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ABSTRACT

PRICING OF DEPENDENT RISKS

by

Mark Benedikt Schultze

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Wei Wei

In some types of insurance businesses, such as cyber or homeowners insurance, the

assumption that risks are independent is violated. Because of this, the commonly used

expected value premium principle does not work. Therefore, we propose different premium

principles for pricing dependent risks. We derive formulas for these principles when the

risks are normally distributed, pareto distributed and each risk is an aggregate loss.

Furthermore, we investigate the behavior of the different premium principles related to a

change in the dependence of the risks. Additionally, we examine the impact that a

parameter of one risk has on the premium for each proposed principle.

ii



TABLE OF CONTENTS

1 Introduction 1

2 Multivariate Normal model 3

2.1 Premium calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The number of contracts . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 The correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Impact of expectation and variance on the premium . . . . . . . . . . . . . . 15

2.2.1 Impact of µ on the premium . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Impact of σ on the premium . . . . . . . . . . . . . . . . . . . . . . . 20

3 Bivariate Pareto model 24

3.1 Premium calculation for identical Pareto risks . . . . . . . . . . . . . . . . . 25

3.1.1 Premium calculation for identical Pareto risks . . . . . . . . . . . . . 30

3.2 Premium calculation for non-identical Pareto risks . . . . . . . . . . . . . . . 32

3.2.1 Premium calculation for non-identical Pareto risks . . . . . . . . . . . 37

4 Aggregate loss model 41

4.1 Poisson-exponential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Premium calculation for strong dependence . . . . . . . . . . . . . . 43

4.1.2 Premium calculation for weak dependence . . . . . . . . . . . . . . . 46

5 Conclusion 49

References 50

iii



LIST OF FIGURES

2.1 Premium depending on ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The safety loading depending on ρ . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 VaR Premium depending on µ . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Premium depending on µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 VaR Premium depending on σ . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Premium depending on σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Premium depending on θ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 TVaR and cond. premium depending on θ1 . . . . . . . . . . . . . . . . . . . 39

3.3 VaR Premium depending on θ1 . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Premium depending on λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Premium depending on λ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Premium depending on λ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



LIST OF TABLES

2.1 Premium and safety loading depending on n with ρ = 0.5 . . . . . . . . . . . 10

2.2 Premium and safety loading depending on n with ρ = − 1
n

. . . . . . . . . . . 12

2.3 Premium for different µ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Premium for different σ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Premium for different a’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Premium for different θ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Aggregate loss premium for different n’s . . . . . . . . . . . . . . . . . . . . 45

v



1 Introduction

In a traditonal insurance company, the premium for overtaking a risk is calculated based

on the expected claim of the risk and a safety loading which is usually a percentage of the

expected loss. This means P = (1 + θ) E[X], where θ > 0 is the safety loading coefficent and

X is the risk that should be insured. The method of calculating the premium is the expected

value principle. The premium principle and comparable principles work well for traditional

insurance because the strong law of large numbers guarantees that the total claim converges

to the expectation of total loss. This is equal to the total premium plus the safety loading.

This concept works very well for life insurance or car insurance.

However, there are currently other kinds of insurance which are becoming more common

and more important, such as cyber insurance or home insurance in an earthquake-active

area or flood region. The problem is we cannot use the expected value principle to find the

premium for those types of risks and the law of large numbers to justify it because the risks

in these types of insurance are not independent anymore. Hence, there is the need to find

new premium principles which consider the dependent structure of the risks.

One approach is ”global pricing”. This approach is based on calculating the total premium

which is necassary to cover all of the insured risks. After that, the premium should be

properly allocated to every individual policyholder. Assuming that an insurance has n risks

X1, X2, . . . , Xn then the total loss is TL =
∑n

i=1Xi. The Value at Risk (VaR) of the total

loss would be a good choice for the total premium because the VaR describes how much

money the insurer needs to be 100α% confident to cover the total loss. The defintion of

Value at Risk for a continous random variable and level α is given in Klugman et al.(2012)

[1] (Definition 3.12):

V aRα(TL) = max{x : P (TL > x) = 1− α} (1.1)

1



Another plausible candidate for the total premium is the Tail Value at Risk which is more

conservative and is defined as following:

TV aRα(TL) = E
[
TL|TL > V aRα(TL)

]
(1.2)

The defintion of TVaR is taken from Klugman et al.(2012) [1] (Definition 3.13).

After calculating the amount of the total premium, it has to be allocated to each individual

policyholder. We propose the following three capital allocation principles.

• The Value at Risk premium principle:

Pi =
V aRα(Xi)∑n
i=1 V aRα(Xi)

× V aRα(TL) (1.3)

• The Tail Value at Risk premium principle:

Pi =
TV aRα(Xi)∑n
i=1 TV aRα(Xi)

× TV aRα(TL) (1.4)

• The conditional premium principle:

Pi = E
[
Xi|TL > V aRα(TL)

]
(1.5)

Note under (1.4) and (1.5), the total premium would be equal to TV aRα(TL). Additionally,

if all risks are exchangeable, then the total premium would be assigned equally to each

policyholder.

In the next chapters we will calculate formulas for each premium principle when the risks

Xi, i = 1, . . . , n are normally distributed, pareto distributed or each risk is an aggregate loss.

Furthermore, we will analyze the impact the dependence of the risks has on the individual

premium.

2



2 Multivariate Normal model

Let’s consider the multivariate normal model, which means we have risks Xi, i = 1, . . . , n

and each of these risks are normally distributed, Xi ∼ N (µi, σ
2
i ). We also assume that all

risks have the same covariance Cov[Xi, Xj] = ρσ2 for all i 6= j. But before we derive formulas

for the different premium principles we need the following results.

Proposition 2.1 If X is normally distributed with E[X] = µ and V ar(X) = σ2 then the

Value at Risk (VaR) is:

V aRα(X) = max{x : P (X > x) = 1− α} = µ+ σzα (2.1)

where zα = Φ−1(α) and Φ(x) is the cdf of a standard normal random variable.

Proof. Since X is normally distributed with E[X] = µ and V ar(X) = σ2 it holds that

X = σZ + µ with Z ∼ N(0, 1). With the defintion of the Value at Risk we get:

V aRα(X)⇒ P (X ≤ x) = α⇔ P
(
Z ≤ x− µ

σ

)
= α⇔ Φ

(x− µ
σ

)
= α⇔ x = µ+ σzα

Proposition 2.2 If X ∼ N (µ, σ2) then the Tail Value at Risk is:

TV aRα(X) = µ+ σ
φ(Φ−1(α))

1− α
(2.2)

where φ(x) represents the density of a standard normal random variable.

Proof. Let’s consider a risk X ∼ N (µ, σ2) and with the defintion of the Tail Value at Risk

and (2.1) we get:

TV aRα(X) =

∫ ∞
V aRα(X)

xfx(x)

P (X > V aRα(X))
dx =

1

1− α

∫ ∞
µ+σzα

x√
2πσ

exp

(
−1

2

(x− µ
σ

)2)
dx

3



After substituting y = x−µ
σ

and with dx
σ

= dy we get:

=
1

1− α

∫ ∞
zα

σy + µ√
2π

exp
(
−1

2
y2
)
dy

After dividing the integral in two parts, integrating the second part and defining Z ∼ N(0, 1)

we get:

=
µ

1− α
P (Z > zα) +

σ

1− α

[
1√
2π
exp
(
−1

2
y2
)]y=∞

y=zα

= µ+ σ
φ(Φ−1(α))

1− α

Proposition 2.3 If Xi ∼ N (µ, σ2) for all i = 1, . . . , n and all risks have the same covari-

ance Cov[Xi, Xj] = ρσ2 for all i 6= j, then the total loss TL =
∑n

i=1Xi is also normally

distributed with E[TL] = nµ and V ar(TL) = nσ2 + n(n− 1)ρσ2.

Proof. It holds that the sum of normally distributed random variables is normally dis-

tributed. Also, since all risks are identical, normally distributed and because the expectation

is additive, it follows directly that the E[TL] = nµ. For the variance it holds that:

V ar(TL) = Cov

[ n∑
i=1

Xi,
n∑
j=1

Xj

]
=

n∑
i=1

n∑
j=1

Cov[Xi, Xj]

= nCov[X1, X1] + n(n− 1)Cov[X1, X2] = nσ2 + n(n− 1)ρσ2 (2.3)

This holds because we have in the double sum exactly n terms with i = j and n(n−1) terms

with i 6= j.

Another interesting measure for comparing premiums is to compare the three proposed

premium principles (1.3), (1.4) and (1.5) with the expected premium principle. We can

compare these premiums by setting them equal and calculating the safety loading for each

4



proposed premium principle with the following equation:

θi =
Pi

E[Xi]
− 1 (2.4)

In the next section we derive explicit formulas for the case that all risks are identical and

normally distributed.

2.1 Premium calculation

Let’s assume that all risks are identical, normally distributed and have the same covariance.

This means:

• Xi ∼ N (µ, σ2) for all i ∈ {1, . . . , n} (2.5)

• Cov[Xi, Xj] = ρσ2 for all i 6= j (2.6)

Then we can get the following expression for the premium principles:

Proposition 2.4 If the risks satisfy the conditions (2.5) and (2.6) then the VaR premium

given in (1.3) is:

Pi = µ+ σzα

√
1 + (n− 1)ρ

n
, for all i = 1, . . . , n (2.7)

Proof.

Pi =
V aRα(Xi)∑n
i=1 V aRα(Xi)

× V aRα

( n∑
i=1

Xi

)
(2.1)
=

µ+ σzα
n(µ+ σzα)

× (nµ+ σTLzα)

(2.3)
= µ+

√
nσ2 + n(n− 1)ρσ2

n
zα = µ+ σzα

√
1 + (n− 1)ρ

n

Proposition 2.5 If the risks satisfy the conditions (2.5) and (2.6) then the TVaR premium

5



given in (1.4) is:

Pi = µ+ σ
φ(zα)

1− α

√
1 + (n− 1)ρ

n
, for all i = 1, . . . , n (2.8)

Proof.

Pi =
TV aRα(Xi)∑n
i=1 TV aRα(Xi)

× TV aRα

( n∑
i=1

Xi

)
(2.2)
=

µ+ σ φ(zα)
1−α

n(µ+ σ φ(zα)
1−α

)×
(
nµ+ σTL

φ(zα)

1− α

)
(2.3)
= µ+

√
nσ2 + n(n− 1)ρσ2

n

φ(zα)

1− α
= µ+ σ

√
1 + (n− 1)ρ

n

φ(zα)

1− α

Proposition 2.6 If the risks satisfy the conditions (2.5) and (2.6) then the conditional

premium given in (1.5) is:

Pi = E
[
Xi|TL > V aRα(TL)

]
= µ+ σ

ρXi,TLφ(zα))

1− α
, for all i = 1, . . . , n (2.9)

Proof. First we find the correlation between risk Xi and the total loss TL:

ρXi,TL =
Cov(Xi,

∑n
j=1Xj)

σσTL

(2.3)
=

∑n
j=1Cov(Xi, Xj)

σ
√
nσ2 + n(n− 1)ρσ2

=
σ2(1 + (n− 1)ρ)

σ2
√
n(1 + (n− 1)ρ)

=

√
1 + (n− 1)ρ

n
(2.10)

Now we can get the formula for the premium:

Pi = E
[
Xi|TL > V aRα(TL)

]
=

∫ ∞
−∞

x

∫ ∞
V aRα(TL)

fx,y(x, y)

P (TL > V aRα(TL))
dy dx (2.11)

where fx,y(x, y) represents the joint density of Xi and Y = TL =
∑n

i=1Xi ∼ N (nµ, σ2
TL).

Furthermore, P (TL > V aRα(TL)) = 1 − α by the definition of Value at Risk. After

exchanging the integrals and using the formula for the joint density with ρ = ρXi,TL
(2.10)
=

6



√
1+(n−1)ρ

n
we get:

1

1− α

∫ ∞
V aRα(TL)

1√
2πσTL

exp
(
− 1

2(1− ρ2)
(y − µTL

σTL

)2)∫ ∞
−∞

x

σx
√

2π
√

1− ρ2

× exp

(
− 1

2(1− ρ2)

((x− µx
σx

)2−2ρ(x− µx)(y − µTL)

σxσTL

))
dx dy

Now we substitute x̃ = x−µx
σx

and ỹ = y−µTL
σTL

with dx̃ = 1
σx
dx and dỹ = 1

σTL
dy.

1

1− α

∫ ∞
zα

1√
2π

exp
(
− 1

2(1− ρ2)
ỹ2
)∫ ∞
−∞

x̃σx + µx√
2π
√

1− ρ2

exp

(
− 1

2(1− ρ2)

(
x̃2 − 2ρx̃ỹ

))
dx̃ dỹ

After completing the square and splitting the second integral into two integrals we get:

1

1− α

∫ ∞
zα

1√
2π

exp
(
− 1

2(1− ρ2)
(
ỹ2 − (ρỹ)2

))
·
(
σx E[K] + µx

)
dỹ

in which K ∼ N (ρỹ, 1 − ρ2). If we consider Z ∼ N (0, 1) and that the integral is additive

we get:

1

1− α

[
σxρ

∫ ∞
zα

ỹ√
2π

exp
(
− ỹ

2(1− ρ2)
2(1− ρ2)

)
dỹ + µx

∫ ∞
zα

1√
2π

exp
(
− ỹ

2(1− ρ2)
2(1− ρ2)

)
dỹ

]
=

1

1− α

[
σxρφ(zα) + µx P (Z > zα)

]
=
σxρφ(zα)

1− α
+ µx

(2.10)
= µx +

√
1 + (n− 1)ρ

n

σxφ(zα)

1− α

We can see that (2.8) and (2.9) are the same. This is the case, because all risks are

identical. With these explicit formulas for each premium principle, we can analyze how the

individual premium changes when we have a higher dependence between the risks.
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2.1.1 The number of contracts

One very important concept of an insurance company is that the company can accumulate

a lot of contracts from the same type, such as life insurance contracts. This means all

the contracts have the same distribution, expectation µ and variance σ2. Each contract

corresponds to a risk Xi in the portfolio of the insurance company. The insurance company

has an advantage if their portfolio is large enough so that the average risk 1
n

∑n
i=1Xi converges

in distribution to a normal distribution with expectation µ and variance σ2

n
. This holds after

the central limit theorem but only if all the risks are independent. The consequence is that

the portfolio is less volatile if the number of contracts n is increasing. This means that the

insurance company can charge a smaller safety loading for each contract.

In general, it is not possible to assume that all the risks are independent. For example,

if an insurance company insures homes in an earthquake region, clearly the independence

assumption is violated. Because of this, two things need to be answered: If the insurance

company cannot charge a smaller safety loading if the number of contracts is increasing and

the importantance of the strength of the dependence between the risks for the individual

premium.

First, we look at the derived formulas for the three proposed premium principles (2.7), (2.8)

and (2.9). We assume a positive correlation between the risks ρ ∈ (0, 1). For an insurance

company, it is interesting if the premium per contract is decreasing when the total amount

of contracts n is increasing. When this occurs, the insurer can offer a lower premium and

can be more competitive on the market.

If we look at each premium principle and consider the formulas we derived as a function of

n we can see that all three premium principles have the same slope:

√
1 + (n− 1)ρ

n
=

√
ρ+

1− ρ
n

8



This means that each premium is decreasing when n is increasing and when µ, σ, α, ρ are

fixed because 1−ρ
n

is decreasing in n and 1− ρ > 0.

Since each premium principle is decreasing in n, we can take the limit of these premiums

with n→∞ to find the smallest possible premium:

The smallest possible VaR premium is:

lim
n→∞

Pi
(2.7)⇒ lim

n→∞
µ+ σzα

√
1 + (n− 1)ρ

n
= lim

n→∞
µ+ σzα

√
ρ+

1− ρ
n

= µ+ σzα
√
ρ (2.12)

The smallest TVaR premium is:

lim
n→∞

Pi
(2.8)⇒ lim

n→∞
µ+ σ

φ(zα)

1− α

√
1 + (n− 1)ρ

n
= µ+ σ

φ(zα)

1− α
√
ρ (2.13)

The smallest value for the conditional premium is the same as the TVaR premium because

these premiums are the same if all the risks are identical. Since we can calculate the lowest

possible premium for each premium principle we can also calculate the lowest possible safety

loading.

The smallest possible safety loading for the VaR premium is:

θ
(2.4)
=

Pi
µ
− 1

(2.12)
=

µ+ σzα
√
ρ

µ
− 1 =

σ

µ
zα
√
ρ

The smallest safety loading for the TVaR and conditional premium is:

θ
(2.4)
=

Pi
µ
− 1

(2.13)
=

µ+ σ φ(zα)
1−α
√
ρ

µ
− 1 =

σ

µ

φ(zα)

1− α
√
ρ

That means that an insurance company can charge a smaller premium if their total amount

of contracts is increasing, but there is a smallest possible value for each premium. The

same holds for the safety loading, since the safety loading is a linear transformation of the

premium.

9



Let’s consider risks Xi ∼ N (5, 10), i = 1, . . . , n with ρ = 0.5 and α = 0.99. We are interested

in the behavior of each premium and the corresponding safety loading when the amount of

contracts n is increasing.

For identical risks the conditional premium is equal to the TVaR premium so we do not

n 1 2 5 25 100 ∞
VaR premium 12.36 11.37 10.70 10.30 10.23 10.20
θ for VaR premium 1.47 1.27 1.14 1.06 1.05 1.04
TVaR premium 13.43 12.30 11.53 11.08 10.99 10.96
θ for TVaR premium 1.69 1.46 1.31 1.22 1.20 1.19

Table 2.1: The premium and safety loading for different principles depending on n and
ρ = 0.5

have to calculate it. In Table 2.1 we can see that the VaR premium is less than the other two

premium principles. This makes sense because both premiums are based on the expectation

that the loss is already greater than the Value at Risk for a given α. Futhermore, we can

see that in both cases the premium is decreasing quickly until n ≈ 5 and after that the

decrease in the premium is rather small. After 100 risks we are already close to the smallest

premium possible. Moreover, it is possible to lower the safety loading by over 40% for the

VaR premium, 50% for the TVaR and 50% for the conditional premium if the insurance

company assembles a lot of risks.

So far, we only considered ρ ∈ (0, 1). Now we consider two special cases: ρ = 1 and

ρ = − 1
n
. The first case means that all risks are perfectly positively correlated making the

VaR premium:

Pi
(2.7)
= µ+ σzα

√
1 + (n− 1)1

n
= µ+ σzα

For the TVaR premium and conditional premium we get:

Pi
(2.8)
= µ+ σ

φ(zα)

1− α

√
1 + (n− 1)1

n
= µ+ σ

φ(zα)

1− α

10



We can see that if all the risks are perfectly correlated (ρ = 1) then the n cancels, which

means that an insurance company cannot charge a smaller premium if they accumulate more

risks. The consequence is that there is no diversification effect.

For the second case, we consider that all risks are negatively correlated with ρ = − 1
n

making

the VaR premium:

Pi
(2.7)
= µ+ σzα

√
1 + (n− 1)(− 1

n
)

n
= µ+

1

n
· σzα

For the TVaR premium and conditional premium we get:

Pi
(2.8)
= µ+ σ

φ(zα)

1− α

√
1 + (n− 1)(− 1

n
)

n
= µ+

1

n
· σφ(zα)

1− α

For this case, we can see that all three premiums converge for n→∞ to µ. This means that

for any given safety loading θ one can find the amount of risks n such that the proposed

premium principle are smaller than the expected premium principle (1 + θ)µ.

For the VaR premium it has to hold that:

(1 + θ)µ ≥ µ+ σzα
1

n

⇒ n ≥ σzα
θµ

For the TVaR premium and conditional premium it has to hold that:

(1 + θ)µ ≥ µ+ σ
φ(zα)

(1− α)n

⇒ n ≥ σφ(zα)

(1− α)θµ

Let’s consider risks Xi ∼ N (5, 10), i = 1, . . . , n and α = 0.99. Also, all risks have a correla-

tion of ρ = − 1
n
. We are interested in how the premium and the safety loading for each risk

is changing when the total amount of risks n is increasing.
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Table 2.2 shows only the VaR premium and TVaR premium because the conditional pre-

n 1 2 5 25 100 ∞
VaR premium 12.36 8.68 6.47 5.29 5.07 5
θ for VaR premium 1.47 0.74 0.29 0.06 0.01 0
TVaR premium 13.43 9.21 6.69 5.34 5.08 5
θ for TVaR premium 1.69 0.84 0.34 0.07 0.02 0

Table 2.2: The premium and safety loading for different principles depending on n and
ρ = − 1

n

mium is equal to the TVaR premium when all risks are identical. Also, we can see a similiar

pattern to the one in Table 2.1, where the premiums are decreasing quickly and after a

certain size of n the premiums are decreasing slowly. The difference between Table 2.1 and

Table 2.2 is that all three premium principles are converging to the same limit instead of

different ones. The VaR premium is always smaller than the premium for the other two prin-

ciples, but after n ≥ 100 all three premiums are roughly the same. This means if we have

the case where all risks are negatively correlated with ρ = − 1
n

and we pool a large number

of risks, then the premium is roughly the same for every premium principle. Furthermore,

θ is decreasing quickly from 147% to 6% for the VaR premium principle if the portfolio size

is increased from 1 to 25 and from 169% to 7% for the TVaR premium principle and the

conditional premium principle.

Let’s consider the same setup as in the previous example, Xi ∼ N (5, 10) for all i = 1, . . . , n,

α = 0.99 and ρ = − 1
n
. We want to know how many risks we have to pool until we can charge

a safety loading of less than 20%.

For the VaR premium principle we need n ≥
√
10 zα
0.2∗5 ≈ 7.35⇒ n = 8. This means we need at

least 8 risks to charge a smaller safety loading than 20% per risk.

For the TVaR and conditional premium principle we need n ≥
√
10φ(zα)

(1−0.99)∗0.2∗5 ≈ 8.43⇒ n = 9.

This means we need at least 9 risks to charge a smaller safety loading than 20% per risk.

In conclusion, we found that the concept of pooling risks is still functioning if the risks are

correlated with ρ ∈ (0, 1) or ρ = − 1
n

and identical and normally distributed. Additionally,

it holds that if the risks are correlated with ρ = − 1
n

all three proposed premium principles

12



converge for n → ∞ against µ, the expectation of one risk. This means that by pooling a

lot of risks the premium can be reduced until it is only the expectation. The only problem

is if all risks are perfectly positively correlated, when ρ = 1, the premium is not decreasing

in n and the concept of pooling risks is not working.

2.1.2 The correlation coefficient

So far we assumed that the risks are positively correlated and derived formulas for the case

that all risks are identically distributed. We investigated the impact that the amount of

contracts has on the premium. But, it is also interesting how much the premium changes if

the correlation between the risks is changing. In this section we assume that the correlation

between all risks are the same, which means that Cov[Xi, Xj] = ρσ2 for all i 6= j. Further-

more, we assume that again all risks are identical Xi ∼ N (µ, σ2) for all i = 1, . . . , n. This

means we can use (2.7), (2.8) and (2.9) for calculating the premium for each principle. The

premium for the conditional principle and the TVaR principle are the same because all risks

are identical.

Let’s consider risks Xi ∼ N (3, 5) for i = {1, . . . , 25} and α = 0.99. In Figure 2.1 we can

see the premium for different values of ρ and different premium principles. The solid lines

describes the premium calculated according to the TVaR and conditional premium principle.

The dashed line corresponds to the VaR premium. We can see that the VaR premium is

always lower than the other two premium principles. Furthermore, we can see that the pre-

miums are increasing if the dependence between the risks are increasing. This is reasonable

because the variance of the sum of all risks is increasing when the correlation is increasing

(see. (2.3)), causing the premium to also increase. Another more economical reason is, since

the variance is higher, the uncertainty for the insurance company is increasing. The conse-

quence is that they want to have a higher premium for taking over the risks. Additionally,

we can see that both curves are concave. This makes sense because if we interpret each

premium principle as a function dependent on ρ then they all have the same slope, namely

13



Figure 2.1: The premium for different principle depending on ρ

√
ρ. Since the squareroot is a concave function the premium is also concave.

Another interesting aspect is how the correlation between the risks changes the safety load-

ing of each premium principle. The formula for the safety loading is given in (2.4).

Let’s consider risks Xi ∼ N (3, 5) for i = 1, . . . , 25 and α = 0.99 to calculate the safety

loading for an increasing correlation parameter ρ.

In Figure 2.2 we can see that the curves have the same shape as in Figure 2.1. But in this

figure, the y-axis represents the safety loading. This means that for a correlation close to

0 the safety loading for the VaR premium is 40% and for the TVaR and conditional pre-

mium it is 45%. On the other hand, the safety loading of the VaR premium increases up

to 160% and 200% for the TVaR and conditional premium if the correlation is reaching 1.

This means that the dependence between the risks has a huge impact on the premium. It

can increase the safety loading by up to 120% for the VaR premium and 155% for the TVaR

and conditional premium in the case that all Xi ∼ N (3, 5).
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Figure 2.2: The safety loading for different principle depending on ρ

2.2 Impact of expectation and variance on the premium

So far we studied the impact of the number of risks on the individual premium and the

influence of the correlation on the individual premium. We also assumed that all the risks

are identical. In practice, that does not always make sense because the risks are usually not

identical. In this section we will analyze the influence of the expectation and variance on

the premium.

Since, in previous sections, we derived formulas for premium principles when all the risks

were identical, we have to derive new formulas for each premium principle and for the total

loss TL =
∑n

i=1Xi when the risks are not identical.

Proposition 2.7 Let Xi ∼ N (µi, σ
2
i ) for all i = 1, . . . , n and all risks have the same corre-

lation Cov[Xi, Xj] = ρσiσj for all i 6= j. Then the total loss TL =
∑n

i=1Xi ∼ N (µTL, σ
2
TL)

with µTL =
∑n

i=1 µi and σ
2
TL =

∑n
i=1 σ

2
i + 2

∑n
i<j σiσjρ
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Proof. Since the sum of normal random variables is normally distributed and the expectation

is additive we get E
[
TL
]

= E
[∑n

i=1Xi

]
=
∑n

i=1 µi. For the variance it holds that:

V ar(TL) = Cov
[ n∑
i=1

Xi,

n∑
j=1

Xj

]
=

n∑
i=1

n∑
j=1

Cov[Xi, Xj] =
n∑
i=1

σ2
i +

n∑
i=1

n∑
j=0,i 6=j

σiσjρ

=
n∑
i=1

σ2
i + 2

n∑
i<j

σiσjρ

Proposition 2.8 Let Xi ∼ N (µi, σ
2
i ) for all i = 1, . . . , n and all risks have the same

correlation Cov[Xi, Xj] = ρσiσj for all i 6= j. Then the VaR premium is:

Pi =
µi + σizα∑n

i=1

(
µi + σizα

) × ( n∑
i=1

µi + σTLzα

)
(2.14)

Proof. First we plug (2.1) into the definition of the VaR premium (1.3). Then, we can use

(2.1) and that the total loss is normally distributed as described in Proposition 2.7 to get:

Pi =
V aRα(Xi)∑n
i=1 V aRα(Xi)

× V aRα

( n∑
i=1

Xi

)
=

µi + σizα∑n
i=1

(
µi + σizα

) × ( n∑
i=1

µi + σTLzα

)

Proposition 2.9 Let Xi ∼ N (µi, σ
2
i ) for all i = 1, . . . , n and all risks have the same

correlation Cov[Xi, Xj] = ρσiσj for all i 6= j. Then the TVaR premium is:

Pi =
µi + σi

φ(zα)
1−α∑n

i=1

(
µi + σi

φ(zα)
1−α

) × ( n∑
i=1

µi + σTL
φ(zα)

1− α

)
(2.15)

Proof. First we plug the representation for the Tail Value at Risk (2.2) into the definition

of the TVaR premium (1.4). Then we can use (1.4) and that the total loss is normally
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distributed as described in Proposition 2.7 to get:

Pi =
TV aRα(Xi)∑n
i=1 TV aRα(Xi)

× TV aRα

( n∑
i=1

Xi

)
=

µi + σi
φ(zα)
1−α∑n

i=1

(
µi + σi

φ(zα)
1−α

) × ( n∑
i=1

µi + σTL
φ(zα)

1− α

)

Proposition 2.10 Let Xi ∼ N (µi, σ
2
i ) for all i = 1, . . . , n and all risks have the same

correlation Cov[Xi, Xj] = ρσiσj for all i 6= j. Then the conditional premium is:

Pi = µi + σi
ρXi,TLφ(zα)

1− α
(2.16)

where ρXi,TL is the correlation between the risk Xi and the total loss TL and it is equal to:

ρXi,TL =
σi +

∑n
j=0,i 6=j σjρ

σTL

Proof. After following the same steps as in Proposition 2.6 and since the total loss TL is

normally distributed only with different parameters we get:

Pi = E
[
Xi|TL > V aRα(TL)

]
=
σiρXi,TLφ(zα)

1− α
+ µi

where

ρXi,TL =
Cov

[
Xi,
∑n

i=nXi

]
σi σTL

=
σ2
i +

∑n
j=0,i 6=j σiσjρ

σi σTL
=
σi +

∑n
j=0,i 6=j σjρ

σTL

This proofs the second equation.

2.2.1 Impact of µ on the premium

In this section we analyze the impact the expectation µ has on the premium. For this we

consider two different cases. The first case is that we investigate the impact µ has on its
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own premium. The other case is the impact µ has on the premium for the other risks.

Let’s consider two risks X1 ∼ N (µ1, 1), X2 ∼ N (1, 1), α = 0.99 and ρ = 0.9. Also, we

assume that µ1 is increasing from 1 to 10. We are interested in how the premium will change

for risk X1 and for risk X2.

First, we consider the premium for the risk X1. The premium for risk X1 and for each

µ1 1 2 3 4 5 6 7 8 9 10
VaR premium 3.27 4.26 5.25 6.25 7.25 8.24 9.24 10.24 11.24 12.23
TVaR premium 3.60 4.59 5.58 6.58 7.57 8.57 9.57 10.56 11.56 12.56
Cond. premium 3.60 4.60 5.60 6.60 7.60 8.60 9.60 10.60 11.60 12.60

Table 2.3: The premium for each principle for a risk with an increasing expectation µ

principle is in Table 2.3. We can see that the VaR premium is less than the other two

premiums, which makes sense because the other premium principles are more conservative

than the VaR premium principle. Furthermore, the VaR premium is increasing with a slope

of less than 1. This means the VaR premium does not pass the complete increase in the risk

to the premium of the responsible risk. We can see the same thing for the TVaR premium.

The only premium which assigns the complete increased risk to the responsible risk is the

conditional premium. This is also shown in the formula used to calculate the premium (2.16).

The conditional premium takes into account only the expectation of the risk, which should

be priced.

In Figure 2.3 we can see the VaR premium for X2. Even though the expectation and

variance of the risk is not changing the premium is. It increases from ≈ 3.27 to 3.30 while

the expectation of X1 increases from 1 to 10. This means that the VaR premium principle

passes some of the increased risk of X1 on to the unchanged risk X2.

In Figure 2.4 we can see the TVaR and the conditional premium for X2. The TVaR pre-

mium is the solid line and the dashed line represents the conditional premium. We can see

that the conditional premium is a constant, which makes sense because the formula for the

conditional premium (2.16) does not take into account the expectation of the other risks in

the portfolio. On the other hand, the TVaR premium for X2 is increasing from approxi-
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Figure 2.3: The VaR premium for X2 while X1 has an increasing expectation µ

mately 3.60 to 3.63. This means that the TVaR principle passes some of the additional risk

on to the unchanged risk.

In conclusion, when you have a case where one risk is fixed and the expectation of the

other risk is increasing, the conditional premium principle assigns the complete additional

risk to the corresponding premium. The additional risk is caused by the increased expec-

tation of one risk. The VaR and TVaR premium principles assign a small amount of the

additional risk to the premium of the fixed risk. Therefore, they are not completely fair.

The conditional premium, on the other hand, is fair.
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Figure 2.4: The TVaR and the conditional premium for X2 while X1 has an increasing
expectation µ

2.2.2 Impact of σ on the premium

In the last section we analyzed the impact of µ on the premium. In this section we will

analyze the impact the standard deviation σ has on the premium. We consider the same two

cases as in previous section. The first case analyzes the impact σ has on its own premium

and the second case analyzes the impact σ has on the premium for the other risks.

Let’s consider two risks X1 ∼ N (1, σ2
1), X2 ∼ N (1, 1), α = 0.99 and ρ = 0.9. Also, we

assume that the standard deviation of X1, σ1 is increasing from 1 to 10. We are interested

in how the premium will change for X1 and X2.

Figure 2.4 shows how the premium of risk X1 is changing when the standard deviation of

risk X1 is increasing from 1 to 10. For the VaR principle the premium is increasing from 3.27

to 24.08. That is reasonable because the uncertainty of the risk is increasing which means

you have to pay a higher premium to transfer the risk to an insurance company. The Value
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σ1 1 2 3 4 5 6 7 8 9 10
VaR premium 3.27 5.55 7.85 10.16 12.48 14.79 17.11 19.43 21.75 24.08
TVaR premium 3.60 6.22 8.85 11.50 14.15 16.80 19.46 22.12 24.78 27.44
Cond. premium 3.60 6.27 8.95 11.62 14.29 16.96 19.63 22.30 24.96 27.63

Table 2.4: The premium for each principle for a risk with an increasing standard deviation
σ1

at Risk for α = 0.99, σ1 = 1 and σ1 = 10 is 1 + zα = 3.33 and 1 + 10zα = 24.26, respectively.

When σ1 = 1 the difference between the V aR0.99(X1) and the VaR premium is 0.06. When

σ1 = 10 the difference between the V aR0.99(X1) and the VaR premium is 0.18. This means

that the insurance company demands a comparatively smaller premium if the standard

deviation is increasing. For the TVaR premium principle we can see the same behavior as

for the VaR premium principle. When α = 0.99 and σ1 = 1, the TV aR0.99(X1) = 3.67,

resulting in a difference of 0.07 between the TV aR0.99(X1) and the TVaR premium. When

α = 0.99 and σ1 = 10, the TV aR0.99(X1) = 27.65, resulting in a difference of 0.21 between

the TV aR0.99(X1) and the TVaR premium. This leads to the same conclusion as for the VaR

premium principle. On the other hand, the conditional premium is increasing faster than

the corresponding TV aR0.99(X1). This means that one has to pay an additional amount to

compensate the insurance company for overtaking the risk.

We can see in Figure 2.5 the VaR premium for X2. Even though the expectation and

variance of the risk are fixed, the premium is changing. At first, the premium is decreasing

until σ1 ≈ 1.5 and is increasing after that. This means that at first X2 benefits from the

increasing standard deviation of the other risk. But, if the change in σ1 is too big, the

premium of X2 is increasing.
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Figure 2.5: The VaR premium for X2 while the standard deviation of X1 is increasing

In Figure 2.6 we can see the TVaR and the conditional premium for X2. The dashed line

represents the TVaR premium and the solid line represents the conditional premium. We

can see that the conditional premium is decreasing from 3.60 to 3.45. This means that the

principle would charge a risk less when there is a risk with the same expectation but bigger

standard deviation in the portfolio of the insurance company. On the other hand, the TVaR

premium for X2 shows the same behavior as the VaR premium in Figure 2.5. The TVaR

premium for the fixed risk is increasing from 3.60 to 3.64 but at first the premium decreases

to 3.59 at σ1 ≈ 1.5.

In conclusion, we can say that a risk with a much higher standard deviation than the

other risk benefits from the VaR or TVaR premium principle because the premium is rel-

atively smaller when both risks are equal. On the other hand, the risk with the smaller

standard deviation benefits from the conditional premium principle because the bigger the
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Figure 2.6: The TVaR premium and conditional premium for X2 while X1 has an increasing
standard deviation

difference between the standard deviation of the risks the smaller the premium is for this

risk. Therefore, we see that each premium principle is better for a different type of risk in

an insurance portfolio.
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3 Bivariate Pareto model

In this chapter we analyze the properties of the three proposed premium principles if the risks

are pareto distributed. The pareto distribution is frequently used in insurance to describe

the risk which corresponds with an insurance contract. For simplicity, we only consider the

bivariate case. But before we can calculate the proposed premium principles, we need the

following results.

Definition 1 A random variable X is pareto distributed Par(a, θ) of type 1 with parameter

a > 0 and θ > 0 if the pdf is equal to:

f(x) =


aθa

xa+1
x ≥ θ

0 else

Definition 2 Let X ∼ Par(a, θ1) and Y ∼ Par(a, θ2) of type 1 with a > 2. Then the joint

density function is equal to:

f(x, y) = a(a+ 1)(θ1θ2)
a+1(θ2x+ θ1y − θ1θ2)−(a+2), x ≥ θ1, y ≥ θ2, a > 0

The joint density function of two pareto distributed random variable is taken from Mardia

(1962) [2].

Proposition 3.1 Let X ∼ Par(a, θ1) and Y ∼ Par(a, θ2) be bivariate pareto distributed

with a > 2 and θ > 0. Then the correlation of X and Y is:

corr(X, Y ) =
1

a

Proof. The proof can be found in Mardia (1962) [2].
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Proposition 3.2 Let X ∼ Par(a, θ) with a > 1 and θ > 0. Then the Value at Risk of X is:

V aRα(X) = θ(1− α)−
1
a (3.1)

Proof. Since X is pareto distributed the cdf is: FX(x) = 1 − (x
θ
)−a for x ≥ θ. By applying

the definition of the Value at Risk we get:

V aRα(X)⇒ P (X ≤ x) = α⇒ 1−
(x
θ

)−a
= α⇒ x = θ

(
1− α

)− 1
a

Proposition 3.3 Let X ∼ Par(a, θ) with a > 1 and θ > 0. Then the Tail Value at Risk of

X is:

TV aRα(X) =
aθ

(1− α)1/a(a− 1)
(3.2)

Proof. With the defintion of TVaR, the Value at Risk of X given in (3.1) and the density of

a pareto distributed random variable we get:

TV aRα(X) =
1

1− α

∫ ∞
TV aRα(X)

xaθax−(a+1) dx =
aθa

1− α

∫ ∞
TV aRα(X)

x−a dx

=
aθa

1− α

[
x−(a−1)

−(a− 1)

]x=∞
x=θ(1−α)−

1
a

=
aθa

(1− α)(a− 1)

(
θ(1− α)−

1
a

)−(a−1)
=

aθ

(1− α)1/a(a− 1)

3.1 Premium calculation for identical Pareto risks

In this section we assume that both risks are identical pareto distributed which means that

X ∼ Par(a, θ) and Y ∼ Par(a, θ).
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Proposition 3.4 Let X ∼ Par(a, θ) and Y ∼ Par(a, θ) with a > 2 and θ > 0. Then the

pdf of X + Y is:

fX+Y (v) = a(a+ 1)θa(v − θ)−(a+2)(v − 2θ)1{v≥2θ} (3.3)

Proof. Since X ∼ Par(a, θ) and Y ∼ Par(a, θ) with a > 2 and θ > 0, the joint density func-

tion is given in Definition 2. We use the following transformation on the joint distribution:

W = X, V = X + Y ⇒ X = W, Y = V −W and |J | = 1 (3.4)

where |J | is the determinant of the Jacobian matrix. Now, we can calculate the joint density

of W = X and V = X + Y :

fW,V (w, v) = fX,Y (w, v − w) · |J | = a(a+ 1)(θ2)a+1(θw + θ(v − w)− θ2)−(a+2)
1{v−w≥θ,w≥θ}

= a(a+ 1)θ2a+2(θv − θ2)−(a+2)
1{v−w≥θ,w≥θ}

= a(a+ 1)θ2a+2θ−(a+2)(v − θ)−(a+2)
1{v−w≥θ,w≥θ}

= a(a+ 1)θa(v − θ)−(a+2)
1{v−w≥θ,w≥θ} (3.5)

Then the marginal density of X + Y is:

fV (v) =

∫ ∞
−∞

fW,V (w, v) dw =

∫ ∞
−∞

a(a+ 1)θa(v − θ)−(a+2)
1{v−θ≥w,w≥θ} dw

=

∫ v−θ

θ

a(a+ 1)θa(v − θ)−(a+2) dw

= a(a+ 1)θa(v − θ)−(a+2)(v − 2θ)1{v≥2θ}

We need the indicator function in the last line because a pdf has to be greater or equal than

zero. Since V = X + Y , we completed the proof.

Proposition 3.5 Let X ∼ Par(a, θ) and Y ∼ Par(a, θ) with a > 2 and θ > 0. Then the
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cdf of X + Y is:

FX+Y (z) = 1 + aθa+1(z − θ)−(a+1) − (a+ 1)θa(z − θ)−a1{z≥2θ}

Proof. In Proposition 3.4 we calculated the pdf ofX+Y . It holds that FX(z) =
∫ z
−∞ fX(x) dx.

Furthermore, we assume that z ≥ 2θ, resulting in:

FX+Y (z) =

∫ z

−∞
fX+Y (v) dv =

∫ z

−∞
a(a+ 1)θa(v − θ)−(a+2)(v − 2θ)1{v≥2θ} dv

= a(a+ 1)θa
[∫ z

2θ

(v − θ)−(a+1) − θ(v − θ)−(a+2) dv
]

= a(a+ 1)θa
[ 1

−a
(v − θ)−a − θ

−(a+ 1)
(v − θ)−(a+1)

]v=z
v=2θ

= −(a+ 1)θa(z − θ)−a + aθa+1(z − θ)−(a+1) + (a+ 1)θaθ−a − aθa+1θ−(a+1)

= 1 + aθa+1(z − θ)−(a+1) − (a+ 1)θa(z − θ)−a

Since, FX+Y (z) is continous for all z > 2θ, we have to show that FX+Y (2θ) = 0 and that

limz→∞ FX+Y (z) = 1. If our function satisfies these conditions then it is indeed a distribution

function. First we check that FX+Y (2θ) = 0.

FX+Y (2θ) = 1 + aθa+1(2θ − θ)−(a+1) − (a+ 1)θa(2θ − θ)−a

= 1 + aθa+1θ−(a+1) − (a+ 1)θaθ−a = 1 + a− (a+ 1) = 0

For the second condition it holds that:

lim
z→∞

FX+Y (z) = 1 + aθa+1(z − θ)−(a+1) − (a+ 1)θa(z − θ)−a →
z→∞

1 + 0− 0

This holds because (z − θ)−(a+1) and (z − θ)−a converge to 0 for z →∞. All in all we have

shown that the cdf of X + Y is FX+Y (z).

The joint density of X + Y and X is given in (3.5) when both risks are identical, pareto
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distributed with parameters a > 2 and θ > 0. Also, we calculated the pdf and cdf of X +Y .

With these results we can calculate the V aRα(X + Y ), TV aRα(X + Y ) and E
[
X|X + Y >

V aRα(X + Y )
]
. In the following results we state the formulas for each one.

Proposition 3.6 Let X ∼ Par(a, θ) and Y ∼ Par(a, θ) with a > 2 and θ > 0. Then the

Value at Risk of X + Y is the value q ∈ R, which solves the following equation:

α = 1 + aθa+1(q − θ)−(a+1) − (a+ 1)θa(q − θ)−a (3.6)

Proof. In Proposition 3.5 we calculated the cdf of X + Y . After the definition of the Value

at Risk it holds that:

V aRα(X + Y ) = q ⇔ FX+Y (q) = α

⇒ 1 + aθa+1(q − θ)−(a+1) − (a+ 1)θa(q − θ)−a = α

Since X+Y is a continuous random variable and FX+Y (z) is strictly increasing, the solution

of the above equation is unique.

Proposition 3.7 Let X ∼ Par(a, θ) and Y ∼ Par(a, θ) with a > 2 and θ > 0. Then the

Tail Value at Risk is:

TV aRα(X + Y ) =
a(a+ 1)θa

1− α

[ 1

a− 1
(q − θ)−(a−1) − θ2

a+ 1
(q − θ)−(a+1)

]

in which q is given in Proposition 3.6.
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Proof. With the Definition of TV aRα(X) and q as described in Proposition 3.6 we get:

TV aRα(X + Y ) =
1

1− α

∫ ∞
q

vfX+Y (v) dv

=
1

1− α

∫ ∞
q

va(a+ 1)θa(v − θ)−(a+2)(v − 2θ)1{v≥2θ} dv

=
a(a+ 1)θa

1− α

∫ ∞
q

(v − θ)−(a+2)
(
(v − θ)2 − θ2

)
dv (3.7)

=
a(a+ 1)θa

1− α

(∫ ∞
q

(v − θ)−a − (v − θ)−(a+2)θ2 dv

)
=
a(a+ 1)θa

1− α

[
1

−(a− 1)
(v − θ)−(a−1) − θ2

−(a+ 1)
(v − θ)−(a+1)

]v=∞
v=q

=
a(a+ 1)θa

1− α

[
1

a− 1
(q − θ)−(a−1) − θ2

a+ 1
(q − θ)−(a+1)

]

We can drop the indicator function because q > 2θ. This follows from the definition of q.

Proposition 3.8 Let X ∼ Par(a, θ) and Y ∼ Par(a, θ) with a > 2 and θ > 0. Then the

conditional premium given in (1.5) is equal to:

E
[
X|X + Y > V aRα(X + Y )

]
= E

[
Y |X + Y > V aRα(X + Y )

]
=
a(a+ 1)θa

2(1− α)

(
1

a− 1
(q − θ)−(a−1) − θ2

a+ 1
(q − θ)−(a+1)

)

Proof. Since X and Y are identical it follows directly that E
[
X|X + Y > V aRα(X + Y )

]
=

E
[
Y |X + Y > V aRα(X + Y )

]
.

Now we only need to show that:

E
[
X|X + Y > V aRα(X + Y )

]
=
a(a+ 1)θa

2(1− α)

(
1

a− 1
(q − θ)−(a−1) − θ2

a+ 1
(q − θ)−(a+1)

)
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With the joint density of X + Y and X given in (3.5) we get:

E
[
X|X + Y > V aRα(X + Y )

]
=

1

1− α

∫ ∞
−∞

x

∫ ∞
q

fX,X+Y (x, v) dv dx

=
a(a+ 1)θa

1− α

∫ ∞
−∞

x

∫ ∞
q

(v − θ)−(a+2)
1{v−x≥θ,x≥θ} dv dx

After exchanging the integrals and applying the indicator function to the boundaries of the

integral we get:

a(a+ 1)θa

1− α

∫ ∞
q

(v − θ)−(a+2)

∫ v−θ

θ

x dx dv

=
a(a+ 1)θa

1− α

∫ ∞
q

(v − θ)−(a+2)

(
1

2
(v − θ)2 − θ2

)
dv

We notice that this expression is equal to (3.7) except of a factor of 1
2
. Therefore, we can

apply the same steps found in the proof of Proposition 3.7 and get the final result.

3.1.1 Premium calculation for identical Pareto risks

In this section, we investigate the influence of θ and the correlation parameter a of pareto

distributed risks on each proposed premium principle.

Since we assumed in this chapter that both risks, X1 and X2, are identical, V aRα(X1) =

V aRα(X2) and TV aRα(X1) = TV aRα(X2). Hence, we get the following formulas for the

premium principles:

• VaR premium: Pi
(1.3)
= V aRα(Xi)

V aRα(X1)+V aRα(X2)
V aRα(X1 + X2) = 1

2
V aRα(X1 + X2) for

i = 1, 2.

• TVaR premium: Pi
(1.4)
= TV aRα(Xi)

TV aRα(X1)+TV aRα(X2)
TV aRα(X1 + X2) = 1

2
TV aRα(X1 + X2)

for i = 1, 2.

• The conditional premium is given in Proposition 3.8
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We notice that the TVaR premium is equal to the conditional premium. Because of the

defintion of these premium principles that has to be the case.

Let’s consider X1 ∼ Par(a, θ) and X2 ∼ Par(a, θ) with θ = 5, α = 0.99 and a correlation pa-

rameter a ranging from 2.1 to 10. From this, we get the following premium for each principle:

a 2.1 2.5 3 4 5 10
Correlation 0.48 0.40 0.33 0.25 0.20 0.10
VaR premium 40.06 27.78 20.25 13.76 10.99 7.22
TVaR premium 74.98 45.15 29.47 17.71 13.26 7.79
Cond. premium 74.98 45.15 29.47 17.71 13.26 7.79

Table 3.1: The premium for a pareto distributed risk with a decreasing correlation

In Table 3.1 we can see the premiums for different values of a and for the three proposed

premium principles. From Proposition 3.1 we get the formula for the correlation between

risks X1 and X2. This formula holds only if a > 2. Because of this we only considered

values of a between 2.1 and 10. It holds that for every principle the premium is decreasing if

the correlation between the risks is getting smaller. This corresponds with an increasing a.

Furthermore, we can see that the VaR premium is always lower than the TVaR and condi-

tional premium, which makes sense because the TVaR and conditional premium principles

are more conservative. But, the difference between the VaR premium and the TVaR and

conditional premium is decreasing from over 30 to less than 1. This makes sense since the

correlation is decreasing, which means that the distribution of X1 + X2 gets lighter right

tails.

Now we consider the same risks X1 ∼ Par(a, θ) and X2 ∼ Par(a, θ) but with a fixed corre-

lation parameter a = 3, α = 0.99 and θ increasing from 1 to 100.

In Table 3.2 we can see the premiums for different θ’s and each proposed premium principle.

All the numbers are rounded to the second decimal place. For all principles we see that the

premium is increasing linearly. If θ is doubled the premium is doubled as well. This holds

for every premium principle. That makes sense because θ is the scale paramter of the pareto
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θ 1 2 3 5 10 15 25 100
VaR premium 4.05 8.10 12.15 20.25 40.49 60.74 101.24 404.94
TVaR premium 5.89 11.79 17.68 29.47 58.94 88.41 147.35 589.40
Cond. premium 5.89 11.79 17.68 29.47 58.94 88.41 147.35 589.40

Table 3.2: The premium for each principle for a pareto distributed risk with an increasing θ

distribution. The scale parameter describes how spread out the distribution is. This means

that if θ is doubled the distribution is twice as spread out than before. Then, it is reasonable

to charge the doubled premium.

3.2 Premium calculation for non-identical Pareto risks

So far, we have only considered identical pareto distributed risks. But most risks which are

insured by an insurance company are not identical. That is why we consider risks that are

not identical in this section, which means that for risks X1 ∼ Par(a, θ1) and X2 ∼ Par(a, θ2)

it holds that θ1 6= θ2. We will derive formulas for each proposed premium principle but before

we can do that we have to derive the pdf and cdf of X1 +X2 and the joint density of Xi and

X1 +X2, i = 1, 2.

Proposition 3.9 Let X1 ∼ Par(a, θ1) and X2 ∼ Par(a, θ2) with a > 2, θ1 > 0, θ2 > 0 and

θ1 6= θ2. Then the pdf of X1 +X2 is:

fX1+X2(v) =
a(θ1θ2)

a+1

θ2 − θ1

[(
θ1v − θ21

)−(a+1) −
(
θ2v − θ22

)−(a+1)
]
1{v≥θ1+θ2} (3.8)

Proof. The joint density of X1 and X2 is given in Definition 2. We apply the same transfor-

mation W = X1, V = X1 +X2 as in the proof of Proposition 3.4 and we get:

fW,V (w, v) = fX,Y (w, v − w) · |J |

= a(a+ 1)(θ1θ2)
a+1
(
θ2w + θ1(v − w)− θ1θ2

)−(a+2)
1{v−w≥θ2,w≥θ1}

= a(a+ 1)(θ1θ2)
a+1
(
θ1v + (θ2 − θ1)w − θ1θ2

)−(a+2)
1{v−θ2≥w,w≥θ1} (3.9)
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By integrating over w we get the marginal density of V = X1 +X2.

fV (v) =

∫ ∞
−∞

a(a+ 1)(θ1θ2)
a+1
(
θ1v + (θ2 − θ1)w − θ1θ2

)−(a+2)
)1{v−θ2≥w,w≥θ1} dw

=

∫ v−θ2

θ1

a(a+ 1)(θ1θ2)
a+1(θ1v + (θ2 − θ1)w − θ1θ2)−(a+2) dw

= a(a+ 1)(θ1θ2)
a+1

[
1

θ2 − θ1
1

−(a+ 1)

(
θ1v + (θ2 − θ1)w − θ1θ2

)−(a+1)
]w=v−θ2
w=θ1

=
a(θ1θ2)

a+1

(θ2 − θ1)

[(
θ1v + (θ2 − θ1)θ1 − θ1θ2

)−(a+1) −
(
θ1v + (θ2 − θ1)(v − θ2)− θ1θ2

)−(a+1)
]

=
a(θ1θ2)

a+1

(θ2 − θ1)

[(
θ1v − θ21

)−(a+1) −
(
θ2v − θ22

)−(a+1)
]
1{v≥θ1+θ2}

We need the indicator function because the pdf always has to be greater or equal than 0.

This holds if v > θ1 + θ2.

Proposition 3.10 Let X1 ∼ Par(a, θ1) and X2 ∼ Par(a, θ2) with a > 2, θ1 > 0, θ2 > 0

and θ1 6= θ2. Then the pdf of X1 +X2 is:

FX1+X2(z) = 1 +
1

θ2 − θ1

[
θa+1
1 (z − θ2)−a − θa+1

2 (z − θ1)−a
]
1{z≥θ1+θ2}

Proof. It holds that FX(z) =
∫ z
−∞ fX(x) dx. Also, we assume that z ≥ θ1 + θ2. The pdf of

X1 +X2 is given in (3.8). Then we get:

FX1+X2(z) =

∫ z

−∞

a(θ1θ2)
a+1

θ2 − θ1

[(
θ1v − θ21

)−(a+1) −
(
θ2v − θ22

)−(a+1)
]
1{v≥θ1+θ2} dv

=
a(θ1θ2)

a+1

θ2 − θ1

[
1

−a
θ
−(a+1)
1 (v − θ1)−a −

1

−a
θ
−(a+1)
2 (v − θ2)−a

]v=z
v=θ1+θ2

=
(θ1θ2)

a+1

θ2 − θ1

[
θ
−(a+1)
2 (z − θ2)−a − θ−(a+1)

1 (z − θ1)−a − θ−(a+1)
2 θ−a1 + θ

−(a+1)
1 θ−a2

]
=

1

θ2 − θ1

[
θa+1
1 (z − θ2)−a − θa+1

2 (z − θ1)−a
]

+ 1

Since we assumed that z ≥ θ1 + θ2, we have to check that FX1+X2(θ1 + θ2) = 0 and

limz→∞ FX1+X2(z) = 1. When these are true, then FX1+X2(z) is indeed a distribution func-
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tion.

FX1+X2(θ1 + θ2) = 1 +
1

θ2 − θ1

[
θa+1
1 (θ1 + θ2 − θ2)−a − θa+1

2 (θ1 + θ2 − θ1)−a
]

= 1 +
1

θ2 − θ1

[
θ1 − θ2

]
= 0

lim
z→∞

FX1+X2(z) = lim
z→∞

1 +
1

θ2 − θ1

[
θa+1
1 (z − θ2)−a − θa+1

2 (z − θ1)−a
]

= 1 +
1

θ2 − θ1
(
0− 0

)
= 1

This holds because limz→∞(z − θ2)−a = 0 and limz→∞(z − θ1)−a = 0.

Now that we calculated the pdf and cdf of the sum of two dependent pareto random

variables we are able to calculate the Value at Risk and the Tail Value at Risk for X1 +X2.

Proposition 3.11 Let X1 ∼ Par(a, θ1) and X2 ∼ Par(a, θ2) with a > 2, θ1 > 0, θ2 > 0 and

θ1 6= θ2. Then the Value at Risk of X1 +X2 is the number q ∈ R, which solves the following

equation:

α = 1 +
1

θ2 − θ1

[
θa+1
1 (q − θ2)−a − θa+1

2 (q − θ1)−a
]

(3.10)

Proof. In Proposition 3.10 we calculated the cdf of X1+X2. With the definition of the Value

at Risk it holds that:

V aRα(X1 +X2) = q ⇔ FX1+X2(q) = α

⇒ 1 +
1

θ2 − θ1

[
θa+1
1 (q − θ2)−a − θa+1

2 (q − θ1)−a
]

= α

Since X1 + X2 is a continuous random variable and FX1+X2(x) is strictly increasing, the

solution q is unique.

Proposition 3.12 Let X1 ∼ Par(a, θ1) and X2 ∼ Par(a, θ2) with a > 2, θ1 > 0, θ2 > 0
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and θ1 6= θ2. Then the Tail Value at Risk of X1 +X2 is:

TV aRα(X1 +X2) =
1

(1− α)(θ2 − θ1)

[
θa+1
2

( 1

a− 1
(q − θ1)−(a−1) + θ1(q − θ1)−a

)
− θa+1

1

( 1

a− 1
(q − θ2)−(a−1) + θ2(q − θ2)−a

)]
(3.11)

in which q is given in Proposition 3.11.

Proof. With q as described in Proposition 3.11 and the definition of TV aRα(X) we get:

TV aRα(X1 +X2) =
1

1− α

∫ ∞
q

vfX1+X2(v) dv

=
a(θ1θ2)

a+1

(θ2 − θ1)(1− α)

∫ ∞
q

v
[(
θ1v − θ21

)−(a+1) −
(
θ2v − θ22

)−(a+1)
]
1{v≥θ1+θ2} dv

=
a

(θ2 − θ1)(1− α)

[∫ ∞
q

θa+1
2 v

(
v − θ1

)−(a+1)
dv −

∫ ∞
q

θa+1
1 v

(
v − θ2

)−(a+1)
dv
]

For the first integral we substitute u = v − θ1, du = dv and for the second integral we

substitute u = v − θ2, du = dv:

a

(θ2 − θ1)(1− α)

[∫ ∞
q−θ1

θa+1
2 (u− θ1)(u)−(a+1) dv −

∫ ∞
q−θ2

θa+1
1 (u+ θ2)u

−(a+1) dv
]

=
a

(θ2 − θ1)(1− α)

[[
θa+1
2

( u−a+1

−a+ 1
+
θ1u
−a

−a
)]q=∞

u=q−θ1
−
[
θa+1
1

( u−a+1

−a+ 1
+
θ2u
−a

−a
)]q=∞

u=q−θ2

]
=

1

(1− α)(θ2 − θ1)

[
θa+1
2

( 1

a− 1
(q − θ1)−(a−1) + θ1(q − θ1)−a

)
− θa+1

1

( 1

a− 1
(q − θ2)−(a−1) + θ2(q − θ2)−a

)]

Proposition 3.13 Let X1 ∼ Par(a, θ1) and X2 ∼ Par(a, θ2) with a > 0, θ1 > 0, θ2 > 0
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and θ1 6= θ2. Then it holds that:

•E
[
X1|X1 +X2 > V aRα(X1 +X2)

]
=

1

(1− α)(θ2 − θ1)2

[
θ1θ

a+1
2

a− 1

(
q − θ1

)−(a−1)
− a+ 1

a− 1
θ2θ

a+1
1

(
q − θ2

)−(a−1)
+
aθa+2

1

a− 1

(
q − θ2

)−(a−1) − (θ1 − θ2)θ1θa+1
2

(
q − θ1

)−a]
(3.12)

•E
[
X2|X1 +X2 > V aRα(X1 +X2)

]
= TV aRα(X1 +X2)− E

[
X1|X1 +X2 > V aRα(X1 +X2)

]
Proof. With the defintion of TVaR and because the expectation is additive it holds that:

TV aRα(X1 +X2) = E
[
X1 +X2|X1 +X2 > V aRα(X1 +X2)

]
= E

[
X1|X1 +X2 > V aRα(X1 +X2)

]
+ E

[
X2|X1 +X2 > V aRα(X1 +X2)

]
Rearranging this equation proves the second point. Now we only need to show the first

point. The joint density of X1 and X1 +X2 is given in (3.9). We then get:

E
[
X1|X1 +X2 > V aRα(X1 +X2)

]
=

1

1− α

∫ ∞
−∞

x

∫ ∞
q

fX,X+Y (x, v) dv dx

=
1

1− α

∫ ∞
−∞

x

∫ ∞
q

a(a+ 1)(θ1θ2)
a+1(θ1v + (θ2 − θ1)x− θ1θ2)−(a+2))1{v−θ2≥x,x≥θ1} dv dx

After exchanging the integrals we get:

a(a+ 1)(θ1θ2)
a+1

1− α

∫ ∞
q

(∫ v−θ2

θ1

x(θ1v + (θ2 − θ1)x− θ1θ2)−(a+2)) dx
)
dv

Substituting u = (θ2 − θ1)x− θ1θ2 + θ1v, dx = du
θ2−θ1 and integrating gives us:

a(a+ 1)(θ1θ2)
a+1

(1− α)(θ2 − θ1)2

∫ ∞
q

1

a

(
θ−a1 (v − θ1)−a − θ−a2 (v − θ2)−a

)
+

1

a+ 1

(
θ1θ
−(a+1)
2 (v − θ2)−a

)
dv −

∫ ∞
q

θ−a1

a+ 1
(v − θ2)(v − θ1)−(a+1) dv
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After substituting w = v − θ1, dw = dv in the second integral and integrating the integral

we get:

1

(1− α)(θ2 − θ1)2

[
θ1θ

a+1
2

a− 1

(
q − θ1

)−(a−1) − a+ 1

a− 1
θ2θ

a+1
1

(
q − θ2

)−(a−1)
+

a

a− 1
θa+2
1

(
q − θ2

)−(a−1) − (θ1 − θ2)θ1θa+1
2

(
q − θ1

)−a]

3.2.1 Premium calculation for non-identical Pareto risks

In this subsection, we analyze the impact θ1 has on the premium of X1 and X2 for each

proposed premium principle.

We assume that X1 ∼ Par(a, θ1), X2 ∼ Par(a, θ2), θ1 > 0, θ2 > 0, θ1 6= θ2 and a > 2. We

can calculate the premium for each proposed principle. For that we need (3.1) and (3.10)

for the VaR premium, (3.2) and (3.11) for the TVaR premium and (3.12) for the conditional

premium.

Let’s consider X1 ∼ Par(a, θ1) and X2 ∼ Par(a, θ2) with a = 3, α = 0.99, θ2 = 1 and θ1 is

increasing from 2 to 10. We are saying that X1 is the bigger risk since the expectation and

the variance of it is greater than that of risk X2.

In Figure 3.1 we can see the premium of X1 for different θ1 and for each proposed principle.

The solid line represents the TVaR premium, the dashed line represents the conditional pre-

mium and the dotted line represents the VaR premium. The VaR premium is for all θ1 less

than the other two premiums. This makes sense because the TVaR and conditional premium

is more conservative than the VaR premium. Furthermore, the distance between the VaR

premium and the other two premiums is increasing when θ1 is increasing. This is true since

X1 is positively correlated with X2 which means if one of the risks is high it is more likely that

the other risk is high too. Also, θ1 is a scale parameter which means that if θ1 is increasing

the distribution is more spread out. Likewise, the TVaR is increasing faster than the VaR.
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Figure 3.1: The premium for each principle of risk X1 while θ1 is increasing

Additionally, we can see that the conditional premium is greater than the TVaR premium,

meaning the conditional premium requires a higher premium for overtaking risk X1 than the

TVaR principle. This also means that the conditional premium principle assigns X1 a higher

fault than the TVaR premium principle when X1 + X2 exceeds the V aR0.99(X1 + X2). We

can say this because PCond = E
[
X1|X1 +X2 > V aR0.99(X1 +X2)

]
> PTV aR.

In Figure 3.2 we can see the premium for X2 for an increasing θ1 while θ2 = 1 is fixed. The

solid line represents the TVaR premium and the dashed line the conditional premium. The

TVaR premium is greater than the conditional premium and it is increasing for an increasing

θ1. On the other hand, the conditional premium is decreasing for an increasing θ1. Which

means that the conditional premium demands a smaller premium if the risk is much smaller

than the other risk in the portfolio. However, the TVaR premium demands a higher pre-

mium for the smaller risk if the other risk in the portfolio is a lot bigger than the smaller risk.
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Figure 3.2: The TVaR and conditional premium for X2 while θ1 is increasing

Figure 3.3 shows the VaR premium for X2 for an increasing θ1 while θ2 = 1 is fixed. We

can see that the premium is increasing for an increasing θ1. The increase in the premium is

0.3 or 9%. This means that VaR principle demands a higher premium if there is a bigger

risk in the portfolio of the insurance company.

In conclusion, we see that the VaR and TVaR premium principles are similar in the sense

that they demand a higher premium for both risks if the risks are pareto distributed with a

postive correlation but have very different values for θ. On the other hand, the conditional

premium rewards the risk with the lower θ with a smaller premium if the difference in θ1

and θ2 is big. Since the total premium of the conditional premium has to be equal to the

TV aRα(X1 + X2), the premium for the bigger risk is increasing disproportionately. This

means that the smaller risk would prefer the conditional premium principle and the bigger

risk would prefer the TVaR premium principle or the VaR premium principle, since the

TVaR principle and VaR principle behave similiarly.
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Figure 3.3: The VaR premium for X2 while θ1 is increasing
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4 Aggregate loss model

The aggregate loss model is commonly used in insurance because we can model the amount

of claims an insurance company has to cover with a random variable. This is useful because

the insurance company does not know how many claims will occur in the next time period.

Therefore, we can model the total loss as TL =
∑N

j=1 Yj where N is a discrete random

variable that models the claim frequency and Yj is a random variable that models the claim

size. Usually it is assumed that N and Yj are mutually independent for all j.

We assume that each risk Xi i = 1, . . . , n is an aggregate loss: Xi =
∑Ni

j=1 Yij. Also, we

assume that N1, . . . , Nn are dependent. Therefore, we can assume that {Yij, i = 1, 2, . . . , j =

1, 2, . . . } are independent and we can focus on modeling the dependence of N1, . . . , Nn. To

simplify, we assume that Yij ∼ Y ∀i, j. We will consider two different cases of dependence

structures:

• Strong dependence N1 = · · · = Nn = N

• Weak dependence Ni = N0 +Mi where N0,M1, . . . ,Mn are mutually independent

In the next section we analyze the impact the dependence structure has on the different

premium principles in the poisson-exponential model. We consider the VaR (1.3) and the

TVaR premium principle (1.4). But, before we can calculate the premium for the different

principles we need the following results.

Proposition 4.1 Let S be an aggregate loss, S =
∑N

j=1 Yj and Yj
i.i.d.∼ Y . Then the charac-

teristic function of S is given by:

ϕS(z) = PN
(
ϕY (z)

)
(4.1)

where PN is the probability generating function of N .
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Proof. With the definition of the characteristic function we get:

ϕS(z) = E
[
eizS
]

= E
[
eiz0
]
P (N = 0) +

∞∑
n=1

E
[
eiz(Y1+···+Yn)|N = n)

]
P (N = n)

Since all Yj are i.i.d. and with the defintion of the probability generating function we get:

= 1 P (N = 0) +
∞∑
n=1

E
[ n∏
j=1

eizYj
]
P (N = n)

=
(
eizY

)0
P (N = 0) +

∞∑
n=1

E
[(
eizY

)n]
P (N = n) =

∞∑
n=0

(
ϕY (z)

)n
P (N = n) = PN

(
ϕY (z)

)

4.1 Poisson-exponential model

The Poisson-exponential model is an aggregate loss model where the claim frequency N

follows a poisson distribution with mean λ and the claim severity Yj follows an exponential

distribution with mean θ. We assume that each risk Xi =
∑Ni

j=1 Yij i = 1, . . . , n is an

aggregate loss.

To calculate the VaR premium and the TVaR premium for sums of aggregate loss risks

we need to be able to calculate the Value at Risk for aggregate loss risks by obtaining the

distribution of the aggregate loss. But, finding the exact distribution of an aggregate loss is

very difficult. Therefore, it is common to use the following technique to find the distribution

of an aggregate loss given in Klugman et al.(2012) [1] (p. 254f):

The first step is to discretize the continous severity function. We will use the method of

rounding, described in Defintion 3.

Definition 3 (The method of rounding) Let fj denote the probability placed at jh, j =
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1, . . . , n. Then set

f0 = P
(
X <

h

2

)
= FX

(h
2

)
fj = P

(
jh− h

2
≤ X < jh+

h

2

)
= FX

(
jh+

h

2

)
− FX

(
jh− h

2

)
, j = 1, . . . ,m− 1

fn = P
(
X > mh− h

2

)
= 1− FX

(
mh− h

2

)

where j denotes the step size, n the number of steps and m the highest possible value that

the discrete probability could become. Lastly, m = jn.

The second step is to calculate the characteristic function of the discrete severity function

with the discrete fast fourier transformation. The third step is to get the characteristic

function of the aggregate loss with the help of Proposition 4.1. In the case of the poisson-

exponential model we can calculate the characteristic function of the aggregate loss S with

ϕS(z) = exp
(
λ(ϕY (z)−1)

)
. The last step is to get the distribution function of the aggregate

loss by applying the inverse fast fourier transformation. After following these four steps we

have a discrete distribution function of the aggregate loss and can calculate the Value at

Risk and Tail Value at Risk.

4.1.1 Premium calculation for strong dependence

In this subsection, we will consider the Poisson-exponential aggregate loss model with strong

dependence. This means that N1 = · · · = Nn ∼ Poi(λ). For the premium calculation we

need the following result.

Proposition 4.2 Let Xi i = 1, . . . , n be each a poisson-exponential aggregate loss: Xi =∑Ni
j=1 Yij with N1 = · · · = Nn = N ∼ Poi(λ) and Yij

i.i.d.∼ Exp(θ). Then the total loss is
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Poisson over Gamma distributed:

TL =
N∑
j=1

Yj

where N ∼ Poi(λ) and Yj ∼ Γ(n, θ)

Proof. Since N1 = · · · = Nn = N , Yij are i.i.d. for all i, j and from the defintion of the total

loss we get:

TL =
n∑
i=1

Xi =
n∑
i=1

Ni∑
j=1

Yij =
N∑
j=1

n∑
i=1

Y =
N∑
j=1

Z

where Z ∼ Γ(n, θ). This holds because the sum of n independent and identical exponential

random variable Y ∼ Exp(θ) with mean θ is gamma distributed with parameter n and θ.

Let’s consider n = 2 aggregate losses, X1 and X2, where Xi =
∑Ni

j=1 Yij for i = 1, 2. Also,

let Yij
i.i.d.∼ Exp(3) and N1 = N2 ∼ Poi(λ) where λ is increasing from 1 to 8. To calculate

the VaR and TVaR of the total loss we use the technique described in Section 4.1 and the

method of rounding with m = 121.38, n = 216 = 65, 536 and j = m
n

. Since all risks are

identical the premium for each risk has to be the same.

In Figure 4.1 we can see the premium for the VaR premium and TVaR premium when

λ is increasing. The solid line represents the VaR premium and the dashed line represents

the TVaR premium. The first thing we notice is that the VaR premium is smaller than

the TVaR premium but this makes sense because the TVaR premium is more conservative.

Moreover, both premiums are increasing when λ is increasing. This makes sense because a

larger λ means the probability of more claims happening is increased. The consequence is

that this is riskier and more expensive for the insurance company. That is why the insurance

company demands a higher premium.

In Table 4.1 we consider that the amount of contracts n is increasing from 2 to 100. Each

risk Xi is an aggregate loss which means that Xi =
∑Ni

j=1 Yij for i = 1, . . . , n, where Yij
i.i.d.∼
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Figure 4.1: Premium for different principles when λ is increasing

Exp(3) and N1 = · · · = Nn ∼ Poi(2). To calculate each premium we use the technique

described in Section 4.1. We use the method of rounding with n = 216 = 65, 536, j = m
n

and

m is given in the table and is equal to the 99.9999% quantile of Z ∼ Γ(n, 3).

n 2 3 5 10 25 100
m 121.38 130.92 147.68 183.31 271.03 616.33
VaR premium 22.06 20.71 19.54 16.67 10.57 6.13
TVaR premium 25.49 23.72 22.03 17.42 10.70 6.15

Table 4.1: The premium for an aggregate loss Xi for different principles depending on the
amount of contracts in the portfolio

In Table 4.1 we can see the VaR premium and the TVaR premium for a risk Xi while the

amount of contracts n in the insurance portfolio is increasing. Because all risks are identical

the premium for each risk is the same. We can see that both premiums are decreasing if n

is increasing. Moreover, the difference between both premium principles is decreasing from

3.43 to 0.02. This shows that for a large insurance portfolio the premium is decreasing for

each principle and the difference between the VaR and TVaR principle is getting smaller.
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4.1.2 Premium calculation for weak dependence

In this subsection we assume that the risks Xi =
∑Ni

j=1 Yij, i = 1, . . . , n have a weak depen-

dence structure. This means that Ni = N0+Mi, where N0,M1, . . . ,Mn are mutually indepen-

dent. Because N0,M1, . . . ,Mn are mutually independent and N0 ∼ Poi(λ0), Mi ∼ Poi(λi)

for all i, N0 +Mi ∼ Poi(λ0 + λi).

Let’s consider n = 2 aggregate loss risks with M1 ∼ Poi(1), M2 ∼ Poi(3), Yij ∼ Exp(3) for

all i, j and N0 ∼ Poi(λ0) with λ0 increasing from 0.5 to 10. We use the method described

in Section 4.1 to calculate VaR and TVaR for X1 and X2 with α = 0.99 and the method of

rounding with m = 75, n = 216 = 65536 and j = m
n

. For the VaR and TVaR of the total

loss we use the Monte-Carlo method with 100, 000 simulations.

Figure 4.2: Premium for different principles and risks when λ0 is increasing

In Figure 4.2 we can see how the premium changes when λ0 is increasing. On the left

side it shows the VaR premium for X1 and X2 and on the right side the TVaR premium for

X1 and X2. In both graphs the solid line represents the premium for X1 and the dashed

line represents the premium for X2. We notice that all lines are not smooth, because we

used Monte-Carlo simulations to find the VaR and TVaR of the total loss and Monte-Carlo

simulations does not give a precise results. Furthermore, we can see that the premium for

X1 is less than the premium for X2 for all λ0. This makes sense because λ1 is smaller than
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λ2 which means that it is more likely that X1 has less claims than X2. Additionally, we

can see that the difference between the premium for each risk is decreasing. This holds for

both premium principles. This is happening because the dependence between both risks is

increasing, which is described by λ0. Moreover, for an increasing parameter λ of a poisson

distribution, we saw in Figure 4.1 that both premium principles are concave. That means

that the original difference in λ1 and λ2 resulted in a rather large difference in the premium

because both parameters are small. But, with an increasing λ0 the difference between the

parameters stays the same. Both parameters are bigger, however, which means the difference

between the premium is smaller because of the concavity of the premium principles.

In this example we assume a similiar setup as in the previous example, N0 ∼ Poi(1), M2 ∼

Poi(1), Yij ∼ Exp(3) for all i, j and M1 ∼ Poi(λ1) where λ1 is increasing from 1 to 10. We

use the method described in Section 4.1 to calculate the VaR and TVaR for X1 and X2 with

α = 0.99. For the method of rounding we use m = 75, n = 216 = 65536 and j = m
n

. To

calculate the VaR and TVaR of the total loss we use the Monte-Carlo method with 100, 000

simulations.

Figure 4.3: Premium for different principles and risks when λ1 is increasing

Figure 4.3 shows the VaR premium and TVaR premium in dependence of λ1. We can see

on the left side the VaR premium for X1 and X2 and on the right side the TVaR premium
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for X1 and X2. In both graphs the solid line represents the premium for X1 and the dashed

line represents the premium for X2. As in Figure 4.1, we do not see a smooth line because

we used a Monte-Carlo simulation to obtain the VaR and TVaR of the total loss. We notice

that both premiums of X1 are increasing, which makes sense because λ1 is the parameter

of the claim frequency of X1 and if this parameter is increasing it is more likely that more

claims will happen. This results in a higher risk for the insurance company and they will

demand a higher premium. Furthermore, we see that the premium for X2 is also increasing

when λ1 is increasing.

In conclusion we can say that in the poisson-exponential model and in the case of a

strong dependence structure the premium for the VaR and TVaR principle is increasing

if λ is increasing. Also, the premium is decreasing for an increase in the amount of risks

in the insurance portfolio. This means that the important concept of pooling risks is still

functioning. In the case of a weak dependence structure the premium strongly depends on

the parameter λ0. When λ0 is high the premium for the risks are mostly equal but if λ0 is

small the premium for each risk depends on their poisson parameter λi. Furthermore, the

premium for both risks are increasing if λ1 is increasing even if λ2 and λ0 is fixed. This

means that the premium principles assign a comparatively smaller premium when the risks

are similiar.
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5 Conclusion

The goal of this master’s thesis was to price depedent risks. Therefore, we proposed three

premium principles. We assumed that the risks follow a normal distribution, pareto dis-

tribution and that each risk is an aggregate loss. We derived formulas for the first two

distributions and for each premium principle. For the case that each risk is an aggregate

loss we explained a method to calculate the VaR premium and the TVaR premium.

We observed that when the dependence between the insured risks is increasing that the pre-

mium is increasing as well. This means that strongly correlated risks represent a higher total

risk for the insurance company than weakly correlated risks. Further, we observed that an

increase in the portfolio size of the insurance company results in a decrease in the individual

premium for a risk. This holds for the normally distributed risks and poisson-exponential

distributed risks but only if the risks are not perfectly correlated. Also, we found out that if

the risks in an insurance portfolio are very different, that is, their parameters of the distri-

butions are very different, then the VaR and the TVaR premium principle demand a higher

premium for the smaller risk compared to the case when both risks are equal. On the other

hand, the conditional premium principle demands a smaller premium for the smaller risk

when the risks are very different compared to the case that both risks are equal.

Although we derived formulas for the proposed premium principle it is interesting to

extend the bivariate pareto model into the multivariate pareto model. Moreover it would

be interesting to derive the distribution function of the total loss in the poisson-exponential

model for the case of a weak dependence structure. Then we would not have to rely on a

simulation procedure to get the Value at Risk and Tail Value at Risk of the total loss. Of

course, it is also possible to extend this study to other distributions.
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