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ABSTRACT 

SEDIMENTOLOGICAL AND GEOCHEMICAL ANALYSIS OF DEEP-WATER DEPOSITS 

IN THE MOJÓN DE HIERRO FORMATION AT ARROYO GARRIDO, TEPUEL-GENOA 

BASIN, PATAGONIA, ARGENTINA 

by 

Natalie Beatrice McNall 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Professor Dr. John Isbell  

 

 

 The Earth has had multiple Phanerozoic glacial intervals but the Late Paleozoic Ice Age 

(LPIA) was its longest and most extensive, lasting from the Late Devonian (~372 Ma) until the 

Late Permian (~254 Ma). The LPIA is the last complete climate shift from a greenhouse to 

icehouse and back to a greenhouse state and the only one to occur on a biologically complex Earth. 

Therefore, it provides perspectives on deep-time climatic transitions, the parameters controlling 

them, and the Earth’s physical, chemical and biological responses to such climate changes. 

Research on mid to high-latitude deposits in Gondwana provides evidence that the LPIA had a 

highly dynamic climate, with multiple ice sheets and ice caps, that fluctuated asynchronously and 

diachronously across the supercontinent as it drifted across the paleo South Pole. Numerous 

questions remain on the spatial and temporal extent of the ice centers, the timing of expansion and 

contraction of the ice sheets and the distribution of ice across Gondwana through time. The Tepuel-

Genoa Basin, in Patagonia, Argentina, was situated within the paleo South Polar Circle as part of 

Gondwana and contains a nearly continuous sedimentary succession of Carboniferous to Lower 

Permian strata. The Mojón de Hierro Formation has been described as both non-glacial and glacial 
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in origin. This study investigates a unit within the Mojón de Hierro Formation which was used in 

a detrital zircon analysis which implies a large ice sheet covered the basin at the time of deposition, 

which extended from an ice center in the Ellsworth Mountains all the way to the Panthalassan 

Margin in west-central Gondwana. These strata contain mudrocks, some with outsized clasts, 

diamictites and sandstones. Five stratigraphic sections were measured at Arroyo Garrido and the 

strata were categorized into five lithofacies associations; 1) laminated mudrock, 2) laminated 

mudrock with dispersed clasts, 3) graded rhythmites, 4) laminated and bedded diamictites, and 5) 

deformed bedded sandstones. The strata were deposited in a basinal slope environment from 

suspension settling, ice rafted debris, sediment gravity flows and mass transport complexes. The 

mass transport complexes were deposited on a lower slope and formed deep-water topography that 

resulted in a ponded mini basin behind the sand blocks. Paleo-flow is indicated as flowing to the 

northwest. The Chemical Index of Alteration (CIA) indicates average marine shale values and that 

muds are of temperate terrestrial sediment sources. A glacial source could not be substantiated 

using CIA values. Vanadium/chromium ratios indicate dysoxic values in samples between the 

mass transport sand blocks and oxic values in samples above the filled ponded mini basin. The 

detailed facies analysis and geochemistry data do not indicate the Arroyo Garrido strata to be of 

glacial origin. However, facies analysis data suggest that icebergs from a distant source transited 

the basin during emplacement of the mass transport and sediment gravity flow deposits. 
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“For a billion years the patient Earth amassed documents and inscribed them with signs and 

pictures which lay unnoticed and unused. Today, at last, they are waking up, because man [and 

woman] has come to rouse them. Stones have begun to speak, because an ear is there to hear 

them. Layers become history and, released from the enchanted sleep of eternity, life’s motley, 

never-ending dance rises out of the black depths of the past into the light of the present.” 

 

-Hans Cloos
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1. INTRODUCTION 

 

 Multiple glacial intervals have occurred throughout the Phanerozoic, however, the Late 

Paleozoic Ice Age (LPIA) and the current Cenozoic Ice Age are arguably the most significant. The 

LPIA was Earth’s longest and most extensive, lasting from Late Devonian to Late Permian (~372 

Ma to ~254 Ma). It was also the last complete climate shift from a greenhouse to icehouse and 

back to greenhouse state and the only example on a biologically complex Earth, providing a deep-

time perspective on climatic transitions. Studying it can lead to a better understanding of the 

parameters controlling these transitions and the current transition out of the Cenozoic Icehouse.  

Similarities between the LPIA and the Cenozoic Ice Age include; 1) a long duration, 2) 

that both occur/occurred on a biologically complex Earth, and 3) that both occur/occurred during 

times of low CO2 levels in the atmosphere. However, the two also have major differences such as; 

1) intensities in solar luminosity, 2) O2 levels in the atmosphere, 3) different biotas, 4) different 

continental positioning (the majority of the landmass positioned in the southern hemisphere during 

the LPIA versus its current, more evenly distributed position around the planet), and 5) ocean 

circulation patterns. The LPIA cannot be thought of as an exact analogue to present day climatic 

transitions, but it is the most applicable glacial interval to our current climate state (Gastaldo, 1996; 

Soreghan, 2004; Isbell et al., 2003, 2008, 2012; Fielding, 2008a; Montañez & Poulsen, 2013), 

which offers insight on how the Earth’s physical, chemical and biological systems respond to 

climatic transitions. 

Traditional interpretations of the LPIA consist of a single massive ice sheet centered near 

the paleo South Pole covering and spreading out across the majority of the supercontinent 

Gondwana (Figure 1; A) for over 100 million years, from ~372 Ma to ~254 Ma (Veevers & Powell, 
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1987; Scotese and Barrett, 1990; Ziegler et al., 1997; Scotese, 1997, 2014). In this scenario, the 

ice sheet advanced and retreated outward across the polar regions extending across much of the 

supercontinent during maximum glaciation and nearly disappearing during ice minimal or non-

glacial intervals. Such ice volume fluctuations were used to explain hypothetical changes in 

eustacy of 100-200 m, which were thought to be required for the formation of equatorial 

cyclothems (Veveers & Powell, 1987; Heckel, 1994). Such glacial- non-glacial intervals were 

thought to have resulted from changing insolation conditions due to Milankovitch cycles (Wanless 

& Shepard, 1936; Heckel, 1994).  

Recent climate modeling indicates that large scale ice sheets of this size are highly stable 

and unlikely to fluctuate with orbitally induced changes in solar insolation (Deconto & Pollard, 

2003; Horton & Poulsen, 2009). Additionally, recent research in Antarctica, Australia, Southern 

Africa, India, the Arabian Peninsula and southern South America on mid to high-latitude deposits 

in Gondwana provide evidence that the LPIA had a highly dynamic climate. These dynamics are 

characterized by a succession of shorter (~1 to 8 Ma) glacial intervals, occurring at different times, 

which were separated by non-glacial intervals of the same duration (Caputo & Crowell, 1985; 

Lopez-Gamundi, 1987, 1994, 1997, 2010; Visser, 1987, 1997; Isbell et al., 2003, 2008, 2012; 

Caputo et al., 2008; Fielding et al., 2008a, 2008b; Issacson et al., 2008; Montanez & Poulsen, 

2013).  

These more recent interpretations characterize the LPIA as composed of multiple, smaller 

ice sheets and ice caps (Figure 1; B), fluctuating asynchronously and diachronously as Gondwana 

drifted across the late Paleozoic South Pole (Caputo & Crowell, 1985; Crowell & Frakes, 1970; 

Lopez-Gamundi, 1997; Isbell et al., 2003). Subsequently, these smaller ice sheets represent less 

ice volume than previously estimated (Fielding et al., 2008; Isbell et al., 2003, 2010, 2012). 
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Because ice behaves as a Bingham plastic and flows under high stress (>40 m thick weight), it is 

physically impossible to have thick ice masses with small areal footprints. Therefore, to cover the 

same area of Gondwana with smaller ice sheets results in less ice volume (Crowley & Baum, 1991; 

Isbell et al., 2003).  

 

Figure 1 Traditional and recent reconstructions of maximum glaciation during the Late Paleozoic 

Ice Age. A) Traditional reconstruction showing a massive ice sheet covering much of southern 

Gondwana. Ice sheets were from Isbell et al. (2012) and modified from Scotese (1997) and Scotese 

and Barrett (1990). B) Reconstruction of Gondwana during maximum glaciation during the 

Gzhelian to early Sakmarian (Pennsylvanian–Early Permian) based on recent data and ice flow 

directions. Ice flow directions are from Frakes et al. (1975); Hand (1993); Veevers and Tewari 

(1995); López-Gamundí (1997); Visser (1997a, 1997b); Visser et al. (1997); Fielding et al. 

(2008a); Isbell et al. (2008c); Mory et al. (2008); Rocha-Campos et al. (2008); & Isbell (2010). 

Modified from Isbell et al. (2012). 
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Despite ongoing research efforts using the rock record to better understand LPIA glaciation 

in Gondwana, numerous questions remain. These include; 1) the number of glacial events, 2) the 

spatial and temporal extent of ice centers, 3) the timing of ice sheet advances and retreats, 4) the 

distribution of ice across Gondwana through time, and 5) the controlling mechanisms of the 

initiation, duration and completion of the glacial intervals. Therefore, more detailed investigations 

of mid and high-latitude LPIA basins and deposits will help to constrain these questions and 

provide answers on ice volume and the relationships between glaciation, sea level changes, 

climate, and depositional systems. Understanding the nature of deep-time environmental change 

will help scientists to constrain the parameters of how and when the Earth’s paleoclimate shifted 

from icehouse to greenhouse states, which may aid in understanding the parameters of the current 

Cenozoic climate change since the LPIA is the closest analogue (Gastaldo, 1996; Soreghan, 2004; 

Fielding, 2008; Isbell et al., 2003, 2008, 2012; Montanez & Poulsen, 2013).  

Located within Patagonia, the Tepuel-Genoa Basin (present day Chubut Province, 

Argentina; Figure 2) was positioned within the paleo South Polar Circle (>66° S) during the Late 

Carboniferous to Early Permian (Figure 3) (Scotese & Barrett, 1990; Scotese, 1997; Lawver et al., 

2008) and documents a thick succession with a nearly continuous marine and glaciomarine 

stratigraphic record (Pagani, Taboada & Puerta, 2010). Therefore, the deposits document the 

changing environmental conditions in polar Gondwana during the LPIA and thus record the 

different glacial intervals as well as the transitions from glacial to non-glacial climatic conditions 

(arid and semi-arid conditions) during this time in this region (Limarino & Spaletti, 2006; Pagani, 

et al., 2010).  

The Tepuel-Genoa Basin contains diamictites previously interpreted as glacial tills (Suero, 

1958; Frakes, 1969; Page et al., 1984; Pagani & Taboada, 2010). The Mojón de Hierro Formation, 
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one of several formations within the basin, has been interpreted as both non-glacial (Suero, 1958; 

Page, 1984) and glacial (Pagani & Taboada, 2010; Griffis et al., 2018) in origin. Recently, a paper 

using detrital zircon analysis on a single sample and single paleocurrent orientation measurement 

taken from the underlying Pampa de Tepuel Formation (González-Bonorino, 1992; Griffis et al., 

2018), concluded that ice streams from an Antarctic ice center fed sediment and ice into the 

Tepuel-Genoa Basin during deposition of the Mojón de Hierro Formation (Figure 4) and infers 

that ice extended to the Panthalassan Margin in west-central Gondwana during the Early Permian. 

All of these conflicting studies provide sweeping interpretations of the climatic history of 

Patagonia and a portion of Polar Gondwana without a single detailed sedimentological analysis of 

these strata. Therefore, clarification and an in-depth analysis provided by this thesis will test these 

diametrically opposed interpretations within this important sedimentary basin.  

 

 

Figure 2 The present-day location of the Tepuel-Genoa Basin within southern Argentina (image 

modified from Gonzalez, 1997). 
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Figure 3 The paleo-continental positioning of the southern hemisphere during ~290 Ma and 

location of the Tepuel-Genoa Basin (circled in red) located in Patagonia within the paleo South 

Polar Circle (modified from Lawver et al., 2008, UTIG plates Project). 
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Figure 4 Hypothesized source terrain of Griffis et al. (2018) for the Mojón de Hierro Formation, 

proposing that recycled Ellsworth Mountain sediment provided a source of zircon to the Tepuel 

(labelled ‘T’ on figure) and Trinity Peninsula groups (TPG) based on similar age distributions 

and highly evolved Hf isotopic compositions (Griffis et al., 2018). Solid black arrows interpreted 

ice-flow direction (González-Bonorino, 1992). On the figure: A-Marie Byrd Land, B-Ellsworth 

Mountains, C-Deseado Massif, D-North Patagonia Massif, and T- Tepuel-Genoa Basin (modified 

from Griffis et al., 2018, originally from Elliot et al., 2016). 
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2. GEOCHEMISTRY BACKGROUND 

 

Various geochemical signatures can serve as proxies for paleoclimatic and 

paleoenvironmental conditions and changes in the provenance at the time of deposition. Using 

geochemical analyses and established proxies provides valuable information about depositional 

conditions that offers additional information above and beyond facies analysis alone. Bulk 

mineralogy is obtained from X-ray diffraction (XRD) analysis, while elemental data including 

major, minor and trace element data are obtained from X-ray fluorescence (XRF) spectrometry.  

Shales best represent the average crustal composition of the provenance area (McCulloch 

& Wasserburg, 1978; Lee, 2009) because they are the most dominant detrital sediments in basins 

(Pettijohhn, 1975).  The geochemical composition of shales can provide information on weathering 

conditions of the source sediment area (Roser & Korsch, 1988; McLennan, 1993; Lee, 2009). The 

concentration of immobile and mobile elements in shales can help determine the contribution of 

acidic (felsic) or basic (mafic) sources, due to enrichments and depletions in specific elements 

(Roser & Korsch, 1988) when compared to Post-Archean Average Shale (PAAS; Taylor & 

McLennan, 1985) and Upper Continental Crust (UCC; Taylor & McLennan, 1985) (PAAS and 

UCC data can be seen in Table 4). Geochemical signatures have been used in a number of ways to 

interpret paleo-depositional conditions (Jones & Manning, 1994; Dobrzinski et al., 2004).  

Climate is a major factor in the degree of weathering and the breakdown of rocks. Past 

climatic conditions, therefore, can be estimated from past weathering products. Reworked 

siliciclastic materials deposited in marine settings reveal information on weathering conditions and 

climate (Bahlburg & Dobrzinski, 2011). The Chemical Index of Alteration (CIA) is a well-

established and frequently used proxy for determining changing climatic conditions by 

determining the degree of alteration of feldspars to form clay minerals, because the amount of 
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mechanical and chemical weathering is different in arid (polar) versus humid (tropical) 

environments (Nesbitt & Young, 1982). This is because physical weathering just breaks sediment 

into smaller pieces without changing the composition. Chemical weathering, on the other hand, 

alters the sediment’s composition as weathering occurs. Trace elemental data provided by XRF 

using the elements vanadium and chromium (V & Cr) are used to estimate paleo-oxygen levels 

and paleo-redox conditions in the water column. 

The Chemical Index of Alteration was first introduced as a sensitive measure of the degree 

of chemical weathering in clastic sediments. Young and Nesbitt (1982) formulated the equation: 

CIA = (Al2O3/ Al2O3 + CaO* + Na2O + K2O) x 100 (where CaO* represents the calcium content 

within silicate minerals). Chemical weathering increases proportionately in humid conditions, with 

the leaching of alkalis (Na+ and K+) and Ca+ and the concentration of Al and Si in the residue 

(Ding, 2016). Progressive chemical weathering using CIA is normally measured over a range of 

values from 1-100, with low CIA values for sediments containing fresh feldspars with little to no 

chemical weathering and high values for clay produced under tropical conditions. Environments 

where abrasion and mechanical breakage dominates over chemical weathering in sedimentary 

rocks, such as arid and glacial settings, have average values for CIA ranging between 50-70 

(Goldberg & Humayun, 2010), while shales produced in more humid and tropical settings have 

CIA values of 80-100. Average values for marine shales range from 70-75 (Taylor & McLennan, 

1985; Goldberg & Humayun, 2010). This ultimately represents the aridity/humidity conditions of 

the rocks exposed in the source area and can thus aid in determining the climatic setting of the 

drainage basin.  

In addition to the CIA, other geochemical parameters have been applied to interpret the 

paleoenvironment and paleo-oxygenation (Ernst, 1970; Jones & Manning, 1994; Fedo; 1995; 
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Dobrzinski et al., 2004). These geochemical analyses involve trace elements, particularly 

vanadium (V) and chromium (Cr), and address the oxygen levels in the water column at the time 

of deposition. An index for paleo-oxygenation levels can be determined from mudrock by using 

the ratios of these specific trace elements, V/Cr (Ernst, 1970; Jones & Manning, 1994, Henry et 

al., 2010). Jones and Manning (1994), explain that chromium is incorporated within the detrital 

clastic fraction of sediments where it can be substituted for aluminum in clays, absorbed, or occurs 

as chromite (Patterson et al., 1986). The trace element vanadium can be bound to organic matter 

(by the incorporation of V4+ into porphyrins) and becomes concentrated in sediments under 

reducing water conditions (Shaw et al., 1990). It can also be physically bound to detrital silicate 

minerals. V/Cr ratios less than 2 indicate oxygen-rich waters with H2S present in the bottom waters 

just above the sediment substrate. Ratios ranging from 2 to 4.25 indicate dysoxic waters, and values 

greater than 4.25 indicate suboxic and anoxic water conditions (Jones & Manning, 1994).  

Regionally, this geochemical data will constrain paleo-weathering in the source area and 

paleo-oxygentation conditions in the bottom waters during deposition, and they ultimately help 

reconstruct the paleoenvironment. There are very few bulk mineralogical and geochemical (e.g. 

XRD and XRF) analyses on LPIA sedimentary rocks in the literature (Scheffler et al., 2003, 2006; 

Henry et al., 2010, Pauls et al., 2018), despite their usefulness and quantitative approach to 

analyzing glacial and non-glacial sediments, depositional environments and paleoclimate. Using 

XRD and XRF on LPIA sediments helps to investigate aspects of the deposits that are unknown 

or unseen with traditional sedimentological methods that and will ultimately help constrain glacial 

intervals and localities in deep-time. 
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3. RESEARCH OBJECTIVES  

 

 The objective of this research project is to identify mid to high-latitude depositional 

environments in the Mojón de Hierro Formation of the Tepuel-Genoa Basin during the Late 

Paleozoic Ice Age. This study will test the hypotheses of glacial versus non-glacial deposition and 

develop a picture of the ice age as documented within the rock record and elucidate how influential 

ice sheets were to deposition in the basin during the Early Permian by providing a detailed 

sedimentologic analysis of the exposed deposits at Arroyo Garrido. Mineralogy and geochemistry, 

using X-ray diffraction (XRD) and X-ray fluorescence (XRF) spectrometry will aid in determining 

the paleoclimatic conditions of the sediment source area and paleo-oxygenation in the water 

column. Therefore, this study will facilitate reconstruction of depositional settings and climate 

records within a portion of Polar Gondwana. Specific research objectives include;   

1. Reconstructing the depositional environments to test the two conflicting hypotheses on 

the depositional setting of the Mojón de Hierro Formation in the Tepuel-Genoa Basin. 

Determine if the setting was glacial versus non-glacial, glacially influenced versus 

normal marine, and/or shallow versus deep-marine. A detailed sedimentological facies 

analysis was conducted to determine the depositional setting and to reconstruct the 

paleoenvironments. In turn, this will aid in determining the climatic conditions in the 

depositional basin and in this portion of Polar Gondwana.  

2. Determine paleo-slope orientation and sediment delivery pathways for sediment 

deposited at Arroyo Garrido and to test the source terrain hypothesis of an ice sheet 

delivering sediment to the basin derived from the Ellsworth Mountains, Antarctica 

(Griffis et al., 2018).  
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3. Provide a bulk mineralogical and geochemical analysis using X-ray diffraction and X-

ray fluorescence spectrometry, and apply the data to paleoclimate/paleo-weathering 

and paleo-oxygenation proxies. This data will aid in constraining basin conditions and 

determining the climatic signature within the rocks and help determine if there were 

potential glaciers nearby.    

This research project contributes to addressing glaciation questions on a regional scale 

during the LPIA. It also contributes to developing an understanding of the LPIA by: enhancing the 

resolution on the size, timing and location of Gondwanan ice sheets to advance deep-time climate 

change studies and to improve knowledge on the understanding of the parameters that control and 

effect icehouse and greenhouse transitions.  
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4. GEOLOGIC SETTING & STUDY AREA 

 

 Two conflicting hypotheses have been proposed for the paleogeography of Patagonia 

during the late Paleozoic and its relationship to the rest of South America. These two hypotheses 

are (1) it formed as an autochthonous block connected to South America within Gondwana 

(Forysthe, 1982; Dalla Salda et al., 1990; Pankurst et al., 2006) while the other hypothesis, (2) 

suggests that it was an allochthonous crustal block that collided with the southern margin of South 

America in the late Paleozoic (Figure 5) (Ramos, 1984, 1986, 1988; Ramos et al., 2004). Ramos 

(2008), proposed the occurrence of two magmatic arcs; a western belt (active from the Devonian 

to mid-Carboniferous) and a northern belt that was partially coeval (Late Permian; Figure 6) with 

Patagonia’s collision with the southwestern margin of Gondwana. When the Antarctic Peninsula 

collided with the Patagonian terrane, activity in the western magmatic arc ceased (Ramos, 2008).  

 

 

Figure 5 An oblique schematic structural cross section of Patagonia during the late Paleozoic, 

showing the northern magmatic belt (right; 310-285 Ma) and western magmatic belt (left; >401-

320 Ma) under subduction and their relationship to the Tepuel-Genoa Basin (modified from 

Ramos, 2008). Ramos (2008) presents the basin in this figure as an autochthonous crustal block.  
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Figure 6 Location of the magmatic arcs in relation to Gondwana Passive Margin (north/northeast 

of the northern magmatic arc) and the Tepuel-Genoa Basin (southwest of the western magmatic 

arc). The Samuncura and Deseado massifs are labelled. Diagram also includes younger 

Cretaceous basins (modified from Ramos, 2008). 
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Despite the progress on the reconstruction of the tectonic history, debate on the exact 

timing and number of events that led to the formation of Patagonia is not completely resolved. 

Nonetheless, the tectonic history of Patagonia was complex during the Paleozoic and shows 

several episodes of rifting, fragmenting, convergence, accretion, renewed rifting and re-accretion 

to Gondwana (Ramos, 2008). Regardless, of its origin, two magmatic were in place in Patagonia 

during the late Paleozoic and may have influenced glaciation in the area. In addition, the Tepuel-

Genoa Basin had two adjacent paleo-topographic highs; the Samuncura Massif to the north/east, 

and the Deseado Massif to the south/east (Leanza, 1958; Harrington, 1962; Limarino & Spalletti; 

Figure 6 & Figure 7) which could have influenced glaciation in the region.  

The Tepuel-Genoa Basin has been interpreted to be a retroarc foreland basin by some 

(Limarino & Spaletti, 2006; Figure 6) and a forearc basin by others (Ramos, 2008; Ramos & 

Naipauer, 2014; Figure 5). The debate on the basin’s origin (forearc vs. retroarc foreland basin) is 

problematic because the basin has characteristics of both basin types. Forearc basins are 

characterized as deep basins with abundant volcaniclastic sediments (Ciccioli et al., 2018). 

Whereas, retroarc foreland basins are typically shallower basins that often do not contain vast 

quantities of volcaniclastic sediments (Ingersoll, 1988; Nichols, 2009; Miall, 2010; Einsele, 2013).  

The Tepuel-Genoa Basin is a deep basin which lacks abundant volcaniclastic sediments 

(Ciccioli et al., 2018). Isbell et al. (2011, 2013) and Survis (2015) interpreted strata within the 

Pampa de Tepuel Formation (stratigraphically older than the Mojón de Hierro Formation) in the 

basin as containing shelf and deep-water deposits, and Ciccioli et al. (2018) described only minor 

amounts of volcaniclastic sediment grains within the fill of the basin. Despite the different 

interpretations on exact basin type and the lack of direct basin classification, the Tepuel-Genoa 
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Basin is a marine basin deprived of volcaniclastic sediment (Isbell et al., 2011, 2013; Survis, 2015; 

Ciccioli et al., 2018). 

 

Figure 7 Basin type and location of the Tepuel-Genoa basin, depicted here as a retroarc basin, in 

relation to paleo-topographic highs, Samuncura Massif to the north/east and the Deseado Massif 

to the south/east (Limarino & Spaletti, 2006). 

 

From the Late Carboniferous to Permian the Tepuel-Genoa Basin was positioned within 

the South Polar Circle (Figure 3) and accumulated a nearly continuous succession, comprised of 
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several formations. The Tepuel Group is composed of the Jaramillo, Pampa de Tepuel and Mojón 

de Hierro formations (Figure 8) which may total up to 6,000 m in thickness and consist 

predominately of marine, glaciomarine and glacially influenced marine strata (Frakes et al., 1969; 

Taboada et al., 2009). The glaciogenic deposits are only reported from the Pampa de Tepuel and 

the upper part of the Mojón de Hierro formations (Frakes, 1969; Freytes, 1971; Andreis et al., 

1987, Taboada et al., 2009). Strata in the Mojón de Hierro Formation have been interpreted from 

a variety of environmental settings including: 1) shallow marine platform (Taboada et al., 2009; 

Gonzalez & Saravia, 2010), a glacially-influenced open shelf and slope (Limarino & Spaletti, 

2006; Pagani & Taboada, 2010), 2) deep-water mass transport deposits (Isbell et al., 2011, 2013) 

and 3) deep-water glacially influenced deposits fed by adjacent ice streams (Griffis et al., 2018).   

The Mojón de Hierro Formation is the youngest of the Tepuel-Group formations (Figure 

8) and is biostratigraphically dated as Sakmarian (Figure 9; ~295 to ~290 Ma; Taboada and Pagani, 

2010). These strata contain several marine invertebrate fossiliferous levels (Figure 8; Taboada, 

Pagani & Puerta, 2009) and a diverse fossil fauna including brachiopods, bivalves, gastropods, 

cephalopods, bryozoans and echinoderms (Suero, 1948; Riccardi & Sabattini, 1975; Sabattini et 

al., 1990b, 2006; Taboada, 1993, 1998, 1999, 2001; Pagani et al., 2002; Taboada et al., 2005; 

Pagani, 2004a, 2004b, 2005, 2006a, 2006b; Azcuy et al., 2007; Taboada and Pagani, 2010; Dineen, 

2010). Near the upper part of the formation, there are two plant-bearing horizons that consist of 

thick shales with yellowish to greenish sandstones and minor intercalated conglomerates and 

siltstones (Andreís et al., 1987, 1996; Andreís & Cúneo, 1985; Cúneo, 1990) that suggest a 

possible marine regression. The majority of the exposed rock within the formation is heavily 

covered with lichen and not well-exposed. 
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Figure 8 Stratigraphic column of the Tepuel Group; the Jarmillio, Pampa de Tepuel, and Mojón 

de Hierro formations. Showing their stratigraphic thickness, sedimentology, fossils, and their 

relationships to one another (from Freytes, 1971). 
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The lower section of the Mojón de Hierro Formation was interpreted to be a post-glacially 

deposited interval corresponding to a eustatic sea level rise during the late Assalian-Tastubian 

(Dickins, 1985; Taboada, 2001, 2008; Pagani & Taboada, 2010). Whereas the upper section of the 

formation is reported to exhibit a glacially-related interval with diamictites and shales with 

dropstones (Figure 9; Pagani & Taboada, 2010). The upper part of the formation, which is exposed 

at Arroyo Garrido, is also considered to represent the youngest evidence for concurrent glaciation 

(latest Carboniferous to Early Permian) from the Tepuel-Genoa Basin and in South America 

(Taboada, Pagani & Puerta, 2009; Isbell et al., 2012). Because of their paleogeographic position, 

deposit thicknesses, and ongoing debate surrounding the origin of the strata, the Arroyo Garrido 

section is important and its study will aid in understanding mid and high-latitude and regional 

paleoenvironments and overarching LPIA paleoclimate transitions.  
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Figure 9 Tepuel-Genoa Basin formations (the Esquel, Valle Chico, Jarmillo, Pampa de Tepuel, 

Mojón de Hierro and Río Genoa formations) with time scale correlation. Triangles represent 

diamictites and circles represent dropstones (modified from Taboada, 2010 & Limarino and 

Spaletti, 2006). 
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5. METHODS 

 

 5.1 Sedimentological Methods 

 

The study area (~ -43.841303°, ~ -70.680596°) for this thesis is located at Arroyo Garrido, 

Patagonia, in the Chubut Province of Argentina. Field work was conducted in April, 2018. The 

Mojón de Hierro Formation outcrops approximately 25 km north/northwest of Gobernador Costa 

(Figure 10). Much of the exposures in the Tepuel-Genoa Basin are covered by a thick lichen cover, 

however, strata at the study site are well exposed. Strata were examined in detail including 

describing lithology, grain size, unit thickness, sediment body geometries, sedimentary structures 

and deformational features. Hand samples were collected throughout the sections for micro-

deformational features, mineralogical and geochemical analyses. 

Five stratigraphic sections were measured laterally from the northwest to the southeast, 

using standard sedimentological techniques (Abney level, Jacob’s staff and Brunton compass). 

Measured sections (NW to SE; Figure 10) are recorded as AG4, AG1, AG3, AG2 and AG5 with 

a total thickness of the sections approaching ~150 m (Figure 11).  The strata dip at an average of 

24° toward an azimuth of 100°. 

The lithology of the strata was analyzed, logged in detail and photographed to aid in the 

interpretation of individual facies (individual stratigraphic columns are in Appendix A). To obtain 

the paleo-slope and paleo-flow directions, deformational features such as thrust faults/glide planes 

were measured and recorded. The thrust faults/glide planes that were measured are not the result 

of tectonic faulting but were caused by sliding/shearing that resulted from downslope movement 

of mass transport deposits prior to lithification. Paleo-slope direction can be predicted by the 

relationship of slope attitude and the orientation of resulting slump structures (Woodcock, 1979; 
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Strachan & Alsop, 2006). Sediment transport direction is opposite to that dipping thrust/glide plane 

(down slope direction) as a vergence direction.  

There are many methods to obtain a paleo-slope orientation of mass transport deposits 

(Martinsen et al., 1994; Sharman et al., 2015) but the mean fault orientation method established 

from Farrell (1984) & Martinsen & Bakken (1990) was used in this study. Dip direction and dip 

angle measurements were taken from the thrust faults/glide planes. These recorded measurements 

were corrected for structural reorientation by rotating the data back to horizontal and then 

correcting for magnetic declination (addition of 7°47.22’; https://geomag.nrcan.gc.ca/calc/mdcal-

en.php, field measurements are Appendix B) to obtain the dip of the paleo-slope. The dip direction 

is opposite (180°) of the vergence which is the slide direction.  

The measurements create a series of points on a stereonet and a rose diagram can be 

generated to show the shortening direction representing the vergence/slide direction. The corrected 

measurements were then plotted using the computer program Stereonet (Almendinger et al., 2011) 

to obtain a stereonet and rose diagram, which determined the vergence of paleo-slope and paleo-

flow directions. This data were compared to other published studies (Gonzalez-Bonorino, 1992) 

including their orientation of paleogeographic reconstructions. This data was also used to 

determine if the paleo-slope supports sediment sources located in the Ellsworth Mountains of 

Antarctica, testing the hypothesis of Griffis et al. (2018). The results and discussion of the paleo-

flow determinations are in Section 7. Paleo-slope & Paleo-flow Results & Discussion. 

 The lithofacies interpretations combined with the paleo-slope and paleo-flow directions 

were used to reconstruct the paleoenvironment in the basin during at the time of deposition (Figure 

12). 
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Figure 10 A) Aerial view of the study area, Arroyo Garrido, and scale (bottom left corner). 

Outlined area highlights location of B. North is upward. B) Close up aerial view from A showing 

the location of the five measured stratigraphic columns; AG4, AG1, AG3, AG2 and AG5.  

A. 

B. 

N 
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Figure 11 The measured stratigraphic columns. Geochemistry sample locations are labeled to the 

right of their respected column (AG1 & AG2). Green= Facies A; Red= Facies B, C & D; Yellow= 

Facies E. 
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Figure 12 A.) An unannotated photo mosaic, B.) an annotated photo mosaic and C.) labeled photo 

mosaic of Arroyo Garrido (looking toward the East). 
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5.2. MINERALOGY & GEOCHEMISTRY METHODS 

 

Bulk mineralogical and geochemical analysis of mudrocks from Arroyo Garrido was 

conducted using X-ray diffraction (XRD) and X-ray fluorescence (XRF) spectrometry. This was 

completed by collecting samples and obtaining bulk mineralogical (XRD) and elemental (XRF) 

concentrations. A total of thirteen hand samples were used for the geochemical analysis and were 

collected from two sections, AG1 and AG2, throughout a height of 48 meters (sample locations 

are labeled next to their stratigraphic column; Figure 11).  

Samples for both XRD and XRF were prepared by first obtaining unweathered surfaces. 

Roughly 10 grams of the fresh rock were placed in a tungsten carbide shatterbox (~1 minute). Then 

the shattered sample was further powdered by hand using an agate mortar and pestle and acetone 

until an even particle size of ~ 63 µm was obtained. Samples were dried overnight in an oven at 

105° C to expel any moisture.  

 

XRD METHODS: XRD analysis was conducted on three (AG1-3, AG1-27, and AG2-7) 

of the thirteen samples, to determine the mineralogy of the bottom (AG1-3), middle (AG1-27) and 

top (AG2-7) of the measured strata. Each of the three samples was mounted as a random powder 

and analyzed using a Bruker D8 Focus XRD (Cu tube, 0.02° 2θ step size, 2-60° 2θ, 1 s/step) 

following methods from McHenry (2009) & McHenry et al. (2017). Minerals were identified using 

the Bruker EVA software which uses the International Centre for Diffraction Data Powder 

Diffraction Files (ICDD PDF) 2 database for comparison. The software matches the diffraction 

pattern measured by the machine (peak positions and relative peak heights) with the patterns 
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derived from mineral phases for which structural information is available in the database, and 

suggests likely mineral matches which can be assessed by the user (McHenry et al., 2017).  

 

XRF METHODS: From each of the thirteen samples, one gram of powdered sample was 

heated to 1050º C in a muffle furnace to calculate the loss on ignition (LOI, %). Next, one gram 

of each powdered sample was mixed with 1.000 gram of oxidizer (ammonium nitrate) and 10.000 

grams of a 50:50 lithium metaborate: tetraborate flux containing 0.5% LiBr integrated as a non-

wetting agent. This mixture was fused at 1050ºC in a Claisse M4 programmable fusions system, 

creating a fused “bead”. The fused beads were analyzed with a Bruker AXS, Inc. Pioneer S4 WD-

XRF instrument to obtain major, minor and trace elemental data. This elemental data was 

processed by computer software which uses a calibration derived from eleven USGS rock 

standards (methodology and more details reported in McHenry, 2009; Beyers et al., 2016). 

Concentration values that approach or are just below the LLD are noted with a symbol (*) in 

section 9. Mineralogical & Geochemical Analysis Table 4. This XRD and XRF study was 

completed at the University of Wisconsin- Milwaukee, Geosciences Department. 

The Chemical Index of Alteration (CIA) was calculated according to the equation; 

CIA = [(Al2O3)/(CaO*) + Na2O + K2O + Al2O3)] × 100  

(where CaO* represents the calcium content within silicate minerals; Young & Nesbitt, 1982). 

Values were compared to known CIA values of arid/glacial and other settings, 50-70 (Goldberg & 

Humayun, 2010). Trace elements vanadium and chromium are considered detectable if they have 

concentration levels (PPM) greater than or equal to double the Lower Limit of Detection (LLD) 

values and analytical error of less than 12%.   
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Detectable values for trace elements V and Cr were ratioed and compared to obtain 

information on oxygenation levels in the water column when sediment was deposited, a proxy 

used to determine paleo-oxygenation (Ernst, 1970; Jones & Manning, 1994). V/Cr concentration 

ratios were calculated using concentrations in PPM (parts per million) and were plotted against 

their stratigraphic height on separate graphs (see Section 9. Mineralogical & Geochemical 

Analysis).  
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6. FACIES ANALYSIS  

 

Strata of the Mojón de Hierro Formation exposed at Arroyo Garrido were analyzed and 

categorized into five lithofacies associations; A) laminated mudrock, B) laminated mudrock with 

dispersed clasts, C) graded rhythmites, D) laminated and bedded diamictites and E) deformed 

bedded sandstones. These five lithofacies are summarized in Table 1 and described and interpreted 

in detail below. The classification of poorly sorted lithologies was made according to Hambrey & 

Glasser (2003), which is revised from Moncrieff’s (1989) sediment sorting classification scheme. 

Facies codes are from Benn & Evans (2010) and are listed and defined in Table 2. 

The distribution of various facies are presented in as the ‘backwash’ colors in the 

stratigraphic columns (Figure 11) and the line color within the photo mosaic (Figure 12). Facies A 

(laminated mudrock) is represented in green and is laterally continuous across the top of the 

measured outcrop. Facies A drapes over pre-existing relief (Figure 12).  Facies B, C, and D 

(laminated mudrock with dispersed outsized clasts, graded rhythmites and laminated and bedded 

diamictites) are represented in red and occur beneath Facies A (Figure 12). Facies B, C and D are 

interstratified and lap onto Facies E. Facies E (deformed bedded sandstones) is represented in 

yellow and occur as massive blocks of sandstone on the sides of the measured outcrop (Figure 12).   
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Table 1 Summarized lithofacies descriptions, interpretations and depositional environments. 

Facies Lithologies Sedimentary 

Structures 

Bed 

Thickness 

Interpreted 

Mechanisms 

Depositional 

Environment 

A.  

Laminated 
Mudrock 

Mudrock 

containing clay & 
silt. 

 

Horizontal 

laminations.  
 

No wave 

generated 

structures & 
no outsized 

clasts. 

Laminations: 

0.5-1 cm 

Background 

sedimentation- 
settling from 

suspension. 

Normal deep-

marine to lower 
slope below 

storm wave 

base. 

 
No glacial 

influence. 

B. 
Laminated 

Mudrock 

with 

Dispersed 
Clasts 

Mudrock 
containing clay & 

silt. Some clasts 

present ranging in 

size from coarse 
sand to granules. 

Interstratified with 

Facies C, D & E. 

Horizontal 
laminations.  

 

No wave 

generated 
structures. 

  

Outsized 
clasts. 

Laminations: 
0.5-1 cm 

Background 
sedimentation 

settling from 

suspension.  

 
Ice rafted 

debris. 

Basinal to lower 
slope below 

storm wave 

base.  

 
Glacially 

influenced. 

C.  

Graded 

Rhythmites 

Very fine- to 

medium- grained 

sandstone grading 
into mudstone, 

siltstone or very 

fine- grained 
sandstone. 

Interstratified with 

Facies B & D. 
Contains pebble to 

cobble outsized 

clasts. 

Normal 

graded, 

horizontal 
laminations & 

beds. 

 
No wave 

generated 

structures.  
 

Outsized 

clasts. 

Laminations: 

0.5-1 cm 

 
Beds: 

1-10 cm 

Sediment 

gravity flows 

depositing 
turbidites.  

 

Suspension 
settling & ice 

rafted debris. 

Basinal to lower 

slope below 

storm wave base 
near an unstable 

slope.  

 
Glacially 

influenced. 

D.  
Laminated 

& Bedded 

Diamictites 

Sandy to 
intermediate 

diamictites with 

clasts ranging in 
size from granules 

to pebbles, with 

rare cobbles. 

Interstratified with 
Facies B & C. 

Internally 
massive & 

stacked. 

 
No wave 

generated 

structures.  

 
Outsized 

clasts. 

Laminations: 
0.5-1 cm 

 

Thin beds: 1-
5 cm 

 

Thick beds: 

5-150 cm 

Sediment 
gravity flows 

(debris flows). 

 
Suspension 

settling & ice 

rafted debris. 

Basinal to lower 
slope below 

storm wave base 

near an unstable 
shelf edge. 

 

Glacially 

influenced. 

E.  
Deformed 

Bedded 

Sandstones 

Fine- to medium- 
grained sandstone 

with outsized clasts 

ranging in size 

from granules to 
pebbles. 

Internally 
massive, 

bedded sands, 

with outsized 

clasts. Some 
beds show 

deformation.  

Beds:  
5-50 cm 

 

Blocks:  

~9 m x ~9 m 

Mass transport 
deposits;  

Slides- no 

internal 

deformation.   
Slumps- 

internal 

deformation.  

Basinal to lower 
slope near an 

unstable shelf 

edge. 

 
Glacially 

influenced. 
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Table 2 Facies codes, their descriptions and the facies with which they are associated. Facies 

codes and descriptions are from Benn & Evans (2010). 

Facies 

Code 

Description Associated 

Facies 

fm Silts & clays internally massive Facies A 

fml Silts & clays internally massive laminations  Facies A 

fmld Silts & clays internally massive laminations with dropstones Facies B 

fmd Silts & clays internally massive with dropstones  Facies B 

suf Sands, upward fining Facies C 

sufd Sands, upward fining with dropstones  Facies C 

flv Silts & clays laminations with rhythmites or varves Facies C 

flvd Silts & clays laminations with rhythmites or varves and dropstones Facies C 

dml Diamictons, matrix-supported laminated Facies D 

dms Diamictons, matrix-supported stratified Facies D 

shd Sands, horizontally bedded with dropstones Facies E 

shdd Sands, horizontally bedded with dropstones and deformed Facies E 
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6.A Facies A: Laminated Mudrock 

 

 6.A.1. DESCRIPTION: The laminated mudrock (fm/fml) facies is up to +10 m thick and 

laterally continuous across the outcrop surface at Arroyo Garrido (Figure 11 & Figure 12). This 

facies is typically in sharp contact with adjacent facies and occurs at the top of the studied 

succession (Figure 12). Mudrock also laps on to the top and drapes over the deformed bedded 

sandstone of Facies E (Figure 12) that dominates section AG4. Facies A is characterized by dark 

to light grey, horizontally laminated mudrock (0.5 to 1 cm thick) without outsized clasts (Figure 

13). However, one outsized clast did occur at the base of this facies in section AG1. Symmetrical 

ripples and hummocky cross stratification does not occur within this facies. Fossils were not 

observed in the measured sections. However, similar mudrocks in the area contain a diverse fossil 

fauna that consists of brachiopods, bivalves, gastropods, cephalopods, bryozoans, and 

echinoderms (Suero, 1948; Riccardi & Sabattini, 1975; Sabattini et al., 1990b, 2006; Taboada, 

1993, 1998, 1999, 2001; Pagani et al., 2002; Taboada et al., 2005; Pagani, 2004a, 2004b, 2005, 

2006a, 2006b; Azcuy et al., 2007; Taboada and Pagani, 2010; Dineen, 2010). Mudrock extends 

for 10’s of meters beyond the measured section but outcrops poorly. Elsewhere, at Arroyo Garrido 

and within the Tepuel-Genoa Basin, the Mojón de Hierro Formation is dominated by mudrocks 

with thickness of individual units exceeding 200 m.  
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Figure 13 Facies A: characterized by dark to light grey, horizontally laminated mudrock with 

laminations 0.5 to 1 cm thick. 

 

 6.A.2 INTREPRETATION: The presence of marine invertebrate fossils within laminated 

mudrocks in the Mojón de Hierro Formation indicate deposition in a marine environment (Suero, 

1948; Riccardi & Sabattini, 1975; Sabattini et al., 1990b, 2006; Taboada, 1993, 1998, 1999, 2001; 

Pagani et al., 2002; Taboada et al., 2005; Pagani, 2004a, 2004b, 2005, 2006a, 2006b; Azcuy et al., 

2007; Taboada and Pagani, 2010; Dineen, 2010). The absence of wave generated sedimentary 

structures (e.g., symmetrical ripples and hummocky cross-stratification) indicate that deposition 

from settling from suspension occurred in deep-water below storm wave base. Due to the 

dominance of mudrock within the Mojón de Hierro Formation (Freytes, 1971; Taboada & Pagani, 

2010), this unit is interpreted to represent background basin sedimentation, which drapes 

preexisting topography on the basin floor as seen by Facies A onlapping and draping underlying 

topography across Facies E (Figure 12). Elsewhere, poorly exposed mudrock units within the 

formation are up to several hundred meters thick (Figure 12; Freytes, 1971). The absence of 

sandstones within this facies indicates long intervals when the basin was starved of coarse clastics, 
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and deposition in deep water far from points of clastic influx to the basin. Such thick mudrock 

successions typically occur within marine slope environments when sands are trapped in nearshore 

environments on the shelf, such as during relative sea-level highstands (Catuneanu, 2006; Miall, 

1997). The absence of dropstones in this facies indicate an absence of glaciomarine influences in 

the basin at the time Facies A was deposited. The mineralogical and bulk geochemistry data also 

(see Geochemistry sections 8-10) indicate normal marine conditions.     

 

6.B Facies B: Laminated Mudrock with Dispersed Clasts  

 

6.B.1 DESCRIPTION: The laminated mudrock with dispersed clasts facies (fmld/fmd) 

range from 0.01 to 2 m in thickness. Facies B occurs in sections AG1, AG2, AG3 and AG5 and is 

commonly interstratified with graded rhythmites (Facies C) and laminated and bedded diamictites 

(Facies D) (Figure 12& Figure 14). This unit is characterized by dark to light grey horizontally 

laminated (0.5 to 1 cm thick) mudrock (Figure 15) with dispersed clasts. Clasts range in size from 

coarse sand to pebbles. Composition of the clasts vary between greywacke, sandstone, quartz and 

feldspar. Roundness of clasts ranges from subangular to rounded. No symmetrical ripples, 

hummocky cross stratification, or fossils were observed within the measured sections. This facies 

is similar to Facies A, but unlike Facies A, this facies contains dispersed outsized clasts.  
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Figure 14 Facies B, the laminated mudrock with dispersed outsized clasts. 

 

Figure 15 Facies B showing its dark to light grey horizontally laminated (0.5-1 cm thick) mudrock 

characteristics. 
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6.B.2 INTERPRETATION: The absence of sedimentary structures, especially structures 

produced by wave activity indicates deposition occurred in a deep-water, marine environment 

(Freytes, 1971; Taboada & Pagani, 2010) below storm wave base. This facies varies from Facies 

A in that these mudrocks have dispersed coarse clastics (clasts) contained within the facies. 

Although the dispersed clasts do not distinctively appear to bend or penetrate the underlying 

laminations, deformed laminations beneath clasts are frequent in the graded rhythmites facies (see 

Facies C) and are present in the laminated and bedded diamictites facies (Facies D). The dispersed 

clasts are interpreted to be deposited as ice rafted debris dropped in from icebergs floating over 

deep-water, indicating a distal glacial influence on sedimentation within the basin. Even though 

icebergs are known to drift thousands of kilometers away from glaciomarine ice fronts, the 

presence of dropstones in Facies B suggest that ice was in contact with marine waters and that 

icebergs were able to traverse the basin. 

 

6.C Facies C: Graded Rhythmites  

 

 6.C.1 DESCRIPTION: The graded rhythmite facies (suf/sufd & flv/flvd) ranges from 0.01 

to 2.5 m in thickness and is commonly interstratified with laminated mudrock with dispersed clasts 

(Facies B) and laminated and bedded diamictites facies (Facies D) (Figure 12). Facies C occurs 

throughout sections AG1, AG2 and AG5 (Figure 11). Units are not laterally continuous across the 

outcrop sections, but occur as discontinuous beds tens of meters in length. The basal and upper 

contacts of these units are horizontal and sharp on a macroscale, but erosional on a mm-scale 

(Figure 16). The graded rhythmite facies is characterized by horizontal laminations (0.25 to 1 cm 

thick) or beds (1 to 10 cm thick) of very fine- to medium- grained sandstone that grades upward 

into mudstone, siltstone or very fine- grained sandstone (Figure 16 & Figure 17).  
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Soft-sediment deformation is common on both a small-scale (cm) (Figure 18, Figure 19 & 

Figure 20) and large-scale (m) (Figure 21, Figure 22 & Figure 23) within Facies C. Small-scale 

soft-sediment deformation includes recumbent folds, sheath folds, Z folds, S folds, listric faults 

and thrust faults. Some deformed layers display discontinuous folded stratification (Figure 21). 

Large-scale soft-sediment deformation includes stacked sheath folds and listric and thrust faults 

(Figure 21). Outsized clasts are frequent in this facies and penetrate and/or bend the underlying 

stratification (Figure 16, Figure 18 & Figure 23). Clasts are subangular to round and range in size 

from granules to pebbles with rare cobbles, and are composed of greywacke, sandstone, quartz and 

feldspar. Fossils, symmetrical ripples and hummocky cross stratification are absent from Facies C.   
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Figure 16 Normal grading in the rhythmites showing the upper contacts of Facies C characterized 

by horizontal and sharp but erosional on mm-scale. 
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Figure 17 Graded rhythmite facies, showing its characteristic horizontal laminations (0.25 to 1 

cm). These graded laminations are fine-grained sandstone that grades into silt. 
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Figure 18 Graded rhythmite facies showing it characteristic (1 to 10 cm) of fine- to medium- 

grained sandstone grading into siltstone with outsized clasts that bend the underlying 

stratification. 
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Figure 19 Facies C, graded rhythmites, thin horizontal laminations very fine- grained sandstone 

that grades into siltstone. Small-scale (cm) soft-sediment deformation is present and can be seen 

in the graded rhythmites, in the form of an overturned (Z) fold. 
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Figure 20 Small-scale (mm) soft-sediment deformation is present and can be seen in the graded 

rhythmites. 
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Figure 21  A) Unannotated photograph of large-scale deformation B) Annotated photograph of 

large-scale deformation, deformed rhythmite layers display discontinuous folded stratification. 
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Figure 22 Small-scale deformation seen in the rhythmites and interbedded diamictites. 
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Figure 23 Large cobble sized outsized clasts penetrating and bending the underlying stratification. 

Clasts are subangular to round and range in size from granules to pebbles. 
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6.C.2 INTERPRETATION: The graded rhythmites facies were deposited by episodic 

subaqueous density currents, in the form of turbidity currents as suggested by the presence of 

graded beds (cf. (Hampton, 1972; Mulder & Alexander, 2001; Talling et al., 2012; Pickering, 

2016). These units were deposited in deep water below storm wave base as indicated by an absence 

of wave generated structures. Turbidity currents are driven by density differences between the 

currents and ambient marine waters under the influence of gravity (Mulder & Alexander, 2001; 

Pickering & Hiscott, 2016). Gravity causes the turbidity current to flow down a slope depositing 

sediment from a turbulent medium. However, deposition could have also been from a concentrated 

density flow with flow due to a combination of grain collisions and turbulence followed by fine 

grained sediment settling from suspension (Pickering & Hiscott, 2016). In this fashion, coarser 

material is deposited first followed by subsequent finer grains as the velocity wanes, which 

produces normally graded beds (Nichols, 2009).  

Small-scale soft-sediment deformation in these units is interpreted to be due to either the 

retention of pore pressure, fluid escape of pore waters, sediment creep down a slope, or from the 

shocking of the water saturated sediment by subsequent flows (Posamentier, 2006). Larger-scale 

deformation suggests mass movement and downslope movement of the entire rhythmite mass 

(Posamentier & Walker, 2006; Strachan, 2008). The stacking of the large-scale deformation 

suggests sedimentation and deformation was occurring from repeated episodic events. Outsized 

clasts which penetrate/bend the underlying strata are interpreted as dropstones, deposited by ice 

rafted debris dropped in from icebergs as they melt or overturn (Thomas & Connell, 1985; Gilbert, 

1990; Woodward, Lynas & Dowdeswell, 1994; Powell & Domack, 2002).  
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6.D Facies D: Laminated and Bedded Diamictites 

 

6.D.1 DESCRIPTION: The diamictites facies occurs as laminated (dml) to bedded (dms, 

thin and thick) units reaching up to 4 m in thickness and occurring in sections AG1, AG2, AG3 

and AG4, but absent in AG5 (Figure 11). Laminated diamictites units range in thickness from 0.2 

to 3 m and occur in sections AG1 and AG3, and are laterally discontinuous throughout the exposed 

outcrop (Figure 11). The bedded diamictites units range in thickness from 0.1 to 4 m thick and 

occur in sections AG1, AG2, AG3 and AG4. The diamictites are commonly interstratified with 

laminated mudrock with dispersed clasts (Facies B) and graded rhythmites (Facies C; Figure 24). 

This facies underlies the laterally continuous laminated mudrock (Facies A) at the top of sections 

AG1, AG2 and AG4 (Figure 11). Facies D has basal and upper contacts that are predominately 

erosional to slightly deformed (Figure 25) and the basal diamictites in this facies often fill existing 

relief and topography developed on underlying sediment bodies, most noticeably over deformed 

bedded sandstones (Facies E; Figure 11) in sections AG2 and AG4. Facies D laterally interfingers 

with Facies E between sections AG4 and AG1 (Figure 12), which are the two most northly 

measured sections. The laminated and bedded diamictites are commonly interstratified with Facies 

B and Facies C, and were deposited as undulating laminations (0.5 to 1 cm thick) (Figure 24 & 

Figure 25), thin beds (1 to 5 cm) and thick beds (5 to 100 cm) beds. Stratification is occasionally 

weak or poor and can display individual, discontinuous, thin, lens-like bodies of diamictites 

commonly pinching out or truncated laterally.  

The laminated and bedded diamictites facies are characterized by dark to light grey, 

internally massive, clast-poor (<5% clasts) to clast-rich (>5% clasts) sandy to intermediate 

diamictite with a predominately siltstone matrix (Figure 26). Clasts are sub-rounded to well-

rounded and range in size from granules to pebbles to and occasional cobbles. The matrix of the 
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laminated and bedded diamictites displays subtle fluctuations in the abundance of clay, silt content, 

as well as the abundance of clasts and sand. Within this facies there are outsized clasts that are 

thicker than individual laminations and that bend the underlying laminations (Figure 27). The 

composition of the clasts vary between greywacke, sandstone, quartz and feldspar, as well as, shale 

rip-up clasts. Soft sediment deformation is common in this facies on the cm- to m- scale and occurs 

as folded (Figure 25), almost exclusively as thrust folds and fold noses (some exhibiting stacking 

with sheared interstratified mudrock of Facies B). Clasts penetrating underlaying stratification also 

occur (Figure 27). The interstratified mudrock with dispersed clasts (Facies B) regularly displays 

evidence of shearing on its upper surface below the diamictites and in some places has narrow 

laterally restricted grooved surfaces. 

 

 

Figure 24 Laminated and bedded diamictites facies (Facies D) interstratified with the graded 

rhythmites (Facies C). The contact is sharp but erosional on mm scale.   
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Figure 25 The contacts of Facies D, erosional to slightly deformational and filling existing relief 

and topography from underlying stratification. 

 

 

Figure 26 Hand sample of the laminated and bedded diamictites facies cut in half. The sandy to 

intermediate diamictite characteristics are observed.  
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Figure 27 Laminated diamictites, Facies D, deposited as horizontally undulating laminations (0.5 

to 1 cm thick), rounded and sub-rounded outsized clasts that penetrate underlying stratification. 

 



 

51 
 

6.D.2 INTERPRETATION: The laminated and bedded diamictites facies were deposited 

in deep-water as indicated by an absence of wave structures within the succession. They were 

deposited as episodic subaqueous cohesive debris flows (sediment gravity flows) as indicated by 

their thin and stacked nature. Debris flows are considered Bingham plastic flows, in which clasts 

are supported by matrix strength, dispersive pressure and buoyant lift (Shanmugan, 1996).  

Debris flows commonly originate from sediment in an unstable setting with marine shelf 

edges and slopes being a common subaqueous source (Hampton; 1972; Lee et al., 2007). Triggers 

emanate from a number of natural manifestations (including the presence of a temperate glacier or 

ice sheet nearshore, meltwater, outwash or deltas delivering sediment to the shelf edge, the 

oversteepening of the shelf edge, seismic activity, storms, and slides and slumps that devolve into 

debris flows (Hampton, 1972; Strachan & Alsop, 2006), activate unstable sediment resulting in 

the sediment gravity flow (Posamentier & Walker, 2006; Lee et al., 2007). Due to the thinness of 

the individual debris flows and the predominately granule and pebble sized clasts, these flows were 

likely distal in nature (Posamentier & Martinsen, 2011). The stacking of debrites suggest that the 

diamictites were deposited by episodic sediment gravity flows from an unstable shelf edge.  

The soft-sediment deformation occurring as folding within the diamictites occurred from 

the remobilization of cohesive debris flow deposits, resulting from material sliding downslope and 

from frictional differences between the base of the bed and substrate as the sediment mass slide 

over underlying sediment (Martinsen, 1989, 1994; Lopez Gamundi, 1991; Posamentier & 

Martinsen, 2011). The sub-rounded to well-rounded clasts indicate the clasts were subjected to 

abrasion, likely due to rounding by turbulent flows sometime in their history (Nichols, 2009). The 

outsized clasts that are thicker than individual laminations of the diamictites that bend and 

penetrate the underlying laminations are interpreted as dropstones deposited from icebergs 
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(Thomas & Connell, 1985; Gilbert, 1990; Woodward, Lynas & Dowdeswell, 1994; Powell & 

Domack, 2002). 

 

6.E Facies E: Deformed Bedded Sandstones  

 

 6.E.1 DESCRIPTION: The deformed bedded sandstone facies (shd/shdd) displays two 

different deformational styles; 1) stacked blocks of sandstone that are internally undeformed 

(Facies Ea) and 2) stacked bodies of sandstone with internal deformation (Facies Eb).  

The deformed bedded sandstones that occur as internally undeformed stacked blocks of 

sandstone (Facies Ea; Figure 28) reach up to 15 m in thickness and are exclusive to section AG4, 

the northern-most section. This unit is laterally adjacent to other sandstones of Facies C and 

diamictites of Facies D (Figure 11, Figure 12 & Figure 29). Basal contacts display deformational 

truncation and shearing of underlying units while the upper contacts are undulating creating a 

concave-like depression that is filled by bedded diamictites (Facies D) (Figure 11). The deformed 

bedded sandstones are thick bedded (10 to 50 cm) (Figure 29 & Figure 30) internally massive, fine 

to medium grained sandstones with outsized clasts. Stratification of the beds of sand is present in 

some of these deformed blocks (Figure 30). Clasts occur and range in size from coarse sands to 

cobble sized particles, and clast composition varies between feldspar, sandstone, greywacke and 

abundant quartz. Soft-sediment deformation occurs in this facies as the large folded and imbricated 

stacked blocks of sandstone throughout section AG4 (Figure 28 & Figure 30). 

The second deformation style for Facies E occurs, as internally deformed stacked bodies 

(Facies Eb), found in sections AG2 and AG5, the two southern most measured sections (Figure 11 

& Figure 12). This unit reaches up to 8 m in thickness and occurs laterally adjacent to other 
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sandstones (Facies C) and diamictites (Facies D) (Figure 12). These sandstone bodies are separated 

by low angle listric shaped thrust faults, or glide planes (Figure 31, Figure 32 & Figure 33). The 

planes are cm to dm thick and are characterized by fissile and boudinaged sandstones and shales. 

Facies Eb is commonly interstratified with Facies B. Basal contacts are deformational (listric-

shaped surfaces) and the upper contacts are undulating and erosional and the units are laterally 

discontinuous.  

In section AG2, the internally deformed stacked bodies of Facies Eb display undulating 

upper contacts with depositional relief filled in by bedded diamictites facies (Facies D). The bodies 

of Facies Eb were deposited as very fine to medium-grained sandstones with outsized clasts. 

Internal stratification is present but poorly preserved and highly deformed (Figure 31 & Figure 

32). Clasts range in size from sand to cobble and composition on the individual clasts range from 

feldspar, sandstone, greywacke and abundant quartz. Rip-up shale clasts are also present. Internal 

soft-sediment deformation in this facies includes folding (Figure 34). Sandstone bodies display 

upturned edges, are truncated by overlying blocks or display various geometries of folding, which 

occur as asymmetric overturned, recumbent and isoclinal geometries (Figure 31 & Figure 32) 

(Benn & Evans, 1998).  
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Figure 28 Facies Ea showing deformed bedded sandstones occurring as stacked blocks with 

minimal internal deformation. Foreground scale is shown, blocks in the background reach heights 

of ~9m. Individual blocks reach up to ~9m x ~9m. 
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Figure 29 Facies Ea showing horizontal bedding of the sandstones (left) and their interfingering 

relationship with Facies C and Facies D (right) that lap onto Facies Ea. Scale is for the photo’s 

foreground, person for scale in the background. 
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Figure 30 Facies Ea showing stacked blocks of sandstone, occurring in section AG4. The bedding 

of the massive sands (10-50 cm thick) is present here. 
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Figure 31 Facies Eb showing the upturned edges of the deformed bodies of sandstone and the 

poorly preserved internal bedding. 
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Figure 32 Facies Eb showing upturned edges, poorly preserved bedding and shearing of the 

interstratified Facies B, laminated mudrock with dispersed clasts. 
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Figure 33 Facies Eb showing shearing with interstratified Facies B and thrusting deformation. 
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Figure 34 Facies Eb showing soft-sediment deformation, in the form of a fold nose and shearing, 

interstratified with Facies B. 
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6.E.2 INTERPRETATION: Facies E is interpreted as slide and slumped blocks (mass 

transport complexes) that formed from mass movement on an unstable dipping surface. The sand 

bodies rest on sheared surfaces that are represented by fissile shale and boudinaged sandstone. The 

upturned leading edge of these blocks suggest that they were emplaced by sliding over pre-existing 

strata (Woodcock, 1979; Martinsen, 1989, Posamentier & Martinsen, 2011).  

The discontinuous nature of the bodies and their truncation by overlying bodies suggest 

that they formed as repeated episodic slide events where individual blocks were beginning to 

disaggregate (Pickering & Hiscott, 2016). Such blocks are termed slide blocks if they are relatively 

undeformed internally and are classified as slumps if internal deformation predominates 

(Shanmugan,1996). Both are forms of mass transport deposits and stacked bodies indicate the 

occurrence of mass transport complexes (Mulder & Alexander, 2001; Martinsen & Posamentier, 

2006). Their occurrence suggests instability farther upslope due to influx of clastics to a shelf edge, 

oversteepening of a delta front, sedimentation in front of a glacial grounding line system and/or 

numerous other causes (Lee et al., 2007). As mass transport blocks disaggregate, they generate 

linked sediment gravity flows (debris flows, high density flows and turbidity currents; Martinsen, 

1989, Posamentier & Martinsen, 2011, Pickering & Hiscott, 2016). 
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7. PALEO-SLOPE & PALEO-FLOW RESULTS & DISCUSSION 

 

The orientation of listric-shaped thrust faults were measured within the mass transport 

deposits (Facies E, the deformed bedded sandstones facies) as well as deformation surfaces within 

the sediment gravity flows (Facies C, the graded sandstones, and D, the laminated and bedded 

diamictites) (Figure 11 & Figure 12). These surfaces represent the best general sediment transport 

directions for any strata within the basin. A total of 26 thrust fault/glide plane measurements 

obtained from sections AG1, AG2, AG4 and AG5. These were used for paleo-slope reconstruction. 

Within section AG1, seven thrust fault measurements were taken between a stratigraphic height of 

12 – 20 m. In section AG2, eight thrust fault measurements were taken between a stratigraphic 

height of 5 – 10 m. Section AG4 had eight thrust fault measurements between a stratigraphic height 

of 13 – 22 m. Lastly, within section AG5, three thrust fault measurements were taken between a 

stratigraphic height of 5 – 9 m. 

The measurements of the thrust faults (their dip and dip direction) created a series of points 

which then could be used to generate a rose diagram showing vergence to the N/NW at 297.4° 

(Figure 35, individual field measurements and corrections can be found in Appendix B). The 

vergence is the sliding direction, which is given by measurements displayed on the rose diagram 

(Figure 35). This represents the paleo-transport direction of the mass transport deposits. The paleo-

slope direction verges to the north/northwest which suggests sediment was sourced from the 

southeast being transported to the northwest (Figure 35).  
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Figure 35 Stereonet showing the dip directions of dipping planes (dip of continental slope) and 

rose diagram showing the vergence, paleo-transport direction of sediment. Corresponding data 

and field measurements can be found in Appendix B.  

 

Griffis et al. (2018) bases his hypothesis of a large ice sheet flowing east into and over the 

basin on a single paleo-flow direction which was measured in the underlying Pampa de Tepuel 

Formation (Gonzalez-Bonorino, 1992; Griffis et al., 2018) located 44 km to the east/northeast. The 

paleo-flow direction was taken from imbricated conglomeratic clasts. However, Gonzalez-

Bonorino did not notice that these conglomerates were within a highly deformed set of beds 

(personal observation). The Pampa de Tepuel Formation is stratigraphically older than the Mojón 
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de Hierro Formation, which calls into question the use of the imbricated clast as representative for 

paleo-flow directions for the entire late Paleozoic Tepuel-Genoa Basin (Griffis et al., 2018). The 

data presented here indicates that the paleo-slope dipped towards the north/northwest at 297.4°.  

Such a paleo-slope is in a direct line with the Ellsworth Mountain block in the palinpastic maps 

shown in Figure 3 & Figure 4 (Lawver et al., 2008; Griffis et al., 2018). 
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8. LITHOFACIES DISCUSSION 

 

Recognizing lithofacies and interpreting their depositional environment to develop 

conceptual models of deposition is fundamental to paleoenvironmental and palaeoclimatological 

reconstructions. Settling from suspension is the dominant form of sedimentation in the Mojón de 

Hierro Formation at Arroyo Garrido as indicated by the ubiquitous occurrence of mudrock (Facies 

A and B) (Freytes, 1971; Taboada & Pagani, 2010) both below and above the measured section. 

The absence of sandstones within the Facies A mudstones indicates long intervals when the basin 

was starved of coarse clastics (Figure 36).  These conditions were interrupted by an interval of 

mass movement deposition during emplacement of Facies E slide and slump blocks. These blocks 

formed relief/topography on the depositional surface that influenced all subsequent sedimentation 

until the blocks were ultimately buried. This is indicated by onlap of all other facies (A through 

D) onto the edges and tops of Facies E bodies (Figure 36). This onlap also indicates that the sand 

blocks were emplaced prior to the deposition of the other facies (B, C, & D). 
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Figure 36 Schematic diagrams of the paleo-depositional environment of Arroyo Garrido. Left- 

represents a lowstand when Facies B, C, D & E were deposited. Right- represents a highstand 

when Facies A was deposited.  
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Sediment gravity flows (Facies C and D), along with hemipelagic sedimentation (Facies 

B), filled in the relief between these blocks. This suggests that these blocks formed small ponded 

basins on the slope and basin floor (cf. Posamentier, 2006; Artmitage et al., 2009).  The laminated 

and bedded diamictites facies (D) and graded rhythmites facies (C) are in close proximity 

throughout the ponded stratigraphic interval (Figure 12) suggesting that they were spatially and 

temporally linked. Sediment gravity flows and mass transport deposits often occur in close 

proximity to each other (Carto & Eyles, 2012; Talling et al., 2012), and the onlap of Facies B, C 

and D onto Facies E mass transport blocks along with slump folds (Z folds) displaying apparent 

vergence opposite the regional slope and away from the sandstone block in section AG4 suggest 

that some of the sediment gravity flows could have been shed from these blocks of sediment 

(Armitage, 2009; Milana, 2019; Posamentier & Martinsen, 2011).  Subaqueaous debris flows can 

transform into turbidity currents and turbidity currents can be shed due to the mixing of these flows 

with bottom waters (Hampton, 1972; Sohn et al., Haughton et al., 2003; Talling et al., 2012; Carto 

& Eyles, 2012).  Following cessation of this interval of mass movement and sediment gravity 

flows, any relief on the depositional surface was passively filled in by deposition of Facies A as it 

onlapped and draped over remaining relief from the Facies E blocks.   
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Figure 37 Schematic diagrams of mass transport deposits creating ponded mini basins. Tier 1 

shows meter-scale and Tier 2 shows 10’s of meters scale of mini basins ponded within mass 

transport deposits (modified from Armitage et al., 2009). 

 

 

The depositional environments of the Arroyo Garrido strata are interpreted to be part of a 

marine basinal slope environmental system (Figure 36). Settling from suspension is the dominant 

form of sedimentation in the Mojón de Hierro Formation at Arroyo Garrido as indicated by the 

occurrence of thick mudstones (>100 m thick successions) throughout the succession (Figure 8; 

Freytes, 1971; Taboada & Pagani, 2010). The absence of any sedimentary structures produced by 

wave activity (hummocky cross stratification and asymmetrical ripples) within the entire measured 

outcrop indicates that sediment was deposited in deep-water well-below storm wave base and far 

from an active input of coarse clastics. Facies A mudstones suggest distal fine-grained deposition 
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during a relative sea-level transgression or highstand (transgressive and/or highstand systems 

tracts) when coarse clastics were trapped in nearshore environments high on the basinal shelf (cf. 

Catuneanu, 2006; Miall, 1997).   

The occurrence of mass transport (Facies E) and sediment gravity flow deposits (Facies C 

and D) suggests that the introduction of coarse clastics into the distal basin occurred at a time when 

the shoreline had transited the shelf and deposited sediment at the shelf slope break. Mass 

movement in the form of slides and slumps (Facies E) and sediment gravity flows including debris 

flows (Facies D) and turbidity currents (Facies C) are triggered by a number of processes (e.g., 

seismic activity, rapid deposition on slopes, storm activity, liquefaction of over pressurized water-

saturated sediment) that send unstable sediment down the slope into the deeper basin. Such 

deposits characterize times of falling relative sea levels (falling stage system tract) and or 

deposition during a relative sea-level lowstand (lowstand system tract; cf. Posamentier & Kolla, 

2003; Posamentier and Walker, 2006; Lee et al., 2007).  

The outsized clasts within Facies B through E (most noticeably in C and D) that bend and 

penetrate the underlying strata are interpreted as dropstones rafted by icebergs sourced from a 

distant ice front during glacial maximum and sea-level lowstand (Figure 36)  (Thomas & Connell, 

1985; Gilbert, 1990; Woodward, Lynas & Dowdeswell, 1994; Powell & Domack, 2002). The 

dropstones in these facies indicate that there was some glaciomarine influence at the time of 

deposition of Facies B through E. The size of the dropstones increases from Facies B to Facies C, 

which could mean more abundant and/or larger icebergs traveling and carrying a larger load of 

sediment. The roundness observed among the clasts could have resulted from glacial abrasion or 

reworking of pre-existing deposits by advancing ice. However, no striations were observed on any 
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of the outsized clasts. The absence of dropstones in Facies A suggests an absence of glaciers 

feeding sediment directly to the Tepuel-Genoa Basin during sea-level highstand.  

The paleo-slope data indicates a paleo-flow direction towards the north/northwest (297.4°; 

Figure 35), and the lithofacies analysis does not indicate any evidence for a large ice sheet 

extending to the the Tepuel-Genoa Basin or the Panthalassan Margin during deposition of the 

Mojón de Hierro Formation as previously hypothesized. However, the ice rafted debris indicate 

that a distal glacier source is feeding icebergs that transited the basin. All of the characteristics of 

the Mojón de Hierro deposits indicate that strata at Arroyo Garrido study site were not deposited 

on a shallow-water shelf (cf. Taboada et al., 2009; González and Saravia, 2010), but instead were 

deposited beyond the shelf edge on the slope and basin floor (Figure 36).  
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9. MINERALOGICAL & GEOCHEMICAL ANALYSIS 

9.1 X-RAY DIFFRACTION RESULTS:  

 

XRD analysis was conducted on three samples (AG1-3, AG1-27, AG2-7) to determine the 

relative mineral abundances, summarized in Table 3 (complete XRD plots and information are in 

Appendix C). Sample AG1-3 (the stratigraphically oldest sample) has quartz (abundant), illite 

(present), albite (detected) and montmorillonite (detectable). Sample AG1-27 (the middle sample) 

has quartz (abundant), illite (present), and chlorite/serpentinite (present). Sample AG2-7 (the 

stratigraphically youngest sample) has quartz (abundant) illite (present), kaolinite (detectable), and 

montmorillonite (detectable).  

XRD analysis indicated that quartz, albite and illite were present within each of the three 

samples. In all three samples quartz is abundant. Illite is abundant in one sample and present in the 

other two. Montmorillonite was detectable in two of the three samples. Chlorite/serpentinite was 

present in only one sample. Kaolinite was detectable in only one sample. Albite was detected in 

only one sample. 

Table 3 X-ray diffraction results showing the samples and their mineralogical composition. 

X-ray Diffraction Data 

Sample 

Name 

Quartz Albite Chlorite/ 

Serpentinite 

Illite Montmorillonite Kaolinite 

AG1-3 Abundant Detected - Present Detectable - 

AG1-27 Abundant - Present Abundant - - 

AG2-7 Abundant - - Present Detectable Detectable 
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9.2 X-RAY DIFFRACTION DISCUSSION: 

 

 XRD results indicate that the clays within the deposits are not highly altered. Quartz is the 

predominant mineral in all of the samples. There is no gibbsite, which is the final clay alteration 

mineral, present in the samples. Kaolinite is only present in one of the samples (AG2-7) which is 

stratigraphically the youngest sample. XRD information suggests moderate weathering.  

 

9.3 X-RAY FLUORESCENCE RESULTS: 

 

Major elements were analyzed by XRF on thirteen samples collected from the measured 

sections. The major oxide concentrations varied in the studied samples (Table 4). The samples 

contain 0.21-1.17 wt% Na2O (with an average of 0.65 wt%), 1.49-2.17 wt% MgO (with an average 

of 1.90 wt%), 13.18-18.59 wt% Al2O3 (with an average of 15.74 wt%), 60.26-70.44 wt% SiO2 

(with an average of 65.36 wt%), 0.14-0.17 wt% P2O5 (with an average of 0.16 wt%), 2.72-4.49 

wt% K2O (with an average of 3.46 wt%), 0.29-0.46 wt% CaO (with an average of 0.38 wt%), 0.76- 

0.94 wt% TiO2 (with an average of 0.86 wt%), and 4.62-7.82 wt% Fe2O3(with an average of 6.09 

wt%).  

The Arroyo Garrido mudstones were compared to Post-Archean Australian Average Shale 

(PAAS) and Upper Continental Crust (UCC) values (McLennan & Taylor, 1985), shown in Table 

4 (and plotted on Figure 39). The major oxide sample average shows an overall elevations of SiO2 

(65.4%) compared to PAAS values (SiO2; 62.8%). Concentrations of P2O5 (0.16%) were similar 

to the PAAS values (P2O5; 0.16%). The average oxide concentrations are only slightly reduced in 

TiO2 (0.9%), K2O (3.5%) and MgO (1.9%) compared to PAAS averages (K2O; 3.7%, MgO; 2.2% 

and TiO2; 1.0%). Average concentrations of Al2O3 (15.7%), Fe2O3 (6.09%), CaO (0.4%) and Na2O 
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(0.6%) show more significant reductions compared to PAAS values (Al2O3; 18.9%, Fe2O3; 7.22%, 

CaO; 1.3% and Na2O; 1.2%).   

When average trace element concentrations are compared to the PAAS values (V; 150 PPM, Cr; 

110 PPM; Zn; 85 PPM, Sr; 200 PPM, and Y; 27 PPM Zr; 210 PPM, and Ba; 650 PPM) elevation is seen 

in V (154 PPM), Zn (106 PPM), and Y (39 PPM), while reductions are seen with Cr (75 PPM), Zr (177 

PPM), Sr (35 PPM), and Ba (542 PPM) when compared to PAAS values (Table 4). In addition, major 

and selected trace elements were compared to UUC values, which shows the average sample values have 

higher elevations in Al2O3 (15.7%), TiO2 (0.9%), Fe2O3 (6.1%) and K2O (3.5%), and show reduced values 

in SiO2, MnO, CaO, MgO, and Na2O.  

 

Table 4 Table of XRF data, major oxide concentrations are expressed as weight percent (wt %) 

and trace element concentrations are expressed in parts per million (PPM), (*) indicates values 

that are just below twice the LLD. 
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9.4 X-RAY FLUORESCENCE DISCUSSION 

 

CHEMICAL INDEX OF ALTERATION (CIA): 

 

CIA results indicate that the degree of the sediment source weathering varies slightly in the 

thirteen samples analyzed ranging from 70 to 77, with an average of 74 (Figure 38), which falls in 

the range of average marine shale CIA values (70-75; Nesbitt & Young, 1985; Goldberg, 2001). 

Environments where mechanical weathering is dominant (arid settings) have lower ranges of CIA 

values between 50-70 (Goldberg & Humayun, 2010) and environments where chemical 

weathering is dominant (humid/tropical settings) have higher CIA values of 80-100. Average 

marine shale values range from 70-75 (Taylor & McLennan, 1985; Goldberg & Humayun, 2010).  

CIA values from strata in the Mojón de Hierro Formation suggest that the mud is coming 

from a temperate terrestrial source that was not exclusively weathered by mechanical or chemical 

processes. These values are within associated values of average shale CIA values (Passchier, 

2011). CIA values only show minor local variations within the section, but are still within the 

range of average marine shale CIA values (Figure 38). CIA values plotted on the A-CN-K (Al2O3, 

CaO*+Na2O & K2O) ternary diagram (Figure 39) show that weathering has occurred and follows 

a similar trendline of granite weathering (Nesbitt & Young, 1989) and plot near PAAS values 

(Condie, 1995).  

The data strongly suggest that the introduction of meltwater plumes emanating from glacial 

sources of meltwater were not a major influence of sedimentation in the basin at the time of 

deposition of the Mojón de Hierro Formation, otherwise, physical weathering of source rocks 

would have produced lower CIA values. However, ice rafted debris does occur with the measured 
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sections and the CIA analysis supports that the iceberg rafting was coming from a distant source 

and that no significant glacial source was directly influencing the basin.   

The CIA data indicate that the muds did not have a source that was solely mechanically 

weathered. Mechanical weathered materials would be expected if there were glaciers present in 

the source area along the basin margins. The CIA data also indicate that the source area is not 

entirely originating from intense chemical weathering, which would be seen if the source area was 

in a humid environment. The CIA resemble temperate terrestrial sources producing and supplying 

muds to a marine basin. CIA does not show any apparent trends or flucuations throughout the 48 

m of stratigraphic elevation (Figure 38) and the CIA values plot close to the PAAS values on the 

A-CN-K diagram (Figure 39) suggesting values similar to average marine shales with sediment 

sources that are of temporate terrestrial sources (Goldberg, 2001; Passchier, 2011). 
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Figure 38 CIA values of the Mojón de Hierro Formation at from samples at Arroyo Garrido, with 

relation to stratigraphic elevation. Values range from ~70 to 77 which are similar to marine shale 

averages (Goldberg, 2001; Passchier, 2011). 
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Figure 39 A-CN-K tertiary diagram indicating values of average granites and granodiorites, 

weathering trends of average granite and granodiorite (Nesbitt & Young, 1989), values of UCC 

and PAAS (McLennan & Taylor, 1985), and the Arroyo Garrido sample values. CIA is plotted on 

top left. 
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VANADIUM/CHROMIUM (V/CR):  

 

Trace element concentrations were measured using XRF spectrometry and the results of 

the analyzed samples have only slight variations up the stratigraphic column (Table 4 & Figure 

40). Trace element concentrations ranged: V from 127 to 180 PPM and Cr from 50 to100 PPM. 

The results of V/Cr ratios ranged from 1.7 to 2.6 (Figure 40), with an average of 2.1. The V/Cr 

ratios indicate oxic (<2) and dysoxic (2-4.25) waters (Figure 40; Jones & Manning, 1994).  

Oxygen rich and dysoxic waters suggest that the depositional setting was an unrestricted 

marine environment with good circulation. The circulation and oxygenated water are interpreted 

to be brought in from general ocean circulation and perhaps through the introduction of mass 

transport deposits (slide/slump blocks) and sediment gravity flows (debris flows and turbidity 

currents; Figure 36). However, the V/Cr ratios display a slight increase in values for the samples 

collected at similar elevations to sandstones of Facies E. There is a slight decrease in values for 

the samples collected above the top of Facies E sandstone blocks. These local variations suggest 

that the sediment between the mass transport deposits (Facies E) was influenced by ponding of 

waters behind the block, which resulted from the mini basin created in the basinal slope 

environment by emplacement of the slide and slump blocks. The V/Cr variations indicate the 

ponding behind Facies E slightly influenced the circulation within the mini basin. Once the ponded 

mini basin was filled, regular patterns of circulation resume (Figure 40).  
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Figure 40 Vanadium/chromium ratios plotted against their stratigraphic elevation on the 

measured section. Values plot as oxic (<2) and dysoxic (2-4.25).  
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10. DISCUSSION OF GEOCHEMISTRY AND PALEOENVIRONMENT  

 

The mud entering the basin is due to clastic influxes from terrestrial sources (i.e., 

prograding delta, prograding shelf). The Arroyo Garrido CIA values indicate average marine shale 

values and that the sediment source area was not exclusively being physically weathered nor 

chemically weathered, they indicate a temperate terrestrial source. This data does not present any 

evidence for large glaciers in the drainage basin directly supplying mud to the basin, lower CIA 

values would have been measured if there were. Therefore, ice-rafted debris in the sediment 

associated with the mass-transport and sediment gravity flows interval, deposited during either a 

forced regression or a relative sea-level lowstand, suggest that icebergs transiting the basin were 

far traveled from distal glaciers sourced from outside of the basin. Facies analysis plus CIA data 

do not indicate any evidence for a large glacier near the basin margin. 

Overall the V/Cr ratios indicate the bottom waters were between oxic and dysoxic (Figure 

40) (Ernst, 1970; Jones & Manning, 1994). There are minor local fluctuations in the V/Cr ratios 

values which varied due to the presence (and absence) of the deposits of Facies E being laterally 

adjacent to samples collected. Higher V/Cr values (dysoxic) are associated with the strata that are 

laterally adjacent to the mass transport deposits compared to strata sampled above the mass 

transport deposits (primarily oxic). This indicates that the sediment deposited after and ponded 

between Facies E blocks is more restricted (dysoxic) compared to the normal basin depositional 

conditions represented by Facies A (oxic).  

Detailed facies analysis indicates a deep-marine basinal slope setting below storm wave 

base, which is indicated by the absence of wave produced sedimentary structures (hummocky cross 

stratification and asymmetrical ripples), the thickness of mudrocks, and the absence of shallow 

marine sands in the study area. The mud and fine-grained sediment settling from suspension are 
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background basin sedimentation conditions (highstand) and coarse clastic intervals in the basin 

were introduced by slide and slumped blocks, followed by sediment gravity deposits and ice rafted 

debris in a lower slope to basin floor setting (lowstand). Although the basin was not directly 

influenced by an adjoining ice front along the basin margin or up the drainage basin that supplied 

flowed into the basin, available data (facies analysis and CIA) does suggest that the Mojón de 

Hierro strata were influenced by distant ice (distal) in the form of ice-rafted debris and from the 

uptake of water by ice to cause a eustatic lowering of sea level. This data along with the bedded 

nature of the diamictites suggest that the diamictites were the result of mass transport deposits shed 

from a shelf edge and not from the advance of a glacier across the basin to the shelf edge as 

previously interpreted (Griffis et al., 2018). The outsized clasts that penetrate underlying 

stratification, interpreted as dropstones, were likely deposited by icebergs floating through the 

basin. The paleoenvironment is interpreted to be a basinal slope setting near an unstable shelf with 

distal glaciers in contact with water which is feeding icebergs that transited the basin. Paleo-flow 

indicates sediment transport direction is to the northwest (297.4°). 

CIA results indicate average marine shale values and no evidence that they are highly 

physically weathered (characteristic of arid/glacial weathered muds) nor highly chemically 

weathered muds (characteristic of muds produced in humid/tropical settings). The absence of 

highly physical weathered muds indicates that there are no proximal glaciers feeding muds into 

the basin at the time the Arroyo Garrido strata were deposited. V/Cr ratios indicate oxic and 

dysoxic water conditions. Dysoxic values (slightly restricted) correlate to the deposition (and 

stratigraphic height) of the mass transport deposits and sediment gravity flows. Oxic (more open 

circulation) values correspond to Facies A, the normal basin conditions, prior to the burial of Facies 

E sandstone blocks and the smoothing of the seafloor.  
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In conclusion, there is no evidence that a large ice sheet reached the Panthalassan margin 

or of a proximal glacier to the Tepuel-Genoa Basin during the time the Arroyo Garrido strata were 

being deposited (Late Permian). However, there is evidence supporting distal ice as the source of 

icebergs that moved through the basin. This detailed sedimentological analysis opposes the detrital 

zircon analysis, which interprets a large ice sheet centered over the Ellsworth Mountains supplying 

sediment directly to the Tepuel-Genoa Basin and extending to the Panthalassan Margin. Icebergs 

can travel/deposit ice rafted debris thousands of kilometers away from glacial fronts, so glacially 

influenced does not necessarily mean nearby glaciers or the occurrence of a massive ice sheet.  
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11. CONCLUSION/SUMMARY 

 

• Facies A, the laminated mudrock facies, represents normal basinal sedimentation 

conditions due to thickness and dominance of the mudrock units in the basin. Deposition 

occurred in deep water, below storm wave base, indicated by the absence of hummocky 

cross stratification and asymmetrical ripples.  

• Facies E, deformed bedded sandstones, were deposited as mass transport deposits on a 

basin slope as slide and slumped blocks. These blocks were emplaced prior to the 

deposition of Facies B, C and D as these facies onlap the sides of the blocks.  

• Facies B, the laminated mudrock with dispersed clasts facies, were deposited below storm 

wave base as evidenced by an absence of wave reworked features from the absence of 

hummocky cross stratification and asymmetrical ripples. Coarse clastics were introduced 

as ice rafted debris dropped into deep water from icebergs in a basinal slope environment.  

• Facies C, the graded rhythmite facies were deposited in deep water below storm wave base. 

They were deposited from sediment gravity flows/turbidity currents. Outsized clasts that 

penetrate and bend underlain strata are interpreted as dropstones introduced by icebergs 

transiting the basin.  

• Facies D, the laminated and bedded diamictites facies, were deposited as sediment gravity 

flows interpreted as debris flows. Facies C and D occur in close proximity and are 

commonly interstratified suggesting that they were spatially and temporally linked, which 

is common where there are unstable sediments nearby. Outsized clasts that penetrate and 

bend underlying strata are interpreted as dropstones.  
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• The paleo-depositional setting was a marine slope environment, near the toe of the slope-

basin floor edge. No wave generated structures were observed throughout the entire 

measured section indicating deposition occurred below storm wave base. 

• The deposition of the slide and slumped blocks created topography/relief on the slope- 

basin floor, resulting in a small ponded basin allowing for Facies B, C and D to be deposited 

within and eventually filled the depression. This coarse clastics interval indicates a sea-

level lowstand during a glacial interval, which allowed coarse clastics from a nearby 

unstable shelf edge to be supplied to deeper water. This interval shows deposition was 

influenced by icebergs transiting the basin supplied from a distal ice margin. 

• Once the ponded basin was filled, Facies A onlapped and draped over the relief/topography 

on the slope. This marks the return of normal basin conditions and sedimentation from 

settling from suspension and coarse clastics trapped in nearshore settings, during a sea level 

highstand. 

• Paleo-flow direction was to the northwest at 297.4°. 

• Mineralogy indicates the clays are moderately weathered.  

• Major elemental data was applied to a paleo-weathering proxy, CIA, and indicate average 

marine shale values, showing that neither physical weathering nor chemical weathering 

was entirely dominant in the source sediment area. As well, CIA does not show any 

evidence of a large glacier or glacial meltwater plumes within the drainage basin that fed 

water or sediment directly into the depositional basin.   

• Minor elemental data was applied to a paleo-oxygenation proxy using V/Cr ratios, and 

indicate dysoxic and oxic values. Results indicate the primarily dysoxic values are 

associated with the stratigraphic height of Facies E. The primarily oxic values are 
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associated with the deposition of Facies A. Linking the small ponded basin with a more 

restricted circulation compared to the open and leveled basin- conditions, suggesting that 

the relief/topography from the deposition of Facies E caused water circulation patterns to 

be temporarily restricted.  

• This study shows no evidence of glacial activity within the basin or its related terrestrial 

drainage basin during deposition of the Mojón de Hierro Formation. 
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APPENDIX A  

 

MOJÓN DE HIERRO FORMATION 

ARROYO GARRIDO STRATIGRAPHIC COLUMNS   
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APPENDIX B 

 

ARROYO GARRIDO PALEO-FLOW MEASUREMENTS 
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Thrust Faults/Glide Planes 

Corrected 

Dip 

Direction 

(°) 

Corrected 

Dip 

Angle (°) 

Measured 

Dip 

Direction 

(°) 

Measured 

Dip 

Angle (°) 

Vergence 

96 8 85 32   

94 19 80 42   

105 17 95 41   

92 0 80 25   

92 2 80 24   

92 12 80 35   

63 36 35 50   

183 5 170 15 N 

138 21 125 43 N 

127 39 125 62 N 

136 15 125 37 N 

152 21 145 35 N 

104 64 145 87   

102 66 235 90 SW 

98 68 355 88 SW 

113 43 120 67 N/NW 

129 45 135 67 N/NW 

129 32 140 52 N/NW 

155 11 155 26 N/NW 

109 58 140 80 N/NW 

147 16 150 32 N/NW 

122 0 115 22 N/NW 

138 29 150 47 N/NW 

113 4 105 28   

132 13 130 34   

120 41 135 63   
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X-RAY DIFFRACTION PLOTS 
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