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ABSTRACT 

EVALUATION OF COGNITIVE CONTROL USING NON-GAUSSIAN REACTION TIME 

DISTRIBUTIONS IN FRACTIONATED EXECUTIVE FUNCTION TASKS 

 

by 

Dmitriy Kazakov 

 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Professor David C. Osmon, Ph.D., ABPP-CN 

 

 

The present study seeks to further investigate and refine the three-factor model of executive 

function (EF; Inhibition, Shifting, and Monitoring/Updating) known as the unity/diversity 

framework (Miyake et al., 2000). Past work in this area utilized “power” tasks that prioritize 

accuracy and difficulty, but real-world problem-solving incentivizes quick and efficient 

solutions. Ten computerized reaction time (RT) tasks: four elementary cognitive tasks (ECTs; 

Jensen, 1987; Santos, 2016) with progressively increasing task demands and six EF tasks. The 

ratio scale of RT necessitated the use of non-Gaussian statistics to better describe distribution 

shape, while diffusion modeling (DM; Ratcliff, 1978) was used to interpret task complexity and 

performance. Generalized Regressions used ECT parameters to predict EF task parameters. DM 

analyses indicated Shifting was the most complex factor, followed by Monitoring/Updating, and 

Inhibition. Shifting and Monitoring/Updating were predicted by internal rule ECT parameters 

and non-executive-parameters, although the specific internal rule parameters were not 

unexpected. Inhibition was solely predicted by non-executive parameters, and almost exclusively 

choice RT. Within-task correlations between DM parameters were either positive or non-

significant, save for the STOP-IT task, and not negative as expected. Overall, the present study 

demonstrated the utility of computerized RT tasks in evaluating EF, non-Gaussian parameters in 
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better describing RT data, and DM in interpreting task complexity. Investigating the efficiency 

aspect of EF offers an important complement to tradition “power” approaches to psychological 

measurement and represents an element of ecological validity that current widely-used measures 

lack. 
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Evaluation of Cognitive Control using Non-Gaussian Reaction Time Distributions  

in Fractionated Executive Function Tasks 

The aim of the present study is to investigate the executive nature of a series of reaction 

time (RT) tasks developed to provide a precise and systematic measure of cognitive speed and 

efficiency. Prior work in our lab (Santos, 2016) used the Miyake three-factor model for executive 

tasks, with variable results. That study suggested that two things: a) the “speed” and “power” 

aspects of cognition are confounded in executive function tasks, and b) analyzing the full RT 

distribution may provide more insight about these cognitive processes. The importance and 

utility of RT task design and rationale, as well as the prior study’s results, will also be described. 

A more complete analytic strategy will be proposed that utilizes entire RT task distributions and 

explains how those distribution parameters can be used to elucidate the executive nature of RT 

tasks. 

Executive Function 

 Executive function (EF) is an umbrella term for a wide range of higher-order 

psychological constructs that is among the most widely-researched topics in the field (Barkley, 

2012). Although there is no singular operational definition available for this term, most 

researchers agree that it contains aspects of attention, self-regulation, planning, adaptation to 

novel circumstances, effortful and future goal-oriented, and control over lower-level processes 

(Anderson, 2002; Banich, 2009; Bianchi, 1895; Friedman et al., 2007; Gioia et al., 2000; 

Mahone et al., 2002). Some definitions also maintain that the goal of EF is to produce optimized 

and effective behavior (Baddeley, 1986; Robbins, 1996), introducing the critical aspect of 

efficient behavior in problem solving. Numerous studies have also demonstrated the variable 

impact of neurological and mental health conditions on EF factors (Damasio, 1994; Geurts, 
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Verté, Oosterlaan, Roeyers, & Sergeant, 2004; Orellana & Slachevsky, 2013; Reitan & Wolfson, 

1994; Shallice & Burgess, 1991; Snyder, 2013; Willcutt et al., 2001). 

 Although numerous theories of EF have emerged throughout the years, the unity/diversity 

framework (Miyake et al., 2000) is perhaps the most well-established on in use today. The three-

factor model they proposed is comprised of set-shifting (“Shifting”), response inhibition 

(“Inhibition), and monitoring/updating (“Updating”), which are the most commonly researched 

and cited EFs in the literature and those most involved in cognitive control (Collette et al., 2005; 

Miyake & Friedman, 2012). Shifting is the ability to switch between one or more mental sets, or 

ways of interpreting and responding to information, based on the relevance of that mental set to 

the situation (Miyake et al., 2000; Monsell, 2003). Inhibition is the ability to deliberately stop the 

execution of either automatic or effortful responses (Friedman & Miyake, 2004; Logan, 1994; 

Miyake et al., 2000). Updating is the ability to store information in working memory, monitoring 

that store for task-relevant information, and updating that store with new information (Miyake et 

al., 2000; Sternberg, 1966). Latent variable analysis using multiple tasks for each EF found 

intercorrelations between factors ranging from .42 to .63 (Miyake et al., 2000), with established 

tasks providing loading on multiple factors. Multiple subsequent studies providing further 

support for the notion that EFs are neither unitary nor distinct (Fisk & Sharp, 2004; Friedman & 

Miyake, 2004; Friedman et al., 2006; Hull, Martin, Beier, Lane, & Hamilton, 2008; Miyake & 

Friedman, 2012). The three-factor model, then, provides a good framework to use when 

investigating EF tasks. 

Reaction Time and Information Theory 

 Reaction time as a metric of cognitive processes has been a staple of psychological 

research since at least 1860s (Donders, 1869; Posner, 1978; Shepard & Metzler, 1971; Sternberg, 
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1966) and offers a slew of advantages over other measures, especially in EF research. RT 

operates on the ratio scale of measurement, having both a true zero point and equal interval 

distance, allowing for all possible mathematical operations and the direct measurement of a 

physical reality (i.e., time) rather than a developed scale (e.g., standard scores)(Jensen, 2006). 

The advent and current near-omnipresence of computers allows for an unprecedented level of 

precision in terms of stimulus presentation and RT recording at the trial level. RT by its very 

nature represents a measure of efficiency. Lezak’s (1995) distinction of cognitive function as a 

measure of “how much was done?” and executive function as “how was it done?” rings true 

here. Because cognitive and physical processes necessarily take time to complete, a faster RT 

resulting in a correct response is more efficient, and therefore more optimized, than a slower one. 

 Jensen’s (2006) body of work focused on mental chronometry, the measurement of 

cognitive process speed. The tasks he developed were termed elementary cognitive tasks (ECTs) 

and defined by Carroll (1993) to require a relatively small number of mental processes, a correct 

outcome, and successful outcome to be dependent upon using the instructions or the individual’s 

sets/plans. Using terminology gleaned from information theory, one bit is defined as the amount 

of information needed to reduce uncertainty by half (e.g., a two-choice problem requires one bit 

to solve) (Shannon & Weaver, 1963). Hick’s (1952) law is a mathematical explanation 

governing the amount of time necessary to make a response on a choice RT task as a function of 

the amount of information presented. It follows the formula log2n, where n is defined as the 

number of choices offered. Using this model, Jensen (1987) found a linear increase in RT, 

approximately 27ms, progressing from 0-bit (1 option, log21 = 0) to 3-bit (8 options, log28 = 3) 

and explaining 97% of the variance in a college sample. While the RT increase is linear, the 

Hick’s law formula is logarithmic due to half of the options needing to be eliminated per step 
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until the solution is apparent. This allows for the operationalization of task difficulty, wherein 

tasks are rated by bits, as each bit of information increases the amount of time to respond. This 

also allows for two additional things to occur in the context of EF task development. One is the 

quantification of internal rules (IRs), which are the hallmark of EF tasks and are what distinguish 

them from solely perceptual-motor tasks (e.g., 0-bit simple RT). The other is the ability to create 

a systematic hierarchical design of RT tasks starting from the most basic to increasingly complex 

using the same set of stimuli where constructs can be added one at a time. Therefore, the impact 

of adding a particular construct or rule can be evaluated in terms of how much of an RT increase 

it yields. 

 While the development of this framework is useful, the introduction of executive tasks 

complicates things in terms the expected RT increases according to Hick’s law. Introducing an 

IR, or a set of instructions that govern task-specific behavior that must be successfully 

internalized to successfully complete it, would increase uncertainty. The tasks used by Jensen 

were choice RT tasks, but did not utilize IRs that persist throughout the task (Jensen, 1987; 

Jensen & Munro, 1979). Therefore, RT would most likely increase as a result of an IR, but the 

increase would be unlikely to be linear. 

ECTs and the Miyake Model 

 Four ECTs were developed by our lab in a systematic and hierarchical fashion to attempt 

to measure these RT increases. The first two tasks were non-executive, direct-response tasks that 

involved pressing a button when a stimulus was presented (0-bit simple RT) or pressing the 

response button on the same side as a presented stimulus (1-bit choice RT; left or right). The 

other two tasks were 1-bit and 2-bit IR tasks using the same stimulus set as the first two tasks. 

For the 1-bit executive task, the IR was to always make a response using the button on the side 
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opposite to where the stimulus was presented. The executive aspect of this task was to 

consciously alter the prepotent response of a same-side response into the opposite response. The 

2-bit executive task went further by asking participants to alternate between a same-side 

response (a la the 1-bit non-executive task) and an opposite-side response (a la the 1-bit 

executive task) on each trial. In addition to requiring the alteration of prepotent responses on 

opposite-side trials, it also requires the ability to keep track of the trial type by referring to the 

previous trial’s type (i.e., same-side or opposite-side) and use the proper response set. While the 

stimuli used in these tasks are visual, the paradigm could technically be easily adapted into other 

modalities to accommodate individual circumstances. 

 Raw data from preliminary and unpublished studies from our lab replicated previous 

work (Hick, 1952, Jensen, 1987; Jensen & Munro, 1979), finding non-executive RT task 

performance increases approximately 27ms from 0 to 1 bit (Santos, 2014; Santos & Osmon, 

2012a; Santos et al., 2014, 2015). However, a nonlinear RT increase was found when comparing 

non-executive and executive tasks performance. Interestingly, this pattern is not affected by 

cultural factors or the order in which the tasks are taken (Santos & Osmon, 2012b; Santos, 

Cadavid, Giese, Londono, & Osmon, 2013a; Santos, Park, Kennedy, Giese, & Osmon, 2013b). 

The nonlinear increase indicates that the executive tasks and their demands are indeed different 

from those of the non-executive tasks. 

 Miyake et al.’s (2000) investigation of some popular standalone EF measures (e.g., 

Wisconsin Card Sorting Test, Tower of Hanoi) posed the question of whether other established 

EF measures could stand the same scrutiny. Santos (2016) sought to apply the three-factor model 

to several subtests from the Delis-Kaplan Executive Function System (D-KEFS; Delis, Kaplan, 

& Kramer, 2001) and the four-ECT series. He found a 22ms increase between simple and choice 
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RT performance, a 56ms increase between choice RT and 1-bit IR, and a 533ms increase 

between 1-bit and 2-bit IR; a clearly nonlinear RT function. A linear fit of the ECT data only 

accounted for close to 60% of the variance, but adding a quadratic component resulted in a better 

fit, explaining 82% of the variance. If 2-bit IR performance was broken down into quartiles, a 

linear fit explained 86% of the variance, while adding a quadratic term improved it to 94%. 

Factor analysis revealed the presence of three factors in the D-KEFS data, with Verbal Fluency 

loading onto Updating, Color-Word Interference loading onto Inhibition, and Sorting loading 

onto Shifting. Overall, faster RT performance on the ECTs was associated with better D-KEFS 

scores. Both simple and choice RT performance correlated significantly with Inhibition and 

Updating (Pearson’s r -.25 to -.31), but not Shifting. The 1-bit IR task only correlated 

significantly with Inhibition (r = -.33). The 2-bit IR task correlated significantly with Inhibition 

(r = -.44) and Shifting (r = -.24), but not Updating. Hierarchical multiple regression was 

performed, entering Updating in the first step to control for working memory, followed by 

Inhibition and Shifting together in the second step. This model explained 12.5% of the simple 

RT task variance, 14.3% of choice RT variance, 13.4% for 1-bit IR variance, and 22.7% of 2-bit 

IR variance. Inhibition yielded the highest beta weights across all ECTs. Secondary contribution 

came in the form of Updating for simple RT, Shifting for both IR tasks, and Updating followed 

by Shifting for choice RT. 

 To put the results into perspective, the ECT tasks performed as expected and the D-KEFS 

tasks conformed to the three-factor Miyake model. D-KEFS scores were predicted to more 

strongly correlate with IR tasks due to their executive nature, but the results were variable. 

Inhibition was a ubiquitous factor, but updating was only related to non-executive tasks, while 

Shifting was only related to the most difficult ECT. While these results provide some support for 
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the unity/diversity framework (Miyake et al., 2000), the amount of variance explained by the 

regression model leaves a lot to be desired. 

Re-evaluation and Refinement of the Miyake Model Approach 

 Test development has long wrestled with the issue of speed versus power (Kelley, 1927) 

in regard to whether they were equivalent in cognitive testing and whether they should be 

controlled. Speed and power have at most a moderate negative correlation (r = -.4), but load on 

different factors (Sheppard & Vernon, 2008), even when the same test is given with or without a 

time limit (Carroll, 1993; Davidson & Carroll, 1945; Lord, 1956). The power/accuracy category 

usually includes tests of intelligence or cognitive ability that are looking for an upper limit, 

similar to Lezak’s (1995) view of the term cognitive function. The D-KEFS tasks, like many 

modern clinical assessments, are a mix of power and speed because they implement some time 

limitations, however, they are considered primarily power measures because of the strong 

emphasis on accuracy. Of the three D-KEFS measures used in the Santos (2016) study, the 

Color-Word Interference task would be considered more of a speed task over the others, but this 

is solely due to time-on-task limitations and due to trial RT. Still, it is the only one that correlates 

significantly with all four ECTs. In a recent survey of practicing neuropsychologists, the fourteen 

most frequently used assessments are all power measures, but incorporate some sort of timed 

measures by either noting or limiting time-to-completion (Rabin, Paolillo, & Barr, 2016). 

However, they do not utilize millisecond RT recording, the precision of which is critical to the 

definition of a speed task. 

Clearly, there was a need to refine the tasks chosen to represent the three factors of the 

Miyake model. The ECT tasks, even with the demonstrated increase in difficulty across tasks, 

were a series of speed tasks. The D-KEFS, being a collection of power tasks with some speed 
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component, would provide a poor comparison to the ECTs for the goal of obtaining evidence of 

concurrent validity. Even looking at the experimental tasks used that comprise the three factors 

in the Miyake et al. (2000) study, only four of the nine tasks (1 Inhibition, 3 Shifting) used a 

dependent measure based in RT and not solely accuracy. RTs for some tasks (e.g., plus-minus 

task) were recorded using a stopwatch, and some tasks barely have a speed component (e.g., 

keep-track). Therefore, even the exact tasks used in the Miyake study would not make for a good 

comparison against ECTs under this framework.  

To address these limitations, a completely new approach was devised for the present 

study. Six new computerized tasks, two for each factor, were developed with Carroll’s (1993) 

intentions for ECTs and speed tasks in mind. That is, they are easy to understand, involve 

relatively few processes (with care taken to prevent construct overlap as much as possible), and 

relatively easy to complete given the need for fast responding. Operating strictly on a speed level 

creates some complications, as well. RT tasks require large numbers of trials to obtain a reliable 

estimate of cognitive speed, leading to longer overall completion times for what looks to be a 

simple task on the surface. Long, simple tasks can sometimes lead subjects to boredom and 

attentional lapses, which are reflected in RTs. The frequency of these lapses is actually quite 

telling about individual attention, so this occurrence is more informative than damaging (McVay 

& Kane, 2012). Additionally, because the focus is on speed, item difficulty within a task must be 

kept constant. Any increase in difficulty would necessitate a new sub-task with its own series of 

trials to ensure that recorded RTs reflect a single set of instructions. 

Another fundamental change was to depart from using normal distributions for RT. 

Santos (2016) excluded trial RTs that were more than 2 SD greater than the mean and 

transformed his RT data into a normal distribution. RT most often does not follow a Gaussian 
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distribution and forcing RT data into a normal distribution could also lead to incorrect inferences 

being drawn because of Gaussian assumptions (Ratcliff, 1993). Not using the full RT distribution 

can also lead to missing critical patterns during interpretation (Noorani & Carpenter, 2011). 

Therefore, it does not follow to use Gaussian distribution statistics with data that is inherently 

non-Gaussian to begin with. 

Reaction Time Distributions and Diffusion Modeling 

 RT is one of the rare psychological phenomena that do not conform to a normal 

distribution. Part of this has to do with its physical nature; it can only be positive and has no 

maximum value. In terms of distribution shape, this result in a positive skew, or “fat tail,” that 

may reflect attentional lapses due to loss of set, or mind-wandering associated with lack of 

engagement. In fact, depending on a variety of intraindividual and task factors, the reaction time 

distribution could vary from near-normal to remarkably non-normal (Ratcliff, 1993). Some 

examples include ex-Gaussian (a combination of Gaussian and exponential; Burbeck & Luce, 

1982), shifted Wald (positively-skewed unimodal distribution fully shifted away from the zero-

point; Matzke & Wagenmakers, 2009), and normal-X mixtures (multiple normal distributions), 

among others. Luce’s (1986) work suggested that ex-Gaussian is typically the best-fitting 

distribution for RT data, but this assumption is not always correct and requires an analysis of 

individual trial data, not just group patterns. 

 The role of fitting a distribution cannot be understated when working with this kind of 

data. A normal distribution offers two main parameters: mean and standard deviation (SD), 

which is all that is really needed if the scores are evenly distributed around a central point. Ex-

Gaussian distributions instead have three components: mu, sigma, and tau. Mu and sigma 

represent the mean and SD of the Gaussian portion of the distribution. Tau, however, describes 
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both the mean and SD of the exponential portion. Because of the difference in shape between RT 

and normal distributions, the normal Gaussian parameters and mu and tau would not match up 

when calculated using the same data set. Thus, selecting a distribution that poorly fits the data 

results in parameters that poorly describe the data, ultimately leading to incorrect conclusions 

being made about the data. In essence, proper distribution-fitting provides the most valid 

information regarding natural phenomena, which is critical to good scientific practice. Several 

recent studies have shown the superiority of using ex-Gaussian distributions over normal ones in 

RT tasks involving attention (Keiffaber et al., 2006; Leth-Steensen et al., 2000; Matzke, Dolan, 

Logan, Brown, & Wagenmakers, 2013; Osmon, Kazakov, Santos, & Kassel, 2018). 

 While ex-Gaussian distribution-fitting for RT data is important, it unfortunately lacks 

underlying theoretical support and cannot account for the mechanisms that drive performance 

(Heathcote, Popiel, & Mewhort, 1991; Luce, 1986; Matzke & Wagenmakers, 2009). This has 

caused some debate about whether ex-Gaussian distribution parameters should be interpreted. 

The Gaussian component has been interpreted as involving more stimulus-driven, sensorimotor, 

and automatic processes, while the exponential component has been described as involving 

attention-demanding, intentional, and decisional processing (Balota & Spieler, 1999; Gordon & 

Carson, 1990; Keiffaber et al., 2006; Rohrer & Wixted, 1994; Rotello & Zeng, 2008). Those who 

are more conservative and refuse to interpret the parameters instead use them to evaluate 

competing cognitive models (Heathcote et al., 1991; Ratcliff, 1978, 1993; Ratcliff & Murdock, 

1976). Even though proportionately few RTs occupy the tail-end of the distribution, their 

contribution to the shape and understanding of a distribution is still of note. Therefore, while the 

ex-Gaussian distribution can describe RT with high accuracy, a lack of theoretical backing 

precludes its more widespread practical use. 



 

11 

 Fortunately, there is an alternate method for interpreting non-Gaussian data in the form of 

diffusion modeling (DM). Ratcliff’s (1978, 1993, 2013) diffusion model is an approach to 

complexity and information gathering that works particularly well with RT data, but only on 

tasks that have a binary outcome. Individual trial RT data is used to estimate decisional (i.e., 

cognitive processing) and non-decisional (e.g., encoding, response execution) time parameters. 

Data from both correct and incorrect response trials are used in the model in order to make 

inferences about those outcomes and the task as a whole. While most RT tasks are designed to be 

relatively error free, the presence of errors can be helpful, and actually helps inform the analysis 

that a diffusion model can produce.  

One parameter is threshold separation (a), which refers to the distance between two 

outcomes. Greater task difficulty is usually associated with larger separation (Voss, Rothermund, 

& Voss, 2004). Drift rate (v) is also critical, as it represents the average slope of the speed and 

direction of information accumulation over time. Drift rate is also related to task complexity, in 

that easier tasks have a greater absolute drift rate (i.e., shorter distance from trial start to trial 

end)(Voss et al., 2004). Its utility with RT data in healthy clinical populations, both child and 

adult, is also well-documented (Mulder et al., 2010; Ratcliff & van Dongen, 2011; Spaniol, 

Madden, & Voss, 2006; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008; White, Ratcliff, 

Vasey, & McKoon, 2010; Zeguers et al., 2011). Non-decision time (t0) is the average duration of 

non-decisional processes (e.g., encoding and response execution) is not a primary measure of 

task complexity, but separating it out from decision-process parameters can be helpful in better 

understanding a task.  

The amount and variety of evidence for this model indicate greater theoretical support for 

its continued use and a stronger rationale for its parameters and what they represent. Therefore, 
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the addition of the diffusion model to the study bolsters the theoretical support for the use of ex-

Gaussian distributions with RT. Essentially, ex-Gaussian distribution parameters will be used to 

broadly describe RT data, being more valid than normal parameters, and diffusion model 

parameters will be used to interpret the data and draw conclusions about the cognitive tasks. 

The Present Study 

 The present study seeks to further investigate and refine the three-factor model of 

executive function known as the unity/diversity framework (Miyake et al., 2000). Past work 

using a series of systematic and hierarchical elementary cognitive tasks to obtain concurrent 

validity using D-KEFS tasks found variable relationships between factors and RT performance 

due to (a) a mismatch between task types vis-à-vis the speed/power taxonomy and (b) using 

truncated RT distributions and Gaussian distribution statistics (Santos, 2016). A new suite of 

computerized executive RT tasks were developed for each EF factor that were based on speed. 

This study utilized full RT distributions and ex-Gaussian distribution-fitting, being the preferred 

and most empirically valid methodology for RT data. Diffusion modeling provides much-needed 

theoretical support for non-Gaussian data and was used to interpret task performance. In 

summary, this is an investigation of EF using a combination of sophisticated RT tasks and 

statistical methodology whose aim is to address design shortcomings and improve the way EF is 

assessed in the future. 

Hypotheses 

1. Non-Gaussian parameters of IR ECTs will predict non-Gaussian parameters of EF 

tasks, while non-executive ECT parameters are not expected to contribute to predictive models. 

The tasks used to represent the EF factors in both the Miyake et al. (2000) and Santos (2016) 

studies were primarily power tasks, which yielded confusing results. Using only speed tasks 
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designed to only tap one EF construct at a time should allow for improved comparison between 

tasks and more easily draw divisions between task types. 

2. The Shifting factor will be predicted by non-Gaussian parameters of the 2-bit IR ECT.  

3. The Monitoring/Updating factor will be predicted by non-Gaussian parameters of the 

1-bit IR ECT.  

4. The Inhibition factor will be predicted by non-Gaussian parameters from all four 

ECTs. However, the strongest predictors are expected to be from the IR ECTs. 

Replicating Hypotheses 2 and 4 would be consistent with Santos (2016), while the improved task 

design should allow for Monitoring/Updating to be properly represented in the IR tasks. 

5. EF tasks that are predicted by non-Gaussian IR ECT parameters will have greater 

threshold separations and slower drift rates. Both parameters reflect task complexity, therefore, 

more complex EF tasks should relate more closely to the executive nature of the IR ECTs. Tasks 

associated more with non-executive ECTs, which are easier to complete, are more likely to have 

lower task complexity.  

6. Shifting tasks will have greater task complexity than Monitoring/Updating tasks, and 

Monitoring/Updating tasks will have greater task complexity than Inhibition tasks.  

Methods 

Participants 

 A sample of 46 undergraduate students from the University of Wisconsin-Milwaukee was 

recruited through an online department subject pool (SONA). Informed consent was obtained 

after describing the experiment, the tasks involved, and any risks associated with participation. 

Participants must be at least 18 years old and be proficient in English to ensure comprehension of 

task instructions. Participants without normal or “corrected-to-normal” vision were excluded 
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from the study. Three participants were excluded from the study due to self-discontinuing the 

study or due to technical issues resulting in limited usable data. Participants were debriefed 

following their completion of the study. All participants were compensated with course credit. 

 The final sample consisted of 43 participants. The sample consisted of 35 females 

(81.4%) and 8 males (18.6%). The average age of the participants was 21.88 years (SD = 3.32), 

while the median age was 21. The sample’s race/ethnicity distribution was as follows: 51.16% 

White (n = 22), 16.27% Black/African-American (n = 7), 13.95% Hispanic/Latinx (n = 6), 

6.98% Asian/Pacific Islander (n = 3), 6.98% Middle-Eastern (n = 3), and 4.65% Native 

American/Alaska Native (n = 2). Thirty-four participants were as right-handed, six as left-

handed, and three as ambidextrous. 

Materials 

 Equipment. All computerized tasks were administered using a Windows-based computer 

with a standard keyboard, mouse, and color monitor. All computerized tasks, with the exception 

of one standalone third-party program (i.e., STOP-IT), were developed with and will be 

administered using DirectRT v2016 (Empirisoft, 2016). DirectRT is a proprietary psychology 

experiment software that utilizes a computer’s DirectX software to access the processor clock, 

allowing for precise control over stimulus timing and event recording at the scale of 1ms. 

Demographic data. After obtaining consent and before starting the cognitive tasks, a 

research assistant asked the participant a series of common demographic questions. After that, 

the research assistant completed a brief neurodevelopmental interview consisting of questions 

about the mental health and medical history of the participant and their immediate family. 

Participants are not excluded based on this information. Participants were free to refuse to 

provide information about their own and/or their immediate family’s psychological history 
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without being excluded from the study. All of this data was recorded on a participant summary 

sheet (see Appendix A). 

Shifting tasks. 

 Number-letter task (NL). In this three-block task, a number-letter pair appears in one of 

the four quadrants of the screen. In the first block, pairs appear only in the top half of the screen, 

and participants respond via button press whether the number in the number-letter pair was even 

or odd. In the second block, pairs appear only in the bottom half of the screen, and participants 

respond about whether the letter in the number-letter pair was a vowel or a consonant. Finally, in 

the third block, number-letter pairs randomly appear across all four quadrants. This time, 

participants must utilize the rules from both previous blocks. Each block was preceded by eight 

practice trials. The first two blocks have 32 trials each, while the third block has 128 trials. Half 

of the third block’s trials are shift trials, where the participant must switch their response set 

from odd/even to vowel/consonant, or vice versa. A shift cost can be calculated by subtracting 

the average RT from the first two blocks from the average shift trial RT. Miyake et al. (2000) 

used a modified version of the number-letter task used by Rogers and Monsell (1995). The third 

block in the Miyake study’s version of this task had the number-letter pairs’ location change in a 

clockwise progression throughout the block. Over the course of 128 trials, it is not unlikely that a 

participant may begin to learn the pattern and anticipate the location of the next trial’s pair. For 

this reason, pair location was randomized throughout, with some switch trials occurring 

consecutively. 

 Color-shape task (CS). In this task, participants are presented with a shape (circle or 

triangle) inside of a colored rectangle (red or green). A cue letter (C or S) is presented above the 

rectangle and determines the trial’s response set. If the letter is C, the participant must respond 
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via button press about whether the color inside the rectangle is red or green. If the letter is S, they 

must respond about whether the shape inside the rectangle is a circle or a triangle. There are six 

practice trials with feedback, followed by two test blocks of 48 trials each. Half of the trials in 

each test block are shift trials, in which the response set to be used is different from the one in 

the previous trial. This task was previously developed by Miyake, Emerson, Padilla, and Ahn, 

(2004) and is commonly used as one of the group’s shifting tasks (Friedman et al., 2008). 

 Monitoring/updating tasks. 

 Sternberg memory scanning task (SMS). The Sternberg (1966) memory scanning task is 

one of the earliest examples of the experimental evaluation of working memory. In this task, 

strings of numbers ranging from one to six digits are presented serially for 1200ms per digit. An 

asterisk signals the end of the string, followed by a numerical probe that was part of the string in 

50% of trials. The task will have two 48-trial blocks, with the participant responding after each 

trial whether the probe was or was not in the sequence. Although some versions of this task exist 

wherein the entire string is presented simultaneously, this would theoretically only measure 

memory scanning, and not updating of information. Therefore, a serial presentation is optimal for 

this study, despite taking significantly more time to complete. 

 Piek updating task (PU). Piek et al. (2004) describe their “trailmaking/memory updating 

task” as a version of Rabbitt’s (1997) task that is simplified for children. In this task, letters 

appear on the screen one at a time and require a response to be made regarding whether the letter 

is a target. The target set includes letters A through D, although the specific target rotates 

through the set with each trial. For example, A is the target for the first trial, B for the second, 

and so on, with the target rotating back to A for the fifth trial. Piek et al.’s (2004) version had 

two 120-trial blocks, with only 20 target trials in each block (16.7%). Some modifications were 
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made to this task for the present study. Firstly, only one 120-trial block is used. Second, the 

number of target trials were increased to 40% (48 of 120). Third, the task will display a 

reminder, displayed for 5s, every 12 trials that the target will rotate back to A for the next trial. 

This was introduced as a way to prevent participants from spoiling all remaining responses in the 

task if they happen to make an early mistake. 

 Inhibition tasks. 

 Modified Stroop task. The Stroop task (Golden, 1978; Stroop, 1935) is a classic 

inhibition task, but was originally made as a paper-and-pencil verbal task. The modified 

computerized version used in this study utilizes a set number of trials rather than a time limit like 

the original. Stimuli are presented one at a time and remain on the screen until a response is 

made. Instead of the word trial, there is a 50-trial block where the participant is presented with a 

color word (i.e., red, blue, or green) in black ink, and must make the appropriate button response 

based on the color. The color block also has 50 trials, each of which presents a series of asterisks 

in one of the three colors, which must be responded to with the same button press scheme as 

before. The color-word aspect of the task in this study is significantly different from those in 

other Stroop-like tasks. To measure inhibition in more detail, we incorporated the use of positive 

and negative priming trials throughout the block. In this task, negative priming would be in 

effect when the inhibited response for one trial becomes the correct response on the next trial. 

For example, blue in red ink (blue inhibited, red correct) is followed by green in blue ink (green 

inhibited, blue correct). Pulling for a previously inhibited response is more cognitively taxing 

and results in slower RTs. Positive priming instead involves calling for the same correct response 

on two consecutive trials. Because the response has just been activated, a second trial that 

requires the same response would yield faster RTs. The color-word block has 72 trials in which a 
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color word is presented in an ink color different from the color of the word itself (e.g., “red” in 

blue ink), and the participant’s response must match the color of the ink rather than the printed 

word. There are 18 positive priming and 18 negative priming trials, along with 36 neutral trials 

that occur before each priming trial to “reset” the participant’s priming. In order to accomplish 

this, all priming trials display the printed word “yellow” in an ink color consistent with the 

priming for that trial, while the color yellow was never used. Neutral trials are the only trials to 

actually display printed words in one of the three main colors. Using this approach, it is possible 

to calculate separate RTs for negative, neutral, and positive priming, which should allow for an 

individual assessment of inhibition sensitivity. 

 STOP-IT task. STOP-IT is a standalone computerized task using the stop-signal 

paradigm of response inhibition (Verbruggen, Logan, & Stevens, 2008). While the paradigm 

itself is many decades old (Lappin & Eriksen, 1966; Vince, 1948), significant developments have 

been made in terms of theoretical understanding and technological achievement (Logan & 

 Cowan, 1984; Logan, 1994; Logan, Schachar, & Tannock, 1997). The paradigm deals with one 

of the fundamental questions in reaction time literature, which is how to measure RT for an 

inhibited response (i.e., one that is successfully withheld from occurring and therefore does not 

technically exist). The task consists of two 64-block trials where participants are presented with 

either a circle or a square in the center of the screen and must press the corresponding response 

button as quickly and as accurately as they can. On 25% of trials, a 75ms 750 Hz stop signal tone 

will play after display onset that will indicate that the participant is to inhibit their response. On 

the first of these stop trials, the tone occurs 250ms following display onset. Successfully 

inhibiting a response will cause the tone to play 50ms further into the trial, while unsuccessfully 

inhibiting a response will move the tone 50ms closer to the display onset. Successful inhibition 



 

19 

results in longer delays, making it more difficult or even impossible to stop an in-progress 

response that occurs as the tone is played. The goal of this procedure is to identify the stop signal 

delay at which the participant is likely to inhibit their response 50% of the time. This individual 

stop signal delay is then subtracted from the participant’s average RT on no-signal trials to 

obtain their stop signal RT, which provides a reliable estimate of how long it takes them to 

inhibit a response. 

 Elementary cognitive tasks (ECTs). The ECTs, as extensively discussed, are a series of 

four 120-trial tasks of increasing difficulty. All four tasks in the series are based on Jensen’s 

(2006) ECT paradigm and their current version was developed by Santos (2014). The first task, 

named the “0-bit” task, simple RT task that involves pressing a button each time a large dot 

appears on the screen. The second task, the “1-bit non-executive” task, involves pressing the left 

response key when the dot is on the left and the right key when the dot is on the right. The third 

task, the “1-bit IR” task, is identical to the 1-bit non-executive task, with the exception of the 

response set being reversed (i.e., pressing the right key if the dot appears on the left). For the 

fourth and final task, the “2-bit IR” task, the response set alternates between the two 1-bit tasks 

with each trial (i.e., the first trial calls for a “same side” response, while the next trial calls for an 

“opposite side” response). 

Procedure 

 After informed consent is obtained, a research assistant conducted a brief demographic 

interview, as described above. Following that, the research assistant guided the participant 

through the battery of computerized and paper-and-pencil tests described above. Although the 

instructions for each task were presented visually on the screen, the research assistant always 

read the directions to the participant and provided feedback during practice blocks to ensure 
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participant comprehension. This was to improve our ability to say that an individual’s poor 

performance was reflective of actual ability rather than lack of comprehension. The demographic 

form was free of identifying information, and no coding sheet was kept to link participant names 

to their demographic forms. At the end of the study, the participants were debriefed. A complete 

study session lasted approximately 1.5 hours. 

Data Analysis 

Initial data analysis to obtain Gaussian distribution statistics were performed using 

Microsoft Excel, as DirectRT outputs raw data and summary sheets in a compatible format. 

Excel was used for calculating accuracy, mean RT and RTSD (both overall and per sub-task), as 

well as shift cost for shifting tasks. RT distributions were kept intact, although trial RTs faster 

than 150ms, the physiological limit of physical response, were excluded. Gaussian statistics are 

reported for comparison, but were not analyzed. 

JMP (SAS, 2015a, 2015b) was used to identify the best-fit distribution for each task’s 

raw RT data using the Akaike’s Information Criterion-corrected (AIC-c; SAS, 2015b). AIC-c 

values of distributions with 2 points of each other are considered of comparably equal fit, while 

those within 3-4 points of each other are considered possible, but less likely fits. Although ex-

Gaussian appears to be the preferred RT distribution, this is not always the case. Therefore, these 

analyses will help determine which distribution type certain task types tend to favor. In order to 

validate the executive nature of the ECTs, their ability to predict Miyake EF factors must be 

investigated. As the parameters themselves are not normal by nature, Generalized Regression 

was used to predict each non-Gaussian EF factor parameter (Mu, Sigma, Tau) using non-

Gaussian ECT parameters. Subsequently, group DM parameters (a, v, t0) were used to predict 

the non-Gaussian parameters that were most contributory to the initial model. 
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Diffusion model (Ratcliffe, 1978) analyses were conducted for all EF and ECT tasks 

(except 0-bit simple RT) in order to gain a better theoretical understanding of their complexity. 

Raw RT data was analyzed using fast-dm (Voss & Voss, 2007) to obtain threshold separation 

and drift rate values. Non-decision time (t0), or the average duration of non-decisional processes 

(e.g., encoding and response execution) will also be reported. Although the program offers 

several parameter estimation methods, Kolmogorov-Smirnov (KS; Kolmogorov, 1941) was used 

in all cases. This is the preferred method of the fast-dm developers, as it offers the best 

optimization and provides the best model fit (Voss et al., 2004; Voss & Voss, 2007).  

SPSS v23 (IBM Corp., 2015) was used to perform one-way repeated-measures analyses 

of variance (ANOVAs), post-hoc paired t-tests, and bivariate Pearson correlations on non-

Gaussian and diffusion model data. ANOVAs and follow-up comparisons were used to 

determine the relationships between ECTs and executive tasks/factors.  

Results 

Non-Gaussian Statistics 

 Gaussian and non-Gaussian statistics for the four ECTs and six executive tasks are 

presented in Tables 1-7. Mean accuracy and RT for specific trial types are also provided, where 

applicable. Switch cost is provided for shifting tasks. As this study focused on non-Gaussian 

parameters, Gaussian data was not analyzed and is provided for informational purposes only. 

All tasks were subjected to group distributional analyses comparing the fit of all tasks 

according to AIC-c values across the following distributions: ex-Gaussian, LogNormal, Gamma, 

GLog, Normal-2 Mixture, Normal-3 Mixture, Weibull, Extreme Value, and Exponential. The 

following tasks best fit an ex-Gaussian distribution: 2-bit IR, CS, NL, PU, SMS, and Stroop. The 

following tasks best fit the Normal-3 Mixture distribution: 0-bit, 1-bit, 1-bit IR, STOP-IT. Group 
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distributions were quite different than individual participant distributions; no tasks fit the group 

distribution for a majority of individual participants, although individual participants fit the 

group distribution with the greatest frequency than any other distribution.  

Shifting Factor. 

Shifting Mu. Shifting Mu was normally distributed and an Adaptive Elastic Net 

Generalized Regression with normal distribution model was utilized. Model fit was R2 = .34 and 

one variable, 1-bit IR Mu, significantly contributed to the model. DM parameters did not predict 

1-bit IR Mu. 

Shifting Sigma. Shifting Sigma was distributed according to a Weibull distribution and 

an Adaptive Elastic Net Generalized Regression with Weibull distribution model was utilized. 

Model fit was R2 = .17 and one variable, 1-bit IR Mu, significantly contributed to the model. 

Shift Mu and Shift Sigma correlate at r = .74. DM parameters did not predict 1-bit IR Mu. 

Shifting Tau. Shifting Tau was LogNormal distributed and an Adaptive Elastic Net 

Generalized Regression with LogNormal distribution model was utilized. Model fit was R2 = .39 

and three variables, 0-bit Sigma; 0-bit Mu; and 0-bit Tau, significantly contributed to the model. 

Greater Shifting Tau was associated with simple mental speed but in a complex fashion. 

Specifically, greater (i.e., slower) extreme RTs in the Shifting tasks were associated with speedy 

efficient RTs and greater variability of speedy efficient RTs, but also extremely long RTs. 

To further explore these complex relationships and how each predictor contributed, 

Generalized Regressions were run to predict each ECT variable from DM parameters (a, v, t0). 

0-bit Mu was predicted utilizing a LogNormal distribution modeled Adaptive Elastic Net (R2 = 

.90) with only non-decision time contributing significantly, indicating that 0-bit Mu is most 

related to non-decision-making mental speed but not boundary separation or drift rate 
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parameters. 0-bit Sigma was evaluated with a LogNormal model (R2 = .52) with both non-

decision time and boundary separation contributing significantly, with more 0-bit variability 

being associated with slower non-decision-making mental speed and a higher boundary 

separation. 0-bit Tau was evaluated with a LogNormal model (R2 = .74) with only drift rate 

contributing significantly and more extremely long 0-bit RTs being associated with slower 

information accumulation.  

Monitoring/Updating Factor 

Monitoring/Updating Mu. Monitoring/Updating Mu was normally distributed and an 

Adaptive Elastic Net Generalized Regression with normal distribution model was utilized. Model 

fit was R2 = .43 and two variables, 2-bit IR Mu and 1-bit Mu, significantly contributed to the 

model. DM parameters did not predict 2-bit IR Mu, but did predict 1-bit Mu (R2 = .29) with 

slower 1-bit Mu being related to slower non-decision time and higher boundary separation. 

These results indicate that efficient RTs for Monitoring/Updating relate to efficient complex 

internal rule RTs and efficient choice RTs that derive from quick basic RT, but conservative 

decision-making. 

Monitoring/Updating Sigma. Monitoring/Updating Sigma was normally distributed and 

an Adaptive Elastic Net Generalized Regression with normal distribution model was utilized. 

Model fit was R2 = .36 and one variable, 1-bit Mu, significantly contributed to the model. 

Boundary separation predicted 1-bit Mu (R2 = .29). This result indicates that less variable RTs 

for Monitoring/Updating relate to efficient choice RTs that derive from quick basic RT, but 

conservative decision-making. 

Monitoring/Updating Tau. Monitoring/Updating Tau was Gamma distributed and an 

Adaptive Elastic Net Generalized Regression with Gamma distribution model was utilized. 
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Model fit was R2 = .35 and one variable, 0-bit Tau, significantly contributed to the model. Drift 

rate predicted 0-bit Tau (R2 = .74). These results indicate that fewer extremely long RTs for 

Monitoring/Updating relate to fewer extremely long simple mental speed RTs that derives from 

quicker information accumulation. 

Inhibition Factor 

            Inhibition Mu. Inhibition Mu was LogNormal distributed and an Adaptive Elastic Net 

Generalized Regression with LogNormal distribution model was utilized. Model fit was R2 = .61 

and two variables, 1-bit Mu and 1-bit Tau, significantly contributed to the model. DM boundary 

separation and non-decision time predicted 1-bit Mu (R2 = .29), indicating that efficient choice 

RT derives from faster non-decision RTs and a less conservative (i.e., lower) boundary 

separation. Also, drift rate predicted 1-bit Tau (R2 = .13), indicating that fewer extremely long 

choice RTs occur with faster information accumulation. These results indicate that efficient RTs 

for the Inhibition factor relate to both efficient choice mental speed and fewer extremely long 

choice mental speed RTs and that better performance on this factor is a function of fast non-

decision speed as well as faster information accumulation and lower, less conservative 

boundaries to respond. 

            Inhibition Sigma. Like Inhibition Mu, this aspect of the Inhibition factor related to 1-bit 

Mu, with model fit of R2 = .24. Boundary separation and non-decision time predicted 1-bit Mu 

(R2 = .29), indicating that less variability in the Inhibition factor relates to faster non-decision RT 

and a less conservative boundary. 

            Inhibition Tau. Inhibition Tau was Gamma distributed and an Adaptive Elastic Net 

Generalized Regression with Gamma distribution model was utilized. Model fit was R2 = .21 and 

one variable, 0-bit Tau, contributed significantly to the model. Drift rate predicted 0-bit Tau (R2 
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= .74). These results indicate that fewer extremely long RTs for the Inhibition factor relate to 

fewer extremely long simple mental speed RTs that derive from quicker information 

accumulation. 

Diffusion Modeling and Task Complexity 

 DM parameters for the four ECTs and six executive tasks are presented in Table 8. Two 

one-way repeated-measures ANOVAs using three ECTs (0-bit excluded) and the six executive 

tasks, one for boundary separation and another for drift rate. Results of pairwise t-tests 

comparisons between tasks for boundary separation and drift rate are presented in Tables 9 and 

10, respectively. 

Boundary Separation. Mauchly’s Test of Sphericity indicated that the independent 

variable of boundary separation had violated the assumption of sphericity, χ2(35) = 133.831, p < 

.001. Utilizing Greenhouse-Geisser correction, there was a main effect of boundary separation, 

F(4.430,181.638) = 38.990, p < .001, partial η2 = .487. Bonferroni correction was made for 17 

comparisons. 

Elementary Cognitive Tasks. For the ECTs, statistical significance was found between 

all three tasks in an ordinal manner. The 2-bit IR task had greater boundary separation than the 1-

bit IR task, t(42) = -6.834, p < .001, and that of the 1-bit IR task was greater than that of the 1-bit 

non-executive task, t(42) = -3.507, p < .002.  

Executive Function Tasks. No statistically significant differences in boundary separation 

were found within Shifting and Monitoring/Updating factors, all p > .002941. Shifting tasks had 

greater boundary separation than Monitoring/Updating tasks, all p < .002. The NL task boundary 

separation was significantly greater than all Inhibition and Monitoring/Updating tasks, all p < 

.002941.Within Inhibition, Stroop had greater boundary separation than STOP-IT, t(41) = -
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12.006, p < .001. STOP-IT had lower boundary separation than any of the other five executive 

tasks, all p < .001. Stroop task boundary separation did not statistically differ from either 

Monitoring/Updating task or the CS task, all p > .002941.  

Drift Rate. Mauchly’s Test of Sphericity indicated that the independent variable of drift 

rate had violated the assumption of sphericity, χ2(35) = 124.394, p < .001. Utilizing Greenhouse-

Geisser correction, there was a main effect of drift rate, F(4.815,197.430) = 144.172, p < .001, 

partial η2 = .779. Bonferroni correction was made for 17 comparisons, such that the new 

significance criterion was p = .002941. 

Elementary Cognitive Tasks. For the ECTs, statistical significance was found between 

all three tasks in an ordinal manner. The 1-bit non-executive task had faster drift rate than the 1-

bit IR task, t(42) = 7.387, p < .001, and that of the 1-bit IR task was faster than that of the 2-bit 

IR task, t(42) = 8.607, p < .001. 

Executive Function Tasks. No statistically significant differences in drift rate were found 

within Inhibition, Shifting, and Monitoring/Updating factors, all p > .002941. The PU task had 

faster drift rate than all Shifting and Inhibition tasks, all p < .001. The SMS task had faster drift 

rate than either Shifting task and the STOP-IT task, all p < .001. The Stroop task had faster drift 

rate than both Shifting tasks, all p < .001. 

 Relationships between Diffusion Model Parameters. These analyses sparked interest in 

determining how boundary separation and drift rate were related for each task. Table 11 reports 

the Pearson correlations for the ECTs and six executive tasks. The ECTs did not have significant 

correlations between these two parameters. For Inhibition, only the STOP-IT task demonstrated a 

negative relationship, r(41) = -.342, p < .05. For Monitoring/Updating, the SMS task had a 
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positively-trending relationship, r(41) = .296, p = .054. Interestingly, both Shifting tasks had 

positive correlations: CS task r(41) = .348, p < .05, NL task r(41) = .407, p < .01. 

Discussion 

One of the major arguments for using non-Gaussian statistics for RT data is that it better 

describes the shape of the distribution. Separating out the Gaussian mean into Gaussian Mu and 

non-Gaussian Tau is not expected to yield noticeable differences in simple RT or some choice 

RT tasks. Executive tasks, however, tell a different story: for example, the 2-bit IR ECT 

Gaussian mean = 1050ms, while the Mu = 609ms and Tau = 436ms. This separation is important 

to capture because it demonstrates that slower RTs are inherently different from efficient RTs. 

There is a consistent pattern across all tasks with an executive component (both ECT and EF) 

that Mu is noticeably lower than the Gaussian mean, which appears inflated as a result. While 

Gaussian statistics are easy to use and widespread, they are clearly not the best approach for 

measuring RT, which is one of the most widely used measurements in psychology. Shifting to 

Non-Gaussian statistics would not be very easy, but it would be scientifically correct to do so in 

the interest of better describing the ever-present phenomenon of time. 

Distribution fit was another major component of the analyses. All but one EF task and the 

most complex ECT best fit an ex-Gaussian distribution, which is consistent with the literature. 

However, the 1-bit IR ECT and STOP-IT tasks best fit a Normal-3 distribution. There may be 

several reasons why this is the case. For example, they may not be sufficiently complex to 

produce greater RT variability that would be better described as ex-Gaussian. The 1-bit IR task 

was statistically significantly different on both boundary separation and drift rate from its 

neighboring ECTs, but the mean difference in boundary separation appeared rather one-sided 

(.958 vs. 1.171 vs. 1.877). STOP-IT also had the lowest boundary separation of all 10 tasks. This 
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suggests that a task’s boundary separation is related not only to the complexity of its demands, 

but also to the complexity of the RTs it produces, such that a sufficiently complex task can no 

longer be best captured using only normal distributions (Gaussian or normal-mixtures).  

Additionally, even though the task trial-level RT data was mostly ex-Gaussian, the best-

fit distribution for each non-Gaussian parameter (Mu, Sigma, Tau) was not consistent. This 

suggests that relying solely on ex-Gaussian statistics as the de facto solution for the inaccuracy 

of Gaussian RT statistics is too simplistic. Adopting a flexible methodological approach is 

considerably more difficult, but it is also more scientifically sound to measure and evaluate 

phenomena in the most accurate and reliable ways available to us. 

The EF tasks were designed to be of consistent and limited difficulty, while also 

providing enough RT variability for DM analyses to distinguish between tasks. EF task accuracy 

ranged from 89.56-95.21% (excluding STOP-IT), suggesting task development goals were 

successful. The sample size precluded exploratory factor analysis to identify latent factors, 

although composite scores for each factor were created. Generalized Regression analyses 

demonstrated the complex interactions between the EF tasks and a set of Jensen tasks with 

stepwise complexity progression and demands. 

Hypotheses 1 was partially supported. No EF factors were solely predicted by IR ECTs 

and most had a mixed contribution of non-executive and IR predictors.  

Shifting was predicted by 1-bit IR and 0-bit, but was not predicted by 2-bit IR, which 

offers no support for Hypothesis 2. Shifting is related to ECT performance, but understanding the 

Shifting factor as measured with RT tasks requires modeling the entire RT distribution and each 

aspect of the distribution is related to different aspects of ECT performance. The Gaussian 

component of Shifting is most related to basic internal rule EF mental speed. This indicates that 
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doing well on Shifting tasks requires the ability to overcome automatic response tendencies. 

Unfortunately, this aspect of ECT performance is not well accounted for by a diffusion model of 

RT tendencies. In contrast and somewhat unexpectedly, extremely long RTs in Shifting tasks are 

most related to simple RT speed. Some researchers (Botvinick, Braver, Barch, Carter, & Cohen, 

2001; McVay & Kane, 2010; McVay & Kane, 2012; Smallwood & Schooler, 2006) have 

assumed that the tau variable in an ex-Gaussian distribution is related to executive failure; 

however, this does not seem to be the case in Shifting tasks. Other literature offers the 

perspective that tau reflects higher-order processes and is correlated with higher cognitive 

functions (Matzke & Wagenmakers, 2009; Schmiedek, Oberauer, Wilhelm, Süβ, & Wittmann, 

2007). Instead, extremely long RTs in Shifting tasks seems to occur as a result of slow simple 

RTs that are more variable and have a higher than typical number of extremely long RTs.  

Monitoring/Updating was predicted by all ECTs but 1-bit IR, which offers no support for 

Hypothesis 3. Monitoring/Updating aspects of working memory are related to EF as measured by 

ECT RTs. This was surprising, as Shifting was expected to have the strongest relationship with 

2-bit IR and Inhibition was expected to be most related to all ECTs. The Gaussian component of 

the ex-Gaussian distribution in Monitoring/Updating is well-predicted by efficient responding in 

both complex internal rule tasks and a choice RT task. This result suggests that to hold in mind 

the contents of working memory and regulate those contents, one must be efficient in keeping 

multiple mental rules in mind and switching between those rules easily. However, one must also 

be fast in choice decision-making. As in Shifting, the exponential component of 

Monitoring/Updating is again unexpectedly related to simple mental speed and not EF aspects of 

the ECTs. Specifically, few extremely long RTs in Monitoring/Updating is related to few 

extremely long RTs in a simple mental speed task without decisional aspects. 
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Inhibition was solely predicted by non-executive tasks and offers partial support for 

Hypothesis 4. Inhibition related almost exclusively to choice RT and evidenced no relationship 

to the internal rule tasks, like the Updating factor in the Santos (2016) study. This result is in 

direct contrast to what would be expected from Miyake’s (2000) EF framework and needs 

further explication by theoretically-driven experimental work. It is, however, consistent with 

findings in the developmental literature on the emergence of EF. Studies of young children 

indicated a unitary factor structure consisting of inhibition (Espy, Martin, Bull, & Stroup, 2006; 

Wiebe, Espy, & Charak, 2008). Given that young children have very limited frontal lobe 

development, inhibition is the first executive control ability they develop that can be reliably 

measured. Maturation and further brain development give rise to more advanced EFs, such that 

inhibition may become, as seen in our results, a more basic, underlying executive ability. 

Therefore, the relative time length of time available to practice and develop inhibition is 

proportionally longer than other EFs, suggesting it becomes less effortful over time, which may 

explain the non-executive contributions our Inhibition tasks had in the study. 

Analysis of DM parameters revealed several insights regarding task structure and 

complexity. Both boundary separation and drift rate offer different ways to quantify and interpret 

task difficulty and demands. For boundary separation, Shifting tasks appeared to require the 

greatest amount of information to reach a decision, followed by the Stroop task, both 

Monitoring/Updating tasks, and the STOP-IT task. For drift rate, Monitoring/Updating tasks 

appeared to have the fastest accumulation of information over time, followed by Inhibition tasks, 

and finally Shifting tasks. These results provide variable but mostly positive support for 

Hypotheses 5 and 6, as EF relationships with IR ECTs were reflective of greater task complexity. 



 

31 

Lack of statistical differences within factors on both parameters, save for Inhibition, 

suggests relatively similar complexity between tasks developed for that factor. Inhibition tasks, 

however, differed on boundary separation, but not drift rate. This suggests that an individual 

taking the Stroop task requires more information to reach a decision than on the STOP-IT task, 

yet the information is accumulated at similar speeds across both tasks. Taking both types of 

parameters into account, Shifting tasks have the greatest overall boundary separation and the 

slowest overall drift rate, suggesting the demands of Shifting are the most complex. 

Monitoring/Updating had the second greatest boundary separation and the fastest drift rate, while 

Inhibition had a variable boundary separation (Stroop>Monitoring/Updating>STOP-IT) and the 

second fastest drift rate. Because the boundary separation split in Inhibition may be related to 

specific task demands, Monitoring/Updating may be interpreted as being more complex than 

Inhibition, while having faster drift rate may be interpreted as being less complex than Inhibition 

using their relative rankings alone, However, the fact that Inhibition was not predicted by 

internal rule ECT parameters may suggest lower complexity relative to Monitoring/Updating. 

Correlational analyses between boundary separation and drift rate within-task offered a 

slightly different perspective. Greater task complexity is associated with greater boundary 

separation (i.e., more information needed to reach a decision) and slower drift rate (i.e., slower 

information accumulation over time), such that a negative relationship between the two would be 

assumed. However, the results were remarkably inconsistent with expectations. Both Shifting 

tasks had significant positive correlations, while only one of two Monitoring/Updating tasks 

(SMS) had a positively-trending correlation. Because the Shifting tasks both have the greater 

boundary separation and the slowest drift rate among the tasks, it is surprising to see a positive 
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correlation between the parameters. STOP-IT was the only task to have a significant negative 

correlation between the parameters, t(41) = -.342, p < .05. 

 The DM correlational results suggest that when executive tasks are designed to challenge 

the participant while simultaneously being relatively easy (89.56% minimum overall accuracy 

per task), the RT paradigm continues to place a premium on speed. Greater positive correlations 

here suggest participants require more critical response-dependent information, but are also able 

to accumulate this information relatively quickly to reach the decision. Inhibition tasks are a 

curious outlier here, likely because task performance involves stopping automatic responses. In 

both tasks, the information necessary to make the decision is qualitatively non-complex (i.e., 

sound cue or word color).  

The STOP-IT task is unique in this study in that it was not developed by the author and 

provides the participant with the option to not provide a response. Most research using stop 

signal tasks like STOP-IT actually uses the stop-signal RT (SSRT) as the dependent variable. 

This is a derived estimate of how long it takes to inhibit a response, obtained by subtracting the 

final stop-signal delay from the no-signal RT (i.e., trials with no inhibition component). Better 

performance on stop signal tasks involves achieving a larger stop signal delay, rather than a 

slower no-signal RT, as it is not beneficial to wait for a stop signal that may never be presented 

on that trial. Additionally, SSRT is a task-level measure, and there is no clear procedure on how 

to estimate it at the trial level. Responses on all other tasks in this study produced RTs to be 

evaluated, which cannot be directly compared to an estimate of a non-response. As this study 

aimed to evaluate task performance using trial-level data, the distribution and diffusion model 

parameters for STOP-IT in this study took into account both zero and non-zero RTs. So while 
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SSRT is the primary variable used to measure inhibition in the literature, its derived nature 

precluded its use in this study. 

STOP-IT boundary separation (0.873) is closer to the starting position of the diffusion 

model (0.5), while Stroop’s is markedly higher (1.923). These parameters are unlikely to fully 

appreciate everything about the task. The captured STOP-IT RTs are predominantly fast or zero. 

The zero-RT trials, which are labeled as correct, may be artificially making the diffusion model 

interpret the task as less complex, as there is no way to quantify trial-level inhibition with a non-

zero number. This may explain why STOP-IT did not perform as expected compared to other 

executive tasks that required a response to demonstrate a cognitive process was taking place. 

One major aim of this study was to use full RT distributions. Most RT research excludes 

outliers, typically setting the cutoff at two standard deviations above the mean. This procedure is 

meant to prevent extreme values from influencing measures of central tendency. Qualitatively, 

these extreme values may represent inattention, executive failure, fatigue, or a number of 

different factors. Excluding them necessarily makes the RT distribution more normal by 

decreasing the amount of RTs contributing to Tau. Some researchers also normalize their data, 

such as the previous work by Santos (2016), but that procedure is at odds with the aim if this 

study. For this study, a cutoff of three standard deviations was utilized to retain more RT 

diversity. Extreme value frequency for the ECTs ranged from 1.28-1.94% and ranged from 1.31-

2.15% for the executive tasks, with differences in normal distribution mean ranged from 5-63ms. 

STOP-IT average non-zero RTs were 7ms different, but were significant at p = .024, while all 

other tasks were significant at p < .001. This suggests that even when a small minority of RTs is 

excluded resulting in a minute difference in absolute average, their contributions to the 

distribution are nonetheless important in better understanding their underlying process.  
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Overall, each EF factor related in unexpected ways to the stepwise progression of 

cognitive demands in the ECTs. Internal rule ECT parameters were primary predictors of 

Shifting and Monitoring/Updating performance, but non-executive ECT parameters were more 

contributory overall than expected. Inhibition appeared to be the least complex EF factor, have 

the least within-factor task consistency, and the most influence on performance from non-

executive aspects. Shifting was consistently the most complex EF factor, although its ECT 

contributions were different than expected. 

These results suggest that EF factors are not easily understood, even when using the best 

available methods. However, these methods are able to give new insights into the structure of EF 

that traditional Gaussian methodology and interpretation cannot. The EF tasks developed for this 

study stand in opposition to, but also as a complement to, traditional neuropsychological 

approaches to EF evaluation. While the results do not look promising for Inhibition, Shifting and 

Monitoring/Updating tasks were substantiated as having an EF nature. However, the influence of 

basic non-executive decision-making is difficult to exclude from general problem-solving.  

As mentioned at the outset, real-world problem-solving favors quick, efficient solutions 

due to limited resources and availability of time to enact those solutions. Real-world problems 

can be of variable difficulty, and we have limited ability to predict the difficulty of a given 

problem as it presents itself. The tasks used in this study were of different complexities, which is 

suggestive of difficulty, but overall participant accuracy suggested they were relatively easy. 

This allowed the differences identified in analyses to stem from RT distributions rather than 

other potential confounds, as well as avoiding the methodological problems of the 

“power”/“speed” taxonomy of modern day psychological measurement. Due to the controlled 

nature of the tasks, it is the participant’s problem-solving efficiency that is highlighted. As no 
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similar tasks are used to formally evaluate EF, developing such tasks for wide use is 

recommended. Using both accuracy and efficiency approaches to EF would allow for a better 

understanding of EF both on a group and an individual level. 

Limitations 

 The primary limitation of this study is its relatively small sample size. A sample of 150 

participants was sought, as similar RT studies typically have between 100 and 200 participants 

(e.g., Miyake et al., 2000). One reason that recruitment efforts may have been impacted is the 

estimated study session length. The subject pool posting explained that although the study would 

take approximately 1.5 hours, they would receive two hours of course credit for their time. 

Although this represents greater reward for their time, most undergraduate research studies 

advertised concurrently with the present study lasted only one hour. This decreased time 

commitment and greater time slot availability likely provided greater flexibility for participants. 

This smaller sample size also precluded the use of factor analysis for this study, which requires a 

bare minimum of 100 cases. Evaluating the factor structure of the executive tasks was meant to 

address several of the initial study hypotheses, although some of them were addressed in a 

similar way given the available methods.  

Given the strong non-executive contributions to the Inhibition tasks, one must consider 

how construct purity of the tasks used in the study. All tasks were developed by adapting an 

existing paradigm for use with RT and highlighting the construct as much as possible. Modern 

psychological EF measures frequently tap multiple domains, but they are distinguished by their 

unique properties rather than by their commonalities. For example, both the D-KEFS Verbal 

Fluency Switching subtest and the Wisconsin Card Sorting Test involve a Shifting component, 

but the latter is considered more challenging and involving “cognitive flexibility.” However, as 
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constructs are theoretical and our methods of development and measurement are imperfect, it 

may never be possible to develop a task that fully pure to one domain. Additionally, the no-

response nature of STOP-IT trials that specifically measure inhibition may not have been 

interpreted by the diffusion model, which relies on non-zero responses to estimate complexity. 

Therefore, conclusions regarding its complexity and subsequent relationship to other tasks were 

limited. 

Future Directions 

 As mentioned above, further development of RT-based EF (and other cognitive domains) 

would represent an important shift in psychological practice and research. This should ideally be 

accompanied by better statistical training, as non-Gaussian statistics and diffusion modeling can 

be difficult to understand. However, they currently represent the best methods for investigating 

RT, a key variable in psychological research. Multi-site clinical trials are moving towards the use 

of computerized measures for ease of data collection and collaboration. Using computerized 

measures would enable the recording of RTs for potentially any task. Current proprietary 

measures (i.e., Conners’ Continuous Performance Test, Test of Variables of Attention) currently 

generate informative summary score, but do not allow access to raw data. Providing research 

with trial-level data at the millisecond level may help improve our understanding of attention, 

EF, and other domains. Future research may seek to replicate these results with a larger control 

sample, in addition to obtaining concurrent data from traditional EF measures (e.g., D-KEFS, 

WCST, etc.). Further work would gather such data from known clinical groups, particularly 

those with identified EF impairment (e.g., traumatic brain injury, frontotemporal dementia, 

schizophrenia, etc.). This could possibly aid clinicians in differential diagnoses, once consistent 

group performance is established in the literature.  
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Conclusion 

The present study sought to demonstrate the utility of using non-Gaussian statistics and 

diffusion modeling to more scientifically measure and interpret RT distributions in EF tasks. 

Descriptive data demonstrated the stark contrasts between solely using Gaussian distribution 

parameters versus accounting for extreme RTs in a separate parameter. Results successfully 

demonstrated that the relationship between ECTs, which increase in complexity according to bits 

of information, and the EF factors are complex and inconsistent with expectations derived from 

prior research using both “power” and “speed” tasks. DM analyses determined that Shifting tasks 

have the greatest complexity, suggesting they also require the most cognitive resources. 

Monitoring/Updating is somewhat less complex than Shifting, while Inhibition appeared to be 

the sole factor not to be significantly predicted by internal rule ECT performance and was the 

most variable overall. While the sample size of this study limited the available analyses, the 

study demonstrated that using more complex methodology is able to provide rich qualitative 

information about the nature of EF, as well as offer a participant-friendly efficiency-based 

approach that may offer new insights when used in conjunction with traditional accuracy-based 

approaches. 
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Table 1 

 

Gaussian and non-Gaussian Statistics for the Elementary Cognitive Tasks (ECTs) 

 

  0-bit 1-bit 1bit IR 2-bit IR 

Accuracy 0.9986  (0.004) 0.9793  (0.02) 0.9424  (0.08) 0.9041 (0.13) 

Errors 0.16  (0.43) 2.49  (2.28) 6.91  (9.37) 11.51  (15.87) 

Average RT 310.77  (47.47) 340.25  (64.36) 437.73  (178.71) 1050.60  (291.61) 

Average RTSD 60.37  (21.58) 74.95  (27.41) 206.39  (249.17) 449.73  (210.70) 

Mu 261.28  (40.99) 285.01  (59.03) 269.2  (90.03) 609.84  (198.02) 

Sigma 21.96  (11.29) 31.03  (10.97) 25.94  (34.69) 108.96  (90.24) 

Tau 49.32  (17.31) 54.74  (23.7) 164.25  (111.21) 436.61  (239.7) 

Note. Values in parentheses are Standard Deviations. RTSD = Reaction Time Standard Deviation. Mu = Mean of the 

Gaussian component. Sigma = Standard Deviation of the Gaussian component. Tau = Combined mean/standard 

deviation of the non-Gaussian component. 
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Table 2 

 

Gaussian and non-Gaussian Statistics for the Color-Shape (CS) Task  

 

  Overall Non-switch Trials Switch Trials 

Accuracy 0.8956  (0.13) 0.9050  (0.15) 0.8861  (0.12) 

Average RT 1349.89  (319.97) 1241.63  (310.46) 1458.15  (349.08) 

Switch Cost 216.52  (164.16)     

Mu 651.19  (231.39)   

Sigma 124.8  (110.38)   

Tau 684.86  (275.69)   

Note. Values in parentheses are Standard Deviations. RTSD = Reaction Time Standard Deviation. Switch Cost = 

Average Switch trial RT minus average Non-switch trial RT. Mu = Mean of the Gaussian component. Sigma = 

Standard Deviation of the Gaussian component. Tau = Combined mean/standard deviation of the non-Gaussian 

component. 
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Table 3 

 

Gaussian and non-Gaussian Statistics for the Number-Letter (NL) Task 

 

  Overall 
Number 

Block 

Letter 

Block 

Switch 

Block 

Switch 

Trials Only 

Accuracy 
0.9334  

(0.07) 

0.968  

(0.04) 

0.9571  

(0.05) 

0.9188  

(0.11) 

0.899  

(0.11) 

Average 

RT 

1112.17  

(186.7) 

707.97  

(102.12) 

757.76  

(131.79) 

1301.82  

(245.89) 

1488.21  

(291.51) 

Switch 

Cost 

755.34  

(263.55) 
        

Mu 
684.25  

(124.79) 
    

Sigma 
134.06  

(65.03) 
    

Tau 
611.75  

(205.03) 
        

Note. Values in parentheses are Standard Deviations. Switch Cost = Average Switch trial only RT minus average 

trial RT for number and letter trials combined. Mu = Mean of the Gaussian component. Sigma = Standard Deviation 

of the Gaussian component. Tau = Combined mean/standard deviation of the non-Gaussian component. 
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Table 4 

 

Gaussian and non-Gaussian Statistics for the Stroop Task 

 

  Word Color Color-Word 

Accuracy 0.9405  (0.14) 0.9562  (0.1) 0.9282  (0.1) 

Average RT 722.42  (108.04) 696.54  (118.15) 865.14  (183.87) 

Mu   483.52  (79.39) 

Sigma   54.06  (40.86) 

Tau     402.19  (137.07) 

Note. Values in parentheses are Standard Deviations. Mu = Mean of the Gaussian component. Sigma = Standard 

Deviation of the Gaussian component. Tau = Combined mean/standard deviation of the non-Gaussian component. 
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Table 5 

 

Gaussian and non-Gaussian Statistics for the STOP-IT Task 

 

SSD SSRT SRRT NSRT Mu Sigma Tau 

277.51  

(128.39) 

275.64  

(49.02) 

490.94  

(89.37) 

553.86  

(116.54) 

446.00  

(79.56) 

73.33  

(34.73) 

97.16  

(48.02) 

Note: Values in parentheses are Standard Deviations. SSD = Stop-Signal Delay, calculated as the signal delay at 

which the participant is 50% likely to inhibit their response. SSRT – Stop-Signal RT = Calculated time after the 

stop-signal it takes for the participant to successfully inhibit a response. SRRT = RT for stop-signal trials, when 

participants did not successfully inhibit their response. NSRT = No-signal RT, RT for no-signal trials when 

participants respond normally. Mu = Mean of the Gaussian component. Sigma = Standard Deviation of the Gaussian 

component. Tau = Combined mean/standard deviation of the non-Gaussian component. 
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Table 6 

 

Gaussian and non-Gaussian Statistics for the Piek Updating (PU) Task 

 

  Overall Target Non-Target 

Accuracy 0.9521  (0.07) 0.8843  (0.19) 0.986  (0.02) 

Average RT 725.28  (191.72) 747.41  (229.22) 714.21  (187.48) 

Mu 423.39  (83.18)   

Sigma 48.77  (24.78)   

Tau 295.8  (138.64)     

Note: Values in parentheses are Standard Deviations. Target = trials where the stimulus matches the current target. 

Mu = Mean of the Gaussian component. Sigma = Standard Deviation of the Gaussian component. Tau = Combined 

mean/standard deviation of the non-Gaussian component. 
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Table 7 

 

Gaussian Statistics for the Sternberg Memory Scanning (SMS) Task 

 

  Overall Target Non-Target 

Accuracy 0.9307  (0.09) 0.9090  (0.12) 0.9525  (0.09) 

Average RT 938.44  (224.23) 963.48  (240.32) 913.4  (223.13) 

Mu 583.18  (110.91)   

Sigma 83.47  (31.65)   

Tau 346.85  (152.66)     

Note: Values in parentheses are Standard Deviations. Target = trials where the probe digit was in the trial sequence. 

Mu = Mean of the Gaussian component. Sigma = Standard Deviation of the Gaussian component. Tau = Combined 

mean/standard deviation of the non-Gaussian component. 
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Table 8 

 

Diffusion Model Parameters for the Elementary Cognitive Tasks (ECTs) and the Six Executive 

Tasks 

 

Task a v t0 st0 n 

1-bit 0.958  (0.346) 5.704  (1.314) 0.253  (0.052) 0.077  (0.039) 43 

1-bit IR 1.171  (0.362) 3.673  (1.422) 0.237  (0.077) 0.093  (0.119) 43 

2-bit IR 1.877  (0.7636) 1.723  (0.93) 0.472  (0.178) 0.296  (0.3) 43 

CS 2.24  (0.928) 1.174  (0.459) 0.46  (0.206) 0.437  (0.39) 43 

NL 2.393  (0.865) 1.349  (0.519) 0.442  (0.164) 0.412  (0.338) 43 

Stroop 1.923  (0.415) 1.739  (0.66) 0.325  (0.071) 0.11  (0.148) 42 

STOP-IT 0.873  (0.447) 1.536  (0.427) 0.335  (0.077) 0.275  (0.129) 43 

PU 1.711  (0.364) 2.327  (1.047) 0.317  (0.075) 0.063  (0.102) 43 

SMS 1.789  (0.705) 2.001  (0.778) 0.45  (0.105) 0.21  (0.161) 43 
Note: Values in parentheses are Standard Deviations. IR = Internal Rule. CS = Color-Shape task. NL = Number-

Letter task. PU = Piek Updating task. SMS = Sternberg Memory Scanning task. a = Boundary separation. v = drift 

rate. t0 = Non-decision time. st0 = variability in non-decision time. 
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Table 9 

 

Pairwise t-tests of Boundary Separation (a) between Executive Tasks and ECTs 

 

Comparison Mean SD SE t df p 

CS 
Stroop .3212095 .9800315 .1512221 2.124 41 .040 

STOP-IT 1.3669814 1.0692742 .1630628 8.383 42 <.001* 

NL 
Stroop .4590881 .9078525 .1400847 3.277 41 <.003* 

STOP-IT 1.5184628 .9588388 .1462215 10.385 42 <.001* 

PU 
Stroop -.2087738 .4361971 .0673067 -3.102 41 .003 

STOP-IT .8376163 .4650152 .0709142 11.812 42 <.001* 

SMS 
Stroop -.1457119 .8180104 .1262217 -1.154 41 .255 

STOP-IT .9156465 .7891878 .1203500 7.608 42 <.001* 

CS 
PU .5293651 .9916121 .1512194 3.501 42 <.002* 

SMS .4513349 .7117868 .1085465 4.158 42 <.001* 

NL 
PU .6808465 .8238398 .1256344 5.419 42 <.001* 

SMS .6028163 1.0065692 .1535004 3.927 42 <.001* 

CS NL -.1514814 1.1621877 .1772320 -.855 42 .398 

PU SMS -.0780302 .7474929 .1139916 -.685 42 .497 

STOP-IT Stroop -1.0494452 .5664756 .0874091 -12.006 41 <.001* 

1-bit 1-bit IR -.2126558 .3975713 .0606291 -3.507 42 <.002* 

1-bit IR 2-bit IR -.7063116 .6777626 .1033578 -6.834 42 <.001* 

Note: * Significance at the p < .002941 level following Bonferroni correction for 17 comparisons. Values in 

parentheses are Standard Deviations. IR = Internal Rule. CS = Color-Shape task. NL = Number-Letter task. PU = 

Piek Updating task. SMS = Sternberg Memory Scanning task.  
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Table 10 

 

Pairwise t-tests of Drift Rate (v) between Executive Tasks and ECTs 

 

Comparison Mean SD SE t df p 

CS 
Stroop -.5579167 .6814582 .1051513 -5.306 41 <.001* 

STOP-IT -.3624767 .5586332 .0851908 -4.255 42 <.001* 

NL 
Stroop -.4352714 .7283696 .1123899 -3.873 41 <.001* 

STOP-IT -.2069698 .5958452 .0908655 -2.278 42 .028 

PU 
Stroop .5528976 .9866229 .1522392 3.632 41 <.001* 

STOP-IT .7908000 .9996879 .1524510 5.187 42 <.001* 

SMS 
Stroop .2493500 1.0184311 .1571473 1.587 41 .120 

STOP-IT .4651628 .7330270 .1117856 4.161 42 <.001* 

CS 
PU -1.1532767 .8797275 .1341572 -8.596 42 <.001* 

SMS -.8276395 .6367722 .0971068 -8.523 42 <.001* 

NL 
PU -.9977698 .9385661 .1431300 -6.971 42 <.001* 

SMS -.6721326 .7987282 .1218049 -5.518 42 <.001* 

CS NL -.1555070 .5407066 .0824570 -1.886 42 .066 

PU SMS .3256372 1.0161793 .1549659 2.101 42 .042 

STOP-IT Stroop -.2098595 .7696166 .1187544 -1.767 41 .085 

1-bit 1-bit IR 2.0311512 1.8030929 .2749691 7.387 42 <.001* 

1-bit IR 2-bit IR 1.9502953 1.4858608 .2265916 8.607 42 <.001* 

Note: * Significance at the p < .002941 level following Bonferroni correction for 17 comparisons. Values in 

parentheses are Standard Deviations. IR = Internal Rule. CS = Color-Shape task. NL = Number-Letter task. PU = 

Piek Updating task. SMS = Sternberg Memory Scanning task.  
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Table 11 

 

Pearson Correlations between Boundary Separation and Drift Rate for the Elementary Cognitive 

Tasks (ECTs) and the Six Executive Tasks 

Task  r df p 

1-bit .155 41 .322 

1-bit IR -.077 41 .623 

2-bit IR .091 41 .564 

CS .348 41 .022* 

NL .407 41 .007** 

PU .039 41 .806 

SMS .296 41 .054 

Stroop -.173 40 .274 

STOP-IT -.342 41 .025* 

Note: * p < .05, ** p < .01. Values in parentheses are Standard Deviations. IR = Internal Rule. CS = Color-Shape 

task. NL = Number-Letter task. PU = Piek Updating task. SMS = Sternberg Memory Scanning task. a = Boundary 

separation. v = drift rate.  
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Appendix A: Demographic and Academic Information Form 
 

Demographic Information: 
 
ID #:  ________  Age:  ______    Sex: M/ F  Handedness: Right / Left / Ambidextrous 
 
Highest Level of Education or Year in School: ____________________ 
 
Primary Language: ____________________  (If fluent in several, note all) 
 
How many people are in your immediate family (includes only self, biological parents, siblings w/ 
same parents as you)?: ____ How many are left-handed? _____ 
  
What race or ethnicity do you associate most strongly with (circle all that apply)? 
 
African American Caucasian  Hispanic Asian and Pacific Islander    
 
Native American Middle Eastern  Other:________________________   
 
History of Psychological Conditions: 
Do you or anyone in your immediate family have any of the following? If YES, what and in whom? When 
diagnosed and by whom (family doctor, psychologist, etc.)? 
Psychiatric disorders (e.g., depression, anxiety, schizophrenia)? Y / N ______________ 
________________________________________________________________________ 
Learning disabilities (e.g., dyslexia, reading disorder, math disorder)? Y / N _________ 
________________________________________________________________________ 
ADHD? Y / N ___________________________________________________________ 
________________________________________________________________________ 
Neurological disorders (e.g., epilepsy, dementia, Alzheimer’s, Parkinson’s)? Y / N ____ 
________________________________________________________________________ 
Self only: Head trauma (e.g., concussion, traumatic brain injury, stroke)? Y / N _______ 
________________________________________________________________________ 
 If YES: Lost consciousness? Y / N How long? ________ Overnight hospital stay? Y / N 
             : Received treatment? Y / N what kind? ___________ Permanent damage? Y / N 
 If CONCUSSION: how long did symptoms last? ________ Any more since then? Y / N 
 
Are you currently taking any prescription medication? Y / N 
If YES: name, dosage, frequency, how long have you taken it?: ____________________ 
_____________________________________________________________________________________
___________________________________________________________ 
Do you have any vision-related problems (not including glasses/contacts)? Y / N____ 
________________________________________________________________________ 
     
Academics (from transcript): 
Major Field of Study ______________________ Overall GPA _____________ 
Average credits completed/semester ________________ [calculate] 
Withdrawals/Drops (W/WR)________ Incompletes (I) ________ D+ or lower________ 
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