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ABSTRACT

MODEL-INDEPENDENT ESTIMATION OF OPTIMAL
HEDGING STRATEGIES WITH DEEP NEURAL

NETWORKS

by

Tobias Michael Furtwaengler

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Chao Zhu

Inspired by the recent paper Buehler et al. (2018), this thesis aims to investigate the

optimal hedging and pricing of financial derivatives with neural networks. We utilize

the concept of convex risk measures to define optimal hedging strategies without strong

assumptions on the underlying market dynamics. Furthermore, the setting allows the

incorporation of market frictions and thus the determination of optimal hedging strategies

and prices even in incomplete markets. We then use the approximation capabilities of

neural networks to find close-to optimal estimates for these strategies. We will elaborate

on the theoretical foundations of this approach and carry out implementations and a

detailed analysis of the method with simulated market data. Our experiments show that

the neural network-based algorithm is a powerful tool for the model-independent pricing

of any financial derivative and the estimation of optimal hedging strategies for these

instruments.
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1 Introduction

The pricing of financial derivatives and closely related to that the hedging of these instru-

ments is still one of the most important topics in financial mathematics. For an agent on

the financial markets, it is essential to determine appropriate prices for the derivatives

he is trading. On the one hand these prices must be competitive in the market, but on

the other hand, reflect the real risk the agent has to bear by entering the contract. After

the trade, the agent (at least if we consider a financial institution that has to follow the

regulations of the supervisor authorities) has to guarantee continual risk management up

to the maturity or liquidation of the contract to prevent unexpected losses and thereby

ensure the financial stability of the institution.

Although much progress in the field of option valuation has been made since the

1970s, there are still many unsolved problems, and the research continues. One of the

most common approaches for pricing and the implementation of risk management for

financial derivatives are stochastic financial models. These models assume that a par-

ticular stochastic dynamic drives the underlying assets of the derivatives. Most of the

popular models assume the market to be complete, i.e., for all contingent claims, there

exists a trading strategy on the underlying assets that replicates the payoff perfectly.

That allows the market participants to determine fair prices by risk-neutral valuation

either with closed-form solutions or with a Monte Carlo method. Probably the most

popular among those models is the so-called Black-Scholes-Merton model from 1977 [6].

The model assumes the underlying stock price to follow a geometric Brownian motion

and offers a closed-form solution for the price of European options. Furthermore, the

model offers analytical expressions for the so-called Greeks, the partial derivatives of the

option value with respect to the underlying asset as well as to the different parameters

of the model. These sensitivities then allow dynamic risk management by implementing

a Greek-based hedging strategy.

Even though it is one of the most used and most taught models, the Black-Scholes-

Merton model exhibits some severe shortcomings. The model assumes the volatility of

the underlying asset price process to be constant. Observations of real market data,
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however, show that the volatility exhibits a nonconstant behavior and varies with time

and the level of the price itself. This phenomenon is mainly referenced as the volatility

smile. One approach to take nonconstant volatility into account is the local volatility

Model of Dupire [10] that expands the Black-Scholes-Merton model by replacing the

constant volatility with a deterministic function that depends on time and the level of

the underlying price process. Another way to model these characteristics are the so-

called stochastic volatility models. Arguably, the most popular of these models is the

Heston model. Here the volatility itself is modeled by a stochastic differential equation.

More precisely, it is assumed to follow a Cox-Ingersoll-Ross process [12]. Although the

mentioned models may capture the non-constant behavior of the volatility to some extent,

they still require other assumptions that do not hold in reality. Most importantly they

all assume the possibility of unrestricted trading in time and amount of the hedging

instruments as well as the complete absence of trading costs for all transactions that are

required for the implementation of the hedging strategy. In reality, a trader will only

adjust his strategy at discrete time steps. Moreover, he has to take into account trading

costs, market impact, limitations in liquidity and limited capacity of risk or capital to

find an optimal hedging strategy. There are a variety of different approaches to include

market frictions into option pricing models, see for example [19]. However, all of them

are restricted to strong assumptions and need concepts as the expected utility pricing.

Moreover, as shown in [20], there is no nontrivial hedging strategy for options in the

Black-Scholes-Merton setting if transaction costs are included. Therefore, these methods

are of limited value in practice, and despite their shortcomings, stochastic models are still

widely used, mainly due to the lack of effective alternatives.

Motivated by these findings, the recent paper [7] introduces a new approach to de-

termine optimal hedging strategies that no longer depend on an underlying stochastic

model. The authors use artificial neural networks to model a trading strategy that is

capable of replicating an arbitrary payoff in any market scenario. Neural networks are

mathematical structures that are utilized for the approximation of mathematical relations

without knowledge of the specific characteristics of the actual function. The networks
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can be trained on given data and then later make predictions based on new data. Ini-

tially used for picture and voice recognition, it turned out that neural networks show

surprisingly good performances in many different applications. Modern machine learning

and optimization techniques allow efficient training of these structures and make them

applicable to large data sets. Out of this reason, they offer a well-suited framework for the

problem of determining optimal hedging strategies. The input of the networks might not

only consist of market data but also on other information and previous trading decisions.

The approach offers several advantages to traditional stochastic financial models: At

first, the method is independent on any assumption about the underlying price process.

Moreover, one can easily include any market friction, for example, transaction costs and

trading constraints. Finally, this approach offers the possibility to find optimal hedging

strategies for a variety of different risk measures. The versatile applications may be of

interest for financial institutions that face strict capital requirements by the supervisory

authorities that often depend on a particular risk measure.

The first part of this thesis will summarize the framework that was introduced [7]

and elaborate on the theoretical background where it is necessary for the understanding

of their ideas. Thereby the focus will be set on those parts of the work that are relevant

for the second part of this thesis. Here we will present the results and analysis of our

numerical experiments. We want to address several questions. At first, we are interested

in finding out if the neural network based approach is capable of learning a model hedge

on an idealized market that is assumed to follow the Black-Scholes-Merton model without

any market frictions. We then extend the analysis by incorporating trading costs into

the model to assess if the method can be used to make reasonable hedging decisions

under more realistic market conditions. Furthermore, we may use this setting to analyze

the influence of hedging costs on the risk indifference price of a derivative. Finally, we

also want to assess the performance of the approach on a market that is driven by a

more complex stochastic model. Therefore, we consider the stochastic volatility model of

Heston. In this setting, an optimal hedging strategy has to consider more than one risk

factor and therefore trade in different assets.
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2 Discrete capital market

2.1 Setting

This work aims to analyze the performance of deep neural networks for the estimation

of optimal hedging strategies. For this purpose, we will consider the following idealized

financial market that will later also allow us to compare the performance to a conventional

model-based hedging strategy. For the setup of this market, we will use a similar setting

as in [7]. We consider a market with finite time horizon T and discrete trading dates

0 = t0 < t1 < ... < tn = T . Furthermore, we have a finite and filtered probability space

(Ω,F ,F,P) where Ω = {ω1, ..., ωN} and P({ωi}) > 0 for i = 1, ..., N and X := {X : Ω→

R} is the set of all real-valued random variables over Ω. The filtration F is generated

by an Rm-valued process I = (Ik)k=0,...,n, i.e., Fk = σ(I0, ..., Ik) and F = (Fk)k=0,...,n. In

this setting Ik can be interpreted as the new market information an agent gets at time

tk and the sub-σ-algebra Fk represents all information that is available for the agent up

to time tk. By this definition, every Fk-measurable random variable can then be written

as a function of I0, ..., Ik. In this work the information process I will only consist of

prices of liquid financial instruments that are observable at the market. In general, it

could also include additional information, for example, news, financial reports or analyst’s

opinions. Furthermore, there is a set of d assets on the market that can be traded by

an agent for hedging purposes. The prices of these assets are given by a Rd-valued and

F-adapted stochastic process S = (Sk)k=0,...,n. These tradable assets can be primary

assets, for example, the underlying stock of an equity option but also other derivatives

with observable market prices. Finally, we have a FT -measurable random variable Z that

represents the payoff of a derivative and thus the liability of the writing agent. The agent

must hedge the payoff in order to minimize the risk he takes by entering the contract.

In order to evaluate and compare the performance of our neural network based strate-

gies, we build up a setting that is as simple as possible. We assume that the only payoff of

our contingent claim Z occurs at maturity T as it is the case for European options. These

limitations can be easily extended to more complex derivatives by assuming that possible
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intermediate payoffs are accrued with a risk-free rate r until maturity T . Moreover, we

will not consider derivatives with true optionality, such as American options, because of

the complex modeling of the corresponding payoffs.

2.2 Hedging in a discrete capital market

To minimize the risk of the payoff Z, the agent may trade in the available assets on the

market. This strategy can be represented by a Rd-valued and F-adapted stochastic process

δ = (δk)k=0,...,n−1 with δk = (δ1
k, ..., δ

d
k). Note that since Ω is finite, δk : Ω→ Rd is bounded.

This definition can be understood in the following way: The agent holds δik shares of the

i-th asset at time tk. Furthermore we set δ−1 = δn := 0, i.e., before time t = 0 the agent

does not hold any assets at all and liquidates all his positions at time T . We further

assume that the strategy is self-financing, i.e., there are no additional cash injections

during the trading period. The set of all such hedging strategies is denoted by H. For

this work this definition is sufficient. As emphasized in [7], in reality, an agent could be

subjected to trading constraints, for example, limitations in risk (often measured in the

form of Greeks) or restrictions in the liquidity of the hedging instruments. Restrictions

like that can be easily included in the introduced framework. To see that, assume that

δk is restricted to a set Hc
k. Then there exists a continuous and Fk-measurable mapping

Hk : Rd(k+1) → Rd, so that Hk(0) = 0. The set of restricted strategies at time tk can

then be represented as Hc
k := Hk(Rd(k+1)). Accordingly, we might define an constrained

strategy δc by defining a set of all restricted hedging strategies Hc := (H ◦H) ⊂ H where

H is iteratively defined with (H ◦ δ)k := Hk((H ◦ δ)0, ..., (H ◦ δ)k−1, δk).

Since the considered hedging strategy is self-financed, it might be necessary to inject

an additional amount of cash p0 into the portfolio that consists of the liability and the

hedging strategy at the beginning of the trading period. After the maturity of the liability

at time T the agent’s wealth is then given by −Z + p0 + (δ · S)T , with

(δ · S)T :=
n∑
k=0

δk · (Sk+1 − Sk)
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A crucial benefit of the here presented framework to conventional model-based approaches

is that we can easily incorporate market frictions such as trading costs. In this work we

will consider two different kinds of transaction costs ck that occur for all transactions at

time tk:

(i) Fixed transaction costs: ck(δk − δk−1) :=
∑d

i=1 c
i
k1|δik−δik+1|≥ε

where cik > 0 for i = 1, .., d and ε > 0 is a fixed number.

(ii) Proportional transaction costs: ck(δk − δk−1) :=
∑d

i=1 c
i
kS

i
k|δik − δik+1|

where cik > 0 for i = 1, .., d.

The total cost of the hedging strategy δ is then given by:

CT (δ) :=
n∑
k=0

ck(δk − δk−1).

Note that in both cases the cost function ck is upper semi-continuous and normalized to

ck(0) = 0. The value of the agent’s portfolio at maturity Z, also called profit and loss, is

accordingly given by:

PnLT (Z, p0, δ) := −Z + p0 + (δ · S)T − CT (δ).
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3 Convex risk measures

Conventional financial models are mostly based on the assumption of a complete market

with continuous-time and unconstrained trading and no transaction costs. In this scenario

there exists for every contingent claim Z a unique replicating strategy δ and a fair price

p0 such that at maturity T it holds: −Z + p0 + (δ · S)T = 0, P − a.s. In the setting

introduced in Section 2, this does not longer hold since we included transaction costs and

restricted the possible trading times to a discrete set. An agent in this market, therefore,

has to specify a different criterion to determine an optimal minimal price he has to charge

for the derivative Z. This price is the minimal amount of cash the agent has to add to his

portfolio such that the overall position is acceptable. Out of this reason, the price should

be based on the risk that the agent has to take by selling the liability. We therefore

assume a position Z to be acceptable if it holds that ρ(Z) ≤ 0 for a given risk measure

ρ : X → R. We assume the risk measure to be normalized, i.e., ρ(0) = 0. In this work we

will focus on convex risk measures, that cover most of the used risk measures in practice.

In the following part we consider a random variable X that represent a long position in

one or more assets, i.e. we can represent a short position or a liability as −X. For the

definition of convex risk measures we follow [11].

Definition 3.1. Convex risk measure. Let X,X1, X2 ∈ X . A risk measure ρ : X → R is

called convex if it is:

(i) Monotonic: X1 > X2 ⇒ ρ(X1) ≤ ρ(X2)., i.e., a more favorable position requires

less additional cash to make it acceptable.

(ii) Convex: ρ(λX1 + (1−λ)X2) ≤ λρ(X1) + (1−λ)ρ(X2) for all λ ∈ [0, 1], i.e., the risk

of a diversified portfolio is always less or equal the sum of risks of the individual

positions.

(iii) Cash-Invariant: ρ(X + c) = ρ(X) − c for c ∈ R, i.e., if we add cash to a position,

the risk is reduced by this amount. Specifically, it holds that ρ(X + ρ(X)) = 0, i.e.

ρ(X) is the least amount of cash the agent has to add to his position to make it

acceptable.
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The entropic risk measure, defined by: ρλ(X) := 1
λ

ln(E[e−λX ]) for X ∈ X and risk

aversion parameter λ > 0 is one example for a convex risk measure. Another risk measure

of this class is the Conditional Value at Risk that will be discussed in detail in Section

3.3. Contrarily, the popular risk measure Value at Risk, which is a specific quantile of

the distribution of the random variable X ∈ X , is in general not a convex risk measure.

3.1 Hedging and pricing under convex risk measures

We now consider an agent who wants to hedge the payoff X that occurs at time T by

trading in S according to the strategy δ. The agent then is interested in finding an

optimal strategy in order to minimize his risk. This can be expressed as the following

optimization problem:

π(X) := inf
δ∈H

ρ(X + (δ · S)T − CT (δ)) (1)

where ρ : X → R is a convex risk measure and X ∈ X . As shown in [7], it holds that π

is again a convex risk measure under some assumptions.

Theorem 3.2. Let π be as in (1). Then π is monotone decreasing and cash-invariant. If

moreover CT is convex and H is a convex set, i.e. for all δ1, delta2 ∈ H and λ ∈ [0, 1] it

holds λδ1 + (1− λ)δ2 ∈ H, then π is convex and therefore a convex risk measure.

Proof. At first, we note that the monotonicity and cash-invariance of π follow directly

from its definition and the respective properties of ρ. For the convexity, let λ ∈ [0, 1] and

set γ := 1− λ. Note that for all δ ∈ H it holds: (δ · S)T = λ(δ · S)T + γ(δ · S)T . Further

assume that X1, X2 ∈ X . By definition we can find for all ε > 0 strategies δ1, δ2 ∈ H

such that

π(X1) > ρ(X1 + (δ1 · S)T − CT (δ1))− ε

2
and

π(X2) > ρ(X2 + (δ2 · S)T − CT (δ2))− ε

2
.
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Adding the two inequalities and setting δ := λδ1 + γδ2 leads to:

λπ(X1) + γπ(X2) > λρ(X1 + (δ1 · S)T − CT (δ1)) + γρ(X2 + (δ2 · S)T − CT (δ2))− ε

≥ ρ(λ[X1 + (δ1 · S)T − CT (δ1)] + γ[X2 + (δ2 · S)T − CT (δ2)])− ε

= ρ([λX1 + γX2] + ([λδ1 + γδ2] · S)T − [λCT (δ1) + γCT (δ2)])− ε

≥ ρ((λX1 + γX2) + ([λδ1 + γδ2] · S)T − CT (λδ1 + γδ2))− ε

≥ inf
δ∈H

ρ([λX1 + γX2] + (δ · S)T − CT (δ))− ε

= π(λX1 + γX2)− ε

where we used sequentially the convexity of ρ, the convexity of CT combined with the

monotonicity of ρ, the convexity of H and finally the definition of π. Since ε > 0 is

arbitrary we can conclude:

λπ(X1) + γπ(X2) ≥ π(λX1 + γX2)

An optimal hedging strategy with respect to the risk measure ρ can now be defined

as a minimizer δ∗ ∈ H of (1). Given a liability −Z, where Z ∈ X , the value π(−Z)

can then be interpreted as the minimal amount of cash an agent has to add to his

portfolio in order to make it acceptable given that he is hedging optimally according

to the strategy δ∗. As emphasised in [7] it could be possible that trading in some of

the hedging instruments is expected to generate positive returns under P (for example

by incorporating trading signals). Because of these considerations we normalize π to

determine the minimal acceptable price for the payoff Z.

Definition 3.3. Risk indifference price. The risk indifference price p(Z) for a payoff Z

is defined by

p(Z) := π(−Z)− π(0) (2)
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According to the definition, p(Z) is the solution p0 of the equation π(−Z + p0) = π(0).

This means that the agent is indifferent between selling the liability Z for the price p0 or

not doing so.

As highlighted in [7], this definition of the risk indifference price coincides to the

price of a replicating portfolio, i.e., the fair price of a liability in the setting of a complete

market (or more general of a market without transaction costs and trading constraints).

Lemma 3.4. Assume CT ≡ 0. If a liability Z is replicable, i.e ∃ δ̃ ∈ H and p0 ∈ R such

that Z = p0 + (δ̃ · S)T , then it holds that p(Z) = p0.

Proof. For an arbitrary δ ∈ H it holds that

ρ(−Z + (δ · S)T − CT (δ)) = ρ(([δ − δ̃] · S)T ) + p0

by substituting p0 +(δ̃ ·S)T for Z and using the cash-invariance of ρ. The identity follows

by taking the infimum over all δ ∈ H on both sides of the equation:

π(−Z) = p0 + inf
δ∈H

ρ(([δ − δ̃] · S)T ) = p0 + π(0).

using the fact that H− δ̃ = H. And thus p0 = π(−Z)− π(0) = p(Z).

For practical applications of the methodology presented above, the following obser-

vation in [7] is worth mentioning:

Remark 3.5. Assume that an agent is acting on a market where the price p0 for a payoff

Z is exogenously given. For a given loss function ` : R → [0,∞) an optimal hedging

strategy δ∗ can then be defined as the minimizer of the following optimization problem:

inf
δ∈H

E[`(−Z + p0 + (δ · S)T − CT (δ))]

An example for this approach would be an agent that wants to trade derivatives on the

market at competitive prices without taking into account risk management.
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In order to use deep neural networks to estimate optimal solutions for the presented

optimization problem (1) we now introduce the concept of optimized certainty equivalents

as introduced in [4]. The optimized certainty equivalent of a random variable X ∈ X is

defined for a given utility function, i.e. continuous, non-decreasing and concave u : R→

R, as OCEu(X) = supw∈R{w + E[u(X − w)]}. The OCE can be interpreted as an

optimal allocation of X between present consumption w and the expected utility of

future consumption E[u(X − w)]. Furthermore, it can be shown that any OCE induces

a risk measure ρ by setting ρ(X) := −OCEu(X). We note that for all utility functions

u : R → R we can define a loss function ` : R → R by setting l(x) := −u(−x). This

motivates the definition of a class of risk measure that are induced by an OCE.

3.2 OCE risk measures

Definition 3.6. OCE risk measure. Let ` : R→ R be a loss function, i.e, ` is continuous,

non-decreasing and convex. For X ∈ X we might now define a risk measure ρ with:

ρ(X) := inf
w∈R
{w + E[`(−X − w)]} (3)

It will turn out that this representation will later be helpful to build up a theoretical

foundation for the use of neural networks for the estimation of optimal hedging strategies.

Theorem 3.7. An OCE risk measure as defined in (3) is a convex risk measure.

Proof. Let X,X1, X2 ∈ X .

(i) Monotonicity: Suppose X1 ≤ X2. Since ` is non-decreasing, it holds that

E[`(−X1 − w)] ≥ E[`(−X2 − w)] ∀ w ∈ R and thus ρ(X1) ≥ ρ(X2).

(ii) Cash-invariance: ρ(X + m) = infw∈R{(w + m) − m + E[`(−X − (w + m))]} =

infw∈R{w + E[`(−X − w)]} −m = ρ(X)−m ∀ m ∈ R

11



(iii) Convexity: Let λ ∈ [0, 1] and set γ = 1− λ. It holds that:

ρ(λX1 + γX2) = inf
w∈R
{w + E[`(−λX1 − γX2 − w)]}

= inf
w1∈R,w2∈R

{λw1 + γw2 + E[`(λ(−X − w1) + γ(−X2 − w2))]}

≤ inf
w1∈R

inf
w2∈R
{λ(w1 + E[`(−X1 − w1)]) + γ(w2 + E[`(−X2 − w2)])}

= λρ(X1) + γρ(X2)

since ` is assumed to be convex.

For a risk measure ρ that is induced by an OCE the following theorem holds:

Theorem 3.8. Assume S is a martingale under P, i.e. it holds: E[|Sk|] < ∞, Sk is

Fk-measurable and E[Sk+1|Fk] = Sk for k = 0, ..., n. Moreover, let ρ be defined as in (3),

π as in (1) and p as in (2). Then the following hold:

(i) π(0) = ρ(0)

(ii) p(Z) ≥ E[Z] ∀ Z ∈ X

Proof. At first we note that π(0) ≤ ρ(0) for any risk measure ρ since 0 ∈ H and CT (0) = 0.

To show that the converse inequality holds, we first note that since S is a martingale, we

can use the tower property to observe:

E[(δ · S)T ] =
n−1∑
k=0

E[δkE[Sk+1 − Sk|Fk]] = E[δk(Sk − Sk)] = 0 ∀ δ ∈ H

We can now use this to show the following:

π(−Z) = inf
w∈R

inf
δ∈H
{w + E[`(Z − (δ · S)T + CT (δ)− w)]}

≥ inf
w∈R

inf
δ∈H
{w + `(E[Z − (δ · S)T + CT (δ)− w])}

≥ inf
w∈R
{w + `(E[Z]− w)} = ρ(−E[Z]) = E[Z] + ρ(0)

(4)
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where we used the convexity of ` and Jensen’s inequality for the first inequality and

CT (δ) ≥ 0 for all δ ∈ H as well as the fact that ` is a non-decreasing function for the

second inequality. For Z = 0 we now get π(0) = ρ(0) and thus (i). For (ii) we can use

the identity in (4) and the definition of the risk indifference price (2) as well as (i) to

observe: p(Z) = π(−Z)− π(0) ≥ E[Z] + ρ(0)− π(0) = E[Z] + ρ(0)− ρ(0) = E[Z].

3.3 Conditional Value at Risk

In this work we want to focus on estimating optimal hedging strategies with respect to

one particular OCE risk measure, namely the Conditional Value at Risk (CV aR), also

known as Expected Shortfall (ES) or Average Value at Risk (AV aR). While for a long

time the relatively simple and easily interpretable Value at Risk (V aR) was the most

used risk measure in the financial industry, CV aR is becoming more popular among

market participants in recent years. Also, new regulations of the supervisor authorities

often express capital requirements with respect to the CV aR. The increasing popularity

of this risk measure is based on some important advantages it has to offer compared to

the V aR. At first, the CV aR is a convex risk measure by definition whereas that need

not to be true for the V aR. This can result in an increased risk in terms of V aR after

combining positions into a portfolio and is therefore not consistent with the intuitive

concept of diversification. Moreover, the V aR does not give any information about the

risk of losses that exceed the risk value. These shortcomings can be avoided by using the

CV aR. We define the risk measure for a particular risk level α ∈ [0, 1) following (3) and

using l(x) = 1
1−αx

+ where x+ := max(x, 0) with:

ρα(X) = CV aRα(X) = inf
w∈R
{w +

1

1− α
E[(−X − w)+]} (5)

As shown in [21] we can also use the following representation for (5):

CV aRα(X) =
1

1− α

∫ 1

1−α
V aRγ(X)dγ,

13



where the Value at Risk for the risk level α ∈ [0, 1) is defined by:

V aRα(X) := − inf{x ∈ R : P(X ≤ x) > 1− α}.

Furthermore, if the distribution of X is continuous, the CV aR coincides with the so

called Tail Conditional Expectation (TCE) (see [1]) which is defined by :

TCEα(X) := −E[X| −X ≥ V aRα(X)]. (6)

As proposed in [1], the natural estimator of the TCE for a sample (X1, ..., XN) of the

random variable X ∈ X , is given with

ˆTCEα(X) := −
∑N

m=1 Xm1{Xm≤XbN(1−α)c:N}∑N
m=1 1{Xm≤XbN(1−α)c:N}

, (7)

where the order statistic of the sample is denoted by X1:N ≤ ... ≤ XN :N and bxc :=

max{n ∈ N : n ≤ x}.
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4 Neural networks

In this section we want to introduce the so called feedforward neural networks as one

particular class of artifical neural networks. These neural networks will later be used for

the estimation of optimal hedging strategies according to the optimization problem (1)

in Section 3.1.

4.1 Feedforward neural networks

Definition 4.1. Feedforward neural network. Let L,N0, N1, ..., NL ∈ N, σ : R → R,

matrices Al ∈ RNl×Nl−1 and the vectors bl ∈ RNl for l = 1, ..., L. A feedforward neural

network is defined as the function F : RN0 → RNL by

F (x) = FL ◦ FL−1 ◦ ... ◦ F1 for x ∈ RN0 (8)

where Fl(x) = σ(Alx + bl) for x ∈ RNl−1 , l = 1, ..., L − 1 and FL(x) = ALx + bL for

x ∈ RNL−1 .

We call σ the activation function and apply it componentwise. L denotes the number

of layers, N1, ..., NL−1 the dimensions of the hidden layers and N0, NL respectively the

dimensions of the input and output layers. Furthermore, the number Alij represents the

weight of the edge connecting node i of layer l − 1 and node j of layer l for i = 1, ..., Nl

and for j = 1, ..., Nl−1. The number bli represents the bias that is added at node i of layer

l for i = 1, ..., Nl. Weights and biases are the parameters of our network that will later

be trained on a given set of training data. We denote a specific neural network with F θ

where θ ∈ Rq for some q ∈ N is the parameter vector that contains all parameters of the

network.

We define NN σ
∞,d0,d1 as the set of all feedforward neural networks mapping from

Rd0 → Rd1 with a fixed activation function σ. We will now reference the so called

Universal Approximation Theorem of Hornik [14] that characterizes feedforward networks

with one hidden layer as universal function approximators. The theorem will later justify

the use of feedforward neural networks for the estimation of optimal hedging strategies.
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Theorem 4.2. Universal Approximation Theorem. Assume the activation function σ to

be bounded and non-constant. Then the following holds:

(i) The set NN σ
∞,d0,1 is dense in Lp(Rd0 , µ) for any finite measure µ on (Rd0 ,B(Rd0))

and 1 ≤ p ≤ ∞.

(ii) If in addition σ ∈ C(R), then NN σ
∞,d0,1 is dense in C(Rd0) for the topology of

uniform convergence on compact sets.

As shown in [15], this result remains true for the set NN σ
∞,d0,d1 with d1 > 1, i.e for all

neural networks with an arbitrary number of hidden layers and output layer dimension

d1.

For the following part we consider a sequence of subsets of NN σ
∞,d0,d1 , that is denoted by

{NN σ
M,d0,d1

}M∈N and satisfies the following properties:

(i) NN σ
M,d0,d1

⊂ NN σ
M+1,d0,d1

∀ M ∈ N

(ii)
⋃
M∈NNN σ

M,d0,d1
= NN σ

∞,d0,d1

(iii) For all M ∈ N we have the following representation: NN σ
M,d0,d1

= {F θ : θ ∈

ΘM,d0,d1} where ΘM,d0,d1 ⊂ Rq(M) and q(M) ∈ N.

As discussed in [7] there are two classes of networks we could think of. At first NN σ
M,d0,d1

could represent all networks with an arbitrary number of layers but at most M non-zero

weights. The second class represents the set of networks with a fixed architecture. That

means the number of layers L(M), as well as the input and output dimension of each layer,

are fixed. For the sequence {NN σ
∞,d0,d1}M∈N, the number of layers is specified by the non-

decreasing sequence {L(M)}M∈N and the dimension of the layers by d0, d1 for input and

output layer and by the non-decreasing sequences {N (M)
1 }M∈N, ..., {N (M)

L(M)−1
}M∈N for the

hidden layers. For both cases, the networks are completely parameterized by the matrices

Al and the vectors bl for l = 1, ..., L.
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4.2 Estimation of optimal hedging strategies with feedforward

neural networks.

On base of the presented results of neural networks as universal function approximators

we may introduce a setup to use neural networks for the estimation of a solution of the

optimization problem (1) in Section 2.2. Here we again follow mainly the ideas presented

in [7].

Recall that all available market information up to time tk is described by Fk =

σ(I0, ..., Ik). The strategy for the specific time step, δk, can therefore only be based on

this information as well as on the previous position δk−1. Thus δk = fk(I0, ..., Ik, δk−1) for

some function f : Rm(k+1)+d → Rd. We may now use the approximation capabilities of

neural networks to approximate the function fk with the neural network Fk and define

the following set of strategies:

HM = {(δk)k=0,...,n−1 ∈ H : δk = Fk(I0, ..., Ik, δk−1), Fk ∈ NNM,m(k+1)+d,d}

= {(δk)k=0,...,n−1 ∈ H : δk = F θk(I0, ..., Ik, δk−1), θk ∈ ΘM,m(k+1)+d,d}
(9)

Since HM ⊂ H we can now set up the following optimization problem:

πM(X) := inf
δ∈HM

ρ(X + (δ · S)T − CT (δ))

= inf
θ∈ΘM

ρ(X + (δθ · S)T − CT (δθ))

(10)

where ΘM =
∏n−1

k=0 ΘM,m(k+1)+d,d. This is now a finite-dimensional problem of finding the

optimal parameters for the neural network instead of the infinite-dimensional problem of

finding an optimal strategy δ ∈ H.

Remark 4.3. As proposed in [7] we will refer to the setting (9) as a semi-recurrent

network structure. Here, recurrence means that the output of the neural network Fk is

part of the input of the neural network Fk+1. The setting would be fully recurrent if

we only had one neural network to determine δk for each time step tk, i.e. θk = θ0 for

k = 1, ..., n− 1.
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Remark 4.4. If S is a Markov process with respect to the probability measure P and

the filtration F, Z = g(ST ) for some function g : Rd → R and with simplistic market

frictions as the transaction costs defined in Section 2.2, we may expect that the optimal

strategy simplifies to δk = fk(Ik, δk−1) for some fk : Rm+d → Rd. Indeed, we could confirm

this presumption with our numerical experiments, so that we refer in Section 5.4 to a

simplified network structure of the form F θk(Ik, δk−1).

The following theorem in [7] shows, that any strategy δ ∈ H can be approximated

arbitrary well by strategies δM ∈ HM . Thus, the estimate of the risk indifference price

for a payoff Z of the neural network pM(Z) = πM(−Z) − πM(0) converges to the true

risk indifference price p(Z).

Theorem 4.5. For HM defined as in (9) and πM as in (10), it holds:

lim
M→∞

πM(X) = π(X) ∀ X ∈ X .

Proof. In order to simplify notation we may rewrite (9) as

HM = {(δk)k=0,...,n−1 ∈ H : δk = Fk(I0, ..., Ik), Fk ∈ NNM,m(k+1)+d,d} (11)

since δk−1 is by itself a function of I0, ..., Ik−1 and thus redundant as an argument of Fk.

It holds that πM(X) ≥ πM+1(X) ≥ π(X) since HM ⊂ HM+1 ⊂ H for all M ∈ N. Thus,

for convergence it is sufficient to show that for all ε > 0 there exists a M ∈ N such that

πM(X) ≤ π(X) + ε. By the definition of π, there exists δ ∈ H such that:

ρ(X + (δ · S)T − CT (δ)) ≤ π(X) +
ε

2
(12)

Since δk is Fk-measurable, there exists a measurable function fk : Rm(k+1) → Rd such

that δk = fk(I0, ..., Ik) for k = 0, ..., n− 1. Since δk is bounded, δk ∈ L1(Ω,P) and hence

f ik ∈ L1(Rm(k+1), µ) for i = 1, ..., d, where µ is the law of (I0, ..., Ik) under P. We may

now apply Theorem 4.2 to find a sequence F i
k,n ∈ NN∞,m(k+1),1 such that F i

k,n converges

to f ik in L1(Rm(k+1), µ), and thus F i
k,n(I0, ..., Ik) converges to f ik(I0, ..., Ik) in L1(Ω,P) as
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n→∞. We may choose a suitable subsequence so that the convergence also holds P-a.s.

simultaneously for i = 1, ..., d and k = 0, ..., n − 1 (see for example Theorems 4.1.4 and

4.2.3 in [8]). Denote the sequence by δ
nj
k := Fk,nj(I0, ..., Ik). Since P({ω}) > 0 for all

ω ∈ Ω it holds:

lim
j→∞

δ
nj
k (ω) = δk(ω) ∀ ω ∈ Ω (13)

Since Ω is finite, the function ρ : RN → R is convex and in particular continuous. It holds

that:

lim inf
j→∞

ρ(X + (δnj · S)T − CT (δnj))

≤ ρ(X + (δ · S)T − lim sup
j→∞

CT (δnj))

≤ ρ(X + (δ · S)T − CT (δ))

where we used the continuity of ρ, the fact that δk is bounded and (13) in the first step

and the upper semi-continuity of ck for a fixed ω ∈ Ω as well as the monotonicity of ρ for

the second inequality. Hence, for all ε > 0 we can find j ∈ N such that:

ρ(X + (δnj · S)T − CT (δnj)) ≤ ρ(X + (δ · S)T − CT (δ)) +
ε

2
(14)

Combining (12) and (14), it holds that for all ε > 0 there exists a j ∈ N such that:

ρ(X + (δnj · S)T − CT (δnj)) ≤ π(X) + ε (15)

Finally, since for all j ∈ N there exists M ∈ N such that δnj ∈ HM we obtain that

πM(X) ≤ π(X) + ε by (15) and (10).

19



4.3 Numerical estimation of optimal hedging strategies for

OCE-risk measures

In Section 4.1 we saw that (feedforward) neural networks are universal function approx-

imators and can therefore be used for the estimation of optimal hedging strategies. As

shown in [7], a (close-to) optimal parameter vector θ ∈ ΘM can be estimated efficiently

for unconstrained strategies that are based on an OCE risk measure. To see that, we first

set Θ = R × ΘM . We then define for θ̄ = (w, θ) ∈ Θ the objective function J : Θ → R

with:

J(θ̄) := w + E[`(Z − (δθ · S)T + CT (δθ)− w)]. (16)

We may now rewrite the optimization problem (10) for the liability −Z by:

πM(−Z) = inf
θ∈ΘM

inf
w∈R
{w + E[`(Z − (δθ · S)T + CT (δθ)− w)]} = inf

θ̄∈Θ
J(θ̄) (17)

Remark 4.6. The definition of the objective function as in (16) puts our setting in the

context of the so called reinforcement learning. In that framework an agent is taking

actions in an environment in order to maximize some form of reward or minimize a

cost which corresponds to the objective function in our setup. Reinforcement learning is

besides of supervised and unsupervised learning, considered as one of the three paradigms

in machine learning, see for example [5].

The optimization problem (17) is now solvable with deep learning optimization tech-

niques since the objective function J satisfies the following two characteristics:

(i) The gradient of the objective function J decomposes into a sum over the samples,

i.e. it holds that ∇θ̄J(θ̄) =
∑N

i=1∇θ̄J(θ̄, ωi) for i = 1, ..., N

where J(θ̄, ω) := [w + `(Z(ω)− (δθ · S)T (ω) + CT (δθ)(ω)− w)]P({ω}) ∀ ω ∈ Ω.

(ii) The gradient ∇θ̄J(θ̄, ω) can be calculated efficiently ∀ ω ∈ Ω using the so called

back-propagation algorithm.
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In the following, we assume the loss function `, the cost function c as well as the activation

function σ to be continuously differentiable. The calculation of the gradient ∇θ̄J(θ̄, ω)

with the backpropagation algorithm is explained in the following part.

We define δθ = F θ(I) where F θ(I) := (F θ0(I0), ..., F θn−1(I0, ..., In−1)) and I = {I0, ..., In}.

We apply the chain rule to find the gradient of J(θ̄, ω) by calculating the gradient of

F θ which can be further decomposed in the gradients of F θk for k = 0, ..., n − 1. Note

that F θk is according to Definition 4.1 parameterized by matrices Al and vectors bl for

l = 1, ..., L. We now want to find the partial derivatives of F θk with respect to a single

parameter θ̃ ∈ {Ali,j, bli}. The algorithm, as for example described in [5], than works as

follows: We start with the so called forward pass by setting x0 := (I0(ω), ..., Ik(ω)) and

then iteratively set xl := Fl(x
l−1) for l = 1, ..., L− 1 and xL = ALxL−1 + bL (compare to

(4)). For the backward pass we then set DL := AL and iteratively Dl := Dl+1 ·dF θk
l (xl−1)

for l = L− 1, ..., 1, where dF θk
l (xl−1) = diag[σ′(Alxl−1 + bl)] ·Al. By once again applying

the chain rule we may now get the partial derivatives of F θk with respect to the parameter

θ̃ with:

δAli,jF
θk(I(ω)) = Dl+1

i σ′((Alxl−1 + bl)i)x
l−1
j

δbliF
θk(I(ω)) = Dl+1

i σ′((Alxl−1 + bl)i).

(18)

With the gradient ∇θ̄J(θ̄) we can apply a gradient descent algorithm to solve the opti-

mization problem (10). Therefore we start with an initial guess θ̄(0) and then iteratively

set:

θ̄(j+1) = θ̄(j) − ηj∇θ̄J(θ̄(j)), (19)

where ηj > 0 is the learning rate or step size. Following this approach and under suitable

assumptions on the objective function J and the sequence {ηj}j∈N for the learning rate the

parameter vector θ(j) converges at least to a local minimum of J as j → ∞. Although

in the theory of machine learning there are still no results that would guarantee the

convergence to the global minimum, there are techniques that can be used to avoid
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getting stuck in a local minimum. One of these is the so-called minibatch approach. The

idea is, to perform the gradient descent step (19) not on base of the whole sample space Ω

but only on a randomly chosen subset, the so-called minibatch Ω
(j)
batch = {ω(j)

1 , ..., ω
(j)
Nbatch

}

with sample size Nbatch � N . We may now define

Jj(θ̄
(j)) = w +

Nbatch∑
i=1

`(Z(ω
(j)
i )− (δθ · S)T (ω

(j)
i ) + CT (δθ)(ω

(j)
i )− w)

N

Nbatch

P({ω(j)
i }).

Instead of using the whole sample space we now calculate the gradient only for the

minibatch. The update (19) of the parameter vector θ than becomes:

θ̄(j+1) = θ̄(j) − ηj∇θ̄Jj(θ̄
(j))

Following this approach we can not only avoid getting stuck at a local minimum since the

subset Ω
(j)
batch is chosen randomly for every iteration j. Moreover, in this way the compu-

tation of the gradient becomes more efficient since only based on the smaller minibatch

instead of the whole sample space. To find a reasonable termination condition for the

algorithm, one could for example consider the absolute change in the cost function after

each iteration |Jj(θ̄(j)) − Jj−1(θ̄(j−1))| and then terminate the algorithm when its value

falls below a predefined threshold.
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5 Numerical experiments and analysis

In this section, we want to test the previous findings empirically. Instead of using real

market data we want to base the analysis on simulated data using stochastic financial

models. This idealized approach will allow us to assess and compare the performance of

the neural network based method compared to the conventional model-based methods

for the estimation of optimal hedging strategies.

5.1 General setting, methodology, and implementation

For our numerical experiments, we want to use the following setting. The agent sells

a payoff Z at time t = 0 with a maturity of 30 trading days, i.e., we set T = 30/365.

Furthermore we assume the agent to adjust the hedging strategy on a daily basis so that

we have n = 30 trading dates tk = k/365 for k = 0, ..., n. We can then estimate the

hedging strategy at time tk, i.e., the position of the agent in the hedging instruments,

following the approach introduced in Section 4 with δθk = F θk(Ik, δ
θ
k−1). We set Ik = Sk,

i.e., the only information the agent is using to determine his hedging strategy are the

market prices of the hedging instruments. For the architecture of the neural network F θk

we set L = 2, N0 = 2d,N1 = N2 = 24 and N3 = d, i.e. we have a feedforward neural

network with two hidden layers. All networks F θk are parameterized by weight matrices

Al and bias vectors bl which will be optimized according to the optimization problem

(10). All parameters are initialized randomly before we start the optimization algorithm.

For the activation function σ we chose σ(x) = max(x, 0). Although by this choice, σ

is not continuously differentiable, modern machine learning libraries are still capable of

computing the gradients efficiently similar to the method that was described in Section

4.3. It turned out that this choice of the activation function shows better results for many

applications than continuously differentiable functions. Moreover, we apply the technique

of so-called batch normalization: At each node of the neural network the input batch is

normalized by subtracting its mean and dividing by its standard deviation before applying

the activation function. The application of this technique turned out to be necessary in
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order to deal with the problem of vanishing gradients and thus to achieve reliable results.

The phenomenon of vanishing gradients shows up especially for deep neural networks,

i.e., networks with a large number of hidden layers. By applying the chain rule multiple

times, the gradient may become very small, and the optimization algorithm then fails

to converge since there is no significant update of the weights in the front layers, see for

example [5]. As shown in [17] the application of batch normalization not only improves

the performance of neural networks in general but also allows larger learning rates, i.e.,

a faster training of the network to a given data set.

In order to assess the performance of the neural network estimated hedging strategy

we use the following methodology: At first we generate a data set with sample size

N = 600, 000 and define the underlying finite probability space with Ω = {ω1, ..., ωN}. We

simulate sample trajectories S(ωm) for m = 1, ..., N of the price process of the available

hedging instruments according to the underlying stochastic model. We further assume

that the agent sells a path-dependent derivative of the hedging instruments with payoff Z,

i.e., there exists an FT -measurable function g : Rd(n+1) → R, such that Z = g(S0, ..., ST ).

Accordingly we get samples for the payoff Z by evaluating g on the generated trajectories

of S. We then split the data into a training sample and a sample for evaluation with

sample sizes Ntrain = 500, 000 and Ntest = 100, 000 by setting Ωtrain := {ω1, ..., ωNtrain}

and Ωtest = {ω̃1, ..., ω̃Ntest} := {ωNtrain+1, ..., ωN}. To be consistent with the notation in

Section 4.3 we set the assigned probability weights respectively to be P ({ωi}) = 1
Ntrain

for i = 1, ..., Ntrain and P ({ω̃i}) = 1
Ntest

for i = 1, ..., Ntest such that each (Ωtrain,P)

and (Ωtest,P) define a (finite) probability space. We then use the training data to train

the neural network as explained in Section 4.3, i.e., we are solving the optimization

problem (11). Therefore, we use the Adam optimization algorithm, that was introduced

in [18], with a step size of η = 0.005. The algorithm is a more sophisticated version of

the stochastic gradient descent algorithm as described in Section 4.3. The size of the

minibatches is chosen as Nbatch = 250. We do not use a particular termination condition

for the optimization algorithm but instead fix the number of iterations to 105. Since we
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set ρ(X) = CV aR(X) we can rewrite the cost function (16) for a given risk level α into

J(θ) = CV aRα(Z − (δθ · S)T + CT (δθ))

For our experiments, we will set α = 0.5 to compare the approach with a model

implied strategy and α = 0.99, which is a common choice for the risk level in practice.

Although we assume the underlying probability space Ω to be finite, we use representation

(6) and its natural estimator (7) for the optimization algorithm. This choice is justified

since all underlying random variables in our setting have continuous distributions. By

optimizing (10), we eventually get a (close-to) optimal parameterization θ for the neural

network F θ that minimizes J(θ) and thus a (close-to) optimal hedging strategy δθk(ωi) =

F θ(I(ωi), δ
θ
k−1(ωi)) for each sample trajectory. We then may analyse the sample −Z(ωi)+

(δθ · S)T (ωi) − CT (δθ)(ωi) for i = 1, ..., Ntrain. The sample mean is denoted by qθ0 and

represents the average hedging result and by applying (7) on the sample, we get an

estimate pθ0 for the risk indifference price p(Z). We may also use the training data to

estimate the risk neutral price q0 of the underlying model for the payoff Z by estimating

the mean of the sample (Z(ω1), ..., Z(ωNtrain)). Subsequently we use the test data set

as the input for the trained neural network to get a optimal hedging strategy δθ(ω̃i) for

each trajectory of the price process S(ω̃i) for i = 1, ..., Ntest. We may also compute a

model-implied hedge for each trajectory of the price process S at time tk, denoted with

δHk (ω̃i). In this way we can evaluate the out-of-sample performance of the neural network

approach and compare it to the performance of the model hedge by evaluating the sample

of the realized profits for both methods, which is given with:

PnLT (Z, p0, δ)(ω̃i) := −Z(ω̃i) + p0 + (δ ·S)T (ω̃i)−CT (δ)(ω̃i) for i = 1, ..., Ntest (20)

Here p0 represents any price that may have been charged for the payoff Z, e.g. the risk

indifference price p(Z) or the risk neutral price q(Z) = q0. We will evaluate several

statistics for the sample in order to assess the performance of our approach.

The sample trajectories of the price process S are generated according to two different
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Figure 1: Exemplary illustration of the utilized neural network model

market models. At first, we consider a simple Black-Scholes-Merton model, i.e., the stock

price itself is the only risk factor, and the agent will accordingly only trade in the stock

itself to hedge the derivative. Since the Black-Scholes-Merton model does not only offer

closed-form solutions for the price of European options but also for the Greeks, we use

this setting to compare the performance of the neural network based approach with a

conventional model hedge. Subsequently, we assume the price process S to follow a Heston

model. Here we will have a second risk-factor since the volatility by itself is also assumed

to follow a stochastic dynamic. In this setting, we can then assess if the neural network

based approach is also capable of making reasonable hedging decisions if there is more

than risk factor to hedge and therefore the agent has to trade two different assets. For

simplicity reasons we directly consider both models under a risk-neutral measure Q, i.e.,

the hedging strategy will be based on market anticipations of future prices. Furthermore,

we also assume the risk-free to be zero in both models, i.e., r = 0. The two models will

be described in more detail in Sections 5.2 and 5.3, respectively. All of the algorithms

are implemented in Python. To build and train the neural networks we use Tensorflow,

the machine learning library of Google. Furthermore, we used an implementation of the

Heston pricer in Mathwork’s Matlab to verify the risk-neutral prices in the setup of the

Heston model, which we estimated with a Monte Carlo method.
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5.2 Black-Scholes-Merton model

In the Black-Scholes-Merton (BSM) model the price process is assumed to follow the

following dynamic:

dSt =
√
V StdBt for t > 0 and S0 = s0 (21)

where B is a one-dimensional Browanian motion under Q and V > 0 constant. For a

typical equity market scenario we choose V = 0.04 and s0 = 100. By applying Itô’s

formula to f(St) = ln(St) we can find the solution for (21) with:

St = s0 exp

(
−V

2
t+
√
V Bt

)
(22)

The risk neutral price at time t for a payoff Z = g(S0, ..., St) that occurs at time T can

then be expressed by:

qt = EQ[g(S0, ..., ST )|Ft]

For an European style option there is an analytic solution for this expectation as shown

in [6]. For example the risk neutral price at time t of an European Call option with strike

K is given by choosing g(ST ) = (ST −K)+ with

qt = EQ[(ST −K)+|Ft] = StΦ(d1(t, St))−KΦ(d2(t, St)) (23)

where d1(t, s) =
ln( s

K
)+V

2
(T−t)

V
√

(T−t)
, d2(t, s) = d1 − V

√
(T − t) and Φ(·) is the cumulative

distribution function of a standard normally distributed random variable.

Since the price process S satisfy the Markov property it holds that qt = u(t, St) for some

u : [0, T ]× [0,∞)→ R. We may now denote the value of a portfolio of an agent selling the

liability Z with maturity T at time t with Πt. Since we assume r = 0 the agent only has

to trade the underlying stock, the amount of shares he holds at time t is denoted by δt and

thus it holds that Πt = −u(t, St)+q0+δtSt. Since in the Black-Scholes-Merton framework
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the market is assumed to be complete, we can determine δt such that ΠT = 0 under the

assumption that continuous time trading is possible. The dynamic of the portfolio value

is accordingly given by: dΠt = −du(t, St) + δtdSt. Under the assumption that u ∈ C1,2,

we may apply Itô’s formula to u(t, St) to obtain

du(t, St) =
∂u

∂s
dSt +

∂u

∂t
dt+

1

2

∂2u

∂s2
dStdSt =

∂u

∂s
dSt +

[
∂u

∂t
dt+

V S2
t

2

∂2u

∂s2

]
dt

Since the agent wants to be neutral to changes in the stock price, we set δt = ∂
∂s
u(t, St).

With an no-arbitrage argument we can further conclude that dΠt = rdt = 0 for all

t ∈ [0, T ] and thus the following representation holds:

g(ST ) = q0 +

∫ T

0

δtdSt.

We will choose δt, i.e. the partial derivative of the price of the option with respect to

the underlying stock price as our model hedge δHt at time t and it can be easily shown

that for an European call option it holds δHt = Φ(d1(t, St)) and thus 0 < δHt < 1, see for

example [16].

For our numerical experiments we need to discretize the above described model. To

generate the sample trajectories for the price process S we use solution (22) of the SDE

(21). We can then simulate a sample trajectory of the price process S with:

ln(Sk(ωi)) = ln(Sk−1(ωi))−
V

2
∆(k) +

√
V∆(k)Xk(ωi)

where S0(ωi) = s0, ∆(k) = tk − tk−1 and Xk(ωi)
iid∼ N(0, 1) for k = 1, ..., n.
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5.3 Heston Model

The Heston model is an extension of the Black-Scholes-Merton model. Here the variance

of the stock price process is no longer assumed to be constant. Instead it is driven by

a Cox-Ingersoll-Ross (CIR) process. The model is specified by the following differential

equations:

dS1
t =

√
VtS

1
t dBt for t > 0 and S1

0 = s0

dVt = κ(ν − Vt)dt+ σ
√
VtdWt for t > 0 and V0 = v0

(24)

where B and W are again one-dimensional Brownian motions under Q with correlation

ρ ∈ [−1, 1] and κ, ν, σ, v0 and s0 are positive constants. In order to ensure that Vt > 0

for all t ∈ [0, T ], it has to hold that 2κν > σ2. This is often referred to as the Feller

condition, see for example [2]. To simulate a typical equity market scenario we choose

ρ = −0.7, κ = 1, ν = 0.04, σ = 0.25, v0 = 0.04 and s0 = 100. In this market there are

two risk factors and it is not sufficient to trade the underlying stock in order to optimally

hedge a derivative on S1. One also has to hedge the second risk factor, namely the

volatility risk. The variance V is not tradeable directly, but only by derivatives on V .

Therefore, we assume that there is a variance swap S2 with maturity T traded on the

market. Its price is given by (see for example [9]):

S2
t := EQ

[∫ T

0

Vsds | Ft
]
, t ∈ [0, T ] (25)

The 2-dimensional process S = (S1, S2) describes the prices of the two tradeable assets

on the market.

Lemma 5.1. The price of a variance swap as defined in (25) is given by:

S2
t =

∫ t

0

Vsds+ L(t, Vt) with L(t, Vt) := ν(T − t) +
(1− e−κ(T−t))

κ
(Vt − ν) (26)
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Proof. To solve (25) we start by solving the second SDE in (24):

dVt = κ(ν − Vt)dt+ σ
√
VtdWt

⇔ eκt(dVt + κVtdt) = eκt(κνdt+ σ
√
VtdWt)

⇔ d(eκtVt) = eκtκνdt+ eκtσ
√
VtdWt

⇔ eκtVt = v0 +

∫ t

0

eκsκνds+ σ

∫ t

0

eκs
√
VsdWs

⇔ eκtVt = v0 + ν(eκt − 1) + σ

∫ t

0

eκs
√
VsdWs

⇔ Vt = ν + (v0 − ν)e−κt + σe−κt
∫ t

0

eκs
√
VsdWs

We can now use the explicit form for Vt to solve (25) by:

S2
t =EQ

[∫ T

0

Vsds | Ft
]

= EQ

[∫ t

0

Vsds+

∫ T

t

Vsds | Ft
]

=

∫ t

0

Vsds+ EQ

[∫ T

t

(
ν + (v0 − ν)e−κt + σe−κs

∫ s

0

eκr
√
VrdWr

)
ds | Ft

]
=

∫ t

0

Vsds+ ν(T − t) +
e−κt − e−κT

κ
(v0 − ν)

+ EQ

[∫ T

t

(
σe−κs

∫ s

0

eκr
√
VrdWr

)
ds | Ft

]
.

(27)

For the second part of the sum we can change the order of integration to obtain:

EQ

[∫ T

t

(
σe−κs

∫ s

0

eκr
√
Vr dWr

)
ds | Ft

]
=EQ

[∫ t

0

∫ T

r

σe−κseκr
√
Vr ds dWr +

∫ T

t

∫ T

r

σe−κseκr
√
Vr dsdWr | Ft

]
=EQ

[∫ t

0

e−κt − e−κT

κ
σeκr

√
Vr dWr +

∫ T

t

e−κt − e−κT

κ
σeκr

√
Vr dWr | Ft

]
=

∫ t

0

e−κt − e−κT

κ
σeκr

√
Vr dWr + EQ

[∫ T

t

e−κt − e−κT

κ
σeκr

√
Vr dWr | Ft

]
=
e−κt(1− e−κ(T−t))

κ
σ

∫ t

0

eκr
√
Vr dWr
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Substituting this back into (27) gives us:

S2
t =

∫ t

0

Vsds+ ν(T − t) +
e−κt(1− e−κ(T−t))

κ
(v0 − ν)

+
e−κt(1− e−κ(T−t))

κ
σ

∫ t

0

eκr
√
Vr dWr

=

∫ t

0

Vsds+ ν(T − t) +
(1− e−κ(T−t))

κ

(
(v0 − ν)e−κt + σe−κt

∫ t

0

eκr
√
Vr dWr

)
=

∫ t

0

Vsds+ ν(T − t) +
(1− e−κ(T−t))

κ
(Vt − ν)

We consider again an European style option on S1, i.e., the payoff at time T is

given by g(S1
T ) for some g : R → R. The risk neutral price at time t is given by

qt := EQ[g(S1
T )|Ft]. Since the process (S1, V ) satisfy the Markov property, there ex-

ists a function u : [0, T ] × [0,∞)2 → R such that qt = u(t, S1
t , Vt). In order to show that

the payoff of the option g(S1
T ) is replicable by trading in S = (S1, S2), we define similarly

to Section 5.2 a portfolio that consists of a short position in the derivative, δ1
t shares of

the underlying stock and δ2
t shares of the variance swap. The portfolio value at time t is

Πt = −u(t, St, Vt) + q0 + δ1
tS

1
t + δ2

tS
2
t . The dynamic of the portfolio value is hence given

with:

dΠt = −du(t, St, Vt) + δ1
t dS

1
t + δ2

t dS
2
t . (28)

At first, we observe from (26) and by applying Itô’s formula that

dS2
t =Vtdt+ dL(t, Vt)

=Vtdt+
∂L

∂t
dt+

∂L

∂v
dVt +

1

2

∂2L

∂v2
σ2Vtdt =

∂L

∂v
dVt +

[
Vt +

∂L

∂t

]
dt.

(29)

Substituting (29) into (28) leads to:

dΠt = −du(t, S1
t , Vt) + δ1

t dS
1
t + δ2

t

∂L

∂v
dVt + δ2

t

[
Vt +

∂L

∂t

]
dt. (30)
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Next we assume u ∈ C1,2,2 and apply Itô’s formula to obtain:

du(t, S1
t , Vt) =

∂u

∂s
dS1

t +
∂u

∂v
dVt +

∂u

∂t
dt

+
1

2

∂2u

∂s2
dS1

t dS
1
t +

1

2

∂2u

∂v2
dVtdVt +

1

2

∂2u

∂s∂v
dS1

t dVt

=
∂u

∂s
dS1

t +
∂u

∂v
dVt

+
1

2

[
∂u

∂t
dt+

∂2u

∂s2
Vt(S

1
t )

2 +
∂2u

∂v2
σ2Vt +

∂2u

∂s∂v
ρσS1

t Vt

]
dt

(31)

Since the agent wants to be neutral with respect to both risk factors we match the

coefficients in (30) and (31) and accordingly set δ1
t = ∂

∂s
u(t, S1

t , Vt) and δ2
t =

∂u(t,S1
t ,Vt)/∂v

∂L(t,Vt)/∂v
.

We may now use again a no-arbitrage argument to conclude that dΠt = rdt = 0 for all

t ∈ [0, T ]. Therefore, under the assumption that continuous time trading was possible

the payoff of the option at time T is replicable and the following representation holds:

g(S1
T ) = q0 +

∫ T

0

δ1
t dS

1
t +

∫ T

0

δ2
t dS

2
t .

For the numerical experiments we use an Euler discretization of (24) as for example

proposed in [3]. To increase the accuracy of the simulation we use the following approach:

For the generation of the sample trajectories of the stock price and the variance process

we choose a finer discretization 0 = t0, ..., tñ = T of the time interval [0, T ] with ñ = 10n

and then afterwards choose the appropriate subset such that it matches the trading dates

tk for k = 0, ..., n = 30. We simulate a sample trajectory of the stock price process S1

and the variance process V with:

ln(S1
k(ωi)) = ln(S1

k−1(ωi))−
Vk−1(ωi)

2
∆(k) +

√
Vk−1(ωi)∆(k)Xk(ωi)

Vk(ωi) =Vk−1(ωi) + κ(ν − Vk−1(ωi))∆(k) + σ
√
Vk−1(ωi)∆(k)Yk(ωi)

where S1
0(ωi) = s0, V0(ωi) = v0, ∆(k) = tk − tk−1, Xk(ωi)

iid∼ N(0, 1) and Yk(ωi) :=

ρXk(ωi) +
√

1− ρ2 Ỹk(ωi) with Ỹk(ωi)
iid∼ N(0, 1) and Ỹk, Xk independent for all k =

0, ..., ñ.
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Finally, we can simulate the price process of the variance swap S2 by using the following

discretization of (25):

S2
k(ωi) =

k∑
j=0

(Vj(ωi) ·∆(j)) + L(tk, Vk(ωi)) for k = 0, ..., ñ (32)

Figure 2: Illustration of 5 different trajectories of the stock price process S1, the variance
process V and the variance swap price process S2

Remark 5.2. In order to illustrate the capability of the discussed approach of estimating

optimal hedging strategies for any kind of derivatives we also want to apply our algo-

rithm to more complex payoffs. For that purpose we consider additionally the following

derivatives:

(i) Asian style call option with the payoff function:

g(S1
1 , ..., S

1
T ) = (S̄ −K)+ with S̄ :=

1

n

n∑
k=1

S1
k

(ii) Russian style call option with the payoff function:

g(S1
1 , ..., S

1
T ) = (Ŝ −K)+ with Ŝ := max

k=1,...,n
S1
k
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5.4 Results and analysis

In this section, we want to present, analyze and interpret the results of the different

numerical experiments we carried out in order to assess the performance of the introduced

neural network-based approach for the estimation of optimal hedging strategies.

At first, we consider a European call option with strike K = 100 under the Black-

Scholes-Merton model in the previously described setting. The risk-neutral price of this

option is given according to (23) with q0 = 2.29. We get an average hedging result for

the neural network based strategy of qθ0 = 2.29. Therefore, qθ0 can also be used as a valid

approximation for q0 in this setting. For the risk indifference price we get pθ0 = 2.59 for

α = 0.5 and pθ0 = 3.42 for α = 0.99. Note that these prices are consistent with Theorem

3.8 (ii). The out-of-sample statistics for the PnLT as defined in (20) and the correspond-

ing values for the model strategy are presented in Table 1. In order to make the results

comparable, we assume that for all strategies the risk-neutral price q0 was charged. As

one can see the performance of the model and the neural network based approach for

α = 0.5 are very similar. While the average PnLT is close to 0 for both methods, the

model strategy shows slightly better results for standard deviation, skewness and real-

ized CV aR. If we compare the strategies themselves, i.e we consider δHk and δθk for a

fixed time tk (Figure 4) or one particular sample trajectory (Figure 5), we see that the

neural network based strategy is almost perfectly replicating the model hedge. Although

we did not implement trading constraints, the neural network based strategy still stays

between 0 and 1, with some exceptions at the end of the trading period. These results

indicate that our approach can find a good approximation for the optimization problem

(1). Considering the neural network based strategy for α = 0.99, we can see one of the

advantages of our approach. While the average PnLT is still close to 0, the method can

reduce the realized CV aR0.99 significantly at the expanse of a higher standard deviation.

While we saw left-skewed distributions of the realized profits for the model and CV aR0.5

based strategies we now have a right-skewed distribution (see Figure 3). This finding is

consistent to the fact, that the strategy aims to reduce the weight of the left tail. Con-

sidering δθk for a fixed time tk directly, we find that the strategy now deviates stronger
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from the model strategy as for α = 0.5. In general, the strategy acts more conservative

compared to the CV aR0.5-strategy. It holds a higher amount of shares for out-of-the-

money options. If the option is in-the-money, it holds a slightly smaller position in the

stock, which reverses as soon as the option is going deep-in-the-money and the strategy

may even hold more than one share of the stock, i.e., δθk > 1. Considering a particular

sample trajectory (Figure 5) we see that the strategy is tracking the model hedge closely

as long as the option stays at-the-money but is holding a higher number of shares than

the model hedge as the option falls out-of-the-money.

Method Mean SD Skewness real CV aR0.5 real CV aR0.99

Model -0.0001 0.3600 -0.3086 0.2701 1.2557
CV aR0.5 -0.0019 0.3959 -0.3424 0.3035 1.3341
CV aR0.99 -0.0009 0.4640 0.3692 0.3658 1.1445

Table 1: Statistics of realized profits - Black-Scholes-Merton model

Figure 3: Profit and Loss - Black-Scholes-Merton model

Figure 4: Hedging strategies at fixed timepoint tk - Black-Scholes-Merton model
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Figure 5: Strategy trajectories for two different scenarios - Black-Scholes-Merton model

We also want to highlight that in this setting, i.e. without any transaction costs, we

expect that we can simplify the structure of the neural network by replacing the recurrent

architecture δθk = F θk(Ik, δ
θ
k−1) with δθk = F θk(Ik) based on the considerations in Section

5.2. Indeed, we could confirm with our numerical experiments that we get similar results

with the simplified network architecture. This does not hold if we include trading costs

into our model. We consider proportional transaction costs as defined in Section 2.2 with

constant ck = c for k = 0, ..., n − 1. Thus, the total costs of a strategy δ are given by

CT (δ) =
∑n

k=0 cSk|δk − δk−1|. We choose very small proportional transaction costs and

set c = 2−8. In this setting our approach can again prove its power. We consider the

model based strategy and the strategies based on the two different network architectures.

We estimate the following prices with the recurrent neural networks: qθ0 = 2.94 and

pθ0 = 3.39 for α = 0.5 and qθ0 = 3.17 and pθ0 = 4.44 for α = 0.99. For further analysis, we

again assume that the risk-neutral price q0 was charged. By considering the statistics in

Table 2, we see that the model strategy causes the highest costs and consequently also

the highest loss on average. Additionally, the distribution of the profits is strongly left-

skewed and thereby it exhibits extreme values for the realized CV aR. The performance

of the neural network based strategies is significantly better considering the mean hedging

error as well as the realized CV aR. Both strategies manage to achieve a right-skewed

distribution for the profits and can thereby reduce the weight on the left tails, see also

Figure 6. We further note that the strategies based on the recurrent network structure
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exhibits better statistics than the one based on the simpler architecture. Hence, for a

setting with incorporated market frictions such as trading costs, we indeed need additional

information about previous hedging decisions to find an optimal strategy. In Figure 7 we

can see the distribution of the realized costs of the model-based and the recurrent neural

network-based strategy with α = 0.5. While the distribution for the model strategy has

its mode around a total cost of CT (δ) = 1.1, the neural network based strategy has its

mode at CT (δ) = 0.8 and additionally manages to hedge a significant number of scenarios

with lower costs (local maximum at CT (δ) = 0.4). If we consider the two strategies δθk and

δHk for a fixed time tk, we find that the neural network, in general, reduces its positions

compared to the setting without transaction costs (see Figure 8). We note that while the

strategy of the simple network appears to be a functional of the stock price this is not

true for the recurrent structure, i.e. the additional input of the previous position affects

the trading decision. Moreover, if we consider a single trajectory of the strategies, we

note that in particular the recurrent neural network based strategy reduces the turnover

in order to avoid hedging costs while still tracking the model strategy to some extent.

Based on these promising results we now want to investigate the relationship between the

proportional cost c and the risk indifference price for α = 0.99, similar to [7], where we

can find an analysis with respect to the utility indifference price. Therefore, we consider

different proportional costs c(i) = 2−(i+4) for i = 1, ..., 6 and denote the corresponding

risk indifference price as defined in (2) with pc(i) = pc(i)(Z). As illustrated in Figure 10

we find by considering the pairs (ln(c(i)), ln(pc(i) − p0)) the following linear relationship:

ln(pc−p0) = 0.40 ln(c)+2.19. This indicates that at least for small c we have the following

asymptotic behavior for the risk indifference price: pc − p0 = O(c2/5). We also tested

our approach in a market with fixed transaction costs as defined in Section 2.2 and got

comparable results. In general, we can conclude that our approach can make reasonable

hedging decisions in a market with simplistic transaction costs.

Next, we want to assess the neural network based approach in the Heston model as

defined in Section 5.3. We again consider a European call option with strike K = 100.

We estimate the risk-neutral price of the option with a Monte Carlo simulation and
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Method Mean SD Skewness real CV aR0.5 real CV aR0.99 Aver. cost

Model -1.0709 0.5015 -0.7173 1.4595 2.8148 1.0704
CV aR0.50

(recurrent)
-0.6506 0.6464 -1.5997 1.1076 3.6368 0.6512

CV aR0.50

(simple)
-0.7801 0.6423 -1.4433 1.2378 3.6631 0.7791

CV aR0.99

(recurrent)
-0.8857 0.5319 0.3340 1.3101 2.1487 0.8880

CV aR0.99

(simple)
-0.9571 0.5411 0.3320 1.3895 2.2149 0.9582

Table 2: Statistics of realized profits - Black-Scholes-Merton model with proportional
transaction costs

Figure 6: Profit and Loss - Black-Scholes-Merton model with proportional transaction
costs

get q0 = 2.27. With the neural network based algorithm we get the following prices:

qθ0 = 2.27, pθ0 = 2.58 for α = 0.5 and pθ0 = 3.52 for α = 0.99. If we compare the different

statistics (Table 3) and the distribution of the realized profits (Figure 11) we see similar

results as for the Black-Scholes-Merton model. While the average hedging results are for

both risk levels close to 0, the distribution for α = 0.50 exhibits a smaller value for stan-

dard deviation, is left-skewed and minimizes the realized CV aR0.5. In contrast, we see for

α = 0.99 a right-skewed distribution of the profits that minimizes the realized CV aR0.99

at the cost of a higher standard deviation. Considering δ1
k for a fixed time tk (Figure 12)

or for one particular sample trajectory (Figure 14), we also get a comparable picture as

for the Black-Scholes-Merton model. While the CV aR0.99-strategy holds slightly smaller
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Figure 7: Realized total costs of the hedging strategies - Black-Scholes-Merton model with
proportional transaction costs

Figure 8: Hedging strategies at fixed time step tk - Black-Scholes-Merton model with
proportional transaction costs

positions for in-the-money options, it acts more conservative for out-of-the-money options

and holds larger positions in the stock. If we consider the position in the variance swap

δ2
k it is difficult to retrace the trading decisions of the neural network, especially since the

volatility risk for a call option is minimal compared to the risk of the price dynamics of

the underlying asset. In general, the strategy only holds an insignificant position in the

swap, the amount of shares does not appear to be correlated with the price process of

the swap S2, but with the stock price S1, see Figure 13. As shown in Figure 14 the strat-

egy reduces its position in the variance swap over the trading period, what is consistent

with the proportional relationship between volatility risk and the time to maturity of the

option. Finally, we want to demonstrate the capability of our approach by applying it

to more complex payoffs. Therefore, we use the in Remark 5.2 defined payoffs. For the

Asian style call option with strike K = 100 we get the risk-neutral price q0 = 1.35 and
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Figure 9: Strategy trajectories for two different scenarios - Black-Scholes-Merton model
with proportional transaction costs

Figure 10: Asymptotics of the risk indifference price for α = 0.99 - Black-Scholes-Merton
model with proportional transaction costs

the prices implied by the neural network are given by qθ0 = 1.35, pθ0 = 1.57 for α = 0.5

and pθ0 = 2.25 for α = 0.99. For the Russian style call option with strike K = 100 we get

the risk-neutral price q0 = 3.90 and the prices implied by the neural network are given by

qθ0 = 3.90, pθ0 = 4.41 for α = 0.5 and pθ0 = 5.99 for α = 0.99. The hedging results are for

both payoffs similar to the previously discussed vanilla option. Thus, the approach shows

good performance also in the hedging for more complex payoffs structures. Moreover, we

find that the strategy holds larger positions in the variance swap for the Russian option

than for the Asian option. This reflects the higher volatility risk that the first mentioned

payoff exhibits and indicates, that our approach appears to be able of dealing with a sec-

ond risk factor and making reasonable hedging decisions also in more a complex market.
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Method Mean SD Skewness real CV aR0.5 real CV aR0.99

CV aR0.5 -0.0019 0.3959 -0.3424 0.3035 1.3341
CV aR0.99 -0.0036 0.5141 0.3346 0.4122 1.2561

Table 3: Statistics of realized profits - Heston model

Figure 11: Profit and Loss - Heston model

Figure 12: Hedging strategies δ1
k at fixed timepoint tk - Heston model
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Figure 13: Hedging strategies δ2
k at fixed timepoint tk - Heston model

Figure 14: Strategy trajectories for two different scenarios - Heston model
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6 Conclusion and open problems

The goal of this thesis was to assess the performance of hedging strategies that were

determined using neural networks. The theoretical foundations that justify the approach

were firstly introduced in [7]. We saw that we can utilize the concept of convex risk

measures to define optimal hedging strategies that do not rely on any assumption of the

underlying market dynamics. This broad setting also enables us to incorporate mar-

ket frictions such as transaction costs into our model. Furthermore, the approximation

capabilities of neural networks allow finding close-to optimal estimates for these strate-

gies. For our numerical experiments, we chose two different synthetic markets and also

included proportional and fixed transaction costs. We got promising results in the exper-

iments that demonstrate how powerful the developed algorithm for hedging and pricing

of derivatives is. Not only is the method able to learn a model implied strategy without

any information about the underlying dynamics, but also outperforms this model hedge

if we are aiming to reduce the risk for particular risk measures as the CV aR. We also

demonstrated that the algorithm is able to make reasonable hedging decisions in an in-

complete market with transaction costs. Here the approach showed significantly better

results than the conventional model strategy. Building upon these findings, we also ex-

plained how the algorithm could be used to determine valid prices for derivatives in an

incomplete market. A problem that is still considered to be very challenging. Finally,

we applied the algorithm on a market with two risk factors. Again, the neural network

based approach showed its capacity to make valid decisions in an environment where an

optimal strategy has to trade in two different assets.

Although our implementation could already demonstrate the astonishing perfor-

mance of the approach, our experiments were carried out in a constraint setting and

the algorithm is still subdued to severe limitations. For example, the implementation is

restricted to a particular payoff. A neural network trained on a specific payoff fails in the

pricing or hedging of a different payoff. For example, even a slight change of the strike K

for a European call option leads to unusable results. It is an interesting question if there

are possibilities to generalize our approach in a way that allows using a neural network
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for a variety of different payoffs. Moreover, although we could prove in Section 4, that

a feedforward neural network is theoretically able to approximate an optimal hedging

strategy arbitrary well, there are no criteria that can guarantee the ε-optimality of an es-

timated solution. We only could assess the performance of our approach by comparing it

to a model implied strategy, which justified the assumption that the algorithm is capable

of finding close-to optimal estimates. However, it also turned out that the architecture

(number of layers, size of layers) of the neural network has a significant effect on the

resulting approximations. In this work, we did not try to optimize our network at all,

although this is one of the most discussed problems in the field of machine learning and

there are already many promising approaches to improve the efficiency and performance

of neural networks.

During the implementation phase for this work, we also tested our method with

a different network architecture. We used a so-called Long short-term memory (LSTM)

network, that was introduced in [13]. This structure is a particular network in the class of

the fully recurrent networks (see Section 4), but exhibits a more sophisticated structure

than the feedforward networks discussed in this thesis. LSTM networks became very

popular in recent years and are one of the main reasons for the tremendous progress

achieved in the fields of machine learning and artificial intelligence. LSTM networks

are in particular well-suited for the processing of sequential data, such as time series,

and thus it appears reasonable to utilize these structures for the estimation of hedging

strategies. It turned out that the LSTM network based algorithm was indeed able to

find even better estimates for the optimal hedging problems considered in this work than

the ones presented in Section 5.4. This finding motivates further research of the different

neural networks with the focus on their application in financial mathematics. Finally,

future work could aim on applying the presented algorithm on real market data to see if

and how it could be used in practice. Here the challenge to overcome is to find data sets

with a sufficient size to train the neural networks efficiently. Nevertheless, the promising

results we could present in this work, motivate the further study of the approach.
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