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ABSTRACT

A STATISTICAL MODEL FOR THE INFLUENCE OF
TEMPERATURE ON BIKE DEMAND IN BIKE-SHARING

SYSTEMS

by

Tobias Tietze

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Daniel Gervini

Efficient fleet management is essential for bike-sharing systems. Thus, it is important to

understand the impact of environmental factors on bike demand. This thesis proposes a

method to analyze the influence of temperature on bike demand. Hourly temperature data

are approximated by smoothed curves and modeled by functional principal components.

Bike check-out times, which can be seen as realizations of a doubly stochastic process,

are modeled using multiplicative component models on the underlying intensity functions.

The respective component scores are then related via a multivariate regression model. An

analysis of data from the Divvy system of the City of Chicago is presented as an example

of application.
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1 Introduction

Sharing systems are becoming more and more common in many different parts of every-

day life. In particular, many cities try to reduce traffic and pollution by the installation

of bike-sharing systems. Their hope is that many people, both residents and tourists,

use the bikes for spontaneous trips as well as regular routes and therefore do something

good for the environment and reduce the risk of traffic jams. The basic requirement for

bike sharing systems to be accepted and used by a lot of people is that the users have

no downsides through using the bikes compared to the usage of cars. For the main part,

this concerns the availability of the bikes and the bike stations. It is important that there

are bike stations near to the intended starting and end points of the trip, that a bike is

available to be checked out and that docks are vacant to check the bikes in afterwards.

In order to plan the availability and to re-allocate bikes between stations, the operating

company needs to understand the spatiotemporal patterns of bike demand.

There is already a lot of literature about different aspects of bike sharing system (e.g.

Borgnat et al., 2011). One important question is how the bike demand can be modeled

for a specific bike station. As the demand is different every day, the bike checkout times

can be seen as random events of a temporal point process. Gervini (2017) introduces a

multiplicative model that estimates the intensity function of such processes and gives the

mathematical foundation to analyze the variability of the demand over various days.

Based on this approach, this thesis models the bike demand and examines the tempera-

ture as possible influential factor. For this purpose, the temperature is seen as functional

data and approximated by smooth functions. Then, a principal component analysis is

conducted on the obtained functions which represent different days. The procedures for

the analyses applied on the functional data are for example given by Ramsay and Silver-

man (2005). After the variation in the bike demand and in the temperature is analyzed,

the relationship between the results is investigated. The goal is to find out if the overall

temperature as well as the fluctuation in the temperature influence the bike demand in

terms of the volume and the time of checkouts.

The analysis is conducted on data from the bike-sharing system Divvy of the City of
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Chicago. Specifically, bike checkout times at two bike stations with different character-

istics are examined between April 1 and November 30 of 2016. The months December

to March are left out as bike demand considerably decreases during the winter. Since

temperature does not significantly change inside a city, the same temperature data is

used for both bike stations.

The thesis is structured as follows. Chapter 2 explains the idea of functional data and

how to find an approximating, smooth function that captures important patterns in the

functional data. In addition, the principal component analysis is explained for functional

data. In the next chapter, the multiplicative component model for replicated temporal

point processes is introduced and followed by the estimation of the parameters. After-

wards, the mathematical foundation for a regression analysis of component scores is given

in chapter 4. In chapter 5, the approaches of the previous chapters are used to analyze

the influence of temperature on the bike sharing system. In particular, the smoothing

mechanism and the principal component analysis are used for the temperature data and

the bike demand data is analyzed by the use of the multiplicative component model.

The relationship between these results is then examined in regression models. The thesis

concludes in chapter 6 and provides an outlook on further possible analyses.
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2 Functional data analysis

This chapter deals about the smoothing and the analysis of discrete, temporal data points.

For this purpose, the data is not seen as a sequence of individual observations but rather

as observed extracts of a latent data function. Let the discretely observed data be given

by the m pairs (tj, yj) and the corresponding latent function denoted by x where yj is the

value of the function x at time tj, probably blurred by measurement error. Therefore,

the following equation is obtained

yj = x(tj) + εj for j = 1, ...,m

which can be written in vector notation as

y = x(t) + ε

where y = (y1, ..., ym)′, t = (t1, ..., tm)′ and ε = (ε1, ..., εm)′.

In most applications, not just a single function x is of interest but a collection of functional

data. Therefore, the observations of function xi are given by the mi pairs (tij, yij) with

j = 1, ...,mi.

2.1 Smoothing functional data

The goal of this subsection is to estimate the latent function of functional data. As the

estimation of the function xi normally takes place independently of the estimations of

other functions xk (k 6= i), just a single function x with observations (tj, yj) (j = 1, ...,m)

is considered for simplicity in this section. The underlying function x should be smooth

and should approximate the value yj well for all observations j = 1, ...,m. A function is

declared to be smooth if it possesses one or more derivatives so that adjacent data points

are unlikely to be very different. That also means that a smoothed function just reveals

the general behavior of the data instead of every single noise terms.
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A common approach to find x is to represent the function by a linear combination of

basis functions.

Let β = (β1, ..., βK)′ be a set of basis functions. These functions are chosen so that

they are independent of each other and that the linear combination of a sufficiently large

number K of them can approximate any function arbitrarily well. The function x can

then be expressed by

x(tj) =
K∑
k=1

ckβk(tj)

which can be written in vector notation as

x(t) =
K∑
k=1

ckβk(t) = Bc

where c = (c1, ..., cK)′ is the vector of length K that contains the coefficients and B is the

m×K matrix that contains the values βk(tj).

Popular choices of basis function systems are the Fourier series system

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ωt), sin(3ωt), cos(3ωt), ...

the truncated polynomial basis

1, t, t2, t3, ..., td, (t− τ1)d+, ..., (t− τL)d+

and the B-spline basis which is the most common choice for non-periodic functional data

and therefore used in this thesis.

Both the truncated polynomial basis and the B-spline basis are splines of degree d. A

spline of order d+ 1 is defined by a division of the interval over which the function has to

be approximated into L + 1 subintervals which are separated by L knots. Over each of

the L+ 1 subintervals, the spline function is a polynomial of degree d. At every knot, the
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spline has d − 1 continuous derivatives. If r knots are coincident, only d − r derivatives

are continuous at this so-called breakpoint. Therefore, a spline has a great flexibility and

can approximate a given function very well.

Let τ = (τ1, ..., τL) be the non-decreasing knot sequence of length L. As the truncated

polynomial basis consists of d+1 monomials and L piecewise polynomial functions which

are all linearly independent, the dimension of this basis is L+ d+ 1. Although this basis

is simple to construct, the functions grow rapidly without a bound and are nonzero for

most values of t. This produces numerical problems, especially for large values of t.

The B-spline basis is an equivalent basis to the truncated polynomial basis of the same

dimension L+d+1 and solves this problem. As the functions are chosen to have minimal

support, the B-splines are roughly orthogonal and the computation of x is very efficient.

In addition, at any given time point, the sum of the B-splines is normalized to 1 and

the single functions do therefore not grow rapidly. Because of that, the B-spline basis is

numerically more stable. The technical details about a recursive procedure to find the

B-spline functions can be looked up in de Boor (2001).

After the basis functions are chosen, recall the model that has to be fitted:

y = x(t) + ε (1)

with

x(t) =
K∑
k=1

ckβk(t) = Bc (2)

Here the residuals εj are assumed to be independently and identically distributed with

mean 0 and constant variance σ2. Therefore, the best linear unbiased estimator is given

by the ordinary least squares estimator and can be obtained by finding the vector of
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coefficients c that minimizes the regression least squares criterion

SMSSE(y|c) =
m∑
j=1

(
yj −

K∑
k=1

ckβk(tj)

)2

= (y −Bc)′(y −Bc) = ||y −Bc||2. (3)

Setting the first derivative with respect to c of the criterion equal to 0 yields the following

equation

2BB′c− 2B′y = 0.

Solving this for c then gives the optimal estimate ĉ of the coefficients

ĉ = (B′B)−1B′y

and the optimal estimate ŷ of the fitted values

ŷ = x̂(t) = Bĉ = B(B′B)−1B′y.

This fit approximates the values y the best but might therefore be not very smooth. On

the other hand, a greatly smooth function will deviate a lot from the actual values.

Instead of defining the smoothness of ŷ beforehand by the number K of basis func-

tions, a often used approach is to optimize a fitting criterion that defines how smoothly

the data should be approximated. That means a roughness penalty term with smoothing

parameter is added to the criterion (3). As a curve is rough if it has rapid local variation,

the added term needs to penalize high absolute values in the second derivative. Thus,

the roughness penalty

PEN2(x) =

∫
(D2x(t))2dt
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with the second derivative D2x(t) of x(t) is introduced and can be generalized to

PENr(x) =

∫
(Drx(t))2dt.

This generalization is needed if the (r − 2)nd derivative of a function should also be

approximated as a smooth curve. PEN2(x) can be rewritten as

PEN2(x) =

∫
(D2x(t))2dt =

∫
(D2c′β(t))2dt = c′(

∫
(D2β(t))2dt)c =: c′R2c.

The penalized residual sum of squares that has to be minimized is then given by

PENSSE(y|c) = (y −Bc)′(y −Bc) + λc′R2c (4)

with the smoothing parameter λ. A high value of λ means that the curve will be very

smooth and a low value of λ means that the curve is less smooth.

Setting the first derivative with respect to c of the new criterion (4) equal to 0 yields the

following equation

2BB′c− 2B′y − 2λR2c = 0.

Solving this for c then gives the optimal estimate ĉ of the coefficients

ĉ = (B′B + λR2)
−1B′y

and of the vector ŷ of the fitted values

ŷ = x̂(t) = Bĉ = B(B′B + λR2)
−1B′y.

In order to obtain not just the fitted values for the time points t1, ..., tm but also for time

points in between, the basis functions can be evaluated at a finer time grid t∗ = (t∗1, ..., t
∗
m∗)

with t1 ≤ t∗1 and t∗m∗ ≤ tm. Let B∗ denote the m∗ by K matrix that contains the values
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βk(t
∗
j). Then the new vector of fitted values

ŷ∗ = B∗ĉ = B∗(B∗′B∗ + λRr)
−1B∗′y

discretizes the smoothed function x.

2.2 Principal component analysis

Now consider a collection of smoothed functions (x1, ..., xn). The idea of the principal

component analysis (PCA) is to transform the set of n correlated functions into a smaller

set of p orthogonal functions that account for as much of the variability in the data as

possible. These new functions are called principal components and highlight the types of

variation that mainly occur between the functions xi.

The following procedure for the principal component analysis is given by Ramsay and

Silverman (2005). First, subtract the mean function values of each xi so that their cross-

sectional means n−1
∑n

i=1 xi(t) are 0. Then, consider the following quantities

fi =

∫
ξ(t)xi(t)dt

where ξ is a weight function and xi is one of the smoothed and centered functions.

In the first PCA step, choose the weight function ξ1(t) that maximizes

n−1
n∑
i=1

f 2
1i = n−1

n∑
i=1

(∫
ξ1(t)xi(t)dt

)2

under the constraint

∫
ξ1(t)

2dt = 1.

ξ1(t) is called the first principal component and f1i is called the first principal component

score for the ith observation. The motivation is that the function ξ1(t) maximizes the

mean squares by weighting the areas of highest variation.
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In the kth PCA step, choose the weight function ξk(t) that maximizes

n−1
n∑
i=1

f 2
ki = n−1

n∑
i=1

(∫
ξk(t)xi(t)dt

)2

under the constraints

∫
ξk(t)

2dt = 1

and

∫
ξl(t)ξk(t)dt = 0 ∀1 ≤ l < k.

The orthogonality assumptions ensures that each principal component indicates a new

type of variation compared to the previous ones. The principal component ξ1 reflects

the most variability between the functions xj. The other principal components then con-

tribute in descending order.

The values of the PC scores fki reveal which observations induce a lot of the kth type of

variation and which observations barely differ from the mean function. If the value of

the PC score fki is extremely high or low, xi strongly deviates from the mean function in

the way described by the principal component ξk. If fki is around 0, xi is similar to the

mean function in this regard.

There are different computational methods for the functional principal component analy-

sis. One approach is to discretize the observed functions xi on a fine time grid ofm equally

spaced time points t1, ..., tm that span the interval on which the function is defined. Let X

be the n×m data matrix that consists of the values of the n functions x1, ..., xn evaluated

at the m time points t1, ..., tm. From here on, a multivariate principal component analysis

of X is conducted. According to Ramsay and Silverman (2005), finding the princpipal
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components is equivalent to finding the eigenvectors of the eigenequation

Vu = λu (5)

where, after centering X, V = n−1X′X is the sample variance-covariance matrix, u an

eigenvector and λ the corresponding eigenvalue.

Once the vector principal components are found, the next step is to transform them

back to the functional principal components. The functional version of the eigenequation

(5) is given by

∫
v(s, t)ξ(t)dt = ρξ(s) (6)

where

v(s, t) = n−1
n∑
i=1

xi(s)xi(t)

is the covariance function.

The left side of (6) can be written as

V ξ =

∫
v(·, t)ξ(t)dt

with the integral transform V of the principal component weight function ξ. The eigenequa-

tion can then be expressed as

V ξ = ρξ. (7)

The sample variance-covariance matrix V discretizes the integral transform V on the fine

time grid and therefore has the elements v(tj, tk). In the same way, the vector ξ of length

m with elements ξ(tj) discretizes any given function ξ. Let T be the length of the interval
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and w = T
m
. Then (7) can be approximated for any tj by

V ξ(tj) =

∫
v(tj, t)ξ(t)dt ≈ w

m∑
k=1

v(tj, tk)ξ(tk).

Thus, the functional eigenequation V ξ = ρξ can be approximated in the discrete form

wVξ = ρξ.

The solutions of this equation correlate with the solutions of the multivariate eigenequa-

tion (5). It holds for the eigenvalues that

ρ = wλ.

To get the eigenfunction ξ, the discrete approximation w||ξ||2 = 1 of the functional

normalization constraint
∫
ξ(t)2dt = 1 is used. Given a normalized eigenvector u of V,

the vector ξ is computed by

ξ = w−1/2u.

The eigenfunction ξ can then be obtained by interpolating the values ξ(tj) of the vector

ξ. Since a fine time grid is used, the choice of interpolation method does not have a big

effect on the results.

This procedure has finally provided the functional eigenvalues and the eigenfunctions.

The kth functional eigenvalue ρk reveals how much variability is explained by the kth

functional principal component. The share of the kth functional principal component in

the total variability is given by ρk∑n−1
l=1 ρl

. Therefore, the p orthogonal components that

account for as much variability in the data as possibly are the eigenfunctions that corre-

spond to the p largest eigenvalues. The number p of principal components that are used

for further interpretation and analysis can be chosen based on how much variability is

sufficient to be explained.
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3 Replicated temporal point processes

This section deals with point processes in F , that means random countable sets in the

set F . A temporal point process is here defined as a point process in R and is needed

to model an event that takes place randomly over time. In particular, it is random how

often and when the event takes place. Although temporal point processes are used in

chapter 5, this chapter uses general point processes in F .

A point process X in F is locally finite if #(X ∩ B) < ∞ with probability 1 for any

bounded subset B ⊆ F . Define the count function N(B) = #(X ∩ B) for any bounded

subset B ⊆ F . This count function characterizes the point process X and is therefore

equivalent to X in this case. In addition, the intersection of X with the subset B is defined

as XB = X ∩B.

A function λ : F → [0,∞) is locally integrable if
∫
B
λ(t)dt <∞ for any bounded subset

B ⊆ F . Given such a locally integrable function λ : F → [0,∞), a point process X is a

Poisson process with intensity function λ if

i) N(B) is Poisson distributed with parameter
∫
B
λ(t)dt

ii) conditionally on N(B) = m, the m points in XB are independent and identically

distributed with density function λ̃ = λ∫
B λ(t)dt

.

X is then denoted by X ∼ P(λ).

3.1 Multiplicative component model

This subsection provides an additive model for log-intensity functions of Poisson pro-

cesses introduced by Gervini (2017). The motivation is to characterize replicated Poisson

processes in a way to reveal the variation between these processes. The results can then

be interpreted in the same way as for a principal component analysis in chapter 2.

Let X ∼ P(λ) and B a fixed bounded region of F . The density function of XB at
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xB = {t1, ..., tm} is given by

f(xB) = f({t1, ..., tm})

= f(N(B) = m)f({t1, ..., tm}|N(B) = m)

= e−
∫
B λ(t)dt

(
∫
B
λ(t)dt)m

m!

m∏
i=1

λ̃(ti)

= e−
∫
B λ(t)dt

(
∫
B
λ(t)dt)m

m!

∏m
i=1 λ(ti)∏m

i=1

∫
B
λ(t)dt

= e−
∫
B λ(t)dt

1

m!

m∏
i=1

λ(ti)

(8)

The density function is used to find the probability that the realizations ofXB are in a spe-

cific locally finite subset of F . LetN = {A ⊆ F|#(A∩B) <∞ for any bounded subset B ⊆

F} be the family of locally finite subsets of F . Then it holds for F ⊆ N

P (XB ∈ F ) =
∞∑
m=0

∫
B

...

∫
B

1({t1, ..., tm} ∈ F )f({t1, ..., tm})dt1...dtm

=
∞∑
m=0

e−
∫
B λ(t)dt

1

m!

∫
B

...

∫
B

1({t1, ..., tm} ∈ F )
m∏
i=1

λ(ti)dt1...dtm

and in general for any function h : N → [0,∞)

E(h(XB)) =
∞∑
m=0

∫
B

...

∫
B

h({t1, ..., tm}f({t1, ..., tm})dt1...dtm.

Consider now n replicated Poisson processesX1, ..., Xn. The corresponding intensity func-

tions are assumed to be different because a single intensity function can barely model

different replications with subject-specific patterns well. In addition, the intensity func-

tions are treated as latent random effects since they are not observable in practice. Such

replicated processes are then called doubly stochastic processes or Cox processes (Møller

and Waagepetersen, 2004).

Let Λ be a random function which takes values on the space G of non-negative locally

integrable functions on F . A doubly stochastic process is given by a pair (X,Λ) with
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X|Λ = λ ∼ P(λ) where X is observable but Λ is not. Therefore, the distribution of X is

characterized by the latent intensity process Λ. The n replicated Poisson processes are

given by the independent and identically distributed realizations (X1,Λ1), ..., (Xn,Λn) of

(X,Λ).

Consider now the logarithm log Λ(t) of the latent intensity function. The model for this

process is based on the Karhunen-Loève theorem which allows to represent the centered

process as a linear combination of orthogonal functions

log Λ(t)− µ(t) =
∞∑
k=1

Ukφk(t)

with the mean function µ(t) ∈ L2(B) of log Λ(t), φk’s an orthonormal basis on L2(B),

and uncorrelated random variables Uk’s with mean 0 and variance σ2
k. Rearranging this

equation gives

log Λ(t) = µ(t) +
∞∑
k=1

Ukφk(t).

The stochastic process log Λ(t) is therefore given by a mean function and additional

components which explain different types of variation in the process. Hence, this repre-

sentation is closely related to the principal component analysis introduced in subsection

3.2 and can be interpreted similarly.

Since just the first few components are of interest in practice, the model is truncated to

a number p of components. In addition, the coefficients Uk are assumed to be indepen-

dent and normally distributed random variables in order to derive maximum likelihood

estimators in the next subsections. The adjusted model is then given by

log Λ(t) = µ(t) +

p∑
k=1

Ukφk(t) (9)

where µ ∈ L2(B), φ1, ..., φp are orthonormal functions in L2(B) and Uk’s are independent

N(0, σ2
k) random variables.
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This additive model for log Λ(t) can be translated into a multiplicative model for Λ(t):

Λ(t) = λ0(t)

p∏
k=1

ξk(t)
Uk (10)

where λ0 = eµ is the baseline intensity function and the ξk = eφk are multiplicative

components.

The approach to estimate the mean function and the components in (9) is to model µ and

φ1, ..., φp as linear combinations of basis functions β1, ..., βq. These basis function can, for

example, again be B-splines which were introduced in subsection 2.1. Let β = (β1, ..., βq)
′

be the vector of the basis functions, c0 the vector of the weights corresponding to the

mean function and ck the vector of the weights corresponding to the kth component.

Then it follows with µ(t) = c′0β(t) and φk(t) = c′kβ(t) that

log Λ(t) = µ(t) +

p∑
k=1

Ukφk(t)

= c′0β(t) +

p∑
k=1

Ukc
′
kβ(t)

= c′0β(t) +U ′C ′β(t)

= (c0 +CU)′β(t)

where C = (c1, ..., cp) and U = (U1, ..., Up)
′. Then, the coefficient vectors c0, ck’s and

the variances σ2
k’s have to be estimated in order to get an estimation for the mean and

component functions and therefore for the distribution of the Poisson process X.

3.2 Estimation

Let the single vector θ be the collection of c0, ck’s and σ2
k’s. In order to be able to compute

the probability function P (XB ∈ F ) in (38), consider the marginal density function of
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XB at xB = {t1, ..., tm} using the parameter vector θ:

f(xB;θ) =

∫
f(xB,u)du

=

∫
f(xB|u)f(u)du.

Conditioned on a realization u = (u1, ..., up)
T of the random vector U , model (9) provides

a realization log λu of the process log Λ which then gives together with (8) a non-random

log-density function of XB:

log f(xB|u) = −
∫
B

λu(t)dt+
m∑
i=1

log λu(ti)− logm!

= −
∫
B

e(c0+Cu)
′β(t)dt+ (c0 +Cu)′

m∑
i=1

β(ti)− logm!

which translates to a formula for the non-random density function of XB conditioned on

u:

f(xB|u) = exp

(
−
∫
B

e(c0+Cu)
′β(t)dt+ (c0 +Cu)′

m∑
i=1

β(ti)− logm!

)

=
1

m!
exp

(
−
∫
B

e(c0+Cu)
′β(t)dt+ (c0 +Cu)′

m∑
i=1

β(ti)

)

On the other hand, the density function of the random vectorU consisting of the indepen-

dent N(0, σ2
k)-distributed random variables Uk is given by the product of the individual

density functions:

f(u) =

p∏
k=1

1√
2πσ2

k

e
− u2k

2σ2
k

=
1

(2π)
p
2

∏p
k=1 σk

e
−

∑p
k=1

u2k
2σ2
k

which yields the following formula for the logarithm of the density function of U :

log f(u) =

p∑
k=1

(
−1

2
log 2πσ2

k −
u2k
2σ2

k

)
.
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Although f(xB|u) and f(u) are given by concrete formulas, there is no closed form

solution for f(xB;θ). However, f(xB;θ) can be approximated by Laplace’s method using

log f(xB|u) and log f(u) which is explained in the technical supplement of Gervini (2017).

The model parameters are estimated by a maximum likelihood approach with suitable

roughness penalties that provide for a smooth mean function µ and smooth components

φ1, ..., φp.

Given n independent realizations x1, ..., xn of XB, the penalized maximum likelihood

estimator θ̂ is given by

θ̂ = arg max
θ

ρn(θ)

with

ρn(θ) =
1

n

n∑
i=1

log f(xi;θ)− ν1P (µ)− ν2
p∑

k=1

P (φk) (11)

where ν1 and ν2 are smoothing parameters and P (g) =
∫
B

(D2g(t))2dt is a penalty func-

tion for the mean and the components. This optimization problem can be solved by

using the Newton-Raphson algorithm that updates the parameters by iteration. In this

connection, it is beneficial to use the representations P (µ) = cT0 Ωc0 and P (φk) = cTkΩck

for a matrix Ω which is also derived in the technical supplement of Gervini (2017). In

addition, the Newton-Raphson algorithm can be adjusted with a cyclic border condition

so that Λ(a) = Λ(b) holds on the interval B = [a, b].

Finally, the procedure provides parameter estimates ĉ0, ĉk’s and σ̂2
k’s which then give an

estimated baseline intensity function

λ̂0(t) = eĉ0
′β(t)
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and estimated multiplicative components

ξ̂k(t) = eĉk
′β(t).

In addition, an estimate u of U is found for the realization xB of XB during the Laplace

approximation of f(xB;θ). Therefore, repeating this step n times provides estimates

u1, ...,un for all realizations x1, ..., xn of XB.

The kth element of ui then describes by how much realization xi contributes to the vari-

ation described by the kth component Uk. The component Uk explains σ2
k∑p

k=1 σ
2
k
· 100% of

the total variability.
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4 Regression analysis of component scores

Chapter 2 and chapter 3 introduced procedures to analyze different types of data. Whereas

the principal component approach analyzes the variation between smoothed functional

data, the multiplicative component model reveals the variation between data from point

processes. For both, several components with corresponding component scores were ob-

tained.

In practice, a range of data is often analyzed with respect to different questions of interest,

e.g. all days in 2018 are analyzed with respect to the temporal distribution of crimes as

well as the hourly number of policemen on duty for the city of Chicago. If the variation

in each data set is examined by one of the introduced approaches, it might now be of

interest to investigate the relationship between the component scores. The motivation is

to find out if a type of variation in a first data set is somehow correlated with a type of

variation in a second data set.

Let fl = (fl1, ..., fln)′ be the vector consisting of the principal component scores of n

observations for the lth principal component. On the other hand, for the multiplicative

component model, let uk = (uk1, ..., ukn)′ be the vector consisting of the component scores

of n observations for the kth component. A standard approach to relate the corresponding

component scores is a linear regression model. The straight line regression equation is

given by

uki = β0 + β1fli + εi for i = 1, . . . , n (12)

where β0 is the intercept, β1 is the slope and εi is the error term. The random error terms

are assumed to be independent with mean 0 and constant variance.

(12) can be extended arbitrarily by adding power functions of fli to the regression. The

quadratic regression equation is for example given by

uki = β0 + β1fli + β2f
2
li + εi for i = 1, . . . , n.
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It is beneficial to first make a scatterplot of fl and uk. Plotting the corresponding fli and

uki against each other for all n observations uncovers any obvious pattern between these

components. Based on this indication, an appropriate regression model can be chosen.

After fitting a regression model, the coefficient of determination R2 then provides a

measure how well the observed uki’s are explained by the examined relationship. This

measure is given by

R2 = 1− SSres
SStot

= 1−
∑n

i=1(uki − ûki)2∑n
i=1(uki − ūk)2

where ûki is the fitted value of uki and ūk = 1
n

∑n
i=1 uki is the average component score

for the kth component.

It holds R2 ≈ 1 if the fitted component scores almost match the observed component

scores which means that the model almost perfectly replicates the observations. On the

other hand, it holds R2 ≈ 0 if the fitted component scores barely match the observed

component scores. That means, the model can not explain the observations.

In addition to the regression models, the correlation coefficient

ρkl =

∑n
i=1(fli − f̄l)(uki − ūk)√∑n

i=1(fli − f̄l)2
√∑n

i=1(uki − ūk)2

can be computed in order to check for a linear relationship between the components.

Here, f̄l = 1
n

∑n
i=1 fli is the average component score for the lth principal component

and ūk = 1
n

∑n
i=1 uki is again the average component score for the kth component in the

multiplicative model. If |ρkl| ≈ 1 holds, the components are highly linearly correlated.

In chapter 5, functional data as well as data from point processes is analyzed. After-

wards, the relationship of their component scores is examined under the use of regression

models and the introduced measures. However, the analyses explained in this chapter

could also be applied on component scores that all come either from principal component

analyses of functional data or from multiplicative models for point processes.
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5 Application on bike sharing system

This chapter examines if the temperature had influence on the demand for the bike

sharing system Divvy in Chicago between April and November 2016. For this purpose,

the temperature in Chicago is examined to find the average temperature over the eight

months and different types of variations which show how single days deviate from the

average temperature. On the other hand, the trip starting times of two bike stations

are also analyzed in order to find the temporal distribution of the bike demand and the

major types of variation. Afterwards, the component scores of both analyses are used to

investigate if there is a relationship between the bike demand and the temperature.

5.1 Temperature analysis

In this subsection, data of the temperature in Chicago is used which is publicly available

on the data science website Kaggle (https://www.kaggle.com/). For each of the 244 days

between 04/01/2016 and 11/30/2016, the hourly temperature data is available. There-

fore, the functional data approach from chapter 2 is used to find 244 smooth functions

representing the data and to analyze their variation.

As a first step, the data for the time frame of interest is extracted and converted from

Kelvin to degree Fahrenheit. Then, the functional data is smoothed with a roughness

penalty under the use of a cubic B-spline basis and ten equally spaced knots in the in-

terval (0,24). The optimal smoothing parameter is λ = 12.59 and can be obtained by

generalized cross-validation. The principal component analysis is then conducted with

p = 5 components. As the first two of them already account for 97.83% of the variability,

just these two components are considered in the following.

To illustrate and interpret the components ξ1 and ξ2, it is beneficial to plot the mean

function of the temperature and to show how the first respectively the second type of

variation affect the mean function. Therefore, a positive multiple of the components is

separately added and subtracted to the mean function in figure 1 in order to point out
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the effect of the corresponding type of variation. Here, the multiple 3 is sufficient to make

the effect clear.

Figure 1: Effect of the first two principal components. (1.PC) Mean function (blue) and
mean plus a positive (red) and negative (yellow) multiple of 1. PC. (2.PC) Mean
function (blue) and mean plus a positive (red) and negative (yellow) multiple
of 2. PC.

The mean temperature function shows approximately that, on average, the minimum

daily temperature is 57 degree Fahrenheit at around 4am and the maximum daily tem-

perature is 70 degree Fahrenheit at around 3pm. The first principal component is a size

component which represents higher temperature over the entire day. On the other hand,

the second principal component is a contrast component which represents a higher max-

imum temperature but a lower minimum temperature. This component therefore shows

a higher amplitude between the daily maximum and minimum temperature. A negative

multiple of the components shows in both cases the opposite effect. Most of the variation
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between the days is due to the first component that accounts for 92.49% of the total

variation. The second component just accounts for another 5.34% and is therefore less

significant than the first one.

It is now of interest how each day differs from the mean function in terms of the effects

demonstrated by the principal components. This question can be answered by looking at

the principal component scores which are given in figure 2.

Figure 2: Daily component scores of first two principal components.

Days with a positive component score deviate from the mean function in the way de-

scribed by adding the principal component to the mean function (see red function in

figure 1) whereas days with a negative score show the reverse effect demonstrated by sub-

tracting the principal component from the mean function (see yellow function in figure

1). In addition, the higher the absolute value of a score is, the stronger deviates the day

from the mean function in the described way.

Considering the scores for the first PC, one can see the clear pattern that summer days
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have a positive score and days in spring and fall have negative scores. This means that

summer days tend to have a higher temperature over the entire day than days in spring

and fall do. This insight is what one would naturally expect.

The scores of the second principal component show no obvious pattern except a spread

around 0. This spread is a little bit wider in spring and in fall than in summer. This

means that the difference between the daily maximum and minimum temperature fluc-

tuates more in spring and in fall.

5.2 Bike demand analysis

In this subsection, the demand for the bike sharing system Divvy in Chicago is ana-

lyzed. The necessary open source data can be found on the Chicago Data portal website

(https://data.cityofchicago.org). This data set gives for each of the 244 days between

04/01/2016 and 11/30/2016 the exact bike checkout times. That means the data for

different days differs in terms of how often bikes were checked out and also at what time.

Hence, each day is assumed to be a realization of a Poisson process with a corresponding

unknown intensity function where the bike check outs are the events that take place.

Therefore, the multiplicative component model from chapter 3 is used in order to model

the random function Λ which characterizes the underlying Poisson process and explains

the varying bike demand over the eight months.

The analysis is conducted for two different bike stations individually. Station 35 is located

at the Navy Pier where a lot of people are on the move and 85314 bikes were check out

between April and November 2016. On the other hand, station 166 at Ashland Avenue

& Wrightwood Avenue is located in a more calm neighbourhood with just 4304 bike de-

mands during the same time.

The model uses again a cubic B-spline basis and ten equally spaced knots in the interval

(0,24) for both bike stations. First, consider station 35. The optimal smoothing param-

eters ν1 = 0.0316 and ν2 = 0.1 are obtained by cross-validation. Although five principal

components are computed, just the first two are considered here since they already ac-
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count for 95.59% of the variability.

First, based on the plotted baseline intensity function Λ, the effects of the two multi-

plicative components ξ1 and ξ2 are shown. This is done by multiplying and dividing the

baseline function by one of the components which is taken to the power of a constant

that points out the type of variation. Here again, the constant 3 is sufficient to highlight

the effect. Therefore, the products λ0(t)ξk(t)3 and λ0(t)ξk(t)−3 are plotted for both com-

ponents k = 1, 2 in figure 3.

Figure 3: Station 35: Effect of the first two components. (1.MC) Baseline intensity (blue)
and baseline times a positive (red) and negative (yellow) power of 1. MC.
(2.MC) Baseline (blue) and baseline times a positive (red) and negative (yellow)
power of 2. MC.

The baseline intensity function shows the highest demand approximately betweeen 4pm

and 5pm and barely a bike check out in the early morning hours. The integral of the

baseline intensity function would give the average bike demand over the 244 days. The
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first multiplicative component is a size component which represents higher demand over

the entire day. On the contrary, the second multiplicative component is a shift compo-

nent for which the highest daily demand takes place a little bit later than usually. In

addition, the demand is slightly more concentrated around the time of highest demand.

A negative power of the components shows in both cases the opposite effect except of

the concentration around the new time of highest demand in component 2. There, the

demand is also higher than usual. Most of the variation between the days is due to the

first component that accounts for 89.83% of the total variation. The second component

just accounts for another 5.76% and is therefore less significant than the first one.

To find out which days show these deviations from the usual demand contribution, the

component scores are plotted in figure 4.

Figure 4: Station 35: Daily component scores of first two multiplicative components.

Considering the scores for the first PC, one can see the clear pattern that summer days

have a positive score and days in spring and fall have highly negative scores. This means
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that the demand tends to be generally higher over the entire day during the summer than

during spring and fall.

The scores of the second principal component show a similar but clearly weaker pattern.

The scores of summer days are higher again positive but the negative scores of the spring

and fall time are just a little bit higher in absolute values. This relationship was con-

siderably extremer for the first component. Nevertheless, the second component might

suggest that people use the bikes a little bit later during the summer days and a little bit

earlier during the spring and fall.

Now, the same analysis is conducted for station 166. A cross-validation provides the

optimal smoothing parameters ν1 = 0.001 and ν2 = 0.1.

Figure 5: Station 166: Effect of the first two components. (1.MC) Baseline intensity
(blue) and baseline times a positive (red) and negative (yellow) power of 1.
MC. (2.MC) Baseline (blue) and baseline times a positive (red) and negative
(yellow) power of 2. MC.
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Again, consider the first two multiplicative components which account for 83.66% of the

total variability. Figure 5 shows the baseline intensity function and the effects of the two

components.

The baseline intensity function shows the highest demand at a short-time peak around at

8am. A reason for that could be that some people who live in that neighbour use the bike

sharing system to get to work in the morning. The first component is a shape component

as a positive power of the multiplier implies that most bikes are demanded around noon

whereas a negative multiplier strongly concentrates most of the demand at 8am. On

the other hand, the second component is a typical size component and represents more

bike check outs over the entire day and two instead of one peak in the demand. This

additional peak at around 6pm could be due to people who take the bike to get home

after work. Here, the more important first component accounts just for 56.64% of the

variability and the size component for at least 27.02% which is a very high amount for a

second component.

Plotting the component scores for station 166 again provides insights which days con-

tribute to which type of variation. Figure 6 shows the component scores for both types

of variation.

The scores for the shape component are spread relatively even with no obvious pattern.

That means there is no clear relationship between the time in the year and the shape of

the demand during the day.

In contrast, the scores of the size component show the same pattern as seen for the size

component of station 35. Days in the summer have a positive score whereas days in

spring and fall have negative scores. This suggests again that the demand is generally

higher in the summer.

28



Figure 6: Station 166: Daily component scores of first two multiplicative components.

5.3 Regression analysis

In this subsection, the results from 5.1 and 5.2 are used to examine if the temperature

had an influence on the bike demand between April and November 2016. Therefore, a

regression approach is applied on the component scores of the temperature data and the

component scores of the bike demand data. Here, to investigate the relationship between

the kth multiplicative component of the bike demand and the lth principal component of

the temperature, 244 pairs (fli, uki) are used where fli is the predictor value and uki is

the response value.

First, consider again the data for station 35. The component scores obtained in the

previous analysis are now plotted against each other in a scatterplot in figure 7.

The upper left scatterplot shows the scores of the first bike component plotted against

the scores of the first temperature component. It is clearly observable that negative

temperature component scores correspond to negative bike component scores and that
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Figure 7: Station 35: Scatterplot of the component scores for the first bike MC and the
first temperature PC (upper left plot). Scatterplot of the component scores for
the first bike MC and the second temperature PC (upper right plot). Scatterplot
of the component scores for the second bike MC and the first temperature PC
(lower left plot). Scatterplot of the component scores for the second bike MC
and the second temperature PC (lower right plot). All plots are supplemented
by a fitted simple linear regression line.

there is an increasing linear relationship between them. Fitting a simple linear regression

equation yields the following estimated relationship:

u1i = −2.315 + 0.06306f1i for i = 1, . . . , 244.

The corresponding coefficient of determination R2 = 0.5972 and the correlation coefficient

ρ = 0.7728 confirm the first guess of a linear relationship. Recall that both components

are size components and higher scores mean in this context that there is a higher tem-

perature respectively bike demand over the entire day. Therefore, the analysis suggests

that a higher overall temperature yields to a higher bike demand over the entire day.
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The upper right and lower right scatterplots illustrate the scores of the first respectively

the second bike component plotted against the scores of the first temperature component.

These plots show completely random scatters with no patterns. Therefore, there is no

need to fit any regression in these cases. As the second temperature component was a

contrast component that changes the amplitude between daily maximum and minimum

temperature, it follows that the amplitude of the temperature fluctuation over a day does

not influence bike demand.

The lower left scatterplot that relates the second bike component to the first temperature

component could reveal a slight linear relationship with much variation. Fitting a simple

linear regression equation yields the following estimated relationship:

u2i = −0.2671 + 0.0069f1i for i = 1, . . . , 244.

The corresponding coefficient of determination is R2 = 0.1088 and the correlation coeffi-

cient is ρ = 0.3298. Due to these very low values, it is unlikely that there is actually a

linear relationship. In addition, there is no other obvious pattern in the scatterplot that

might need to be examined. Therefore, it seems that a time shift in the demand is not

due to higher temperature. This gets even clearer by splitting the data set into workdays

and weekend days. If a shift in the bike demand depends on the overall temperature,

this relationship also needs to arise when the same analysis is conducted by fitting new

principal component and point process models on the workdays or the weekend days sep-

arately. The simple linear regressions between the two components yield for the workdays

R2 = 0.028 and ρ = −0.1674 and for the weekend data R2 = 0.0021 and ρ = 0.0455.

These results reinforce that there is no relationship between a demand shift for the bikes

and a higher temperature.

Next, consider the data for station 166. The analysis is again based on the scatter-

plots of the component scores obtained by the different models. They are given in figure

8.

Both upper scatterplots as well as the lower right scatterplot show random scatters where
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Figure 8: Station 166: Scatterplot of the component scores for the first bike MC and the
first temperature PC (upper left plot). Scatterplot of the component scores for
the first bike MC and the second temperature PC (upper right plot). Scatterplot
of the component scores for the second bike MC and the first temperature PC
(lower left plot). Scatterplot of the component scores for the second bike MC
and the second temperature PC (lower right plot). All plots are supplemented
by a fitted simple linear regression line.

no pattern is identifiable. Hence, no further analyses are conducted on these three com-

ponent combinations. With the temporal PC 2 being a contrast component, station 166

gives the same conclusion as station 35 that there is no relationship between the bike

demand and the amplitude between the daily maximum and minimum temperature. On

the other hand, the upper left scatterplot illustrates the relationship between the shape

of the bike demand and a higher level of temperature over the entire day. The data shows

barely any connection. The fitted model

u1i = −0.0493 + 0.0036f1i for i = 1, . . . , 244
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provides the statistical measures R2 = 0.0136 and ρ = 0.1165 which confirm that there

is most likely no relationship.

Now consider the only scatterplot with a obvious pattern. The lower left plot shows a

linearly increasing relationship between the overall bike demand and the general temper-

ature. Fitting a simple linear model gives

u2i = −0.2503 + 0.0122f1i for i = 1, . . . , 244.

Even if the corresponding coefficient of determination R2 = 0.4648 and the correlation

coefficient ρ = 0.6817 are smaller than for the corresponding components of station 35

(R2 = 0.5972 and ρ = 0.7728), they confirm that a higher demand over the entire day is

positively correlated with generally higher temperature.
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6 Conclusions and outlook

The goal of this thesis was to examine the influence of temperature on the bike demand

for the bike-sharing system Divvy in Chicago between April 1 and November 30 2016.

For this purpose, functional temperature data for the city of Chicago was smoothed with

a roughness penalty and the obtained curves were subject to a functional principal com-

ponent analysis which revealed the two major types of variation. The most variability

is due to a higher temperature level over the entire day in summer and generally colder

days during spring and fall. The second principal component shows differently high am-

plitudes between the daily maximum and minimum temperatures where the amplitude

oscillates over the entire time between April and November 2016.

On the other hand, the daily bike checkout times were assumed to be realizations of a dou-

bly stochastic temporal point process and modeled by a multiplicative component model.

Although two bike stations with presumably different user profiles were investigated, the

estimation of the parameters provided for both stations two similar components that

described the significant changes in the demand. In each case, the size component rep-

resents days with generally higher or lower demand which occur in summer respectively

in spring and fall. The shift component shows for station 35 that the highest demand

in summer takes place a little bit later during the day than usual whereas the shape of

demand for station 166 changes frequently over the entire eight months.

The component scores of both analyses were then examined in scatterplots, simple lin-

ear regression models and statistical measures in order to find out what influence the

temperature variation has on the bike demand. It turned out that the scores of the size

components are highly positively correlated. That means, the overall demand is higher

on days with a generally high temperature (i.e. in the summer). Moreover, the results

showed no significant relationship between the other components. Thus, it seems that

the period of high demand during a day is not influenced by any characteristic of the

temperature.

However, as the time shift in demand showed minimal evidence of a correlation with the

overall temperature level, it might be possible that the bike demand is influenced by a
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factor which shows a comparable pattern in the component scores as the size component

of the temperature. Therefore, further analysis could focus for example on the time of

sunrise and sunset as the summer can again be distinguished from spring and fall in this

regard. In addition, precipitation could also be taken into account to refine the prediction

of bike usage.
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Appendix MATLAB

The first MATLAB file ThesisAnalysis.m contains the code for the temperature anal-

ysis and the bike demand analysis. The second file RegressionAnalysis.m conducts

the regression analysis between the component scores of the previous analyses. The file

TemperatureGCV.m uses generalized cross-validation to find the optimal smoothing pa-

rameter for the temperature data. The last four files, bspl.m, fpc.m, cv_mcatpp_cyc.m

and mcatpp_cyc.m, are functions that were all written and provided by Professor Daniel

Gervini. bspl.m computes the B-spline basis function and their derivatives and evaluates

them on a given time grid. fpc.m conducts the functional principal component analysis.

cv_mcatpp_cyc.m finds the optimal smoothing parameters for the multiplicative com-

ponent model. mcatpp_cyc.m ultimately estimates the multiplicative component model.

TemperatureAndBikeAnalysis.m

close all

clc

%%%%%%%Temperature PCA

%Consider the data for the temperature

data=xlsread(’TemperatureChicago2016.xls’);

x_temp=data’;

%Original time grid

t =linspace(0,24,24)’;

%Define knots

knots=linspace(min(t),max(t),10+2);

%Finer time grid

t2=linspace(min(t),max(t),200);

%Initialize vector for fitted values
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xhat_temp=zeros(length(t2),length(x_temp));

%Evaluate basis function on time grid using the predefined function bspl

%(by Prof. Gervini)

Phi=bspl(t,4,knots,0);

%Evaluate basis function on a finer time grid

Phi2=bspl(t2,4,knots,0);

%%Evaluate second derivative of basis function on time grid for the

%roughness penalty

Phi_secder = bspl(t,4,knots,2);

%Optimal parameter for roughness penalty (obtained by GCV)

lmd_smo = 12.59;

%Roughness penalty

R = (Phi_secder’*Phi_secder)/length(t);

%Estimate values of x

for k=1:length(x_temp)

%Estimate c. Therefore use the original time grid

c = (Phi’*Phi+lmd_smo*R)^(-1)*Phi’*x_temp(:,k);

%Estimate xhat with c (based on original time grid) and Phi2 (based on

%finer time grid)

xhat_temp(:,k) = Phi2*c;

end

%Compute principal components using the predefined function bspl

%(by Prof. Gervini)

[pc_temp,lmb_temp,s_temp] = fpc(t2,xhat_temp’,5);

%Compute cumulative share of variability

impact_temp=cumsum(lmb_temp)/sum(lmb_temp);
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%Plot results

%mean functions

mu_temp=mean(xhat_temp,2);

%PCs

figure(1)

for k=1:2

subplot(1,2,k)

plot(t2,pc_temp(k,:)’)

axis([0 24 -0.5 0.5])

title([num2str(k),’. PC’])

end

%Mu+/-PC

figure(2)

for k=1:2

subplot(1,2,k)

plot(t2,mu_temp,t2,mu_temp+3*pc_temp(k,:)’, ’red’,

t2,mu_temp-3*pc_temp(k,:)’, ’yellow’,’linewidth’,1)

axis([0 24 55 73])

title([num2str(k),’. PC’])

end

%PC Scores

figure(3)

t3=linspace(1, 244, 244);

for k=1:2
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subplot(1,2,k)

plot(t3,s_temp(:,k)’)

axis([1 244 -190/k 190/k])

title([num2str(k),’. PC scores’])

end

%%%%%%%Bike PCA

%Consider the data for the bike demand

data=load(’station_35.txt’);

%Split the data in vectors of checkout times for every day

x_bike=cell(1,244);

dates=data(:,1);

times=data(:,2);

for k = 1:244

x_bike{1,k}=times(dates==k);

end

%Define a basis structure for the multiplicative component model

%range of data, order of B-splines, number of knots for B-spline

basis = struct(’rng’, [0 24], ’or’, 4, ’nk’, 10);

%Number of computed components

p=5;

%Find optimal smoothing parameter by cross-validation

%sm1=0.0316; %station 35 (mu)

%sm1=0.0010; %station 166 (components)

%sm2=0.1000; %station 35 (mu)
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%sm2=0.1000; %station 166 (components)

[sm1,sm2,other] = cv_mcatpp_cyc(x_bike,basis,p);

%Apply multiplicative component model

[c0,C,s2,u,logf] = mcatpp_cyc(x_bike,basis,p,sm1,sm2,50);

%Define finer time grid on [0,24]

t3 = linspace(basis.rng(1),basis.rng(2),100);

%Define knots

knots = linspace(basis.rng(1),basis.rng(2),basis.nk+2);

%Evaluate basis function on time grid

B = bspl(t3,basis.or,knots,0);

%Compute cumulative share of variability

lmb_bike = s2;

impact_bike=cumsum(lmb_bike)/sum(lmb_bike);

%Plot results

%Estimated baseline intensity Lambda_0

figure(4)

lmb0 = exp(B*c0);

plot(t3,lmb0,’linewidth’,2)

%Multiplicative components

figure(5)

plot(t3,exp(B*C),’linewidth’,2)
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%Baseline function multiplied with multiplicative components

figure(6)

subplot(1,2,1)

lmbplus = exp(B*c0+3*B*C(:,1));

lmbmin = exp(B*c0-3*B*C(:,1));

plot(t3,lmb0,t3,lmbplus,’red’,t3,lmbmin,’yellow’,’linewidth’,1)

axis([0 24 0 7])

title([’1. MC’])

subplot(1,2,2)

lmb0 = exp(B*c0);

lmbplus = exp(B*c0+3*B*C(:,2));

lmbmin = exp(B*c0-3*B*C(:,2));

plot(t3,lmb0,t3,lmbplus,’red’,t3,lmbmin,’yellow’,’linewidth’,1)

axis([0 24 0 7])

title([’2. MC’])

%PC Scores

figure(8)

t4=linspace(1, 244, 244);

for k=1:2

subplot(1,2,k)

plot(t4,u(:,k)’)

axis([1 244 -20/k^2 20/k^2])

title([num2str(k),’. MC scores’])

end

%Isolate PC scores for temperature and bike demand for regressions analysis

tempscore_1 = s_temp(:,1);
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tempscore_2 = s_temp(:,2);

bikescore_1 = u(:,1);

bikescore_2 = u(:,2);

RegressionAnalysis.m

%First two PCs Bike Demand

%First two PCs Temperature

%Linear Regression

figure(9)

subplot(2,2,1)

[fitpoly11, gof11]=fit(tempscore_1,bikescore_1,’poly1’)

plot(fitpoly11,tempscore_1,bikescore_1)

yline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xlabel(’Temp. PC scores’)

ylabel(’Bike MC scores’)

legend(’off’)

R11 = corrcoef(bikescore_1,tempscore_1);

R11(2, 1)

title(’Bike MC 1 vs. Temp. PC 1’)

subplot(2,2,2)

[fitpoly12, gof12]=fit(tempscore_2,bikescore_1,’poly1’)

plot(fitpoly12,tempscore_2,bikescore_1)

yline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xlabel(’Temp. PC scores’)

ylabel(’Bike MC scores’)
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legend(’off’)

R12 = corrcoef(bikescore_1,tempscore_2);

R12(2, 1)

title(’Bike MC 1 vs. Temp. PC 2’)

subplot(2,2,3)

[fitpoly21, gof21]=fit(tempscore_1,bikescore_2,’poly1’)

plot(fitpoly21,tempscore_1,bikescore_2)

yline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xlabel(’Temp. PC scores’)

ylabel(’Bike MC scores’)

legend(’off’)

R21 = corrcoef(bikescore_2,tempscore_1);

R21(2, 1)

title(’Bike MC 2 vs. Temp. PC 1’)

subplot(2,2,4)

[fitpoly22, gof22]=fit(tempscore_2,bikescore_2,’poly1’)

plot(fitpoly22,tempscore_2,bikescore_2)

yline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xline(0, ’LineStyle’, ’--’, ’LineWidth’, 0.2, ’color’, ’black’)

xlabel(’Temp. PC scores’)

ylabel(’Bike MC scores’)

legend(’off’)

R22 = corrcoef(bikescore_2,tempscore_2);

R22(2, 1)

title(’Bike MC 2 vs. Temp. PC 2’)
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TemperatureGCV.m

close all

clc

%Consider the data for the temperature

data=xlsread(’TemperatureChicago2016.xls’);

x=data’;

%Time grid for 24 hours

t =linspace(0,24,24)’;

%Initialize vector for fitted values and variances

xhat = zeros(24,length(x));

sigmasqrhat = zeros(244,1);

%Define knots

knots=linspace(min(t),max(t),10+2);

%Evaluate basis function on time grid using the predefined function bspl

%(by Prof Gervini)

Phi_orig = bspl(t,4,knots,0);

%%Evaluate second derivative of basis function on time grid for the

%roughness penalty

Phi_secder = bspl(t,4,knots,2);

%Roughness penalty

R = (Phi_secder’*Phi_secder)/length(t);

%Start loop for the different values of lambda

range=10.^(0:.1:25);

count=1;
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GCV=0;

for lambda=range

S_lambda=Phi_orig*(Phi_orig’*Phi_orig+lambda*R)^(-1)*Phi_orig’;

xhat=S_lambda*x;

GCV(count)=24*norm(x-xhat,2)^2/(24-trace(S_lambda))^2;

count=count+1;

end

%Plot the GCV

plot1 = figure;

loglog(range,GCV)

legend(’GCV(\lambda)’)

%Find lambda that minimizes the GCV

minimum=find(GCV==min(GCV));

lambda=range(minimum);

sprintf(’The Minimum is at lambda=%f’,lambda)

%Compute the estimates using the optimal lambda

S_lambda=Phi_orig*(Phi_orig’*Phi_orig+lambda*R)^(-1)*Phi_orig’;

xhat=S_lambda*x;

%Plot data against the estimates of the first ten days as example

plot2 = figure;

plot(t,x(:,1:10),’.’,t,xhat(:,1:10))

legend(’data’,sprintf(’x(t)’,lambda))

bspl.m

function y = bspl(x,k,t,r)
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%function y = bspl(x,k,t,r)

%

%B-spline basis functions and their derivatives

%

%INPUT:

% x (m x 1 or 1 x m) Input grid.

% k (scalar) Spline order.

% t (n x 1 or 1 x n) Knots, must be a strictly increasing sequence

% and must INCLUDE interval endpoints.

% r (scalar) Order of derivative.

%

%OUTPUT:

% y (m x n+k-2) Basis function (or derivative) values at X

%

if nargin<4

error(’Not enough input arguments’)

end

if size(t,1)>1

t = t’;

end

m = length(x);

n = length(t);

y = zeros(m,n+k-2);

if r==0

47



t = [repmat(t(1),1,k-1), t, repmat(t(n),1,k-1)];

n = length(t);

b = zeros(1,k);

for l = 1:m

b(1) = 1;

i = max(find(t<=x(l)));

if i==n, i = n-k; end

for j = 1:k-1

dr(j) = t(i+j)-x(l);

dl(j) = x(l)-t(i+1-j);

saved = 0;

for r = 1:j

term = b(r)/(dr(r)+dl(j+1-r));

b(r) = saved + dr(r)*term;

saved = dl(j+1-r)*term;

end

b(j+1) = saved;

end

y(l,i-k+1:i) = b;

end

else

tt = [repmat(t(1),1,k-2), t, repmat(t(n),1,k-2)];

B = bspl(x,k-1,t,r-1);

msp = ((k-1)./(ones(m,1)*(tt(k:n+2*(k-2))-tt(1:n+k-3)))).*B;

y(:,1) = - msp(:,1);

y(:,2:n+k-3) = msp(:,1:n+k-4) - msp(:,2:n+k-3);
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y(:,n+k-2) = msp(:,n+k-3);

end

fpc.m

function [pc,lmb,s] = fpc(t,x,q)

%[pc,lmb,s] = fpc(t,x,q)

%Functional Principal Components (input data must be smooth, on a fine

%time grid)

%Input

% t: Time grid (1 x m)

% x: Curves (n x m)

% q: Number of PCs to estimate (scalar)

% Output

% pc: Principal components (q x m)

% lmb: Eigenvalues (q x 1)

% s: Component scores (n x q)

%

% Input check

[n,m] = size(x);

t = t(:)’;

if length(t)~=m

error(’Dimensions of T and X incompatible’)

end

% Gram matrix

x = x-repmat(mean(x),[n 1]); %%%% NOTE: X is centered from now on

ht = [t(2)-t(1),(t(3:m)-t(1:m-2))/2,t(m)-t(m-1)];
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G = (x.*repmat(ht,[n 1]))*x’;

% PC computation

[Wstar,Lstar] = svd(G);

lmb = diag(Lstar(1:q,1:q))/n;

W = Wstar(:,1:q)*diag(1./sqrt(n*lmb(1:q)));

pc = W’*x;

s = (x.*repmat(ht,[n 1]))*pc’;

cv_mcatpp_cyc.m

function [optsm1,optsm2,other] = cv_mcatpp_cyc(x,basis,p)

% [optsm1,optsm2,other] = cv_mcatpp_cyc(x,basis,p)

%

% Cross-validation search of smoothing parameters for temporal MCA

% with cyclic border condition

% (Five-fold cross-validation is used)

%

% INPUT:

% x: Observed time points (n x 1 cell).

% Each x{i} is a vector containing the data from replication i.

% basis: B-spline basis parameters. Struct with the following fields:

% rng: Time range (1 x 2 vector).

% or: Spline order (integer; 4 is cubic splines).

% nk: Number of knots (integer). Knots will be equally spaced.

% p: Number of model components (integer>=0).

%

% OUTPUT:

% optsm1: Optimal smoothing parameter for the mean (scalar>=0)

% optsm2: Optimal smoothing parameter for components (scalar>=0)
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% (Returns [] if p=0).

% other: Additional output. Struct with the following fields:

% optOF1: Optimal value of the objective function at optsm1.

% optOF2: Optimal value of the objective function at optsm2.

% (Returns [] if p=0).

% smgrid: Grid of smoothing parameters used.

% OF1grid: Objective function at smgrid for mean-only models.

% OF2grid: Objective function at smgrid for p-component models.

% (Returns [] if p=0).

%

% Programs called: MCATPP_CYC, PRED_MCATPP

%

% Version: June 2018

% Cross-validation

itmax = 10;

smgrid = 10.^(-7:.5:-1)’;

Ng = length(smgrid);

% Find optimal sm for mean

disp(’Finding optimal sm1’)

OF1grid = -Inf(Ng,1);

optOF1 = -Inf;

optsm1 = -Inf;

for i = 1:Ng

disp([’Cross-validating for grid

point ’ num2str(i) ’ of ’ num2str(Ng)])

logf = cv_5f(x,basis,0,smgrid(i),0,itmax);

OF1grid(i) = mean(logf);

if OF1grid(i)>optOF1
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optOF1 = OF1grid(i);

optsm1 = smgrid(i);

end

end

% Find optimal sm for components

disp(’ ’)

disp(’Finding optimal sm2’)

if p==0

optOF2 = [];

optsm2 = [];

OF2grid = [];

else

OF2grid = -Inf(Ng,1);

optOF2 = -Inf;

for i = 1:Ng

disp([’Cross-validating for grid

point ’ num2str(i) ’ of ’ num2str(Ng)])

logf = cv_5f(x,basis,p,optsm1,smgrid(i),itmax);

OF2grid(i) = mean(logf);

if OF2grid(i)>optOF2

optOF2 = OF2grid(i);

optsm2 = smgrid(i);

end

end

end

% Output

other = struct(’optOF1’,optOF1,’optOF2’,optOF2,’smgrid’,smgrid,...

’OF1grid’,OF1grid,’OF2grid’,OF2grid);

end
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%%%% -------- AUXILIARY FUNCTIONS

function logf = cv_5f(x,basis,p,sm1,sm2,itmax)

% Five-fold cross-validation for MCATPP

% Computes cross-validated log-densities

% Programs called: MCATPP_CYC, PRED_MCATPP

n = length(x);

logf = -Inf(n,1);

B = round(n/5);

for i = 1:5

itest = ((i-1)*B+1):(i*B);

if i==5

itest = ((i-1)*B+1):n;

end

itrain = setdiff(1:n,itest);

try

[T,c0,C,s2] = evalc(’mcatpp_cyc(x(itrain),basis,p,sm1,sm2,itmax)’);

catch ME1

c0 = [];

C = [];

s2 = [];

end

if ~isempty(c0)

[T,logf(itest)] = evalc(’pred_mcatpp(x(itest),basis,c0,C,s2)’);

end

end

end
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mcatpp_cyc.m

function [c0,C,s2,u,logf] = mcatpp_cyc(x,basis,p,sm1,sm2,itmax)

% [c0,C,s2,u,logf] = mcatpp_cyc(x,basis,p,sm1,sm2,itmax)

%

% Multiplicative Component Analysis for Temporal Point Processes

% (PCA of log-intensities) with cyclic border condition

%

% INPUT:

% x: Observed time points (n x 1 cell).

% Each x{i} is a vector containing the data from replication i.

% basis: B-spline basis parameters. Struct with the following fields:

% rng: Time range (1 x 2 vector).

% or: Spline order (integer; 4 is cubic splines).

% nk: Number of knots (integer). Knots will be equally spaced.

% p: Number of model components (integer>=0).

% sm1: Smoothing parameter for the mean (scalar>=0).

% sm2: Smoothing parameter for the components (scalar>=0).

% (All components have norm 1 but the mean does not, so different

% sm’s may be needed to attain the same degree of smoothness).

% itmax: Maximum number of iterations (integer).

%

% OUTPUT:

% c0: Mean basis coefficients (q x 1).

% C: Component basis coefficients (q x p).

% s2: Component variances (p x 1).

% u: Individual component scores (n x p).

% logf: Individual log-densities (n x 1).

%

% External calls: BSPL
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%

% Version: June 2018

% Input check

c0 = [];

C = [];

s2 = [];

u = [];

logf = [];

if ~iscell(x)

disp(’Error: X must be cell array’)

return

else

[mx,nx] = size(x);

if (mx>1 && nx>1)

disp(’Error: X must be a one-dimensional cell array’)

return

end

end

n = length(x);

% Data filtering (elimination of data outside RNG)

m = zeros(n,1);

a = basis.rng(1);

b = basis.rng(2);

for i = 1:n

x{i}(x{i}<a) = [];

x{i}(x{i}>b) = [];

m(i) = length(x{i});
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end

if any(m==0)

disp(’Warning: Some x{i}s have no data within basis range’)

end

if any(m>=200)

disp(’Warning: Some x{i}s have more than 200 observations’)

disp(’This may cause Inf values in the likelihood function’)

disp(’This method is intended for relatively small x{i}s’)

disp(’For large x{i}s you can just use kernel smoothing’)

end

% Initialization

q = basis.or + basis.nk;

t = linspace(a,b,300);

dt = t(2)-t(1);

knt = linspace(a,b,basis.nk+2);

B0 = bspl(t,basis.or,knt,0);

J0 = (B0’*B0)*dt;

if basis.or>2

B2 = bspl(t,basis.or,knt,2);

J2 = (B2’*B2)*dt;

else

J2 = zeros(q,q);

end

sumB = zeros(n,q);

for i = 1:n

B_i = bspl(x{i},basis.or,knt,0);

sumB(i,:) = sum(B_i,1);

end
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Bab0 = bspl([a b],basis.or,knt,0);

Bab1 = bspl([a b],basis.or,knt,1);

Cyc = [Bab0(1,:)-Bab0(2,:); Bab1(1,:)-Bab1(2,:)];

Pcyc = null(Cyc);

% -----> Initial mean-only model

c0 = (Pcyc*Pcyc’)*log(mean(m)/(b-a))*ones(q,1);

logf = complogf0(sumB,c0,dt,B0,m);

OF = mean(logf)-sm1*c0’*J2*c0;

disp(’---> Computing mean’)

disp([’Iteration: 0, Pen. loglik: ’ num2str(OF)])

err = 1;

iter = 0;

while err>1e-3 && iter<itmax

iter = iter + 1;

c00 = c0;

OF0 = OF;

[gc,Hc] = derivc0(sumB,c0,dt,B0);

gpll = gc-2*sm1*J2*c0;

Hpll = Hc-2*sm1*J2;

direction = Pcyc*((Pcyc’*Hpll*Pcyc)\(Pcyc’*gpll));

OF = -Inf;

k = 0;

while OF<=OF0 && k<6

step = 0.7^k;

c0 = c00-step*direction;

logf = complogf0(sumB,c0,dt,B0,m);

OF = mean(logf)-sm1*c0’*J2*c0;

57



k = k+1;

end

% Stopping criterion

if OF<=OF0 || ~all(isfinite(c0))

disp(’No further improvement in obj. func. is possible’)

c0 = c00;

OF = OF0;

end

err = norm(c0-c00)/norm(c00);

disp([’Iteration: ’ num2str(iter) ’, Pen. loglik: ’ ...

num2str(OF) ’, Error: ’ num2str(err)])

end

% -----> Sequential PC estimation

C = zeros(q,p);

s2 = zeros(p,1);

u = zeros(n,p);

u2 = zeros(n,p);

for ic = 1:p

if ic==1

P = Pcyc;

else

P = null([Cyc; C(:,1:ic-1)’*J0]);

end

% Initial estimators

C(:,ic) = (P*P’)*ones(q,1);

C(:,ic) = C(:,ic)/sqrt(C(:,ic)’*J0*C(:,ic));

if ic==1

Ilmb0 = sum(exp(B0*c0))*dt;
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u(:,ic) = sqrt(b-a)*log(max(m,1)/Ilmb0);

s2(ic) = var(u(:,ic));

else

s2(ic) = s2(ic-1)/2;

end

[u(:,1:ic),u2(:,1:ic),logf] = ...

compeff(sumB,c0,C(:,1:ic),s2(1:ic),dt,B0,m,u(:,1:ic));

OF = mean(logf)-sm1*c0’*J2*c0-sm2*sum(diag(C(:,1:ic)’*J2*C(:,1:ic)));

disp([’---> Computing component ’ num2str(ic)])

disp([’Iteration: 0, Pen. loglik: ’ num2str(OF)])

err = 1;

iter = 0;

% Iterations

while err>1e-3 && iter<itmax

iter = iter + 1;

% Update C

c00 = C(:,ic);

u00 = u;

u200 = u2;

OF0 = OF;

[gc,Hc] = derivc(sumB,c0,C(:,1:ic),dt,B0,u(:,1:ic),u2(:,1:ic));

gpll = gc-2*sm2*J2*C(:,ic);

Hpll = Hc-2*sm2*J2;

direction = P*((P’*Hpll*P)\(P’*gpll));

OF = -Inf;

k = 0;

while OF<=OF0 && k<6

step = 0.7^k;

C(:,ic) = c00-step*direction;
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C(:,ic) = C(:,ic)/sqrt(C(:,ic)’*J0*C(:,ic));

[u(:,1:ic),u2(:,1:ic),logf] = ...

compeff(sumB,c0,C(:,1:ic),s2(1:ic),dt,B0,m,u00(:,1:ic));

OF = mean(logf) - sm1*c0’*J2*c0 ...

-sm2*sum(diag(C(:,1:ic)’*J2*C(:,1:ic)));

k = k+1;

end

if OF<=OF0 || ~all(isfinite(C(:,ic)))

disp(’No further improvement in obj. func. is possible’)

C(:,ic) = c00;

u = u00;

u2 = u200;

end

% Update s2

s2 = mean(u2,1)’;

% Stopping criterion

err = norm(C(:,ic)-c00)/norm(c00);

disp([’Iteration: ’ num2str(iter) ’, Pen. loglik: ’ ...

num2str(OF) ’, Error: ’ num2str(err)])

end

end

end

%%%%%%%------ AUXILIARY FUNCTIONS

function logf = complogf0(sumB,c0,dt,B0,m)

%Computes log-densities for mean-only model

logf = -sum(exp(B0*c0))*dt + sumB*c0 - gammaln(m+1);

end
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function [gc0,Hc0] = derivc0(sumB,c0,dt,B0)

% Derivatives of loglik/n w.r.t c0

q = size(B0,2);

Hc0 = -(B0’*((exp(B0*c0)*ones(1,q)).*B0))*dt;

gc0 = -B0’*exp(B0*c0)*dt + mean(sumB,1)’;

end

function [u,u2,logf] = compeff(sumB,c0,C,s2,dt,B0,m,u_ini)

%Computes random effects and log-pdf using Laplace approximation

[n,p] = size(u_ini);

Phi = B0*C;

logf = zeros(n,1);

u = u_ini;

u2 = u_ini.^2;

for i = 1:n

% Compute log(f(x))

uL = u_ini(i,:);

D_gi = zeros(1,p);

H_gi = eye(p);

for steps = 1:5

uL = uL - D_gi/H_gi;

lmbi = exp(B0*c0+B0*C*uL’);

D_gi = -lmbi’*Phi*dt + sumB(i,:)*C - uL./s2’;

H_gi = -Phi’*((lmbi*ones(1,p)).*Phi)*dt - diag(1./s2);

end

gi = -sum(lmbi)*dt + sumB(i,:)*(c0+C*uL’) - gammaln(m(i)+1) ...

-sum(uL.^2./(2*s2’)) - .5*sum(log(2*pi*s2));

logf(i) = gi + (p/2)*log(2*pi) - .5*logdet(-H_gi);
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S = (-H_gi)\eye(p);

u(i,:) = uL;

u2(i,:) = diag(S)’ + uL.^2;

end

end

function [gc,Hc] = derivc(sumB,c0,C,dt,B0,u,u2)

% Derivatives of loglik/n w.r.t C(:,end)

% Uses ad-hoc approx of second derivatives and plug-in scores for integrals

[n,p] = size(u);

q = length(c0);

ng = size(B0,1);

lmb = exp(B0*c0*ones(1,n)+B0*C*u’);

ulmb = (ones(ng,1)*u(:,p)’).*lmb;

u2lmb = (ones(ng,1)*u2(:,p)’).*lmb;

gc = (-B0’*mean(ulmb,2))*dt + (sumB’*u(:,p)/n);

Hc = -(B0’*((mean(u2lmb,2)*ones(1,q)).*B0))*dt;

end

function y = logdet(A)

% log(det(A)) for symmetric non-neg A

R = chol(A);

y = 2*sum(log(diag(R)));

end

62


	A Statistical Model for the Influence of Temperature on Bike Demand in Bike-Sharing Systems
	Recommended Citation

	tmp.1573503843.pdf.Ys3pA

