Magnetostriction occurs to an extent for all magnetic materials. There

are two distinguished situations that magnetostriction provides. The first being a linear

deformation proportional to an increase in field intensity. The second being a rotational

deformation due to the changing direction of a constant field. Giant magnetostriction only

occurs in few materials with rare earth elements, such as Terfenol-D [16]. Magnetic moments

of electrons dictate the metallic properties of a material. When these magnetic moments do

not have a net-zero balancing, magnetism is achieved. When this imbalance is present, the

electrons can order in a way where the net magnetic moment is in a particular direction,

thus, lowering the crystal symmetry and producing new properties such as magnetostric-

tion. [16]

Classically, if one considers an atom with an electron orbiting around a nucleus, the elec-

tron can be thought of as a current. From this interpretation, the Biot-Savart law can be

used to calculate the magnetic moment. Quantum mechanically, electrons carry an intrinsic

7



property known as spin which is also a contributing component to the complete magnetic

moment. If every orbit of an atom is considered where n+ is the number of orbitals with a

positive spin (+) and n− is the number of orbitals with a negative spin (−), then the net

spin moment (µs) for an atom can be given by

µS = µB(n+ − n−), (2.1)

where µB is the magnetic moment of a single electron spin [16]. For rare earth elements, the

inner orbital shell consists of unbalanced spins which do not interact with immediate atoms

in the solid. This imbalance creates µS to be large from Eq. (2.1). The total magnetic

moment is the sum of the effects from the orbital and spin. Strong magnetic moments are

present in atoms that have an anisotropic charge cloud density. This characteristic is due

to coupling with the spin property of the electron and partially filled shells.

Another property must be considered when analyzing magnetostriction; this is magneto-

elastic coupling. This is defined as the interaction between the magnetization and the strain

of a magnetic material. When a magnetic material is placed in a magnetic field, the field

will force the magnetic moment to align as parallel as possible to the applied field. This

can happen in two ways. The first way is the rotation of the magnetization vector to align

with the field. The second is the expansion of molecular domains along the direction of

the applied field [16]. When the magnetization vector is completely parallel with the field,

saturation occurs.

2.1.1 Stoner-Wohlfarth Model

The Stoner-Wohlfarth model describes the physical phenomenon of atomic sized grains

consisting of single sized magnetic domains. If a ferromagnetic material is considered with

a magnetic field applied to it, there is a change in the magnetization. Consider Figure

8



2-1, where a magnetic domain is oriented at some angle θ from the x-axis, and an external

magnetic field is at some angle φ from the x-axis. The Stoner-Wohlfarth model has the

magnetic domain in these two potentials (magnetic energy induced by the charge cloud and

the external magnetic field).

Figure 2-1: Magnetic Domain

Since only a single domain is considered, any effects from neighboring atoms have been

ignored. The total energy (Etot) for the system can be expressed as

Etot = EA + EH , (2.2)

where the anisotropic energy (EA) can be thought of as a potential energy from the

anisotropy from the domain. The energy from the external field can be defined as

EH = − ~M · ~H, (2.3)

where ~M is the magnetization vector and ~H is the applied magnetic field intensity. The

anisotropic energy can be written in terms of relative position of the magnetization vector

with respect to the easy axis [17].

EA = K sin2(θ). (2.4)

9



K is a constant associated with the magnetic anisotropy energy. Rewriting Eq. (2.2) results

in

Etot = K sin2(θ)− ~M · ~H = K sin2(θ)− | ~M || ~H| cos(θ − φ), (2.5)

where | ~M | can be written as the saturation value of the magnetization (|Ms|). Since the

magnetic moment will desire to have the lowest energy, the derivative with respect to θ can

be taken for Eq. (2.5). Thus,

d

dθ
Etot = 2K sin(θ) cos(θ) +Ms| ~H| sin(θ − φ) = 0. (2.6)

Also, the second derivative must be taken to assure a concave up shape to guarantee it is a

minimum.

d2

d2θ
Etot = 2K cos(2θ) +Ms| ~H| cos(θ − φ) > 0. (2.7)

Given the parameters of the magnitude and orientation of the external field, θ can be found

for minimum energy. Implementing the normalization constant h = Ms| ~H|
2K , Eq. (2.5) can

be written as

Etot = sin2(θ)− 2h cos(θ − φ). (2.8)

The Stoner-Wohlfarth model is useful for representing individual atoms as magnetic do-

mains. Due to this, the demagnetization component can be ignored. By varying the angle

of the applied field, vastly different results can occur. Consider φ = 0.

Etot = sin2(θ)− 2h cos(θ), (2.9)

d

dθ
Etot = 2K sin(θ) cos(θ) +Ms| ~H| sin(θ) = 0. (2.10)

θ can be analytically solved,

θ = cos−1

(
−Ms| ~H|

2K

)
= cos−1(−h). (2.11)

10



This imposes the conditions for h ε[−1, 1] for solely real angles to be solutions. From this,

the saturation for the external field can be expressed as

| ~H| = 2K

Ms
. (2.12)

Now considering the external field perpendicular to the easy-axis such that φ = π/2,

Etot = K sin2(θ)− | ~M || ~H| cos(θ − π/2). (2.13)

Taking the derivative to find the angle to minimize energy

θ = sin−1(h), (2.14)

and the concavity parameters follows

cos2(θ) > 0. (2.15)

It is common that ~M is expressed along the parallel (~p) and orthogonal (~o) components

with respect to the magnetic field direction

~Mp = Ms cos(θ − φ)~p, (2.16)

~Mo = Ms sin(θ − φ)~o. (2.17)

For φ = 0, the solutions of θ = nπ for n = 0, 1, 2 . . .

Such that

~Mp = Ms~p, (2.18)

~Mo = 0~o. (2.19)
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For φ = π/2, the solutions of θ = sin−1(h) are

~Mp = Msh~p. (2.20)

~Mo = Ms

√
1− h2~o. (2.21)

When the field is applied along the non-easy-axis, the magnetization vector becomes a func-

tion of h and has both parallel and orthogonal contributions when compared to the field on

the easy-axis.

2.1.2 Magneto-Elastic Energy

When the magnetic domain is forced into position from an external magnetic field, an

additional interaction must be accounted for which is the potential energy associated with

the magnetic anisotropy and the electronic distribution of the material that will strain due

to the alignment of the domains. The first is related to the direction that the domain will

be in when relaxed, and the second is associated with the elastic response. This results in

the elongation in a certain direction due to the domain rotation. To evaluate the magneto-

elastic energy, the elastic energy must first be considered. This elastic energy(Eelas) is due

to the deformation of the object which can be given by Eq. (2.22) [16]. Cij (i, j = 1, 2) are

constants and ξnm (n,m = x, y) are the elements of the strain tensor.

Eelas =
1

2
C11ξ

2
xx +

1

2
C11ξ

2
yy + C11ξ

2
xxξ

2
yy +

1

2

(
C11 − C12

2

)
ξ2
xy (2.22)

Now when writing the total energy equation,

Etot = EA + EH + Eelas + Eme (2.23)
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where Eme is the magnetoelastic coupling which can be defined as

Eme = b

(
ξ2
xx

[
Mx

Ms

]2

+ ξ2
yy

[
Mx

Ms

]2

+ ξ2
xy

MxMy

M2
s

)
, (2.24)

where b is the coupling factor. If the material is anisotropic,

Eme = bxxξ
2
xx

[
Mx

Ms

]2

+ byyξ
2
yy

[
Mx

Ms

]2

+ bxyξ
2
xy

MxMy

M2
s

. (2.25)

Noting that sin(θ) =
My

Ms
and cos(θ) = Mx

Ms
, Eq. (2.24) can be rewritten as

Eme = b
(
ξ2
xx cos2(θ) + ξ2

yy sin2(θ) + ξ2
xy cos(θ) sin(θ)

)
. (2.26)

Thus, the total energy equation can be expanded as

Etot =K sin2(θ)−HMs cos(θ − φ) +
1

2
C11ξ

2
xx

+
1

2
C11ξ

2
yy + C11ξ

2
xxξ

2
yy +

1

2

(
C11 − C12

2

)
ξ2
xy

+ b
(
ξ2
xx cos2(θ) + ξ2

yy sin2(θ) + ξ2
xy cos(θ) sin(θ)

)
.

(2.27)

Minimizing conditions can be found by taking the derivative with respect to θ and ξnm

which will allow to relate the magneto-elastic coupling energy with the elastic energy.

C11ξxx + C12ξyy = b cos2(θ) (2.28)

C11ξyy + C12ξxx = b sin2(θ) (2.29)(
C11 − C12

2

)
ξxy = b sin(θ) cos(θ) (2.30)
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The magnetostriction constant is defined by the change in the strain ξnm when the magne-

tization vector is at 0 to 90◦ [18].The previous two equations simplify to

ξyy =
bC11

C2
11 − C2

12

, (2.31)

ξxx =
−bC12

C2
11 − C2

12

. (2.32)

The magnetostriction coefficient can be taken by the difference in strain from θ going from

0 to 90◦. The resulting magnetostriction coefficients are

∆ξyy =
b

C12 − C11
, (2.33)

∆ξxx =
b

C12 − C11
. (2.34)

Since the assumption of the elastic energy and magneto-elastic energy have been set to be

isotropic, the coefficients result to be the same. The general magnetostriction coefficient

can be expressed as

∆ξii =
b

C12 − C11
. (2.35)

2.2 Terfenol-D

Terfenol-D is an alloy material and exhibits the highest magnetostriction of all alloys. It was

developed in the 1960’s for military applications and is currently used in transducers at fre-

quencies up to 20 kHz. It is comprised of Terbium, Dysprosium, and Iron (TbxDy1−xFe2).

For this thesis, the magnetostrictive samples were Terfenol-D/epoxy composites with an

unloaded prestress.

By integrating Terfenol-D particles into a non-metallic binder, the electrical resistivity of

the sample increases which in turn, reduces the eddy current losses and reduces the heat

generation [20]. It can be inferred that because of this composite, the total deformation is

less than a pure sample of Terfenol-D but will recover monolithic properties well.
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2.2.1 Strain Properties of Terfenol-D

For magnetostrictive materials, the strain dependence on the magnetization for randomly

oriented dipoles can be expressed as

ε(M(r′)) =
3

2
εs

(
M2(r′)

M2
s

)
(2.36)

where r′ is the spatial coordinates inside the material. εs is the magnetostriction coefficient

that was derived in Eq. (2.35), and Ms is the saturation magnetization. For monolithic

Terfenol-D, εs = 2000[ppm] and Ms = 1.6 × 106[A/m] [18].

2.2.2 Terfenol-D Resin Compound

While a monolithic sample of Terfenol-D would produce a very large magnetostriction under

a magnetic field, it is difficult to shape pure samples into different geometries. Having an

epoxy binder enables better formability. Recall that for each magnetic dipole of the bulk

material for random orientation, the applied external field creates a shift in the dipole and

this chain reaction causes the elongation. Terfenol-D powder consists of particles sis size of

100-300[µm]. Each particle can be thought of as a localized magnetic domain in the epoxy

binder. Previous research on particle distribution for Terfenol-D/epoxy composites suggest

that larger sized particles (100 to 300 [µm]) produced larger magnetostrictive strains com-

pared to smaller particles (<100[µm]) which were preferred in applications for compressive

strengths [19]. The composite is then placed in a magnetic field when curing to align the

domain with the field. The aligned particles then form pillars due to the alignment of the

magnetic domains along the flux lines. When relaxed from the curing magnetic field, the

individual magnetic dipole for each atom in the particle domain will relax to a position away

from the previously aligned magnetic field. These pillars simulate bulk material Terfenol-D

with a magnetostriction coefficient and properties that are appropriately similar to original

bulk material [16], [20], [21]. From [20], the optimal volume fraction of Terfenol-D pow-

der was 30% which resulted in a magnetostriction coefficient of approximately half of the
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monolithic Terfenol-D sample. The use of resins could shift the optimal volume ratio to be

near 60% [20].

Additionally, studies with continuous fibers of Terfenol-D have had their magnetostrictive

characteristics examined and have shown to be significantly closer to monolithic Terfenol-

D [18]. A cost advantage supports the use of aligned particles compared to the continuous

fiber chains. Experimentally, with the resin used in this experiment, a volume ratio of 33%

was found to be optimal. The sample has recovered a fair amount of monolithic magne-

tostrictive properties, but is also very malleable to be formed to complex geometries. Figure

2-2 shows the aligned pillars from the samples created for this research.

Figure 2-2: Aligned Particles in Terfenol-D/Epoxy Composite
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Chapter 3

Fiber Bragg Grating

3.1 Introduction

Typically, a Bragg grating is a periodic structure with a set of N uniformly spaced identical

multilayer segments. In common analysis, secondary reflections are ignored as they con-

tribute minuscule change. The wave transfer matrix (M-matrix) may be the simplest way

to understand the concept of the fiber Bragg grating [22]. It relates the waves at location

1 (backward wave amplitude U
(−)
1 and forward wave amplitude U

(+)
1 )to those at location 2

(backward wave amplitude U
(−)
2 and forward wave amplitude U

(+)
2 )

 U
(+)
2

U
(−)
2

 =

 A B

C D


 U

(+)
1

U
(−)
1

 , (3.1)

with A, B, C, and D being the characteristics of an optical device. One may also consider a

wave scattering matrix (S-matrix) for better connection to the physical process of reflection

and transmission of the input waves. S-matrix is based off of amplitude transmittances (

t12 and t21) and reflectances (r12 and r21)

 U
(+)
2

U
(−)
1

 =

 t12 r21

r12 t21


 U

(+)
1

U
(−)
2

 . (3.2)
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r12 and t12 are for a wave traveling from medium one to medium two, and vice versa for

r21 and t21. The M-matrix is more straight forward for cascading, such that if n-segments

are considered, Mtot = MnMn−1 · · ·M1M0. Figure 3-1 shows the difference between the

M-matrix ( M) and the S-matrix (S).

Figure 3-1: Transfer Matrix and Scattering Matrix

Their conversion relationships are as follows

M =
1

t21

 t12t21 − r12r21 r21

−r12 1

 (3.3)

and

S =
1

D

 AD −BC B

−C 1

 . (3.4)

Several scenarios are possible for the transfer matrix. The first to consider is propagation

through a homogeneous medium. In this case,

U
(+)
2 = AU

(+)
1 +BU

(−)
1 , (3.5)

U
(−)
2 = CU

(+)
1 +DU

(−)
1 . (3.6)

For which no reflection should take place such that B=C=0. U
(+)
2 and U

(−)
2 incur phase

shifts −kd and kd respectively so that A = e−jkd and D = ejkd. From this, the transfer
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matrix can be written as U
(+)
2

U
(−)
2

 =

 e−jkd 0

0 ejkd


 U

(+)
1

U
(−)
1

 , (3.7)

and the scattering matrix can be written as

 U
(+)
2

U
(−)
1

 =

 e−jkd 0

0 e−jkd


 U

(+)
1

U
(−)
2

 . (3.8)

The next application to consider is a dielectric boundary with different refractive indices.

From the Fresnel Equations, the transmission from medium one to medium two is given

by t12 = 2n1
n1+n2

and the reflection is given by r12 = n1−n2
n1+n2

. Then the S-matrix can be

represented as

 U
(+)
2

U
(−)
1

 =
1

n1 + n2

 2n1 n2 − n1

n1 − n2 2n2


 U

(+)
1

U
(−)
2

 , (3.9)

and be converted into the following M-matrix

 U
(+)
2

U
(−)
2

 =
1

2n2

 n2 + n1 n2 − n1

n2 − n1 n2 + n1


 U

(+)
1

U
(−)
1

 . (3.10)

If the previous two M-matrices are combined as shown in Figure 3-2, then the complete

M-matrix is written as U
(+)
2

U
(−)
2

 =
1

2n2

 (n2 + n1)e−jkd (n2 − n1)ejkd

(n2 − n1)e−jkd (n2 + n1)ejkd


 U

(+)
1

U
(−)
1

 , (3.11)

where e−jkd can be written as e−jφ with φ = kd = nk0d. For a lossless reciprocal medium,

such as a partially reflective mirror, |t12| = |t21| = |t|, |r12| = |r21| = |r|, |t2|+ |r2| = 1 and

t12
t∗21

= − r12
r∗21

.
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Figure 3-2: M-Matrix for a Propagation Distance of d and Dielectric Boundary between Media
with Refractive Indices n1 and n2

Assuming Arg(t) = 0, the M-matrix and S- matrix are given as

M =

 1
t∗

r
t

r∗

t∗
1
t

 =
1

|t|

 1 j|r|

−j|r| 1

 , (3.12)

S =

 t r

r t

 =

 |t| j|r|

j|r| |t|

 . (3.13)

Figure 3-3 shows a system of cascading identical M-matrices with individual matrix as M0.

From [22] and [23], since M0 is unimodular, the final M-matrix, MN
0 , for a grating with a

stack of N identical periods can be expressed as

MN
0 = ΨNM0 −ΨN−1I, (3.14)

where

ΨN =
sin(NΦ)

sin Φ
, (3.15)

and

cos(Φ) = Re

(
1

t

)
. (3.16)

ΨN is the interference factor and I is the identity matrix. The final matrix is also unimodular

and can be expressed as

MN
0 =

 1
t∗N

rN
tN

r∗N
t∗N

1
tN

 , (3.17)
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Figure 3-3: Cascading of Identical M-Matrices M0

where tN and rN are the N th-segment amplitude transmittance and reflectance. Basing on

Eqs. (3.14) and (3.17), a recursive relation can be formulated.

1

tN
= ΨN

1

t
−ΨN−1, (3.18)

rN
tN

= Ψ
r

t
. (3.19)

The power transmittance is defined by TN = |tN |2. Also the power reflectance is given by

RN = 1− TN . Applying them to Eqs. (3.18) and (3.19),

TN =
T

T + Ψ2
N (1− T )

, (3.20)

RN =
Ψ2
NR

1−R+ Ψ2
NR

. (3.21)

3.2 Optical Properties

From the previous section, there are two different kinds of reflection regimes. They are

the partial-reflection regime and the total-reflection regime. The interference factor ΨN is

very dependent on Φ = cos−1(Re[1/t]). Partial reflection occurs when |Re[1/t]| ≤ 1. This

allows for Φ to be real. For total reflection regime, |Re[1/t]| > 1 implies Φ to be complex

and cos Φ to be real, i.e. Φ = ΦR + jΦI and Im(cos Φ) = 0. Since cos(ΦR + jΦI) =

cos(ΦR) cosh(ΦI) − j sin(ΦR) sinh(ΦI), ΦR must be equal to zero. This result causes a
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significant change in the reflectivity to

cosh(ΦI) =

∣∣∣∣Re(1

t

)∣∣∣∣ , (3.22)

ΨN = ±sinh(NΦI)

sinh(ΦI)
. (3.23)

This allows for the reflection to be much larger due to the hyperbolic sine function. The fol-

lowing example presents the analysis of a scenario with partially reflective mirrors. Consider

the M-matrix M0 as

M0 =
1

|t|

 e−jφ j|r|ejφ

−j|r|e−jφ ejφ

 . (3.24)

where φ = nk0Λ = πν
νB

and Λ is the spacing between mirrors and νB = c/2Λ is the Bragg

frequency. In terms of the S-matrix, the amplitude transmission can be defined as t = |t|ejφ

and Φ can be determined with

cos(Φ) =
1

|t|
cos(φ) for | cos(φ)| ≤ |t| (3.25)

cosh(Φ) =
1

|t|
| cos(φ)| for | cos(φ)| > |t|. (3.26)

Figure 3-4 shows the power reflectance of a grating with N = 10 partially reflective mirrors

with |t|2 = 0.5.
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Figure 3-4: Reflectance From Cascaded Partial Reflective Mirrors

A dielectric Bragg grating is made of N identical periods in the refractive index modulation.

By cascading two M-matrices in from of Eq. (3.11) to account for two propagation distances

(d = d1 and d = d2) and two dielectric boundaries (from n1 to n2 and from n2 to n1), the

M-matrix for the grating can be constructed such that

Re

[
1

t

]
=

(n1 + n2)2

4n1n2
cos(φ1 + φ2)− (n2 − n1)2

4n1n2
cos(φ1 − φ2), (3.27)

with φ1 = k0n1d1 and φ2 = k0n2d2 corresponding to the phases introduced by the two

layers of the different dielectrics. From this, the spectral dependence is determined by

φ1 +φ2 = πν/νB. Figure 3-5 shows the power reflectance for a dielectric Bragg grating with

N = 10 for indices of n1 = 1.5 and n2 = 3.5.
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Figure 3-5: Reflectance From Cascaded Dielectric Boundaries

This chapter serves as the brief introduction to the concept of a Bragg grating in an optical

system. That being said, a more complex analysis is needed to produce a precise outcome

as the M-matrix in here has built-in assumptions within the model compared to an electro-

magnetic analysis of FBG. Chapter 4 will show a more general approach for analyzing an

FBG that is capable of modeling index modulations in various forms by treating them as

perturbations.
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Chapter 4

Theoretical Analysis

4.1 Magnetization Due to Geometry

The purpose of this section is to analyze the magnetic field intensity inside of a mag-

netic body. Owing to the geometry of a magnetic body, the magnetic field intensity inside

the magnetic body can vary along the direction of an external field even through the ex-

ternal field is uniform. The distribution of the internal magnetic field intensity causes a

non-uniform magnetostrictive response that is coupled to an FBG. Two geometries are con-

sidered here - a trapezoidal slab and an approximation of an acute Saccharin quadrilateral

slab.

4.1.1 Magnetic Field Inside a Magnetic Body

This section uses unprimed and primed coordinates where ~r is the position vector from the

origin to the observation point and ~r′ is the position vector from the origin to source point

inside the magnetic body. Consider Maxwell’s equations for static fields with

∇× ~B = 0. (4.1)

This means that the magnetic flux density is curl-free and can be expressed as either the

divergence of a vector or as the gradient of a scalar field. The scalar magnetic potential
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Vm [24] will be investigated such that

~Hdmg = −∇Vm. (4.2)

where ~Hdmg is the equivalent magnetic field intensity caused by the magnetization vector

~M of the magnetic body and the negative sign follows the opposite convention between field

and potential. The scalar magnetic potential is expressed as,

Vm =

ˆ
V ′

~M · R̂
4πR2

dv′ (4.3)

where R̂ =
~R
R and ~R = ~r−~r′. Now it is key to note that a substitution can be made because

R̂

R2
= ∇′ 1

R
. (4.4)

This allows for Eq. (4.3) to be expressed as

Vm =
1

4π

ˆ
V ′

~M · ∇′ 1
R
dv′ (4.5)

with the vector identity

∇′ · (f ~A) = f∇′ · ~A+ ~A · ∇′f

~A · ∇′f = ∇′ · (f ~A)− f∇′ · ~A,
(4.6)

with f = 1
R and ~A = ~M . Substituting Eq. (4.6) into Eq. (4.5),

Vm =
1

4π

ˆ
V ′
∇′ ·

(
~M

R

)
dv′ − 1

4π

ˆ
V ′

∇′ · ~M
R

dv′ (4.7)

and if ~M = M0ẑ is uniform, i.e. constant M0, then the second term will be equal to zero.

For this research, the magnetization vector was assumed to be in the same direction of the

uniform external field Hextẑ along z. This assumption allows the derivation of analytical

expression that can accurately approximate Eq. (4.7), especially for magnetic bodies with

their longest dimension along z that is significantly larger than their widths. Furthermore,
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the divergence theorem enables the approximation of Eq. (4.7) to be rewritten as

Vm ≈
1

4π

˛
S′

~M · n̂′

R
dS′ (4.8)

where n̂′ is the outward pointing normal of the magnetic body surface. Recall that ~Hdmg =

−∇Vm. As this vector field is the reaction to the external field, it usually opposes the

external field. Hence, Hdmg is called the demagnetization field.

The FBG will be placed along the z-axis which is the long axis of the magnetic body

and aligns with directions of ~M and Hextẑ . Therefore, a scalar equation can be obtained

for the internal magnetic field intensity Hint(z) along the z-axis

Hint(z) = Hext +Hdmg(z). (4.9)

Hdmg(z) is the axial demagnetization field and is evaluated with the gradient of Eq. (4.8).

M0 is an unknown factor but is assumed to be approximately a product of magnetic prop-

erty (the magnetic susceptibility, χm = 9 for Terfenol-D) and Hint(z), i.e. M0 ≈ χmHint(z),

for certain geometries where its length is much longer than the width. Thus, by this approx-

imation, Hext can be shown to be augmented by a demagnetization factor for determining

Hint(z).

Trapezoidal Slab

Consider a trapezoidal slab as shown in Figure 4-1, where the trapezoidal slab is very thin.

This is desirable since an increase in slab thickness will further reduce the internal magnetic

field intensity, but variations in thickness are required to modulate the internal magnetic

field. For the sensor application, the internal field of the magnetic body is desired to be

as close to the external field as possible to achieve higher sensitivity. Hence, the parallel

sides are chosen to have minimum distance for maximum sensitivity but the slanted sides

are designed to introduce field variation.
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Figure 4-1: Trapezoidal Slab

The surface integral in Eq. (4.8) can be broken down into four integrals which consist of

the top, bottom, and slanted surfaces. The remaining surfaces will be equal to zero since

the magnetization vector is parallel to them. As Hdmg(z) is mainly an axial field, ~r = z′ẑ

and the distance between observation and source points |~R| can be expressed explicitly in

Cartesian coordinates as

R(z, z′, y′, x′) =
√

(z − z′)2 + x′2 + y′2, (4.10)

with the differential area ds′ = dx′dy′. Thus the scalar potential for the top and bottom

surfaces is

VmTB =
M0

π

ˆ c/2

0

ˆ a/2

0

dx′dy′

R(z, L, y′, x′)
− M0

π

ˆ c/2

0

ˆ b/2

0

dx′dy′

R(z, 0, y′, x′)
. (4.11)

Owing to the rectangular symmetry of the top and bottom surfaces, only integrations over

one quarter of the surfaces are required and the scalar potential becomes

VmTB =
M0

π

ˆ c/2

0

[
G
(
z, L, y′,

a

2

)
−G

(
z, 0, y′,

b

2

)]
dy′ (4.12)
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where the integrand G(z, z′, y′, x′) = ln
(
x′+R(z,z′,y′,x′)
R(z,z′,0,x′)

)
. Recall that ~Hdmg = −∇Vm, where

the gradient is with respect to the unprimed coordinates. Hence, the order of the gradient

and integral can be interchanged. Since the results from both orders of operations converge,

this interchange is acceptable. Such process also results in a faster calculation. Taking

gradient of the integrand yields

∇G(z, z′, y′, x′) =
z − z′

R(z, z′, y′, x′)[x′ +R(z, z′, y′, x′)]
− z − z′

R(z, z′, y′, 0)
. (4.13)

Integrating Eq. (4.13) over y′ provides results in terms of a general function F (z, z′, y′, x′)

that describes the spatial variation of the demagnetization field (Hdmg(z))TB caused by the

top and bottom surfaces

ˆ
∇G(z, z′, y′, x′)dy′ = F (z, z′, y′, x′)− F (z, z′, y′, 0) + C (4.14)

where F (z, z′, y′, x′) = 2 sgn(z−z′) tan−1
(√

R(z,z′,0,x′)−x′
R(z,z′,0,x′)+x′

√
R(z,z′,y′,x′)−R(z,z′,0,x′)
R(z,z′,y′,x′)+R(z,z′,0,x′)

)
and C is

the integration constant that can be eliminated after the substitution of limits of integration.

Since special cases of x′ = 0 and y′ = 0, the general functions can be readily simplified into

F (z, z′, y′, 0) = tan−1
(

y′

z−z′
)

+ C and F (z, z′, 0, x′) = C respectively, (Hdmg(z))TB can be

written into an expression with four terms:

(Hdmg(z))TB = −M0

π

[
F
(
z, L,

c

2
,
a

2

)
− tan−1

(
c

2(z − L)

)
− F

(
z, 0,

c

2
,
b

2

)
+ tan−1

( c
2z

)]
.

(4.15)

For the complete determination of Hdmg(z), the demagnetization (Hdmg(z))Sides from the

side components must be considered, i.e.

Hdmg(z) = (Hdmg(z))TB + (Hdmg(z))Sides. (4.16)

In the following subsection, the calculation of (Hdmg(z))Sides is discussed.
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Slanted Components

For one slanted component, an angle θ will be defined as

tan θ =
b− a
2L′

, (4.17)

with L′ = L, full length of the slab. This angle will be of use for both the dot product of

the numerator and for the denominator of the integrand for the scalar potential calculation.

The differential surface area will consist of dS′ = dl′dy′ where dl′ is the hypotenuse of the

right triangle from the figure above which can also be expressed as dx′

sin θ . The scalar potential

for the slanted sides can be expressed similar to those for the base and the top as

VmSides =
M0

π

ˆ c/2

0

ˆ b/2

a/2

dx′dy′

R(z, z′(x′), y′, x′)
. (4.18)

Because of the normal vector to the surface, ~M ·n̂′ = M0 sin θ and this integral was multiplied

by four due to the symmetry over the x’-axis and accounting for the other side of the

trapezoidal slab. One issue that pertains this integral is the z′ as a function of x′ as

denoted in the denominator of the integrand in Eq. (4.18). With z′ = 0, x′ = b
2 . At

z′ = L′, x′ = a
2 , an equation of the line for the slanted side on positive x half plane can be

constructed

z′ = mx′ + z0 (4.19)

where m = − cot θ is the slope and z0 = b cot θ
2 is the z′ intercept. Substituting this to

replace z′ in Eq. (4.18)

VmSides =
M0

π
√

1 +m2

ˆ L

0

ˆ b/2

a/c

dx′dy′

R̃(z, y′, x′)
(4.20)
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where R̃(z, y′, x′) =
√
D2(z, y′) +X2(z, x′), D(z, y′) =

√
(1−m2)Z2(z) + Y 2(y′), Z(z) =

z−zo
1+m2 , Y (y′) = y′√

1+m2
, X(z, x′) = x′ − xs(z) and xs(z) = mZ(z). After integrating over x′,

VmSides =
M0

π

ˆ c/2

0

[
G̃
(
z, y′,

a

2

)
− G̃

(
z, y′,

b

2

)]
dy′ (4.21)

where G̃ (z, y′, x′) = 1√
1+m2

ln

∣∣∣∣∣X(z,x′)
D(z,y′) +

√
1 +

(
X(z,x′)
D(z,y′)

)2
∣∣∣∣∣ . The absolute value terms may

be dropped since there is no chance of being negative. Similar to calculations for the top

and bottom surfaces, Taking gradient of the integrand yields

∇G̃(z, y′, x′) = − 1

m(1 +m2)R̃(z, y′, x′)

(
m2 +

xs(z)X(z, x′)

D2(z, y′)

)
. (4.22)

Integrating Eq. (4.22) over y′ provides results in terms of a rather complicated function

F̃ (z, x′) that describes the spatial variation of the demagnetization field (Hdmg(z))Sides

caused by the side surfaces

ˆ c/2

0
∇G̃(z, y′, x′)dy′ = F̃ (z, x′) (4.23)

where F̃ (z, x′) = − 1
1+m2

[
m ln

∣∣∣∣∣ c
2D(x′,z) +

√
1 +

(
c

2D(x′,z)

)2
∣∣∣∣∣+ tan−1

(
x′−xs(z)
Z(z)

c

2
√
D2(x′,z)+( c2)

2

)]
.

Finally, (Hdmg(z))Sides can be written into an expression with two terms:

(Hdmg(z))Sides =
M0

π

[
F̃

(
z,
b

2

)
− F̃

(
z,
a

2

)]
. (4.24)

Now Hdmg(z) can be determined by substituting Eqs. (4.15) and (4.24) into Eq. (4.16) with

the approximation M0 ≈ χmHint(z) applied. The resulting expression is then substituted

into Eq. (4.9) to obtain

Hint(z) =
Hext(z)

1− χm
(
Hdmg(z)
M0

) . (4.25)

The above computations are performed with Matlab. Figure 4-2 shows the internal magnetic

field based on these analytical calculations for dimensions used in the fabrication of the
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first magnetostrictive trapezoid slab where a = 5.29mm, b = 10.21mm, c = 3.18mm,

L′ = L = 40mm, and χm = 9.

Figure 4-2: Internal Magnetic Field of Trapezoid Slab

Figure 4-3 shows the comparison between the analytical approximation and the numerical

simulation with COMSOL. From Eq. (4.8), the approximation is made that the magnetiza-

tion can be thought of as almost constant such that the volume integral in Eq. (4.7) can be

neglected. This approximation is not assumed in COMSOL which provides the exact solu-

tion. Thus, the COMSOL results are more accurate and will be used for the internal field,

which will then be related to the magnetization. For the COMSOL modeling, a trapezoidal

slab was constructed the same slab dimensions as those used in analytical calculations.
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(a) Verification of Theoretical Approximation
for Internal Magnetic Field with COMSOL

(b) COMSOL Simulation of Internal Field Dis-
tribution in a Trapezoidal Slab

Figure 4-3: COMSOL Comparison to Theoretical Predictions

For the trapezoidal slab, if the FBG is centered along the z-axis of the sample, a portion of

it has a positive gradient in the strain that induces a positive chirp on the signal returned

by the FBG while the remaining portion negative strain gradient that reduces the chirping.

By changing the geometry of the sample, it is possible to achieve an extended region with

a positive gradient which should enhance chirping constructively. An approximately acute

Saccharin quadrilateral slab is shown to have potential in increasing the percentage length

of the slab with positive strain gradient while the appropriate FBG placement along the

z-axis further ensures its exposure to positive strain gradient only.

Approximation of an Acute Saccharin Quadrilateral Slab

Using a wider base can increase the positive gradient of the magnetization inside the sample,

but also decreases the peak internal magnetic field. For this reasoning, an approximately

acute Saccharin quadrilateral slab was investigated. Figure 4-4 shows the geometry of the

slab under consideration. In fact, the geometry is equivalent to stack a rectangular bar at

the narrow end of a trapezoid. Hence, the same computational method for the trapezoidal

slab can be used for this new geometry, with the exception of the height of the trapezoid

L′ being less than L, i.e. the reduction in the length of the slanted components. This
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modification leads to the increase in θ and the length of the narrow top that will reduce

the demagnetization and push the internal magnetic field up. Figure 4-5 shows the internal

magnetic field for different values for L′. The internal magnetic field for the potentially

optimal geometry of the slab is shown in Figure 4-6 for a base width b = 15mm and a top

width a = 5.29mm. The length of the slanted components is shown to be L′ = 0.7L.

Figure 4-4: Approximately Acute Saccharin Quadrilateral Slab

Figure 4-5: Internal Magnetic Field of Approximately Acute Saccharin Quadrilateral Slab with
Different L′s
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The dimensions of the new sample were the same as the trapezoid slab, i.e. a = 5.29mm,

b = 10.21mm, c = 3.18mm, and L = 40mm except that L′ = 0.7L. This was found to

be optimal by locating the position with maximum internal magnetic field by taking the

derivative of the internal magnetic field with respect to z, and identifying the point with

a zero derivative beyond which the field gradient becomes negative. Ideally, the full FBG

should be in between the wide base and this point to enhance chirping. Hence, the choice

for L′ is also limited by the FBG length of 3cm. As a result, L′ = 0.7L is the optimal value

for achieving maximum chirping under this constraint.

Figure 4-6: Internal Magnetic Field of Approximately Acute Saccharin Quadrilateral Slab with
Optimal Dimensions

Figure 4-7 shows the comparison between the analytical calculation and the numerical sim-

ulation with COMSOL for the internal magnetic field. According to the internal magnetic

field of the approximately acute Saccharin quadrilateral slab, placing the FBG at the base

of the sample will ensure the maximum exposure to the positive field gradient. The goal

of the geometric design is to have a more linear-like internal magnetic field with positive

slope.
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(a) Verification of Theoretical Calculation for In-
ternal Magnetic Field with COMSOL

(b) COMSOL Simulation of Internal Field Dis-
tribution in an Approximately Acute Saccharin
Quadrilateral Slab

Figure 4-7: COMSOL Comparison to Analytical Approximation

4.2 Optical Waveguide

For an optical waveguide with its axis along z-axis, propagating modes must satisfy the

Maxwell’s equations under boundary conditions of the waveguide.

∇× ~Eη = −jωµ ~Hη, (4.26)

∇× ~Hη = jωε ~Eη. (4.27)

~Eη and ~Hη are the complex electric and magnetic field vectors respectively describing a

general field distribution of x, y and z for a certain mode with positive index η of the

waveguide with permeability µ and permittivity ε. For a dielectric waveguide, µ is assumed

to be a constant while ε = ε(x, y) under ideal condition. The Maxwell’s equations are

expressed in time harmonic form with time dependence ejωt where ω is the angular frequency

of the field. It is natural to decompose fields and curl operator into transverse (t) and

longitudinal (z) parts
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~Eη = ~Eηt + ~Eηz, (4.28)

~Hη = ~Hηt + ~Hηz, (4.29)

(∇× ~Hη)t = ∇t × ~Hηz + ẑ × ∂ ~Hηt

∂z
, (4.30)

(∇× ~Hη)z = ∇t × ~Hηt, (4.31)

where∇ = ∇t+ẑ ∂
∂z . Considering the longitudinal part of the curl operators in the Maxwell’s

equations, one can express the longitudinal part of an electric field in terms of the transverse

part of the corresponding magnetic field and vice versa:

~Hηz = − 1

jωµ
∇t × ~Eηt, (4.32)

~Eηz =
1

jωε
∇t × ~Hηt. (4.33)

For the ideal optical waveguide with ε = ε(x, y), fields for each mode are in the following

forms:

~Hη = ±~hη(x, y)e∓jβηz, (4.34)

~Eη = ~eη(x, y)e∓jβηz, (4.35)

where βη is the ηth modal propagation constant and modes with negative (positive) power

propagate forward (backward). For backward propagating modes, the sign for ~hνt(x, y)

must be flipped owing to the convention of keeping ~eνt(x, y) in the same polarity for both

forward and backward propagating modes. With appropriate normalization for ~eη(x, y) and

~hη(x, y), the following orthogonality condition can be obtained
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ˆ ˆ
S
~eνt(x, y)× ~h∗ηt(x, y) · ẑdS =

ˆ ˆ
S
~e∗νt(x, y)× ~hηt(x, y) · ẑdS = ±2Pavgδνη (4.36)

where S represents an integration area over a large cross section, Pavg is time average power

over S, the negative sign is for backward propagating modes and δνη is the Kronecker’s

delta function for discrete indices ν and η. For propagating modes in an optical waveguide,

Pavg = 1
2ηw

´ ´
S ~e
∗
νt(x, y) · ~eνt(x, y)dS where ηw =

√
µ
ε is the wave impedance.

4.2.1 Polarization Vector as a Source of Coupling

Owing to orthogonality of modes, there is no coupling among modes. Now the ideal optical

waveguide is perturbed and becomes ε = ε(x, y, z). As a result, fields ~E and ~H for the

perturbed system are source-driven and not equal to ~Eη and ~Hη [25]. The Maxwell’s

equations are updated with a polarization vector ~P that accounts for z dependence of ε

∇× ~E = −jωµ ~H, (4.37)

∇× ~H = jωε ~E + jω ~P . (4.38)

Applying the divergence of vector cross products between fields in the ideal system and the

perturbed system, one can reveal the coupling among modes in the perturbed system

∇ · ~S = −jω ~E∗η · ~P (4.39)

where ~S = ~E × ~H∗η + ~E∗η × ~H. The vector identity

∇ · ~A× ~B = ~B · ∇ × ~A− ~A · ∇ × ~B (4.40)

and the Maxwell’s equations are used to evaluate

∇ · ( ~E × ~H∗η ) = jω(ε ~E · ~E∗η − µ ~H · ~H∗η ), (4.41)
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and

∇ · ( ~E∗η × ~H) = −jω( ~E∗η · ~P + ε ~E · ~E∗η − µ ~H · ~H∗η ). (4.42)

Then the divergence theorem for a volume of infinitesimal thickness, similar to a pizza box,

is applied to convert the differential form into an integral [26]

ˆ ˆ
S
∇ · ~S =

∂

∂z

ˆ ˆ
S

~S · ẑdS +

˛

lS

~S · n̂dl (4.43)

where lS is the perimeter of the large cross section and n̂ is the outward pointing normal to

the perimeter. For waveguide modes, field distributions have compact support and vanish

at the perimeter, i.e. the length integral to be zero. Thus, (4.42) can be expressed as

∂

∂z

ˆ ˆ
S

~S · ẑdS = −jω
ˆ ˆ

S

~E∗η · ~PdS. (4.44)

A modal expansion can be assumed of the modes in the waveguide such that

~E(x, y, z) = ~Eηt(x, y, z) + ~Eηz(x, y, z) =
∑
ν

(aν(z) + bν(z))(~eνt(x, y) + (~eνz(x, y)), (4.45)

~H(x, y, z) = ~Hηt(x, y, z) + ~Hηz(x, y, z) =
∑
ν

(aν(z)− bν(z)) ~(hνt(x, y) + ~hνz(x, y)). (4.46)

There is a z-dependence on the modal coefficients. This is caused by the interaction among

modes along the longitudinal direction due to a polarization source. The expansion co-

efficients can be expressed as aν(z) = Aν(z)e−jβνz for forward propagating modes and

bν(z) = Bν(z)ejβνz for backward propagating modes where Aν(z) and Bν(z) are slowly

varying envelopes of corresponding modal coefficients. For forward propagating modes such

that ~Eη = ~eη(x, y)e−jβηz and ~Hη = ~hη(x, y)e−jβηz applying the orthogonality condition, Eq.

(4.44) becomes
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d

dz
aη(z)e

jβηz =
d

dz
Aη(z) = −j ω

4

ˆ ˆ
S

(
~e∗ηt(x, y)ejβηz + ~e∗ηz(x, y)ejβηz

)
· ~PdS. (4.47)

Using similar procedure for backward modes with ~Eη = ~eη(x, y)ejβηz and ~Hη = ~−hη(x, y)ejβηz,

Eq. (4.44) yields the differential equation for the coefficient of the backward propagating

modes

d

dz
bη(z)e

−jβηz =
d

dz
Bη(z) == j

ω

4

ˆ ˆ
S

(
~e∗ηt(x, y)ejβηz − ~e∗ηz(x, y)ejβηz

)
· ~PdS. (4.48)

The polarization vector can be written in terms of the electric field multiplied by the pertur-

bation ∆ε which corresponds to the permittivity interaction [25], [27]. If the permittivity

is anisotropic and causes a linear relation between the electric field and polarization, then

the perturbation in permittivity ∆ε can be written as a tensor consisting of transverse ∆εt

and longitudinal ∆εz components.

∆ε =

 ∆εt 0

0 ∆εz

 . (4.49)

This allows the polarization vector to be expressed as ~P = ∆εt ~Et + ∆εz ~Ez which can also

be expressed in the modal term for the transverse field

~P = ∆εt

(∑
ν

(aν(z) + bν(z))~eνt(x, y)

)
+ ∆εz ~Ez. (4.50)

Similar to Eq. (4.33), ~Ez can be expressed in terms of transverse part of the magnetic field

vector

~Ez =
1

jω(ε+ ∆εz)
∇× ~Ht. (4.51)
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Expressing ~Ht in terms of the modal expansion,

~Ez =
jωε

jω(ε+ ∆εz)

(∑
ν

(aν(z)− bν(z))~eνz(x, y)

)
. (4.52)

The polarization vector can then be rewritten as

~P = ∆εt

(∑
ν

(aν(z) + bν(z))~eνt(x, y)

)
+

ε∆εz
(ε+ ∆εz)

(∑
ν

(aν(z)− bν(z))~eνz(x, y)

)
.

(4.53)

Substituting Eq. (4.53) into Eqs. (4.47) and (4.48), coupled mode equations in terms of

the envelopes Aν(z) and Bν(z) can be obtained

d

dz
Aη(z) = −j

∑
ν

[
Aν(z)(Kt

νη +Kz
νη)e

−j(βν−βη)z +Bν(z)(Kt
νη −Kz

νη)e
j(βν+βη)z

]
, (4.54)

d

dz
Bη(z) = j

∑
ν

[
Aν(z)(Kt

νη −Kz
νη)e

−j(βν+βη)z +Bν(z)(Kt
νη +Kz

νη)e
j(βν−βη)z

]
. (4.55)

where the transverse coupling coefficient Kt
νη and the longitudinal coupling coefficient Kz

νη

are defined as

Kt
νη =

ω

4Pavg

ˆ ˆ
S
~e∗ηt(x, y) ·∆εt~eνt(x, y)dS, (4.56)

Kz
νη =

ω

4Pavg

ˆ ˆ
S
~e∗ηz(x, y) · ε∆εz

(ε+ ∆εz)
~eνz(x, y)dS. (4.57)

For propagating modes, |~eνt(x, y)| >> |~eνz(x, y)| in general. Hence, Kz
νη can be neglected

[25]. Owing to the fact that η and ν involve all possible modes, the system of coupled mode

equations can be complicated. However, the analysis of FBG that is discussed next limits

calculations to the coupling between two modes and complexity is reduced.

4.3 Modeling of FBG - Counterpropagating Coupled Waves

When considering the modeling of an FBG, the same coordinate system will be used as

in the last section. An FBG is imprinted onto an optical fiber by exposing the fiber to a
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ultra-violet light with periodic variations in intensity [28]. The fiber will be assumed to have

no cross-sectional dependence on the position in the x-y-plane. The wave is propagating

in the z-direction but the fields are oriented mostly in the transverse directions. The only

dependence will be along the longitudinal (z-)direction where the field will see a periodic

modulation in the permittivity. For FBGs, the perturbation in the permittivity can be

expressed as in terms of δneff (z), the effective refractive index change spatially averaged

over a grating period Λ

∆εt(z) ≈ 2ε0neff (z)δneff (z)

[
1 + υ cos

(
2π

Λ
z + φ(z)

)]
(4.58)

where ε0 is the free space permittivity, υ is the fringe visibility that constitutes the modu-

lation index and φ(z) is the phase introduced by the chirping in an FBG. Substituting Eq.

(4.58) into Eq. (4.56), the z-dependence terms can be taken out of the integral since the

differential area will not entail the z-direction

Kt
νη =

ωε0neff
2P

δneff (z)

[
1 + υ cos

(
2π

Λ
z + φ(z)

)]¨
S
~e∗ηt(x, y) · ~eνt(x, y)dS. (4.59)

Kt
νη can be rewritten in terms a “DC” coupling coefficient σνη(z) and an “AC” coupling

coefficient κνη(z)

Kt
νη = σνη(z) + 2κνη(z) cos

(
2π

Λ
z + φ(z)

)
(4.60)

where

σνη(z) =
ωε0neff
2Pavg

δneff (z)

¨
S
~e∗ηt(x, y) · ~eνt(x, y)dS, (4.61)

κνη(z) =
υ

2
σνη(z). (4.62)

The analysis of an FBG near resonance involves only the forward and backward modes with

the same index, i.e. η = ν, Aη(z) = Aν(z) = A(z), Bη(z) = Bν(z) = B(z) and the same

propagation constant βν = βη = β0 . After dropping Kz
νη and rewriting the cosine in Eq.
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(4.60) as exponential functions , Eq. (4.54) can be reduced to

d

dz
A(z) =− j

[
A(z)

(
σ(z) + κ(z)

[
ej(

2π
Λ
z+φ(z)) + e−j(

2π
Λ
z+φ(z))

])
+B(z)

(
σ(z)ej2β0z + κ(z)

[
ej(2(β0+ π

Λ
)z+φ(z)) + ej(2(β0− πΛ )z−φ(z))

])] (4.63)

where σ(z) = ωε0η0δneff (z) = 2π
λ0
δneff (z) with wave impedance in free space η0 =

√
µ0

ε0

and κ(z) = υ
2σ(z). Neglecting all fast oscillating terms, Eq. (4.63) becomes

d

dz
A(z) = −jσ(z)A(z)− jκ(z)B(z)ej(∆βz−φ(z)) (4.64)

where ∆β = 2(β0 − π
Λ), β0 =

2πneff
λ0

, neff is the effective refractive index and λ0 is the free

space wavelength. Performing a similar procedure for B(z), Eq. (4.55) becomes

d

dz
B(z) = jκ(z)A(z)e−j(∆βz−φ(z)) + jσ(z)B(z). (4.65)

Formulating Eqs. (4.64) and (4.65) in terms of R(z) = A(z)e−j
∆βz−φ(z)

2 and S(z) =

B(z)ej
∆βz−φ(z)

2 ,

d

dz
R(z) = −jδ(z)R(z)− jκ(z)S(z), (4.66)

d

dz
S(z) = jκ(z)R(z) + jδ(z)S(z) (4.67)

where δ(z) = σ(z) + 1
2

(
∆β − dφ(z)

dz

)
.

Eqs. (4.66) and (4.67) constitute the modeling equation for FBGs, including chirped FBG

and must be solved numerically. However, analytical solution does exist for a uniform FBG

modeled by the differential equations with constant coefficients, i.e. φ(z) = φ, δneff (z) =

δneff , σ(z) = σ = 2π
λ0
δneff , δ(z) = δ = σ + ∆β

2 and κ(z) = κ = υ
2σ. Eqs. (4.66) and (4.67)

can be written in matrix form:

d

dz
u = Mcu, (4.68)
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where coupled mode matrix Mc =

 −jδ −jκ
jκ jδ

 and column vector u =

 R(z)

S(z)

.

The eigenvalues λ of Mc are:

λ = ∓s (4.69)

where s =
√
κ2 − δ2. The corresponding eigenvectors are in form of v =

(
1 λ+jδ

jκ

)T
.

Since Mc is unimodular, the matrix exponential eMcz constructed from similarity transform

with λ and v must have the same property

eMcz =
jκ

2s

 1 1

−s+jδ
jκ

s+jδ
jκ


 e−sz 0

0 esz


 s+jδ

jκ −1

s−jδ
jκ 1

 (4.70)

=

 cosh sz − j δs sinh sz −j κs sinh sz

j κs sinh sz cosh sz + j δs sinh sz

 . (4.71)

In the case of a uniform FBG, the “DC” coupling coefficient σ is not required since its

effect has been accounted for during the modal calculations for the system with ε = ε(x, y).

Hence, δ = ∆β
2 and Eq. (4.71) becomes exactly the same as the corresponding FBG equation

in Ref. 15. Now δ can be interpreted as the detuning from a resonance. At resonance, i.e.

δ = 0, λ0 reaches the Bragg wavelength

λB = 2neffΛ (4.72)

In fact, eMcz is the M-matrix MFBG(δ, s, z) relating modal envelopes at z = 0 (input end

of an FBG) to those inside the FBG at z

 R(z)

S(z)

 = MFBG(δ, s, z)

 R(0)

S(0)

 . (4.73)

For an FBG, R(z) represents the transmitted portion and S(z) represents the reflected por-

tion. Figure 4-8 shows the initial conditions for an FBG length of z = L. The input into
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the FBG (R(0)) can be normalized to unity, and at the end of the FBG, there is nothing

entering from the opposite side, i.e. S(L) = 0. The two remaining unknown terms are S(0)

and R(L), which represent the reflected light returning to the input side, and the transmit-

ted light at the end of the FBG.

Figure 4-8: Initial Conditions for FBG

Eq. (4.72) can then be rewritten as,

 R(L)

0

 = MFBG(δ, s, z)

 1

S(0)

 . (4.74)

The amplitude reflectance can be found by taking the ratio of reflected light at the input

by the input light into the FBG. Since the input was normalized to unity, the amplitude

reflectance ρ is just S(0). In terms of the elements of MFBG(δ, s, L):

ρ = −
[M(δ, s, L)]21

[M(δ, s, L)]22

(4.75)

where [M(δ, s, L)]21 and [M(δ, s, L)]22 are elements at (row 2, column 1) and (row 2, column

2) respectively. For an FBG length of 3cm, a refractive index of 1.45, a perturbation of the

refractive index equal to 8 × 10−4, and a fringe visibility of υ = 1, Figure 4-9 shows the

reflected spectrum.

For a non-uniform FBG, e.g. grating parameters depending on z, one can model it by

breaking the FBG into multiple sections of FBGs with the sum of periods with all FBGs

equal to the number of periods in the original FBG and the FBG at each section assuming

the average parameters at that region [29], [30]. Now the M-matrix of the original FBG is
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just the product of individual M-matrices for each section ordered in sequence following the

variation of parameters:

MFBG(δ, s, L) = MFBGm(δm, sm, lm). . .MFBGm(δ2, s2, l2)MFBGm(δ1, s1, l1) (4.76)

where δi, si, and li for i = 1, . . . ,m are parameters for individual FBGs and the length of

the original FBG L =
m∑
i=1

li.

Figure 4-9: Power Reflectance of 3cm FBG Interaction

4.3.1 Theoretical Spectrum Shift Due to Strain

Uniform Strain Effect

If a uniform stress is placed along the FBG (z-)axis, each grating period will be strained

the exactly same amount. As a result, the reflected spectrum is maintained the same shape

but shifted to a different wavelength.
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Non-Uniform Strain Effect

A non-uniform strain on the fiber will allow for things such as chirping to occur. As a

thought-demonstration to understand the non-uniform grating, cascading of two gratings

FBG1 and FBG2 with periods Λ1 and Λ2 (Λ1 6= Λ2) respectively will be considered. If a

polychromatic source is coupled to the fiber with the input end of FBG1, all of the waves

except a small frequency band will be transmitted through FBG1 and continues to FBG2.

The reflected waves carry power P1. From FBG2, another small frequency band will be

reflected back, but this reflected band has already been able to transmit through FBG1.

This results in the power P2 from FBG2 such that the total reflected power is a sum of the

power from both gratings and is higher than the return from a single FBG. A key takeaway

is that the reflected band from FBG2 will transmit through FBG1 since it would already

have to travel through FBG1 to get to FBG2.

Recall that one way of describing the chirp factor is given by

δneff (z) = δneff

[
1 + υ cos

(
2π

Λ
z + φ(z)

)]
. (4.77)

The frequency chirping of the grating is controlled by φ(z) such that if the grating is

uniform without chirping, dφ(z)
dz = 0. Consider the alternating part of the perturbation of

the refractive index as δac(z) = cos(kg(z)z) where again in a uniform grating with constant

period Λ, the wave number of the grating kg(z) = 2π
Λ . If a linear chirping effect is assumed,

the grating length will gradually get longer as traveling along the z-axis. The grating period

must be a function of z

Λ(z) = Λ0 + αpz (4.78)

where Λ0 is the period at one end of the FBG and αp is a fitting constant to define the

linear strain. The new kg(z) term becomes

kg(z) =
2π

Λ0 + αpz
, (4.79)
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and by use of a Taylor series expansion for a small αp can be written as

kg(z) =
2π

Λ0
− 2π

Λ2
0

αpz. (4.80)

Substituting this into the alternating term,

δac(z) = cos

(
2π

Λ0
z − 2π

Λ2
0

αpz
2

)
. (4.81)

This term can be related to cos
(

2π
Λ z + φ(z)

)
where φ(z) now equals − 2π

Λ2
0
αpz

2 and recall

that δ(z) = σ(z) + 1
2

(
∆β − dφ(z)

dz

)
and ω = vgβ0 with vg being the group velocity. The

linear chirping of the FBG in ω becomes

ω =
vg
2

dφ

dz
= −2πvg

Λ2
0

αpz. (4.82)

The total chirping of the FBG will be dictated by the αp value. Figure 4-10 shows the

differences in reflection spectra based on different linear chirps for a 3cm FBG modeled in

Figure 4-9 with a refractive index of 1.45, a perturbation of 8×10−4, and a fringe visibility of

υ = 1. There is a clear distinction between stronger chirps and weak chirps. The spectrum

broadens and the peak wavelength is shifted. This is expected as when there are uniform

gratings, each grating will reflect the same wavelength. For the portion of the reflection

wavelength that is not reflected from the first grating, the following gratings will be able to

reflect. If there is a linear change in grating periods, the following gratings will not reflect

the same wavelength, but will reflect a new wavelength which ensures spectral broadening.

Determined by the average grating period, a new peak wavelength will be established for

the common reflection wavelength of the FBG.
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Figure 4-10: Spectra of a 3cm FBG with Linear Chirping Effect

4.3.2 Optical Properties From Strain Coupling to FBG

From the COMSOL simulations, a non-uniform magnetization is produced along the z-

axis of the trapezoidal slab and the approximately acute Saccharin quadrilateral slab as

discussed in Section 4.1. Different distributions of magnetization for each sample create

different strain profiles that can be coupled to the embedded FBG through the modulation

of Λ (see Section 4.2). Thus, the optical properties are able to be modified by the geometry

of the magnetostrictive slab enabling the control of the sensor sensitivity.

Spectral Shift

The strain coupling to the fiber will produce a change in the gratings that can be expressed

as

Λ(z) = Λ0 + ∆Λ(z), (4.83)

and by taking an average over all the values, a peak wavelength can be calculated. This

effect can be directly correlated to the magnetization controlled by the external magnetic

field. From the previous equation,

∆Λ(z) = Λ0(1− Peff )ε(M) + Λ0((1− Peff )(αm − αn) + αn + ζ)∆T, (4.84)
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where

Peff =
n2
eff

2
(P12 − ν(P11 + P12)). (4.85)

neff is the effective refractive index of the fiber, ν refers to the Poisson ratio. P11 and

P12 are the photo-elastic constants of silica [31]. Peff is the total strain-optic effect which

only entails the axial strain [32], [33]. ∆T , ζ, αn, and αm refer to thermal expansion

effects which are not considered for this experiment since measurements took place in a

temperature controlled room and sensing based on spectral width is immune from thermal

effect [15]. The strain ε(M) is modeled with Eq. (2.36) . Since the experimental FBGs

has an initial peak reflection wavelength at 1549.25nm, this wavelength is chosen to present

theoretical results here. It will also be assumed that a 3cm FBG will be centered inside

of the 4cm trapezoidal slab and at the edge of the approximately acute Saccharin quadri-

lateral slab. As shown in this chapter, having a large linear chirping increases the spectral

width of the reflected signal greatly and boosts its optical power moderately up to a upper

limit. This can be easily understood by considering several non-uniform FBGs, each with

a large difference in the period of each individual grating. The reflection spectra for each

will not overlap with the other FBGs. Analyzing each FBG with the method in chapter 3,

one will find a low peak power reflectance. However, the total reflected power (area under

the spectrum) increases with linear chirping (see Figure 4-10). Thus, placing the FBG in

an area with a large linear-like chirp is beneficial for power readings since a lower applied

external magnetic field will have the low strain and power, but larger fields will create a high

strain and power. The sensor sensitivity is controled by the chirp parameter, e.g. αp, that

enable the tuning of sensor performance by the composite geometry. Figure 4-11 shows

the change in grating period for different sensors induced by non-uniform magnetization

distributions under various applied external fields for an effective refractive index (neff ) of

1.45, and a magnetostriction coefficient (εs) of 642ppm, as given in Eq. (4.84). Obviously,

the approximately acute Saccharin quadrilateral slab maintains the increasing trend of the

grating period and hence, generates higher frequency chirp. That means the formation of

a chirped FBG. What is remarkable is that each period of the chirped FBG varies by the
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same percentage as temperature changes, i.e. the shift of whole spectrum but maintaining

the shape and the bandwidth of the spectrum. The property of the chirped FBG enable

temperature independent sensing.

(a) Trapezoidal Slab (b) Approximately Acute Saccharin Quadrilateral Slab

Figure 4-11: Theoretical Estimation of Magnetostrictive Effect on Grating Period as a Function
of z under Various External Magnetic Fields

Again, the refractive index perturbation in Eq. (4.76) introduced Λ(z) in the beginning of

this subsection that enables the consideration the tuning of the chirping factor with external

magnetic fields. Figure 4-12 shows the spectrum change for different applied fields by using

Eq. (4.75) for the same δneff , effective refractive index, and magnetostriction coefficient

used previously (neff = 1.45, εs =642ppm).
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(a) Trapezoidal Slab (b) Approximately Acute Saccharin Quadrilateral Slab

Figure 4-12: Theoretical Reflection Spectra under Various External Magnetic Fields

Total Power

By integrating over the total spectrum, the reflected power may be calculated. As shown

by Figure 4-12, it appears that the peak power reflection is getting lower, but the spread of

the reflected spectrum in increasing. It is to be noted that the FBG that was modeled has

a small chirping on the left side of the reflected spectrum which becomes very relevant as

external magnetic fields are applied. Figure 4-13 shows the reflected power as the external

field is varied using the same parameters used for the strain and spectra plots. The figure

further confirms the increasing trend of the return power with the applied fields and shows

the saturation in the return power under high external fields.
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(a) Trapezoidal Slab
(b) Approximately Acute Saccharin Quadrilateral
Slab

Figure 4-13: Theoretical Reflected Optical Power as a Function of the External Magnetic Field
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Chapter 5

Experimental Results

5.1 Introduction

In Chapter 4, the modeling of the internal field inside magnetostrictive composite slabs

in two different geometries and the optical response of an FBG to magnetostrictive strain

were discussed. In this chapter, the actual fabrication of magnetostrictive slabs and the

embedment of an FBG to each slab as described. The combination of these components

constitute a device known as magnetic field sensor. As mentioned in Chapter 1, this sensor

will be instrumental for current fault detection in a power system. Its applications can be

extended to metering and integrated with smart grids if its performance can be enhanced

such as wider dynamic range and higher sensitivity. The sensor under consideration has

potentials for these fronts. Before reaching these goals, proof-of-concept experiments need

to be performed to characterize the sensor. Here, setup for these experiments is described,

results are presented and their implications are elaborated.
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5.2 Fabrication of Magnetostrictive Slabs

A rectangular aluminum slab was used a negative for creating a silicon mold for the fab-

rication of composite slabs as shown in Figure 5-1. After the silicon rubber was cured

inside a cylindrical chamber with the negative, the negative was removed from the chamber

and a mold was formed. The silicon mold was used to encase the Terfenol-D/epoxy com-

posite while curing with an FBG centered along the axis of the cylindrical chamber. The

magnetostrictive body was a composite of Terfenol-D particles (200-300µm) and an epoxy

resin/hardener (Super Sap 100) from Entropy. The mixing ratio of the resin was 2:1. The

resin was measured with a Gemini-20 scale to ensure the Terfenol-D to epoxy ratio of 1:3

in volume.

(a) Negative for Silicon Mold
(b) Mold for Shaping Particle-Epoxy
Slurry into Rectangular Slab

Figure 5-1: Production of Mold

The resin was mixed with the hardener for approximately three minutes and then was

placed in a vacuum chamber for five minutes to purge any air pockets. From here, the

Terfenol-D was added to the resin and mixed for five minutes. Then the whole mixture was

placed in the vacuum chamber again for another five minutes. These steps are illustrated
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in Figure 5-2.

(a) Terfenol-D/Epoxy Composite
(b) Composite with FBG inside
the Mold

Figure 5-2: Fabrication of Magnetostrictive Composite with an Embedded FBG

5.3 Attaching of Fiber Bragg Grating

Two 3cm FBG from O/E Land Inc. were used. The first FBG which was used for sample

one had a linewidth of 0.1nm and a peak wavelength of 1549.35nm. The FBG in sample

two had a linewidth of 0.095nm and a peak wavelength of 1549.24nm.The first FBG was

placed through the center of a silicon mold for sample one and then the second FBG was

positioned at the end of the mold for the second sample. The placement of FBG in the

second sample ensures the FBG coupled to the appropriate strain distribution. Then the

mixture was poured in the mold very slowly to ensure that no air pockets introduced by

pouring. The curing mixture inside the mold with upper and lower openings was enclosed

by a cylindrical chamber. The FBG was laced through openings at the top and bottom.
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To ensure the FBG was centered inside of the sample along the longitudinal direction (the

axis of the cylindrical chamber), the top hole was used as an anchoring point. The downward

pointing end of the fiber was attached with a weight so that there was constant tension.

The sample was then placed in a magnetic field oriented along the z-direction. The sample

then cured for seven days and was removed and tested to check for initial changes in the

reflected spectrum. The schematic in Figure 5-3 shows the experimental setup for making

a rectangular Terfenol-D/epoxy slab with an embedded FBG.

Figure 5-3: Rectangular Terfenol-D/Epoxy Slab Fabrication Process

For maintaining the FBG taut during the curing process, the appropriate weight was ex-

perimented and was found that an initial mass of 30 grams would break the FBG. Owing

to this observation, mass was progressively added over 5 minute intervals. Since the pure

epoxy is transparent and easy for checking conditions of the embedded object, it was used

to make multiple 100% epoxy slabs for tests of the tension adjustment. A bare fiber was

used with a initial mass of 10 grams. Weight was added in 5 grams increment for every

5 minutes until a final mass of 30 grams was reached. This process resulted in a centered

fiber inside the pure epoxy slab and the same methodology was adopted for the fabrication
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of the actual Terfenol-D/epoxy slab. After curing, the rectangular slab was then shaped

roughly to the geometry of interest by a rotatory tool with a cutting wheel and fine-tuned

by a sanding method with a grinding stone.

The composite was then placed in between a pair of rare earth magnets while curing to align

the large particles of Terfenol-D. After the curing process, the composite was extracted from

the silicon mold and ready to be shaped to desired geometries (see Figure 5-4). The com-

posites were then cut to the desired geometries - a trapezoidal slab and an approximately

acute Saccheri quadrilateral slab to finalize the fabrication of sensors, as shown in Figure 5-

5. For the trapezoidal slab, the measured dimensions were a = 5.24mm, b = 10.22mm,

c = 3.18mm, and L = 39.82mm and the mass of Terfenol-D particles was estimated to be

0.647g . For the approximately acute Saccheri quadrilateral slab, the measured dimensions

were a = 6.3mm, b = 14.97mm, c = 3.18mm, L = 40.21mm, and L′ = 28.05mm and

the mass of Terfenol-D particles was estimated to be 0.976g . After initial curing of the

composites for a week, and cutting to the correct geometry to form the sensors, they were

set aside and cured for an additional 4 weeks. The additional curing was an appropriate

action since the curing process is a very long, continuous process.
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(a) Curing under Magnetic Field from a
Pair of Rare Earth Magnets

(b) Composite After Extraction

Figure 5-4: Curing and Extraction of Composites

(a) Trapezoidal Slab (b) Approximately Acute Saccheri Quadrilateral Slab

Figure 5-5: Sensors in Various Geometries

5.4 Optical Setup

Here, the procedure for the evaluation of a sensor or device under test (DUT) is briefly

described. The optical source for the characterization of DUT was an Exalos EXS 1520-

2111 SLED with a peak wavelength of 1550nm and a bandwidth of 63nm. The source was

connected to an isolator to eliminate feedback. After this point, an optical circulator was

used to route the input light from port 1 to port 2 toward the FBG that reflected a return
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signal exiting the circulator through port 3. Then a directional coupler was used to split

one half of the reflected light from port 3 to an optical spectrum analyzer (ThorLabs OSA

202). The other half of the light went to an optical power detector (ThorLabs DET01CFC

InGaAs Detector) which delivered its photocurrent to a load resistor valued 33kΩ . The

load resistor converted the photocurrent into a voltage that is proportional to the optical

power and can be easily measured by a data acquisition (DAQ) system or a voltage meter.

The power and spectral measurements were automated by a personal computer (PC) con-

troled by a LabView program. Figure 5-6 shows the optical schematic.

Figure 5-6: Optical Setup

Each DUT was individually tested under various magnetic fields generated by an electromag-

net (Varian model V4005) and recorded with a Gauss meter (F.W. Bell 5180 Gauss/Tesla

Meter). The field was varied from 0 Gauss to 3500 Gauss (0 kA/m to 279.195 kA/m),

then back to 0 Gauss by increments of 500 Gauss (39.885 kA/m) . The polarity of the

magnet was then switched and was cycled through 0 Gauss to -3500 Gauss, and then back

down to 0 Gauss. As the magnetic field varying, optical power and reflectance spectra

were measured with the optical setup in Figure 5-6. The corresponding test environment

is shown in Figure 5-7. With the collected data, the spectral shift and variation of DUT
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signal with the magnetic field were observed. Each DUT was tested multiple times for

which a very small hysteresis was observed. Along with this, the overall shape of the power

reflectance started to resemble the theoretical power after only one test cycle of applied

magnetic fields([-3500G, 3500G]). The initial hysteresis shows that there is some memory

associated with the initial testing of the samples. This would mean calibration of the sensor

is necessary, particularly the properties of composites varying from batch to batch.

(a) DUT under Field from Electromagnet
with a Gauss Meter Monitoring the Field

(b) Optical Setup

Figure 5-7: Testing Environment

5.5 Spectral Shift

A spectral shift has the possibility to occur from three parameters - compression from

the curing process, thermal expansion of the magnetostrictive composites, and the applied
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magnetic field which induced strain onto the samples. Minimizing the changes in spectral

shape from the initial curing enables a magnetic field sensor to have maximum sensitivity

and operating range. Figure 5-8 shows the spectral shifts of the FBGs caused by the curing

process before the samples were cut to desired shapes. This process has been experimentally

optimized with a procedure for adjusting tension by adding different weights as shown in

Figure 5-3. Figure 5-9 shows the experimental data for the effect of thermal expansion

effects on the sensors. Each sensor was placed inside an oven set to 70◦C and left to be idle

for approximately 15 minutes to ensure uniform heating of the sample. This preliminary

test demonstrates that the each sensor maintains its spectral shape as the temperature

changes.

(a) First FBG with a Rectangular Slab (b) Second FBG with a Rectangular Slab

Figure 5-8: Spectral Shift From Curing

(a) Trapezoidal Slab (b) Approximately Acute Saccheri Quadrilateral Slab

Figure 5-9: Spectral Shift From Thermal Testing
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Figure 5-10 shows the recorded data on the spectral shift for the sensor due to an applied

magnetic field. Four tests are initially used to examine the optical properties of the sensor,

for which the spectral shift is presented for the fourth test. The shift of peak wavelength

for no applied magnetic field to maximum tested magnetic field has a range of 0.38nm com-

pared to the theoretical spectrum range of 0.40nm. The initial chirp of the FBG is shown

to be changed significantly due to the spread of the linewidth as the applied magnetic field

increases. The measurement for the spectrum was taken in optical power density [nW/D],

where D is the unit wavelength which was 0.1nm. The unit wavelength is based on a fixed

wavelength band.

(a) Trapezoidal Slab (b) Approximately Acute Saccheri Quadrilateral Slab

Figure 5-10: Experimental Spectral Shift

5.6 Optical Power versus Magnetic Field

For purposes of comparing with theoretical predictions, the optical power was normalized

without respect to the value at zero magnetic field. Direct measurements of the optical

power were taken with two different photodetectors. The first being the ThorLabs detector

and the second being a NEC NR7800 photodetector. The purpose of two detectors was to

verify the independence of the detector on the optical power measurements. Figure 5-11

and Figure 5-12 show the first detector while Figure 5-13 and Figure 5-14 show the results
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from the second detector. From observing the following figures, it can be seen that Test

1 differs from Test 4 significantly for both samples. For this research, after approximately

4 cycles, the experimental results resemble the shape of the theoretical predictions. These

tests were performed back to back and one can observe that the initial test (test 1) is

relatively different from the other tests. The ratio of the maximum normalized optical

power from experiment to that from theory is 74% and the shape is consistent for the same

comparison . The maximum power for the trapezoidal slab was 89 nW. The power was

recorded from the Throlabs detector which was connected to the DAQ system and for the

approximately acute Saccheri quadrilateral slab was 94 nW. The optical power was recorded

by photodetectors which are photodiodes operating at the photoconductive regime. As an

incident light (a flow of photons) is absorbed by the semiconductive material inside the

photodiode, the photodetector outputs a photocurrent (a flow of electrons) proportional to

the absorbed optical power and is converted into a voltage across the load resistor in the

photodetector circuit. This voltage signal is collected by the DAQ system in experiments.

The detector output voltage should not be larger than approximately 75% of the supply

voltage since the detector will be saturated when operating beyond this limit, i.e. outside

the photoconductive regime. The load resistor that was used for all tests was 33kΩ. Test 1

and Test 2 were done with the NEC detector while Test 3 and Test 4 were done with the

Thorlabs detector.

(a) Trapezoidal Slab
(b) Approximately Acute Saccheri Quadri-
lateral Slab

Figure 5-11: Experimental Reflected Power under Various External Magnetic Fields
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(a) Trapezoidal Slab
(b) Approximately Acute Saccheri Quadri-
lateral Slab

Figure 5-12: Experimental Reflected Power under Various External Magnetic Field

(a) Trapezoidal Slab
(b) Approximately Acute Saccheri Quadri-
lateral Slab

Figure 5-13: Experimental Reflected Power under Various External Magnetic Field

(a) Trapezoidal Slab
(b) Approximately Acute Saccheri Quadri-
lateral Slab

Figure 5-14: Experimental Reflected Power under Various External Magnetic Field
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5.7 Estimation of Magnetostriction Coefficients from Data

By computing ratio the shift in peak wavelength ∆λp(Hext) and the peak wavelength under

zero magnetic field applied λp0, it is possible to determine the change in the length of the

FBG ∆L or strain on the sensor ε(Hext) = ∆L/L for external applied fields by the relation

∆λp(Hext)

λp0
=
N∆Λ(Hext)

NΛ0
=

∆L(Hext)

L
(5.1)

where N is the number of grating periods. Figure 5-15 presents the data for the ratio ∆L
L for

both experimental tests. The quadratic relation to find the magnetostrictive coefficient is

expressed as ∆L
L = 3

2εs
M2

M2
s

. The magnetization (M) can be approximated to be χmHint(z)

for which an average of the internal field may be taken such that ∆L
L = 3

2εs
(χmHint,avg)2

M2
s

.

εs is the magnetostriction coefficient and Ms is the saturation magnetization which can be

assumed to be very close of that to monolithic Terfenol-D. Solving for εs, the magnetostric-

tion coefficient for the sensor with the trapezoidal slab was approximately 420ppm and

for the sensor with the approximately acute Saccheri quadrilateral slab was approximately

560ppm. The simulation results with the updated magnetostriction constants are shown in

Figure 5-16 and Figure 5-17.

(a) Trapezoidal Slab (b) Approximately Acute Saccheri Quadrilateral Slab

Figure 5-15: Strain vs Applied Magnetic Field

By substituting this updated magnetostriction coefficient in, a better comparison between
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the theoretical and experimental results can be obtained for the spectral shift and reflected

optical power.

(a) Trapezoidal Slab (b) Approximately Acute Saccheri Quadrilateral Slab

Figure 5-16: Theoretical power reflectance with Updated Magnetostriction Coefficients

(a) Trapezoidal Slab (b) Approximately Acute Saccheri Quadrilateral Slab

Figure 5-17: Theoretical power reflectance with Updated Magnetostriction Coefficients

Additionally, plotting the RMS linewidth ((∆λ)RMS) against the magnetic field will be

able to show if there is saturation for the strain. Figure 5-18 shows the data for both

sensors for which it can be observed that the linewidth follows a linear like relation with the

applied field. This shows that the material is not saturated and that the upper limit of the

68



sensor has not yet been reached. Thus higher magnetic fields are able to be measured. The

saturation effect is mostly caused by the dropping of reflected power as linewidth increases.

(a) Trapezoidal Slab (b) Approximately Acute Saccheri Quadrilateral Slab

Figure 5-18: Variation of Linewidth with External Magnetic Field
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Chapter 6

Conclusion

6.1 Conclusion

This thesis presented that theoretical modeling of the geometrically dependent magnetic

field inside two quasi-two-dimensional magnetostrictive slabs, particularly trapezoidal and

approximately acute Saccheri quadrilateral shapes. The internal magnetic field was coupled

to an FBG through magnetostrictive strain which modified the FBG in terms of both the

peak wavelength and bandwidth of its reflection spectra. Before the modeling of an FBG

was discussed, a background on Terfenol-D was given along with the magnetostrictive strain

characteristics as a function of magnetization and the wave transfer matrix method was in-

troduced for modeling of the prominent resonances in the spectrum of an FBG with uniform

period. The chapter on electromagnetic analysis for the FBG showed the actual technique

being used to connect FBG response to magnetostrictive strain since it constitutes the best

approach to model general perturbations, such as the magnetostrictive strain, in an FBG.

With these models, the foundation was laid for modeling and predicting magnetic field sens-

ing performance theoretically. Then the sensor fabrication and experimental procedure for

characterizing two sensors based on the two quasi-two-dimensional magnetostrictive slabs

were presented along with experimental data that provided a proof of concept for the mag-

netic field sensor. Besides demonstrating a very well match with the theoretical results,

these experiments confirm the control of sensor sensitivity with the geometry of the mag-
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netostrictive composite slab..

The intended application for the field sensor under investigation was in constructing FOCSs

that form a sensing network for fault detection and location in a power grid. This design

of FOCS serves as a more sustainable and effective in current sensing since small amount

of magnetostrictive material is used in composite and the use of the frequency chirping in

an FBG to infer magnetostrictive strain mitigate the averse effect of thermal expansion.

Furthermore, the use of the frequency chirping enables the linking of optical power mea-

surements to the external magnetic field and reduces the cost in signal processing. With

the ability of sensitivity control, the FOCS under investigation has potential in serving at

various current ranges and extending its dynamic range.

In summary, two magnetostrictive composite slabs with an embedded FBG have been fab-

ricated and demonstrated repeatable and consistent performance with the theory. The

spectral outputs of the sensors were almost linearly proportional to the external magnetic

field in terms of their changes in spectral width and peak wavelength. The closely matched

experimental and theoretical results verified the effectiveness of the fabrication procedure

and reliability of the theoretical model that was critical for optimization of the sensor.

6.2 Further Research

More thermal testing will be required to demonstrate temperature independent sensing

under various levels of the external magnetic field. For sensor optimization, different com-

posite geometries will be designed and modeled. Before investigating more complicated

geometries, various combinations of FBG length and parameters of approximately acute

Saccheri quadrilateral should be considered in order to determine the minimum detectable

magnetic field and maximum sensitivity under the best configuration. They will be verified

first with COMSOL simulations and then confirmed by sensor fabrication and experiments.

The optimized sensor will then be further examined with AC magnetic fields at different

frequencies. The aim here is to search for the maximum operating frequency.
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With thorough sensor characterization, the ultimate sensitivity and dynamic range of the

optimized sensor should be determined. Based on this knowledge, applications of FOCSs for

their uses in sensing networks for detecting current faults at various ranges should be inves-

tigated. Other applications, such as optical filters with tunable frequency and bandwidth

and optical encryption, may be within the horizon.
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