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ABSTRACT

LARGE SCALE GEOMETRY OF SURFACES IN 3-MANIFOLDS

by

Hoang Thanh Nguyen

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Christopher Hruska

A compact, orientable, irreducible 3-manifold M with empty or toroidal boundary is

called geometric if its interior admits a geometric structure in the sense of Thurston. The

manifold M is called non-geometric if it is not geometric. Coarse geometry of an immersed

surface in a geometric 3-manifold is relatively well-understood by previous work of Hass,

Bonahon-Thurston. In this dissertation, we study the coarse geometry of an immersed

surface in a non-geometric 3- manifold.

The first chapter of this dissertation is a joint work with my advisor, Chris Hruska. We

answer a question of Daniel Wise about distortion of a horizontal surface subgroup in a graph

manifold. We show that the surface subgroup is quadratically distorted in the fundamental

group of the graph manifold whenever the surface is virtually embedded (i.e., separable) and

is exponentially distorted when the surface is not virtually embedded.

The second chapter of this dissertation generalizes the previous work of the author and

Hruska to surface subgroups in non-geometric 3-manifold groups. We show that the only

possibility of the distortion is linear, quadratic, exponential, and double exponential. We

also establish a strong connection between the distortion and the separability of surface

subgroups in non-geometric 3-manifold groups.

The final chapter of the dissertation makes a progress in understanding the structure of

the group of quasi-isometries of a closed graph manifold which is mysterious.
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Introduction

My primary area of research is geometric group theory. An important idea in geometric

group theory is to consider a finitely generated group as a geometric object by equipping

the group with a word length metric. Gromov has been successful in promoting this idea to

study finitely generated groups. A finitely generated group G can be considered as a metric

space when we equip G with the word metric from a finite generating set.

If H ≤ G, we may consider both H and G to be geometric objects. However the inclusion

H ↪→ G may not respect this geometry. A function that measures the changes between these

two metrics is called distortion.

I am especially interested in the distortion of surfaces groups in 3–manifolds groups.

Distortion of a surface subgroup in a geometric 3–manifold group is relatively understood by

the work of Hass and Bonahon-Thurston. However the distortion of a surface subgroup in

a non-geometric manifold group is unknown before the projects in this dissertation. In this

dissertation, a complete computation to the distortion of surface groups in non-geometric

3–manifold groups is provided. Moreover, A strong connection between subgroup distortion

and subgroup separability is given (see Chapter 1 and Chapter 2). In addition to subgroup

distortion, I also make a progress in understanding the structure of the group of quasi-

isometries of a closed graph manifold which is completely mysterious (see Chapter 3).

The material in Chapter 1 is a joint work with Chris Hruska that was published, in

a slightly different form, in Alegbraic & Geometric Topology in Volume 19, issue 1 (2019),

published by Mathematical Sciences Publishers. The material in Chapter 3 has been accepted
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for publication in International Journal of Algebra and Computation.
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Chapter 1

Distortion of surfaces in graph manifolds

1.1 Introduction

In the study of 3–manifolds, much attention has focused on the distinction between surfaces

that lift to an embedding in a finite cover and those that do not. A π1–injective immersion

S # N of a surface S into a 3–manifold N is a virtual embedding if (after applying a

homotopy) the immersion lifts to an embedding of S into a finite cover of N . Due to work

of Scott and Przytycki–Wise [Sco78,PW14a], virtual embedding is equivalent to separability

of the surface subgroup π1(S) in π1(N).

A major part of the solution of the virtual Haken conjecture is Wise and Agol’s theorem

that every immersed surface in a finite volume complete hyperbolic 3–manifold is virtually

embedded [Wis12b,Ago13]. In contrast, Rubinstein–Wang [RW98] constructed non–virtually

embedded surfaces g : S # N in many 3–dimensional graph manifolds N . The examples of

Rubinstein–Wang are horizontal in the sense that in each Seifert component M of N , the

intersection g(S) ∩M is transverse to the Seifert fibration. Furthermore, they introduced a

combinatorial invariant of horizontal surfaces called dilation, which they use to completely

characterize which horizontal surfaces are virtually embedded.

If H ≤ G are groups with finite generating sets S and T , the distortion of H in G is

3



given by

∆G
H(n) = max

{
|h|T

∣∣ h ∈ H and |h|S ≤ n
}
.

Distortion does not depend on the choice of finite generating sets S and T (up to a natural

equivalence relation). The purpose of this article is to address the following question of Dani

Wise:

Question 1.1.1. Given a 3–dimensional graph manifold N , which surfaces in N have non-

trivial distortion?

Question 1.1.1 arises naturally in the study of cubulations of 3–manifold groups. The

typical strategy for constructing an action of the fundamental group on a CAT(0) cube

complex is to find a suitable collection of immersed surfaces and then to consider the CAT(0)

cube complex dual to that collection of surfaces (see for instance [Wis12a]).

Whenever a group G acts properly and cocompactly on a CAT(0) cube complex X, the

stabilizer of each hyperplane must be an undistorted subgroup of G, since hyperplanes are

convex. Hagen–Przytycki [HP15] show that chargeless graph manifolds do act cocompactly

on CAT(0) cube complexes. It is clear from their construction that many graph manifolds

contain undistorted surface subgroups.

However the situation for horizontal surfaces turns out to be quite different. Our main

result states that horizontal surfaces in graph manifolds always have a nontrivial distortion,

and this distortion is directly related to virtual embedding in the following sense:

Theorem 1.1.2. Let S # N be a horizontal surface properly immersed in a graph manifold

N . The distortion of π1(S) in π1(N) is quadratic if S is virtually embedded, and exponential

if S is not virtually embedded.

The main tool used in the proof of this theorem is a simple geometric interpretation of

Rubinstein–Wang’s dilation in terms of slopes of lines in the JSJ planes of the universal

cover.
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We note that, throughout this paper, the term “graph manifold” specifically excludes two

trivial cases: Seifert manifolds and Sol manifolds. By Proposition 1.6.7 horizontal surfaces

in Seifert manifolds are always undistorted. Distortion of surfaces in Sol manifolds is not

addressed in this article.

Although Theorem 1.1.2 deals only with horizontal surfaces in graph manifolds, under-

standing these is the key to a general understanding of all π1–injective surfaces in nongeo-

metric 3–manifolds. The nongeometric 3–manifolds include both graph manifolds and also

“mixed” type 3–manifolds, those whose JSJ decomposition contains at least one hyperbolic

component and at least one JSJ torus.

Recently Yi Liu has used Rubinstein–Wang’s work on virtual embedding of horizontal

surfaces in graph manifolds as the foundation for a study of virtual embedding of arbitrary

surfaces in nongeometric 3–manifolds [Liu17]. Similarly, in a forthcoming article, the second

author uses Theorem 1.1.2 as the foundation for a study of distortion of arbitrary surface

subgroups in fundamental groups of nongeometric 3–manifolds [Ngu].

As mentioned above, Hagen–Przytycki [HP15] have shown that chargeless graph mani-

folds act cocompactly on CAT(0) cube complexes. The cubulation they construct is dual to

a family of properly immersed surfaces, none of which is entirely horizontal. More precisely

a key property of these surfaces is that they never contain two adjacent horizontal pieces.

The following corollary shows that in order to obtain a proper, cocompact cubulation

(using any possible subgroups, not necessarily just surface subgroups) all surface subgroups

must be of the type used by Hagen–Przytycki. The corollary follows from combining Theo-

rem 1.1.2 with [Ngu].

Corollary 1.1.3. Let G be the fundamental group of a graph manifold. Let {H1, . . . , Hk} be

a collection of codimension–1 subgroups of G. Let X be the corresponding dual CAT(0) cube

complex. If at least one Hi is the fundamental group of a surface containing two adjacent

horizontal pieces, then the action of G on X is not proper and cocompact.

After seeing an early version of this paper, Hung Cong Tran discovered an alternate proof
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of the quadratic distortion of certain horizontal surfaces whose fundamental groups can also

be regarded as Bestvina–Brady kernels. This observation is part of a broader study by Tran

of the distortion of Bestvina–Brady kernels in right-angled Artin groups [Tra17].

1.1.1 Connections to previous work

In [Woo16], Woodhouse exploited strong parallels between graph manifolds and tubular

spaces to study actions of tubular groups on CAT(0) cube complexes. In the tubular setting,

immersed hyperplanes play the role of immersed surfaces in graph manifolds Woodhouse

extended the Rubinstein–Wang theory of dilation and found a connection between dilation

and distortion. In particular, he proves that if an immersed hyperplane in a tubular group

has nontrivial dilation then its distortion is at least quadratic. Inspired by Woodhouse’s

work, we use analogous techniques in the cleaner geometric setting of graph manifolds to

obtain Theorem 1.1.2.

We remark that the main proof of Theorem 1.1.2 in Sections 1.5 and 1.6 includes both

virtually embedded and non–virtually embedded surfaces in a unified treatment that promi-

nently uses a simple geometric interpretation of dilation in terms of “slopes of lines” in the

Euclidean geometry of JSJ planes. This interpretation was inspired by Woodhouse’s earlier

work on tubular groups. It seems likely that the main proofs here could be translated back

to the tubular setting, where they may lead to new advances in that setting as well.

However there is an alternate (shorter) proof of the quadratic distortion of virtually

embedded horizontal surfaces using the following result, which combines work of Gersten and

Kapovich–Leeb. This alternate approach, while more direct, does not give any information

about the structure of non–virtually embedded surfaces.

Theorem 1.1.4 (Gersten, Kapovich–Leeb). Let N be a graph manifold that fibers over the

circle with fiber surface S. Then π1(S) is quadratically distorted in π1(N).

Kapovich–Leeb implicitly use the quadratic upper bound (without stating it explicitly)

in [KL98], where they attribute it to Gersten [Ger94]. The quadratic lower bound also follows

6



easily from results of Gersten and Kapovich–Leeb [Ger94, KL98], but was not specifically

mentioned by them. The discussion of Theorem 1.1.4 in [KL98] and its precise derivation

from [Ger94] is brief and was not the main purpose of either article. For the benefit of

the reader we have included a more detailed exposition of Kapovich–Leeb’s elegant proof

of Theorem 1.1.4 in Section 1.7, which relies on Thurston’s geometric classification of 3–

manifolds that fiber over the circle.

The virtually embedded case of Theorem 1.1.2 can be derived as a corollary of Theo-

rem 1.1.4 as follows. If a horizontal surface g : S # N is virtually embedded then there

exist finite covers Ŝ → S and N̂ → N such that N̂ is an Ŝ–bundle over S1 (see for in-

stance [WY97]). By Theorem 1.1.4, the distortion of π1(Ŝ) in π1(N̂) is quadratic. Distortion

is unchanged when passing to subgroups of finite index, so the distortion of π1(S) in π1(N)

is also quadratic.

1.1.2 Overview

In Section 1.2 we review some concepts in geometric group theory. In Section 1.3 we give

several lemmas about curves on hyperbolic surfaces that will be used in Section 1.5. Sec-

tion 1.4 is a review background about graph manifolds and horizontal surfaces. A convenient

metric on a graph manifold that will use in this paper will be discussed.

In Section 1.5 we prove the distortion of a horizontal surface in a graph manifold is at

least quadratic. We also show that if the horizontal surface is not virtually embedded then

the distortion is at least exponential. The strategy in this proof was inspired by the work of

Woodhouse (see Section 6 in [Woo16]). In Section 1.6 we prove that distortion of a horizontal

surface in a graph manifold is at most exponential. Furthermore, if the horizontal surface is

virtually embedded then the distortion is at most quadratic.

Section 1.7 contains a detailed exposition of the proof of Theorem 1.1.4.

7



1.2 Preliminaries

In this section, we review some concepts in geometric group theory: quasi–isometry, distor-

tion of a subgroup and the notions of domination and equivalence.

Definition 1.2.1. Let (X, d) be a metric space. A path γ : [a, b] → X is a geodesic if

d(γ(s), γ(t)) = |s− t| for all s, t ∈ [a, b]. A simple loop f : S1 → X is a geodesic loop if f is

an isometric embedding with respect to some length metric on S1.

Definition 1.2.2 (quasi-isometry). Let (X1, d1) and (X2, d2) be metric spaces. A (not

necessarily continuous) map f : X1 → X2 is an (L,C)–quasi-isometric embedding if there

exist constants L ≥ 1 and C ≥ 0 such that for all x, y ∈ X1 we have

1

L
d1(x, y)− C ≤ d2

(
f(x), f(y)

)
≤ Ld1(x, y) + C.

If, in addition, there exits a constant D ≥ 0 such that every point of X2 lies in the D–

neighborhood of the image of f , then f is an (L,C)–quasi-isometry. When such a map

exists, X1 and X2 are quasi-isometric.

Let (X, d) be a metric space, and γ a path in X. We denote the length of γ by |γ|.

Definition 1.2.3 (quasigeodesic). Let γ be a path in a metric space (X, d). It is called

(L,C)–quasigeodesic with respect to constants L ≥ 1 and C ≥ 0 if |γ[x,y]| ≤ Ld(x, y) + C

for all x, y ∈ γ. A quasigeodesic is a path that is (L,C)–quasigeodesic for some L and C.

Definition 1.2.4. A geodesic space (X, d) is δ–hyperbolic if every geodesic triangle with

vertices in X is δ–thin in the sense that each side lies in the δ–neighborhood of the union of

the other two sides.

Definition 1.2.5 (deviation). Let (X, d) be a geodesic space and c ≥ 0 be a fixed number.

Consider a pair of geodesic segments [x, y] and [z, t] such that d(y, z) ≤ c. The c–deviation

8



of [x, y] and [z, t], denoted devc
(
[x, y], [z, t]

)
, is the quantity

sup
{

max{d(u, y), d(v, z)}
∣∣ u ∈ [x, y],v ∈ [z, t],d(u, v) ≤ c

}
.

The following theorem gives a criterion for determining that a piecewise geodesic in a

δ–hyperbolic space is a quasigeodesic. The proof, which is very similar to the proof of

Lemma 19 of [GH90, Chapter 5], is left as an exercise to the reader.

Theorem 1.2.6. Let (X, d) be a δ–hyperbolic space. For any κ ≥ 0 and D ≥ 0, there

exist constants L = L(δ, κ,D), and C = C(δ, κ,D) such that the following holds: Suppose a

piecewise geodesic

c = [x1, x2] ∪ [x2, x3] ∪ · · · ∪ [x2m−1, x2m]

satisfies

1. d(x2i, x2i+1) ≤ κ

2. d(x2i−1, x2i) ≥ 11κ+ 25δ + 2D, and

3. devQ
(
[x2i−1, x2i], [x2i+1, x2i+2]

)
≤ D, where Q = 4δ + κ.

Then c is an (L,C)–quasigeodesic.

Definition 1.2.7. Let f, g be functions from positive reals to positive reals. The function

f is dominated by g, denoted f � g, if there are positive constants A, B, C, D and E such

that

f(x) ≤ Ag(Bx+ C) +Dx+ E for all x.

The functions f and g are equivalent, denoted f ∼ g, if f � g and g � f .

The relation � is an equivalence relation. Polynomial functions with degree at least

one are equivalent if and only if they have the same degree. Furthermore, all exponential

functions are equivalent.

9



Definition 1.2.8 (Subgroup distortion). Let H ≤ G be a pair of groups with finite gener-

ating sets T and S respectively. The distortion of (H, T ) in (G,S) is the function

∆G
H(n) = max

{
|h|T

∣∣ h ∈ H and |h|S ≤ n
}

Up to equivalence, the function ∆G
H does not depend on the choice of finite generating sets

S and A.

LetH ≤ G be a pair of finitely generated groups. We say that the distortion ∆G
H is at least

quadratic [exponential ] if it dominates a quadratic polynomial [exponential function]. The

distortion ∆G
H is at most quadratic [exponential ] if it is dominated by a quadratic polynomial

[exponential function].

The following proposition is routine, and we leave the proof as an exercise for the reader.

Proposition 1.2.9. Let G, H, K be finitely generated groups with K ≤ H ≤ G.

1. If H is a finite index subgroup of G then ∆H
K ∼ ∆G

K.

2. If K is a finite index subgroup of H then ∆G
K ∼ ∆G

H .

It is well known that a group acting properly, cocompactly, and isometrically on a geodesic

space is quasi-isometric to the space. The following corollary of this fact allows us to compute

distortion using the geometries of spaces in place of word metrics.

Corollary 1.2.10. Let X and Y be compact geodesic spaces, and let g : (Y, y0) → (X, x0)

be π1–injective. We lift the metrics on X and Y to geodesic metrics on the universal covers

X̃ and Ỹ respectively. Let G = π1(X, x0) and H = g∗
(
π1(Y, y0)

)
. Then the distortion ∆G

H is

equivalent to the function

f(n) = max
{
dỸ (ỹ0, h(ỹ0))

∣∣ h ∈ H and dX̃(x̃0, h(x̃0)) ≤ n
}
.
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1.3 Curves in hyperbolic surfaces

In this section, we will give some results about curves on surfaces that will play an essential

role in the proof of Theorem 1.5.1.

Definition 1.3.1 (Multicurves). A closed curve in a surface S is essential if it is not freely

homotopic to a point or a boundary component. A multicurve in S is a finite collection of

disjoint, essential simple closed curves such that no two are freely homotopic. If S has a

metric, a multicurve is geodesic if each member of the family is a geodesic loop.

Lemma 1.3.2. Let S be a compact surface with negative Euler characteristic. Let C be a

multicurve in S. Let L be the family of lines that are lifts of loops of C or boundary loops of

S. Equip S with any length metric dS. Let d be the induced metric on the universal cover

S̃. For any r > 0 there exists D = D(r) <∞ such that for any two disjoint lines `1 and `2

of L we have

diam
(
Nr(`1) ∩Nr(`2)

)
≤ D

Proof. Since H = π1(S) acts cocompactly on the universal cover S̃, there exists a closed ball

B(x0, R) whose H–translates cover S̃. Note that L is locally finite in the sense that only

finitely many lines of L intersect the closed ball B = B(x0, R + 2r). Since distinct lines

of L are not parallel, there exists a finite upper bound D = D(r) on the diameter of the

intersection Nr(`) ∩Nr(`′) for all lines ` 6= `′ ∈ L that intersect B.

Consider `1 6= `2 ∈ L. If d(`1, `2) ≥ 2r then their r–neighborhoods have empty inter-

section, and the result is vacuously true. Thus it suffices to assume that d(`1, `2) < 2r. By

cocompactness, there exists h ∈ H so that h(`1) intersects B(x0, R). But then h(`1) and

h(`2) both intersect B, so that

diam
(
Nr(`1) ∩Nr(`2)

)
≤ D,

as desired.
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Lemma 1.3.3. Let S be a compact hyperbolic surface with totally geodesic (possibly empty)

boundary, and let C be a nonempty geodesic multicurve. Then there exists a geodesic loop γ

in S such that γ and C have nonempty intersection.

Proof. Choose any loop c ∈ C. Cutting S along c produces a surface each of whose com-

ponents has negative Euler characteristic since each of its components is a union of blocks

of S joined along circles. For any such simple closed curve c in a compact surface S, we

claim that there exists another closed curve γ whose geometric intersection number with c

is nonzero. We leave the proof of this claim as an easy exercise for the reader (using, for

example, the techniques in Sections 1.2.4 and 1.3 of [FM12]). After applying a homotopy,

we can assume that γ is a geodesic loop.

Lemma 1.3.4. Let S be a compact hyperbolic surface with totally geodesic (possibly empty)

boundary, and let C be a nonempty geodesic multicurve. Let L be the family of lines that are

lifts of loops of C or boundary loops of S. For any κ > 0, there exist numbers µ, L, and C

such that the following holds.

Consider a piecewise geodesic c = α1β1 · · ·αnβn in the universal cover S̃. Suppose each

segment αj is contained in a line of L, and each segment βj meets the lines of L only at its

endpoints. If |βj| ≤ κ and |αj| ≥ µ for all j, then c is an (L,C)–quasigeodesic.

Proof. In order to show that the piecewise geodesic c in the δ–hyperbolic space S̃ is uni-

formly quasigeodesic, we will show that there exists a constant D such that whenever µ is

sufficiently large, c satisfies the hypotheses of Theorem 1.2.6. Thus c is (L,C)–quasigeodesic

for constants L and C not depending on c.

Let Q = 4δ + κ. Let D = D(Q) be the constant given by applying Lemma 1.3.2 to the

hyperbolic surface S and the multicurve C. Let L = L(δ, κ,D) and C = C(δ, κ,D) be the

constants given by Theorem 1.2.6. We define µ = 11κ+ 25δ + 2D. It follows that c satisfies

Conditions (1) and (2) of Theorem 1.2.6.

In order to verify Condition (3) of Theorem 1.2.6, we need to show that devQ
(
αj, αj+1

)
≤

D. Let u ∈ αj and v ∈ αj+1 such that d(u, v) ≤ Q. Let u′ and v′ be the initial and terminal
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points of βj. We need to show that d
(
u, u′

)
≤ D and d

(
v, v′

)
≤ D. It is easy to see the

elements u, v, u′, and v′ belong to NQ
(
αj
)
∩NQ

(
αj+1

)
because |βj| ≤ κ ≤ Q. We have αj+1

and αj do not belong to the same line of L because any two distinct geodesics in S̃ intersect

at most one point. Hence

diam
(
NQ(αj) ∩NQ(αj+1)

)
≤ D

by Lemma 1.3.2. It follows that d
(
u, u′

)
≤ D and d

(
v, v′

)
≤ D. It follows immediately from

the definition of the deviation that devQ
(
αj, αj+1

)
≤ D.

1.4 Graph manifolds and horizontal surfaces

In this section, we review background about graph manifolds and horizontal surfaces. In

addition, we discuss a convenient metric for a graph manifold that will be used in next

sections. We refer the reader to [RW98], [BS04] and [KL98] for more details.

Definition 1.4.1. A graph manifold is a compact, irreducible, connected, orientable 3-

manifold N that can be decomposed along embedded incompressible tori T into finitely

many Seifert manifolds. We specifically exclude Sol and Seifert manifolds from the class of

graph manifolds. Up to isotopy, each graph manifold has a unique minimal collection of tori

T as above [JS79, Joh79]. This minimal collection is the JSJ decomposition of N , and each

torus of T is a JSJ torus.

Throughout this paper, a graph consists of a set V of vertices and a set of E of edges, each

edge being associated to an unordered pair of vertices by a function ends : ends(e) = {v, v′}

where v, v′ ∈ V . In this case we call v and v′ the endpoints of the edge e and we also say v

and v′ are adjacent.

Definition 1.4.2. A simple graph manifold N is a graph manifold with the following prop-

erties:
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1. Each Seifert component is a trivial circle bundle over an orientable surface of genus at

least 2.

2. The intersection numbers of fibers of adjacent Seifert components have absolute value

1.

Theorem 1.4.3 ( [KL98]). Any graph manifold N has a finite cover N̂ that is a simple

graph manifold.

Definition 1.4.4. LetM be a Seifert manifold with boundary. A horizontal surface inM is

an immersion g : B #M where B is a compact surface with boundary such that the image

g(B) is transverse to the Seifert fibration. We also require that g is properly immersed, ie,

g(B) ∩ ∂M = g(∂B).

A horizontal surface in a graph manifold N is a properly immersed surface g : S # N

such that for each Seifert component M , the intersection g(S) ∩M is a horizontal surface

in M . A horizontal surface g in a graph manifold N is always π1–injective and lifts to an

embedding of S in the cover of N corresponding to the subgroup g∗
(
π1(S)

)
by [RW98].

Consequently, g also lifts to an embedding S̃ → Ñ of universal covers.

Definition 1.4.5. A horizontal surface g : S # N in a graph manifold N is virtually embed-

ded if g lifts to an embedding of S in some finite cover of N . By a theorem of Scott [Sco78],

a horizontal surface is virtually embedded if g∗
(
π1(S)

)
is a separable subgroup of π1(N), i.e.,

it is equal to an intersection of finite index subgroups. Przytycki–Wise have shown that the

converse holds as well [PW14b].

The following result about separability allows one to pass to finite covers in the study of

horizontal surfaces, as explained in Corollary 1.4.7.

Proposition 1.4.6 ( [Sco78], Lemma 1.1). Let G0 be a finite index subgroup of G. A

subgroup H ≤ G is separable in G if and only if H ∩G0 is separable in G0.
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Corollary 1.4.7. Let q : (N̂ , x̂0) → (N, x0) be a finite covering of graph manifolds. Let

g : (S, s0) # (N, x0) be a horizontal surface. Let p : (Ŝ, ŝ0)→ (S, s0) be the finite cover cor-

responding to the subgroup g−1
∗ q∗π1(N̂ , x̂0). Then g lifts to a horizontal surface ĝ : (Ŝ, ŝ0)→

(N̂ , x̂0). Furthermore g is a virtual embedding if and only if ĝ is a virtual embedding.

Definition 1.4.8. Suppose g : S # N is a horizontal surface in a graph manifold N with

JSJ decomposition T . Let Tg denote the collection of components of g−1(T ) in S. After

applying a homotopy to g, we may assume that the image g(c) of each curve c ∈ Tg is a

multiple of a simple closed curve on the corresponding JSJ torus. The connected components

of the splitting S|g−1(T ) are the blocks B of S.

Remark 1.4.9. If g : S # N is a horizontal surface then Tg is always nonempty. Indeed,

g(S) has nonempty intersection with each JSJ torus of N because a properly immersed

horizontal surface in a connected graph manifold must intersect every fiber of every Seifert

component (see Lemma 1.6.3 for details).

In [RW98], Rubinstein–Wang introduced the dilation of a horizontal surface, and proved

that dilation is the obstruction to a surface being virtually embedded (see Theorem 1.4.11).

Definition 1.4.10 (Dilation). Let g : (S, s0) # (N, x0) be a horizontal surface in a simple

graph manifold N . Choose an orientation for the graph manifold N , an orientation for the

fiber of each Seifert component, and an orientation for each curve c ∈ Tg.

The dilation of a horizontal surface S inN is a homomorphism w : π1(S, s0)→ Q∗+ defined

as follows. Choose [γ] ∈ π1(S, s0) such that γ is transverse to Tg. In the trivial case that γ

is disjoint from the curves of the collection Tg, we set w(γ) = 1. Let us assume now that

this intersection is nonempty. Then Tg subdivides γ into a concatenation γ1 · · · γm with the

following properties. Each path γi starts on a circle ci ∈ Tg and ends on the circle ci+1. The

image g(γi) of this path in N lies in a Seifert component Mi. The image of the circle g(ci)

in N lies in a JSJ torus Ti obtained by gluing a boundary torus
←−
Ti of Mi−1 to a boundary

torus
−→
Ti of Mi. Let

←−
fi and

−→
fi be fibers of Mi−1 and Mi in the torus Ti. By Definition 1.4.2,
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the 1–cycles [
←−
fi ] and [

−→
fi ] generate the integral homology group H1(Ti) ∼= Z2, so there exist

integers ai and bi such that

[
g(ci)

]
= ai[

←−
fi ] + bi[

−→
fi ] in H1(Ti).

Since the immersion is horizontal, these coefficients ai and bi must be nonzero. The dilation

w(γ) is the rational number
∏m

i=1

∣∣bi/ai∣∣. Note that w(γ) depends only on the homotopy

class of γ, since crossings of γ with a curve c ∈ Tg in opposite directions contribute terms to

the dilation that cancel each other. For the rest of this paper we write wγ instead of w(γ).

The following result is a special case of [RW98, Theorem 2.3].

Theorem 1.4.11. A horizontal surface g : S # N in a simple graph manifold is virtually

embedded if and only if the dilation w is the trivial homomorphism.

Remark 1.4.12. Let g : S # N be a horizontal surface in a simple graph manifold M , then

each block B is a connected surface with non-empty boundary and negative Euler character-

istic. Indeed, the immersion g : S # N maps B to the corresponding Seifert component M

with base surface F . The composition of g|B with the projection of M to F yields a finite

covering map from B to F . Since χ(F ) < 0, it follows that χ(B) < 0 as well.

We note that the collection Tg is always a non-empty multicurve. Indeed, Tg is nonempty

by Remark 1.4.9. Since the blocks of S have negative Euler characteristic, it follows that Tg

is a multicurve.

Remark 1.4.13. We now are going to describe a convenient metric on a simple graph

manifold N introduced by Kapovich–Leeb [KL98]. For each Seifert componentMi = Fi×S1

of N , we choose a hyperbolic metric on the base surface Fi so that all boundary components

are totally geodesic of unit length, and then equip each Seifert component Mi = Fi × S1

with the product metric di such that the fibers have length one. Metrics di on Mi induce

the product metrics on M̃i which by abuse of notations is also denoted by di.
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Let Mi and Mj be adjacent Seifert components in the simple graph manifold N , and let

T ⊂ Mi ∩Mj be a JSJ torus. Each metric space (T̃ , di) and (T̃ , dj) is a Euclidean plane.

After applying a homotopy to the gluing map, we may assume that at each JSJ torus T , the

gluing map φ from the boundary torus
←−
T ⊂ Mi to the boundary torus

−→
T ⊂ Mj is affine in

the sense that the identity map (T̃ , di) → (T̃ , dj) is affine. We now have a product metric

on each Seifert component Mi = Fi × S1. These metrics may not agree on the JSJ tori but

the gluing maps are bilipschitz (since they are affine). The product metrics on the Seifert

components induce a length metric on the graph manifold N denoted by d (see Section 3.1

of [BBI01] for details). Moreover, there exists a positive constant K such that on each Seifert

component Mi = Fi × S1 we have

1

K
di(x, y) ≤ d(x, y) ≤ K di(x, y)

for all x and y in Mi. (See Lemma 1.8 of [Pau05] for a detailed proof of the last claim.)

Metric d on N induces metric on Ñ , which is also denoted by d (by abuse of notations).

Then for all x and y in M̃i we have

1

K
di(x, y) ≤ d(x, y) ≤ K di(x, y)

The following remark introduces certain invariants of a horizontal surface g that will be

used in the proof of Theorem 1.6.1.

Remark 1.4.14.

1. Since N is compact, there exists a positive lower bound ρ for the distance between any

two distinct JSJ planes in Ñ .

2. We recall that for each curve ci in Tg, there exist non-zero integers ai and bi such that

[
g(ci)

]
= ai[

←−
fi ] + bi[

−→
fi ] in H1(Ti).
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The governor of a horizontal surface g : S # N in a graph manifold is the quantity

ε = ε(g) = max
{ ∣∣ai/bi∣∣, ∣∣bi/ai∣∣ ∣∣ ci ∈ Tg }. (We use the term “governor” here in the

sense of a device used to limit the top speed of a vehicle or engine. In this context the

governor limits the rate of growth of the products used in calculating the dilation of

curves in the surface.)

Proposition 1.4.15. For each [γ] ∈ π1(S, s0) as in Definition 1.4.10, we define

Λγ = max
{ k∏
i=j

∣∣bi/ai∣∣ ∣∣ 1 ≤ j ≤ k ≤ m
}

If the horizontal surface g is a virtual embedding, then there exists a positive constant Λ such

that Λγ ≤ Λ for all [γ] ∈ π1(S, s0).

Proof. Let Γg be the graph dual to Tg, and let n be the number of vertices in Γg. Each

oriented edge e of Γg is dual to a curve c ∈ Tg and determines a slope
∣∣b/a∣∣ as described in

Definition 1.4.10 and Remark 1.4.14. By Theorem 1.4.11 the dilation is trivial for any loop

in S. Therefore for each cycle e1 · · · em in Γg the corresponding product of slopes
∏m

i=1

∣∣bi/ai∣∣
is trivial. It follows that for any edge path e1 · · · em the value of the product

∏m
i=1

∣∣bi/ai∣∣
depends only on the endpoints of the path. Each slope

∣∣bi/ai∣∣ is bounded above by the

governor ε of g. Since any two vertices of Γg are joined by a path of length less than n, the

result follows, using Λ = εn.

Remark 1.4.16. Let g : S # N be a horizontal surface in a simple graph manifold. Equip

N with the metric d described in Remark 1.4.13. By [Neu01, Lemma 3.1] the surface g can be

homotoped to another horizontal surface g′ : S # N such that the following holds: For each

curve c in g′−1(T ), let T be the JSJ torus in N such that g′(c) ⊂ T . Then g′(c) is straight in

T in the sense that lifts of g′(c) to Ñ are straight lines in the JSJ planes containing it.

Remark 1.4.17. Let f : S1 # T = S1 × S1 be a horizontal immersion. Then every fiber

{x} × S1 in the torus T has non-empty intersection with f(S1). Indeed, this follows from
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the fact the composition of f with the natural projection of T to the first factor S1 is a finite

covering map.

1.5 A lower bound for distortion

The main theorem in this section is the following.

Theorem 1.5.1. Let g : (S, s0) # (N, x0) be a horizontal surface in a graph manifold M .

Let G = π1(N, x0) and H = g∗(π1(S, s0)). Then the distortion ∆G
H is at least quadratic.

Furthermore, if the horizontal surface g is not virtually embedded, then the distortion ∆G
H is

at least exponential.

To see the proof of Theorem 1.5.1, we need several lemmas. For the rest of this section

we fix a horizontal surface g : S # N in a simple graph manifold N . We equip N with the

metric d described in Remark 1.4.13 and equip S with a hyperbolic metric dS such that the

boundary (if nonempty) is totally geodesic and the simple closed curves of Tg are geodesics.

Lemma 1.5.2. Let γ be any geodesic loop in S such that γ and Tg have nonempty intersection

and such that wγ ≥ 1. There exists a positive number A = A(γ) such that for all µ > 0 the

following holds: Let {c1, . . . , cm} be the sequence of curves of Tg crossed by γ. The image of

the circle g(ci) in M lies in a JSJ torus Ti. For each i = 1, 2, . . . ,m, let ai and bi be the

integers such that [
g(ci)

]
= ai[

←−
fi ] + bi[

−→
fi ] in H1(Ti;Z).

Extend the sequence a1, . . . , am to a periodic sequence {aj}∞j=1 with aj+m = aj for all j >

0, and similarly extend b1, . . . , bm to an m–periodic sequence {bj}∞j=1. Then there exists a

(nonperiodic) sequence of integers
{
t(j)
}∞
j=1

, depending on our choice of the constant µ and

the loop γ, with the following properties:

1.
∣∣t(j)∣∣ ≥ µ for all j.

2.
∣∣t(j) aj + t(j − 1) bj−1

∣∣ ≤ A for all j > 1.
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3. The partial sum f(n) =
∑nm

j=1

∣∣t(j)∣∣ satisfies f(n) � n2 + wnγ .

Proof. By the definition of the dilation function, we have wγ =
∏m

i=1

∣∣bi/ai∣∣.
Let A = max

{
1 + |ai|

∣∣ i = 1, 2, . . . ,m
}
. Set ξ = min

{
|1/aj|

}
, and choose λ ∈ (0, 1] so

that λ ≤
∣∣bj−1/aj

∣∣ for all j > 1. Starting from an initial value t(1) ≥ µ/λm−1, we recursively

construct an infinite sequence
{
t(j)
}
satisfying (2). Suppose that t(j − 1) has been defined

for some j > 1, and we wish to define t(j). As A ≥ 1 + |aj|, we have

1 ≤ A− 1

|aj|
=
A+

∣∣t(j − 1) bj−1

∣∣
|aj|

−
1 +

∣∣t(j − 1) bj−1

∣∣
|aj|

.

It follows that there is an integer t(j) such that

1 +
∣∣t(j − 1) bj−1

∣∣
|aj|

≤ |t(j)| ≤
A+

∣∣t(j − 1) bj−1

∣∣
|aj|

, (♣)

which is equivalent to

1 ≤
∣∣t(j) aj∣∣− ∣∣t(j − 1) bj−1

∣∣ ≤ A.

Furthermore, we are free to choose the sign of t(j) so that t(j) aj and t(j − 1) bj−1 have

opposite signs, which immediately gives (2). By induction, the sequence
{
t(j)
}

satisfies

both (♣) and (2) for all j > 1.

We next show that any sequence
{
t(j)
}
satisfying (♣) also satisfies (3). Indeed, the first

inequality of (♣) implies

∣∣t(j)∣∣ ≥ 1

|aj|
+

∣∣∣∣bj−1

aj

∣∣∣∣ ∣∣t(j − 1)
∣∣ ≥ ∣∣∣∣bj−1

aj

∣∣∣∣ ∣∣t(j − 1)
∣∣ for all j > 1. (♦)

For any j > m, we apply (♦) iteratively m times (and use that the sequences
{
aj
}
and

{
bj
}
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are m–periodic) to get

∣∣t(j)∣∣ ≥ 1

|aj|
+

∣∣∣∣bj−1

aj

∣∣∣∣ ∣∣t(j − 1)
∣∣

≥ 1

|aj|
+

∣∣∣∣bj−1 bj−2

aj aj−1

∣∣∣∣ ∣∣t(j − 2)
∣∣ ≥ · · ·

≥ 1

|aj|
+

∣∣∣∣ b1 · · · bm
a1 · · · am

∣∣∣∣ ∣∣t(j −m)
∣∣

≥ ξ + wγ
∣∣t(j −m)

∣∣.
(♥)

Further applying (♥) iteratively k times (and using that wγ ≥ 1) gives

∣∣t(j)∣∣ ≥ ξ + wγ
∣∣t(j −m)

∣∣
≥ ξ + wγ

(
ξ + wγ

∣∣t(j − 2m)
∣∣)

≥ 2ξ + w2
γ

∣∣t(j − 2m)
∣∣ ≥ · · ·

≥ ξk + wkγ
∣∣t(j − km)

∣∣ for all j > km

(♠)

The inequality (♠) can be rewritten in the form

∣∣t(km+ 1)
∣∣ ≥ ξk +

∣∣t(1)
∣∣wkγ for all k > 0.

Finally for each positive n we observe that

nm∑
j=1

∣∣t(j)∣∣ ≥ n−1∑
k=1

∣∣t(km+ 1)
∣∣ ≥ ξ

n−1∑
k=1

k +
∣∣t(1)

∣∣ n−1∑
k=1

wkγ

which implies (3) as desired.

In order to establish (1), recall that γ satisfies wγ ≥ 1. Therefore (♥) implies that∣∣t(j)∣∣ ≥ |t(j −m)| for any j > m. In particular, it follows that the terms of the sequence{
t(j)
}

have absolute value bounded below by the absolute values of the first m terms:

t(1), . . . , t(m).

Using our choice of t(1) ≥ µ/λm−1 and the fact λ ≤
∣∣bj−1/aj

∣∣, the inequality (♦) shows
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that for all i = 1, . . . ,m we have

∣∣t(i)∣∣ ≥ λi−1
∣∣t(1)

∣∣ ≥ µ

λm−i
.

As λ ≤ 1, we conclude that
∣∣t(i)∣∣ ≥ µ, completing the proof of (1).

Definition 1.5.3 (spirals). We let γ be a closed curve in S satisfying the conclusion of

Lemma 1.3.3. Let {c1, . . . , cm} be the sequence of curves of C crossed by γ. Let {γ1, . . . , γm}

be the sequence of subpaths of γ introduced in Definition 1.4.10. Extend the finite sequences

of curves c1, . . . , cm and γ1, . . . , γm to m–periodic infinite sequences {cj}∞j=1 and {γj}∞j=1. Let{
t(j)
}
be a sequence of integers. We denote αj = c

t(j)
j .

Choose the basepoint s0 ∈ S to be a point of intersection between γ and one of the

curves of the family C. For each n ∈ N, we define a spiral loop σn in S based at s0 as a

concatenation:

σn = α1γ1 · · ·αnmγnm

and a double spiral loop ρn of σn in S based at s0 as ρn = σnα
′
nm+1σ

−1
n where α′nm+1 = c

t(1)
nm+1.

Lemma 1.5.4. Let
{
t(j)
}∞
j=1

be the sequence of integers given by Lemma 1.5.2. Let ρn be

the double spiral loop of σn coresponding to the curve γ and the sequence
{
t(j)
}
. Let ρ̃n be

the lift of ρn in S̃. Then the distance in Ñ between the endpoints of g̃(ρ̃n) is bounded above

by a linear function of n.

Proof. First we describe informally the idea of the proof, which is illustrated in Figure 1.1.

The lift σ̃n of σn is the spiral-shaped curve running around the outside of the left-hand

diagram. The path σ̃n alternates between long segments α̃j belonging to JSJ planes and

short segments γ̃j belonging to Seifert components. Each long segment α̃j is one side of a

large triangle in the JSJ plane whose other two sides are fibers of the adjacent blocks, which

meet in a corner yj opposite to α̃j. Connecting each pair of adjacent corners yj produces

a thin trapezoid that interpolates between two adjacent JSJ triangles. We will see that
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zj
γ̃j

yj

xj

xj+1

yj+1

zj+1

α̃j

α̃j+1

Figure 1.1: On the left, the piecewise geodesic σ̃n is the spiral-shaped path running around the
outside of the diagram. On the right is a magnified portion of the left-hand picture showing more
detail.

Figure 1.2: The outer path represents the piecewise geodesic ρ̃n.

the sequence of exponents
{
t(j)} in the construction of σ̃n was chosen carefully to ensure

that the distances between adjacent corners yj are all short, i.e., bounded above. Thus the

path running around the inside of the spiral has at most a linear length—except for its last

segment, which is a long side of a large JSJ triangle. The double spiral gives rise to a diagram

similar to the spiral diagram, expect that it has been doubled along this long triangular side,

so that the long side no longer appears on the boundary of the diagram but rather appears

in its interior (see Figure 1.2).

To be more precise, let Mj be the Seifert component of N containing γj, with its given
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product metric as a hyperbolic surface crossed with a circle of length one. Let (M̃j, dj) be the

Seifert component of Ñ that contains γ̃j, with the product metric dj induced by lifting the

given metric on Mj. Let T̃j be the JSJ plane containing α̃j. Recall that T̃j is a topological

plane that is a subspace of both M̃j−1 and M̃j. However the metrics dj−1 and dj typically do

not agree on the common subspace T̃j. Each metric space
←−
Ej = (T̃j, dj−1) and

−→
Ej = (T̃j, dj)

is a Euclidean plane and the identity map
←−
Ej →

−→
Ej is affine.

The plane T̃j universally covers a JSJ torus Tj obtained by identifying boundary tori
←−
Tj

and
−→
Tj of Seifert components Mj−1 and Mj. The initial and terminal points xj and zj of α̃j

are contained in Euclidean geodesics
←−
`j ⊂

←−
Ej and

−→
`j ⊂

−→
Ej that project to fibers

←−
fj ⊂

←−
Tj

and
−→
fj ⊂

−→
Tj respectively. The lines

←−
`j and

−→
`j intersect in a unique point yj. Similarly, we

consider the subpath α̃−1
j in the double spiral ρ̃n. Let yj be the intersection point of the two

fibers that contain its endpoints.

Our goal is to find a linear upper bound for the distance in (N, d) between the endpoints

of ρ̃n. By the triangle inequality it suffices to produce an upper bound for the distance

between successive points of the linear sequence y1, . . . , ynm, ynm, . . . , y1. Recall that the

inclusions (M̃j, dj) → (Ñ , d) are K–bilipschitz for some universal constant K, as explained

in Remark 1.4.13. Thus it is enough to bound the distance between these points with respect

to the given product metrics on each Seifert component.

Let η be the maximum of lengths of γ̃j with respect to metric dj. Let A be the constant

given by Lemma 1.5.2. We claim that

dj(yj, yj+1) ≤ η + A. (?)

We prove this claim by examining the quadrilateral with vertices yj, zj, xj+1, and yj+1,

illustrated on the right-hand side of Figure 1.1. This quadrilateral is a trapezoid in the sense

that the opposite sides [yj, zj] and [yj+1, xj+1] lie in fibers of M̃j that are parallel lines in the

product metric dj.
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To find the lengths of these parallel sides, we examine the JSJ triangle ∆(xj, yj, zj),

also shown on the right-hand side of Figure 1.1. We consider this triangle to be a pair of

homotopic paths α̃j and τj from xj to yj in the plane T̃j, where τj = [xj, yj] ∪ [yj, zj] is

a segment of
←−
`j concatenated with a segment of

−→
`j . In particular, α̃j and τj project to

homotopic loops in Tj of the form g(αj) and (
←−
fj )

rj(
−→
fj )

sj for some rj, sj ∈ Z. Recall that the

fiber
←−
fj has length one in the product metric on Mj−1. Similarly the fiber

−→
fj has length one

in Mj. It follows that dj−1(xj, yj) = |rj| and dj(yj, zj) = |sj|. Since g(αj) = g(cj)
t(j), the

homology relation (written additively)

t(j)
[
g(cj)

]
= t(j) aj [

←−
fj ] + t(j) bj [

−→
fj ] in H1(Tj;Z) ≈ π1(Tj),

implies that rj = t(j) aj and sj = t(j) bj.

Let βj be the lift of γj based at yj. The fiber which contains yj+1 and xj+1 will intersect

βj exactly at one point. We denote this point by uj. It follows that dj(uj, yj) ≤ η and

dj(uj, yj+1) =
∣∣t(j + 1) aj+1 + t(j) bj

∣∣. Using the triangle inequality for ∆(yj, uj, yj+1), we

have

dj(yj, yj+1) ≤ dj(yj, uj) + dj(uj, yj+1)

≤ η +
∣∣t(j + 1) aj+1 + t(j) bj

∣∣
≤ η + A

by Lemma 1.5.2(2), completing the proof of (?).

For a similar reason, the distance in the corresponding Seifert component between yj and

yj−1 is at most η+A. Thus it suffices to find an upper bound for dnm(ynm, ynm). Let R be the

length of c̃1 in the metric dnm. Let znm be the initial point of α̃−1
nm. Since α′nm = c

t(1)
nm+1, the

dnm–distance between the endpoints of α̃′nm+1 is at most R
∣∣t(1)

∣∣. By the triangle inequality,

dnm(znm, znm) ≤ 2η +R
∣∣t(1)

∣∣.
We note that [znm, ynm] and [znm, ynm] lie in parallel fibers of M̃nm. Furthermore they are
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oriented in the same direction with respect to the fiber and have the same length. Therefore

they form opposite sides of a Euclidean parallelogram in M̃nm. In particular the distances

dnm(ynm, ynm) and dnm(znm, znm) are equal, so that dnm(ynm, ynm) ≤ 2η +R
∣∣t(1)

∣∣.
Proof of Theorem 1.5.1. Any graph manifold has a simple finite cover by Theorem 1.4.3.

By Corollary 1.4.7 and Proposition 1.2.9, it suffices to prove the theorem for all horizontal

surfaces in this cover. Thus we assume, without loss of generality that N is a simple graph

manifold.

Let γ be any geodesic loop in S such that γ and Tg have nonempty intersection. The

existence of such a loop is guaranteed by Lemma 1.3.3. Replacing γ with γ−1 if necessary,

we may assume that wγ ≥ 1. Let κ be the maximum of lengths of γi with respect to the

metric dS.

Let µ, L and C be the constants given by Lemma 1.3.4. Let
{
t(j)
}
be the sequence of

integers given by Lemma 1.5.2. For each n, let σn be the spiral loop coresponding to the

curve γ and the sequence
{
t(j)
}
. Let ρn be the double spiral of σn. Let L be the family of

lines that are lifts of loops of Tg or boundary loops of S. Since ρ̃n satisfies the hypotheses of

Lemma 1.3.4, it is an (L,C)–quasigeodesic in S̃.

Let hn be the homotopy class of loop ρn at the basepoint s0. We first claim that

dS̃
(
s̃0, hn(s̃0)

)
� n2 + wnγ . Indeed, let r be the minimum of lengths of ci with respect to

the metric dS. By the construction of the spiral loop σn we have
∣∣σ̃n∣∣ ≥ r

∑nm
j=1

∣∣t(j)∣∣.
By Lemma 1.5.2(3), we have

∣∣σ̃n∣∣ � n2 + wnγ . It is obvious that |ρ̃n| � n2 + wnγ because

|ρ̃n| ≥ 2|σ̃n|. Since ρ̃n is an (L,C)–quasigeodesic, it follows that dS̃
(
s̃0, hn(s̃0)

)
� n2 + wnγ .

Furthermore, we have d
(
x̃0, hn(x̃0)

)
� n by Lemma 1.5.4. Therefore, n2 + wnγ � ∆G

H

by Corollary 1.2.10. It follows that ∆G
H is at least quadratic. If the horizontal surface is

not virtually embedded, then we may choose the geodesic loop γ in S such that wγ > 1 by

Theorem 1.4.11. In this case wγ is an exponential function, and wnγ � ∆G
H .
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1.6 Upper Bound of Distortion

In this section, we will find the upper bound of the distortion of horizontal surface. The

main theorem in this section is the following.

Theorem 1.6.1. Let g : (S, s0) # (N, x0) be a horizontal surface in a graph manifold N .

Let G = π1(N, x0) and H = g∗
(
π1(S, s0)

)
. Then the distortion ∆G

H is at most exponential.

Furthermore, if the horizontal surface g is virtually embedded then ∆G
H is at most quadratic.

Definition 1.6.2. Lift the JSJ decomposition of the simple graph manifold N to the uni-

versal cover Ñ , and let TN be the tree dual to this decomposition of Ñ . Lift the collection

Tg to the universal cover S̃. The tree dual to this decomposition of S̃ will be denoted by TS.

The map g̃ induces a map ζ : TS → TN .

The following lemma plays an important role in the proof of Theorem 1.6.1.

Lemma 1.6.3. Let F be a connected compact surface with non-empty boundary and χ(F ) <

0. Let M = F × S1. Let g : (B, b) # (M,x) be a horizontal surface. Then each fiber in M̃

intersects with g̃(B̃) exactly at one point.

Proof. According to Lemma 2.1 in [RW98], there exists a finite covering map p : B × S1 →M

and an embedding i : B → B×S1 given by i(x) = (x, 1) such that g = p◦i. Let ĩ : B̃ → B̃×R

be the lift of i such that ĩ(b̃) = (b̃, 0). Let φ : B̃ → B and Ψ: F̃ → F be the universal

covering maps. Let π : R → S1 be the usual covering space. Since B̃ × R and F̃ × R both

universal cover M , there exists a homeomorphism ω :
(
B̃ × R, (b̃, 0)

)
→
(
F̃ × R, g̃(b̃)

)
such

that (Ψ× π) ◦ ω = p ◦ (φ× π). By the unique lifting property, we have ω ◦ ĩ = g̃. It follows

that g̃(B̃) = ω
(
B̃ × {0}

)
. Since ω maps each fiber in B̃ × R to a fiber in F̃ × R. It follows

that each fiber in F̃ × R intersects ω
(
B̃ × {0}

)
exactly at one point.

Proposition 1.6.4. The map ζ is bijective.

Proof. A simplicial map between trees is bijective if is locally bijective. Thus it suffices to

show that the map ζ is locally injective and locally surjective (see [Sta83] for details).

27



Suppose by way of contradiction that ζ is not locally injective. Then there exist three

distinct blocks B̃1, B̃2 and B̃3 in S̃ such that B̃1 ∩ B̃2 6= ∅ and B̃2 ∩ B̃3 6= ∅ such that the

images g̃(B̃1) and g̃(B̃3) lie in the same block M̃1 of M̃ . Let M̃2 denote the block containing

the image g̃(B̃2). We denote `1 = B̃1 ∩ B̃2 and `3 = B̃2 ∩ B̃3. We have g̃(`1) and g̃(`3)

are subsets of the JSJ plane T̃ = M̃1 ∩ M̃2. Since the lines `1 and `3 are disjoint and the

map g̃ is an embedding, it follows that g̃(`1) and g̃(`3) are disjoint lines in the plane T̃ . By

Remark 1.4.17, any fiber in the plane T̃ intersects g̃(`1) and g̃(`3) at distinct points. This

contradicts with Lemma 1.6.3 because g̃(`1) and g̃(`3) are subsets of g̃(B̃2). Therefore, ζ is

locally injective.

By Lemma 1.6.3, the block g̃(B̃) must intersect every fiber of the Seifert component M̃

containing it. In particular, g̃(B̃) intersects every JSJ plane adjacent to M̃ . Therefore the

map ζ is locally surjective.

The following corollary is a combination of Lemma 1.6.3 and Proposition 1.6.4.

Corollary 1.6.5. Each fiber of Ñ intersects with g̃(S̃) in one point.

Remark 1.6.6. Let G and H be finitely generated groups with generating sets A and B

respectively. Let φ : G → H be a homomorphism. Then there exists a positive number L

such that
∣∣φ(g)

∣∣
B ≤ L|g|A for all g in G. Indeed, suppose that A = {g1, g2, . . . , gn} we define

L = max
{
|φ(gi)|B

∣∣ i = 1, 2, . . . , n
}
. Since φ is a homomorphism, it is not hard to see that∣∣φ(g)

∣∣
B ≤ L|g|A for all g ∈ G.

The following proposition shows that the distortion of a horizontal surface in a trivial

Seifert manifold is linear.

Proposition 1.6.7. Let F be a connected compact surface with non-empty boundary and

χ(F ) < 0. Let g : (B, b) # (M,x) be a horizontal surface where M = F × S1. Let H =

g∗
(
π1(B, b)

)
and G = π1(M,x). Then H ↪→ G is a quasi-isometric embedding.

Proof. We first choose generating sets for π1(B), π1(F ) and π1(S1). The generating sets of

π1(F ) and π1(S1) induce a generating set on π1(M). Let g1 : B → F and g2 : B → S1 be
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the maps such that g = (g1, g2). We have g1 : B → F is a finite covering map because g is a

horizontal surface in M . It follows that g1∗
(
π1(B)

)
is a finite index subgroup of π1(F ). As

a result, g1∗ is an (L′, 0)–quasi-isometry for some constant L′. Since g∗ = (g1∗, g2∗) we have∣∣g∗(h)
∣∣ ≥ ∣∣g1∗(h)

∣∣ ≥ |h|/L′ for all h ∈ π1(B). Applying Remark 1.6.6 to the homomorphism

g∗, the constant L′ can be enlarged so that we can show that g∗ is an (L′, 0)–quasi–isometric

embedding.

For the rest of this section, we fix g : (S, s0) # (N, x0) a horizontal surface in a simple

graph manifold N , the metric d which given by Remark 1.4.13, and the hyperbolic metric dS

on S which described in Section 1.5. By Remark 1.4.16, we also assume that for each curve c

in Tg then g(c) is a straight in the JSJ torus T where T is the JSJ torus such that g(c) ⊂ T .

We define a metric dg̃(S̃) on g̃(S̃) as the following: for any u = g̃(x) and v = g̃(y), we define

dg̃(S̃)(u, v) = dS̃(x, y). The following corollary follows by combining Proposition 1.6.7 with

several earlier results, using the fact that S has only finitely many blocks, and N has only

finitely many Seifert components.

Corollary 1.6.8. There exist numbers L and C such that the following holds: For each

block B̃ in S̃, let M̃ = F̃ ×R be the Seifert component of Ñ such that g̃(B̃) ⊂ M̃ . The map

g̃|B̃ : B̃ → M̃ = F̃ ×R can be expressed as a pair of maps g̃1 : B̃ → F̃ and g̃2 : B̃ → R. Then

g̃1 and g̃|B̃ are (L,C)–quasi-isometric embeddings, and

∣∣g̃2(u)− g̃2(v)
∣∣ ≤ LdM

(
g̃1(u), g̃1(v)

)
+ C

for all u, v ∈ B̃.

Proof. The map g|B : B → F × S1 can be written as (g1, g2). Since the map g1 : B → F is

a finite covering map, the lift g̃1 is a quasi–isometry. It follows from Proposition 1.6.7 that

g̃|B̃ is a quasi–isometric embedding. The facts g̃1 and g̃|B̃ are quasi–isometrically embedded

imply the final claim.
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Now, we describe informally the strategy of the proof of Theorem 1.6.1 in the case N is

a simple graph manifold. For each n ∈ N, let u ∈ g̃(S̃) such that d(x̃0, u) ≤ n. We would

like to find an upper bound (either quadratic or exponential as appropriate) for dS̃(x̃0, u) in

terms of n. We first show the existence of a path ξ in Ñ connecting x̃0 to u and passing

through k Seifert components M̃0, . . . , M̃k−1 such that ξ intersects the plane T̃i = M̃i−1 ∩ M̃i

at exactly one point, denoted by yi. We will show that k is bounded above by a linear

function of n. Therefore it suffices to find an upper bound for dS̃(x̃0, u) in terms of k. Let di

be the given product metric on M̃i. By Corollary 1.6.5 the fiber of M̃i−1 passing through yi

intersects g̃(S̃) in a unique point which is denoted by xi. Similarly, the fiber of M̃i passing

through yi intersects g̃(S̃) in one point which is denoted by zi.

On the one hand, proving that the distance in g̃(S̃) between the endpoints of ξ is dom-

inated by the sum
∑k−1

i=1

(
di−1(yi, xi) + di(yi, zi)

)
is easy. On the other hand, finding a

quadratic or exponential upper bound for this sum as a function of k requires more work.

Our strategy is to analyze the growth of the sequence of numbers

d0(y1, x1), d1(y1, z1), d1(y2, x2), . . . ,

di−2(yi−1, xi−1), di−1(yi−1, zi−1), di−1(yi, xi), . . . ,

dk−2(yk−1, xk−1), dk−1(yk−1, zk−1)

A relation between di−1(yi−1, zi−1) and di−1(yi, xi) in the Seifert component M̃i−1 will be

described in Lemma 1.6.9. The ratio of di−1(yi−1, zi−1) to di−2(yi−1, xi−1) in the JSJ plane

T̃i−1 will be described in Lemma 1.6.10.

Lemma 1.6.9 (Crossing a Seifert component). There exists a positive constant L′ such that

the following holds: For each block B̃ in S̃, let M̃ = F̃ × R be the Seifert component such

that g̃(B̃) ⊂ M̃ . Let dM be the given product metric on M̃ , and let T̃ and T̃ ′ be two disjoint

JSJ planes in the Seifert component M̃ . For any two points y ∈ T̃ and y′ ∈ T̃ ′, let ` ⊂ T̃

and `′ ⊂ T̃ ′ be the lines that project to the fiber S1 in M such that y ∈ ` and y′ ∈ `′. Let x
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(resp. x′) be the unique intersection point of ` (resp. `′) with g̃(B̃)∩M̃ given by Lemma 1.6.3.

Then

dM(y′, x′) ≤ dM(y, x) + L′ dM(y, y′)

Proof. Let ρ and K be the constants given by Remark 1.4.13 and Remark 1.4.14 respectively,

and let D = ρ/K. Let L and C be the constants given by Corollary 1.6.8. Let L′ =

L+ 2 + C/D.

Let a and b be the projection points of y and y′ to F̃ respectively. We write g̃|B̃ = (g̃1, g̃2)

where g̃1 : B̃ → F̃ and g̃2 : B̃ → R. Since g̃|B̃ is an embedding map and x, x′ ∈ g̃(B̃), there

exist a′, b′ ∈ B̃ such that g̃(a′) = x and g̃(b′) = x′. It follows that g̃1(a′) = a and g̃1(b′) = b.

By Corollary 1.6.8 we have

∣∣g̃2(a′)− g̃2(b′)
∣∣ ≤ LdM

(
g̃1(a′), g̃1(b′)

)
+ C = LdM(a, b) + C.

Since ρ ≤ d(a, b) ≤ K dM(a, b), it follows that D ≤ dM(a, b). Therefore

∣∣g̃2(a′)− g̃2(b′)
∣∣ ≤ (L+ C/D)dM(a, b) ≤ (L+ C/D)dM(y, y′).

With respect to the orientation of the factor R of M̃ , let ∆(y, a) and ∆(y′, b) be the

displacements of pairs of points (y, a) and (y′, b) respectively. We would like to show that∣∣∆(y, a)−∆(y′, b)
∣∣ ≤ 2 dM(y, y′). Indeed, let s and t be the real numbers such that y = (a, s)

and y′ = (b, t). We note that ∆(y, a) = −s if s ≥ 0 and ∆(y, a) = s if s ≤ 0 as well as

∆(y′, b) = −t if t ≥ 0 and ∆(y′, b) = t if t ≤ 0. Since dM(a, b) ≤ dM(y, y′), it follows that∣∣∆(y, a)−∆(y′, b)
∣∣ ≤ 2dM(y, y′). Moreover, we have that dM(y, x) =

∣∣g̃2(a′) + ∆(y, a)
∣∣ and

dM(y′, x′) =
∣∣g̃2(b′) + ∆(y′, b)

∣∣. Therefore the previous inequalities imply

dM(y′, x′)− dM(y, x) ≤
∣∣g̃2(a′)− g̃2(b′)

∣∣+
∣∣∆(y, a)−∆(y′, b)

∣∣
≤ (L+ 2 + C/D)dM(y, y′) = L′ dM(y, y′).
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Lemma 1.6.10 (Crossing a JSJ plane). Let M̃ and M̃ ′ be the two adjacent Seifert com-

ponents. Let dM and dM ′ be the given product metrics on M̃ and M̃ ′ respectively. Let

T̃ = M̃ ∩M̃ ′, and let α ⊂ g̃(S̃)∩ T̃ be the line such that α universally covers a curve g(c) for

some c in Tg. We moreover assume that α is a straight line in (T̃ , dM). For any two points

x and z in the line α, let
←−
` ⊂ (T̃ , dM) and

−→
` ⊂ (T̃ , dM ′) be the Euclidean geodesics such

that x ∈
←−
` and z ∈

−→
` and they project to fibers

←−
f ⊂

←−
T and

−→
f ⊂

−→
T respectively. Let y be

the unique intersection point of
←−
` and

−→
` . Let a and b be the integers such that

[
g(c)

]
= a[
←−
f ] + b[

−→
f ] in H1(T ;Z).

where T is the JSJ torus obtained from gluing
←−
T to

−→
T . Then dM(y, x) =

∣∣a/b∣∣dM ′(y, z)
Proof. Let κ be the positive constant such that length of the fiber

−→
f with respect to the

metric dM equals to 1/κ. Let c̃ be a path lift of c such that g̃(c̃) ⊂ α. Let x′ and z′ be

the initial point and the terminal point of g̃(c̃) respectively. Let
←−
`′ and

−→
`′ be the Euclidean

geodesics in (T̃ , dM) and (T̃ , dM ′) respectively such that x′ ∈
←−
`′ and z′ ∈

−→
`′ and both lines

←−
`′ and

−→
`′ project to fibers in

←−
T and

−→
T respectively. Let y′ be the unique intersection

point of
←−
`′ and

−→
`′ . It was shown in the proof of Lemma 1.5.4 that dM(y′, x′) = |a| and

dM ′(y
′, z′) = |b|. By the definiton of κ, it follows that dM ′(y′, z′) = κ dM(y′, z′).

In the Euclidean plane (T̃ , dM), consider the similar triangles ∆(x, y, z) and ∆(x′, y′, z′).

Since dM(y, x)
/
dM(y, z) = dM(y′, x′)

/
dM(y′, z′) = κ

∣∣a/b∣∣, it follows that
dM(y, x) =

∣∣a/b∣∣κ dM(y, z) =
∣∣a/b∣∣ dM ′(y, z)

.

Proof of Theorem 1.6.1. We may assume that N is a simple graph manifold for the same

reason as in the first paragraph of the proof of Theorem 1.5.1. Let K be the constant given

by Remark 1.4.13. Let L and C be the constants given by Corollary 1.6.8. Moreover, the
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constant L can be enlarged so that L ≥ K and L is greater than the constant L′ given by

Lemma 1.6.9. Moreover, we assume that the base point s0 belongs to a curve in the collection

Tg.

For any h ∈ π1(S, s0) such that d
(
x̃0, h(x̃0)

)
≤ n. We will show that dS̃

(
s̃0, h(s̃0)

)
is

bounded above by either a quadratic or exponential function in term of n. The theorem is

confirmed by an application of Corollary 1.2.10. We consider the following cases:

Case 1: The points s̃0 and h(s̃0) belong to the same block B̃. In this degenerate case,

we will show that dS̃
(
s̃0, h(s̃0)

)
� n. Indeed, let M̃ be the Seifert component such that

g̃(B̃) ⊂ M̃ . Let dM̃ be the given product metric on M̃ . Since g̃|B̃ is an (L,C)–quasi–

isometric embedding by Corollary 1.6.8, it follows that

dg̃(B̃)

(
x̃0, h(x̃0)

)
≤ LdM̃

(
x̃0, h(x̃0)

)
+ C ≤ L2d

(
x̃0, h(x̃0)

)
+ C ≤ L2n+ C.

Therefore,

dS̃(s̃0, h(s̃0)) = dg̃(S̃)

(
x̃0, h(x̃0)

)
≤ dg̃(B̃)

(
x̃0, h(x̃0)

)
≤ L2n+ C.

Case 2: The points s̃0 and h(s̃0) belong to distinct blocks of S̃. Let L be the family of

lines in S̃ that are lifts of curves of Tg. Since we assume that s0 belongs to a curve in the

collection Tg, thus there are distinct lines α and α′ in L such that s̃0 ∈ α and h(s̃0) ∈ α′.

Let e and e′ be the non-oriented edges in the tree TS corresponding to the lines α and α′

respectively. Consider the non backtracking path joining e to e′ in the tree TS, with ordered

vertices v0, v1, . . . , vk−1 where v1 is not a vertex on the edge e and vk−2 is not a vertex

on the edge e′. Consider the corresponding vertices ζ(v0), . . . , ζ(vk−1) of the tree TN (see

Definition 1.6.2). We denote the Seifert components corresponding to the vertices ζ(vi) by

M̃i with i = 0, 1, · · · , k−1. We note that the Seifert components M̃i are distinct because ζ is

injective by Proposition 1.6.4. Let di be the given product metric on the Seifert component

M̃i.

For convenience, relabel x̃0 by y0, and h(x̃0) by yk. Let γ be a geodesic in (Ñ , d) joining
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y0 to yk. Replace the path γ by a new path ξ, described as follows. For i = 1, 2, . . . , k − 1,

let T̃i = M̃i−1 ∩ M̃i, and let ti = sup
{
t ∈ [0, 1]

∣∣ γ(t) ∈ T̃i
}
. Let yi = γ(ti). Let ξi be the

geodesic segment in (M̃i, di) joining yi to yi+1. Let ξ be the concatenation ξ0ξ1 · · · ξk−1. Since

di−1(yi−1, yi) ≤ Ld(yi−1, yi), it follows that |ξ| ≤ L |γ| ≤ Ln. Here | · | denotes the length of

a path with respect to the metric d.

For each i, let
←−
`i and

−→
`i be the Euclidean geodesics in (T̃i, di−1) and (T̃i, di) passing

through yi such that they project to fibers
←−
fi ⊂

←−
Ti and

−→
fi ⊂

−→
Ti respectively . Let αi =

g̃(S̃) ∩ T̃i. By Corollary 1.6.5, the lines
←−
`i and

−→
`i intersect αi at points, denoted by xi and

zi respectively. Let ρ be the minimum distance between two distinct JSJ planes in Ñ (see

Remark 1.4.14).

Claim 1: There exists a linear function J not depending on the choices of n, h, or ξ

such that

dg̃(S̃)

(
y0, yk

)
≤ J

(k−1∑
i=1

di(yi, zi) + n
)
.

Let z0 = y0 and zk = yk. We first show that for each i = 0, . . . , k − 1 then

di(zi, zi+1) ≤ L2
(
di(zi, yi) + |ξi|+ di+1(yi+1, zi+1)

)
Indeed,

di(zi, zi+1) ≤ di(zi, yi) + di(yi, yi+1) + di(yi+1, zi+1)

≤ di(zi, yi) + L|ξi|+ di(yi+1, zi+1)

≤ di(zi, yi) + L|ξi|+ Ld(yi+1, zi+1)

≤ di(zi, yi) + L|ξi|+ L2di+1(yi+1, zi+1) because L ≥ 1

≤ L2
(
di(zi, yi) + |ξi|+ di+1(yi+1, zi+1)

)
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Using Corollary 1.6.8 we obtain

dg̃(S̃)

(
y0, yk

)
≤

k−1∑
i=0

dg̃(S̃)(zi, zi+1) ≤
k−1∑
i=0

Ldi(zi, zi+1) + kC

≤ 2L3

k∑
i=0

di(zi, yi) + L3|ξ|+ kC

= 2L3

k−1∑
i=1

di(zi, yi) + L3|ξ|+ kC

Since d
(
x̃0, h(x̃0)

)
≤ n, it follows that kρ ≤ n, and therefore k ≤ n/ρ. We note that |ξ| ≤ Ln.

Letting A = max{2L3, L4 + C/ρ}, and J(x) = Ax, Claim 1 is confirmed.

In order to complete the proof, it suffices to find an appropriate upper bound for the sum

appearing in the conclusion of Claim 1. In the general case, we need an exponential upper

bound, but in the special case of trivial dilation we require a quadratic upper bound.

By Lemma 1.6.9 we immediately see

di−1

(
yi, xi

)
≤ di−1

(
yi−1, zi−1

)
+ L2

∣∣ξi−1

∣∣. (∗)

Observe that αi universally covers a closed curve g(ci) ∈ Ti for some ci ∈ Tg and
[
g(ci)

]
=

ai [
←−
fi ] + bi [

−→
fi ] in H1(Ti;Z) for some ai, bi ∈ Z. By Lemma 1.6.10, we conclude that

di(yi, zi) =
∣∣bi/ai∣∣ di−1(yi, xi). (†)

Claim 2: Suppose g is not virtually embedded. There exists a function F not depending

on the choices of n, h, or ξ such that

k−1∑
j=1

dj(yj, zj) ≤ F (n)

and F (n) ∼ 2n.

Since g is not virtually embedded, the governor ε = ε(g), defined in Remark 1.4.14, must

35



be strictly greater than 1. We will show by induction on j = 0, . . . k − 1 that

dj(yj, zj) ≤ L3n

j∑
i=1

εi

The base case of j = 0 is trivial since y0 = z0, so both sides of the inequality equal zero. For

the inductive step, we use (∗), (†), and the facts |ξj−1| ≤ Ln and |bj/aj| ≤ ε to see that

dj
(
yj, zj

)
=
∣∣bj/aj∣∣ dj−1(yj, xj)

≤ εdj−1(yj, xj)

≤ ε
(
dj−1(yj−1, zj−1) + L2|ξj−1|

)
≤ εdj−1(yj−1, zj−1) + εL3n

≤ ε(ε+ ε2 + · · ·+ εj−1)L3n+ εL3n

≤ (ε+ ε2 + · · ·+ εj)L3n.

Summing this geometric series gives

dj(yj, zj) ≤
L3n

ε− 1
εj+1.

Summing a second time over j, we obtain

k−1∑
j=1

dj(yj, zj) ≤
L3n

ε− 1
(ε2 + · · ·+ εk) ≤ εL3

(ε− 1)2
nεk ≤ εL3

(ε− 1)2
nεn/ρ

which is equivalent to an exponential function of n, establishing Claim 2. (Recall that for

any polynomial p(n), we have p(n)2n ≤ 2n2n = 22n for sufficiently large n.)

Claim 3: Assume that g is virtually embedded. There exists a quadratic function Q not
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depending on the choices of n, h, or ξ such that

k−1∑
j=1

dj(yj, zj) ≤ Q(n).

For any 1 ≤ i ≤ j, let

Θi,j =

∣∣∣∣ biai
∣∣∣∣ · ∣∣∣∣ bi+1

ai+1

∣∣∣∣ · · · ∣∣∣∣ bjaj
∣∣∣∣

Let Λ be the constant given by Proposition 1.4.15. In order to prove Claim 3, we mimic

the argument of Claim 2—using Θi,j in place of the terms of the form ε`. This change

gives tighter results than those obtained in Claim 2, since Θi,j is bounded above by the

constant Λ. This upper bound applies only in the virtually embedded case, as explained in

Proposition 1.4.15. The key recursive property satisfied by Θi,j is the following:

Θi,j−1

∣∣∣∣ bjaj
∣∣∣∣ = Θi,j.

We will show by induction on j = 0, . . . , k − 1 that

dj(yj, zj) ≤ L2

j∑
i=1

|ξi−1|Θi,j

As before, the base case j = 0 is trivial. For the inductive step, we use (†) and (∗) to see
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that

dj(yj, zj) = dj−1(yj, xj)
∣∣bj/aj∣∣

≤
(
dj−1(yj−1, zj−1) + L2|ξj−1|

) ∣∣bj/aj∣∣
= dj−1(yj−1, zj−1)

∣∣bj/aj∣∣+ L2 |ξj−1|
∣∣bj/aj∣∣

≤
(
L2

j−1∑
i=1

|ξi−1|Θi,j−1

) ∣∣bj/aj∣∣+ L2 |ξj−1|
∣∣bj/aj∣∣

= L2

j−1∑
i=1

|ξi−1|Θi,j + L2|ξj−1|Θj,j

= L2

j∑
i=1

|ξi−1|Θi,j

Since Θi,j is bounded above by Λ, and
∑j

i=1|ξi−1| ≤ |ξ| ≤ Ln, we have

dj(yj, zj) ≤ L2

j∑
i=1

|ξi−1|Θi,j ≤ ΛL3n.

Summing over j, we obtain

k−1∑
j=1

dj(yj, zj) ≤ (k − 1)ΛL3n ≤
(
n

ρ
− 1

)
ΛL3n

which is a quadratic function of n, establishing Claim 3.

If g is not virtually embedded, we combine Claim 1 and Claim 2 to get an exponential

upper bound for dg̃(S̃)(y0, yk). In the virtually embedded case, we combine Claim 1 and

Claim 3 to get a quadratic upper bound. The theorem now follows from Corollary 1.2.10.

1.7 Fiber surfaces have quadratic distortion

In this section we show in detail how results of Gersten and Kapovich–Leeb [Ger94,KL98] can

be combined with Thurston’s geometric description of 3–manifolds that fiber over the circle
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to prove Theorem 1.1.4. This section is an elaboration of ideas that are implicitly used by

Kapovich–Leeb in [KL98] but not stated explicitly there. As explained in the introduction,

Theorem 1.1.4 is the main step in an alternate proof of the virtually embedded case of

Theorem 1.1.2.

The following theorem relates distortion of normal subgroups to the notion of diver-

gence of groups. Roughly speaking, divergence is a geometric invariant that measures the

circumference of a ball of radius n as a function of n. (See [Ger94] for a precise definition.)

Theorem 1.7.1 ( [Ger94], Thm. 4.1). If G = HoφZ, where G and H are finitely generated,

then the divergence of G is dominated by the distortion ∆G
H .

Let H be generated by a finite set T . An automorphism φ ∈ Aut(H) has polynomial

growth of degree at most d if there exist constants α, β such that

∣∣φi(t)∣∣T ≤ αnd + β

for all t ∈ T and all i with |i| ≤ n.

Gersten claims the following result in the case that H is a free group. However his proof

uses only that H is finitely generated, so we get the following result using the same proof.

Theorem 1.7.2 ( [Ger94], Prop. 4.2). If G = HoφZ, where G and H are finitely generated

and φ ∈ Aut(H) has polynomial growth of degree at most d, then ∆G
H � nd+1.

Proof of Theorem 1.1.4. Let N be a graph manifold that fibers over S1 with surface fiber

S. Then N is the mapping torus of a homeomorphism f ∈ Aut(S). In particular, if we let

G = π1(N) and H = π1(S), then G = H oφ Z, where φ ∈ Aut(H) is an automorphism

induced by f . Passing to finite covers, we may assume without loss of generality that N and

S are orientable and that the map f is orientation preserving.

Kapovich–Leeb show that the divergence of the fundamental group of any graph manifold

is at least quadratic [KL98, §3]. Therefore by Theorem 1.7.1 the distortion of H in G is also

at least quadratic.
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By Theorem 1.7.2, in order to establish a quadratic upper bound for ∆G
H , it suffices to

show that φ has linear growth. We will first apply the Nielsen–Thurston classification of

surface homeomorphisms to the map f (see, for example, Corollary 13.2 of [FM12]). By the

Nielsen–Thurston theorem, there exists a multicurve {c1, . . . , ck} with the following proper-

ties. The curves ci have disjoint closed annular neighborhoods S1, . . . , Sk. Let Sk+1, . . . , Sk+`

be the closures of the connected components of S −
⋃k
i=1 Si. Then there is a map g isotopic

to f and a positive number m such that gm leaves each subsurface Si invariant. Furthermore

gm is a product of homeomorphisms g1 · · · gk+` such that each gi is supported on Si. For

i = 1, . . . , k, the map gi (supported on the annulus Si) is a power of a Dehn twist about

ci. For i = k + 1, . . . , k + `, each gi is either the identity or a map that restricts to a

pseudo-Anosov map of Si.

Consider the mapping torus N̂ for the homeomorphism gm of S, which finitely covers N .

Apply Thurston’s geometric classification of mapping tori to N̂ to conclude that the family

of tori ci × S1 in the mapping torus N̂ is equal to the family of JSJ tori of N̂ . It follows

that for each i = k + 1, . . . , k + ` the map gi is equal to the identity on S. Indeed if any gi

were pseudo-Anosov, then the corresponding JSJ component of N̂ would be atoroidal and

hyperbolic, which is impossible in a graph manifold.

Therefore gm is a product of powers of Dehn twists about disjoint curves. In particular

the automorphism φm has linear growth. Clearly φ itself must also have linear growth.

Therefore the distortion of H in G is at most quadratic as desired.
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Chapter 2

Distortion of surfaces in 3-manifolds

2.1 Introduction

In geometric group theory, the distortion of a finitely generated subgroup H in a finitely

generated subgroup G is a classical notion. Let S and A be finite generating sets of G and

H respectively. The subgroup H itself admits a word length metric, but it also inherits an

induced metric from the group G. The distortion of H in G compares these metrics on H. In

other words, we would like to know how the inclusion H ↪→ G preserves geometric properties

of H. More precisely, the distortion of H in G is the function

∆G
H(n) = max

{
|h|A

∣∣ h ∈ H and |h|S ≤ n
}

Up to a natural equivalence, the function ∆G
H does not depend on the choice of finite gen-

erating sets S and A. This chapter is devoted to understanding the large scale geometry

of immersed surfaces in 3–manifolds by using distortion of the surface group. In fact, the

purpose is to address the following problem:

Problem 2.1.1. Let S # N be a properly immersed π1–injective surface in a 3–manifold

N . What is the distortion of π1(S) in π1(N)? How does it relate to algebraic properties of

π1(S) ≤ π1(N), topological properties of the immersion and geometries of components in
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the JSJ decomposition?

Dani Wise observed that Problem 2.1.1 is important in the study of cubulations of 3–

manifold groups. The goal of cubulation is to find a suitable collection of immersed surfaces

and then study the action of the fundamental group of the 3–manifold on the CAT(0) cube

complex dual to the collection of immersed surfaces. Whenever the fundamental group acts

properly and cocompactly, surfaces must be undistorted.

A compact, orientable, irreducible 3–manifold N with empty or toroidal boundary is

geometric if its interior admits a geometric structure in the sense of Thurston. The answer

to Problem 2.1.1 is relatively well-understood in the geometric case. By Hass [Has87], if N

is a Seifert fibered space then up to homotopy, the surface S is either vertical (i.e, union

of fibers) or horizontal (i.e, tranverses to fibers). In either case, π1(S) is undistorted in

π1(N). If N is a hyperbolic 3–manifold, then by Bonahon-Thurston ( [Bon86], [Thu79]) the

distortion is linear when the surface is geometrically finite and the distortion is exponential

when the surface is geometrically infinite.

By Geometrization Theorem, a non-geometric 3–manifold can be cut into hyperbolic and

Seifert fibered “blocks” along a JSJ decomposition. It is called a graph manifold if all the

blocks are Seifert fibered, otherwise it is a mixed manifold.

An immersed surface S in a non-geometric manifold N is called properly immersed if

the preimage of ∂N under the immersion is ∂S. Roughly speaking, if the surface S is

properly immersed π1–injective in the non-geometric manifold N then up to homotopy, the

JSJ decomposition in the manifold into blocks induces a decomposition on the surface into

pieces. Each piece is carried in either a hyperbolic or Seifert fibered block. A piece in a

Seifert fibered block is either vertical or horizontal, and a piece in a hyperbolic block is

either geometrically finite or geometrically infinite. Yi Liu [Liu17] and Hongbin Sun [Sun]

show that all information about virtual embedding can be obtained by examining the almost

fiber part Φ(S), that is, the union of horizontal and geometrically infinite pieces. We remark

that virtual embedding is equivalent to subgroup separability [Sco78], [PW14b] (a subgroup
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H ≤ G is called separable if for any g ∈ G−H there exists a finite index subgroup K ≤ G

such that H ≤ K and g /∈ K).

The following theorem is the main theorem in this paper which give a complete answer

to Problem 2.1.1. The theorem states for “clean surfaces” which we discuss below, but we

emphasize here that up to homotopy every properly immersed surface is also a clean surface.

Theorem 2.1.2 (Distortion of surfaces in non-geometric 3–manifolds). Let g : S # N be

a clean surface in a non-geometric 3–manifold N . Suppose that all Seifert fibered blocks of

N are non-elementary. Let ∆ be the distortion of π1(S) in π1(N). There are four mutually

exclusive cases:

1. If there is a component S ′ of the almost fiber Φ(S) such that S ′ contains a geometrically

infinite piece and π1(S ′) is non-separable in π1(N) then ∆ is double exponential.

2. Suppose that φ(S) has no component satisfying (1). If there is a component S ′ of

the almost fiber Φ(S) such that S ′ contains a geometrically infinite piece then ∆ is

exponential.

3. Suppose that φ(S) has no component satisfying (1) and (2) (i.e, no component of φ(S)

contains a geometrically infinite piece). If there is a component of the almost fiber

Φ(S) containing two adjacent pieces then ∆ is exponential if π1(S) is non-separable in

π1(N) and ∆ is quadratic if π1(S) is separable in π1(N).

4. In all other cases, ∆ is linear.

We note that Theorem 2.1.2 generalizes the main theorem of Hruska-Nguyen in Chapter 1.

In the setting of a properly immersed surface in a graph manifold, Hruska and the author

(Chapter 1) show that when the surface is an almost fiber, i.e, horizontal, its distortion

is always nontrivial. The distortion is quadratic if the fundamental group of the surface

is separable in the fundamental group of the manifold and the distortion is exponential

otherwise.
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For the definition of nonelementary Seifert fibered space, we refer the reader to Sec-

tion 2.3. We note that the properly immersed condition of a surface is not general enough

for the purpose of this paper since the almost fiber part Φ(S) is no longer a properly im-

mersed surface in the 3–manifold (in fact, it is typical that a boundary circle of the almost

fiber part is mapped into a JSJ torus of N). We thus introduce the notion of clean surfaces

which generalizes the notion of properly immersed surfaces by allowing some boundary cir-

cles to be mapped into JSJ tori (see Definition 2.3.8). Clean surfaces are general enough for

the purpose of computing distortion in this paper (as the almost fiber part of a clean surface

is again a clean surface and a properly immersed π1–injective surface is also a clean surface).

We prove Theorem 2.1.2 by using the following strategy. We prove that the distortion of

a clean surface S in a non-geometric 3–manifold N depends only on the almost fiber part

Φ(S) (see Theorem 2.1.3) and then we compute the distortion of components of the almost

fiber part Φ(S) in the manifold N (see Theorem 2.1.5 and Theorem 2.1.4).

Theorem 2.1.3. Let g : S # N be a clean surface in a non-geometric 3–manifold N . We

assume that every Seifert fibered block in N is nonelementary. For each component Si of

Φ(S), let δSi
be the distortion of π1(Si) in π1(N). Then the distortion of H = π1(S) in

G = π1(N) satisfies

f � ∆G
H � f

where

f(n) := max
{
δSi

(n)
∣∣ Si is a component of Φ(S)

}
and f is the superadditive closure of f .

For the definition of superadditive closure function, we refer the reader to Section 2.2.

We remark that a similar result was proved by Hruska for relatively hyperbolic groups (see

Theorem 1.4 in [Hru10]), but the conclusion here is stronger because in many cases π1(S)

and π1(N) don’t satisfy the hypothesis in Theorem 1.4 [Hru10].

In [RW98], Rubinstein-Wang introduce a combinatorial invariant called “spirality” and
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show that it is the obstruction to separability for horizontal surfaces in graph manifolds.

Recently, Liu [Liu17] generalizes the work of Rubinstein–Wang to closed surfaces in closed

non-geometric 3–manifolds and Sun [Sun] generalizes the work of Liu to arbitrary finitely

generated subgroups in arbitrary non-geometric 3–manifolds. In the setting of a clean almost

fiber surface in a graph manifold, the following theorem follows immediately from the work

of Hruska–Nguyen in Chapter 1 and the theorems of Liu [Liu17] and Sun [Sun].

Theorem 2.1.4. Let S # N be a clean almost fiber surface (i.e, Φ(S) = S) in a graph

manifold N . We assume that all Seifert fibered blocks of N is non-elementary. Let ∆ be the

distortion of π1(S) in π1(N). Then

1. ∆ is linear if each component of the almost fiber part contains only one horizontal

piece.

2. Otherwise, ∆ is quadratic if π1(S) is separable in π1(N), and exponential if π1(S) is

non-separable in π1(N).

To give a complete proof to Theorem 2.1.2, it remains to compute the distortion of a

clean almost fiber surface in a mixed manifold (see Theorem 2.1.5). This computation is one

of the main components of this paper. We note that a fibered 3–manifold can be expressed

as a mapping torus for a diffeomorphism of the fiber surface. The strategy in the proof

of Theorem 2.1.5 is inspired from Hruska-Nguyen (Chapter 1) and Woodhouse [Woo16].

However the techniques are different because unlike the setting of a Seifert block where

the diffeomorphism of the fiber surface is trivial and the distortion of the fiber surface in

the Seifert block is linear, the diffeomorphism of the fiber surface in a hyperbolic block is

pseudo-Anosov and the distortion of the fiber surface in the hyperbolic block is exponential.

In addition, the generalized definition of spirality by Liu and Sun in a mixed manifold is

more elaborate. We use the generalization of Liu and Sun to compute the distortion and

show that the distortion is determined by separability of the surface subgroup.
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Theorem 2.1.5. Let S # N be a clean almost fiber surface (i.e, Φ(S) = S) in a mixed

manifold N . We assume that all Seifert fibered blocks of N is non-elementary. Suppose that

S contains at least one geometrically infinite piece. Then the distortion of π1(S) in π1(N) is

exponential if π1(S) is separable in π1(N), and double exponential if π1(S) is non-separable

in π1(N).

As mentioned above, the strategy for constructing an action of π1(N) on a CAT(0) cube

complex is to find a suitable collection of immersed surfaces and then consider the CAT(0)

cube complex dual to this collection of surfaces. According to Hagen–Przytycki [HP15] and

Tidmore [Tid] the fundamental groups of chargeless graph manifolds and chargeless mixed

manifolds act cocompactly on CAT(0) cube complexes. The cubulations constructed by them

are each dual to a collection of immersed surfaces, none of which contains a geometrically

infinite piece or two adjacent horizontal pieces. It is clear from the corollary below that the

cocompact cubulations of Hagen–Przytycki and Tidmore are canonical. For the purpose of

obtaining a proper, cocompact cubulation, all surface subgroups must be of the type used

by Hagen–Przytycki and Tidmore.

Corollary 2.1.6. Let G be the fundamental group of a non-geometric 3–manifold. Let

{H1, H2, . . . , Hk} be a collection of codimension–1 subgroups of G. Let X be the corresponding

dual CAT(0) cube complex. If at least one Hi is the fundamental group of a surface containing

two adjacent horizontal pieces or a geometrically infinite piece, then the action of G on X is

not proper and cocompact.

2.1.1 Overview

In Section 2.2 we review some concepts in geometric group theory. Section 2.3 is a review

background about 3–manifolds and introduced the notion of clean surface. In Section 2.4,

we give the proof of Theorem 2.1.3. The proof of Theorem 2.1.5 is given in Section 2.5.

In Section 2.6, we discuss about Theorem 2.1.4 and Theorem 2.1.2 by combining previous

results.
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2.2 Preliminaries

In this section, we review some concepts in geometric group theory.

The following propositions is routine, and we leave the proof as an exercise for the reader.

Proposition 2.2.1. Let K ′, K and G′ be finitely generated subgroups of a finitely generated

group G such that K ′ ≤ G′ and K ′ ≤ K. Suppose that K ′ is undistorted in K and G′ is

undistorted in G Then ∆G′

K′ � ∆G
K.

Proposition 2.2.2. Let G, H, K be finitely generated groups with K ≤ H ≤ G.

1. If H is a finite index subgroup of G then ∆H
K ∼ ∆G

K.

2. If K is a finite index subgroup of H then ∆G
K ∼ ∆G

H .

Lemma 2.2.3 (Proposition 9.4 [Hru10]). Let G be a finitely generated group with a word

length metric d. Suppose H and K are subgroups of G. For each constant r there is a

constant r′ = r′(G, d,H,K) so that in the metric space (G, d) we have

Nr(H) ∩Nr(K) ⊂ Nr′(H ∩K)

Definition 2.2.4. A function f : N→ N is superadditive if

f(a+ b) ≥ f(a) + f(b) for all a, b ∈ N

The superadditive closure of a function f : N→ N is the function defined by the formula

f(n) = max
{
f(n1) + · · ·+ f(n`)

∣∣ ` ≥ 1 and n1 + · · ·+ n` = n
}

Remark 2.2.5. The following facts are easy to verify. We leave it as an exercise to the

reader.
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1. Suppose that fi ∼ gi with i = 1, . . . , `. Let f(n) = max
{
fi(n)

∣∣ i = 1, . . . , `
}

and

g(n) = max
{
gi(n)

∣∣ i = 1, . . . , `
}
. Then f ∼ g.

2. If f and g are superadditive and f ∼ g then f ∼ g.

2.3 Surfaces in non-geometric 3–manifolds

In this section, we review backgrounds of surfaces in 3-manifolds. Throughout this paper, a

3–manifold is alway assumed to be compact, connected, orientable, irreducible with empty

or toroidal boundary. A surface is always compact, connected and orientable and not a

2–sphere S2.

Definition 2.3.1. Let M be a compact, orientable, irreducible 3–manifold with empty or

toroidal boundary. The 3–manifoldM is geometric if its interior admits a geometric structure

in the sense of Thurston which are 3–sphere, Euclidean 3–space, hyperbolic 3-space, S2×R,

H2×R, S̃L(2,R), Nil and Sol. Otherwise,M is called non-geometric. By the Geometrization

Theorem, a non-geometric 3–manifold can be cut into hyperbolic and Seifert fibered “blocks”

along a JSJ decomposition. It is called a graph manifold if all the blocks are Seifert fibered,

otherwise it is a mixed manifold. A Seifert fibered space is called nonelementary if it is a

circle bundle over a hyperbolic 2–orbifold.

A non-geometric 3–manifold M always has a double cover in which all Seifert fibered

blocks are nonelementary. In this section, we will always assume that all Seifert fibered

blocks in a non-geometric 3–manifold are nonelementary.

Definition 2.3.2. Let M be a Seifert fibered space, and S # M is a properly immersed

π1–injective surface. The surface S is called horizontal if it intersects transversely to the

Seifert fibers, vertical if it is a union of the Seifert fibers.

The definition of geometrically finite surface below is one of many equivalent forms. We

refer the reader to [Bow93] for detail discussions.
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Definition 2.3.3. Let g : S #M be a properly immersed π1–injective surface in a hyperbolic

3–manifold M . The surface S is called geometrically finite if π1(S) is undistorted subgroup

of π1(M), geometrically infinite if S is not a geometrically finite surface.

Definition 2.3.4. A properly immersed π1–injective surface g : S #M is called virtual fiber

if after applying a homotopy relative to boundary, g can be lifted to some finite cover MS of

M that fibers over the circle such that g lifts to a fiber. In fact, MS is the mapping torus

MS =
S × [0, 1]

(x, 0) ∼ (φ(x), 1)

for some homeomorphism φ of S.

Remark 2.3.5. Horizontal surfaces in Seifert fibered spaces and geometrically infinite sur-

faces in hyperbolic manifolds are all virtual fiber. In particular, if g : S #M is a horizontal

surface in a nonelementary Seifert fibered space M then we may choose φ as the identity

map of S (see Lemma 2.1 [RW98]). By Subgroup Tameness Theorem (a combination of

Tameness Theorem [Ago], [CG06] and Canary’s Covering Theorem [Can96]), if g : S #M is

geometrically infinite surface in a hyperbolic manifoldM then we may choose φ as a pseudo-

Anosov homeomorphism of S stabilizing each component of ∂S, fixing periodic points on

∂S. In addition, the finite cover map MS →M takes S × {0} to the image g(S), and g lifts

to an embedding g′ : S ↪→ MS (up to homotopy) where g′(S) is the surface fiber S × {0} in

MS.

Definition 2.3.6. A properly immersed surface g : (B, ∂B) # (M,∂M) is called essential

if it is not homotopic (relative to ∂B) to a map B → ∂M and the induced homomorphism

g∗ : π1(B)→ π1(M) is injective. A loop in the surface S is an essential curve if it is neither

nullhomotopic or homotopic into the boundary of S.

Remark 2.3.7. The distortion of a horizontal surface subgroup in a Seifert fibered space

group is linear (see Chapter 1) and the distortion of a geometrically infinite surface subgroup

in a hyperbolic manifold group is exponential (by Subgroup Tameness Theorem).
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Definition 2.3.8 (Clean Surface). Let N be a non-geometric 3–manifold, and T the union of

JSJ tori. Let S be a compact, orientable, connected surface. Let g : S # N be an immersion

such that S and T intersects transversely. The immersion is called clean surface in N if the

following holds.

1. g(∂S) ⊂ T ∪ ∂N

2. g(S − ∂S) ∩ ∂N = ∅

3. S intersects the JSJ tori of N in a minimal finite collection Tg of disjoint essential

curves of S.

4. The complementary components of the union of curves in Tg are essential subsurfaces

(in the sense of Definition 2.3.6) of S, called pieces of S. Each piece of S is mapped into

either a hyperbolic block or Seifert fibered block of N . Each piece of S in a hyberbolic

block is either geometrically finite or geometrically infinite. Each piece of S in a Seifert

fibered block is either horizontal or vertical.

5. Let N ′ → N be the covering space corresponding to the subgroup π1(S) of π1(N). The

immersion g lifts to an embedding S → N ′.

Definition 2.3.9. The almost fiber part Φ(S) of S is the union of all the horizontal or geo-

metrically infinite pieces mapped into Seifert fibered or hyperbolic blocks of N respectively.

The surface S is called almost fiber if Φ(S) = S.

Remark 2.3.10. 1. Any properly immersed π1–injective surface g : S # N with S com-

pact, orientable, connected and not homeomorphic to S2 is homotopic to a clean sur-

face.

2. Each component of the almost fiber part of a clean surface is a clean almost fiber

surface.
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Rubinstein-Wang [RW98] introduces a combinatorial invariant to characterize the virtual

embedding of a horizontal surface S in graph manifold N (i.e, after applying a homotopy, the

immersion lifts to an embedding of S in some finite cover of N). In [Liu17], Liu generalizes

the invariant of Rubinstein-Wang, which he calls spirality (this concept has also been called

“dilation” in Chapter 1), to surfaces in closed 3–manifold N , and proves that spirality is the

obstruction to the surface being virtually embedded. Recently, Sun [Sun] generalizes Liu’s

work to separability of arbitrary finitely generated subgroup in non-geometric 3–manifolds.

There are two equivalent definitions of spirality given by [Liu17]. Liu first defines spirality

by partial dilations and a principal Q×–bundle over Φ(S). Liu then gives a combinatorial

formula (Formula 4.5 in Secttion 4.2 [Liu17]) and shows that spirality can be computed by

this formula. The definition of spirality below is from Section 4.2 in [Liu17] that also can be

seen in Section 3.3 [Sun].

Definition 2.3.11 (Spirality). Let g : S # N be a clean surface in a non-geometric 3–

manifold N . With respect to Tg, let Γ(Φ(Tg)) be the dual graph of Φ(S). For each vertex v

of Γ(Φ(Tg)), let Bv be the piece of S corresponding to the vertex v, and let Mv be the block

of N such that Bv is mapped into Mv. We choose a mapping torus

MBv =
Bv × [0, 1]

(x, 0) ∼ (φv(x), 1)

as in Remark 2.3.5. For each directed edge e in Γ(Φ(Tg)) with v as its initial vertex. Let

ce be the circle boundary of Bv corresponding to e. Let Te be the boundary torus of Mv

containing ce. Let T ′e be the boundary torus of MBv containing ce. We associate to ce a

nonzero integer he = [T ′e : Te] where [− : −] denotes the covering degree. Let −e denote e

with the orientation reversed. Let

ξe = he
/
h−e

There is a natural homomorphism w : H1(Φ(S);Z)→ Q× defined as follows. For any directed

1–cycle γ in Φ(S) dual to a cycle of directed edges e1, . . . , en in Γ(Φ(Tg)), the spirality of γ
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is the number

w(γ) =
n∏
i=1

ξei

We say the spirality of S is trivial if w is a trivial homomorphism. The governor of g with

respect to the chosen mapping torus MBv is the maximum of values ξe with e varying over

all directed edges in the graph Γ(Φ(Tg)).

Remark 2.3.12. 1. It is shown by Yi Liu in [Liu17] that the homomorphism w does not

depend on the choice of mapping torus MBv . Moreover, Yi Liu shows that if N is

a closed manifold, and S is a closed surface then π1(S) is separable in π1(N) if and

only if the spirality of S is trivial (see Theorem 1.1 [Liu17]). Recent work of Sun (see

Theorem 1.3 in [Sun]) allows us to say that fundamental group of a clean surface S in

a non-geometric 3–manifold N is separable if and only if the spirality of S is trivial.

2. When N is a graph manifold and S is horizontal, properly immersed then the notion

of spirality in Definition 2.3.11 was previously studied by Rubinstein-Wang [RW98].

The proof of the following proposition is essentially the same as Proposition 4.15 in

Chapter 1.

Proposition 2.3.13. For each γ ⊂ Φ(S) as in Definition 1.4.10, we define

Λγ = max
{ k∏
i=j

ξei
∣∣ 1 ≤ j ≤ k ≤ n

}
If the spirality of S is trivial, then there exists a positive constant Λ such that Λγ ≤ Λ for

all all directed 1–cycle γ in Φ(S).

Definition 2.3.14. Let F be a compact, orientable connected surface with non-empty

boundary and χ(F ) < 0. Let ϕ : F → F be a orientation preserving homeomorphism

fixing ∂F setwise. Let MF = F × [0, 1]
/

(x, 0) ∼ (ϕ(x), 1). Projection of F × [0, 1] onto the

second factor induces a map σ : MF → S1 which is a fibration with fiber F . The foliation
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of F × [0, 1] by intervals has image in MF a one-dimensional foliation which we denote by L

called the suspension flow on MF .

In the following, when we say ϕ fixes periodic points on ∂F , we mean all the periodic

points of ϕ on ∂F are fixed points of ϕ. We note that if ϕ is a pseudo-Anosov, then after

passing to a power ϕm of ϕ for some sufficiently large integerm, the map ϕm fixes all periodic

points of ϕ on ∂F .

Definition 2.3.15 (Degeneracy slope). If the map ϕ in Definition 2.3.14 fixes periodic points

on ∂F then on each boundary component ofMF , there exists a closed leaf (of the suspension

flow), and different closed leaves in the same boundary component are parallel to each other.

We will call any such leaf a degeneracy slope. Each boundary component c of F is mapped

into a boundary torus of MF , we fix a degeneracy slope on this torus, and denoted it by scF .

Let f : F × R → F × R be the homeomorphism given by f(x, t) =
(
ϕ(x), t + 1

)
. We

denote 〈f〉 be the infinite cyclic group generated by f and M̂F = F × R. We note that

the quotient space F × R
/
〈f〉 is the mapping torus MF . Let the triple

(
M̂F , θ

1, θ2
)
be the

pullback bundle of the fibration σ : MF → S1 by the infinite cyclic covering map R → S1

where θ2 : F × R → R is the projection on the second factor and θ1 is the quotient map

F × R→ F × R
/
〈f〉. The universal cover M̃F is identified with F̃ × R. For each integer n,

the subspace F̃ × {n} of M̃F = F̃ × R is called a slice of M̃ . We have the following lemma.

Lemma 2.3.16. Let MF be the mapping torus of a orientation preserving homeomorphism

ϕ of a compact orientable connected surface F with nonempty boundary and χ(F ) < 0. We

assume that ϕ fixes ∂F setwise and ϕ fixes periodic points on ∂F . Equip MF with a length

metric, and let d be the metric on M̃F induced from the metric on MF . There are positive

constants L and C such that for any x in the slice F̃ ×{n} and y in the slice F̃ ×{m} then

|m− n| ≤ Ld(x, y) + C
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Proof. Let x0 be a point on a boundary circle of ∂F and x̃0 be a lift of x0 in M̃F . We fix

generating sets A and B of π1(F, x0) and π1(MF , x0) respectively. We remark that there is a

positive constant ε > 0 such that for any integer k and for any z in the slice F̃ ×{k} of M̃F ,

there exists z′ in the slice F̃ × {k} such that z′ is a lift of the base point x0 and d(z, z′) ≤ ε.

Choose x′ in the slice F̃ × {n} and y′ in the slice F̃ × {m} so that x′ and y′ are lifts of x0

with d(x, x′) ≤ ε and d(y, y′) ≤ ε.

Let σ : MF → S1 be the projection of the bundle MF . It follows that we have the short

exact sequence:

1→ π1(F, x0)→ π1(MF , x0)→ Z→ 1

Since σ∗ is a homomorphism, it is easy to see that there exists L′ > 0 such that

|σ∗(g)− σ∗(g′)| ≤ L′ |g − g′|B

for all g, g′ ∈ π1(MF , x0).

Since π1(MF , x0) acts geometrically on M̃F , it follows that there exist constants A ≥ 1

and B ≥ 0 such that

|g − g′|B ≤ Ad(g(x̃0), g′(x̃0)) +B

for all g, g′ ∈ π1(MF , x0). It follows that |m− n| ≤ L′Ad(x′, y′) + L′B since x′ and y′ are

lifts of x0. Since d(x′, y′) ≤ d(x, y) + 2ε, it follows that

|m− n| ≤ Ld(x, y) + C

where L = L′A and C = L′B + 2L′Aε.

The following lemma can be seen in the proof of Theorem 11.9 in [FLP12].

Lemma 2.3.17. Let B be a surface with nonempty boundary with χ(B) < 0. Let ϕ : B → B

be a pseudo-Anosov homeomorphism fixing the boundary ∂B setwise. Let α be a geodesic such
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that α(0) and α(1) belong to a boundary circle of B and α is not homotoped to a boundary

circle. For any n ∈ N, let γn be the geodesic connecting the two endpoints of a lift of ϕn(α)

in the universal cover B̃, and let βn be the shortest path in B̃ joining two boundary lines

containing the endpoints of γn. Then

1. lim sup
n→∞

ln
(∣∣γn∣∣B̃)/n = λ > 1

2. lim sup
n→∞

ln d
(
βn(0), γn(0)

)/
n = 0 and lim sup

n→∞
ln d
(
βn(1), γn(1)

)/
n = 0.

2.3.1 Metrics on non-geometric 3-manifolds

Since we compute the distortion of a surface subgroup in non-geometric 3–manifold group

by using geometry of their universal covers (see Corollary 1.2.10), we need to discuss the

metrics on non-geometric 3–manifolds that we are going to use. We note that the choice of

length metrics does not affect the distortion, so we will choose a convenient metric.

Metrics on mixed 3–manifolds: In the rest of this paper, if we are working on the

setting of mixed manifolds, the following metric is the metric we will talk about. If N is a

mixed manifold, it is shown by Leeb [Lee95] that N admits a smooth Riemannian metric

d of nonpositive sectional curvature with totally geodesic boundary such that T is totally

geodesic and the sectional curvature is strictly negative on each hyperbolic component of

N − T .

Metrics on simple graph manifolds: A simple graph manifold N is a graph manifold

with the following properties: Each Seifert component is a trivial circle bundle over an

orientable surface of genus at least 2. The intersection numbers of fibers of adjacent Seifert

components have absolute value 1. It was shown by Kapovich and Leeb that any graph

manifold N has a finite cover N̂ that is a simple graph manifold [KL98].

In the rest of this paper, if we are working on the setting of simple graph manifolds, the

following metric (described by Kapovich–Leeb [KL98]) will be the metric we will talk about.

If N is a simple graph manifold, on each Seifert fibered block Mi = Fi × S1 we choose a
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hyperbolic metric on Fi and then equip Mi with the product metric di. There is a length

metric d on N with the following properties. There is K > 0 such that for each Seifert

fibered block Mi, we have

1

K
di(x, y) ≤ d(x, y) ≤ Kdi(x, y)

for all x and y in Mi.

Remark 2.3.18. There exists a positive lower bound ρ for the distance between any two

distinct JSJ planes in Ñ .

2.4 Distortion of surfaces is determined by the almost

fiber part

The goal in this section is to show that the distortion of the fundamental group of a surface

S in the fundamental group of a non-geometric 3–manifold N can be determined by looking

at the distortion of the almost fiber part Φ(S).

Theorem 2.4.1. Let g : S # N be a clean surface in a non-geometric 3–manifold N . For

each component Si of Φ(S), let δSi
be the distortion of π1(Si) in π1(N). Then the distortion

of H = π1(S) in G = π1(N) satisfies

f � ∆G
H � f

where

f(n) := max
{
δSi

(n)
∣∣ Si is a component of Φ(S)

}
and f is the superadditive closure of f .

Remark 2.4.2. The definition of f depends on choices of generating sets for π1(N) and each

π1(Si). In general it is unknown whether f ∼ f for an arbitrary distortion function f . But
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in Section 2.5 we will see this is true because each function δSi
is either linear, quadratic,

exponential or double exponential.

We use the convention that f(n) = 0 if Φ(S) = ∅. Note that the zero function is equiv-

alent to a linear function by Definition 1.2.7. Therefore we obtain the following corollary.

Corollary 2.4.3. Let g : S # N be a clean surface in a non-geometric 3–manifold N . If

the almost fiber part Φ(S) is empty then the distortion of π1(S) in π1(N) is linear.

Regarding Theorem 2.4.1, the proof f � ∆G
H is not hard to see, meanwhile the proof

∆G
H � f requires more work. We sketch here the idea of the proof of the upper bound case.

We fix a lifted point s̃0 in S̃, and let h ∈ π1(S, s0) such that the distance of s̃0 and h(s̃0) in

Ñ is less than n. We will construct a path γ′ in Ñ connecting s̃0 to h(s̃0) such that |γ′| is

bounded above by a linear function in term of n. We then construct a path β in S̃ connecting

s̃0 to h(s̃0) such that β stays close to γ′ every time they travel in the same block containing

a piece which is either vertical or geometrically finite (see Lemma 2.4.4 and Lemma 2.4.7).

Lemma 2.4.4. Let F be a connected compact hyperbolic surface with non-empty boundary.

Let M = F ×S1. Let g : (S, s0) # (M,x0) be an essential, vertical surface. We equip M with

a length metric and lift this metric to the metric d in the universal covers M̃ . Then there

exists a constant R such that the following holds. Let P and P ′ be two distinct boundary

planes in M̃ such that P ∩ S̃ 6= ∅ and P ′ ∩ S̃ 6= ∅. Let x and y be points in P and P ′, and

α be a geodesic in (M̃, d) connecting x to y. Then there exists a path β in S̃ connecting a

point in P ∩ S̃ to a point in P ′ ∩ S̃ such that β(0), β(1) ∈ NR(α).

Proof. Since S is orientable and vertical, it follows that S is an annulus. The map g is a

vertical map and thus the image g(S) in M is γ × S1 where γ is a proper arc in the base

surface F of M (i.e, γ could not be homotoped to a path in a boundary circle). We fix a

hyperbolic metric dF on F such that the boundary is totally geodesic. We lift the metric

dF to the metric dF̃ in the universal cover F̃ of F . We equip M̃ = F̃ × R with the product
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metric d′. We note that the identity map (M̃, d) → (M̃, d′) is a (K,C)–quasi-isometric for

some constant K and C. In M̃ , we note that S̃ is γ̃ × R where γ̃ is a path lift of γ in F̃ .

We note that (F̃ , dF̃ ) is bilipschitz homeomorphic to a fattened tree (see the paragraph

after Lemma 1.1 [BN08]). Thus, there exists A0 > 0 such that the following holds. Let `

and `′ be two distinct boundary lines in F̃ . Let [p, p′] be a geodesic of shortest length from `

to `′. If τ is a path in F̃ connecting a point in ` to a point in `′ then [p, p′] ⊂ N ′A0
(τ) where

N ′A0
(τ) is the A0–neighborhood of τ with respect to dF̃–metric.

Let |γ̃|F̃ be the length of γ̃ with respect to dF̃–metric. Let L = 2|γ̃|F̃ + 2A0. Let αF̃ be

the projection of α on the first factor F̃ of M̃ . We first show that γ̃ ⊂ N ′L(αF̃ ). Indeed,

let `1 and `2 be the boundary lines in F̃ such that γ̃(0) ∈ `1 and γ̃(1) ∈ `2. Let [p1, p2]

be a geodesic of shortest length from `1 to `2. According to the previous paragraph, we

have [p1, p2] ⊂ N ′A0
(αF̃ ) and [p1, p2] ⊂ N ′A0

(γ̃). Since p1 ∈ N ′A0
(γ̃), it follows that there

exists a ∈ γ̃ such that dF̃ (p1, a) ≤ A0. Thus dF̃ (γ̃(0), p1) ≤ dF̃ (γ̃(0), a) + dF̃ (a, p1) ≤

|γ̃|F̃ +dF̃ (a, p1) ≤ |γ̃|F̃ +A0. For any x ∈ γ̃, we have dF̃ (x, p1) ≤ dF̃ (x, γ̃(0))+dF̃ (γ̃(0), p1) ≤

|γ̃|F̃ + dF̃ (γ̃(0), p1) ≤ |γ̃|F̃ + |γ̃|F̃ + A0 = 2|γ̃|F̃ + A0. It follows that γ̃ ⊂ N ′2|γ̃|F̃ +A0
([p1, p2]).

Using γ̃ ⊂ N ′2|γ̃|F̃ +A0
([p1, p2]) and [p1, p2] ⊂ N ′A0

(αF̃ ) we have γ̃ ⊂ N ′2|γ̃|F̃ +2A0
(αF̃ ) = N ′L(αF̃ ).

Since γ̃ ⊂ N ′L(αF̃ ), there exist u0 ∈ αF̃ and u1 ∈ αF̃ such that dF̃ (γ̃(0), u0) ≤ L

and dF̃ (γ̃(1), u1) ≤ L. Choose s0, s1 ∈ R such that (u0, s0), (u1, s1) ∈ α. It follows that

d
(
(γ̃(0), s0), (u0, s0)

)
≤ Kd′

(
(γ̃(0), s0), (u0, s0)

)
+C = KdF̃ (γ̃(0), u0) +C ≤ KL+C. Hence

(γ̃(0), s0) ∈ NKL+C(α). Similarly, we have (γ̃(1), s1) ∈ NKL+C(α). Note that (γ̃(0), s0) and

(γ̃(1), s1) are in S̃ = γ̃×R. Let β be a path in S̃ connecting (γ̃(0), s0) to (γ̃(1), s1). The end

points of β are in NR(α).

Lemma 2.4.5. Let g : (S, s0) # (M,x0) be a essential, geometrically finite surface in a

hyperbolic manifold M with nonempty toroidal boundary such that ∂S 6= ∅. Let g̃ : (S̃, s̃0) ↪→

(M̃, x̃0) be a lift of g. Then for any distinct boundary lines ` and `′ of ∂S̃, the images g̃(`)

and g̃(`′) lie in different boundary planes of ∂M̃ .

Proof. Suppose by the way of contradiction that g̃(`) and g̃(`′) are lines in the same boundary
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plane T̃ . Since g : (S, s0) # (M,x0) is essential, S could not be annulus or a disk. Thus, S is

a hyperbolic surface. Let dS be a hyperbolic metric on S such that the boundary is totally

geodesic and let dM be a non-positively curved metric on the manifold with boundary M .

We lift these metrics to metrics dS̃ and dM̃ in the universal covers S̃ and M̃ respectively.

Since g : (S, s0) # (M,x0) is geometrically finite, it follows that g̃ : (S̃, dS̃) ↪→ (M̃, dM̃) is an

(L,C)–quasi-isometric embedding for some constant L and C.

Since g̃ is an embedding, it follows that g̃(`) and g̃(`′) are disjoint lines in T̃ . We note

that, on the one hand the Hausdorff distance of two sets ` and `′ with respect to dS̃–metric

is infinite (this follows from Lemma 3.2 in Chapter 1). On the other hand, the Hausdorff

distance of two sets g̃(`) and g̃(`′) with respect to dM̃–metric is finite. (this follows from the

fact that A = stab(T̃ ) in π1(M) acts isometrically on T̃ and stab(g̃(`)) and stab(g̃(`′)) are

commensurable in A). This could not happen since g̃ is a quasi-isometric embedding.

Remark 2.4.6. Lemma 2.4.5 can be proven by using malnormality of the peripheral sub-

groups of π1(S).

Lemma 2.4.7. Let M be a hyperbolic manifold with nonempty toroidal boundary. Let

g : (S, s0) # (M,x0) be a essential, geometrically finite surface such that ∂S 6= ∅. Equip M

with a non-positively curved metric and lift this metric to the universal cover M̃ denoted by

d. Then there exists a constant R such that the following holds. Let P and P ′ be two distinct

boundary planes in M̃ such that P ∩ S̃ 6= ∅ and P ′ ∩ S̃ 6= ∅. Let x and y be points in P

and P ′ respectively, and α be a geodesic in M̃ connecting x to y. Then there is a path β in

S̃ connecting a point in P ∩ S̃ to a point in P ′ ∩ S̃ such that β(0), β(1) ∈ NR(α).

Proof. Let G = π1(M,x0) and H = π1(S, s0). Let P be the collection of fundamental groups

of tori boundary of M . Since g : (S, s0) # (M,x0) is geometrically finite, it follows that

π1(S, s0) is relatively quasiconvex in the relatively hyperbolic group (G,P) (see Corollary 1.6

in [Hru10]). Since d is a complete non-positively curved metric, it follows from Cartan-

Hadamard Theorem that (M̃, d) is a CAT(0) space. It also follows from Corollary 1.6
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in [Hru10] that the orbit space π1(S, s0)(x̃0) is quasiconvex in (M̃, d). It follows that S̃ is

ε0–quasiconvex in (M̃, d) for some positive constant ε0.

Applying Lemma 2.2.3 to the surface subgroup and the fundamental group of each torus

boundary, we have the following fact: For any r > 0, there exists r′ = r′(r) > 0 such that

whenever x ∈ Nr(T̃ ) ∩ Nr(S̃) and T̃ is an arbitrary boundary plane of M̃ with nonempty

intersection with S̃, then x ∈ Nr′(T̃ ∩ S̃).

We note that (M̃, d) is a CAT(0) space with isolated flats. Let ε1 be the positive constant

given by Proposition 8 [HK09]. Let [p, q] be a geodesic of shortest length from P to P ′. Then

every geodesic from P to P ′ must come within a distance ε1 of both p and q. Since α is

a geodesic in M̃ connecting x ∈ P to y ∈ P ′, it follows that {p, q} ∈ Nε1(α). Moreover,

there exist points x′ and y′ in a geodesic γ from P ∩ S̃ to P ′ ∩ S̃ such that d(x′, p) ≤ ε1 and

d(y′, q) ≤ ε1. Hence x′ ∈ Nε1(P ) and y′ ∈ Nε1(P ′). We note that the end points of γ belong

to S̃. Using quasiconvexity of S̃, we have x′, y′ ∈ Nε0(S̃). Thus there exists a constant ε2

depending on ε0 and ε1 such that x′ ∈ Nε2(P ) ∩ Nε2(S̃) and y′ ∈ Nε2(P ′) ∩ Nε2(S̃) (we may

choose ε2 = ε0 + ε1). Let r′ = r′(ε2) be the constant given in the previous paragraph with

respect to ε2. It follows that x′ ∈ Nr′(P ∩ S̃) and y′ ∈ Nr′(P ′ ∩ S̃). Thus, d(x′, u) ≤ r′ and

d(y′, v) ≤ r′ for some points: u ∈ P ∩ S̃ and v ∈ P ′ ∩ S̃. Let β be a path in S̃ connecting

u to v. Since d(β(0), p) = d(u, p) ≤ d(u, x′) + d(x′, p) ≤ r′ + ε1 and p ∈ Nε1(α), it follows

that β(0) ∈ Nr′+2ε1(α). Similarly, since d(β(1), q) = d(v, q) ≤ d(v, y′) + d(y′, q) ≤ r′+ ε1 and

q ∈ Nε1(α), it follows that β(1) ∈ Nr′+2ε1(α). Let R = r′ + 2ε1, the lemma is confirmed.

Let g : S # N be the immersion in the statement of Theorem 2.4.1.

Definition 2.4.8. Lift the JSJ decomposition of the manifold N to the universal cover Ñ ,

and let TN be the tree dual to this decomposition of Ñ . Lift the collection Tg to the universal

cover S̃. The tree dual to this decomposition of S̃ will be denoted by TS. The map g̃ induces

a map ζ : TS → TN .
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Remark 2.4.9. For each geometrically infinite piece B̃ in S̃, let M̃ be the block of Ñ such

that g̃(B̃) ⊂ M̃ . By Remark 2.3.5, the immersion B # M lifts to an embedding (up to

homotopy) in a finite cover MB of M which is fibered over circle with a fiber B. Let LMB

be the suspension flow on MB. We note that B̃ meets every flow line of L̃MB
once.

Proposition 2.4.10. The map ζ is injective.

Proof. A simplicial map between trees is injective if it is locally injective (see [Sta83]).

Suppose by way of contradiction that ζ is not locally injective. Then there exists three

distinct pieces B̃1, B̃2 and B̃3 in S̃ such that B̃1 ∩ B̃2 is a line `1 and B̃2 ∩ B̃3 is a line `2 and

the images g̃(B̃1) and g̃(B̃3) lie in the same block M̃1 of Ñ . Let M̃2 be the block containing

the image g̃(B̃2). We have g̃(`1) and g̃(`2) are subsets of the JSJ plane T̃ = M̃1 ∩ M̃2. Since

the map g̃ is an embedding, it follows that g̃(`1) and g̃(`2) are disjoint lines in the plane T̃ .

If B̃2 is horizontal, this contradicts Lemma 6.3 in Chapter 1. If B̃2 is geometrically infinite,

this contradicts Remark 2.4.9. If B̃2 is vertical, this contradicts the fact that B2 is essential.

If B̃2 is geometrically finite, this contradicts Lemma 2.4.5.

In the rest of this section, we equip S with a hyperbolic metric dS such that the boundary

(if nonempty) is totally geodesic.

Proof of Theorem 2.4.1. The non-geometric manifold N has a finite cover such that each

Seifert block in this cover is a trivial circle bundle over a hyperbolic surface (see Lemma 3.1

[PW14b]). We elevate S # N into this finite cover. By Proposition 2.2.2, it suffices to prove

the theorem in this cover. Thus, without loss of generality, we can assume that each Seifert

block in N is a trivial circle bundle over a hyperbolic surface.

Now we deal with the issue of metrics: We always have a convenient metric (in the sense

of Section 3.1) on a mixed manifold . In the graph manifold case, we may pass to a further

finite cover and hence assume that it is a simple graph manifold. Then we can choose a

convenient metric on it as described in Section 3.1.

61



We first show that f � ∆G
H . Every finitely generated subgroup of a surface group or free

group is undistorted. It follows that for any component Si of Φ(S) then π1(Si) is undistorted

in π1(S). It follows from Proposition 2.2.1 that δSi
is dominated by the distortion of π1(S)

in π1(N). Therefore, f � ∆G
H .

We are now going to prove ∆G
H � f , which is less trivial. Let h ∈ H such that

d
(
s̃0, h(s̃0)

)
≤ n, we wish to show that dS̃

(
s̃0, h(s̃0)

)
is bounded above by f(n). The theorem

is proved by an application of Corollary 1.2.10. For each component Si of Φ(S), let δ̃Si
be

the distortion of S̃i in Ñ . We note that δ̃Si
∼ δSi

. Let

τ(n) := max
{
δ̃Si

(n)
∣∣ Si is a component of Φ(S)

}
and τ is the superadditive closure of τ . We note that τ ∼ f by Remark 2.2.5.

We will assume that s̃0 and h(s̃0) belong to distinct pieces of S̃, otherwise the fact

dS̃(s̃0, h(s̃0)) is bounded above by f(n) is trivial. Without of generality, we assume that

s0 belongs to a curve in the collection Tg. Let Q be the family of lines in S̃ that are lifts

of curves of Tg. We note that there are distinct lines ` and `′ in Q such that s̃0 ∈ ` and

h(s̃0) ∈ `′. Let e and e′ be the non-oriented edges in the tree TS corresponding to the lines

` and `′ respectively. Choose the non backtracking path joining e to e′ in the tree TS, with

ordered vertices v0, v1, . . . , vk−1 where v1 is not a vertex on the edge e and vk−2 is not a

vertex on the edge e′. We denote the pieces corresponding to the vertices vi by B̃i and the

blocks corresponding to the vertices ζ(vi) by M̃i with i = 0, 1, · · · , k − 1. We note that the

blocks M̃i are distinct because ζ is injective by Proposition 2.4.10.

For each piece B of S, letM be the block of N such that B is mapped intoM . If B #M

is vertical, let RB be the constant given by Lemma 2.4.4. If B #M is geometrically finite, we

let RB be the constant given by Lemma 2.4.7. Since the number of vertical and geometrically

finite pieces of S is finite, we let R be the maximum of the numbers RB chosen above.

By a similar argument as in the proof of Theorem 6.1 in Chapter 1, we can find a path

62



γ connecting s̃0 to h(s̃0) that intersects each plane T̃i = M̃i−1 ∩ M̃i with i = 1, 2, . . . , k − 1

exactly at one point yi and satisfies |γ| ≤ Kd
(
s̃0, h(s̃0)

)
where the constant K depends only

on the metric d. Here | · | denotes the length of a path with respect to the metric d.

If a piece B̃i is either vertical or geometrically finite in the corresponding block M̃i, we

let αi be a path in M̃i connecting yi to yi+1 and βi be a path in B̃i connecting a point in

B̃i∩ T̃i to a point in B̃i∩ T̃i+1 as given by Lemma 2.4.4 (when B̃i is vertical) and Lemma 2.4.7

(when B̃i is geometrically finite). We replace βi by a geodesic in S̃ connecting βi(0) to βi(1).

By abuse of notation, we still denote this geodesic by βi.

βjj

σs

βij+1

αij αij+1

βjj βij+1

σs

γ′s

uij vij uij+1 vij+1

αij αij+1

αij(0)
αij(1) αij+1

(0)
αij+1

(1)

Figure 2.1: The upper picture illustrates the two end points of each path βij are within a R–
neighborhood of αij ⊂ γ′. We add a geodesic in the almost fiber part of S̃ connecting βij (1) to
βij+1(0). The lower picture illustrates the point vij (resp.uij ) is within R–distance from βij (0)
(resp.βij (1)). The path γ′s is the subpath of γ′ that connects vij to uij+1 .

On the path γ, every time the piece B̃i is either vertical or geometrically finite, we replace

the subpath γ|[yi,yi+1] of γ by αi. We therefore obtain a new path denoted by γ′ such that

|γ′| ≤ KRd
(
s̃0, h(s̃0)

)
≤ KRn

We now construct a path β in S̃ connecting s̃0 to h(s̃0) which stays close to γ′ every time
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they both travel the same a block containing a piece which is either vertical or geometrically

finite (see Figure 2.1). Let B̃i0 , . . . , B̃it be the collection of the vertical or geometrically finite

pieces where 0 ≤ i0 ≤ · · · ≤ it ≤ k − 1. From the given paths βi0 , . . . , βit , we obtain a path

β in S̃ connecting s̃0 to h(s̃0) by adding a geodesic in S̃ connecting the endpoint of βij to

the initial point of βij+1
where j varies from 0 to t− 1, adding a geodesic in S̃ connecting s̃0

to the initial point of βi0 , and a geodesic in S̃ connecting the endpoint of βit to h(s̃0).

Claim 1: There exists a linear function J not depending on the choices of n, h, or β

such that
∑t

j=0|βij |S̃ ≤ J(n).

Since vertical pieces and geometrically finite pieces of S are undistorted in the correspond-

ing blocks of N , and there are finite many of vertical pieces and geometrically finite pieces,

we have a constant ε > 0 such that the following holds. Suppose that B is either vertical

piece or geometrically finite piece, then for any x, y ∈ B̃ we have dS̃(x, y) ≤ εd(x, y) + ε.

We recall that αij is a subpath of γ′ and βij is a geodesic in S̃. Since βij(0), βij(1) ∈

NR(αij), we have d(βij(0), βij(1)) ≤ 2R+|αij |. Let ρ be the constant given by Remark 2.3.18.

We note that k ≤ n/ρ.

We have

t∑
j=0

|βij |S̃ =
t∑

j=0

dS̃(βij(0), βij(1)) ≤
t∑

j=0

(
ε d(βij(0), βij(1)) + ε

)
≤

t∑
j=0

(
ε(2R + |αij |) + ε

)
=

t∑
j=0

ε|αij |+
t∑

j=0

(2Rε+ ε)

≤ ε
t∑

j=0

|αij |+ (t+ 1)(2Rε+ ε) ≤ ε|γ′|+ (t+ 1)(2Rε+ ε)

≤ ε|γ′|+ (k + 1)(2Rε+ ε) ≤ ε|γ′|+ (n/ρ+ 1)(2Rε+ ε)

≤ εKRn+ (n/ρ+ 1)(2Rε+ ε)

Let J(n) = εKRn+ (n/ρ+ 1)(2Rε+ ε), the claim is confirmed.

We consider the complement of β − ∪tj=0βij , which can be written as a disjoint union of
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subpaths σ1, . . . , σm of β with m ≤ k.

Claim 2: For each i = 1, . . . ,m, there exists a subpath γ′i of γ′ such that

d
(
σi(0), σi(1)

)
≤ 2R + |γ′i|

and
∑m

i=1|γ′i| ≤ 3|γ′|.

Indeed, let p(i) 6= q(i) be two numbers in the collection {i0, . . . , it} such that σi(0) is the

endpoint of βp(i) and σi(1) is the initial point of βq(i). For convenience, lets relabel p = p(i),

q = q(i). Note that it is possible that the pieces B̃p and B̃q are adjacent. Since βp ⊂ NR(αp)

and βq ⊂ NR(αq), it follows that d(βp(1), vp) ≤ R and d(βq(0), uq) ≤ R for some vp ∈ αp,

uq ∈ αq.

Let γ′i be the concatenation αp|[vp,αp(1)] ·γ
′
|[αp(1),αq(0)] ·αq [αq(0),uq ] (see Figure 2.1). It follows

that d(vp, uq) ≤ |γ′i|. Using d(βp(1), vp) ≤ R, d(βq(0), uq) ≤ R, d(vp, uq) ≤ |γ′i|, and the

triangle inequality, we have

d
(
σi(0), σi(1)

)
= d
(
βp(1), βq(0)

)
≤ d
(
βp(1), vp

)
+ d
(
vp, uq

)
+ d
(
uq, βq(0)

)
≤ R + d(vp, uq) +R = 2R + d(vp, uq) ≤ 2R + |γ′i|

Recall that αij is a subpath of γ′ with ij ∈ {i0, . . . , it} and
∑t

j=0|αij | ≤ |γ′|. By the

construction of γ′i, we have

|γ′i| ≤ |αp|+ |αq|+
∣∣∣γ′|[αp(1),αq(0)]

∣∣∣ = |αp(i)|+ |αq(i)|+
∣∣∣γ′|[αp(i)(1),αq(i)(0)]

∣∣∣
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Summing over i, we obtain

m∑
i=1

|γ′i| ≤
m∑
i=1

(
|αp(i)|+ |αq(i)|

)
+

m∑
i=1

∣∣∣γ′|[αp(i)(1),αq(i)(0)]

∣∣∣
≤ 2

t∑
j=0

|αij |+
m∑
i=1

∣∣∣γ′|[αp(i)(1),αq(i)(0)]

∣∣∣ ≤ 2
t∑

j=0

|αij |+ |γ′| ≤ 2|γ′|+ |γ′| = 3|γ′|.

The claim is confirmed.

Let Si be the component of Φ(S) that the image of σi under the covering map belongs to.

We have the length of σi in S̃ is no more than δ̃Si

(
2R + |γ′i|

)
. Thus the sum of the lengths

of σi in S̃ is no more than

δ̃S1

(
2R + |γ′1|

)
+ · · ·+ δ̃Sm

(
2R + |γ′m|

)
which is less than or equal to τ

(
2Rm +

∑m
i=1|γ′i|

)
. Since

∑m
i=1|γ′i| ≤ 3|γ′| ≤ 3KRn and

m is bounded above by a linear function in term of n (m ≤ k ≤ n/ρ), it follows that

|β|S̃ � τ(n).

2.5 Distortion of clean almost fiber surfaces in mixed

manifolds

As we have shown in Section 2.4, distortion of a surface in a non-geometric 3–manifold is

determined by the distortion of components of the almost fiber part of the surface. We note

that each component of the almost fiber part is a clean almost fiber surface. In this section,

we compute the distortion of a clean almost fiber surface S in N . The main theorem is the

following.

Theorem 2.5.1. Let g : (S, s0) # (N, x0) be a clean almost fiber surface in a mixed manifold

N . We assume that all Seifert fibered blocks of N are non-elementary. Suppose that S

contains at least one geometrically infinite piece. Then the distortion of π1(S) in π1(N) is
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exponential if π1(S) is separable in π1(N), and double exponential if π1(S) is non-separable

in π1(N).

We recall that π1(S) is separable in π1(N) if and only if the spirality of S is trivial (see

Remark 2.3.12). The proof of Theorem 2.5.1 is divided into two parts. The proof of the

lower bound of the distortion is given in Subsection 2.5.2 and the proof of the upper bound

of the distortion is given by Subsection 2.5.1.

Set up 2.5.2. We equip N with the metric d as in Subsection 2.3.1, and equip S with a

hyperbolic metric dS such that the boundary (if nonempty) is totally geodesic and the simple

closed curves of Tg are geodesics.

For each piece B of S, let M be the block of N in which B is mapped into M . By

Remark 2.3.5, there exists a finite cover MB → M where MB is the mapping torus of a

homeomorphism ϕ of the surface B such that ϕ fixes periodic points on ∂B. Each boundary

component c of B is mapped into a boundary torus of MB, we fix a degeneracy slope on this

torus, and denoted it by scB. The pullback of the fibration MB → S1 by the infinite cyclic

covering map R → S1 is B × R (see the paragraph above Lemma 2.3.16), we identify the

universal cover M̃ with B̃ × R. We also assume that S̃ ∩ M̃ = B̃ × {0}.

2.5.1 Upper bound of the distortion

In this subsection, we find the upper bound of the distortion of π1(S) in π1(N).

Proposition 2.5.3. The distortion of π1(S) in π1(N) is at most double exponential. Fur-

thermore, if the spirality of S is trivial then the distortion is at most exponential.

We use the same strategy as in the upper bound section of Chapter 1 (see Section 6 of

Chapter 1) but techniques are different. We briefly discuss here the main difference between

this current section and Section 6 in Chapter 1. In the setting of graph manifold, a JSJ torus

T of N receives two Seifert fibers from the blocks on both sides. In Chapter 1, at any y in

T̃ (universal cover of T ), we follow fibers (on both sides) until they meet S̃. Note that these
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fibers do not match up. In this current section, it is possible that one block containing T is

a Seifert fibered space and the other block containing T is a hyperbolic block or both the

blocks are hyperbolic, thus we will follow degeneracy slopes instead. Moreover, at y ∈ T̃ , we

need to be specific on which degeneracy slopes we should follow.

We describe here the outline of the proof of Proposition 2.5.3. For each n ∈ N, let

h ∈ π1(S, x0) such that d
(
x̃0, h(x̃0)

)
≤ n. We would like to find an upper bound (either

exponential or double exponential) of dS̃
(
x̃0, h(x̃0)

)
in terms of n. Choose a path β in

Ñ connecting x̃0 to h(x̃0) with |β| ≤ n such that β passes through a sequence of blocks

M̃0, . . . , M̃k, intersecting the plane T̃j = M̃j−1 ∩ M̃j exactly at one point that is denoted by

yj with j = 1, · · · , k if k ≥ 1. There exists a piece B̃j of S̃ such that g̃(B̃j) ⊂ M̃j. Let ρ

be the constant given by Remark 2.3.18. We note that k ≤ n/ρ. Let cj be the circle in Tg

that is universally covered by the line B̃j−1 ∩ B̃j with j = 1, · · · , k. Let ←−sj = scjBj−1
and

−→sj = scjBj
be the degeneracy slopes in the corresponding tori

←−
T ′j and

−→
T ′j of the spaces MBj−1

and MBj
respectively (see Definition 2.3.15). The distortion function ∆ of S̃ in Ñ does not

change (up to equivalence in Definition 1.2.7) when we add a linear function in term of n to

∆. Therefore, to make the argument simpler, using Corollary 1.2.10 and modifying g by a

homotopy, we may assume that the lifts of the degeneracy slopes and lines g̃(`) (where ` is a

line in Q the family of lines that are lifts of loops of Tg) are straight lines in the corresponding

planes of Ñ . The line parallel to a lift of the degeneracy slope ←−sj in T̃j passing through yj

intersects g̃(S̃) in a unique point which is denoted by xj. Similarly, the line parallel to a

lift of the degeneracy slope −→sj in T̃j passing through yj intersect g̃(S̃) in one point which is

denoted by zj.

Similarly as in Chapter 1, we show that dS̃
(
x̃0, h(x̃0)

)
is dominated by the sum

en
k∑
j=1

ed(yj ,xj)+d(yj ,zj)
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and we analyze the growth of the sequence

d(y1, x1), d(y1, z1), d(y2, x2), . . . ,

d(yj−1, zj−1), d(yj, xj), d(yj, zj), . . . ,

d(yk, xk), d(yk, zk)

An upper bound on d(yj, xj) in terms of d(yj−1, zj−1) will be described in Lemma 2.5.5. A

relation between d(yj, xj) and d(yj, zj) will be Lemma 2.5.6.

Remark 2.5.4. 1. It is possible from the construction above that xj = zj.

2. Using Remark 2.3.7, the fact S has only finite many pieces, and N has finite many

blocks, we obtain a constant L ≥ 1 such that for each piece B̃ in S̃, we have dS̃(u, v) ≤

eLd(u,v)+L for any two points u and v in B̃.

Let
←−
λj and

−→
λj be the lengths of path lifts of the degeneracy slopes ←−sj and −→sj in Ñ with

respect to d–metric. Let
←−
`j (resp.

−→
`j ) be the line parallel to a lift of the degeneracy slope

←−sj (resp. −→sj ) in T̃j such that yj ∈
←−
`j (resp. yj ∈

−→
`j ). We note that

←−
`j intersects S̃ at xj,

and
−→
`j intersects S̃ at zj.

Lemma 2.5.5 (Crossing a block). There exists a positive constant L′ such that the following

holds: For any j = 1, · · · , k

d(yj, xj) ≤
←−
λj
−−→
λj−1

d(yj−1, zj−1) + L′ d(yj, yj−1)

Proof. We recall that the finite covering space MBj−1
of Mj−1 is fibered over circle with the

fiber Bj−1, and the block M̃j−1 is identified with B̃j−1 × R.

We recall that the line
−−→
`j−1 parallel to a lift of the degeneracy slope −−→sj−1 and

−−→
`j−1 passes

through yj−1 and zj−1. On the line
−−→
`j−1, choose a point uj−1 such that uj−1 ∈ B̃j−1 × {n}
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for some integer n, d(uj−1, yj−1) ≤
−−→
λj−1 and

d(uj−1, zj−1) ≤ d(yj−1, zj−1) (2.1)

Similarly, on the line
←−
`j , choose a point vj ∈ B̃j−1×{m} for some integer m and vj such

that d(vj, yj) ≤
←−
λj . It follows that

d(uj−1, vj) ≤ d(uj−1, yj−1) + d(yj−1, yj) + d(yj, vj)

≤
−−→
λj−1 + d(yj−1, yj) +

←−
λj

(2.2)

Let ρ > 0 be the constant given by Remark 2.3.18. Let L and C be contants given by

Lemma 2.3.16. We use Lemma 2.3.16 and the fact ρ ≤ d(uj−1, vj) to see that

|m− n| ≤ Ld(uj−1, vj) + C

≤ Ld(uj−1, vj) +
C

ρ
d(uj−1, vj)

= (L+
C

ρ
)d(uj−1, vj)

(2.3)

Let Lj =
←−
λj (L+ C/ρ) +

←−
λj/ρ+

(
(
←−
λj)

2 +
−−→
λj−1

←−
λj
)
(L+ C/ρ)(1/ρ).

We use (2.1), (2.2), (2.3) and the facts d(yj, vj) ≤
←−
λj , d(vj, xj) = |m|

←−
λj and 1 ≤
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d(yj−1, yj)/ρ to see that

d(yj, xj) ≤ d(yj, vj) + d(vj, xj) ≤
←−
λj + d(vj, xj) ≤

←−
λj + |m|

←−
λj

≤
←−
λj + |n|

←−
λj + |m− n|

←−
λj

=
←−
λj +

←−
λj
−−→
λj−1

d(uj−1, zj−1) + |m− n|
←−
λj

≤
←−
λj +

←−
λj
−−→
λj−1

d(uj−1, zj−1) + (L+
C

ρ
)
←−
λjd(uj−1, vj) by (2.3)

≤
←−
λj +

←−
λj
−−→
λj−1

d(yj−1, zj−1) + (L+
C

ρ
)
←−
λjd(uj−1, vj)

≤
←−
λj +

←−
λj
−−→
λj−1

d(yj−1, zj−1) + (L+
C

ρ
)
←−
λj

(−−→
λj−1 + d(yj−1, yj) +

←−
λj

)
=

←−
λj
−−→
λj−1

d(yj−1, zj−1) +
←−
λj + (L+

C

ρ
)
←−
λj

(−−→
λj−1 +

←−
λj

)
+ (L+

C

ρ
)
←−
λjd(yj−1, yj)

≤
←−
λj
−−→
λj−1

d(yj−1, zj−1) +
(←−
λj + (L+

C

ρ
)
←−
λj
(−−→
λj−1 +

←−
λj
))d(yj−1, yj)

ρ

+ (L+
C

ρ
)
←−
λjd(yj−1, yj)

=

←−
λj
−−→
λj−1

d(yj−1, zj−1) + Lj d(yj, yj−1)

Because there are only finitely many pieces of S and blocks of N , we can choose a constant L′

(may be maximum of all possible constants Lj) that is large enough to satisfy the conclusion

of the lemma.

Lemma 2.5.6 (Crossing a JSJ plane).

d(yj, zj)

d(yj, xj)
= ξj ·

−→
λj
←−
λj

Proof. Choose non-zero integers n and m such that the slice B̃j−1 × {n} of M̃j−1 = M̃Bj−1

is glued into the slice B̃j × {m} of M̃j = M̃Bj
. Choose a point y′ in B̃j−1 × {n}, and two

points x′ and z′ in S̃ ∩ T̃j such that [y′, z′] and [yj, zj] are parallel segments as well as [y′, x′]
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and [yj, xj] are parallel segments. Since ∆(x′, y′, z′) and ∆(xj, yj, zj) are similar triangles, it

follows that

d(y′, z′)
/
d(y′, x′) = d(yj, zj)

/
d(yj, xj)

Thus, without loss of generality, we may assume that yj belongs to the slice B̃j × {m}, and

yj belongs to the slice B̃j−1 × {n}. We note that

|n|
[←−
T ′j :
←−
Tj
]

= |m|
[−→
T ′j :
−→
Tj
]

Thus

|m|
/
|n| =

[←−
T ′j :
←−
Tj
]/[−→

T ′j :
−→
Tj
]

= ξj

Since d(yj, zj) = |m|
−→
λj and d(yj, xj) = |n|

←−
λj , we have

d(yj, zj)

d(yj, xj)
= ξj ·

−→
λj
←−
λj

Proof of Proposition 2.5.3. We assume that the base point s0 belongs to a curve in the

collection Tg. For any h ∈ π1(S, s0) such that d
(
s̃0, h(s̃0)

)
≤ n, we will show that dS̃

(
s̃0, h(s̃0)

)
is bounded above by a double exponential function in terms of n. Let L be the constant

given by Remark 2.5.4, and let L′ be the constant given by Lemma 2.5.5. We consider the

following cases:

Case 1: s̃0 and h(s̃0) belong to the same a piece B̃. By Remark 2.3.7 then dS̃
(
s̃0, h(s̃0)

)
≤

eLn+L which is dominated by an exponential function.

Case 2: s̃0 and h(s̃0) belong to distinct pieces of S̃. Let yj, xj, and zj be points described

as in the previous paragraphs. For convenience, relabel s̃0 by y0, and h(s̃0) by yk+1.

72



Claim 1: Let z0 = y0 and zk+1 = yk+1. We have the following inequality.

dS̃
(
s̃0, h(s̃0)

)
≤ eLn

k∑
j=0

eLd(zj ,yj)+Ld(zj+1,yj+1)+L

We write β = β0 · β1 · · · βk where βj is the subpath of β in M̃j connecting yj to yj+1. For

each j = 0, . . . , k we have

d(zj, zj+1) ≤ d(zj, yj) + d(yj, yj+1) + d(yj+1, zj+1)

≤ d(zj, yj) + |βj|+ d(yj+1, zj+1)

Using Remark 2.5.4 we obtain

dS̃(s̃0, h(s̃0)) = dS̃(y0, yk+1) ≤
k∑
j=0

dS̃(zj, zj+1) ≤
k∑
j=0

eLd(zj ,zj+1)+L

≤
k∑
j=0

eL
(
d(zj ,yj)+|βj |+d(zj+1,yj+1)

)
+L

≤
k∑
j=0

eL
(
d(zj ,yj)+n+d(zj+1,yj+1)

)
+L

≤ eLn
k∑
j=0

eL
(
d(zj ,yj)+d(zj+1,yj+1)

)
+L

Claim 1 is confirmed.

We note that if F (n) ∼ ee
n , and E(n) ∼ en then enF (n) ∼ ee

n and enE(n) ∼ en. To

complete the proof of the proposition, it suffices to find an appropriate upper bound of the

sum appearing in Claim 1 which is a double exponential function in general, and exponential

function when the spirality of S is trivial.

By Lemma 2.5.5, we have

d(yj, xj) ≤
←−
λj
−−→
λj−1

d(yj−1, zj−1) + L′ |βj−1| (∗)
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By Lemma 2.5.6, we have

d(yj, zj) = ξj ·
−→
λj
←−
λj
d(yj, xj) (†)

Claim 2: Suppose that the spirality of S is non-trivial. There exists a function F not

depending on β, n, and h such that

k∑
j=0

eLd(zj ,yj)+Ld(zj+1,yj+1)+L ≤ F (n)

and F (n) ∼ ee
n

Let ε be the governor of g with respect to the chosen mapping tori (see Definition 2.3.11).

Since the spirality of S is non-trivial, it follows that ε is strictly greater than 1. Let D be

the collection of the degeneracy slopes given by Set up 2.5.2. We note that D is a finite

collection. For each degeneracy slope scB, let |scB| be the length of path lift of scB in Ñ with

respect to d–metric. Let δ be the maximum of all possible ratios |scB|/|sc′B′|.

We will show that for each j = 0, . . . , k then

d(yj, zj) ≤
L′δn

ε− 1
εj+1 (2.4)

To see (2.4), we first show by induction on j = 0, . . . , k that

d(yj, zj) ≤ L′n

j∑
i=1

−→
λj
←−−−
λj+1−i

εi

The base case is trivial since y0 = z0, so both sides of the inequality equal zero. For inductive
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step, we use (∗), (†), the inequality ξj ≤ ε, and the fact |βj−1| ≤ n to see that

d(yj, zj) = ξj

−→
λj
←−
λj
d(yj, xj) ≤ ε

−→
λj
←−
λj
d(yj, xj) ≤ ε

−→
λj
←−
λj

( ←−λj
−−→
λj−1

d(yj−1, zj−1) + L′|βj−1|
)

≤ ε

−→
λj
−−→
λj−1

d(yj−1, zj−1) + ε

−→
λj
←−
λj
L′|βj−1|

≤ ε

−→
λj
−−→
λj−1

d(yj−1, zj−1) + ε

−→
λj
←−
λj
L′n

≤ ε

−→
λj
−−→
λj−1

L′n

j−1∑
i=1

−−→
λj−1
←−−
λj−i

εi + ε

−→
λj
←−
λj
L′n

= L′n

j−1∑
i=1

−→
λj
←−−
λj−i

εi+1 + ε

−→
λj
←−
λj
L′n = L′n

( j−1∑
i=1

−→
λj
←−−
λj−i

εi+1 + ε

−→
λj
←−
λj

)
= L′n

( j∑
i=2

−→
λj
←−−−
λj+1−i

εi + ε

−→
λj
←−
λj

)
= L′n

j∑
i=1

−→
λj
←−−−
λj+1−i

εi

Since
←−
λj
/←−−−
λj+1−i is bounded above by δ, it follows that

d(yj, zj) ≤ L′nδ

j∑
i=1

εi ≤ L′nδεj+1
/

(ε− 1),

establishing (2.4). Summing over j, we obtain

k∑
j=1

d(yj, zj) ≤
L′δn

ε− 1

(
ε2 + · · ·+ εk+1) ≤ L′δnε2

(ε− 1)2
εk+2 ≤ L′δnε2

(ε− 1)2
εn/ρ+2

which is equivalent to an exponential function of n. We use the facts y0 = z0, yk+1 = zk+1,
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L ≥ 1, and the fact that ex is superadditive on [1,∞) to see that

k∑
j=0

eLd(zj ,yj)+Ld(zj+1,yj+1)+L ≤ e
∑k

j=0 Ld(zj ,yj)+Ld(zj+1,yj+1)+L

= e(k+1)L+
∑k

j=0 Ld(zj ,yj)+Ld(zj+1,yj+1)

= e(k+1)C+2L
∑k

j=1 d(yj ,zj)

≤ e(n/ρ+1)+2L
∑k

j=1 d(yj ,zj)

which is equivalent to a double exponential function (because
∑k

j=1 d(yj, zj) is equivalent

to an exponential function of n, so (n/ρ + 1) + 2L
∑k

j=1 d(yj, zj) is also equivalent to an

exponential function of n). Claim 2 is confirmed.

Claim 3: Suppose the spirality of S is trivial. There exists a function E not depending

on β, n, and h such that

k∑
j=1

eLd(yj ,zj)+Ld(yj+1,zj+1)+L ≤ E(n)

and E(n) ∼ en.

For any 1 ≤ i ≤ j, let Θi,j = ξi ξi+1 · · · ξj. Let Λ be the constant given by Proposi-

tion 2.3.13. In order to prove Claim 3, we follow the argument in the proof of Claim 3 of

Theorem 6.1 in Chapter 1. We note that

Θi,j−1 ξj = Θi,j

We will show by induction on j = 0, 1, . . . , k that

d(yj, zj) ≤ L′
j∑
i=1

|βi−1|
−→
λj
←−
λi

Θi,j

The base case j = 0 is trival since both sides of the inequality equal zero. For the inductive
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step, we use (∗), (†) to see that

d(yj, zj) = ξj

−→
λj
←−
λj
d(yj, xj) = d(yj, xj)

−→
λj
←−
λj
ξj

≤
( ←−λj
−−→
λj−1

d(yj−1, zj−1) + L′|βj−1|
) −→λj
←−
λj
ξj

= d(yj−1, zj−1)

−→
λj
−−→
λj−1

ξj + L′|βj−1|
−→
λj
←−
λj
ξj

≤
(
L′

j−1∑
i=1

|βi−1|
−−→
λj−1
←−
λi

Θi,j−1

) −→λj
−−→
λj−1

ξj + L′|βj−1|
−→
λj
←−
λj
ξj

= L′
j−1∑
i=1

|βi−1|
−→
λj
←−
λi

Θi,j−1 ξj + L′|βj−1|
−→
λj
←−
λj
ξj

= L′
j−1∑
i=1

|βi−1|
−→
λj
←−
λi

Θi,j + L′|βj−1|
−→
λj
←−
λj

Θj,j

= L′
j∑
i=1

|βi−1|
−→
λj
←−
λi

Θi,j

Since Θi,j is bounded above by Λ,
−→
λj/
←−
λi is bounded above by δ, and

∑j
i=1|βi−1| ≤ |β| ≤ n,

we have

d(yj, zj) ≤ L′
j∑
i=1

|βi−1|δΛ = L′δΛ

j∑
i=1

|βi−1| ≤ L′δΛn

It follows that

eLd(yj ,zj)+Ld(yj+1,zj+1)+L ≤ e2LL′δΛn+L

Summing over j, we obtain

k∑
j=0

eLd(yj ,zj)+Ld(yj+1,zj+1)+L ≤
k∑
j=0

e2LL′δΛn+L = (k + 1)e2LL′δΛn+L

≤ (n/ρ+ 1)e2LL′δΛn+L

which is equivalent to an exponential function of n, establishing Claim 3.

If the spirality of S is non-trivial, Claim 1 combines with Claim 2 gives a double expo-
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nential upper bound for dS̃
(
s̃0, h(s̃0)

)
. If the spirality of S is trivial, we combine Claim 1

and Claim 3 to get an exponential upper bound. The proposition follows from Corol-

lary 1.2.10.

2.5.2 Lower bound of the distortion

In this subsection, we compute the lower bound of the distortion of π1(S) in π1(N).

Proposition 2.5.7. The distortion of π1(S) in π1(N) is at least exponential.

Proof. We recall that S contains a geometrically infinite piece. The fundamental group

of the geometrically infinite piece is exponentially distorted in the fundamental group of

the corresponding hyperbolic block of N (see Remark 2.3.7). The fundamental group of the

geometrically infinite piece is undistorted in π1(S) (in fact, every finitely generated subgroup

of π1(S) is undistorted), and the fundamental group of the hyperbolic block is undistorted in

π1(N). We combine these facts and Proposition 2.2.1 to get the proof of this proposition.

For the rest of this subsection, we will compute the lower bound (double exponential) of

the distortion of π1(S) in π1(N) when the spirality of S is non-trivial.

Proposition 2.5.8. The distortion π1(S) in π1(N) is at least double exponential if the

spirality of S is non-trivial.

The Goal: Let s̃0 be a lift of s0 in S̃. For convenience, we label s̃0 by z1. Our goal

in this section is to construct a sequence of elements {zn} in S̃ such that d(z1, zn) ≤ n and

dS̃(z1, zn) is bounded from below by a double exponential function in terms of n.

Lemma 2.5.9. Let γ be a geodesic loop in S such that γ and Tg have nonempty intersection

and such that w(γ) > 1. There exists a positive number A = A(γ) such that the following

holds: Let {c1, . . . , cm} be the sequence of curves of Tg (see Definition 2.3.8) crossed by γ.

The image of the circle g(ci) in M lies in a JSJ torus Ti obtained by gluing to a boundary

torus
←−
Ti of Mi−1 to a boundary torus

−→
Ti of Mi. Let

←−
T ′i and

−→
T ′i be the boundary tori of MBi−1
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and MBi
where the circle ci is embedded into

←−
T ′i and

−→
T ′i respectively. For each i = 1, 2, . . . ,m,

let ξi =
[←−
T ′i :
←−
Ti
]/[−→

T ′i :
−→
Ti ]. Extend the sequence ξ1, . . . , ξm to a periodic sequence {ξj}∞j=1

with ξj+m = ξj for all j > 0. Then there exists a (nonperiodic) sequence of integers
{
tj
}∞
j=1

,

depending on our choice of the loop γ such that

1. 0 ≤ tj/ξj − tj−1 ≤ A and tj/ξj ∈ N for all j ≥ 2.

2. tnm+1 ≥ t1w(γ)n for all n ≥ 1.

3. Let ε be the governor of g with respect to the chosen mapping tori. There exists a

positive constant D depending only on A, ε, and t1 such that tn ≤ eDn+D for all n ≥ 1.

Proof. We recall that the spirality of γ is the number w(γ) = ξ1ξ2 · · · ξm (see Defini-

tion 2.3.11). For each j ∈ {1, . . . ,m}, let pj = [
←−
T ′j :

←−
Tj ] and qj = [

−→
T ′j :

−→
Tj ]. Extend the

sequence p1, p2, . . . , pm to a m–periodic sequence {pj}∞j=1 with pj+m = pj for all j ≥ 1,

and similarly extend q1, . . . , qm to an m–periodic sequence {qj}∞j=1. Let A = max
{

1 + qj
∣∣

j = 1, 2, . . . ,m
}
. Let t(1) = q1q2 · · · qm, we construct an infinite sequence {tj} satisfying (1).

Suppose that tj−1 has been defined for some j ≥ 2, and we would like to define tj. Since

1 + qj ≤ A, we have

1 ≤ A− 1

qj
=
A+ tj−1 − 1− tj−1

qj
=
A+ tj−1

qj
− 1 + tj−1

qj

It follows that there exists kj ∈ N such that

1 + tj−1

qj
≤ kj ≤

A+ tj−1

qj
(♣)

Let tj = kjpj. It is obvious that tj ∈ N. We use the fact ξj = pj/qj to see that tj/ξj =

kjpj/ξj = kjqj. Hence tj/ξj ∈ N.

From (♣), we have 1 + tj−1 ≤ kjqj ≤ A + tj−1. Hence 1 ≤ kjqj − tj−1 ≤ A. Using

tj/ξj = kjqj, we immediately have 1 ≤ tj/ξj − tj−1 ≤ A, verifying (1).
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We next verify that the sequence {tj} in (1) satisfies (2). From (1), we have 0 ≤ tj/ξj −

tj−1. Thus

tj ≥ ξj tj−1 for all j > 1. (♦)

For any j > m, we apply (♦) iteratively m times to get

tj ≥ ξj tj−1

≥ ξj ξj−1 tj−2 ≥ · · ·

≥
(
ξj ξj−1 · · · ξj−m+1

)
tj−m

= w(γ)tj−m

Further applying tj ≥ w(γ)tj−m iteratively k times (and using that w(γ) ≥ 1) gives tj ≥

w(γ)ntj−nm for any n ≥ 1. In particular, with j = nm + 1 we have tnm+1 ≥ w(γ)nt1 which

confirms (2).

In order to establish (3), we recall that w(γ) > 1. It follows that the spirality of S

is non-trivial. Let ε be the governor of g with respect to the chosen mapping torus (see

Definition 2.3.11). We note that ε is strictly greater than 1 since the spirality of S is non-

trivial. We will show by induction on j that

tj ≤ (A+ t1)

j∑
i=1

εi

When j = 1, it is obvious that t1 < (A + t1)ε (using ε > 1). For the inductive step, we use
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the right inequality (i.e, tj/ξj − tj−1 ≤ A) in (1), and the fact ξj ≤ ε to get that

tj ≤ (A+ tj−1) ξj

≤ (A+ tj−1)ε = Aε+ tj−1ε

≤ Aε+ (A+ t1)
( j−1∑
i=1

εi
)
ε = Aε+ (A+ t1)

j−1∑
i=1

εi+1

< (A+ t1)ε+ (A+ t1)

j−1∑
i=1

εi+1

= (A+ t1)
(
ε+

j−1∑
i=1

εi+1
)

= (A+ t1)

j∑
i=1

εi

Since
∑j

i=1 ε
i < εj+1/(ε − 1), we obtain tj < (A + t1)εj+1/(ε − 1). It follows that there is

D > 0 depending only on A, ε and t1 such that tj ≤ eDj+D for all j ≥ 1 (for example, we

may choose D = ln(ε) + ln(A+ t1)ε/(ε− 1)).

For the rest of this section, we fix the curve γ satisfying the hypothesis of Lemma 2.5.9.

The collection Tg subdivides γ into a concatenation γ1 · · · γm with the following properties.

Each path γi belongs to a piece Bi of S, starting on a circle ci ∈ Tg and ending on the circle

ci+1. The image g(γi) of this path in N lies in a block Mi. The image of the circle g(ci) in N

lies a JSJ torus Ti obtained by gluing to a boundary torus
←−
Ti ofMi−1 to a boundary torus

−→
Ti

of Mi. We extend the sequence γ1, · · · , γm to a periodic sequence {γj}∞j=1 with γj+m = γj for

all j ≥ 1. We extend the sequence c1, · · · , cm to a periodic sequence {cj}∞j=1 with cj+m = cj

for all j ≥ 1. We also choose the basepoint x0 ∈ S to be the initial point of γ1. Let Q be

the family of lines that are lifts of loops of Tg.

construction 2.5.10 (Constructing a sequence of points in S̃). We recall that g̃ : S̃ → Ñ is

an embedding. Let x̃0 = g̃(s̃0). For convenience, we relabel x̃0 by z1. Draw a line that passes

through z1 parallel to a lift of the degeneracy slope −→s1 = sc1B1 in M̃1 = M̃B1 . We denote

the intersection of this line with the slice B̃1 × {t1} (of M̃1 = M̃B1) by y1. We denote the

degeneracy slope sc1Bm by ←−s1 . Let x1 = z1. We construct a sequence of triples {xj, yj, zj}

81



inductively as the following.

Suppose that yj−1, xj−1, and zj−1 have been defined. Let γ̃j−1 be the lift of γj−1 in Ñ

based at yj−1. Let y′j be the terminal point of γ̃j−1. Draw a line that passes through y′j

parallel to a lift of the degeneracy slope ←−sj = scjBj−1
in M̃j−1 = M̃Bj−1

. This line meets

the slice B̃j−1 × {0} ⊂ S̃ at a point denoted by xj, and it meets the slice B̃j−1 × {tj/ξj} in

M̃j−1 = M̃Bj−1
at a point denoted by yj. Draw a line that passes through yj parallel to a lift

of the degeneracy slope −→sj = scjBj
in M̃j = M̃Bj

until it meets the slice B̃j × {0} ⊂ S̃ at a

point denoted by zj.

yj−1

xj−1

zj−1

yj ∈ B̃j−1 × {tj/ξj} ∩ B̃j × {tj}

xj ∈ B̃j−1 × {0} ⊂ S̃

zj ∈ B̃j × {0} ⊂ S̃y′j
γ̃j−1

Figure 2.2: The picture illustrates the slices that xj , yj , zj belong to

In the following, let {xj}, {yj}, and {zj} be the collections of points given by Construc-

tion 2.5.10. We note that zj ∈ (B̃j−1 × {0}) ∩ (B̃j × {0}). We denote
←−
λi the length of the

image of ←−si in N , and
−→
λi the length of the image of −→si in N with i = 1, . . . ,m. We extend

the sequence
←−
λ1, . . . ,

←−
λm to the m–periodic sequence {

←−
λj}∞j=1, and the sequence

−→
λ1, . . . ,

−→
λm

to the m–periodic sequence {
−→
λj}∞j=1.

Remark 2.5.11. From Construction 2.5.10, it is possible that xj = zj. For each j ≥ 2, since

yj belongs to the slice B̃j−1 × {tj/ξj} of M̃j−1, we have d(yj, xj) =
tj
ξj

←−
λj . Also yj belongs to

the slice B̃j×{tj} of M̃j (see Lemma 2.5.6 for a similar argument), and thus d(yj, zj) = tj
−→
λj .

Since y′j ∈ B̃j−1 × {tj−1}, it follows that d(xj, y
′
j) = tj−1

←−
λj . Thus d(yj, y

′
j) = d(yj, xj) −

d(xj, y
′
j) =

tj
ξj

←−
λj − tj−1

←−
λj = (

tj
ξj
− tj−1)

←−
λj

We use the following lemma in the proof of Lemma 2.5.16 where we show that the double
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spiral path σn in Definition 2.5.13 is non-backtracking.

Lemma 2.5.12. Let F be a connected compact hyperbolic surface with non-empty boundary.

Equip F with a hyperbolic metric and lift this metric to the universal cover F̃ , and denote it

by d. There exists a constant k > 0 such that the following holds:

Let ` and `′ be two distinct boundary lines in F̃ . Let [p, p′] be a geodesic of shortest length

from ` to `′. Let c1 be the boundary circle in F such that `′ covers c1. Let z be a point in `,

β be the geodesic in F̃ connecting z to p′, and c̃k1 be the path lift of ck1 based at p′. Let β−1

be the path lift of the image of the inverse path β (of β) based at c̃k1(1). Then the terminal

point of the path β · c̃k1 · β−1 does not lie in the boundary line `.

Proof. We note that (F̃ , d) is bilipschitz homeomorphic to a fattened tree (see the paragraph

after Lemma 1.1 [BN08]). Thus, there exists ε > 0 such that the following holds: Let `0 and

`1 be two distinct boundary lines in F̃ . Let [p0, p1] be a geodesic of shortest length from `0

to `1. Then every geodesic from `0 to `1 must come within a distance ε of both p0 and p1.

Let δ be the maximum of values |c| with c varying over all boundary circles of F . Let k be

a sufficiently large integer such that kδ > 2ε.

Suppose by way of contradiction that the terminal point of β · c̃k1 · β−1 lies in `. Let

h = [ck1] ∈ π1(F, ∗) where ∗ ∈ c1 is the image of p′ under the covering map. We note that

β−1 = h(β), h(p′) ∈ `′, and p, z ∈ `. Since we assume that β−1(1) ∈ `, it follows that

h(z) = β−1(1) ∈ `. Since z, p ∈ `, it follows that h(p) ∈ `. Let [h(p), h(p′)] be the geodesic

in F̃ connecting h(p) ∈ ` to h(p′) ∈ `′. According to the previous paragraph, it follows that

there exists a ∈ [h(p), h(p′)] such that d(p′, a) ≤ ε. Since the concatenation [h(p), a] · [a, p′]

is a path from ` to `′ and [p, p′] is a geodesic of shortest length from ` to `′, it follows that

d(p, p′) =
∣∣[p, p′]∣∣ ≤ ∣∣[h(p), a] · [a, p′]

∣∣ = d(h(p), a) + d(a, p′) ≤ d(h(p), a) + ε.

Using the fact d(h(p), h(p′)) = d(p, p′), a ∈ [h(p), h(p′)], and the inequality d(p, p′) ≤

d(h(p), a) + ε, we have

d(a, h(p′)) = d(h(p), h(p′))− d(a, h(p)) = d(p, p′)− d(a, h(p)) ≤ ε
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It follows that

kδ ≤ k|c1| = |c̃k1| = d(p′, h(p′)) ≤ d(p′, a) + d(a, h(p′)) ≤ ε+ d(a, h(p′)) ≤ 2ε

This contradicts to our choice of k that kδ > 2ε.

We recall that Q is the family of lines in S̃ that are lifts of curves of Tg. We also recall

that both zj and zj+1 belong B̃j. For each j, let `j be the line in Q that passes through zj.

Let αj be a shortest path in B̃j connecting `j to `j+1 of B̃j. For each piece B of S, let kB

be the constant given by Lemma 2.5.12. Let k0 be the maximum of kB where B runs over

pieces of S.

Definition 2.5.13 (Double spiral path). Let [zj, zj+1] be a geodesic in S̃ connecting zj to

zj+1, and [zj, αj(1)] a geodesic in S̃ connecting zj to αj(1). For each n ≥ 1, let τn be the

concatenation of the geodesics

[z1, z2], [z2, z3], . . . , [znm−1, znm], [znm, αnm(1)]

Let c̃k01 be the path lift of ck01 based at αnm(1). We define double spiral path σn of τn as

σn = τn · c̃k01 · τ−1
n

Lemma 2.5.14. Suppose that M1 is a hyperbolic block of N . Then there exists an integer

n1, a function F (n) such that F (n) ∼ ee
n, and F (n) ≤ |αnm+1|S̃ for all n ≥ n1.

Proof. We recall that MB1 is the mapping torus of a pseudo-Anosov ϕ : B1 → B1. By

our assumption, we note that Mnm+1 = M1 and M1 is a hyperbolic block of N . Applying

Lemma 2.3.17 to the pseudo-Anosov ϕ and the curve γ1, there exists a sufficiently large

integer n0 such that the following holds: For any j ≥ n0, let uj and vj be the two endpoints

of a path lift of ϕj(γ1) in the universal cover B̃1. Let α be a shortest path in B̃1 from a
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boundary line of ∂B̃1 that contains uj to a boundary line of ∂B̃1 that contains vj. Then

eLj/C ≤ dS̃
(
uj, vj

)
,

ln dS̃
(
uj, α(0)

)
n

≤ 1

2
, and

ln dS̃
(
vj, α(1)

)
n

≤ 1

2
(∗)

By (2) in Lemma 2.5.9, we have
(
w(γ)

)n
t1 ≤ tnm+1. Hence, there exists an integer n1 which

is greater than n0 and satisfies that n0 ≤
(
w(γ)

)n
t1 ≤ tnm+1 for all n ≥ n1. Let F be a

function on n defined by F (n) = eLt1w(γ)n/C−2en/2. We note that w(γ) > 1, thus F (n) ∼ ee
n

(we recall that if a, b > 1 then abn ∼ ee
n). To prove the lemma, we first prove the following

claim.

Claim: F (n) ≤ dS̃
(
znm+1, αnm+1(1)

)
− en/2 for all n ≥ n1.

We recall that αnm+1 is a shortest path connecting `nm+1 to `nm+2. Let ˜ϕtnm+1(γ1) be

the path lift of ϕtnm+1(γ1) based at znm+1. We denote the initial point and terminal point

of ˜ϕtnm+1(γ1) by utnm+1 and utnm+1 respectively. We have that vnm+1 ∈ `nm+2 (we refer the

reader to Lemma 2.5.15 for an explanation of this fact). Using (∗), the fact znm+1 = utnm+1 ,

and the triangle inequality, we have

F (n) = eLt1w(γ)n/C − 2en/2 ≤ eLtnm+1/C − 2en/2

≤ dS̃(utnm+1 , vtnm+1)− 2en/2 (using the first inequality of (∗))

= dS̃(znm+1, vtnm+1)− 2en/2

≤ dS̃(znm+1, αnm+1(1)) + dS̃(αnm+1(1), vtnm+1)− 2en/2

≤ dS̃(znm+1, αnm+1(1)) + en/2 − 2en/2 (using the third inequality of (∗))

= dS̃(znm+1, αnm+1(1))− en/2 = dS̃(utnm+1 , αnm+1(1))− en/2

≤ dS̃(utnm+1 , αnm+1(0)) + dS̃(αnm+1(0), αnm+1(1))− en/2

≤ en/2 + dS̃(αnm+1(0), αnm+1(1))− en/2 (using the second inequality of (∗))

= dS̃(αnm+1(0), αnm+1(1)) = |αnm+1|S̃

which is confirming the lemma.
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In the proof of Lemma 2.5.14, we claim that the terminal point of ˜ϕtnm+1(γ1) lies in `nm+2

without an explanation. We provide a proof for this claim in the following lemma.

Lemma 2.5.15. Let ˜ϕtnm+1(γ1) be the path lift of ϕtnm+1(γ1) based at znm+1. Then the

terminal point of ˜ϕtnm+1(γ1) lies in `nm+2

Proof. We note that Bnm+1 = B1, cnm+1 = c1 and γnm+1 = γ1. Let ∗ be the image of

ynm+1 ∈ M̃B1 in MB1 under the covering map. Let ω be γ1 · c1 · γ−1
1 . Let ω̃ be the path lift

of ω in M̃B1 based at ynm+1. Draw a line that passes through ω̃(1) parallel to a lift of the

degeneracy slope sc1B1 in M̃B1 until it meets the slice B̃nm+1 × {0} ⊂ S̃ at a point denoted

by v. Let ũ be a path in B̃nm+1 connecting znm+1 to xnm+2, and let u be the image of ũ

under the covering map. It follows that u and γ1 have the same endpoints.

We first show that [c1] and [u−1 · ϕtnm+1(γ1)] commute in π1(B1, γ1(1)). Indeed, we note

that ũ · c̃1 · ũ−1 and [znm+1, ynm+1] · ω̃ · [ω̃(1), v] are paths connecting znm+1 to v. Since

M̃nm+1 is contractible, it follows that they are homotopic, and thus their images in MB1

are homotopic as well. Since the homotopy class of the image of the path [znm+1, ynm+1] ·

ω̃ · [ω̃(1), v] in MB1 is f−tnm+1 [ω]f tnm+1 where f = [sc1B1 ] ∈ π1(MB1 , ∗). It follows that

[u · c1 · u−1] = f−tnm+1 [ω]f tnm+1 ]. In π1(MB1 , ∗) we have that [ϕtnm+1(ω)] = f−tnm+1 [ω]f tnm+1

(since π1(MB1 , ∗) is the semidirect product of π1(B1) and 〈f〉). Hence, [u · c1 · u−1] =

[ϕtnm+1(ω)] in π1(MB1). It follows that ũ · c̃1 · ũ−1 and ˜ϕtnm+1(ω) have the same endpoints,

and thus they are homotopic in B̃nm+1 because B̃nm+1 is contractible. Thus, their images in

B1 are homotopic. In other words, u · c1 · u−1 and ϕtnm+1(γ1) · c1 ·ϕ−tnm+1(γ1) are homotopic

in B1. It follows that [c1] and [u−1 · ϕtnm+1(γ1)] commute in π1(B1, γ1(1)).

Since π1(B1, γ1(1)) is a free group, it follows that [c1] and [u−1 · ϕtnm+1(γ1)] are powers

if a common element (the subgroup generated by [c1] and [u−1 · ϕtnm+1(γ1)] is an abelian,

free subgroup of π1(B1, γ1(1)), thus it is a cyclic subgroup). Since c1 is a simple closed

curve and it is not null-homotopic, it follows that[c1] is a primitive element (in the sense

that there does not exist any h ∈ π1(B1, γ1(1)) such that [c1] = hk where |k| > 1) (see

Proposition 1.4 [FM12]). Thus, [u−1 · ϕtnm+1(γ1)] = [c1]k for some integer k. It follows that
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ϕtnm+1(γ1) is homotopic to u · ck1. Since ũ(1) = xnm+2 ∈ `nm+2, it follows that the terminal

point of ˜ϕtnm+1(γ1) lies in `nm+2.

Lemma 2.5.16. Suppose that M1 is a hyperbolic block of N . Then ee
n is dominated by

dS̃(z1, σn(1).

Proof. Let F be the function given by Lemma 2.5.14. We recall that F (n) ∼ ee
n . Let n1 be

the constant given by Lemma 2.5.14. For each n ≥ n1 +1, let
[
z1, σn(1)

]
be the geodesic in S̃

connecting z1 to σn(1). Let TS be the tree given by Definition 2.4.8. The subpath [zj, zj+1]

(with j = 1, · · ·nm − 1), the subpath [znm, αnm(1)] · c̃k01 · [znm, αnm(1)]−1, and the subpath

[zj, zj+1]−1 (with j = 1, · · ·nm− 1) of σn belong to pieces of S̃. These pieces correspond to

vertices of TS. By our construction of σn and by Lemma 2.5.12, these vertices are distinct.

It follows that the geodesic [z1, σn(1)] must come through all these pieces. Thus,
[
z1, σn(1)

]
must come through the piece B̃(n−1)m+1, and

[
z1, σn(1)

]
enters B̃(n−1)m+1 at `(n−1)m and

leaves B̃(n−1)m+1 at `(n−1)m+1. Using the fact that α(n−1)m+1 is a shortest path from `(n−1)m

to `(n−1)m+1. It follows that
∣∣α(n−1)m+1

∣∣
S̃
≤ dS̃(z1, σn(1)). As F (n) ∼ ee

n , it implies that

F (n−1) ∼ ee
n . Using Lemma 2.5.14, we have F (n−1) ≤

∣∣α(n−1)m+1

∣∣
S̃
≤ dS̃(z1, σn(1)). The

lemma is verified.

The proof of the following lemma is similar to the proof of Lemma 5.4 in Chapter 1.

Lemma 2.5.17. The distance in Ñ between the endpoints of σn is bounded above by a linear

function of n.

Proof. We recall that τn is the concatenation of geodesics

[z1, z2], [z2, z3], . . . , [znm−1, znm], [znm, αnm+1(1)]

Note that in the Construction 2.5.10, we also produce points y1, . . . , ynm+1 in Ñ . Similarly,

we also have points ynm+1, . . . , y1 associating to τ−1
n . Our purpose is to show the distance

in (Ñ , d) between the endpoints of σn is bounded above by a linear function of n. By the
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triangle inequality it suffices to produce an upper bound for the distance between successive

points of the linear sequence

y1, y2, . . . , ynm+1, ynm+1, . . . , y1

Let A is the constant given by Lemma 2.5.9. Let A be the maximum of all possible numbers

max
{∣∣γj∣∣+A

←−−
λj+1 + k0|cj|+ t1

−→
λ1

}
. By Remark 2.5.11 and Lemma 2.5.9 we have d(y′j, yj) =(

tj/ξj − tj−1

)←−
λj ≤ A

←−
λj . Using the triangle inequality, we have d(yj, yj+1) ≤ d(yj, y

′
j+1) +

d(y′j+1, yj+1) ≤
∣∣γj∣∣+d(y′j+1, yj+1) ≤

∣∣γj∣∣+A←−−λj+1 ≤ A for all j ≥ 0. Therefore d(y1, ymn+1) ≤

Amn. Similarly, we have d(y1, ymn+1) ≤ Amn. We note that two points ynm+1 and ynm+1

belong to the same plane T̃nm+1 and d(ynm+1, ynm+1) ≤ k0|c1| ≤ A. Thus, d(y1, y1) ≤

d(y1, ynm+1) + d(ynm+1, ynm+1) + d(ynm+1, y1) ≤ 2Amn + A. Since d(z1, y1) = t1
−→
λ1 ≤ A and

d(z1, y1) = t1
−→
λ1 ≤ A, it follows that d(σn(0), σn(1)) = d(z1, z1) ≤ d(z1, y1) + d(y1, y1) +

d(y1, z1) ≤ 2Anm+ 3A.

Proof of Proposition 2.5.8. If there is a closed curve γ such that it satisfies the hypothesis

of Lemma 2.5.9 and passing through a hyperbolic block, then Proposition 2.5.8 is confirmed

by a combination of the previous lemmas in this section. What remains to be shown is that

the existence of the curve γ.

Since the spirality of S is non-trivial, we can choose a closed curve α in S with nonempty

intersection with Tg such that w(α) > 1. If the curve α already passes through a geometrically

infinite piece, then we let γ = α. If not, we need to extend the curve α to a new closed

curve γ so that w(γ) = w(α) and γ has nonempty intersection with a curve in Tg that is a

boundary component of a piece of S, and this piece is mapped into a hyperbolic block of N .

We describe below how we find such a curve γ.

The collection Tg subdivides α into a concatenation α1 · · ·αn such that each αi belongs

to a piece Bi of S, starting on a circle ci ∈ Tg and ending on the circle ci+1. Note that by our

assumption above, each piece Bi is horizontal surface. We recall that Γ(Tg) is the graph dual
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to the collection Tg on S. Let vi be the vertex in Γ(Tg) associated to the piece Bi. The closed

curve α determines the closed cycle e1 · · · en in Γ(Tg) where the initial vertex and terminal

vertex of the edge ei are vi and vi+1 respectively (with a convention that vn+1 = v1).

Since S contains a geometrically infinite piece, let u be the vertex in Γ(Tg) associated

to this piece. It follows that u 6= vi for any i = 1, . . . , n. There exists j ∈ {1, . . . , n} such

that the following holds: there exists a β in Γ(Tg) with no self intersection connecting vj to

u such that the other vertices vi with i 6= j does not appear on β. Without loss generality,

we assume j = 1. Note that S is a clean almost fiber surface, so every piece of S is neither

an annulus or a disk. We thus choose a path γ′ connecting α1(0) to α1(1) with non-empty

intersection with Tg such that it can not be homotoped out of the geometrically finite piece,

and the corresponding path of γ′ ⊂ S in Γ(Tg) is the back-tracking path β · β−1. Let γ be

the concatenation of γ′ · α2 · · ·αn. It follows that w(γ) = w(α). Since w(α) > 1, we obtain

w(γ) > 1.

2.6 Distortion of surfaces in non-geometric 3-manifolds

In Section 2.4, we show that the distortion of a clean surface subgroup in a non-geometric 3–

manifold group can be determined by looking at the distortion of the clean almost fiber part.

We recall that the almost fiber part contains only horizontal and geometrically infinite pieces.

The distortion of properly immersed π1–injective horizontal surfaces in graph manifolds is

computed in Chapter 1. In the setting of mixed manifold, the distortion of a clean almost

fiber part is addressed in Section 2.5. In this section, we compute the distortion of arbitrary

clean surface in a non-geometric 3–manifold by putting the previous results together.

Lemma 2.6.1. Let S be a clean almost fiber surface in a graph manifold N . Let ∆ be the

distortion of π1(S) in π1(N). If S contains only one horizontal piece then ∆ is linear. If

S contains at least two horizontal pieces, then ∆ is quadratic if the spirality of S is trivial,

otherwise it is exponential.
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Proof. The fundamental group of a Seifert fibered block in π1(N) is undistorted. If S contains

only one horizontal piece then ∆ is linear by Remark 2.3.7 and Proposition 2.2.1. We now

consider the case S has at least two horizontal pieces. We remark that the main theorem in

Chapter 1 states for properly immersed π1–injective, horizontal surfaces. However, the proof

of the main theorem in Chapter 1 still hold for clean almost fiber surfaces.

Proof of Theorem 2.1.4. The proof is a combination of Lemma 2.6.1, Theorem 2.4.1, and

(1) in Remark 2.3.12.

Proof of Theorem 2.1.2. If Φ(S) is empty then the distortion of π1(S) in π1(N) is linear by

Corollary 2.4.3. We now assume that Φ(S) is non-empty. By Theorem 2.4.1, it is suffice to

compute the distortion of each component of the almost fiber part Φ(S) in N .

Let N ′ be a submanifold of N such that the restriction g|S′ : S ′ # N ′ is a clean almost

fiber surface. Note that π1(N ′) is undistorted in π1(N), thus the distortion of π1(S ′) in

π1(N) is equivalent to the distortion of π1(S ′) in π1(N ′). To compute the distortion of π1(S ′)

in π1(N ′), we note that the distortions of clean almost fiber surfaces in mixed manifolds,

graph manifolds, Seifert fibered spaces and hyperbolic spaces are addressed in Theorem 2.1.5,

Theorem 2.1.4 and Remark 2.3.7 respectively. The proof of the theorem follows easily by

combining these results together with (1) in Remark 2.3.12.
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Chapter 3

Quasi-isometries of pairs: surfaces in

graph manifolds

3.1 Introduction

A finitely generated group G can be considered as a metric space when we equip G with the

word metric from a finite generating set. With different finite generating sets on G we have

different metrics on G, however such metric spaces are unique up to quasi-isometric equiva-

lence. The notion of quasi-isometry that ignores small scale details is especially significant in

geometric group theory following the work of Gromov. Two quasi-isometries of G are called

equivalent if they are within finite distance from each other. The group of quasi-isometries

of G, denoted by QI(G) is the set of equivalence classes of quasi-isometries G → G with

the canonical operation (i.e, composition of maps). We note that if two finitely generated

groups are quasi-isometric then their corresponding quasi-isometry groups are isomorphic.

Quasi-isometric classification of graph manifolds has been studied by Kapovich-Leeb

[KL98] and a complete quasi-isometric classification for fundamental groups of graph mani-

folds is given by Behrstock-Neumann in [BN08]. In particular, Behrstock-Neumann proved

that the fundamental groups of all closed graph manifolds are quasi-isometric. Thus, there
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is exactly one quasi-isometry group of fundamental group of closed graph manifolds. When

N is a closed graph manifold, the construction of quasi-isometries of Behrstock-Neumann is

very flexible and produces many quasi-isometric classes in QI(π1(N)).

A subgroup H ≤ G is called separable if for any g ∈ G − H there exists a finite index

subgroup K ≤ G such that H ≤ K and g /∈ K. A horizontal surface S # N in a graph

manifold N is called separable if π1(S) is a separable subgroup in π1(N). In Chapter 1, we

show that the distortion of π1(S) in π1(N) is quadratically distorted whenever the surface is

separable and is exponentially distorted otherwise. Therefore, there does not exist any quasi-

isometry of fundamental groups of closed graph manifolds mapping a separable, horizontal

surface to a non-separable, horizontal surface.

The purpose of this paper is trying to understand whether such quasi-isometries ex-

ist which map any separable (resp.ṅon-separable) surface to another separable (resp. non-

separable) surface.

If the two surfaces are both separable or both non-separable, then the subgroup dis-

tortion is not an useful quasi-isometric invariant to look at for the purpose above. Beside

subgroup distortion, we remark that there are several other key quasi-isometric invariants

of a pair (G,H) in literature such as upper, lower relative divergence [Tra15], and k–volume

distortion (k ≥ 1) [Ben11], [Ger96]. However, again the k–volume distortion is not an useful

quasi-isometric invariant for our purpose above. We show that k–volume distortion of the

surface subgroup in the 3–manifold group is always trivial if k ≥ 3, linear when k = 2, and

quadratic (resp. exponential) when k = 1 and the surface is separable (resp. non-separable).

Relative divergence which is introduced by Tran [Tra15] is quite technical and difficult to

compute in general. Recent work of Tran [Tra17] allows us to show that the upper (lower)

relative divergence of a separable, horizontal surface in a graph manifold is quadratic (linear)

(see Appendix), however the author does not know the upper relative divergence and lower

relative divergence in the non-separable case.

So far, none of the invariants discussed above can distinguish between two separable
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surfaces or two non-separable surfaces. The following questions are natural to ask.

Question 3.1.1. Given a closed graph manifold N . Are all pairs
(
π1(N), π1(S)

)
and(

π1(N), π1(S ′)
)
with S and S ′ non-separable in N , quasi-isometric?

Question 3.1.2. Given a closed graph manifold N . Are all pairs
(
π1(N), π1(S)

)
and(

π1(N), π1(S ′)
)
with S and S ′ separable in N , quasi-isometric?

In the questions above, two pairs (G,H) and (G′, H ′) with H ≤ G and H ′ ≤ G′ are quasi-

isometric if there is a quasi-isometry G → G′ mapping H to H ′ within a finite Hausdorff

distance.

In this paper we show the answer to the Question 3.1.1 is no. We give examples of non-

separable surfaces where such quasi-isometries never exist. The main theorem of this paper

is the following

Theorem 3.1.3. There exists a closed simple graph manifold N and infinitely many non-

separable, horizontal surface Sn # N such that none of the pairs
(
π1(N), π1(Sn)

)
and(

π1(N), π1(Sm)
)
are quasi-isometric when n 6= m

No example is currently known for separable, horizontal surfaces S # N and S ′ # N

such that
(
π1(N), π1(S)

)
and

(
π1(N), π1(S ′)

)
are not quasi-isometric. Thus, we propose the

following conjecture.

Conjecture 3.1.4. Let N and M be two closed graph manifolds. Let S # N and S ′ # M

be two separable, horizontal surfaces. Then there is a quasi-isometry from π1(N) to π1(M)

mapping π1(S) to π1(S ′) in a finite Hausdorff distance.

Although this paper deals only with graph manifolds, it is interesting to work on other

classes of 3–manifolds. We note that if Γ ≤ Isom(Hn) (n ≥ 3) is a nonuniform lattice and Γ

is torsion-free then the quotient space N = Hn/Γ is a hyperbolic manifold of finite volume.

In the setting of non-uniform lattices in Isom(Hn) (n ≥ 3), quasi-isometry of pairs can be

interpreted via algebraic properties of groups (see Theorem 3.1.5) thank to Schwartz Rigidity

Theorem.
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Theorem 3.1.5. Let Γ and Γ′ be two non-uniform lattices of Isom(Hn) with n ≥ 3. Let H

and H ′ be two finitely generated subgroups of Γ and Γ′ respectively. Then (Γ, H) and (Γ′, H ′)

are quasi-isometric if and only if there exists g ∈ Isom(Hn) such that gHg−1 and H ′ are

commensurable as well as gΓg−1 and Γ′ are commensurable.

3.2 Quasi-isometry of the pairs of spaces

In this section, we review some notions in geometric group theory.

Let (X, d) be a metric space, and γ a path in X. We denote the length of γ by |γ|. If A

and B are subsets of X, the Hausdorff distance between A and B is

dH(A,B) = inf
{
r
∣∣ A ⊆ Nr(B) and B ⊆ Nr(A)

}
where Nr(C) denotes the r–neighborhood of a subset C.

Definition 3.2.1. Let X and Y be metric spaces. Let A be a subspace of X and B a

subspace of Y . Two pairs of spaces (X,A) and (Y,B) is called quasi-isometric if there exists

an (L,C)–quasi-isometry f : X → Y such that f(A) ⊆ B and B ⊆ NC(f(A)). We call the

map f an (L,C)–quasi-isometry of pairs. We denote (X,A) ∼ (Y,B) if (X,A) and (Y,B)

are quasi-isometric, and (X,A) � (Y,B) otherwise.

Definition 3.2.2. Let G and G′ be finitely generated groups with finite generating sets S

and S ′ respectively. Let Γ(G,S) and Γ(G′,S ′) be the Cayley graphs of (G,S) and (G′,S ′)

respectively. Let H be a subgroup of G and H ′ a subgroup of G′. We say (G,H) and (G′, H ′)

are quasi-isometric if the pairs of spaces
(
Γ(G,S), H

)
and

(
Γ(G′,S ′), H ′

)
are quasi-isometric.

Remark 3.2.3. 1. We note that ∼ is an equivalent relation, and the relation (G,H) ∼

(G′, H ′) is independent of choices of generating sets for the groups.

2. If there is a quasi-isometry f : X → Y such that dH
(
f(A), B

)
is finite then (X,A) and

(Y,B) are quasi-isometric.
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Example 3.2.4. 1. Let H ≤ G1 be finitely generated subgroups of a finitely generated

group G. Suppose that G1 is a finite index subgroup in G. Then (G,H) ∼ (G1, H).

2. (G,H) ∼ (G,G) if and only if H is a finite index subgroup of G.

3. Let Fn be the free group on n generators with n ≥ 2. It is well-known that there are

two isomorphic subgroups H and K of Fn such that H is a finite index subgroup of Fn

and K is an infinite index subgroup of Fn. It follows from (2) that (Fn, H) � (Fn, K).

4. Let M1 and M2 be Seifert fibered spaces with the base surfaces have negative Euler

characteristic and nonempty boundary. Let S1 and S2 be two properly immersed π1–

injective horizontal surfaces in M1 and M2 respectively. The immersion Sj #Mj lifts

to an embedding Sj → Sj × S1 (which sends x ∈ Sj to (x, (1, 0)) ∈ Sj × S1) in a

finite cover Sj × S1 of Mj (see Lemma 2.1 [RW98]). Since π1(Sj) is free, there exists a

quasi-isometry f : π1(S1)→ π1(S2). Let ϕ : π1(S1)×Z→ π1(S2)×Z be the map given

by ϕ(x, n) = (f(x), n). It follows that ϕ is a quasi-isometry mapping π1(S1) to π1(S2).

Thus
(
π1(S1 × S1), π1(S1)

)
∼
(
π1(S2 × S1), π1(S2)

)
. Using (1) in Example 3.2.4, we

have
(
π1(M1), π1(S1)

)
∼
(
π1(M2), π1(S2)

)
.

Definition 3.2.5 (Commensurable). Let G be a group. Two subgroups H and K of G are

called commensurable if H ∩K is a finite index subgroup of both H and K.

We use the following lemma in the proof of Theorem 3.1.5.

Lemma 3.2.6 (Corollary 2.4 [MSW11]). Two subgroups H and K are commensurable in a

finitely generated group G if and only if H is within a finite Hausdorff distance with K.

Proof of Theorem 3.1.5. We are going to prove sufficiency. Let equip Γ and Γ′ with word

metrics. Let f : Γ → Γ′ be a quasi-isometry such that f(H) is within a finite Hausdorff

distance with H ′ with respect to the word metric on Γ′. By Schwartz Rigidity Theorem

[Sch95] (see also, for example, Theorem 24.1 [DtK18]), there exists g ∈ Isom(Hn) such that

the following holds:
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1. gΓg−1 and Γ′ are commensurable.

2. Let G be the subgroup of Isom(Hn) generated by two subgroups gΓg−1 and Γ′. We

note that G is a finitely generated subgroup. We equip G with a word metric. For each

γ ∈ Γ, choose yγ ∈ Γ′ which is nearest to gγg−1 with respect to the word metric on

G. Then the map qg : Γ→ Γ′ which sends γ to yγ is a quasi-isometry and qg is within

finite distance from f .

We will need to show gHg−1 and H ′ are commensurable. Let dH denote for the Hausdorff

distance of any two subsets ofG with respect to the given word metric onG. By the definition

of qg we have dH(gHg−1, qg(H)) < ∞ and dH(qg(H), f(H)) < ∞. By the assumption of f

we have dH(f(H), H ′) <∞. We use the triangle inequality to get that

dH(gHg−1, H ′) ≤ dH(gHg−1, qg(H)) + dH(qg(H), f(H)) + dH(f(H), H ′) <∞.

Thus, gHg−1 and H ′ are commensurable by Lemma 3.2.6.

We now are going to prove necessity. Suppose that there exists g ∈ Isom(Hn) such

that gHg−1 and H ′ are commensurable as well as gΓg−1 and Γ′ are commensurable. Let

G be the subgroup of Isom(Hn) generated by two subgroups gΓg−1 and Γ′. We equip G

with a word metric d, and with respect to this metric we denote dH the Hausdorff distance

of any two subsets of G. Since gHg−1 and H ′ are commensurable as well as gΓg−1 and

Γ′ are commensurable, it follows that there is R > 0 such that dH(gHg−1, H ′) ≤ R and

dH(Γ′, gΓg−1) ≤ R. For each γ ∈ Γ, choose an element qg(γ) in Γ′ such that d(qg(γ), gγg−1) ≤

R. We thus define the map qg : Γ → Γ′. Since the map Γ → gΓg−1 which sends γ to gγg−1

is a quasi-isometry and qg is within finite distance from the map Γ→ gΓg−1, it follows that

qg is a quasi-isometry. From the definition of qg, it is obvious that dH(qg(H), gHg−1) ≤ R.

We use the facts dH(qg(H), gHg−1) ≤ R and dH(gHg−1, H ′) ≤ R to get that

dH(qg(H), H ′) ≤ dH(qg(H), gHg−1) + dH(gHg−1, H ′) ≤ 2R

96



Thus (Γ, H) and (Γ, H ′) are quasi-isometric via the map qg.

We use the following lemma in the proof of Theorem 3.1.3.

Lemma 3.2.7. Let G and G′ be finitely generated groups with finite generating sets S and

S ′ respectively. Let H and H ′ be finitely generated subgroups of G and G′ with finite gen-

erating sets A and A′ respectively such that A ⊆ S and A′ ⊆ S ′. Let ϕ :
(
Γ(G,S), H

)
→(

Γ(G′,S ′), H ′
)
be an (L,C)–quasi-isometry of pairs. Then there exists a constant L′ such

that
|h|A
L′
− L′ ≤ |ϕ(h)|A′ ≤ L′|h|A + L′

for all h ∈ H.

Proof. Let e and e′ be the identity elements in the groups G and G′. For any h ∈ H,

let α be a geodesic in the Cayley graph Γ(H ′,A′) connecting ϕ(e) to ϕ(h). We denote

ϕ(e) = y0, y1, . . . , ym = ϕ(h) be the sequence of vertices belong to α. Since H ′ ⊂ NC(ϕ(H)),

there exists xi ∈ H such that dS′(ϕ(xi), yi) ≤ C with x0 = e and xm = h. Moreover, we have

dS(xi, xi+1) ≤ LdS′(ϕ(xi), ϕ(xi+1)) + C ≤ L+ C.

Since G is locally finite, it follows that there exists a constant R depending on L and C such

that dA(xi, xi+1) ≤ R. It is obvious that |h|A = dA(e, h) ≤ mR, thus |h|A = dA(e, h) ≤

RdA′(ϕ(e), ϕ(h)) ≤ R|ϕ(e)|A′ + R|ϕ(h)|A′ . Let ϕ be a quasi-inverse of ϕ, by a similar

argument it is not hard to see that constants L′ and C ′ exist.

It is well known that a group acting properly, cocompactly, and isometrically on a geodesic

space is quasi-isometric to the space. The following corollary of this fact allows us to show

two pairs of (group, subgroup) are quasi-isometric using the geometric properties of spaces

in place of words metrics.

Corollary 3.2.8. Let Xi and Yi be compact geodesic spaces, and let g : (Yi, yi) → (Xi, xi)

be π1–injective with i = 1, 2. We lift the metrics on Xi and Yi to geodesic metrics on the
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universal covers X̃i and Ỹi respectively. Let Gi = π1(Xi, xi) and Hi = g∗
(
π1(Yi, yi)

)
. Then

(X̃1, Ỹ1) and (X̃2, Ỹ2) are quasi-isometric if and only if (G1, H1) and (G2, H2) are quasi-

isometric.

3.3 Graph manifolds and horizontal surfaces

In this section, we give some lemmas which will be used in the proof of Theorem 3.1.3 in

Section 3.5.

In the following, we use the notation [α]∧ [β] to denote the algebraic intersection number

of two oriented closed curves α and β in a torus T with respect to some chosen orientation

on T .

Let g : S # N be a horizontal surface in a simple graph manifold N given by Defi-

nition 1.4.10. We have the following lemma that give us an alternative way to compute

slopes.

Lemma 3.3.1. For each oriented edge e in O(ΩS). Let
←−
B and

−→
B be the components in

S−g−1(T ) corresponding to the initial and terminal vertices of e. These components
←−
B and

−→
B are mapped by g into Seifert blocks

←−
M and

−→
M respectively. Let c be the circle in g−1(T )

corresponding to the edge e obtained by gluing a boundary circle ←−c of
←−
B to a boundary circle

−→c of
−→
B . The image g(c) in N lies in a JSJ torus T obtained by gluing a boundary torus

←−
T

of
←−
M to a boundary torus

−→
T of

−→
M . Let

←−
β and

−→
β be fibers of

←−
M and

−→
M in the torus T . Let

←−α and −→α be oriented simple closed curves in
←−
T and

−→
T respectively such that

∣∣∣[←−α ]∧ [
←−
β ]
∣∣∣ = 1

and
∣∣∣[−→α ] ∧ [

−→
β ]
∣∣∣ = 1. If [g(c)] = m[←−α ] + n[

←−
β ] and [g(c)] = m′[−→α ] + n′[

−→
β ] for some integers

m,n,m′ and n′. Then sl(e) = |m/m′|.

Proof. Let a and b be integers such that [g(c)] = a[
←−
β ] + b[

−→
β ], By the definition of slope, we

have sl(e) = |b/a|. We use the distributive law and the scalar multiplication law of algebraic

intersection together with the facts [
←−
β ] ∧ [

←−
β ] = 0,

∣∣∣[←−α ] ∧ [
←−
β ]
∣∣∣ = 1 and

∣∣∣[←−β ] ∧ [
−→
β ]
∣∣∣ = 1 to
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get that ∣∣∣[g(c)] ∧ [
←−
β ]
∣∣∣ =

∣∣∣m[←−α ] ∧ [
←−
β ] + n[

←−
β ] ∧ [

←−
β ]
∣∣∣ = |m|

and ∣∣∣[g(c)] ∧ [
←−
β ]
∣∣∣ =

∣∣∣a[
←−
β ] ∧ [

←−
β ] + b[

−→
β ] ∧ [

←−
β ]
∣∣∣ = |b|

Thus, |m| = |b|.

Similarly, we get that

∣∣∣[g(c)] ∧ [
−→
β ]
∣∣∣ =

∣∣∣m′[−→α ] ∧ [
−→
β ] + n′[

−→
β ] ∧ [

−→
β ]
∣∣∣ = |m′|

and ∣∣∣[g(c)] ∧ [
−→
β ]
∣∣∣ =

∣∣∣a[
←−
β ] ∧ [

−→
β ] + b[

−→
β ] ∧ [

−→
β ]
∣∣∣ = |a|

Thus, |m′| = |a|. It follows that |b/a| = |m/m.|. Therefore sl(e) = |m/m′|.

We use the following lemma in the construction of surfaces in Lemma 3.4.1.

Lemma 3.3.2 (Lemma 2.2 in [RW98]). Let F be a surface with non-empty boundary, positive

genus and χ(F ) < 0. Let M be the trivial Seifert fibered space F ×S1. We fix orientations of

the surface F and the fiber S1 of M . Let
{
αi
∣∣ i = 1, 2, . . . , t

}
be the collection of oriented

boundary curves of the surface F . Let Ti = T (αi, βi) be the boundary torus of M = F × S1

where βi is a oriented fiber S1 corresponding to the second factor of M with i = 1, 2, . . . , n.

Suppose that
{
cij
∣∣ j = 1, 2

}
is a family of oriented simple closed curves on Ti and

[
cij
]

= uij[αi] + vij[βi] in H1(Ti)

for some integers uij and vij with uij > 0.

Then the union of family
{
cij
∣∣ j = 1, 2

}
is a boundary of a connected immersed ori-

entable horizontal surface S in M if the following holds

1.
∑n

i=1

∑2
j=1 vij = 0
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2. There exists u > 0 such that for all i we have ui1 + ui2 = u.

3. uχ(F ) is even.

Remark 3.3.3. Let S # M be the horizontal surface given by Lemma 3.3.2. By the

construction, we note that the number of boundary components of S is 2t. We can compute

the genus x of S as the follows. The composition of S #M with the projection of M to F

yields a finite covering map S → F with degree u. Hence, χ(S) = uχ(F ). It follows that

2− 2x− 2t = uχ(F ). Thus, x =
(
2− 2t− uχ(F )

)/
2.

Let ←−α ,
←−
β ,−→α and

−→
β be the copies of the circle S1. Let

←−
T =←−α ×

←−
β and

−→
T = −→α ×

−→
β .

Let J =
(p q

r s

)
be the 2 by 2 matrix such that p, q, r, s ∈ Z, q 6= 0 and ps− qr = −1. With

respect to the matrix J , the basis {[←−α ], [
←−
β ]} in H1(

←−
T ), and the basis {[−→α ], [

−→
β ]} in H1(

−→
T ),

there is a homeomorphism h :
←−
T →

−→
T such that h∗ : H1(

←−
T )→ H1(

−→
T ) has the matrix J in

the sense that

h∗

(
a[←−α ] + b[

←−
β ]
)

=
(

[−→α ], [
−→
β ]
)(p q

r s

)(a
b

)

In the rest of this paper, when we say we glue the torus
←−
T to the torus

−→
T via matrix J , we

mean that the gluing map is the homeomorphism h.

3.4 Constructing horizontal surfaces

In this section, we will construct a closed simple graph manifold N and a collection of

horizontal surfaces {Sn # N} such that when we pass to a specific subsequence then this

subsequence satisfies the conclusion of Theorem 3.1.3. We also recall some facts from Chap-

ter 1 that will be used in Section 3.5.

Lemma 3.4.1. There exists a closed simple graph manifold N such that for any n ∈ N,

there exists a non-separable, horizontal surface gn : Sn # N with the following properties.
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1. The governor of gn : Sn # N is εn = 2n+ 1

2. Let T be the union of the JSJ tori of N . There exists a simple closed curve γn in Sn such

that the geometric intersection number of γn and g−1
n (T ) is 2 and w(γn) = (2n+ 1)2.

Proof. We first construct a simple graph manifold N ′ with non-empty boundary, and a non-

separable horizontal surface Bn # N ′ (for each n) satisfying the conclusion of the lemma

(we refer the reader to Figure 3.1 for an illustration.), and then obtain a closed simple

graph manifold N and a closed surface Sn by doubling N ′ and Bn along their boundaries

respectively. The construction here is inspired from Example 2.6 in [RW98].

Let
←−
F be the once punctured torus with the boundary circle denoted by ←−α . Let

←−
β be

the fiber factor of the trivial Seifert fibered space
←−
F ×S1. We denote the boundary torus of

←−
F ×S1 by

←−
T1. We fix orientations of

←−
F and

←−
β . Let

−→
F be a twice punctured torus with two

boundary circles denoted by −→α and
−→
α′ . Let

−→
β be the fiber factor of the trivial Seifert fibered

space
−→
F ×S1. The space

−→
F ×S1 has two boundary tori

−→
T1 = T (−→α ,

−→
β ) and

−→
T2 = T (

−→
α′ ,
−→
β ).

We fix orientations of
−→
F and

−→
β .

Let J be the matrix
(1 1

2 1

)
. Let N ′ be the simple graph manifold obtained from gluing

the boundary torus
←−
T1 of

←−
F × S1 to the boundary torus

−→
T1 of

−→
F × S1 via the gluing matrix

J . We note that N ′ is a simple graph manifold because of
∣∣∣[←−β ] ∧ [

−→
β ]
∣∣∣ = 1. To see this, we

note that [
←−
β ] = 0[←−α ] + [

←−
β ] and hence in H1(

−→
T 1) we have [

←−
β ] =

(
[−→α ], [

−→
β ]
)(1 1

2 1

)(0

1

)
=

[−→α ] + [
−→
β ]. Thus

∣∣∣[←−β ] ∧ [
−→
β ]
∣∣∣ =

∣∣∣[−→α ] ∧ [
−→
β ]
∣∣∣ = 1.

Let
←−
B be the orientable surface with two boundaries←−c1 and←−c2 with n+ 1 genus. Let

−→
B

be the orientable surface with four boundaries −→c1 ,
−→c2 ,
−→c3 ,
−→c4 and 2n + 1 genus. Let c1,1 and

c1,2 be oriented simple closed curves in
←−
T1 such that in H1(

←−
T1) we have [c1,1] = [←−α ] + 2n[

←−
β ]

and [c1,2] = (2n + 1)[←−α ] − 2n[
←−
β ]. Applying Lemma 3.3.2 to

←−
F ,
←−
T1, c1,1 and c1,2, there is a
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horizontal surface ←−g :
←−
B #

←−
F × S1 such that in H1(

←−
T 1) we have

[←−g (←−c1 )
]

= [c1,1] = [←−α ] + 2n[
←−
β ][←−g (←−c2 )

]
= [c1,2] = (2n+ 1)[←−α ]− 2n[

←−
β ]

(∗)

Since the homeomorphism
←−
T1 →

−→
T1 is the gluing matrix J , it follows that in H1(

−→
T ) we

have [c1,1] = (2n + 1)[−→α ] + (2n + 2)[
−→
β ] and [c1,2] = [−→α ] + (2n + 2)[

−→
β ]. Let c2,1 and c2,2 be

oriented simple closed curves in
−→
T2 such that in H1(

−→
T2) we have [c2,1] = [α′] − (2n + 2)[

−→
β ]

and [c2,2] = (2n + 1)[
−→
α′ ] − (2n + 2)[

−→
β ]. Applying Lemma 3.3.2 to

−→
F ,
−→
T1,
−→
T2, c1,1, c1,2, c2,1

and c2,2, there is a horizontal surface −→g :
−→
B #

−→
F × S1 such that in H1(

−→
T1) we have

[−→g (−→c1 )
]

= [c1,1] = (2n+ 1)[−→α ] + (2 + 2n)[
−→
β ][−→g (−→c2 )

]
= [c1,2] = [−→α ] + (2n+ 2)[

−→
β ]

(†)

and in H1(
−→
T2) we have

[−→g (−→c3 )
]

= [c2,1] = [
−→
α′ ]− (2 + 2n)[

−→
β ][−→g (−→c4 )

]
= [c2,2] = (2n+ 1)[

−→
α′ ]− (2 + 2n)[

−→
β ]

Since ←−g (←−cj ) = −→g (−→cj ) in T with j = 1, 2, we may paste horizontal surfaces ←−g :
←−
B #

←−
F × S1 and −→g :

−→
B #

−→
F × S1 to form a horizontal surface g : Bn # N ′ where Bn is formed

from
←−
B and

−→
B by gluing. The surface Bn has two boundary components −→c3 and −→c4 . We

denote c1 to be the closed curve in Bn obtained from gluing ←−c1 to −→c1 . We denote c2 to be is

the closed curve in Bn obtained from gluing ←−c2 to −→c2 .

Fix a point x in the interior of the subsurface
−→
B of Bn. Let γn be an oriented simple

closed curve in Bn such that starting from x the curve γn intersects each circle c1 and c2

exactly once. The direction of γn determines directed edges e1 and e2 in the graph ΩBn .

Applying Lemma 3.3.1 to the horizontal surface g : Bn # N ′ together with equations (∗)
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←−
B −→

B

←−c1

←−c2

−→c1

−→c2

−→c3

−→c4

←−α

−→α −→
α′

(1, 2n)

(2n+ 1,−2n)

(2n+ 1, 2n+ 2)

(1, 2n+ 2)

(1,−2n− 2)

(2n+ 1,−2n− 2)

J

γn

←−
F −→

F

×S1 S1×

Figure 3.1: The left down arrow illustrates the horizontal surface ←−g :
←−
B →

←−
F × S1 and the right

down arrow illustrates the horizontal surface −→g :
−→
B →

−→
F × S1 in Lemma 3.4.1. The simple graph

manifold N ′ is obtained from
←−
F × S1 to

−→
F × S1 by gluing the boundary torus ←−α × S1 of

←−
F × S1

to the boundary torus −→α × S1 of
−→
F × S1 via the gluing matrix J . We paste ←−g and −→g to form the

horizontal surface g : Bn → N ′. The oriented curve γn in the surface Bn is shown in the Figure.

and (†), we get that sl(e1) = (2n + 1)
/

1 = 2n + 1 and sl(e2) = (2n + 1)
/

1 = 2n + 1.

Therefore, w(γn) = sl(e1) · sl(e2) = (2n+ 1)2.

We double the surface Bn along its boundary to get a closed surface, denoted by Sn. We

also double the simple graph manifold N ′ along its boundary to get a closed simple graph

manifold, denoted by N . From the horizontal surface g : Bn # N ′, after doubling Bn and

N ′ along their respective boundaries, we get a canonical a horizontal surface, denoted by

gn : Sn # N . Furthermore, since w(γn) > 1 it follows that gn : Sn # N is non-separable.

We note that the manifold N is a closed simple graph manifold with three Seifert blocks and

Sn is a closed surface with three pieces. We note that from the construction of gn : Sn # N ,

its governor is εn = 2n + 1 and the simple closed curve γn in Sn has geometric intersection

number with g−1
n (T ) is 2 where T is the union of JSJ tori in N .

103



To get into the proof of Theorem 3.1.3, we need several facts from Section 5 and Section 6

in Chapter 1. Let {Sj # N}j∈N be the collection of non-separable, horizontal surfaces given

by Lemma 3.4.1. We equip Sj with a hyperbolic metric, and we equip N with a length

metric. These metrics induce metrics on the universal covers S̃j and Ñ , which are denoted

by dS̃j
and d respectively. In the following, for any two points x and y in Ñ we denote [x, y]

as a geodesic in Ñ connecting x to y.

Let Sn be the surface given by Lemma 3.4.1, and let γn be the curve given by Lemma 3.4.1.

Fact 3.4.2 below is extracted from Section 5 (lower bound of distortion) in Chater 1, it mainly

follows from the proof of Theorem 5.1 in Chapter 1.

Fact 3.4.2. Let γn be the closed curve in the surface Sn given by Lemma 3.4.1. Fix a point

s0 ∈ γn such that s0 belongs to a circle in the collection of circles in g−1
n (T ). We relabel s̃0

by x̃0. There exists a constants L ≥ 1 depending on the length of γn, and a collection of

paths
{
ρj
∣∣ j ∈ N} in S̃n (the path ρj is called “double spiral loop" in Chapter 1) such that

the following holds.

1. For each j ∈ N, we have x̃0 = ρj(0) and x̃j := ρj(1) is an element in the orbit

π1(Sn, s0)(s̃0).

2. For each j ∈ N, we have that [x̃0, x̃j]− {x̃0, x̃j} passes through 4j − 1 Seifert blocks of

Ñ .

3. For each j ∈ N, we have that

d(x̃0, x̃j) ≤ Lj + L and Lw(γn)j ≤ dS̃n
(x̃0, x̃j).

The following fact is extracted from Section 6 (upper bound of distortion) in Chapter 1.

It mainly follows from Claim 1 and Claim 2 in the proof of Theorem 6.1 in Chapter 1.

Fact 3.4.3. Let εm > 1 be the governor of the non-separable, horizontal surface gm : Sm #

N . There exists a constant L′ ≥ 1 such that the following holds: For any x and y in S̃m, let

104



k be the number of Seifert blocks where [x, y]− {x, y} passes through. Then

dS̃m
(x, y) ≤ L′ εkm + L′d(x, y).

Let N andM be closed simple graph manifolds. We equip N andM with length metrics,

and these metrics induce the metrics in the universal covers Ñ and M̃ , denoted by d and d′

respectively. It is shown by Behrstock-Neumann [BN08] that Ñ and M̃ are quasi-isometric.

Lemma 3.4.4. Let ϕ : Ñ → M̃ be a quasi-isometry. There exists a positive constant D > 0

such that the following holds. For any two points x and y in Ñ such that x and y belong to

JSJ planes of Ñ and [x, y] − {x, y} passes through n number of Seifert blocks. Let k be the

number of Seifert blocks where [ϕ(x), ϕ(y)]− {ϕ(x), ϕ(y)} passes through. Then k ≤ n+D.

Proof. By Theorem 1.1 [KL98], there exists a positive constant R > such that for any

Seifert block B in Ñ , there exists a Seifert block B′ in M̃ such that the Hausdorff distance

dH(B′, ϕ(B)) ≤ R. Moreover, for any JSJ plane P in Ñ , there exists a JSJ plane P ′ in M̃

such that dH(ϕ(P ), P ′) ≤ R.

Let ρ > 0 be the infimum of the set of the distance of any two JSJ planes in M̃ . We let

D = 2R/ρ+ 2. We are going to prove that k ≤ n+D.

Let P0 and Pn be the JSJ planes in Ñ such that x ∈ P0 and y ∈ Pn. Let P ′0 and P ′n be

the JSJ planes in M̃ such that dH(ϕ(P0), P ′0) ≤ R and dH(ϕ(Pn), P ′n) ≤ R. It follows that

there exist x′ ∈ P ′0 and y′ ∈ P ′n such that d′(ϕ(x), x′) ≤ R and d′(ϕ(y), y′) ≤ R.

Let a be the number of Seifert blocks which [ϕ(x), x′]− {ϕ(x), x′} passes through. Let b

be the number of Seifert blocks which [ϕ(y), y′] − {ϕ(y), y′} passes through. We note that

the number of Seifert blocks where [x′, y′]−{x′, y′} passing through is no more than n. Thus,

k ≤ a+ n+ b.

Since ρ is the smallest distance of any two JSJ planes in M̃ , we have ρ (a−1) ≤ d′(ϕ(x), x′)

and ρ (b − 1) ≤ d′(ϕ(y), y′). Since d′(ϕ(x), x′) ≤ R and d′(ϕ(y), y′) ≤ R, it follows that

ρ a ≤ R + ρ and ρ b ≤ R + ρ . Hence a ≤ R/ρ + 1 and b ≤ R/ρ + 1. It follows that
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k ≤ n+ a+ b ≤ n+ 2R/ρ+ 2 = n+D.

3.5 Proof of the main Theorem

In this section, we give the proof of Theorem 3.1.3 by showing that there is an infinite

collection of natural numbers F such that the collection of non-separable, horizontal surfaces{
gj : Sj # N

∣∣ j ∈ F } given by Lemma 3.4.1 satisfy the conclusion of Theorem 3.1.3.

Proof of Theorem 3.1.3. For each j ∈ N, let Sj # N be the non-separable, horizontal surface

given by Lemma 3.4.1. Let γj be the simple closed curve given by Lemma 3.4.1. Let εj be the

governor of the horizontal surface Sj # N . We note that εj = 2j + 1 and w(γj) = (2j + 1)2

by Lemma 3.4.1.

Let F be a infinite collection of natural numbers such that for any elements n and m in

F we have (2m + 1)2 < 2n + 1 whenever m < n (the existence of this collection is easy to

see, for instance, we may define τ(j) inductively by letting τ(j + 1) =
(
2τ(j) + 1

)2
+ 1 and

then we may let F =
{
τ(j)

∣∣ j ∈ N}).
To prove the theorem we only need to show that if n and m are two elements F such

that m < n then
(
π1(N), π1(Sn)

)
and

(
π1(N), π1(Sm)

)
are not quasi-isometric. We prove

this by contradiction. We briefly describe here how do we get a contradiction. Suppose

that
(
π1(N), π1(Sn)

)
and

(
π1(N), π1(Sm)

)
are quasi-isometric, then we are going to show

w(γn) ≤ ε4m. From this inequality and the facts εj = 2j + 1 and w(γj) = (2j + 1)2, we get

that 2n + 1 ≤ (2m + 1)2. Since m,n ∈ F and m < n, it follows that (2m + 1)2 < 2n + 1.

The contradiction comes from two inequalities 2n+ 1 ≤ (2m+ 1)2 and (2m+ 1)2 < 2n+ 1.

We fix a finite generating set An of π1(Sn), a finite generating set Am of π1(Sm) and a

finite generating set S of π1(N) so that An ⊂ S and Am ⊂ S. We note that S depends on the

choice of m and n. Assume that
(
π1(N), π1(Sn)

)
and

(
π1(N), π1(Sm)

)
are quasi-isometric, it

follows that
(
Ñ , S̃m

)
and (

(
Ñ , S̃n

)
are quasi-isometric by Lemma 3.2.8. Hence, there exists a

positive constant L1 and an (L1, L1)–quasi-isometry map ϕ : Ñ → Ñ such that ϕ(S̃n) ⊆ S̃m
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and S̃m ⊆ NL1

(
ϕ(S̃n)

)
.

Let L ≥ 1 be the constant given by Fact 3.4.2 with respect to the horizontal surface

Sn # N . Let L′ ≥ 1 be the constant given by Fact 3.4.3 with respect to the horizontal

surface Sm # N . Let A = max{L,L′, L1}.

Let
{
x̃j
∣∣ j ∈ N} be the collection of points given by Fact 3.4.2. Let D be the constant

given by Lemma 3.4.4. We first claim that

dS̃m

(
ϕ(x̃0), ϕ(x̃j)

)
≤ Aε4j+Dm + A3j + A3 + A2 (∗∗)

Indeed, From Fact 3.4.2 we have

d(x̃0, x̃j) ≤ Aj + A and w(γn)j ≤ AdS̃n
(x̃0, x̃j)

Using the above inequality and the fact ϕ is a (A,A)–quasi-isometry, we get that

d
(
ϕ(x̃0), ϕ(x̃j)

)
≤ Ad(x̃0, x̃j) + A ≤ A(Aj + A) + A = A2j + A2 + A

We recall that [x̃0, x̃j]−{x̃0, x̃j} passes through 2j Seifert blocks of Ñ . Let [ϕ(x̃0), ϕ(x̃j)]

be a geodesic in Ñ connecting ϕ(x̃0) to ϕ(x̃j). Let k be the number of Seifert blocks of

Ñ where [ϕ(x̃0), ϕ(x̃j)] − {ϕ(x̃0), ϕ(x̃j)} passes through. By Lemma 3.4.4, we have that

k ≤ 2j + D. Using Fact 3.4.3, the above inequality d
(
ϕ(x̃0), ϕ(x̃j)

)
≤ A2j + A2 + A, and

k ≤ 4j +D we get that

dS̃m

(
ϕ(x̃0), ϕ(x̃j)

)
≤ Aεkm + Ad

(
ϕ(x̃0), ϕ(x̃j)

)
≤ Aεkm + A(A2j + A2 + A)

≤ Aεkm + A3j + A3 + A2 ≤ Aε4j+Dm + A3j + A3 + A2

Thus (∗∗) is established.
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By Lemma 3.2.7, there exists constant ξ > 0 such that

dS̃n
(x̃0, x̃j) ≤ ξ dS̃m

(
ϕ(x̃0), ϕ(x̃j)

)
+ ξ

for all j.

We use Fact 3.4.2, the above inequality, and (∗∗) to get that

w(γn)j ≤ AdS̃n
(x̃0, x̃j)

≤ A
(
ξdS̃m

(
ϕ(x̃0), ϕ(x̃j)

)
+ ξ
)

= AξdS̃m

(
ϕ(x̃0), ϕ(x̃j)

)
+ Aξ

≤ Aξ
(
Aεkm + A3j + A3 + A2

)
+ Aξ

≤ Aξ
(
Aε4j+Dm + A3j + A3 + A2

)
+ Aξ

= A2ξε4j+Dm + A4ξj + A4ξ + A3ξ + Aξ

We divide both sides of the inequality

w(γn)j ≤ A2ξε4j+Dm + A4ξj + A4ξ + A3ξ + Aξ

by ε4jm to get that

(
w(γn)

/
ε4m

)j
≤ A2ξεDm + A4ξj

/
ε4jm +

(
A4ξ + A3ξ + Aξ

)/
ε4jm

for all j ∈ N.

Since εm > 1, we have

lim
j→∞

(
A2ξεDm + A4ξj

/
ε4jm +

(
A4ξ + A3ξ + Aξ

)/
ε4jm

)
= A2ξεDm.

Hence limj→∞

(
w(γn)

/
ε4m

)j
≤ A2ξεDm. It follows that w(γn)

/
ε4m ≤ 1, otherwise we will get
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∞ ≤ A2ξεDm. Thus

w(γn) ≤ ε4m

Since w(γn) = (2n + 1)2 and εm = 2m + 1, it follows that (2n + 1)2 ≤ (2m + 1)4. Hence

2n+ 1 ≤ (2m+ 1)2.

We note thatm < n andm,n ∈ F , thus by the definition of F we have (2m+1)2 < 2n+1.

Combining two inequalities 2n + 1 ≤ (2m + 1)2 and 2n + 1 ≤ (2m + 1)2, we have n < n, a

contradiction. The theorem is established.

3.6 Appendix

In this section, we give an evidence supporting Conjecture 3.1.4 by showing that other

geometric invariants in literature such as subgroup distortion, k–volume distortion, relative

upper divergence, relative lower divergence could not be used to distinguish quasi-isometry

of pairs of separable, horizontal surfaces in graph manifolds.

3.6.1 k–volume distortion

k–volume distortion (k ≥ 1) is a notion introduced by Bennett [Ben11]. We remark that

this notion agrees with subgroup distortion when k = 1 and area distortion (introduced by

Gersten [Ger96]) when k = 2. We refer the reader to [Ben11] for a precise definition of

k–volume distortion.

Proposition 3.6.1. Let S # N be a separable, horizontal surface in a graph manifold N .

Then the k–volume distortion of π1(S) in π1(N) is quadratic when k = 1, is linear when

k = 2 and is trivial when k ≥ 3.

Proof. 1–volume distortion (i.e, subgroup distortion) of π1(S) in π1(N) is quadratic (see

Chapter 1). We are going to show that 2–volume distortion (i.e, area subgroup distortion) of

π1(S) in π1(N) is linear. Indeed, the paragraph after Proposition 5.4 in [Ger96] shows that
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if the Dehn function of π1(S) is linear then 2–volume distortion of π1(S) in π1(N) is linear.

Since Dehn function of the fundamental group of a hyperbolic surface is linear. The claim is

confirmed. Finally, we consider the case k ≥ 3. Since there is no k–cell in the universal cover

S̃, it follows from the definition of k–volume distortion that k–volume distortion (k ≥ 3) of

π1(S) in π1(N) is trivial.

3.6.2 Relative divergence

In [Tra15], Tran introduces the notions of relative upper divergence and relative lower diver-

gence of a pair of finitely generated groups H ≤ G, denoted by Div(G,H) and div(G,H)

respectively, and shows that relative upper divergence and relative lower divergence are

quasi-isometric invariants (see Proposition 4.3 and Proposition 4.9 in [Tra15]). Since rel-

ative upper divergence and relative lower divergence are quite technical and we only use

results established in [Tra15], [Tra17], we refer the reader to [Tra15] for a precise definition.

Proposition 3.6.2. Let g : (S, s0) # (N, x0) be a separable, horizontal surface in a graph

manifold N . Let G = π1(N, x0) and H = π1(S, s0). Then Div(G,H) is quadratic and

div(G,H) is linear.

If a horizontal surface g : S # N is separable then there exist finite covers Ŝ → S and

N̂ → N such that N̂ is an Ŝ–bundle over S1 (see [WY97]). Relative upper divergence and

relative lower divergence are unchanged when passing to subgroups of finite index, so for the

rest of this section, without of loss generality we assume the graph manifold N fibers over S1

with the fiber S. We remark that N is the mapping torus of a homeomorphism f ∈ Aut(S).

In particular, if we let G = π1(N) and H = π1(S), then G = H oφ Z, where φ ∈ Aut(H)

is an automorphism induced by f . We note that that the distortion of π1(S) in π1(N) is

quadratic as S is embedded in N .

The proof of Proposition 3.6.2 is a combination of Lemma 3.6.3 and Lemma 3.6.6.

Lemma 3.6.3. Div(G,H) is at most quadratic and div(G,H) is linear.
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Proof. We note that G = H oφ Z, where φ ∈ Aut(H). We fix finite generating sets A and

B of H and G respectively. By Proposition 4.3 in [Tra17] we have Div(G,H) � ∆G
H . Since

H is quadratically distorted in G, it follows that Div(G,H) � n2.

To see that div(G,H) is linear, it suffices to show div(G,H) is dominated by a linear

function (because div(G,H) is always bounded below by a linear function). Since H is

a normal subgroup in G, by Theorem 5.4 in [Tra15] we have div(G,H) � distGH where

distGH(n) = min
{
|h|A

∣∣ h ∈ H, |h|B ≥ n
}
. We fix a circle c in g−1(T ) where T is the

collection of JSJ tori of N . Let K = π1(c). We note that K is undistorted in G. By

Theorem 3.6 and Proposition 3.5 in [Tra15], we have distGH � distGK � ∆G
K . It follows that

distGH is dominated by a linear function because K is undistorted in G.

Definition 3.6.4. The divergence of a bi-infinite quasi-geodesic α, denoted by Div(α), is a

function g : (0,∞)→ (0,∞) which for each positive number r the value g(r) is the infimum

on the lengths of all paths outside the open ball with radius r about α(0) connecting α(−r)

to α(r).

The following lemma is proved implicitly in [Tra17]. We use it in the proof of Lemma 3.6.6.

Lemma 3.6.5. Suppose that there exists an element h in H with infinite order such that

the map α : Z→ G determined by α(n) = hn is an (L,C)–quasi-isometric embedding. Then

Div(α) � Div(G,H).

Lemma 3.6.6. Div(G,H) is at least quadratic.

Proof. We equip N with a Riemannian metric and this metric induces a metric on the

universal cover Ñ , denoted by d. We equip S with a hyperbolic metric and this metric

induces a metric on the universal cover S̃, denoted by dS̃.

Let T be the JSJ decomposition of N . Choose a geodesic loop γ such that γ and g−1(T )

has non-trivial geometric intersection number (see Lemma 3.3 in Chapter 1 for the existence

of such a loop γ). We also assume that s0 ∈ γ. Let h = [γ] ∈ π1(S, s0). We note that

h has infinite order. Let α : Z → G be determined by α(n) = hn, and let β : Z → Ñ be
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determined by β(n) = hn · s̃0 for each n ∈ Z. We will show that β is a quasi-geodesic and

Div(β) is at least quadratic and thus it follows that α is a quasi-geodesic and Div(α) is at

least quadratic. We then apply Lemma 3.6.5 to get that Div(G,H) is at least quadratic.

We are going to show β is a quasi-geodesic. Let γ̃ be the path lift of γ based at s̃0. Let

k be the number of Seifert blocks of Ñ where γ̃ passes through. It follows that a geodesic

[hn · s̃0, h
m · s̃0] in Ñ passes through k|m− n| Seifert blocks in Ñ . Let ρ be the shortest

distance of any two JSJ planes in Ñ . It follows that ρk|m− n| ≤ d(hn · s̃0, h
m · s̃0) =

d(β(n), β(m)). Since π1(S) is a hyperbolic group, it follows that there is A > 0 such that

β is an (A,A)–quasi-geodesic in S̃ with respect to dS̃–metric. Hence, for any n,m ∈ Z

we have dS̃(β(n), β(m)) ≤ A|m− n| + A. Since d(β(n), β(m)) ≤ dS̃(β(n), β(m)), it follows

that d(β(n), β(m)) ≤ A|m− n| + A. Let L = max{A, 1/kρ}, we easily see that β is an

(L,L)–quasi-geodesic.

We are now going to show Div(β) is at least quadratic. Lift the JSJ decomposition of the

graph manifold N to the universal cover Ñ , and let TN be the tree dual to this decomposition

of Ñ . We note that h acts hyperbolically on the tree TN in the sense that there exists a

vertex v ∈ TN and there exists a bi-infinite geodesic γ in TN such that
{
hjv

∣∣ j ∈ Z} is

an unbounded subset of γ. By Proposition 3.7 in [Sis11], it follows that h is a contracting

element in π1(N), and hence h is Morse element in π1(N) (see Lemma 2.9 in [Sis11]). Thus,

β is a Morse quasi-geodesic in (Ñ , d). By Theorem 1.1 in [KL98], there exists a CAT(0) space

(X, d′) such that (Ñ , d) and (X, d′) are bilipschitz homeomorphism. It shown in [BDt14] (see

also in [Sul14]) that divergence of a Morse bi-infinite quasi-geodesic is at least quadratic.

Hence, the divergence of the image of β in (X, d′) under the bilipschitz homeomorphism

(Ñ , d)→ (X, d′) is at least quadratic. It follows that Div(β) in Ñ is at least quadratic.

Proof of Proposition 3.6.2. The proof is a combination of Lemma 3.6.3 and Lemma 3.6.6.
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