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ABSTRACT

TUNING SIZE AND LIGHT EMISSION CHARACTERISTICS OF

CdSe1−xSx/ZnS ALLOYED CORE-SHELL QUANTUM DOTS BY ALCOHOL

by

J. Casey Marnocha

The University of Wisconsin-Milwaukee, 2019

Under the Supervision of Professor Nikolai Kouklin

In this thesis, a one-step isotropic down-tuning of the size of alloyed CdSe1−xSx/ZnS core-

shell quantum dots is developed by vapor and liquid-phase etching using a ∼ 10 : 1 isopropyl

alcohol to water solution. The results of spectroscopic studies confirm continuous variation

of the excitonic emission color from red to green for samples treated for up to 15 mins using

a vapor-based method. According to HRTEM characterizations, the shift is consistent with

a diameter reduction of quantum dots that proceeds at the average rate of ∼ 1.3 Å/min.

The emission intensity while seen to undergo an initial drop due to the shell removal,

was to found to remain largely unchanged with increased treatment durations. The study

presents a technologically viable alternative to adjusting the size and, in turn, the optoelec-

tronic characteristics of core-shell quantum dots and nanocrystals in II-VI semiconductor

systems.
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Chapter 1

Overview

1.1 Introduction

Colloidal quantum dots (QDs) have become increasingly investigated for their unique size-

dependent optoelectronic properties. Considered zero-dimensional physical systems, QDs

are small semiconductor crystals, typically of spherical shape and diameters on the order of

102 − 103 atoms. Owing to their small size, QDs offer an ultimate degree of charge carrier

and exciton confinement highlighted by broad absorption and bright emission spectra.1–4

Figure 1-1: QDs of increasing size, from left to right, emitting cyan through
red. QDs are dispersed in solution and illuminated by UV light source.5
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It has been well-documented that QDs exhibit single-band emission, i.e. atomic-like

light emission, in the IR-UV spectral range. QDs are being used within applications once

dominated by alternatives due to superior spectral tunability and stability. One of the

bright examples is the replacement of organic dyes for in vivo and in vitro bio-medical

labeling techniques.6–9 Additionally, QDs are penetrating mainstream photo-emission mar-

kets in solid-state lighting and displays.10–14 With the added benefit of high extinction

coefficients and quantum yields approaching near unity, QDs are finding use in photo-

detection technologies, photovoltaics, and solar cells15–21 as well as single-photon sources

and detectors.22–25

Nourished by demand of efficient and stable devices, the global quantum dots market

is forecasted to grow rapidly, exceeding 60% annually.5 Flat-panel display markets, for

example, are expected to reach $135bn by 2020. Lighting alone constituted ∼7% of the total

U.S. electricity consumption per the Energy Information Administration’s 2017 reports, and

is widely estimated to be ∼20% worldwide. High reported quantum efficiency is paving the

way to higher power efficiency in QD-based LEDs and display backlights, up to twice as

energy efficient than traditional LED-LCDs.26 According to the US Department of Energy

(DOE), widespread use of solid-state lighting could save ∼490 TWh of electricity by 2035,

∼$50bn per year in current electricity prices.27 This is fueling government funding of

a multitude of research initiatives involving the use of QDs, averaging an attractive 12-

fold return on investment since 2000.28 The economic and environmental motivation for

continued development in QD-based technologies is clear.

1.2 Synthesis Techniques

The earliest investigations involved QDs created using stained-glass synthesis pathway. Such

produced QDs were simply small particles embedded within glass matrices.29 Nowadays,

the two most common pathways to synthesizing QDs are through epitaxial or colloidal

methods. Each of these methods offer distinct advantages and disadvantages, as discussed

in the next sections.
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Figure 1-2: Schematic of molecular beam epitaxy chamber.

1.2.1 Molecular Beam Epitaxy

Molecular beam epitaxy (MBE) growth techniques are commonly used to fabricate quantum

well, quantum dot, and heterojunction based devices from liquid or gaseous precursors.30–32

A schematic of an MBE chamber is shown in Figure 1-2. The precursors containing elements

of the target material are heated in separate Knudsen effusion cells (k-cells) and undertake

a phase change, either from solid to liquid or liquid to vapor. The aperture is used to control

the amount of precursor evaporating into the low pressure environment, forming individual

atomic ‘beams’ generated from their respective k-cell. At ultra-low pressure, the mean free

path is very large and the interaction with residual gas molecules remains limited. The

sublimated atoms condense onto a substrate which is held at sufficiently high temperature

to maintain mobility of the atoms and to allow the formation of the desired atom-thick film.

In case of GaAs, the optimal substrate temperature is 500-600C.

To monitor the formation of the target structure during MBE, an electron beam is fired

upon the substrate at an acute angle (< 5◦) and the scattered electrons are detected. This

in situ system is known as reflection high energy electron diffraction (RHEED) and is used
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to monitor the state of growth during MBE. If the surface is non-uniform, the sensor picks

up a smeared diffraction pattern. Once a crystalline monolayer has completed, the intensity

of the diffraction pattern reaches a maximum. A single oscillation of RHEED intensity from

local maximum to minimum to maximum is indicative that the formation of a monolayer

has occurred. The process is repeated for each layer until the desired number of layers

is formed, typically taking a minimum of 30 seconds to several minutes to complete each

monolayer depending on the target semiconductor.

MBE substrate selection dictates the type of growth that occurs on its surface.33 By

employing a substrate with lattice constants identical to the semiconductor being grown,

planar monolayers can be formed on the surface. To delineate patterns and to effect stronger

quantum confinement of carriers, etching of the planar MBE-grown films is used. The etch-

ing process is used in conjunction with on optical (or electron) lithography to pattern a

photoresist mask on the surface of the grown semiconductor film. Dry etching techniques

have proven useful to form QDs on the order of 10-20 nm from planar films grown by

MBE. Additionally, the connection to the substrate allows for direct charge injection, mak-

ing synthesis of infrared lasers a prominent application. particularly useful for creating

quantum well devices. The etching process, however, creates significant surface defects on

the remaining QD structures, leading to degraded quantum yield and non-ideal emission

bands.34 Furthermore, variations in photoresist properties such as mask pattern, thickness,

and sensitivity, all play into non-ideal emission behaviors. Thus, the large size and low quan-

tum yield are both inhibitors to the adoption of such a method for many optoelectronic

devices.

Alternatively, strain-induced methods use substrates with smaller lattice constants to

create self-assembled, Stranski-Krastanov (SK), growth.35,36 The strain in mismatched

lattice constants localizes the desired semiconductor as small islets atop the substrate, re-

moving the necessity of the post-growth etching as in the planar method. Mode-locked lasers

and amplifiers have been made made using SK growth with telecommunication wavelengths

near 1400 nm.37 However, the islets tend to be irregularly spaced and typically have much

4



Figure 1-3: Top: Atomic force microscopy (AFM) images of InAs QDs grown by MBE
using Stranski-Krastanov strained growth varying from 1.56 (a) to 2.53 (e) monolayers.
Bottom: Example histogram showing statistical distribution of QD height (corresponding
to top-left image). The islets do not require additional down-sizing after growth to exhibit
confinement effects. However, the wide size and distributions can easily be seen.32
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larger size and shape distributions, ∼10− 30%, resulting in broad emission spectra. Figure

1-3 shows atomic force microscopy images of QDs grown in this manner.38 The non-uniform

spacing and variations in size are easy to see for each target size. When smaller islets are

targeted, they can suffer from agglomeration due to Ostwald ripening, as in (c) and (e).

The use of IR-based fiber optics in communications continues to expand. Though rel-

atively pure structures significant to IR lasing devices can be achieved using MBE growth

methods, there are a number of significant drawbacks. Primarily, MBE only allows for

growth on substrate surfaces, which must be very clean and crystalline to allow for the

formation of high quality structures. Second, the impurity rate is highly sensitive to the

vacuum environment. Any impurities in the chamber are likely to form defects in the

resultant structures. The SK method creates strain defects throughout the crystal, and

similarly, the planar post-growth etching process forms significant defects on the surface.

These surface-bound structures, therefore, suffer from significantly reduced quantum yield

compared to their colloidal counterparts. Furthermore, the size of the final structure is

dictated by the mask resolution or the percentage of strain and temperature in SK growth.

Therefore, continued research focusing on QD-based IR photoemitter and photodetectors

make use of epitaxial grown QDs, such as In(Ga)As/GaAs. Ultimately, the low-throughput,

relatively high cost, and surface bound QDs resulting from current MBE QD synthesis tech-

nologies act as barriers to their commercial viability.

1.2.2 Colloidal Growth

In the early 1980s, Brus began experimenting with reactions that produced colloidally

grown semiconductor particles.39,40 The experiments formed nanocrystals that demon-

strated strong quantum confinement effects and motivated further research into creating

and characterizing smaller and smaller semiconductor particles through the vehicle of col-

loidal synthesis. These early QDs suffered from wide size distributions, which in turn,

obscured the true single-quantum dot emission characteristics. The true narrow-emission of

quantum dots was confirmed through a number of experiments at low temperatures, fueling

6



Figure 1-4: Schematic of apparatus used to grow CdSe through colloidal hot-injection method.
Reagents (Cd and Se precursors) are mixed in the syringe then injected into the hot coordinating
solvent resulting in many nucleation sites. The process is kept at high temperature, permitting the
particles to grown in size with time. The process is quenched once the target size is reached.44

continued research initiatives.41,42 The pioneering work completed by Murray et al. in 1993

established the colloidal growth technique widely utilized in modern QD synthesis.43 This

method relies on the hot-injection of organometallic reagents into a coordinating solvent

contained in a reaction flask, the apparatus of which is depicted schematically in Figure

1-4.44 Binary semiconductors, CdSe, CdS, and CdTe, were synthesized and exhibited high

monodispersity under 10%, a previously unprecedented value.

To colloidally produce QDs, room temperature organometallic chalcogenides and cad-

mium reagents are injected into a hot-coordinating solvent (∼ 320◦C). The solvent is held at

elevated temperatures, overcoming the nucleation threshold of the system. The reagents are

injected rapidly into the vigorously stirred solvent, allowing temporally discrete nucleation

sites to form. Through pyrolysis, the reagents decompose into their ionic elements and begin

7



to nucleate within the solvent. By decreasing the temperature in the flask shortly after the

reaction starts, nucleation formation is suspended and the reaction enters a time-dependent

growth phase, a beneficial consequence of adding room temperature reagents. The flask

temperature is heated and maintained below the nucleation barrier (∼ 280− 300◦C) during

a growth phase. Although the nucleation sites are temporally discrete, the size distribution

of the colloidally grown nanoparticles remains relatively narrow due to the thermodynam-

ically driven Ostwald ripening process. The spontaneous process is caused by the relative

instability of surface molecules to those in the interior. Since small particles have larger

surface-to-volume ratios, they are ‘digested’ by larger particles, and if left to run indefinitely,

the resulting particles would be quite large. The high temperatures also act to anneal the

semiconductor during nucleation, resulting in highly crystalline, low-defect nanoparticles.

The hot-injection method results in the rapid growth of a large number semiconductor

particles exhibiting narrow size-distribution and, in turn, narrow emission spectra. By ma-

nipulating the temperature of the reaction solvent, as well as the allowed time of synthesis,

particle size can be controlled. Aliquots of the systems can be taken and analyzed to char-

acterize the state of QD formation. Once the target particle size is reached, the reaction

vessel is quenched and the quantum dots can be precipitated from the coordinating solvent

in powder form or re-dispersed in an appropriate solvent for later use.

Since this development, much research effort has gone into addressing monodispersity

as well as surface chemistry.45 Improvements include the addition of organic surfactants

(ligands), originally trioctylphosphine oxide (TOPO) or trioctylphosphine (TOP), which act

to moderately passivate the surface defects and evenly disperse the QDs.46 Additionally,

the application one or more passivating ‘shells’, consisting of wider band-gap material to

better passivate non-radiative recombination sites has become common practice.47,48 These

topics are discussed in more detail in Chapter 2. Figure 1-5 depicts the optical range and

narrow photoluminescence (PL) emission of common semiconductor QD species.10
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Figure 1-5: (Left) Solutions of colloidal QDs of varying size and composition exhibiting PL under
optical (ultraviolet) excitation, demonstrating the size- and composition-dependent tunability of QD
emission color. (Right) PL spectra of CdSe–ZnS and PbS–CdS core–shell colloidal QDs. The upper
inset shows a schematic of a typical core–shell colloidal QD. The lower inset is a high-resolution
transmission electron microscope image of a CdSe QD (scale bar, 1.5 nm). The figure shows the
extension of this narrowband emission from blue to green to red and into the NIR. Adapted with
permission (2013) Nature Photonics.10

Herein lies the favorability of colloidal QDs:

• simple synthesis method composed of precursors, surfactants, and solvents

• size tunable by controlling the durations of reactions at a given temperature

• compositional flexibility

• QDs are not bound to a surface and can be precipitated into powders

• QDs are conformable for post-growth processing

• most cost-effective method of QD synthesis

Additionally, two or more semiconductors can be alloyed to form materials with composition-

dependent properties. The flexibility of precursor selection expands the applicability of

the colloidal synthesis method to ternary or quaternary alloyed QDs.49,50 Alterations to

properties such as the bandgap, effective mass, and dielectric constant directly affect the

allowed excitation energies, as derived in the next chapter. The relative alloy composition

9



alterations between two or more semiconductors offers an additional means of tuning the

excitonic emission independent of QD size.

Binary colloidal synthesis (CdSe, CdS, etc...) primarily employs the aforementioned

hot-injection synthesis technique. Alloyed QDs are primarily synthesized through a non-

injection ‘one-pot’ approach. Where binary QD precursors are injected into a hot solvent,

alloy QD precursors are mixed within the coordination solvent and brought up briefly to

nucleation temperatures.49 However, it is imperative to select alloy compositions that are

similar in lattice constant and structural phase as well as precursors that are similar in

reactivity. This reduces the formation of defects in the nanocrystal core, thus minimizing

the prevalence of internal defect states that adversely affect free-exciton radiative recom-

bination rates. The relative precursor mixture of chalcogenides (i.e. sulfur, selenium, and

telluride) determines the final alloy content in the resulting QDs which exhibit near homo-

geneity throughout the core. For the examples of CdSeTe and CdSeS, alloy composition

variation in conjunction with size-tuning has been shown to lie in the visible electromag-

netic spectrum. Recently, CdSe and CdS precursors with similar reactivity have been used

to form CdSe1−xSxalloyed cores that span the visible range.51

QD emission spectra can be tuned by a number of means. Parent material selection sets

the lowest allowed energy of the QD while increasing confinement allows for a range of blue-

shifting of the emission spectra. Parent material can be a single semiconducting material

or alloyed for more complex stoichiometries. Additionally, colloidal QDs are synthesized

in solution, making them stronger candidates for the many aforementioned applications

versus their epitaxial counterparts. Commercial application trends are favoring colloidal

QD synthesis due to favorable emission properties, owing to their optimized and stable

luminescence. In general, synthesis of II-VI semiconductors is the least difficult compared

to III-V and IV alternatives due to progressively more covalent bonding.

10



1.3 Motivation

Colloidal and Stranski-Krastanov (SK) epitaxial growth methods are bottom-up synthesis

processes resulting in stand alone nanostructures with strong carrier confinement attributes.

Though SK epitaxial methods are still used in specific cases such as building heterojunc-

tion lasers or single-photon detectors and sources, colloidal QDs dominate in biomedical,

photovoltaic, and photoemission applications due to their solution-processability as well as

relative ease and cost of manufacturing, amongst others.

Colloidally grown QDs are synthesized within solution in a time-dependent manner in

which the final size is dependent on allowed growth time. Once the growth process is

quenched, the growth subsides resulting in a QD of a particular size. However, the fine-

tuning of the QD optoelectronic response must be set during this initial synthesis. It is

apparent that growth of colloidal QDs with sizes below certain threshold is not possible due

to Ostwald ripening.52

Until today, there have been no reports of a viable post-growth etching method for

colloidal QDs that maintains shape, composition, and crystallinity of the QDs, ensuring

no loss of PL induced by exciton non-radiative decay. It should be noted, although it has

been shown that post-growth capping and shell modifications of colloidal QDs can alter

their emission and absorption spectra, the main influence on confinement energies and

optoelectronic response remains rooted in QD core size determined at the growth stage.

Thus, the search for a complimentary procedure to controllably down-size high-quality

colloidal QDs is warranted. The experimental methods developed and characterized herein

aim to address this technological void.

1.4 Thesis Outline

The experimental work comprising this thesis makes use of colloidally grown CdSe1−xSx/ZnS

core-shell alloyed quantum dots. In Chapter 2, the optoelectronic properties of QDs are

derived within the framework of effective mass approximation. Chapter 3 outlines the ex-

11



perimental processing methods employed to repeatably control optical blue-shifting in the

QD emission. To quantify the effects of processing, Chapter 4 describes the characteriza-

tion methods used to determine size, shape, crystallinity, and photoluminescence through

HRTEM and PL. Lastly, the results of these characterization methods are discussed in

Chapter 5. A short summary and potential applications of the thesis subject matter are

presented in Chapter 6.
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Chapter 2

Quantum Dots

QDs have shown significant promise for many optoelectronic and biomedical applications.

The central attribute of semiconductor QDs is their size-tunable optoelectronic properties.

Their small size promotes excitonic emission, i.e. high radiative recombination. This chap-

ter reviews the solid-state and quantum mechanical constructs that describe such photo-

physical behavior.

2.1 Light Emission from Semiconductors

Generally speaking, semiconductors can luminesce through the absorption and subsequent

emission of an incident photon.53 When the photon is absorbed, an excited electron is pro-

moted into the conduction band with the energy of the photon. When electron is promoted

to the conduction band, a hole is formed in the valence band. At room temperature, the

Coulomb attraction within the electron-hole pair is smaller than the thermal energy of the

system, generally leading to formation of individual charge carriers. In this context, the

excited electron experiences rapid relaxations, lowering its energy level through a series of

non-radiative pathways between energy states within the conduction band – an example

being through the dissipation of electron kinetic energy into the crystal lattice (phonons).

Subsequently, the electron drops from the conduction band to the ground state (in the

valence band) emitting a photon of equal energy to the energy of the gap (bandgap). The
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recombination process is referred to as spontaneous emission, which varies from stimulated

emission as in solid state lighting and lasers.

Considering a bulk semiconducting solid, there are two main categories of recombination

pathways: intrinsic and extrinsic. Intrinsic recombinations are those that span the bandgap

of the material and are a consequence of the ideal semiconductor structure and atomic

composition, Figure 2-2 (a). Extrinsic recombination pathways are those due to defects,

such as dopants or impurities in the material. The defect sites that occur in the otherwise

forbidden bandgap region effectively lower the energy of emitted photons, Figure 2-2 (b)

and (c).

For many optoelectronic device applications, use of semiconductor materials is preferred

over incandescent sources, which operate at high temperature and radiate a wide range of

wavelengths. Materials with an indirect bandgap require phonon assistance to emit a photon

to ensure both momentum and energy conservations, Figure 2-1. Considering the photon as

a mass-less particle, the required phonon is unlikely, lending to low radiative recombination

probability.

Figure 2-1: Example energy bands of direct (left) and indirect (right) semiconductors.
The minimum energy difference between the upper conduction and lower valence band is
the bandgap of the material, Eg. Indirect semiconductors require phonon assistance to
spontaneously emit whereas direct semiconductors do not.

Conversely direct-gap semiconductors, do not need phonon assistance for radiative tran-

sitions. This leads to larger radiative recombination probability, or in other words, a much
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higher quantum yield (QY)– the ratio of absorbed photons to emitted photons. Thus, in

optoelectronic applications based on semiconductor QDs, we turn to direct gap semicon-

ductors systems.

Though silicon has proven to be an important material for electronic devices, it is an

indirect bandgap semiconductor making it a non-ideal choice for emissive systems.∗ In

what follows, we primarily consider the direct gap II-VI semiconductors CdSe, CdS, and

their alloy CdSe1−xSx, although a wide class of direct and indirect semiconductor materials

have been prepared in nanocrystal form, including Si and Ge, III-V semiconductors (GaAs,

GaP, InP), and I-VII semiconductors (CuCl, CuBr, AgBr).3 CdSe and CdS have bulk room

temperature bandgaps of 1.7 eV (red) and 2.42 eV (green), respectively, and their alloyed

bandgap can be determined using the bowing formula,

Eg(CdSeS) = (1− x)Eg(CdS) − xEg(CdSe) − bx(1− x), b = 0.28 eV (2.1)

where x is the alloy content ratio and b is the bowing constant.54 At normal temperature

and pressure they crystallize in the hexagonal, wurtzite lattice (space group P63mc), but

can also crystallize in the cubic, zinc-blende modification (space group F4̄3m), although it is

metastable under normal conditions.55 For semiconductor QDs, these compounds dominate

in systems that operate in the visible range.

Within the effective mass approximation (EMA), semiconducting materials with direct

transition bandgap exhibit energy states in conduction and valence bands centered at k = 0,

Ec(k) = Ec(0) +
h̄2k2

2m∗e
and Ev(k) = Ev(0)− h̄2k2

2m∗h
(2.2)

where k is the quasi-momentum of the charge carriers and m∗e (m∗h) is the effective electron

(hole) mass. By modeling the energies as simple harmonic oscillators with masses affected

by the periodic crystal structure, the density of allowed energy states form parabolic bands

∗It should be noted that silicon QDs are being investigated, exploiting the loss of translational symmetry
and momentum conservation in small systems as a means to generate excitons.
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where their energy separation, h̄ω, for direct transitions is given by

h̄ω = Ec − Ev (2.3)

= Ec(0)− Ev(0) +
h̄2k2

2m∗e
+
h̄2k2

2m∗h
(2.4)

= Eg +
h̄2k2

2µ∗
(2.5)

where Eg is the bandgap and µ−1 = m∗e
−1 +m∗h

−1 is the reduced effective mass of the ma-

terial. The separation of valence and conduction energy bands in a semiconductor dictates

the minimum necessary energy for photon absorption to occur, taking the value Eg when

k = 0.

A third recombination pathway exists in which the electron-hole pair forms a quasi-

particle called the exciton. The attraction of the exciton is the origin of the pronounced

increase in probability of radiative recombinations compared to intrinsic and extrinsic path-

ways. Conditionally, for excitonic decay to occur, the exciton must remain intact within the

semiconductor. This can be achieved by a system meeting one of the two following condi-

tions: a) the thermal energy is to be less than the Coulombic exciton binding energy, or b)

the system must prohibit dissolution of the exciton by some other means, i.e. by providing

a confinement potential to spatial confine the electron-hole pair in the same region.

Excitonic emission has long been reported in bulk semiconductors when the thermal

energy ET is less than the binding energy.56 For example, ET ∼ kBT at 110 K is 10

meV, which is less than the exciton binding energy for many semiconductors, such as CdSe

and CdS with reported values of 15 meV and 28 meV, respectively.57 However, this low

temperature condition is unsuitable for most optoelectronic applications.

Therefore, semiconductor crystals must be small enough to spatially confine the exciton

at room temperatures. The distance between the average location of the electron and hole

is defined as the exciton Bohr radius, aB and its value is derived in Section 2.3.1. Thus,

the size of QDs must be at or less than aB to keep the exciton stable. Of course, the size

at which charges become confined varies from material to material and is dependent on
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the quantum mechanics of the of charge carries and crystal structure. QDs comprised of

cadmium chalcogenides, such as CdSe and CdS, have reported values of aB(CdSe) = 5.4 nm

and aB(CdS) = 2.7 nm. This implies room temperature excitonic emission can be achieved

at diameters near or below ∼10.8 nm and ∼5.4 nm for these materials, respectively.

Examples of radiative recombination pathways are depicted in Figure 2-2. Intrinsic

recombinations from the conduction to valence band are shown in Figure 2-2 (a). Extrinsic

recombinations from neutral acceptor and donor defect (or dopant) sites are shown in Figure

2-2 (b) and (c), respectively. Excitonic recombinations depicted in Figure 2-2 (d) and (e)

are the idealized ‘free’ and captured ‘bound’ cases, respectively. Excitons can be bound,

or captured, by neutral (D0) or ionized (D+) sites, for example. Finally, deep trap states,

such as surface defects are shown in Figure 2-2 (f), the passivation of which are of much

interest, and are discussed in the next section.

Figure 2-2: Radiative recombination pathway examples in semiconductors. (a) Intrinsic.
(b) Extrinsic acceptor and (c) donor. (d) Excitonic free and (e) bound. (f) Deep trap site
where the bottom transition is radiative, for example.

2.2 Quantum Yield and Efficiency

QDs offer exciton confinement, increasing the Coulombic potential between the electron-

hole pair. This offers a gateway for excitonic emission at room temperature. For a confined

system, such as the CdSe example depicted in Figure 2-3 (top), the electron and hole wave-

functions primarily exist within the confines of a spherical potential well in the conduction

and valence bands, respectively.47 Since physical system potentials are finite, the wave-
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Figure 2-3: (Left) Electron and hole wavefunctions in a confined CdSe QD with (bottom) and
without (top) a passivating ZnS shell. (Right) Corresponding energy diagrams with vertical axis as
energy and horizontal axis representing spatial dimension of bare-core (top) and core-shell (bottom).
Adapted with permission, Copyright (1997) American Chemical Society.44

functions technically leak into the surround space, but most importantly, the wavefunctions

of the electron and hole overlap, increasing the probability of exciton decay. The offset

of peak locations of these wavefunctions is the exciton Bohr radius and is dependent on

the dielectric constant of the material. Upon further confinement, the wavefunctions are

squeezed, forcing the wave functions to overlap further, increasing the excitonic radiative

recombination probability.

The repeating semiconductor lattice within the QD core abruptly ends at the surface of

the QD. The reconstruction of atomic bonds at the surface results in the formation of the

surface-associated defect states within the band-gap of the semiconductor.45,58 Bare-core

QDs intrinsically have a high surface-defect to volume ratio η ∼ 1/a due to their small

physical size. Initial attempts to ‘passivate’ involved the use of organic ligands, such as

TOP and TOPO.

Alternatively, these surface defects can be ‘passivated’ by coating the core with a shell

semiconducting material whose bandgap is larger than the core as to maintain confinement,
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depicted in Figure 2-3 (bottom).48,59 These are called ‘core-shell’ QDs. For the case of

CdSe and CdS, ZnS shells have been routinely used to passivate the surface. The thickness

of the shell plays an important role as the lattice mismatch of the core and shell invariably

create strain defects that can act as exciton recombination centers. Furthermore, the leakage

of the electron wavefunction is more pronounced in core-shell configurations. However, the

significant decrease in otherwise abundant surface defect states promotes increased quantum

yield from ∼10% for bare-core up to >95% for core-shell variants.60

Quantum yield (QY) is the ratio of absorbed photons to radiatively emitted photons

by a system. QY is a central figure-of-merit for synthesized QDs and can be found by

comparing emission to a known reference or through integrating sphere measurements. For

example, taking the reference case, a dye with known QY is typically used. By matching

the absorption characteristics of the dye sample with a QD sample, calibrated integrated

photoluminescence emission (PL) measurements can be obtained. The following expression

can then be used to solve for the QY of the QD,

QYQD = QYDye

IQD

IDye

nQD

nDye

FDye

FQD
(2.6)

where I is the integrated PL emission, n is the refractive index of applicable solvents, and F

is the fractional absorption (optical density) coefficient at the excitation wavelength, taking

a value of 1-10.

In addition to tunability and QY, external quantum efficiency (EQE) is also key figure-

of-merit attribute in photoemitting devices such as QD-based light emitting diodes (QD-

LED)4 and photovoltaic devices, such as solar cells.19 EQE for an LED is defined as the

ratio of LED emitted photons to the number of injected electrons, or in equation form,

EQE =
emitted photons

supplied electrons
= ηr χ ηPL ηoc = IQE ηoc (2.7)

where ηr is the ratio of injected electrons that form excitons, χ is the ratio of those excitons

that have optical transitions,ηPL is the photoluminescence QY, ηoc is the ratio of photons
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that are ‘output coupled’ from the device, and IQE is the ‘internal quantum efficiency’,

which is independent of ηoc.
10 CdSe QDs exhibit a χ value near unity, which matches that

of organic electroluminescent devices.61 However, Auger recombinations, due to charging,

as well as energy transfer amongst an ensemble of QDs can lead to self-quenching and can

restrict the electroluminescent efficiency of QD-LEDs. With QY values reaching near unity,

it is clear that IQE is technologically limited by ηPL and EQE is limited by ηoc, as well.

Conversely for a solar cell, EQE is the ratio of the number of generated electrons to the

number of incident photons, or in monochromatic equation form,

EQE =
electrons harvested

incident photons
=
Ep
e−

I

Pin
≈ 1240 Jsc(λ)

λ Pin
(2.8)

where Ep is the energy of a single (monochromatic) photon at wavelength λ, e− is elec-

tron charge, I is the generated current, Pin is the optical power of the source, and Jsc

is the current density. The IQE is in respect to absorbed photons and is independent of

the absorption of the system. Additionally, the power conversion efficiency (PCE) can be

calculated using current-voltage measurements,

PCE =
Jsc Voc FF∫
dλ Pin(λ)

(2.9)

where Jsc is the short-circuit current density, Voc is the open-circuit voltage, FF is the fill

factor, and Pin is the incident optical power spectra as a function of wavelength λ. Increas-

ingly being investigated are QD-based sensitized solar cells (QDSSC), which have recently

recorded PCE values of ∼12−13%.62 Limitations include electron injection and charge col-

lection efficiencies. Interestingly, absorption of a photon at least twice the bandgap of the

QD can produce multiple excitons, a process known as multiple exciton generation (MEG).

This phenomena has been exploited using short wavelength excitation (∼UV) to produce

EQE values in excess of 100%,63 an indication that PCEs exceeding the Shockley–Quessier

efficiency limit (32.9% for single absorber) may be be possible in the future.
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2.3 Derivation of Energy States

It is well understood that systems on the order of the de Broglie wavelength exhibit quantum

mechanical, or wave-like, characteristics. The influence of crystal size and composition on

emission properties of a material can be found by solving for the energy eigenstates of the

system. The transition energy h̄ω in the confined case is derived in the following sections.

The effective separation of conduction and valence bands in a isotropically confined system

is the sum of the intrinsic bandgap of the material Eg, the Coulombic exciton binding energy

of the electron-hole pair En
B

, and the confined energies of the electron and hole En,l,

h̄ω = Eg + En
B

+ En,l (2.10)

of principle quantum number n and angular quantum number l. It is important to note,

that the value of Eg in this case is the same intrinsic value as shown in Eq (2.5) for a

direct material. However, the dispersion relation Eg(k) is formally unsolvable due to lack

of periodicity in the crystal.64 This has the effect on the density of states ρ(k) becoming

independent of k, as systematically depicted in Figure 2-4.

Figure 2-4: Schematic illustration of confinement and its effect on the idealized density
of states. The energy levels of a 3D material are continuous whereas 0D material levels
are discrete.64
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2.3.1 Electron-Hole Interaction: Exciton Binding Energies

Given a sufficiently small system, there is a non-negligible interaction energy between the

confined electron and hole pair (exciton) in the form of a Coulombic potential. To solve the

steady-state Schrödinger equation for the allowed energies in a confined system such as the

QD, the Hamiltonian takes on a hydrogen-like description,

H = − h̄
2

2µ
∇2 + V (re, rh) (2.11)

where µ−1 = m∗e
−1 +m∗h

−1 is the reduced effective mass of the material, V is the potential,

and re (rh) is the average position of the electron (hole). The Coulombic potential between

the electron and hole is,

V (re, rh) = − e2

4πε|re − rh|
= − e2

4πεaB

(2.12)

where ε ≡ εrε0 is the dielectric constant of the material and the exciton Bohr radius is

aB = re − rh = r. Exciton binding energy levels can again be solved for by way of the

stationary Schrödinger equation. In the spherical coordinate system,

− h̄
2

2µ

[
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

]
− e2

4πεr
ψ = Eψ (2.13)

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
+

2µ

h̄2

(
E +

e2

4πεr

)
ψ = 0 (2.14)

Turning to the separation of variables technique, we can assume a product solution of radial

and angular functions such that,

ψ(r, θ, φ) = R(r)Y (θ, φ). (2.15)
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Separating out the radial and angular terms,

1

R

d

dr

(
r2

dR

dr

)
+

1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

Y sin2 θ

∂2Y

∂φ2
+

2µr2

h̄2

(
E +

e2

4πεr

)
= 0. (2.16)

Separating into radial and angular equations, respectively,

d

dr

(
r2

dR

dr

)
+

2µr2

h̄2

(
E +

e2

4πεr

)
R−AR = 0, (2.17)

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2
+AY = 0, (2.18)

where A is the separation constant. Further separation of the angular equation is possible

such that Y (θ, φ) = Θ(θ)Φ(φ) giving,

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

Φ

d2Φ

dφ2
+A sin2 θ = 0. (2.19)

Separating out the polar and azimuth equations, the system of equations becomes,

d

dr

(
r2

dR

dr

)
+

2µr2

h̄2

(
E +

e2

4πεr

)
R−AR = 0, (2.20)

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+A sin2 θ −B = 0, (2.21)

d2Φ

dφ2
+BΦ = 0, (2.22)

where B is another separation constant. Starting with the azimuth equation in Eq (2.22),

solution of the form C1e
imφ+C2e

−imφ where B = m2 is obvious. The domain of φ is bound

from 0 to 2π, thus m must be an integer. Choosing C2 = 0, the solution takes on the form,

Φ(φ) = Ceimφ, m = 0,±1,±2, . . . (2.23)
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Updating the polar equation from Eq (2.21),

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
A− m2

sin2 θ

)
Θ = 0 (2.24)

Using a change of variables, x = cos(θ), P (cos(θ)) = Θ(θ), and sin2 θ = 1− cos2 θ = 1− x2,

the polar equation becomes,

d

dx

(
sin2 θ

dP

dx

)
+

(
A− m2

sin2 θ

)
P = 0 (2.25)

(1− x2)d2P

dx2
− 2x

dP

dx
+

(
A− m2

1− x2

)
P = 0. (2.26)

The remaining differential equation is of the Sturm-Liouville form with solutions known as

the associated Legendre polynomials where,65

Pml (x) = (1− x2)m/2
C0

∞∑
j=0

C2j

C0
x2j + C1

∞∑
j=1

C2j+1

C1
x2j+1

 (2.27)

with the recursion relation,

Cj+2

Cj
=

(j +m)(j +m+ 1)−A
(j + 1)(j + 2)

. (2.28)

The above series converges asymptotically when A = l(l + 1) and l = 0,±1,±2, . . . . Coef-

ficients C1 and C2 are dependent on l to force convergence of one of the series and killing

off the other. Also, convergence criteria limits the allowed integral values of m such that

−l ≥ m ≥ l for each value of l. Note, the ground state value of P 0
0 (x) = 1.

After normalization, the angular wavefunctions, Y m
l (θ, φ), are referred to as spherical

harmonics and can now be written as,

Y m
l (θ, φ) = κ

√
(2l + l)

4π

(l − |m|)!
(l + |m|)!

eimφPml (cos θ) where


κ = (−1)m m ≥ 0

κ = 1 m ≤ 0

(2.29)
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Substituting in A, the radial equation from Eq (2.20) becomes,

d

dr

(
r2

dR

dr

)
+

2µr2

h̄2

(
E +

e2

4πεr

)
R− l(l + 1)R = 0 (2.30)

which can be rewritten as,

− h̄
2

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

)
R = (E − V )R (2.31)

where V is the Coulombic potential. Letting,

u(r) ≡ rR(r), k ≡
√
−2µE/h̄2, ρ ≡ kr, and ρ0 ≡

µe2

2πεh̄2k
, (2.32)

(where E < 0), the expression becomes,

∂2u

∂ρ2
=

(
1− ρ0

ρ
+
l(l + 1)

ρ2

)
u. (2.33)

As is well-documented, the solution can be given as,66

Rn,l(r) =
1

r
ρl+1e−ρν(ρ) (2.34)

where,

ν(ρ) =

jmax∑
j=0

Cjρ
j with

Cj+1

Cj
=

2(j + l + 1)− ρ0
(j + 1)(j + 2l + 2)

. (2.35)

Note, ν is a truncated asymptotic series that can be written as a polynomial of order

jmax known as the associated Laguerre polynomials, ν(ρ) = L2l+1
n−l−1(2ρ), with ground state

L1
0 = 1. The numerator of the recursion relation must vanish at jmax. Defining the ‘principle

quantum number’, n ≡ jmax + l + 1, we find ρ0 = 2n.
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In total, the final solution is,

ψnlm(r, θ, φ) = R(r)Φ(φ)Θθ = NRn,l(r)e
imφPml (cosθ), (2.36)

with ground state,

ψ100(r, θ, φ) =
1√
πa3

B

e−r/aB , (2.37)

where N is the overall normalization constant and l, m, and n are the so-called angular,

magnetic, and principle quantum numbers, respectively. Thus, the discrete nature of the

excitons can readily be seen as a direct consequence of the integral nature of the quantum

numbers.

Most importantly, from the earlier definition of ρ0 in Eq (2.32), the exciton Bohr radius

can be defined as,

aB =
4πεh̄2

µe2
. (2.38)

Similarly the exciton binding energy EB can now be determined,

En
B

= − µ

2n2h̄2

(
e2

4πε

)2

= − e2

8πεaBn
2

=
E1

B

n2
n = 1, 2, 3, . . . (2.39)

Taking rough semiconductor values of µ = .1 and ε = 10, the ground state value (n = 1)

is E1
B

= −13.6 meV, known as the ‘modified Ryberg’ due to its striking similarity to the

hydrogen atom. Note, there is no k dependence in this result.

2.3.2 Quantum Dot as Spherical Potential Well

A semiconductor QD can be elementarily modeled as a spherical potential well using three

main assumptions:3,58,67,68

1. The QD is perfectly spherical with radius a.
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2. The interior of the QD is a reciprocal and uniform medium.

3. The potential energy at the surface of the QD is infinite.

The Hamiltonian for such a system is simply the sum of the kinetic and potential energies

such that,

H = Tk + V =
h̄2

2µ
∇2 + V (r), V =


0 r ≤ a

∞ r ≥ a
(2.40)

where r is the radial distance from the center of the QD and, again, replacing the classical

mass with the reduced effective mass µ within the EMA framework. Solving the Schrödinger

equation for the system, the equation takes the familiar form of a radial equation, though

simplified by the zero potential within the QD,

∂2u

∂r2
=

(
l(l + 1)

r2
− k2

)
u (2.41)

where the l(l + 1) term comes from the separation constant of the polar equation. Recall,

u ≡ rR(r) and k ≡
√

2µE/h̄2. The quantized energy state solution of a spherical quantum

dot of radius a for electrons and holes is given by,

En,l =
β2n,lh̄

2

2µa2
, (2.42)

where βn,l is the nth zero of the lth spherical Bessel function with ground state β1,0 = π.

This result shows a straightforward qualitative dependence of the energy levels the size of

the dot is confined, the energy levels increase as 1/a2.

2.3.3 Confinement Effects on Light Emission and Absorption Character-

istics

Given a QD of radius ‘a’ and modeling it as a spherical potential well, the solutions of

the exciton binding energies and the confinement energies were derived. Substituting the
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appropriate terms, the transition energy h̄ω is,

h̄ω = Eg + En
B

+ En,l = Eg −
e2

8πεaBn
2

+
β2n,lh̄

2

2µa2
. (2.43)

Considering the ground state solution (n = 1), we find,

h̄ω = Eg −
e2

8πεaB

+
π2h̄2

2µa2
. (2.44)

When the quantum dot radius is on the same order or smaller than the exciton Bohr radius

aB , the Brus formalism shows that the ground state becomes,40

h̄ω = Eg − 1.8
e2

4πεa
+
π2h̄2

2µa2
, where aB ≈

a

1.8
(2.45)

where the exciton binding energy is calculated in first order perturbation theory. By making

the diameter of a quantum dot smaller, we can raise the kinetic energy as ∼ 1/a2, which has

the effect of broadening the separation of energy states. As a decreases, there is increased

separation of the discrete valence and conduction energy levels, lending to a blue-shift of

the absorption and emission spectra. The Coulombic potential goes as ∼ 1/a, offsetting

the confinement effects slightly. The increased attraction can be envisioned as increased

overlap of the electron and hole wavefunctions, lending to higher radiative recombination

probability and oscillator strength in smaller QDs. We now can see a clear dependence of

size while operating within the strong confinement regime.

The discrete ground energy states in the QD conduction and valence bands are known

as the lowest unoccupied molecular orbit (LUMO) and highest occupied molecular orbit

(HOMO). Transitions will always occur between associated energy levels of the same quan-

tum number n. Importantly, recombinations lead to the emission of a photon whose wave-

length is related to the energy gap between charge carriers prior to recombination. Thus,

the size, temperature, purity (crystallinity), and crystalline phase & composition of the

material all play into recombination properties.
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Chapter 3

Methods of Processing Quantum

Dots with Isopropyl Alcohol

Though the colloidal production of such nanoparticles was not performed in this study, the

pathway of colloidal synthesis has become mainstream due to the fast, low-cost, high-quality

synthesis of crystalline QDs. Highly-luminescent, ∼6 nm diameter CdSe0.83S0.17/ZnS core-

shell QDs suspended in toluene (∼1 mg/mL) were obtained commercially (Sigma Aldrich).

The QDs are extremely vibrant when illuminated by UV excitation of 365 nm. Exploiting

the solution processability of colloidal QDs, a set of treatment methods were developed

simply utilizing drop-cast QDs on glass slides and exposing them to isopropyl alcohol in

various apparatus configurations.

3.1 Introduction

Colloidal QDs can be exposed to a solution, allowing full surface exposure, unlike dry

etching. Generally speaking, wet etching utilizes solution-based (liquid-phase) etchants

that remove material in three distinct steps:

1. The reagents contact the surface via solution.

2. The reagents react with the surface.
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3. The byproducts of the reaction move away from surface.

Wet etching offers selectivity of many solutions and etchants for materials, some of which are

well-documented. However, the reaction rate and crystal face selectivity (anisotropy) of the

etchant and surface must be well-suited for the nanoscale application to QDs. Additionally,

variations in etchant concentration, temperature, and exposure time complicate results.

Ideally, reduction of colloidal QD size would bare no influence on shape, composition, or

crystallinity of the QD in order to maintain the highly luminescent behavior associated with

excitonic emission. Many of the solutions given in such texts are strong acids or bases, such

as hydrofluoric and sulfuric acids, that tout high reaction rates that would destroy the QDs

used in this study.69

Cadmium and zinc based semiconductors (CdSe, CdS, and ZnS in this case) can be

dissolved by photo-oxidation of the chalcogenides in aqueous suspension.70 Successful oxi-

dation results in Cd2+ and Zn2+ which both form soluble coordination compounds. In an

effort to form novel controllable wet etching strategy with the II-VI semiconductors, a mild

isopropyl alcohol and water mix were used to reduce the size of as-grown core-shell QDs

per the methods outlined below.

The main method developed herein makes use of a horn sonicator to expose QDs to

solution. The use of horn sonication fulfills two symbiotic purposes. First, the dissipation

of ultrasonic (acoustic) energy results increased solution temperature. This temperature is

easily monitored via thermal probe and can be indirectly controlled by setting the output

power. With increasing temperature, the chemical process will accelerate. Though this

is desirable from the standpoint of potential viability of the method, it was important

to maintain consistent solution concentrations throughout processing intervals. Therefore,

temperatures below the evaporation point of isopropyl alcohol, which has an atmospheric

boiling point of 82.5◦C, were targeted. In this case, setting the sonicator output power to

∼9 W was sufficient to increase the solution to ∼60◦C. The temperature was monitored

and routinely stabilized around 30 seconds of processing starting with an alcohol solution

at room temperature. Second, sonication provides sufficient kinetic energy to overcome the
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surface tension of the solution thereby creating an aerosol above the liquid boundary. This

novel etching method allows the QDs to interface with solution in multiple phases while

being exposed simultaneously to atmosphere.∗

3.2 Vapor-Based ‘Sonication’ Treatment Method

Figure 3-1: Schematic of vapor-based treatment. CdSeS alloyed QDs are drop-cast onto
a slide and suspended within a vial while the solution is sonicated. The sonicator acts as
a heat source and exposes the QDs to a vapor/mist blend.

As a first step, a 1µL aliquot of QDs is drop-cast onto a glass slide. Once the toluene evapo-

rates (∼3–4 min.), the slide is fitted vertically into a vial containing ∼25mL of C3H8O:H2O

10:1 solution with QDs located ∼1 cm above the liquid/air interface.

The solution is agitated and simultaneously heated ultrasonically with a horn sonica-

tor (Misonix 3000, ∼9 W, ∼54◦C). The QD samples were next exposed to the etchant

mist/vapors by sequentially increasing etch time by 3 mins for up to 15 minutes. The slide

was taken out at the end of each 3 min treatment, allowing the same sub-area of the sample

to be optically analyzed using photoluminescence (PL) emission measurements, the results

of which are discussed in more detail in the next chapter.†

∗QDs were exposed explicitly to vapors by suspension above boiling solution as well as submerged in room-
temperature solution. The vapor-only and liquid-only treatment did not exhibit any visible emission shifting
after hours of processing.
†All processing treatment methods were optically monitored using a handheld UV lamp with a constant
wavelength of λ ∼ 365nm. Though the lamp proved useful for easy monitoring the state of processing, the
methods were also rerun for the same time periods in low-light conditions giving similar results in each
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Figure 3-2: Optical microscope images (∼100X) of drop-cast CdSe1−xSx/ZnS QDs
processed with 91% C3H8O water solution at varying durations captured with an in-
microscope camera; the samples were excited with a UV light. λexc.= 365 nm

The emission QDs treated with the 10:1 mixture of isopropyl to DI water demonstrated

a consistent blue-shift with the exposure time, shifting visibly from red to green over the

course of 15 mins of treatment, shown in Figure 3-2. Treatments carried out with only with

pure DI water or ∼99.9% C3H8O had no impact on the emission characteristics. However,

for exposure time greater than 15 minutes, samples treated with ∼99.9% C3H8O resulted

in noticeable loss of luminescence yield.

3.3 Liquid-Phase ‘Droplet’ Treatment Method

Figure 3-3: Schematic of liquid-phase ‘droplet’ treatment method. A hand-held pipette or burette
(not shown) was used to drop solution directly onto QD samples.

Alternative treatments were carried out in a liquid-phase by drop-casting 91% alcohol so-

lution directly onto drop-cast QD samples via burette or hand-held pipette. By adjusting

the burette valve, a relatively consistent rate of droplets (∼3–5/min) could be applied to

case.
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a sample for prolonged periods of time, > 2hr. The applied solution was allowed to com-

pletely evaporate prior to reapplication of a new droplet. This exposed the QDs to solution

in liquid-phase and vapor-phase in addition to the atmosphere.

The QDs were slightly heated with an external electrical heat source to maintain similar

temperatures to those measured during sonication for direct comparison (∼60◦). While the

trends (color evolution) were similar to those described earlier, the alternative pathway is

generally found to be an order of magnitude slower compared to the sonication method,

taking several hours to exhibit a partial shift in emission color by comparison. This is

attributed to a strong dependence of the etch rate on the sample temperature and expo-

sure to atmosphere, which was generally higher for the vapor-phase, i.e. sonication-based

method. As samples treated using both approaches exhibited similar characteristics, the

characterization and analysis of the effect of the alcohol etching on the structural and optical

properties of QDs is limited to samples obtained from the first method.
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Chapter 4

Characterization Methods

To characterize properties of the ‘as-grown’ CdSe0.83S0.17/ZnS QDs both prior to and follow-

ing alcohol processing via sonication method, various characterization techniques are used

and cross-analyzed.∗ The acquired data sets from the following characterization methods

are treated individually in this chapter, but it should be stressed that the selection of these

methods is rooted in the anticipated consequences within our theoretical framework, per

Chapter 2. In particular, the size evolution of QDs is shown to theoretically determine the

evolution of the optoelectronic behavior. Ideally, a single technique that allows measure-

ment of geometrical, structural, compositional, and optoelectronic properties would be used

simultaneously to show purely correlative data sets. However, an ideal type of measure-

ment apparatus that achieves an ‘all-in-one’ result was not available to the author, nor is it

believed generally that such an apparatus exists. Therefore, numerous samples and char-

acterization techniques were used in tandem to define the evolution of the aforementioned

properties of QDs as a function of processing time.

This chapter outlines the basic principles behind selected characterization techniques

and their general results. Results are contrasted against theoretical QD treatments more

thoroughly in the next chapter.

∗EDX evaluation completed with help from Elaheh Kheirandish and Dr. Heather Owen at UW-Milwaukee’s
Biological Sciences Microscopy and Imaging laboratory, equipped with a Hitachi S-4800 FE-SEM micro-
scope with Bruker Quantax EDS system. Using mapping analysis, the the QD core alloy ratio of selenium
to sulfur was found using atomic percentages assuming a 1:1 Zn:S ratio for the shell.
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4.1 High Resolution Transmission Electron Microscopy

Over the course of processing, an emission blue-shift was observed. The QDs are suspected

to decrease in size as a function of processing time, per the theory. Therefore, obtaining

the size and shape distributions of QD samples are of interest to contrast to their emission

properties. Additionally, the crystallinity and crystal structure states of processed and as-

grown CdSe0.83S0.17/ZnS QD samples are needed to confirm processing morphology effects.

As discussed earlier, cadmium selenide, cadmium sulfide, and their alloys are II-VI semicon-

ductors with a natural crystalline phase of hexagonal (wurtzite) structure. The associated

lattice constants of these structures have been reported on the order of ∼.5 Å. Thus, an

imaging mechanism by which such structures can be resolved is needed.

4.1.1 Electron Microscopy Principles

Due to diffraction and interference phenomena, imaging systems making use of particles that

exhibit wave-like properties (e.g. photons and electrons) are limited in resolution due to the

formation of an Airy disc. In a perfect optical system, resolution d (minimum discernible

distance of two points) can be described by the Rayleigh criteria,

d =
1.22λ

2n sin θ
= 0.61

λ

NA
(4.1)

where λ is the ‘particle’ wavelength, n is the refraction index of the system, θ is the half angle

exciting the lens/aperture, and NA is the numerical aperture. Other resolution conventions

exist, such as the Abbe (0.5 λ
NA) and Sparrow (0.47 λ

NA) limits, but we’ll continue with the

Rayleigh limit here.

Consider the de Broglie wavelength of an electron of mass m and velocity v,

λ =
h

mv
(4.2)

where h is the Planck constant. By altering the velocity of the electron, the electron
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wavelength is inversely affected. Electron microscopy methods make use of this property

by altering the electron velocity formed by a electrostatic potential V , where the electron

kinetic energy eV is given by (neglecting relativistic effects),

eV =
1

2
mv2. (4.3)

where e is the static charge of the electron. This is synonymous to setting the kinetic energy

of the electron by choosing the accelerating voltage V . Now,

λ =
h

mv
=

h

m
√

2eV/m
≈ 12.25× 10−10√

V
(4.4)

If we consider the relativistic effects, the result is multiplied by a
(
1 + eV/2mc2

)−1/2
term.

Therefore, for voltages of 100 keV, 200 keV, and 300 keV in electron microscopes, the

wavelengths are 3.70 pm, 2.51 pm and 1.96 pm, respectively. Photon sources are limited

in the gamma ray (λ ∼ 10−12 m) realm and therefore cannot match the resolutions shown

below.

If we consider n ≈ 1 and for small angle sin(θ) ≈ θ ≈ 10−2, the Rayleigh resolution limit

becomes,

d = 0.61
λ

n sin θ
≈ 61 · λ, (4.5)

giving resolutions of 2.25 Å, 1.53 Å, and 1.12 Å for voltages of 100 keV, 200 keV, and 300

keV, respectively. In the practical case, aberrations and distortions determine the resolution,

∼1 Å with current technology. This rather astounding imaging resolution empowers the

sub-atomic imaging of crystalline structures such as QDs by way of electron microscopy.

Specifically, transmission electron microscopy (TEM) sufficiently accelerates a beam of

electrons to propagate through a thin sample prepared typically on a small copper mesh

grid.71 The grids in this study were coated with a layer of carbon for better adsorption of QD

samples onto the mesh surface. The mean free path of the electrons must be large enough to
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Figure 4-1: Diagram outlining the internal components of a basic TEM system.

mitigate unwanted scattering from impurities in the chamber, so the process needs to occur

in ultra-high vacuum. The electron source supplies electrons which are formed into a beam

using electromagnetic lenses. The beam of electrons interfaces with the atomic structure of

the sample, which is comprised of electron-surrounded atoms. The repulsion of the electron

beam and the atoms results in the scattering of propagating electrons. The accelerating

voltage and composition of the material dictate the maximum thickness of the sample to

ensure propagation, < 100 nm at 100 keV is typical.

Propagating electrons are then sent through a set of lenses to form an image on a

fluorescent screen. Contrast is generated either by sample thickness variations or by the

composition of the sample, where higher atomic number elements pose increased backscat-

tering probability (diffraction contrast). Both create amplitude contrast in the final image.

Non-scattered electrons generate a maximum fluorescence upon incidence with the screen,

resulting in bright areas in the image. Conversely, backscattered electrons do not make it

to the screen and no fluorescence occurs, resulting in dark areas in the image. Electron
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phase differences can also be used to generate contrast in images. The use of both phase

and amplitude contrast allows for the highest resolution of imaging and is often referred to

as high resolution transmission electron microscopy (HRTEM). The resulting screen image

can be optically viewed through a filter screen or with use of binoculars. Additionally, a

charge-coupled device (CCD) can be used for digitally imaging.

For the case of a crystal, the regular and repeating lattice provides patterned contrast

from its surroundings. The crystalline purity, as well as any defects, can be readily detected

and distinguished. It turns out in this study, the crystal signature was absolutely paramount

to determine the size and shape of each QD, as shown below.

A crystalline sample will also exhibit Bragg scattering. The diffraction pattern is depen-

dent on sample orientation, so many specimen holders allow for rotational modification to

properly align the sample for a given plane. The diffraction pattern can be imaged and gives

insight into the crystallographic structure of the sample. Alternatively, the use of image

processing can give similar insight into crystal structure. By taking the Fourier transform

of a HRTEM image, the reciprocal space image is formed and can be analyzed to find the

crystalline structure. This latter method creates a diffractogram, the analysis of which is

presented for this study in the next chapter.

4.1.2 HRTEM of CdSeS Quantum Dots

QDs processed for 15 minutes in addition to unprocessed (as-grown) samples were sent

to the UWM-HRTEM laboratory for preparation and evaluation.† Multiple as-grown and

processed samples were imaged to allow for statistical analysis of the collected images.

Figure 4-2 shows two sample images of individual QDs. In both cases, the as-grown

(a) and processed (b) QDs exhibit regular and repeating contrast structure associated with

crystal structure.

†Specimen preparation and HRTEM evaluation completed with help from Elaheh Kheirandish and Dr.
Marvin Schofield at UW-Milwaukee’s HRTEM laboratory, equipped with a Hitachi H-9000NAR microscope.
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Figure 4-2: Sample QD images captured during HRTEM. In both cases, the as-grown (a) and
processed (b) QDs exhibit crystallinity while the surrounding area does not.

Making use of ImageJ software, size and shape of the areas encompassed by individual

QDs were determined by tracing the patterned edge of each crystalline region. Only QDs

whose crystalline centers were in focus were used for analysis. Larger area examples are

shown in Figures 4-3. Statistical analysis of the sizes and shapes were obtained for both

as-grown and processed QDs. The calculated values are shown in Tables 4.1 and 4.2.

Figure 4-3: HRTEM image of as-grown (Left) and processed (Right) QDs. The crystalline re-
gions are outlined and later statisically analyzed by ImageJ software. Note, the outlines shown are
enhanced post analysis for easier viewing.
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Table 4.1: Statistical results of HRTEM image analysis for as-grown CdSe0.83S0.17/ZnS
QDs. The area, major axis, minor axis, and aspect ratio are shown.

Area (nm2) Major (nm) Minor (nm) AR

Mean 27.0 6.7 5.1 1.3
StdDev 5.6 0.75 0.58 0.12

Min 12.7 4.3 3.3 1.1
Max 42.0 8.0 6.7 1.7

Table 4.2: Statistical results of HRTEM image analysis for processed CdSe0.83S0.17/ZnS
QDs. The area, major axis, minor axis, and aspect ratio are shown. Processing time was
for 15 minutes via sonication method.

Area (nm2) Major (nm) Minor (nm) AR

Mean 14.6 4.7 3.8 1.2
StdDev 3.6 0.65 0.56 0.12

Min 4.7 2.7 2.2 1.0
Max 25.1 6.1 5.2 1.5

4.2 Photoluminescence Spectroscopy

4.2.1 Review of Photoluminescence Spectroscopy

Photoluminescence spectroscopy (PL) is a non-destructive method used for characterizing

the optical properties of materials.71,71,72 PL results offer information about energy transi-

tion processes, particularly in solid-state materials. An optically absorbing solid will create

an electron-hole pair given an incident photon of sufficient energy. The electron is promoted

from the valence band to the conduction band leaving a positive region, or ‘hole’, where

it once resided. During recombination of the electron-hole pair, a photon is emitted. The

spontaneous emission of light through this process is called photoluminescence. Thus, the

excited state properties of a material can be can be characterized by its recombination

emission spectra.

Conceptually, the transition energy, or the energy difference between lowest unoccupied

molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) states, corre-

sponds to the conduction and valence band edges, respectively. Recombinations at this

transition energy are prevalent in a pure crystal and result in emission spectra localized

at this energy. However, impurities, defects, and trap sites provide energy levels within

40



Figure 4-4: Schematic of Fluorolog FL3-22 PL system, incorporating double-grating
spectrometers in both the excitation and emission positions for high resolution, sensitivity,
and stray-light rejection. Reprinted with permission from HORIBA, Ltd.73

the band gap of the idealized material. Recombinations occurring from these sites are de-

tectable in PL, resulting in the presence of lower energies (or longer wavelengths) in the

PL spectra. Therefore, the transition energy and quality of a material can be qualitatively

monitored using PL techniques.

Generally speaking, PL systems require: (a) stable and selectable monochromatic light

source, (b) sufficient optics as to focus the light on a sample, (c) stage on which to affix the

sample, (d) collection optics and emission monochromator, and (e) detection mechanism.

The PL system used in this experiment is schematically depicted in Figure 4-4.73 The

system utilizes a 450 W xenon lamp as the excitation source (∼5 mW/cm2) that is filtered

with a double-grating monochromator (DGM). The monochromatic radiation is fed into

the sample through an Olympus 51x microscope (not pictured). The detected emission
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from the sample is filtered through a second DGM and is detected by a photomultiplier

tube (PMT) in photon counting mode. The spectra obtained provide a means to determine

emission parameters such as peak symmetry, full width half max (FWHM) of the peak(s),

and center position of the peak(s) through decompositional fitting of multiple Gaussian or

Lorentzian curves using analysis software, such as Origin or SciDavis.

4.2.2 cw-PL of CdSeS Core-Shell Quantum Dots

In these studies, constant wavelength photoluminescence (cw-PL) was employed, setting

the wavelength of the excitation source in UV (λexc = 365 nm) for all data acquisitions.

CdSe0.83S0.17/ZnS QD samples sequentially processed by 10:1 isopropanol:water via sonica-

tion method were analyzed using cw-PL emission measurements.‡ The emission of samples

were spectrally analyzed from ∼380 - 700 nm with an acquisition time of 2 sec/nm. To

maximize consistency between processing time interval data sets, the sample was monitored

via CCD camera and aligned on the PL microscope stage by targeting visible density vari-

ation signatures in the drop-cast QDs. This allowed analysis of roughly the same sub-area

of a single sample as it progressed through processing intervals.

The raw cw-PL spectra data was smoothed using adjacent point averaging (5 points) to

reduce the noise-like variations present on the raw spectral data. Each of the cw-PL data

sets were decoupled from the PL background using a multi-peak fitting tool within SciDavis

open-source software. Figure 4-5 shows the resulting cw-PL spectra acquired for as-grown

and processed QDs via sonication method for intervals of 3 minutes. Though as-grown QDs

possess a single excitonic emission peak, processed QDs show multiple peaks. The fitting of

3 Gaussian distributions generated consistent results for processed samples, with accuracy

values (fitted variation / total variation) of R2 > 99%. A fitting example is shown in Figure

4-6 for QDs processed for 9 minutes. In this fitting scheme, a dominant peak migrates from

∼626 nm (red) to ∼545 nm (green) with two additional peaks located relatively near ∼556

nm and ∼500 nm, Table 4.3.

‡cw-PL measurements and equipment setup performed by Elaheh Kheirandish in Prof. Nikolai Kouklin’s
laboratory, equipped with a FluorologR© FL3-22.
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Table 4.3: Data extracted from cw-PL (λ=365 nm) emission spectroscopy curves for
CdSe0.83S0.17/Zn QDs processed via sonication method in 3-minute time intervals (P.Time). The
processed curves were fitted using 3 Gaussian peaks, example shown in Figure 4-6. The as-grown
QDs only exhibits one excitonic peak. Peak # is determined by decreasing order of center values.

P. Time Peak # Area Center Width Height FWHM

(min) (nm) (nm) (a.u) (nm)

as-grown 1 503,103.0 626.5 27.1 14794.1 63.8

3

1 10,696.2 604.7 32.4 263.0 76.2

2 12,611.1 560.7 66.3 151.7 155.9

3 5,865.4 495.6 39.5 118.5 92.8

6

1 15,743.2 598.5 31.2 402.1 73.4

2 13,063.7 566.3 52.2 199.6 122.7

3 7,709.7 500.8 46.4 132.6 109.0

9

1 13,879.7 592.2 31.8 348.4 74.7

2 18,095.6 564.5 55.9 258.3 131.4

3 7,226.3 500.1 43.9 131.3 103.2

12

1 9,968.1 579.2 40.7 195.6 95.6

2 2,935.3 545.6 29.3 80.0 68.8

3 10,822.1 502.2 60.9 141.7 143.2

15

1 9,246.4 545.8 72.1 102.3 169.4

2 943.3 543.4 23.2 32.4 54.6

3 6,170.6 500.3 41.0 120.0 96.4
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Figure 4-5: cw-PL emission results for CdSeS/ZnS QDs processed via sonication method in 3-
minute intervals. The as-grown QDs exhibit a single excitonic peak whereas the processed samples
exhibit multiple peaks. λexc. = 365 nm
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Figure 4-6: Gaussian multi-peak fitting of QDs processed via sonication method for 9 minutes, as
example. The lowest energy peak is attributed to QD excitonic emission. The remaining peaks are
attributed to background emission. λexc. = 365 nm

By decomposing each PL data set into 3 distinct Gaussians curves, the evolution of

individual recombination pathways throughout processing can be analyzed. Figure 4-7

shows the upper-most (longest peak wavelength) Gaussian for each processing duration.

This emission is attributed to the excitonic emission of the QDs, demonstrating a color

shift consistent with visual results, shown in Figure 3-2.
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Figure 4-7: Excitonic emission of as-grown and processed QDs via sonication method in 3-minute
intervals. Emission peaks consistently migrate to higher energy wavelengths with processing time.
λexc. = 365 nm

Table 4.4: Statistical average (mean) and standard deviation (∆) values of processed QD samples
(3-15 minutes) derived from Table 4.3.

Peak Center (nm) ∆ Height (a.u.) ∆ FWHM (nm) ∆

1 584.1 23.4 262.3 119.3 169.4 41.0
2 556.1 10.8 144.4 90.5 155.9 43.1
3 499.8 2.5 128.8 9.6 143.2 20.2

Table 4.5: Ratio of excitonic integrated emission to net-PL (total integrated emission) of as-grown
and processed QDs in 3-minute intervals. Derived from Table 4.3.

Time (min.) Total Area Excitonic Area Ratio

as-grown 503,103.0 503,103.0 1.00
3 29,173 10,696 0.37
6 36,517 15,743 0.43
9 39,202 13,880 0.35
12 23,726 9,968 0.42
15 16,360 9,246 0.57
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Chapter 5

Analysis of the spectroscopic data:

EMA model

5.1 Analysis of HRTEM Data

Figure 5-1: Statistical distributions of major axis diameter and aspect ratio of as-grown
and processed CdSe0.83S0.17/ZnS QDs plotted as histograms. The major diameter (Left)
for and aspect ratio (Right) distributions of QDs before (Top) and after processing (Bot-
tom) for 15 min via sonication method. Statistical mean, range, and processing induced
change values shown in Table 5.1.
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Table 5.1: Statistical mean, range, and change values obtained from HRTEM images for as-grown
and QDs processed for 15 minutes, supplementary to histograms plotted in Figure 5-1.

As-grown Processed Change

Major Diameter
Mean (nm) 6.65 4.74 1.91
Range (nm,%) 3.79 3.39 10%

Aspect Ratio
Mean (nm) 1.31 1.25 0.06
Range (nm,%) 0.50 0.59 18%

Figure 5-2: (Left) HRTEM image of single as-grown CdSe0.83S0.17/ZnS QD, with dimen-
sions 5.61×5.04 nm2 and lattice parameters a = 4.1 Å and c = 6.7 Å. (Right) Diffractogram
of image on left showing the hexagonal structure with average angle of 60 ±6.84◦.

HRTEM images of as-grown and processed CdSe0.83S0.17were collected to understand the

impact of the alcohol processing on the diameter and aspect ratio distributions. These

images contain QD ensembles, the shapes and sizes of which were determined though sta-

tistical analysis via image processing. The statistical distribution histograms are presented

in Figure 5-1 with the corresponding mean values and ranges listed in Table 5.1. During

processing the major diameter undergoes reduction of 1.91 nm while the diameter aspect

ratio value undergoes only a slight change from 1.31 to 1.25. The distribution range is main-

tained for both parameters, confirming that the used alcohol-based processing is isotropic.

As such, the etching rate of QD structures by alcohol in this context does not appear to be

selective or dependent on crystal plane orientation at the surface. This result is substantial,

as there has been no known reported method to isotropically down-tune such QDs without

distorting the shape or destroying the crystallinity through more aggressive treatments.

HRTEM of the as-grown quantum dots matches with CdSeS hexagonal wurtzite struc-
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ture with {100}, {002} and {101} planes.74 The average lattice constants a and c of the

as-grown quantum dots is 4.1 Å and 6.7 Å, respectively.∗ A single as-grown QD HRTEM

and corresponding diffractogram are shown in Figures 5-2.

5.2 EMA Modeling of Excitonic PL Spectra
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Figure 5-3: (a) Excitonic emission spectra of alcohol processed CdSe0.83S0.17/ZnS QDs in 3-min
sonication intervals. (b) Semi-log plot of total integrated emission (net PL). After initial processing,
the net PL remains relatively unchanged for the durations up to 15 minutes. λexc. = 365 nm

Figure 5-3 shows the excitonic emission and total integrated emission obtained through

constant wave photoluminescence spectroscopy (PL). The reduction of quantum yield (QY)

occurring in the first 3 minutes of processing is generally expected as the removal of ZnS

is known to de-passivate non-radiative surface recombination sites.47,49 With the typical

thickness of ZnS shell on the order of a monolayer, i.e. ∼ 3.1 Å, for core-shell QDs with

an optimized quantum yield47,59 and the average etch rate of ∼ 1.3 Å/min in this case,

3 minutes remains sufficient to entirely remove the ZnS shell. This expectedly coincides

with the increase of non-radiative recombinations and the reduction of excitonic emission

intensity, Figure 5-3(b).

It is critical to note that treatments exceeding up to 5× the initial period of 3 minutes

∗HRTEM diffractogram and lattice constant analysis completed with help by Elaheh Kheirandish.
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had no appreciable effect on quantum yield (QY).† The surface-to-volume ratio,

η =
4πa2

4
3πa

3
, (5.1)

is to increase as ∼ 1/a for smaller diameter QDs and the QY is expected to drop with the

etching time since more defects will be present per particle volume. The time-independent

QY measured in this case is a likely due to an increase of the oscillator strength of the

optical transitions for smaller size 0D systems offsetting the expected QY reduction.

The PL measurements show a consistent blue-shifting of the excitonic peak dependent

on processing time. Per HRTEM results, processed QD radii are generally less that of

calculated exciton Bohr radius,

aB ≈ 53× 1012 · εr m0

µ
= 3.1 nm (5.2)

suggesting that all samples are adequately confined to exhibit room temperature excitonic

emission, (εr, m0, and µ are the relative dielectric constant, electron mass at rest, and

reduced effective mass, respectively). Furthermore, the assessment that the shell is removed

during initial processing implies the measurements of bare-core QDs (processed QDs) can

be readily contrasted to the framework of a spherical potential well in the effective mass

approximation, as covered in Chapter 2.29,75

The ground-state quantum dot exciton energy is,

h̄ω = Eg − 1.8
e2

4πεa
+
π2h̄2

2µa2
, (5.3)

where the three summed terms are the bulk material band-gap, Coulomb exciton potential,

and quantum confinement of electrons and holes, respectively.

The as-grown QDs have a relative sulfur:selenium ratio of 0.17:0.83 per EDX measure-

†Though no explicit quantum yield measurements were completed, the comparisons of QY are made in
reference to that of the as-grown CdSe0.83S0.17/ZnS QDs.
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ments. The linear interpolation (‘bowing’) formula,

Eg(CdSeS) = (1− x)Eg(CdSe)− xEg(CdS)− bx(1− x) (5.4)

can be used to compute the alloy band-gap Eg(CdSe0.83S0.17), with x standing for sulfur

content.76 In the cited work of Wei et. al, the CdSeS bowing constant, b is reported to be

0.28 eV.54 Using room temperature bandgaps of 1.74 eV and 2.42 eV for CdSe and CdS,

respectively, the alloy bandgap is found to be 1.81 eV.

The value of dielectric content (εr = ε/ε0 = 6), effective electron mass (m∗e = 0.13 m0)

and effective hole mass (m∗h = 0.45 m0) for the remaining calculation variables are approx-

imated for the alloy by assuming those of reported bulk CdSe values, due to sulfur content

being relatively small to selenium. The measured emission energies and theoretical energy

curve, per Eq (5.3),are plotted versus radius in Figure 5-4.

Radius, nm
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Figure 5-4: Experimental PL excitonic peak energy of processed QDs vs size as determined by
HRTEM. The corresponding FWHM is depicted as error bars for each peak. The blue line shows
excitonic transition energy (h̄ω) for CdSe1−xSx QDs per EMA modeling, with sulfur content x =
0.17.

The QD diameter size distribution range only changes slightly, per HRTEM results.

Thus, the relative diameter range and, in turn, excitonic emission peak broadening are

expected to increase with etch time. Furthermore, with the temperature remaining constant,

the etch rate remains consistent through processing, resulting in size reduction of QDs at
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∼1.3 Å/min. Per Eq (5.3), confinement contribution will outweigh the Coulomb terms as

the radius decreases, leading to non-linear spectral shifting with processing time. The non-

linear emission broadening and spectral shifting evident in Figure 5-4. The results serve as

additional evidence of shifting due to quantum confinement effects. The small deviations

can likely be associated with the presence of an unaccounted deviations in alloy content in

the QD cores, induced by unbalanced precursor reactivity during synthesis.49,77,78 However,

these inconsistencies seem to be nearly negligible as the experimental and theoretical exciton

transition energies are in good agreement. In this context, the outlined QD processing and

characterization techniques could provide a useful method of characterizing the homogeneity

of alloyed QD structures.

In addition to the excitonic peak, two background peaks were found through Gaussian

spectral decomposition. The two PL bands with peaks at ∼500 and ∼556 nm that constitute

background PL, only appear in the processed samples and are therefore assigned to etch

reaction byproducts. The intensity and width of the 500 nm peak remains constant for

all treatment times, whereas the 556 nm peak is seen to slightly increase in intensity with

initial processing time from 3 to 9 minutes, then continues to evolve through 15 minutes.

This is shown in Figure 5-5. As etching is clearly taking place, Zn2+ and Cd2+ being soluble

are formed and attributed to defect-associated PL of ZnO and CdO.79,80
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Figure 5-5: Evolution of background cw-PL of etched CdSeS/ZnS QDs with processing durations
from 3 to 15 minutes by alcohol. The byproduct emission spectra are consistent with the formation
of defect-associated CdO (Left) and ZnO (Right) with respective mean peaks at 500 nm and 556
nm.
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5.3 Chemical Pathway

The formation of cadmium and zinc oxides seems to indicate an QD surface oxidation.

Oxidation reactions involving water are known to proceed with the involvement of hydroxyl

radicals. Since treatments with water alone were ineffective, it is highly unlikely that

hydroxyl radicals can form directly on the surface of the as-grown quantum dots, i.e. ZnS-

shell. Likewise, the direct oxidation of CdS by water, even in the presence of ambient light,

is very unlikely due to a relatively large potential required for hydroxyl radicals to form

directly from water.81 Yet, the QD etch rate remains strongly sensitive to the presence of

water.

HRTEM confirms the crystalline bonds within the QD are maintained during processing.

Such etching can be interpreted as a physical dissolution process.69 The above facts suggest

that water plays a secondary role by facilitating the dissolution and removal of the reaction

intermediates/ byproducts that can otherwise hinder further etching. The weak intermolec-

ular interactions at the QD surface are likely cancelled by the solution and substituted by

the interactions with solvate molecules. This is consistent with the stronger intramolecular

forces remaining unaffected. In the presence of oxygen, the treatment is likely to involve

the surface cascade reactions:

(CH3)2CHOH + h+
heat−→ (CH3)2COH +H+ (5.5)

ZnS + 2H+ −→ Zn2+ + S +H2 (5.6)

CdSeS + 2H+ −→ Cd2+ + S + Se+H2 (5.7)

O2 + e− −→ O−2 (5.8)

S + 2O−2 −→ SO2−
4 (5.9)

Both e− and h+ are ZnS and CdS surface-supplied charges, likely formed through ab-

sorption of stray light. The alcohol supports dissolution at the surface, whereas the water

helps dissolve Zn2+,Cd2+ and SO2−
4 , moving them away from the surface. The metal cations

eventually react with oxygen and precipitate in the form of ZnO and CdO.
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Chapter 6

Conclusion

6.1 Summary

Colloidal QDs are driving the commercial viability of QD-based technologies. Though

colloidal chemistry methods offer low-cost, high quality quantum dot nanocrystal structures,

it is an additive, one-way technique that results in QDs of a particular size predetermined

during initial synthesis. Additionally, due to Ostwald ripening, synthesis of QDs with

sizes below a certain threshold is not feasible with colloidal methods. For the first time, a

controllable, complimentary down-sizing technique to colloidally grown QDs is reported.

The size and underlying optoelectronic characteristics of the alloyed QDs in II-VI semi-

conductors are manipulated using a top-down approach, achieved by performing alcohol-

based treatments. According to photoluminescence tests, the emission color evolves from

red to green for samples that were treated for up to ∼15 mins through a vapor-based

sonication method. The spectral evolution is found to be consistent with isotropic size re-

duction. Spectroscopic studies are corroborated by HRTEM investigations and, in tandem,

are in strong agreement with the effective mass approximation model. In contrast to prior-

developed top-down semiconductor processing routes, crystallinity, size distribution, and

aspect ratio of QDs remain relatively unaffected throughout the processing. The PL results

exhibit a steady quantum yield once the shell is removed (> 3 min), confirming a minimal

number of defects are created as a side-effect of processing. For the applications requiring
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high quantum yields, the restoration of the ZnS cap could be considered as a concluding

processing step.

The study presents an technologically viable processing route to achieve post-growth

adjustment to the size and, therefore, the optoelectronic characteristics of core-shell, alloyed

nano-crystals in II-VI semiconductor systems. With this approach, it should be possible

to overcome size limitations due to Ostwald ripening in colloidal synthesis, extending the

emission spectrum and application range of alloyed semiconductor QDs.

6.2 Potential Applications

The most impactful attribute of the reported study is the prospect of post-growth QDs with

down-tunable diameters through facile alcohol treatment. The processing approach herein

could be developed to consistently create previously unobtainable sizes of QDs, unleashing

the potential for many new studies of QDs.

In particular, smaller QDs could be exploited in biomedical applications, by enabling

even smaller size biologically compatible QD-based probes.82–84 In addition to ligand ex-

change, proteins are routinely attached to the shell of the QDs and are used to deploy QDs

to a target site within an in vivo or in vitro specimen.7,8 The core size has a large effect

on the hydrodynamics of the system since the attached protein is comparably small. A

smaller QD would allow for additional penetration schemes into tissues and cells, furthering

the imaging and drug delivery efforts currently underway. For example, the penetration

and accumulation of nanotherapeutics into a tumor cell has been shown to dramatically

increase with the use of 10 nm nanoparticles compared to common 100 nm alternatives.85

A continuation of order-of-magnitude shrinkage could lead to similar drug delivery efficacy

improvements. Furthermore, the ultra-small nanoparticle can more readily pass through

the renal barrier, minimizing in vivo toxicity through renal clearance.

Additionally, it has been shown that the charge injection rate of QD sensitized solar

cells (QDSSC) can be directly attributed to QD size.86 The reported coverage of transport

layer in QDSSCs remains low (< 34%) and could benefit from the deposition of smaller
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QDs.87 Therefore, integration of smaller QDs could potentially open pathways to better

efficiencies in photovoltaic devices.

The cost of QD manufacturing still stands as a barrier to wide-scale adoption of QD-

based devices. The post-growth size-inflexibility inherent to colloidally grown QDs has yet

to be overcome. Optimized throughput of single-size colloidal QDs would likely drive down

synthesis cost. Through further development of the elementary etching techniques employed

in this study, the potential for bulk QD growth followed by inexpensive processing to control

final size may be achievable.
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