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ABSTRACT 

A DISTRIBUTIONAL AND THEORETICAL ANALYSIS OF REACTION TIME IN THE 
REVERSAL TASK ACROSS ADULTHOOD 

 
by 
 

Kaitlynne N. Leclaire 
 
 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Driscoll 

 

The frontal lobes are known to atrophy with age (Lockhart & DeCarli, 2014) and 

integrity of this region has been implicated in maintaining executive functioning (Chayer 

& Freedman, 2001). Reversal learning tasks are frequently used in experimental 

paradigms to assess components of executive function. Extant reversal learning 

literature has largely assessed measures of accuracy, but reaction time (RT) has not yet 

been well characterized. The current study examines the empirical RT distribution of the 

reversal task by utilizing distributional and theoretical analyses to better characterize 

performance and how it changes with age. Participants included 43 young (ages 18-30; 

M = 21.76, SD = 2.85) and 139 community dwelling middle-aged adults (ages 40-61; M 

= 49.96, SD = 6.14). Results showed a Normal-3 Mixture distribution best fit the sample 

as a whole, with the ex-Gaussian distribution passing visual inspection. This suggests 

both models and their parameters should be considered to evaluate group differences 

for this task. Correlation results showed RT and accuracy are distinct components of 

reversal learning. Age related significantly to RT and more so to efficient RTs (Mu) than 

overall RT. A generalized regression further revealed that RT adds unique variance to 

explaining age-related differences in performance. Specifically, middle-aged adults 
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showed slower, efficient RT and increased intra-individual variability which has been 

previously linked to poorer frontal lobe processes and age-related cognitive decline 

(MacDonald, Nyberg, & Backman, 2006). Lastly, four RT-based factors were identified 

(Mental Efficiency, Intra-Individual Variability, Mental Speed, Inattention) that 

successfully distinguished groups with fractionated profiles of performance and should 

be further investigated to explore potential clinical implications in the context of cognitive 

aging. Overall, these findings highlight the importance of examining the RT distribution 

and measuring RT as a fractionated construct to further explain age-related differences 

in reversal learning. 

Keywords: normal aging, reversal learning, reaction time, Diffusion model 
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Background 

Normal aging is associated with functional decline in many cognitive domains, 

though not all are affected. Age-related declines in episodic memory, working memory, 

spatial learning, and certain components of attention are common (for a review see 

Drag & Bieliauskas, 2009). Alternatively, facets of cognition involving verbal skills, 

semantic memory, implicit learning, and priming are largely unaffected (Drag & 

Bieliauskas, 2009; Kausler, 1994). Throughout the inevitable process of aging, the 

frontal lobes are known to undergo atrophy and are perhaps first to be affected by age-

related pathological changes (Drag & Bieliauskas, 2009; Lockhart & DeCarli, 2014). 

This brain region has historically been implicated in relation to executive function which 

oversees many daily cognitive processes (Chayer & Freedman, 2001). Previous work 

has shown that cognitive performance can remain stable through the tenth decade of 

life, suggesting that normal age-related decline is modest and that more pronounced 

declines in cognition may represent incipient disease (Storandt, Grant, Miller, & Morris, 

2002). However, age remains one of the greatest risk factors for development of many 

late-life neurodegenerative disorders, including dementia (Lindsay et al., 2002). With 

increasing longevity and the rapidly increasing number of individuals in the population 

that may be affected, as well as the broader societal burden (e.g., financial, public 

health) that co-occurs, there is a growing interest in maintaining cognitive and everyday 

functioning, as well as preserving quality of life, throughout the lifespan. Therefore, it 

has become increasingly urgent to develop and utilize methods to sooner and better 

detect subtle cognitive changes in middle age for early intervention and preventative 

efforts. These methods should be specific and sensitive enough to detect differences in 
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changes related to normal or pathological aging, both of which are mild in middle age. 

Experimental behavioral tasks are promising avenues to assess early changes in 

executive function. These functions can be delineated in non-human paradigms and 

then tested in the human population in hopes of establishing consistency for 

translational testing.   

Executive function refers to a set of high-level cognitive processes such as 

inhibition, sustained attention, decision-making, working memory, and cognitive 

flexibility (Diamond, 2013). Reversal learning tasks, known to be frontal lobe-dependent, 

are frequently used in experimental paradigms to assess components of executive 

function. While reversal tasks have been predominantly utilized in non-human 

experimental paradigms (Brushfield, Luu, Callahan, & Gilbert, 2008; Lai, Moss, Killiany, 

Rosene, & Herndon, 1995; Schoenbaum, Nugent, Saddoris, & Gallagher, 2002; Tapp et 

al. 2003; Voytko, 1999), they have been adapted for human research (typically using a 

probabilistic paradigm) (Mell, Heekeren, Marschner, Wartenburger, Villringer, & 

Reischies, 2005; Weiler, Bellebaum, & Daum, 2008) and allow for cross-species 

comparisons. Reversal learning tasks first require subjects to learn a number of 

unambiguous (elemental) discrimination contingencies. The elemental discriminations 

involve learning to respond to ‘correct’ stimuli that are rewarded as opposed to 

‘incorrect’ stimuli which are not rewarded. Once participants reach a learning criterion 

(e.g., 11 correct responses on 12 consecutive trials), the task requires a flexible 

adjustment in behavior when reward contingencies previously learned are reversed. 

Ultimately, the Reversal Task assesses the ability to modify previously learned 

associations and is thought to measure cognitive flexibility and perseveration. In a 



 3 

primate model of human aging, it has been suggested that executive dysfunction, as 

measured by reversal learning perseverative responding, may exemplify an important 

attribute of age-related cognitive decline (Lai et al., 1995). While learning simple two-

choice discriminations (i.e., elemental discriminations) is often unaffected by aging 

(Driscoll et al., 2003; Reed & Squire, 1999; Rickard & Grafman, 1998), older adults 

have more difficulty with and show impairments on tasks that require switching cognitive 

sets (Wecker, Kramer, Hallam, & Delis, 2005). Therefore, reversal learning may be a 

sensitive approach for assessing age-related changes in executive functioning. Extant 

reversal learning literature has historically focused on measures of accuracy (correct vs 

incorrect responses) or learning (number of trials required to reach criterion) as their 

primary outcome, but reaction time (RT) has not yet been well characterized. The 

current study aims to fill this gap by examining distributional properties and a theoretical 

model of RT to fully investigate the underlying cognitive processes of the reversal 

learning task. 

Reaction time, the time taken to carry out a task, has been a prominent measure 

of cognitive processes in psychology since its debut by Donders (1869). It’s common 

practice for RT to be analyzed using parametric tests, such as an analysis of variance 

(ANOVA) using sample means. However, this prevalent approach may not be the 

appropriate statistical method when considering the characteristics of RT data and the 

parametric test assumptions of ANOVAs. RT is known to have a positively skewed 

distribution to the right with a ‘fat tail’ (Luce, 1986). Therefore, normal distributions (e.g., 

Gaussian distribution) and central measures of tendency, such as the mean, may not 

adequately capture important aspects of performance due to being obscured by the 
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non-normal distribution. Hence, parametric statistics can lead to misinterpretation of RT 

performance. However, analysis of the RT distribution has a potential to reveal 

important and interesting findings that are typically masked by parametric test 

assumptions. 

Past psychometric studies have highlighted age-related declines in cognitive 

function that reflect a shift in (for a review see Salthouse, 2010) and support analysis of 

the entire distribution. Numerous models can be employed to fit an RT distribution, as 

its shape can vary considerably depending on the specific task demands and individual 

variability in performance. Therefore, a single distribution model and its parameters may 

not be a best fit or most accurate in describing performance on all RT-based tasks. A 

comprehensive understanding of the appropriate analyses to examine the RT 

distribution of performance on a specific timed task is essential considering the use of 

RT distributions in making inferences about underlying psychological processes.  

A prominent model in cognitive literature is the ex-Gaussian distribution, which 

seems to be a good fit for many RT tasks (Heathcote, Popiel, & Mewhort, 1991; 

Hockley, 1984; Leth-Steenson, Elbaz, & Douglas, 2000; Luce, 1986; Mewhort, Braun, & 

Heathcote, 1992; Ratcliff, 1978, 1979). The ex-Gaussian model is a convolution of a 

normal and exponential distribution (see Figure 1) and consists of three parameters: Mu 

(μ), Sigma (σ), and Tau (τ). The normal component of the distribution is composed of 

Mu and Sigma, the mean and variance of the normal component of the ex-Gaussian 

distribution, respectively. The exponential component corresponds to Tau (i.e., the 

mean and standard deviation of the right tail). These parameters have been useful in 

distinguishing fast and slow components in responding. Furthermore, given the 
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convoluted nature of the ex-Gaussian model, it can fit distributions ranging from near 

normal to very skewed. Despite the popularity of this model for analyzing RT, ex-

Gaussian is not always the best fitting model. For example, a Weibull distribution was 

found to best fit the empirical RT distribution of a simple RT visual detection task 

(Maloney & Wandell, 1984). Furthermore, Sternberg & Backus (2015) showed that even 

when weak assumptions for sameness of ex-Gaussian shape were used, they were 

violated in all but approximately 21% of cases. Therefore, other distributions must be 

considered and investigated. For example, a Normal-3 (NL-3) Mixture distribution can 

be useful in revealing fast, slower, and slowest RTs (Osmon, Kazakov, Santos, & 

Kassel, 2018). NL-3 fits the empirical RT distribution with the convolution of three 

normal Gaussian components (see Figure 2). The first component consists of the 

fastest responses, the second component the slower responses, and the third includes 

the slowest responses. Each NL-3 component consists of several parameters: location 

or mean (Location1, Location2, Location3), dispersion or standard deviation 

(Dispersion1, Dispersion2, Dispersion3) and probability or proportion of responses in 

each of the three normal distributions (Probability1, Probability2, Probability3).  

            While distribution parameters can be helpful in characterizing RT performance, a 

theoretical model is needed to understand the cognitive implications of timed 

performance. The Diffusion Model (Ratcliff, 1978) is a successful and validated 

theoretical model that has been increasingly used in analyzing fast two-choice 

decisions. The model consists of several parameters that allow detailed explanations of 

behavioral data (i.e., variation in RT and accuracy). Explanations are accomplished by 

separating the quality of evidence that enters a decision from decision criteria and non-
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decision processes (Ratcliff & McKoon, 2008). Ultimately, accuracy, mean RTs, and RT 

distributions are translated into components of cognitive processes. The following 

parameters are estimated in the Diffusion model: decision threshold (a), drift rate (v), 

and response time constant (t0) (see Figure 3). The decision threshold (a) is the width of 

the interval between decision boundaries (i.e., correct or incorrect response). The drift 

rate (v) is the mean rate at which information is accumulated to make a decision. Lastly, 

response time constant (t0) reflects the duration of extra-decisional components (i.e., 

non-decisional components such stimulus encoding and response execution). Due to 

the ability of separating components of processing, the Diffusion model has been 

frequently used to study the effects of age on memory and decision criteria across a 

variety of two-choice decision tasks (Ratcliff & McKoon, 2015; Ratcliff, Thapar, & 

McKoon, 2001, 2003, 2004, 2006, 2007, 2010, 2011; Thapar, Ratcliff, & McKoon, 2003) 

and may be an appropriate fit for the current two-choice discrimination task (i.e., 

reversal learning task). 

A consensus in the literature is that aging has a small effect on item recognition 

memory, but this is largely based on accuracy measures (Balota, Dolan, & Duchek, 

2000; Craik, 1994; Craik & McDowd, 1987; Ratcliff & McKoon, 2015). Another central 

finding in the literature is that RTs increase and become more variable as people age 

(Deary & Der, 2005; Morse, 1993). More recent research in aging using the Diffusion 

model for fast two-choice decisions suggests that as people age their RTs increase, 

although this increase is associated with little or no change in accuracy (Ratcliff et al., 

2010). Despite this relative consistency in accuracy, RT remains an important facet of 

performance to characterize given the information that can be obtained from numerous 
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parameters from distributional and theoretical models. For example, using the Diffusion 

model, Ratcliff and colleagues (2010) suggest the slowdown in RT is due to older 

adults’ setting conservative decision boundaries. Reluctant to commit errors, they set 

their decision criteria significantly further from the starting point of the decision process 

than young adults do. However, they remain just as accurate as young adults when 

making the ultimate decision. Furthermore, older adults are slower in non-decision time, 

which includes processes outside of decision-making itself (e.g., stimulus encoding and 

response execution) and contributes to slower RTs (Ratcliff & McKoon, 2015; Ratcliff et 

al., 2006, 2007, 2010, 2011). However, it remains unclear if physical components, such 

as changes in the motor system, contribute to this slowing and subsequently impact the 

quality of RT as a performance measure in old age. 

Extant literature presents a dilemma that is two-fold. First, if accuracy is used as 

the dependent variable for two-choice tasks then aging is not expected to significantly 

affect cognitive processes. On the other hand, if mean RTs are used as the dependent 

measure then aging is expected to have a large effect (Ratcliff, 2007). Interestingly, in 

much of the past experimental literature, either accuracy or mean RTs have been used 

alone to describe behavioral data. However, it is important to consider the two variables 

simultaneously to get a clearer picture regarding age-related cognitive changes. For 

instance, examining accuracy in isolation may suggest little to no cognitive decline, 

while mean RTs alone may suggest cognitive slowing. The Diffusion model provides a 

framework to remedy this problem and has several advantages over alternate 

approaches (e.g., ANOVAs of RT means) (Voss & Voss, 2007). First, the model 

considers both accuracy and RT simultaneously, which addresses the aforementioned 
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concern about a single dependent variable. Second, the model consists of several 

parameters that allow detailed explanations of the behavioral data. Third, data is 

efficiently utilized such that both RT means are used and the RT distribution is fully 

analyzed, which allows for a more thorough understanding of reversal learning and how 

it changes with age.  

Aims & Hypotheses 

The present study aims to fill a gap in the literature by thorough examination of 

the empirical reaction time distribution in middle-aged (ages 40-61) and young (ages 

18-30) adults, in order to better characterize reversal learning performance and how it 

changes with age. First, the best statistical fit to the reversal task RT distribution was 

examined by employing multiple distributional analyses to allow for comparison (Aim 1). 

Based on the existing literature, I predicted that the ex-Gaussian distribution would be 

the best fit among the 10 distributions tested. While ex-Gaussian parameters would be 

retained to compare groups for differences, Normal-3 Mixture (NL-3) distribution 

parameters would also be retained to examine fast, medium, and long RTs between 

middle-aged and young adults (1a). Based on prior reports, I also predicted that middle-

aged participants would show a higher proportion of responses, with longer and more 

variable RTs, in the second and third distributions of the NL-3 compared to younger 

participants (1b). Furthermore, I predicted that middle-aged participants would have 

‘fatter’ tails in the RT distribution with greater values for the Tau parameter of the ex-

Gaussian distribution (i.e., slower RTs) (1c). Second, the current study aimed to 

describe if and how reversal learning changes with age, by examining accuracy and RT 

measures by employing a Diffusion model analysis to separate components of cognitive 
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processing (Aim 2). Based on prior literature (Ratcliff et al., 2010), I predicted that 

middle-aged participants would have a higher threshold (a), indicating they would be 

more conservative about a decision and accumulate more information before making a 

correct response (2a). In contrast, no group differences were expected in drift rate (v), 

indicating that the quality of information collected by young and middle-aged 

participants does not differ (2b). Lastly, I predicted that middle-aged participants would 

be slower in non-decision time (t0) than young participants, indicating slower encoding 

and/or response execution (2c). 

Method 

Participants 

43 young adult (ages 18-30; M = 21.76, SD = 2.85; 29 females, 14 males) and 

139 middle-aged adult (ages 40-61, M = 49.96, SD = 6.14; 80 females, 59 males) 

participants were included in the current study. Young adults were recruited through 

SONA (an online participation database of the Psychology department at the University 

of Wisconsin-Milwaukee), while middle-aged adults were recruited from the community. 

Participants who self-reported psychiatric and neurological disorders, learning disability, 

and other medical conditions (e.g., head injury, stroke, seizures) were excluded. All 

participants had normal or corrected vision, which was necessary for completion of the 

tasks (e.g., to see the consent form and computer monitor). The local Institutional 

Review Board (IRB) approved all procedures. 

Stimulus Presentation 

Visual discriminations were presented on a 15.6-inch Dell laptop screen with 

1600 x 900-pixel resolution using Presentation® software, a stimulus delivery and 
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experiment control program (Version 16.0, Neurobehavioral Systems, Inc., Berkeley, 

CA, www.neurobs.com). Visual stimuli were presented with a height of 342 pixels by a 

width of 512 pixels. 

Procedure 

 All data collection occurred on the same day. First, written informed consent was 

obtained from all subjects in accordance with the University of Wisconsin-Milwaukee 

IRB. Then, participants completed two visual discrimination tasks (i.e., elemental 

discriminations and reversal learning) on a laptop computer. On each trial, pairs of non-

nameable visual stimuli, randomly generated from a subset of 27, were presented on a 

computer screen. Each trial began with a fixation cross that was presented in the center 

of the display for 1s and followed by a stimulus pair presentation. Participants were 

instructed to choose one of two visual stimuli to find out whether their choice was 

correct or incorrect by pressing one of two designated keyboard keys that correspond to 

either the left or the right stimulus element of a pair. The key press cleared the stimulus 

pair from the display. Response evaluations (e.g., accuracy and RT) were recorded to a 

file following the key press. Correct responses were followed by a presentation of the 

word ‘Correct’ in the center of the display accompanied by a high-pitched tone for 1s. 

Incorrect responses were followed by the word ‘Incorrect’ presented in the center of the 

display accompanied by a low-pitched tone for 1s. After a 2s delay the display was 

cleared and a 2s intertrial interval followed. Participants were instructed to respond as 

quickly and accurately as possible based on feedback they received after each trial 

ended. 
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Both tasks were presented in six phases using a stepwise approach. Phases 1-3 

consisted of elemental discriminations only (see Figure 4). Stimulus pair A+B- was 

presented during phase 1. During phase 2 stimulus pair C+D- was presented in addition 

to the A+B- pair. In phase 3 the final elemental discrimination pair, E+F-, was presented 

in addition to the previous two pairs. At this point, participants would have learned which 

visual stimuli was ‘Correct’ in each pair. Then, in the following phases (4-6), the reward 

contingencies previously learned were reversed (i.e. reversal learning; see Figure 4). 

Reversal learning was also introduced in a step-wise approach, such that stimulus pair 

A-B+ was presented during phase 4. During phase 5, stimulus pair C-D+ was presented 

in addition to the A-B+ pair. In phase 6, the final pair, E-F+, was presented in addition to 

the previous two pairs. In the elemental discrimination phases, a correct response 

indicated successful learning and memory of the rewarded stimuli in each pair, while RT 

measured the participant’s speed of processing. A longer (i.e., slower) RT indicates a 

greater amount of time required to recall or learn the correct stimuli. During the reversal 

phases, a correct response indicated successful learning of the new (i.e., reversed) 

contingency, while an incorrect response suggests difficulty switching cognitive sets. 

Within each phase every fifth trial displayed a previously learned stimulus pair. Training 

continued for each phase until the participant made 11 correct responses on 12 

consecutive trials. A maximum of 400 trials were allotted to complete the task, after 

which the testing was discontinued.  

Data Analysis 

Data preparation. Data preparation techniques were used to explore outliers 

and missing values with imputation using JMP techniques (SAS, 2015a). Specifically, 
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even with distribution-level analyses physiologically ‘impossible’ RTs are usually 

excluded. In the current study, RTs less than 150ms were excluded as ‘impossible’ RTs. 

Long RTs are often not excluded when the entire RT distribution is analyzed with non-

normal techniques; however, long RTs were examined using outlier techniques because 

such an approach may facilitate distinguishing a ‘true’ outlier from a long RT due to 

inattentiveness. In particular, with skewed RT distributions traditional mean-based and 

distribution-dependent methods such as ANOVA are inappropriate because they are 

based upon the assumption of a normal distribution. Therefore, multiple outlier analyses 

were used that are more appropriate for non-normal distributions, including Quantile 

Range, Robust Fit, Multivariate Robust, and Multivariate k-Nearest Neighbor analyses. 

Quantile Fit is appropriate because it is a distribution-free approach that sorts data from 

smallest to largest values and identifies extreme values based upon empirical quantile 

ranges. Robust Fit uses a robust estimate of the distribution center and spread that for 

this study was based upon the Cauchy distribution of extreme values. Multivariate 

Robust calculates the Mahalanobis distance of a multivariate distribution that will 

include the Diffusion model parameters a, v, and t0. Finally, the Multivariate k-Nearest 

Neighbor uses multiple values of k-nearest neighbors to each data point using a 

Fibonacci sequence to identify extreme values. Extreme data points were excluded 

based upon convergence of all above approaches. 

 Additionally, data were prepared by examining missing values. Given there was a 

small number of missing values, imputation was used to maximize sample size. In 

cases where a participant was missing an entire portion of the reversal task (e.g., all 

reversal phases) that participant was excluded (N=1). Otherwise, missing data was 
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imputed using the multivariate normal imputation procedure with a shrinkage estimator. 

This method imputes data based upon the least squares derived covariance matrix of all 

non-missing cases. Using shrinkage estimators improves the estimation of the 

covariance matrix. 

Distributional Analyses & Testing Group Differences  

Testing aim 1. RT distributions are known to be right-skewed, obviating the use 

of parametric statistics that are dependent upon normal, Gaussian distributions. As a 

result, group level distributional analyses were completed by examining best fit of the 

following distributions using JMP (SAS, 2015a, 2015b): ex-Gaussian, Normal-3 Mixture, 

Normal-2 Mixture, LogNormal, GLog, Gamma, Weibull, Extreme Value, Exponential, 

and Normal. Best fit was determined based on which distribution had the lowest 

Akaikie’s Information Criterion-corrected (AIC-c: SAS, 2015b), which is a maximum 

likelihood estimation method. If other distributions had AIC-c values within a 0 to 2-point 

range of the model with the lowest AIC-c they were considered a comparable fit 

(Burnham & Anderson, 2004). Determining best fit characterizes RT performance and 

allows best choice of the appropriate parameters to evaluate group differences. To 

examine group differences, a nonparametric analysis was performed because 

assumptions of ANOVA were not met due to the non-normal RT distribution. Therefore, 

a Kruskal-Wallis 2-Sample Exact test was utilized, as it satisfies the assumption that the 

groups have similar distribution shapes (ex-Gaussian). The Kruskal-Wallis test ranks all 

data from the groups to test whether the samples originate from the same distribution. 

Specifically, this procedure compares the ranks to examine whether the medians of the 

groups are different. Best distributional fit was also analyzed at the individual level.  
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Testing aim 2. Diffusion model analyses assume that information accumulates 

continuously until one of two thresholds is reached (i.e., a correct or incorrect 

response). Fast-dm is free software for estimating diffusion model parameters (Voss & 

Voss, 2007). The program uses the partial differential equation (PDE) method to 

calculate predicted RT distributions. For parameter estimation, the Kolmogorov-Smirnov 

(KS) statistic was applied. This statistic is the maximal vertical distance of the predicted 

and empirical cumulative RT distribution. The Diffusion model translates accuracy, 

mean RTs, and RT distributions into components of cognitive processing to characterize 

the decision-making process. Accuracy aids in describing response threshold and bias, 

while RT provides insight into speed and quality of information processing (Ratcliff & 

McKoon, 2008). The following parameters were estimated in the Diffusion model: 

decision threshold (a), drift rate (v), and response time constant (t0). The decision 

threshold (a) is the width of the interval between decision boundaries (i.e., correct or 

incorrect response). The drift rate (v) is the mean rate at which information is 

accumulated to make a decision (when information accumulation reaches the correct or 

incorrect boundary, a). Lastly, response time constant (t0) reflects the duration of extra-

decisional components (including stimulus encoding and response execution among 

any other non-decisional factors contributing to RT).  

Traditional analyses. While ANOVAs assume a normal distribution and are not 

appropriate analytic methods for RT tasks, these traditional analyses remain widely 

used in the extant literature and are also examined here for comparison purposes to 

nonparametric analyses and the Diffusion model. 
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Exploratory Analyses 

To further investigate reversal learning performance, correlations and partial 

correlations between accuracy and RT were used to determine whether the two 

measures assess distinct aspects of performance. Generalized regressions addressed 

what distinct measures were contributing to distinguishing age-related differences in 

reversal learning. This technique, rather than ANOVAs or multiple regressions, was 

used for two purposes. First, high dimensional data were utilized with 17 predictors and 

generalized regression with the adaptive elastic net procedure has the oracle property, 

which allows zeroing out non-contributory variables. Second, the criterion variable (i.e., 

age) was distributed as a binomial variable with Poisson distribution characteristics, 

making traditional ANOVA and multiple regression techniques inappropriate. 

Generalized regression allows modeling the Poisson distribution to better model the 

data and find reliable predictors of age. Finally, cluster analysis was used to determine 

whether combinations of variables would identify unique clusters of participants in 4-

dimensional space. Since cluster analysis is susceptible to mere level-of-performance 

differences, principal components analysis was executed utilizing reaction time and 

accuracy data from the Reversal Learning task, as well as parameters from the 

Diffusion model (a, v, t0), ex-Gaussian (Mu, Sigma, Tau), and Normal-3 (Location1-3, 

Dispersion1-3, Probability1-3) distribution analyses. Accuracy data from the Reversal 

Task included trials-to-criterion for both the elemental and reversal phases of the task. 

Utilizing the factor scores taken in the principal components analysis ensures 

orthogonal variables to enter into the cluster analysis to generate better groupings of 

participants’ reversal learning performance. As a result, a hierarchical cluster analysis 



 16 

was utilized, and clusters were interpreted according to the profile of results from the 

aforementioned parameters to assist in identifying unique clinical groups based on 

reversal learning performance.  

Results 

Distributional Analyses  

A Normal-3 Mixture distribution was the best fit for group RT (see Figure 5), 

including all participants, with no other model within 2 AIC-c points, although an ex-

Gaussian distribution passed visual inspection (see Figure 6). While the Normal-3 was 

the best fit for the sample as a whole, very few individual participants had the Normal-3 

Mixture as the best fitting distribution. The LogNormal distribution was the best fit for 

120/182 participants (89 middle-aged; 31 young). The Normal-2 Mixture distribution was 

the best fit for 39/182 participants (30 middle-aged; 9 young), while the Normal-3 

Mixture was the best fit for 17/182 participants (14 middle-aged; 3 young). Furthermore, 

6 middle-aged participants had a GLog (n=1), a Gamma (n=3) and a Weibull (n=2) as 

best fit. Many participants had multiple best fit distributions according to the range of 2 

points for AIC-c values, most of which were Normal-2 or Normal-3 Mixture distributions. 

Group Differences  

Group differences in the Diffusion model, ex-Gaussian, and Normal-3 Mixture 

distribution parameters were examined using both the Wilcoxon/Kruskal-Wallis tests 

due to the non-normal parameter distributions. Additionally, the Kolmogorov-Smirnov 2-

Sample test was utilized because it is sensitive to differences in both shape and location 

of the two group distributions. For sake of comparison to existing literature, traditional 
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ANOVA methods were also employed to show the importance of using distribution-free 

statistics in RT tasks where normal distributions are not extant.  

For Diffusion model parameters, groups differed only on the a parameter (X2[1] = 

11.93, p = .0006; KS = .13, p = .0038), indicating middle-aged adults displayed a more 

conservative decision threshold. Within ex-Gaussian parameters only Mu was different 

between groups on both parametric and nonparametric statistics (X2[1] = 47.76, p < 

.0001; KS = .27, p <.0001), indicating middle-aged adults showed slower, efficient RTs. 

In contrast, the ex-Gaussian parameter Sigma was only different on the Kolmogorov-

Smirnov Two-Sample test, indicating that central tendency of the two groups was not 

different but distribution shape was different (KS = .10, p = .0352). Group differences in 

Sigma revealed middle-aged adults displayed more variable, efficient RTs. Non-

parametric tests were important for the ex-Gaussian Tau parameter where no difference 

was evident on ANOVA (F[1,180] = 1.20, p = .275) but both the Kruskal-Wallis and 

Kolmogorov-Smirnov 2-Sample test showed a group difference (X2[1] = 4.99, p = .0255; 

KS = .14, p = .0012), with younger adults displaying more slower and inefficient RTs in 

the exponential component. 

Traditional Analyses for Comparison (e.g., ANOVAs) 

One-way ANOVAs examining the middle-aged and young groups on the ex-

Gaussian parameters (Mu, Sigma, Tau), Normal-3 parameters (Location1-3, 

Dispersion1-3, Probability1-3), and Diffusion model parameters (a, v, t0) found the 

groups to differ on the Mu parameter [F(1,179) = 36.441, p < .001], Location1 [F(1,155) 

= 8.849, p = .003], and Location2 [F(1,151) = 5.624, p = .019]. These results suggest 

that younger adults have faster and more efficient responding (Mu = 462.98) than 
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middle-aged adults throughout the Reversal Task (Mu = 633.41ms), as well as faster 

RTs in the first (L1 = 791.76ms) and second (L2 = 1544.91ms) components of the NL-3 

distribution than middle-aged adults (L1 = 912.58ms; L2 = 1853.82ms).  

To further investigate group differences within different phases of the Reversal 

Task (i.e., elemental vs. reversal), 2x2 ANOVAs were conducted to examine the effect 

of age and phase on RT, trials-to-criterion, and Diffusion model parameters (a, v, t0). 

Results showed a significant main effect of age regarding correct RT responses 

[F(1,358) = 20.262, p < .001], as well as significant main effects of age [F(1,338) = 

15.248, p < .001] and phase [F(1,338) = 33.361, p < .001] for incorrect RT responses. 

Younger adults responded significantly faster than middle-aged adults when making 

both correct and incorrect responses. Furthermore, younger adults responded 

significantly faster than middle-aged adults when making incorrect responses in both 

the elemental and reversal phases of the task. Of note, 18 middle-aged and 4 younger 

adults were not included in this incorrect RT analysis as they did not have any incorrect 

responses during the elemental phase of the task. In regard to accuracy and learning, 

results of a 2x2 ANOVA showed a significant main effect of phase, such that, regardless 

of age, all subjects required a significantly lesser number of trials to reach criterion 

during the elemental phase (M = 36.25, SD = .69) in comparison to the reversal phase 

(M = 39.14, SD = .69), F(1,358) = 8.679, p = .003. Groups did not significantly differ in 

trials-to-criterion across the task as a whole. To further investigate responding during 

the reversal phase, the first presentation of reversal learning (Phase 4) was also 

examined. Results of one-way ANOVAs showed both middle-aged and young adults 

required similar trials-to-criterion within Phase 4, but younger adults responded 
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significantly faster (M = 877.07, SD = 267.76) than the middle-aged adults (M = 

1044.96, SD = 270.48) throughout this first phase of reversal learning. Distributions 

were normal for ED-RT-correct and ED-trials-to-criterion as well as RL-RT-correct but 

not RL-trials-to-criterion. 

Lastly, Diffusion model parameters were examined with 2x2 ANOVAs to further 

characterize responding based on age and phase. Results showed a significant 

interaction between age and phase on the decision boundary parameter [F(1,358) = 

4.076, p = .044], such that middle-aged adults displayed lower conservatism in making 

a decision (i.e., a lower decision threshold; a = 2.76) than young adults (a = 2.89) on the 

easy, elemental trials, but displayed greater conservatism on the harder, reversal trials 

(middle-aged adults, a = 2.22; young adults, a = 1.95). Furthermore, results indicated a 

significant interaction between age and phase on the drift rate parameter [F(1,358) = 

6.296, p = .013], but no main effects of either age or phase. Middle-aged adults 

displayed a higher drift rate (v = 1.55) for the elemental phase, but a lower drift rate (v = 

1.33) for the reversal phase, in comparison to young adults (ED, v = 1.31; RL, v = 1.44). 

This suggests that there is a difference in information quality depending upon difficulty 

of the task. Finally, results showed a significant main effect of age on the non-decision 

parameter [F(1,358) = 4.227, p = .041], indicating middle-aged adults (t0 = .51) were 

slower in the cumulative total of stimulus encoding and response execution than young 

adults (t0 = .46) throughout the entire reversal task. 

However, distributions were not normal suggesting that ANOVAs are of 

questionable value since normality is an underlying assumption of this test statistic. 
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Exploratory Analyses 

Correlations. Correlating the Diffusion model (a, v, t0), ex-Gaussian (Mu, Sigma, 

Tau), and NL-3 parameters (Location1-3, Dispersion1-3, Probability1-3) with the trials-

to-criterion variables from the elemental discrimination (ED) and reversal learning (RL) 

portions of the Reversal Task revealed little evidence for collinearity. Out of 272 

correlations there was only one value >.9 (Probability1 with Probability2), 2 values >.8 

(Location2 with both Location3 & Dispersion1), and 3 values >.7 (Location1 with Mu & 

Location2 & Dispersion1). 

ED trials-to-criterion was not correlated with ED RT-all trials (r = -.01, p = .90). 

Likewise, RL trials-to-criterion related nonsignificantly with RL RT-all trials (r = .11, p = 

.12). Mu showed a nonsignificant relationship to ED trials-to-criterion (r = -.14, p = .07) 

and likewise with RL trials-to-criterion (r = -.03, p = .68). These results indicate that 

speed and accuracy in reversal learning are unrelated, even for efficient RT (Mu), and 

that no speed-accuracy trade-off was present in these data. 

 The relationship of accuracy and RT to age was also examined. Age related 

significantly to Mu (r = .36, p < .0001), ED RT-all trials (r = .21, p = .004), and RL RT-all 

trials (r = .30, p < .0001). Given the non-normal distributions, Spearman’s rho was 

executed, showing similar, though slightly higher, values for all analyses and are not 

further discussed. Partial correlations were examined between the two speed measures 

(Mu and RT-all trials [separately for ED and RL]) and age. Mu reduced the relationship 

of age with the other two RT variables to negligible values (r < -.02 for ED RT-all trials; r 

= .11 for RL RT-all trials). In contrast, ED/RL RT-all trials did not greatly affect the 

relationship between Mu and age (for ED: r = .36 reduced to .29; RL: r = .36 reduced to 
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.22). These results suggest that age relates to RT in the reversal task, and more so to 

efficient RTs (Mu) than overall RT. 

 Overall, the correlation results indicate that RT and accuracy are distinct 

components of reversal learning performance and should both be evaluated further with 

the other Diffusion model, ex-Gaussian, and Normal-3 Distribution parameters to 

understand the relationship between Reversal Learning and age. As a result, a cluster 

analysis was utilized to examine unique performance profiles across the factors 

generated from the principal component analysis. Furthermore, a generalized 

regression analysis was used to better understand which variables were most predictive 

of age. 

 Factor analysis. Diffusion model (a, v, t0), ex-Gaussian (Mu, Sigma, Tau), and 

NL-3 (Location1-3, Dispersion1-3, Probability1-3) variables used in the principal 

component analysis yielded four factors with eigenvalues >1.0 (4.79 = 27.19%, 3.04 = 

18.85%, 2.25 = 17.38%, 1.51 = 13.92%), accounting for 77.32% of the variance. The 

four factors are labeled ‘Mental Efficiency’, ‘Intraindividual Variability’, ‘Mental Speed’, & 

‘Inattention’ (see Table 1 for loadings on each of the four factors). Factor scores were 

generated for use in the cluster analysis and generalized regression (see Table 2). 

 Cluster analysis. The cubic clustering criterion was maximized at 5 clusters and 

the 4 factors entered into the cluster analysis were well absorbed with: R2 = .39 for 

Mental Efficiency (ME); R2 = .52 for Intra-Individual Variability (IIV); R2 = .39 for Mental 

Speed (MS); and R2 = .61 for Inattention (IA).  

Cluster 1 was the youngest cluster (Xage = 37) and represented a good 

performing group with the best or nearly best performance across all reversal learning 
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factors (ME = -.71; IIV = -.17; MS = -.56; IA = -.17). Furthermore, this cluster, along with 

cluster 4, had the least conservative Diffusion model criterion (a), second fastest drift 

rate (v), and was in the fastest group for non-decision speed (t0). Among the ex-

Gaussian parameters, cluster 1 had the fastest Mu, the lowest Sigma variability, and the 

second lowest Tau behind cluster 4. This cluster’s quick mental speed was verified in 

the NL-3 distribution location parameters, having the fastest times in both the first and 

second normal component and tied for fastest in the third component with cluster 3. 

Likewise, variability in each of the three normal components was lowest (first 

component) or in the lowest group (second and third component). The other four 

clusters were a mix of good and bad performance, indicating that the cluster analysis 

was successful in distinguishing groups with fractionated profiles of performance. 

Cluster 2 was the second oldest cluster (Xage = 48) and distinguished by good 

performance in Intra-Individual Variability (-.54), Mental Speed (-.22), and Inattention 

(.61), while overall Mental Efficiency (.71) was distinguished as the worst compared to 

all other clusters. Further characterizing this cluster, it, along with cluster 5, had the 

most conservative decision boundary (a) in the Diffusion model. Additionally, it was 

behind only cluster 4 for the slowest drift rate (v) and was behind only cluster 3 for the 

slowest non-decision time (t0). In contrast, efficient RT and variability was relatively 

intact (Mu = 586ms, Sigma = 70ms) and off-task RT was middling (Tau = 620ms). 

Consistent with relatively intact efficient RT, cluster 2 had the highest percentage of RTs 

in the first NL-3 component and relatively few RTs in the second and third components 

of the NL-3 distribution. One may hypothesize that such a pattern of results indicates an 

older group with slow motor-sensory responding and tentative decision-making owing to 
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greater consideration of information, which may be indicative of mild cognitive 

impairment. 

 Cluster 3 was the second youngest cluster (Xage = 43) and had relatively good 

Mental Efficiency (-.60) while Intra-Individual Variability (.62), Mental Speed (1.47), and 

Inattention (3.83) were poor. Interestingly, cluster 3 had the fastest drift rate (v) but the 

slowest non-decision time (t0) and efficient RT (Mu = 759ms, along with cluster 4). 

Consistent with its high Intra-Individual Variability, efficient responses were associated 

with the greatest variability (Sigma = 115ms, along with cluster 4). This cluster also had 

the greatest off-task RTs (Tau = 1027ms) and had the longest RTs in the third 

component of the NL-3 distribution. They also displayed the greatest variability in that 

third component and the lowest probability of response in the first normal component of 

the NL-3 distribution, but the greatest probability in the third normal component 

(Probability3 = 37%). One may hypothesize that such a pattern of results suggests an 

impulsive, relatively young cluster with variable responding owing to being inattentive 

and off-task. 

Cluster 4 displayed relatively low Intra-Individual Variability (-.25) and little 

Inattention (-.82), but their Mental Efficiency (.28) was marred by slowed Mental Speed 

(.94). Further analysis of specific parameters showed a relatively conservative boundary 

for decisions (a = 2.28) and the slowest drift rate (v = 1.70) and non-decision time (t0 = 

.58, along with cluster 3). It was the oldest cluster (Xage = 49), had the slowest efficient 

RT (Mu = 771, along with cluster 3), and had the most variability among efficient 

responses (Sigma = 115ms, along with cluster 3). In contrast to cluster 3, off-task 

responding was the least likely in this cluster (Tau = 387ms). Mental Speed was 
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consistently slow across all three normal components of the NL-3 distribution and 

variability was great in the first normal component but not the second or third normal 

components, consistent with low Tau values. This cluster had the highest percentage of 

responses in the first component (prob1 = 87%, along with cluster 2) and was among 

the lowest percentages in the second and third component. While this cluster was 

similar to cluster 2 in age and slowed responding, it showed less impairment because of 

few inattentive/off-task responses. As a result, it may be hypothesized that this cluster is 

most representative of normal age-related cognitive changes.  

Cluster 5’s Mental Efficiency (.62) was marred by the greatest Intra-Individual 

Variability (1.78) among all of the clusters by a wide margin. Otherwise, their Mental 

Speed (-.08) was relatively good with few inattentive/off-task responses (-.25). Such 

variable responding led to a conservative decision boundary (a = 2.92), although drift 

rate was second best (v = 1.18) and not different from the best drift rate (v = .845). 

Additionally, non-decision time (t0 = .393) and efficient responding (Mu = 574ms) were 

relatively fast, as well as responding in the first and second normal component of the 

NL-3 distribution (Location1 = 847ms; Location2 = 1736ms) but not the third normal 

component (Location3 = 4098ms). Because of the variability in RT, this cluster had a 

high proportion of responses in the second normal component (Probability2 = 40%) but 

not the third normal component (Probability3 = 3%). This cluster was largely middle-

aged with the 90th percentile at 55.8 years; and, therefore, may represent a non-

impaired group with trait-level variable responding, considering the good efficient 

responding with good ability to accumulate information and stay on-task. 
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 Generalized regression. In order to identify the best predictors of age among 

the reversal learning parameters, an adaptive elastic net generalized regression with 

Poisson distribution modeling and AIC penalty was utilized. Variables were included 

from the Diffusion model (a, v, t0), ex-Gaussian distribution (Mu, Sigma, Tau), NL-3 

distribution (Location1-3, Dispersion1-3, Probability1-3), and the ED and RL trials-to-

criterion variables. A Generalized R2=.83 demonstrated good prediction of age with 7 of 

the original 17 variables being significant predictors, including, in order of significance, 

Mu, Sigma, Dispersion1, Location1, Dispersion2, t0, and Tau. Additionally, v, t0, and Tau 

were marginally significant predictors. Only two of those predictors had Independent 

Resampled Variable Importance values greater than .1 (Mu = .645; Dispersion1 = .221), 

with slower efficient RTs (Mu) and more variable efficient RTs (Dispersion1) being 

associated with older age. 

Discussion 

To the best of my knowledge, the present study is the first within the reversal 

learning literature to examine the distributional properties of the Reversal Task RT 

distribution and to apply a theoretical model to put forth a nuanced account of reversal 

learning performance and how it changes with age. Historically, the literature has largely 

focused of measures of accuracy as the primary outcome, which is likely due to the 

daunting statistical considerations of non-normal distributions. The present study 

contributes to the accuracy literature by demonstrating that thorough examination of RT 

can reveal important age differences in speed of responding for reversal learning 

performance. 
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As predicted, the RT distribution of the Reversal Task was a non-normal distribution, 

obviating the use of the traditionally applied ANOVA models because they are 

dependent upon a normal distribution. My first aim was to examine the best statistical fit 

to the tasks RT distribution to characterize performance and determine the appropriate 

parameters to evaluate group differences. Contrary to predictions and much of the RT 

literature on two-choice tasks, the ex-Gaussian distribution was not the best fit for group 

RT. However, it did pass informal visual inspection suggesting its parameters may still 

offer important characterization of performance. Rather, a NL-3 distribution was the best 

fit for group RT (including all participants) and further supports the notion that the ex-

Gaussian distribution cannot always be assumed to be the best fitting model. 

Furthermore, individual analysis demonstrated that clinical examination of reversal 

learning results at the single subject level of analysis cannot be reliably accomplished 

using group level statistical findings. That is, while the group level distribution fit a 

Normal-3 model, very few had this distribution as a best fit on an individual level, which 

may have contributed to the lack of significant group differences in NL-3 parameters. 

This suggests that a more individualized approach may be most appropriate for this 

task. If the Reversal Task is to be used in clinical settings, future development of 

normative data for the task and its parameters would be necessary to better interpret 

individual level performance. Normative data would aid in identifying individual level 

strengths and weaknesses in cognitive processes and assist in identifying age-related 

cognitive decline by comparison to group level performance.  

Notably, exploratory results revealed meager correlations between RT and 

accuracy, and partial correlations showed that the relationship between RT and age is 
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largely unaffected when parsing out contributing variance associated with accuracy of 

performance in this reversal learning task. The results indicate that RT and accuracy 

are distinct components of reversal learning performance. Using RT predictors of age in 

a generalized regression further revealed that RT adds unique variance to explaining 

age-related differences in reversal learning performance. Specifically, Mu (mean 

efficient RT) and Dispersion1 (variable efficient RT) were the only two variables that 

explained the variance in performance between middle-aged and young adults. 

Interestingly, middle-aged adults showed slower, efficient RT and increased intra-

individual variability, which has previously been linked to poorer frontal lobe processes 

and age-related cognitive decline (MacDonald, Nyberg, & Backman, 2006). In line with 

these findings, middle-aged adults displayed a more conservative decision boundary (a) 

further supporting their slowed but efficient responding. Additionally, while results 

showed that younger adults responded faster and less variably when making efficient 

responses, they displayed more responses in the ‘tail’ of the distribution indicating 

slower and inefficient RTs, which may be due to taking the task less seriously than the 

middle-aged adults. Overall, this suggests it is important to measure RT as a 

fractionated construct and highlights the importance of utilizing appropriate analytical 

methods to characterize and interpret RT data. Undifferentiated traditional measures of 

RT (i.e., mean RT of all trials) frequently give a false picture of the relationship between 

RT and accuracy. Such methods tend to overlook intra-individual variability, do not 

account for the non-normal distribution and, therefore, do not optimize the information 

that can be gained from thoroughly examining the RT distribution and its appropriate 

parameters. Therefore, future studies should consider measuring RT as a fractionated 
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construct and investigating differences in intra-individual variability to further explain 

age-related differences in reversal learning tasks. 

Given this wealth of information, I identified and put forth 4 clinically relevant factors, 

comprised solely of RT variables, that further characterize reversal learning 

performance. The first factor was labeled Mental Efficiency and consisted of numerous 

loadings across the Diffusion model, ex-Gaussian, and NL-3 distribution parameters. As 

such, it is viewed as representing a general factor of speed and efficiency of information 

processing, consistent with the tendency of the principal component analysis to 

maximize loadings of variables onto the first factor. The second factor was deemed 

Intra-Individual Variability as it consisted of more specific loadings from parameters of 

the NL-3 distribution that represent variability in responding. Specifically, the highest 

loadings indicated a large number of variable responses from the second normal 

component of the NL-3 distribution but not the third component. These loadings occur in 

combination with strong negative loadings suggesting few responses that were not 

variable in the first component. Additionally, a small negative loading on the Diffusion 

model parameter v indicates slow accumulation of information. Variable responding is 

suggested as the mechanism that slows RT, but not so much as to indicate extreme 

slowing due to frank lapses of attention or loss of mental set that occurs when 

responding slips into the third normal component. Such variability in responding is then 

associated with slow accumulation of information and few efficient responses in the first 

normal component. Mental Speed consisted of strong loadings from speed measures 

for basic non-decision RT, efficient responding from the normal component of the ex-

Gaussian distribution, and fast RTs in the first component of the NL-3 distribution. 
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Hence, the factor was labeled Mental Speed. Inattention consisted of strong loadings 

from parameters that reflect extremely long RTs, making this factor different from the 

Intra-Individual Variability factor where RTs were only moderately long. Additionally, a 

negative loading from drift rate (v) indicated that when long RTs occur then information 

accumulation is slow, as well as unlikely to be in the first component of the NL-3 

distribution. This profile of loadings seems to indicate poor responding that likely reflects 

loss of mental set or some other pathological process that makes quick or even mildly 

slow responding unlikely. Ultimately, the aforementioned factors proved successful in 

distinguishing groups of individuals with fractionated profiles of performance which may 

be of clinical importance within the context of cognitive aging. Future studies should 

further investigate these RT factors and their ability to detect clinically relevant groups. 

Limitations 

There are several limitations to the current study. First, given the simplistic nature of 

the Reversal Task employed here and its application to a healthy aging sample (as it 

was originally designed for pathological aging), it is possible participants performed at 

ceiling and, therefore, did not show much variability. However, the procedure design 

puts forth minimal burden on working memory and should therefore better reflect other 

components of executive function that may impact accuracy and speeded performance. 

Nonetheless, future studies may consider including groups of participants that are 

representative of both normal and pathological aging to assist in refining detection 

methods. Second, our “older” sample is considerably younger than most older samples 

in the literature and consists mostly of middle-aged adults. However, this may also be 

viewed as a strength as most aging studies omit middle age. It is imperative to study 
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middle age to better understand early signs of cognitive dysfunction, well before the 

onset of any clinical symptoms, which may aid in early intervention and prevention 

efforts. Conversely, it is possible the rate of slowing in processing speed and cognitive 

dysfunction was not as considerable in middle age as it may be in older populations. 

Therefore, future studies may consider examining healthy young, middle-aged, and 

older adults to determine if performance in middle age is distinct from or similar to one 

of the other groups. Third, while participants were screened for psychiatric 

and neurological disorders, they may not have specified existence of a motor 

disorder. As such, we cannot with certainty rule out lower RTs due to motor system 

dysfunction in some participants.  

Conclusion 

In summary, a thorough analysis of the Reversal Task response time distribution 

goes above and beyond purely descriptive statistics (e.g., accuracy and mean RT) to 

characterize speeded performance. While distributional analyses are an initial step in 

identifying parameters to characterize performance, theoretical models are needed to 

better understand the cognitive processes underlying RT performance, and non-

parametric statistics are needed to fully appreciate the wealth of information RT can 

provide.  
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Figure 1. The ex-Gaussian distribution is a convolution of a Gaussian (normal) and 

exponential distribution (figure from Leth-Steensen et al., 2000). The top and bottom 

portions of the figure display two visual examples of the ex-Gaussian model. 
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Figure 2. A Normal-3 Mixture distribution fits the empirical RT distribution of an 

individual with the convolution of three normal Gaussian components (figure from 

Osmon et al., 2018). 
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Figure 3. The Ratcliff Diffusion model (figure from Ratcliff, 1978) consists of several 

parameters: z (the starting point at which the diffusion process begins), v (drift rate), t0 

(non-decision time), a (decision threshold), A & B (correct and error response 

boundaries). 
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Figure 4. An illustration of the Reversal Task used in the current study. Phases 1-3 

consist of elemental discriminations, while phases 4-6 are the reversal phases. The 

rewarded (i.e., correct) response is indicated by the “+” sign, and the incorrect response 

is indicated by the “-“ sign. 
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Figure 5. The Normal-3 Mixture distribution best fit group RT (for all participants). 
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Figure 6. The ex-Gaussian distribution passes visual inspection (for all participants), 

despite not meeting best-fit criterion, and appears to follow the shape of the reversal 

task distribution. This suggests its parameters may still offer important characterization 

of performance. 
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Table 1. Factor loadings for Diffusion model, ex-Gaussian, and Normal-3 Mixture 

distribution parameters. 

 
 Mental 

Efficiency 
IIV Mental 

Speed 
Inattention 

a 0.624049 0.164950 -0.174955 0.187493 
v 0.076084 -0.342509 0.190213 -0.533621 
t0 -0.170846 -0.050997 0.800733 -0.059006 
Mu 0.241455 -0.066891 0.917949 -0.058406 
Sigma -0.020711 -0.006895 0.720714 -0.019307 
Tau 0.388844 0.129123 -0.218435 0.718340 
Location1 0.648723 -0.315106 0.599753 0.131810 
Location2 0.873291 -0.335329 0.172570 0.099380 
Location3 0.945443 0.017413 0.059562 -0.067368 
Dispersion1 0.763657 -0.529630 0.020369 0.113133 
Dispersion2 0.368218 0.866534 -0.093152 0.043958 
Dispersion3 0.397326 0.054469 0.041874 0.729555 
Probability1 0.448178 -0.758636 -0.033541 -0.390853 
Probability2 -0.279339 0.906403 -0.092083 0.093353 
Probability3 -0.459769 -0.124039 0.269023 0.710631 
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Table 2. Mean values for the factor scores entered into the Hierarchical Cluster 

Analysis. 

Cluster Count Mental 

Efficiency 

IIV Mental 

Speed 

Inattention 

1 67  -0.71  -0.17  -0.56  -0.17 

2 43 0.71  -0.54  -0.22 0.61 

3 5  -0.60 0.62 1.47 3.83 

4 42 0.28  -0.25 0.94  -0.82 

5 25 0.62 1.78  -0.08  -0.25 
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