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ABSTRACT 

INTEGRATION OF PREVENITVE AND EMERGENCY RESPONSES TO BOOST 

DISTRIBUTION SYSTEM RESILIENCE AGAINST WINDSTORMS 

 

by 

Gang Wang 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Dr. Lingfeng Wang 

  

Recent years have seen a series of large-scale blackouts due to extreme weather 

events around the world. These high impact, lower probability events have caused great 

economic losses to modern society. Therefore, it is urgent to study the resilience 

improvement measures of power systems to mitigate the effects of adverse extreme 

events. Current research mainly focuses on the hardening measures where robust 

optimization is used to solve the problems. However, due to the consideration of worst 

case of uncertain parameters, the robust optimization method is usually too 

conservative and uneconomical in many situations.  

In this thesis, operational measures are deployed to boost the distribution system 

resilience considering all possible scenarios. An integrated resilience response 

framework is proposed, which provides distribution system operators solutions to 

address the resilience enhancement problem in both preventive state and emergency 

states. The key of the framework is a two-stage stochastic mix-integer linear 

optimization model. The mathematical formulation and the solving method, 

progressive hedging algorithm, are presented in this thesis as well. Preventive response 
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includes topology reconfiguration and generator redispatch, while topology 

reconfiguration, generator redispatch and load curtailment are allowed in emergency 

response.  

Case study on IEEE 33 bus system and a modified 69 bus system validates the 

correctness and effectiveness of the proposed framework and model. Integrated 

response solution is obtained by solving the model and sensitivity analysis is performed 

to study the performance of integrated response under different system parameters. The 

key conclusions include the following: 1) integrated response improve distribution 

system resilience in a minimum cost; 2) integrated response is preferable to either 

individual preventive or emergency response; 3) system parameters and abilities such 

as unit load shedding cost, ramping ability and generator availability influence the 

system resilience and expected total cost in different degrees.  
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Chapter 1 Introduction 

1.1 Background 

Recent years have seen the great impact of extreme weather events on the global 

power system because of climate change, and the frequency and intensity of natural 

disasters are expected to increase in the future [1]. The occurrence of extreme weather 

events can lead to massive power outages and economic losses. Distribution systems 

are especially influenced by extreme weather events due to line damage, effects of 

radial topologies and limited backup resources.  

For instance, Hurricane Wilma have caused more than $27.4 billion in Cuba, 

Mexico and Florida, of which $19 billion happens in the United States [2]. In 2008, a 

severe ice storm in China caused 2,000 substations failure and 8,500 towers collapsed 

and more than 170 cities suffered power outages. Besides, Hurricane Sandy happened 

in October 2012 caused damage to power system in New York city, and the city power 

supply was cut off [3]. Actually, there is evidence that 80% ~ 90% of large power 

outages come from distribution system failures [4]. 

Most existed power distribution systems are designed and maintained within the 

framework of safety and sufficiency in reliability principle, which perform well in 

normal weather conditions but not in severe natural disasters. To cope with the great 

challenge of high impact low probability (HILP) extreme weather issues such as 

hurricanes and windstorms, the concept of power system resilience should be explored 

and stressed.  

There is no agreement yet on the resilience definition. If the power system is 
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capable of preparing, absorbing, adapting, and quickly recovering from adverse events, 

it is defined to be resilient [5]. The focus of resilience is the ability of adaptation and 

recovery towards natural disasters. Here, “adaptation” refers to the process of system 

changing to better adapt to new operation environment, and “recovery” means the 

process of recovery of a system to its initial operation state after a disturbance or break. 

Besides, system resilience level is adaptive, ongoing and differs in short and long term, 

concentrating on the whole process of system under a specific disaster, while reliability 

is static, time-invariant and without event sensitivity. 

Power system resilience improvement measures is classified as hardening-

oriented and operational methods [6]. Hardening-oriented methods mainly focus on 

improving the performance of power system infrastructure component under extreme 

events such as elevating substations, plant management and new component installment. 

They are regarded as more passive and expensive, compared to operation-oriented 

measures, and involve long term action. Operational measures are relatively active and 

affordable, which are always associated with short-term or real-time decision and 

responding. Distributed energy system, demand side management, network 

reconfiguration and microgrids are the mainly operational measures. According to the 

three operating states that power systems go through in an event, operational resilience 

improvement measures can be classified into the three categories [7]. As a consequence, 

there are four categories of resilience improvement measures totally, as depicted in 

Figure 1.1.  
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Figure 1.1 The resilience enhancement steps [8] and the scope of this thesis (shaded). 

1.2 Problem Description 

The thesis aims to boost distribution system resilience by enhancing the system 

adaptability and operational measures. Therefore, only preventive response and 

emergency response are included (shaded in Figure 1.1). 

In general, preventive responses include actions taken prior to the occurrence of a 

disaster, while emergency responses are utilized after an extreme event. To make the 

problem simple, only generators, distribution lines, loads in distribution systems are 

taken into consideration in this thesis. Accordingly, the specific resilience improvement 

approach will include generator redispatch, topology reconfiguration and load shedding. 

Load shedding is not included in preventive response since distribution systems should 

operate in normal condition to supply all the loads when meet all operation constraints 

in preventive state. Generator redispatch and topology reconfiguration are available in 

both pre-event state and post-event state to maximize the benefits. Besides, the 

effectiveness of integrated response is always better than deploying single emergency 

or preventive response. 

Existed resilience improvement research mainly focus on hardening measures in 
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resilience planning and robust method is deployed in solving such problems. Robust 

method regards the worst-case solution as the global solution. Sometimes they are too 

conservative and the expected economic loss is over-estimated. As to operational 

problem, there is no current research using stochastic method to improve system 

resilience where topology reconfiguration is allowed in both preventive and emergency 

responses.  

To further enhance the distribution system resilience, the thesis aims to find the 

integration of preventive response and emergency response (called integrated response 

in the thesis) to boost distribution system resilience against windstorms in a minimum 

cost. The preventive response includes generator redispatch and topology switching, 

while the emergency response involves generator redispatch, switching and load 

shedding. The uncertainty of component damage status after windstorms is considered 

by using the fragility curves and finding solution for all possible scenarios in a 

probabilistic way. 

1.3 Contribution 

▪ Review the literature on power system resilience in detail 

▪ Propose a two-stage integrated response framework with integration of preventive 

response and emergency response to boost distribution system resilience against 

windstorms 

▪ Formulate the core of integrated response framework in a two-stage stochastic mix-

integer linear model 

▪ Illustrate the effectiveness of proposed approach in case study 
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1.4 Thesis Structure 

Chapter 2 gives a literature review on power system resilience from the 

perspective of resilience definition, evaluation methods and metrics and improvement 

measures. A chosen has been made between stochastic method and robust method. 

Chapter 3 first proposes a two-stage integrated response framework to enhance 

system resilience. Then the concept of fragility curves and scenarios are introduced to 

carry out stochastic calculation. The outline of the two-stage model is presented in 

mathematical way, so as the solving method, the progressive hedging method. 

Chapter 4 introduces the mathematical formulation of the two-stage stochastic 

model. The linearization procedure and the detailed solving method is presented. 

Chapter 5 provides case study in IEEE 33 bus system and a modified 69 bus 

system to illustrate the correctness and effectiveness of proposed framework and model. 

Sensitivity analysis about unit load shedding cost, ramping ability and generator 

availability is conducted to investigate the impact of parameters to the system resilience 

level and expected total cost. 

Chapter 6 makes a conclusion of the thesis and future work is discussed. 
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Chapter 2 Resilience Related Literature Review 

In this chapter, the definition of power system resilience by different organizations 

and authors is first presented. Then the evaluation methods and metrics to power system 

resilience are listed by reviewing relative papers. Finally, the resilience improvement 

measures are collected, which could be divided into three categories, preventive 

measures, emergency measures and restoration measures. 

2.1 Definition 

In the past few decades, many natural disasters have occurred under the influence 

of global climate change, resulting in large-scale blackouts and property losses around 

the world. Specifically, extreme weather events have caused 80% of the power loss in 

U.S between 2003-2012 and cost billions of dollars every year [9]. These high impact 

low probability (HILP) events have drawn people’s great attention to the concept of 

power system resilience.  

“resilio” is the original of the word “resilience”. It refers to the ability to jump or 

rebound or rebound and contract. If the power system is capable of preparing, absorbing, 

adapting, and/or quickly recovering from adverse events, it is considered to be resilient 

[5]. However, the first definition of resilience appeared in ecological system by Holling 

in 1972 [10], which is described as “measure of the persistence of systems and of their 

ability to absorb change and disturbance and still maintain the same relationships 

between populations or state variables”. Since then, the concept of resilience was 

widely adopted in many research fields such as economy, urban planning, psychology, 

engineering and construction, energy development, materials science, control systems, 

https://en.wikipedia.org/wiki/Psychological_resilience
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etc.  

The “adaptation” and “recovery” words are quite commonly used in over 70 

definition of resilience. Power system resilience is regarded as a typical feature of 

modern power system in 2009 [11]. Resilience is defined as “the ability to prepare for 

and adapt to changing conditions and withstand and recover rapidly from disruptions” 

[12]. The UK Energy Research Centre (UKERC) sees resilience as “the ability of 

energy systems to tolerate interference and continue to provide consumers with 

affordable energy services” [13]. Power system resilience can be also used to describe 

the ability of a system, community or society [14]. M Panteli. links long-term resilience 

with system planning and adaptation capacity, while short-term resilience is the system 

resilience performance before, during and after an event [6]. Relatively, the two main 

characteristic in power system reliability is “security” and “adequacy”, and reliability 

is defined as the system ability to satisfy its load demand under the specified operating 

condition. 

 

Figure 2.1 The intrinsic logic of events and its impact. 

Most extreme weather events affect the overall performance of power systems by 

affecting the effectiveness of infrastructure such as transmission line failure and 

generator outage. Power system resilience not only involves component failure under 

extreme events, system operation condition also accounts. Figure 2.1 indicates the 

intrinsic logic of extreme events and its impact to power systems.  

Extreme 
Weather 
Events

Infrastructure 
Component 

Failure

Bad 
Performance 

of System 
Operation
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Figure 2.2 An example of distribution system resilience level under an event [15]. 

Based on this intrinsic logic, a distribution system resilience curve associated with 

an event is shown in Figure 2.2 [15]. The red part is the phases focused on including 

preventive state, event progress and emergency state. The system overall resilience 

level is the function of time for a disturbance event. A resilient power system needs to 

be robust and resistant at preventive state when the preventive measures are employed 

and the resilience level is R0. System in that period is strong enough to defense the up-

coming extreme events partly or totally with its robust component and structure. After 

the event occurrence time te, the system resilience level goes through a huge decline to 

a post-event level Rde. Due to the small geographic dimension of distribution system, 

the duration of event progress tem-te is within several minutes or hours. The system goes 

through an emergency state right after the event leaves, when the emergency measures 

and correct actions are implemented and resilience level goes from Rde to Rpe. 

Time period between tpe and tr is used to prepare for the next restorative step. 

Resourcefulness and redundancy are the key characteristic in the degradation state, 

which helps to minimize the resilience degradation R0-Rpe and the restoration preparing 

javascript:void(0)
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time tr-tpe, since resourcefulness and redundancy in system component, power supply 

and people can provide flexibility to the system to deal with the disturbance event.  

The system enters into restorative state after tr, during which all the possible 

recovery operations are put into effect such as component fixing, generator redispatch, 

demand side management and topology reconfiguration. The key issue in this state is 

the system recovery ability to help the system resilience level recover to Rpr. Notice that 

in most cases Rpr< R0. Due to the system redundancy, the system may have recovered 

to its initial operation condition (operational resilience) when not all of the 

infrastructure is repaired (infrastructure resilience). Usually it takes more time to get 

infrastructure fully recovered than it comes to system operation condition, which can 

be represented by (tpir-tir)>(tpr-tr).  

The resilience level has different meanings. Total load supplied, voltage and 

frequency performance can act as operational system resilience performance, while 

number of transmission lines in service is one of the infrastructure resilience 

performance. It is hard to evaluate a system resilience with only one particular index, 

such as resilience level or transaction times between different resilience states. However, 

with the perspective of “adaptation” and “recovery”, the most important metrics in 

Figure 2.2 are the resilience degradation R0-Rpe and the operational response/recovery 

time tpr-tr. And the details of resilience evaluation methods and metrics will be 

discussed in the next section. Besides, it is worth mentioning that the restoration time 

depends on not only the severity of events, but also the system resilience performance 

before, during, and after the disturbance or break. 
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Based on above illustration, the power system resilience definition in [8] is 

adopted in this thesis. System resilience is seen as the power system adaptability to 

natural disasters and the recover ability to initial operation states. 

2.2 Evaluation Methods and Metrics 

Power system resilience is time-varying and event-varying, which indicates that 

resilience has to be evaluated in multidimensional way with respect to a specific event. 

In power system engineering risk evaluation, the traditional way is to calculate the 

reliability indices such as expected energy not supply (EENS), loss of load probability 

(LOLP), loss of load frequency (LOLF) and system average interruption duration index 

(SAIDI), system average interruption frequency index (SAIFI). They are used for 

distribution system particularly. Unlike the metrics in reliability evaluation, there is yet 

no widely agreed metrics in resilience assessment. Existed resilience evaluation 

approaches are divided into two categories: qualitative approaches and quantitative 

approaches [16]. Figure 2.3 is a summary of these approaches. 

 

 

Figure 2.3 Summary of resilience evaluation methods [16]. 
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2.2.1 Qualitative Methods 

It is seen that the qualitative resilience assessment approaches contain three types: 

the checklist & questionnaires, matric scoring different aspects of system and analytic 

hierarchy process. For instance, checklist and questionnaires are used in [17] to provide 

measurement of resilience at all levels, critical infrastructure, community, and region 

level. Business structure such as supply chain and governance subsystem is addressed 

to better evaluate community and region resilience. A complete resilience matrix is 

concluded in [18] where both physical resilience and information resilience are 

explored. In [19], analytic hierarchy process is used to explore the criteria to evaluate 

the risk of power system in the Philippines. Qualitative methods in resilience 

assessment can help energy policy makers to make long-term decision considering the 

future development and resilience of local power system. 

2.2.2 Quantitative Methods 

Simulation, analytical approach and historic data analysis are the main approaches 

in quantitative methods in resilience evaluation. Similar to counterpart methods in 

reliability evaluation, simulation-based methods are more applicable for complex 

systems due to the strong applicability and fixed process. Analytical methods are 

preferred for small-scale power systems because they are simple and computational 

efficient. Equation Chapter 2 Section 1 

Monte Carlo simulation (MCS) is a simulation method, which is always used to 

evaluate the risk level of a specific event or a system and the uncertainty of parameters 

can be considered by repeated experiment. MCS is used in [20], [21] and [22] to 

evaluate power system resilience level. Based on sequential MCS, [20] explores the 
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influence of uncertainty of weather events such as weather intensity and duration to 

power system reliability metrics through a new reliability model. Reference [21] does 

a probabilistic modeling and MCS is used to speed up the assessment of component 

temperatures. Being capable of capturing the stochastic behavior and impact of 

windstorms, sequential MCS is also used in [22] to assess power system resilience.  

Some papers use reliability indices directly to estimate system resilience level such 

as EENS [23], LOLE, LOLF [22]. Based on Figure 2.3, TP(t) represents the resilience 

curve when there are no extreme weather events, and the resilience curve under event 

is expressed by P(t), system resilience level R(t) is calculated as (change Tir to Tpir when 

it comes to infrastructure resilience) [24]:  

 𝑅(𝑡) =
∫ 𝑃(𝑡)𝑑𝑡

𝑇𝑖𝑟

0

∫ 𝑇𝑃(𝑡)𝑑𝑡
𝑇𝑜𝑟

0

 (2.1) 

Reference [25] proposes an approach to investigate the performance of system 

infrastructure under natural disasters. Hurricane Katrina is examined to validate the 

proposed model in resilience improvement. Three typical resilience indices are defined 

in [26] by calculating the lost revenue impact (LRI), total restoration (TR) and recovery 

resilience (RR), based on which a framework for resilience analysis is proposed. Based 

on system resilience performance curve, reference [27] presents three ways to 

quantification the performance loss. Three other metrics, vulnerability index (VI), 

normalized index (DI), the restoration efficiency index (REI) and microgrid resilience 

index (MRI) are defined respectively with resilience indicators in different event stages 

[28]. Similarly, metrics presented in [29] describe power system infrastructure 
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resilience and operational resilience from four aspects, respectively. They are resilience 

degradation rate 𝛷, degradation level Λ in disturbance progress, the duration of post-

event degraded state 𝛦 and recover rate 𝛱 in restorative state.  

In recent research, the majority of the resilience evaluation methods in power 

systems under extreme weather events are analytical methods. Power system resilience 

performance curve is essential in analytical resilience evaluation, and most of the 

metrics are mathematical description of the resilience curve towards a specific event.  

Statistical analysis of historic data is commonly employed when repeated 

disturbances or shocks occur in same area. In [30], the outage data for three cities in 

previous four years are used to estimate the outage duration for distribution system. The 

outage data in Hurricane Katrina 2005 in Louisiana, Alabama, and Mississippi are 

collected and analyzed to assess system resilience level after the resilience improve 

measures [25]. 

They key issue of the thesis is not distribution system resilience evaluation, but 

the improvement measures which help to enhance power system resilience by reducing 

the damage of natural disasters. Thus, the expected amount of load curtailment after 

events is calculated to assess the effectiveness of proposed measures. The less the load 

curtailment is, the better the measures are. 

2.3 Improvement Measures 

Power system resilience evaluation is the foundation of resilience improvement 

measures, for it can give objective evaluation to the effectiveness of a proposed 

improvement measure, even system parameters and states can be optimized based on 
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evaluation metrics. Modern technologies such as smart grid and automation help to 

increase the diversity of resilience improvement measures in reduce the influence of 

natural disasters towards power system.  

Many literatures have divided resilience improvement measures into several 

categories according to different criteria. Reference [22] classifies improvement 

measures as long-term improvement measures and short-term measures. Long-term 

measures involve planning, construction, maintaining, and upgrading, while short-term 

measures include black-start capabilities, generator redispatch, demand side 

management, emergency strategies. They can be carried out before, in and after a 

specific natural disaster according to their action time. A widely accepted indication is 

to category resilience enhancement measures into hardening and operational measures 

[6].  

2.3.1 Hardening Measures 

System hardening is to harden the system infrastructure with robust materials to 

reduce the damage of natural disasters such as earthquake, windstorms and hurricanes 

[31]. Hardening measures aim to boost infrastructure resilience by using strong 

materials in infrastructure construction, plant management, new system component 

installment and component movement, which are all changed in a physical way to make 

system more resilient to extreme weather events. They are regarded as more passive 

and expensive, compared to operation-oriented measures, and they involve long term 

action. 
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Several researches have been carried on in system hardening focusing on line 

hardening and switching installment using optimization techniques. Optimal hardening 

plan and operation condition is obtained by solving a two-stage robust optimization 

problem in reference [32]. Reference [33] presents a two-stage tri-level robust 

optimization problem to get optimal gas and power system hardening and installment 

plan considering the uncertainty in natural disasters. Stage one determines the 

installment strategy of new component and stage two is used to get optimal operation 

variables. Reference [34] obtains optimal resilience improvement plan in a two-stage 

robust problem. The optimal system construction plan is obtained and the model is 

examined through two test systems. 

Reference [35] formulates a robust trilevel model to boost system resilience, in 

which microgrids are formulated and distribution lines are hardened. The total cost 

includes system hardening cost and operation cost. The uncertainty of renewable energy 

is taken into consideration in a stochastic way. Reference [36] explores the effectiveness 

of hardening measures in gas and power system by proposing a trilevel robust 

optimization problem. The worst scenario is identified and optimized with the metrics 

of load curtailment cost. And Reference [37] proposes a tri-level model to boost 

distribution system resilience by minimizing the total cost, where upgrading 

distribution poles, vegetation management and the combination of them are considered.  
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Figure 2.4 Typical two-stage trilevel model for preventive hardening problem. 

We can see that robust two-stage problem and tri-level robust optimal model are 

widely used in line hardening problem. The three layers of model correspond to the 

three stages of an extreme weather event (see Figure 2.4). System operators have to 

make decisions before the event come, such as network reconfiguration and line 

hardening strategy, which corresponds to the preventive stage in Figure 2.2. Then the 

event comes and the system suffers from outages and damages. The damage is 

maximized in the second layer of the model to consider the worst case, which happens 

in the event progress. And the responding action is modeled in the third layer to mitigate 

the impact of the event. The above correspondence reflects the adaptability of the tri-

level model in extreme events. Emergency responses and restoration measures can be 

both employed in the third level. 

Advanced switching placement can also provide flexibility for power system faced 

with a natural disaster in both in pre-event state and post-event state. Reference [38] 

aims to enhance distribution system resilience by installing new switch and load 
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curtailment. N-1 and N-2 scenarios are considered and load restoration are carried out 

with priority. Reference [39] optimizes the location of new installed switch in 

distribution systems by minimizing the construction cost and load shedding cost. Two 

case studies show the efficiency and effectiveness of switch placement in boosting 

distribution system resilience.  

2.3.2 Operational Measures 

The operational methods enhance power system operational resilience by 

providing overall flexibility, efficiency when faced an up-coming extreme weather 

event. Operational measures focus on improving the system operational performance, 

including distributed energy systems, demand and generator management, topology 

reconfiguration, preventive control, accurate situation awareness, microgrids 

formulation, advance and quick recovery, etc. They are relatively active and affordable, 

which are always associated with short-term or real-time decision and responding.  

Among the operational measures, transmission and distribution lines 

reconfiguration can provide flexibility to bulk power systems and distribution networks 

to mitigate the damage when a disturbance event occurs. Topology reconfiguration and 

microgrids formulation are the main methods in switching-involved resilience 

improvement measures.  

Topology reconfiguration is a widely employed resilience improvement measure 

for it can maintain power system operation while minimize the system loss. The 

working mechanism of reconfiguration in extreme events are shown in follows. 
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Figure 2.5(a) Distribution System Topology after natural disasters. 

 

Figure 2.5(b) Distribution System Topology after switching reconfiguration. 

Natural disasters cause great damage to power systems, especially distribution 

systems by destroying components such as lines and towers. Figure 2.5(a) is a 

distribution system topology after natural disasters. Two distribution lines failed and 

several load buses is separated from power sources. By doing topology reconfiguration, 

two tie-branches are switched on as the Figure 2.5(b) shows, and all the load buses are 

connected, which reduce the amount of load curtailment significantly. The distributed 

energy serves as controllable power resource to support the bus voltage. Topology 

reconfiguration is always employed in emergency state (see Figure 2.2). 

For topology reconfiguration, reference [8] enhances bulk power systems with the 
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combination of preventive response and emergency response. Preventive response 

involves generator redispatch and topology reconfiguration. And emergency response 

not only included generator re-dispatch, topology reconfiguration but also load 

curtailment. Preventive topology switching and defensive islanding are employed in 

[40] to help to the formulation of multiple energy system island, which reduces the 

probability of cascading events caused by up-coming extreme weather events. A self-

healing technique in proposed in [41] considering power resource availability, topology 

switching, and demand side management. Two case studies are carried to show the 

importance of reconfiguration in improving system resilience level. 

For microgrids formulation, a proactive microgrids management method is 

proposed to reduce the microgrid vulnerability towards windstorms [42]. The load is 

fully supplied while the minimum amount of fragile lines is in service. In [43], the 

critical loads recover rapidly by topology reconfiguration and microgrids formulation. 

Distributed energy resources are attached in distribution systems and optimal operation 

condition is obtained by solving a mix-integer linear problem. Reference [44] presents 

four metrics to evaluate the severity of natural disasters and microgrids formulation is 

used to boost power system resilience. The Markov chain is used to represent the 

transaction between different system states and the uncertainty of event is modeled by 

doing Monte Carlo simulation. Microgrids formulation is mostly used in restoration 

state for load restoration. 

To model the impact of natural disasters to power systems, accurate weather 

forecasting is also essential in the resilience improvement problem. Three categories of 
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environmental data need to be considered. The first one is system and geometric data 

such as system topology data, load data, initial system status, plant distribution data and 

terrain data [45]. System data is obtained by situational awareness. It is worth 

mentioning that situation awareness should be carried out all the time and once it is out 

of function partly or totally, the system may fail to respond to extreme conditions 

because the lack of accurate data [46]. Assume that system awareness is sufficient in 

the thesis. Wind speed is obtained by weather forecasting. It is demonstrated that natural 

disaster severity and parameters such as wind speed and area of influence make impact 

on the possibility of component damage [47]. Three metrics are introduced in [48] to 

evaluate the cost of operational measures. 

There are also other resilience enhancing measures besides reconfiguration and 

some researches have been carried on to explore the measure beneficial to the 

restoration of power systems after a disturbance event. Mobile emergency resources 

and distributed energy can be utilized in extreme condition when normal power 

resources are disconnected from systems before or after the event.  

Mobile emergency resources such as mobile generators and mobile storage units 

also help to reduce the operation cost when there is an extreme weather event. By the 

combination of preposition and rerouting of mobile resources, a tradeoff between 

expensive construction cost and low event probability is achieved. Mobile emergency 

resources are employed in [49] with topology reconfiguration and microgrids 

formulation, which reduces the power loss in critical load restoration procedure. 

Reference [50] involves not only mobile emergency generators preposition in the 
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preventive state but also emergency dispatching after the event. The problem is 

modeled as a two-stage stochastic optimization problem and solved by scenario 

decomposition algorithm. Similarly, reference [51] formulates a stochastic model 

combining preventive planning and real-time dispatching of mobile generators and 

storages to enhance distribution system resilience. Since topology reconfiguration is 

utilized in this study, multiple microgrids are formulated and the expected total cost is 

optimized. This research is also furthered by considering the total cost in normal 

operation state and the necessity of improving system resilience when it comes to severe 

weather-related events [52]. 

The effectiveness of distributed energy is illustrated in [53], [54] and [55]. 

Reference [53] uses photovoltaics generator and energy storage systems to enhance 

system resilience, where the optimal capacity and installment location of distributed 

energy is obtained. In [54], for the recovery of critical load in distribution system, DG 

are used in emergency state after an extreme disaster, boosting system resilience by 

reducing the amount of load curtailment in a period of time. Distributed energy is also 

used in [55] to minimize the duration of load shedding, while the optimal solution is 

obtained by solving a stochastic optimization problem. 

2.3.3 Robust vs Stochastic 

Based on previous literature review, it is concluded that there are two main 

categories in optimal resilience improvement problems, robust method and stochastic 

method. Robust methods are widely used in optimal hardening problems in 

[32][33][35][36] and [37], while stochastic methods are used in both hardening 

https://en.wikipedia.org/wiki/Photovoltaics
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problems [34][38][39] and operational problems [51][52]. Paper [8] employs robust 

method in operational problem, where topology reconfiguration, generator redispatch 

are used to enhance power grid resilience. However, the robust method only considers 

the worst case, in which the damage of windstorms is maximized. Therefore, the 

objective function value in robust optimization is larger than the stochastic method due 

to consideration of worst scenario instead of all possible scenarios. Stochastic 

optimization provides relatively accurate value for evaluating the effectiveness of 

proposed method in resilience improvement problem with acceptable computation 

burden. Table 2.1 is a comparison between robust and stochastic method in resilience 

improvement problems.  

Table 2.1 Comparison between robust and stochastic methods 

 Robust Methods Stochastic methods 

Scenarios interested in Worst case All the scenarios 

Where are the scenarios 

come from 
Optimization 

Scenario generation and 

reduction 

Accuracy Too conservative Accurate 

Computation burden Relatively low Relatively high 

Mainly used in Hardening problems 
Hardening and 

operational problems 

To make up with the disadvantage in robust method in integrated response problem, 

this thesis proposes an integrated response plan with combination of preventive 

response and emergency response to boost distribution system resilience against 

windstorms. A two-stage stochastic model is formulated where all the possible 

scenarios are considered and a global optimal solution is obtained. 
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2.4 Conclusion 

This chapter provides a literature review about power system resilience. System 

resilience in this thesis is seen as the power system adaptability to natural disasters and 

the recover ability to initial operation states. Several resilience evaluation methods and 

metrics are then listed, and the expected amount of load curtailment after event is 

chosen as the resilience index in the thesis. In section 3, resilience improvement 

measures are introduced in the categories of hardening and operational measures. The 

comparison of robust and stochastic method is also given and the stochastic method is 

finally used to formulate the optimal operational method model.  

Actually, the chosen of robust and stochastic methods is a tradeoff between 

computation burden and accuracy. Based on the consideration of all possible scenarios, 

the obtained decision variables in stochastic methods gives a global version of the 

problem solution, while robust methods are more conservative, in which the worst case 

is considered and the total cost is over-estimated. 

The thesis aims to boost distribution system resilience by enhancing the system 

adaptability and operational measures. Thus, preventive response and emergency 

response are allowed. Topology reconfiguration and generator redispatch are employed 

in both pre-event and post-event state. Load curtailment is only allowed in emergency 

response since the normal operation condition need to be maintained in preventive state. 
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Chapter 3 Research Methodology 

To cope with the severe windstorms around the world, a two-stage integrated 

response framework is proposed in section 1. The framework is used to provide 

suggestion to distribution system operators about the integrated response measures 

against windstorms. The example of fragility curves and the method of failure 

probability calculation of lines and towers are presented in section 2. Based on the 

introduction in section 2, the outline of the two-stage scenario-based stochastic model 

is shown in section 3. The progressive hedging algorithm is finally presented in section 

4 as a solving methodology to the stochastic problem. 

3.1 Two-stage Integrated Response Framework 

 

Figure 3.1 Two-stage integrated response framework. 
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Figure 3.1 is a two-stage integrated response framework to deal with the up-

coming windstorms. Distribution system operators get advice on how to perform the 

response before and after the event by employing the framework. Response preparation, 

preventive response and emergency response are the three steps in the integrated 

response framework. System data such as network topology, initial system status, and 

load data are obtained by situational awareness. It is assumed that situational awareness 

is sufficient in the thesis. System parameters include fragile lines parameters, ramping 

limit of distributed energies, bus voltage limit and generator output limit. These 

parameters are essential in model constraints and make impact on the effectiveness of 

improvement measures.  

In the next step, system operators run the two-stage optimization model to obtain 

optimal preventive response. The model considers all the possible scenarios and the 

calculation of scenario probability is expressed in the next section. The preventive 

response provides distribution operators a possible way to deal with the up-coming 

extreme weather event. System operators performs the preventive response including 

topology reconfiguration and generator redispatch. The event comes after the 

preventive response is employed and causes damage to system component as 

distribution lines and tower. Notice that the component status is determined by the 

actual damage of event and is fixed once the event occurs. Finally, the emergency 

response is obtained by running the second-stage optimization model. The detailed 

interpretation of the relationship between two models is given in section 3. 
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3.2 Fragility Curve and Failure ProbabilityEquation Chapter 3 Section 1 

To obtain the optimized distribution system topology reconfiguration under 

natural disasters, the uncertainty of component failure towards an event must be 

considered. The main component in the thesis is distribution lines and towers and the 

failure rate of distribution lines is regarded as the function of wind speed. To map the 

component failure rate with wind speed, a fragility model of distribution lines [40] is 

introduced to simulate line status under different weather conditions.  

 
Figure 3.2 Typical fragility curve for distribution lines and towers [42]. 

Figure 3.2 is a typical distribution lines and tower fragility curve towards different 

wind speed. For both distribution lines and towers, each wind speed corresponds to a 

specific component failure probability. For instance, line failure probability is 0.4 under 

50m/s wind speed. Tower failure probability is 0.8 when the wind speed reaches 60m/s. 

It means that once the wind speed is determined, the component failure probability can 

be obtained from these two figures. It is obvious and reasonable that towers are robust 

than lines with respect to a same wind speed and the threshold wind speed of definitely 

failure for towers is much higher than that of lines. 
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It is worth mentioning that Figure 3.2 is the failure probability of one single 

component (line and tower), because a line is damaged if one of the components 

between two buses are damaged including towers and lines. The failure probability of 

branch b is calculated as follows: 

 𝑃𝑏(𝑤) = 𝑃𝑏,𝐵(𝑤) + 𝑃𝑏,𝑇(𝑤) − 𝑃𝑏,𝐵(𝑤)𝑃𝑏,𝑇(𝑤) (3.1) 

where Pb (w) is the failure probability of branch b when the wind speed is w. Pb,B (w) 

and Pb,T (w) are failure probabilities of branch b because of conductor and pole damage. 

Pb,B (w) is from the line fragility curve in Figure 3.1(a).  

Suppose the failure of distribution towers is an independent event and each tower 

are in the same weather condition, Pb,T (w) is expressed as: 

 𝑃𝑏,𝑇(𝑤) = 1 − (1 − 𝑃𝑇(𝑤))𝑁𝑇  (3.2) 

where PT (w) is the single tower failure probability under wind speed w, which is 

obtained from Figure 3.1(b), and NT is number of towers in branch b. 

The uncertainty in component failure comes from the uncertainty of windstorm 

impact to power system. Under this circumstance, there are many possible “scenarios” 

after one specific windstorm occurs. Here “scenario” means possible line status or 

possible lines status profile when there is more than one fragile line in the system. For 

a distribution system with only one fragile line, two possible scenarios are considered. 

The line failure probability is Pb (w), while the survive probability is 1- Pb (w). Table 

3.1 is the list of all scenarios and probabilities for a system with two fragile lines. 

Assume that the failure probability of these two fragile lines are Pb,1 (w) and Pb,2 (w). 
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Table 3.1 Scenarios and probabilities for a two fragile lines system. 

Status of line 1 Status of line 2 Probability of the scenario 

In service In service (1- Pb,1 (w)) (1- Pb,2 (w)) 

In service Out of service (1- Pb,1 (w)) Pb,2 (w) 

Out of service In service Pb,1 (w) (1- Pb,2 (w)) 

Out of service Out of service Pb,1 (w) Pb,2 (w) 

For a system with N fragile lines, there are 2N scenarios in total. The scenario 

probability is given: 

 𝑃𝑠(𝑤) = ∏ 𝑃𝑏,𝑛(𝑤)

𝑁1

1

∏(1 − 𝑃𝑏,𝑛(𝑤))

2𝑁

𝑁1

 (3.3) 

where Ps (w) is scenario probability and Pb,n (w) is the damage probability of nth fragile 

line in wind speed w. Line 1 to line N1 are assumed to be destroyed by windstorms 

while line N1+1 to line 2N are survived. 

Since the main purpose of this thesis is to obtain the optimized integration of 

preventive and emergency responses to enhance distribution system resilience, wind 

speed is predetermined and no uncertainty is considered in weather severity.  

3.3 Scenario-based Model 

Based on the proposed integrated response framework in section 1 and scenario 

probability calculation in section 2, the key of the framework is formulated as a two-

stage stochastic problem. The overall objective function is to minimize the expected 

total cost in the process of integrated response. Due to the uncertainty of line damage 

status after windstorms, the second stage problem is probabilistic and all the possible 

scenarios are considered. The scenario-based model is expressed as: 

 min   𝐶1 + ∑ 𝐶2(𝑠)𝑃𝑠

𝑆

 (3.4) 
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where C1 refers to the cost of preventive response in the first stage, while C2(s) is the 

cost of emergency response in the second stage correspond to scenario s. Ps is the 

probability that scenario s occurs and is calculated by formula (3.3). According to the 

definition of expected value, the expected emergency cost is the sum of the product of 

cost C2(s) and probability Ps in each scenario. The preventive stage cost is mainly the 

reconfiguration cost and the emergency response cost is consist of reconfiguration cost 

and load shedding cost. 

To be specific, denote X as the first-stage variables, and Ys as the second-stage 

decisions variables to scenario, formula (3.4) is rewritten as: 

 min    𝑐𝑿 + ∑ 𝐹2(𝒀𝑠)

𝑆

𝑃𝑠 (3.5) 

It is obvious that: 

 {
𝐶1 = 𝑐𝑿

𝐶2(𝑠) = 𝐹2(𝒀𝑠) (3.6) 

The two-stage constraints are given as: 

 {
𝐀𝑿 ≤ 𝒃
𝑫𝒀𝑠 ≤ 𝒆

 , ∀𝑠 ∈ 𝑆 (3.7) 

where AX ≤ b represents the first-stage constraints. DYs ≤ e is the second-stage 

constraints. Power balance constraints, generator ramping and output limits exist in 

both two stages. 

Formula (3.5) and (3.7) is the scenario-based stochastic model in the integrated 

response framework. Distribution system operators run the model before event to obtain 

the preventive response and perform it. Once the event comes, the component damage 

status is determined by the actual situation, which means that the scenario is fixed. Then 
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the second-stage optimization is performed to get the emergency response, which is 

expressed as: 

where Ysreal refers to the decision variables after events including topology 

reconfiguration, generator output and bus load shedding. Since the preventive response 

has been performed and the line damage status is determined at that time, the first-stage 

decision variables do not exist in the objective function of second model. And the 

constraints of second model are absolutely identical to the second-stage constraints in 

the previous two-stage model, which illustrates the relationship between two-stage 

model and second-stage model. 

3.4 Introduction of Progressive Hedging Algorithm 

 

Figure 3.3 Comparison of the initial two-stage problem and PH algorithm. 

Different scenario decomposition techniques are employed when faced with 

scenario-based model in resilience improvement problem. Benders’ decomposition is 

commonly used in scenario-based problem. However, Benders’ decomposition 

 min  𝐹2(𝒀𝑠.𝑟𝑒𝑎𝑙) (3.8) 

 𝐷𝒀𝑠,𝑟𝑒𝑎𝑙 ≤ 𝑒 (3.9) 
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performs poorly in such problems because of the heavy computation burden. Since the 

problem is modeled as a two-stage stochastic formulation with binary variables. In that 

situation, progressive hedging (PH) algorithm take into position in several scenario-

based resilience improvement problem and performs well [37][51][52].  

The two-stage structure plays a role in Bender’s decomposition in two-stage 

optimization, while the PH algorithm integrates the two stages. In PH algorithm, the 

original two-stage problem is decomposed into many scenarios. Each scenario has one 

first-stage solution and they may differ for different scenario. Since the optimized first-

stage decisions differ in each scenario, a penalty coefficient is added to the decision to 

get the convergence. When the optimization gap converges within an acceptable range, 

the first-stage in that iteration is regarded as the final solution. To give a clear 

explanation of PH decomposition, Figure 3.3 is a comparison of the initial two-stage 

problem and PH algorithm. 

The scenario-based PH algorithm proves to be an effective method to deal with 

two-stage stochastic models associated with integers. It is reasonable to be employed 

in this integration measures problem. The detail procedure of PH algorithm for a two-

stage stochastic problem is shown below [56]. 

For a two-stage optimization problem (3.6), the steps of PH algorithm are shown 

in follows. 𝜌 > 0 is a penalty factor and 𝜖 is termination criteria or convergence gap. 

Many researches have been devoted to compute effective 𝜌 values and the best 𝜌 is 

expressed as: 

 𝜌 =
𝑐

𝑿𝑚𝑎𝑥 − 𝑿𝑚𝑖𝑛 + 1
 (3.10) 
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c is the first-stage decision variables cost. In this thesis, it represents the unit cost of 

topology reconfiguration. 
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Chapter 4 Optimization Model 

A two-stage stochastic problem is presented to obtain preventive and emergency 

response measures to improve distribution system in this chapter. The objective 

function is presented and constraints are listed in section 2 including first-stage 

constraints and second-stage constraints. The first stage is to do the preventive measures 

including topology reconfiguration and generator dispatch, while the emergency 

measures involves topology reconfiguration, generator redispatch and load curtailment. 

Section 3 gives detail interpretation of the essential formulations in the model, while 

section 4 shows the linearization procedure for the nonlinear constraints. The solving 

method, PH algorithm, is illustrated in section 5. 

4.1 Objective FunctionEquation Chapter 4 Section 1 

 𝒎𝒊𝒏 ( ∑ |𝒚𝒊,𝒋
𝒂 − 𝒚𝒊,𝒋

𝟎 |

(𝒊,𝒋)∈𝑺𝑳

𝒄𝒊,𝒋
𝒂 + ∑ 𝝎𝒔

𝒔∈𝑺

𝜴(𝒔)) (4.1) 

where  

 𝛺(𝑠) = min(𝑐𝑠ℎ𝑒𝑑 ∑ 𝑃𝑠ℎ𝑒𝑑
𝑐,𝑠 ∆𝑡

𝑖∈𝐷𝐵

+ ∑ |𝑦𝑖,𝑗
𝑐 − 𝑦𝑖,𝑗

𝑎 𝑦𝑖,𝑗
𝑏 |𝑐𝑖,𝑗

𝑐

(𝑖,𝑗)∈𝑆𝐿

) (4.2) 

In this objective function, the target is to minimize switching cost in preventive 

response plus expected emergency response cost which include load curtailment cost 

and switching cost considering all possible scenarios. (4.1) and (4.2) show the first-

stage and second-stage objective functions. The calculation of second stage cost also 

involves an optimization problem. 
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4.2 Constraints 

4.2.1 First-stage Constraints 

 ∑ 𝑃𝑔
𝑎

𝑔∈𝐺𝑖

− ∑ 𝑦𝑖,𝑗
𝑎 𝑃𝑖,𝑗

𝑎

(𝑖,𝑗)∈𝐿𝑖

= ∑ 𝑃𝑑

𝑑∈𝐷𝑖

, 𝑖 ∈ 𝐵 (4.3) 

 ∑ 𝑄𝑔
𝑎

𝑔∈𝐺𝑖

− ∑ 𝑦𝑖,𝑗
𝑎 𝑄𝑖,𝑗

𝑎

(𝑖,𝑗)∈𝐿𝑖

= ∑ 𝑄𝑑

𝑑∈𝐷𝑖

, 𝑖 ∈ 𝐵 (4.4) 

 𝑃𝑖,𝑗
𝑎 = 𝐺𝑖,𝑗(𝑉𝑖,𝑗

𝑎 2
− 𝑉𝑖

𝑎𝑉𝑗
𝑎cos𝜃𝑖,𝑗

𝑎 ) − 𝐵𝑖,𝑗𝑉𝑖
𝑎𝑉𝑗

𝑎sin𝜃𝑖,𝑗
𝑎 , (𝑖, 𝑗) ∈ 𝐿 (4.5) 

 𝑄𝑖,𝑗
𝑎 = −𝐵𝑖,𝑗(𝑉𝑖,𝑗

𝑎 2
− 𝑉𝑖

𝑎𝑉𝑗
𝑎cos𝜃𝑖,𝑗

𝑎 ) − 𝐺𝑖,𝑗𝑉𝑖
𝑎𝑉𝑗

𝑎sin𝜃𝑖,𝑗
𝑎 , (𝑖, 𝑗) ∈ 𝐿 (4.6) 

 −𝑦𝑖,𝑗
𝑎 𝑃𝑖,𝑗

𝑚𝑎𝑥 ≤ 𝑃𝑖,𝑗
𝑎 ≤ 𝑦𝑖,𝑗

𝑎 𝑃𝑖,𝑗
𝑚𝑎𝑥 , (𝑖, 𝑗) ∈ 𝐿 (4.7) 

 𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔

𝑎 ≤ 𝑃𝑔
𝑚𝑎𝑥 , 𝑔 ∈ 𝐺 (4.8) 

 𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖

𝑎 ≤ 𝑉𝑖
𝑚𝑎𝑥 (4.9) 

 ∑ y𝑖,𝑗
0 (1 − y𝑖,𝑗

𝑎 ) ≤ 𝐾𝐼
𝑎

(𝑖,𝑗)∈𝐿

 (4.10) 

 ∑ (1 − y𝑖,𝑗
0 )y𝑖,𝑗

𝑎 ≤ 𝐾𝑂
𝑎

(𝑖,𝑗)∈𝐿

 (4.11) 

 ∑ y𝒊,𝒋
𝑎

(𝑖,𝑗)∈𝐿

= 𝑛 − 1 (4.12) 

 𝛽𝑖,𝑗
𝑎 + 𝛽𝑗,𝑖

𝑎 = y𝑖,𝑗
𝑎 , (𝑖, 𝑗) ∈ 𝐿 (4.13) 

 ∑ 𝛽𝑖,𝑗
𝑎

𝑗∈𝐵

= 1, 𝑖 = 1,2, … , 𝑛 (4.14) 

 𝛽1,𝑗
𝑎 = 0, 𝑗 ∈ 𝐺𝐵 (4.15) 

The first-stage constraints of distribution systems are represented by (4.3)-(4.15). 

Constraints (4.3)-(4.6) ensure load balance for each bus and branch in distribution 
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system after preventive response. Pa
g and Qa

g represent the generator output. Va
i,j and 

θa
i,j represent the magnitude and angle of each bus voltage. Constraints (4.7)-(4.9) show 

the boundary of generator output, branch power flow and bus voltage magnitude. The 

superscript “max” means the upper boundary of those variables, while the subscript 

“min” means the lower boundary of variables. Constraints (4.10) and (4.11) indicate that 

the number of in-service-lines that we can cut off and the number of off-service lines 

that we can closed are limited in the preventive response, which are represented by Ka
I 

and Ka
O.  

Constraints (4.12)-(4.15) ensure that the distribution system operating in radial 

mode, not in loop mode. It is because that when distribution system operating in loop 

mode, there are loop current which may influence the normal operation of distribution 

system. Constraints (4.12) indicates that whatever the preventive reconfiguration is, the 

number of on-service-lines is one less than the bus number. βi,j=1 if i is the parent bus 

of j, vice versa. Constraints (4.14) ensures that one bus is corresponding to one parent 

bus except original bus. Constraints (4.15) indicates that those buses with generator can’t 

have parent bus.  

4.2.2 Second-stage Constraints 

 ∑ 𝑃𝑔
𝑐,𝑠

𝑔∈𝐺𝑖

− ∑ 𝑦𝑖,𝑗
𝑐,𝑠𝑃𝑖,𝑗

𝑐,𝑠

(𝑖,𝑗)∈𝐿𝑖

+ ∑ 𝑃𝑠ℎ𝑒𝑑
𝑐,𝑠

𝑑∈𝐷𝑖

= ∑ 𝑃𝑑

𝑑∈𝐷𝑖

, 𝑖 ∈ 𝐵 (4.16) 

 ∑ 𝑄𝑔
𝑐,𝑠

𝑔∈𝐺𝑖

− ∑ 𝑦𝑖,𝑗
𝑐,𝑠𝑄𝑖,𝑗

𝑐,𝑠

(𝑖,𝑗)∈𝐿𝑖

+ ∑ 𝑄𝑠ℎ𝑒𝑑
𝑐,𝑠

𝑑∈𝐷𝑖

= ∑ 𝑄𝑑

𝑑∈𝐷𝑖

, 𝑖 ∈ 𝐵 (4.17) 

 𝑃𝑖,𝑗
𝑐,𝑠 = 𝐺𝑖,𝑗 (𝑉𝑖,𝑗

𝑐,𝑠2
− 𝑉𝑖

𝑐,𝑠𝑉𝑗
𝑐,𝑠cos𝜃𝑖,𝑗

𝑐,𝑠) − 𝐵𝑖,𝑗𝑉𝑖
𝑐,𝑠𝑉𝑗

𝑐,𝑠sin𝜃𝑖,𝑗
𝑐,𝑠, (𝑖, 𝑗) ∈ 𝐿 (4.18) 
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 𝑄𝑖,𝑗
𝑐,𝑠 = −𝐵𝑖,𝑗 (𝑉𝑖,𝑗

𝑐,𝑠2
− 𝑉𝑖

𝑐,𝑠𝑉𝑗
𝑐,𝑠cos𝜃𝑖,𝑗

𝑐,𝑠) − 𝐺𝑖,𝑗𝑉𝑖
𝑐,𝑠𝑉𝑗

𝑐,𝑠sin𝜃𝑖,𝑗
𝑐,𝑠, (𝑖, 𝑗) ∈ 𝐿 (4.19) 

 −𝑦𝑖,𝑗
𝑐,𝑠𝑃𝑖,𝑗

𝑚𝑎𝑥 ≤ 𝑃𝑖,𝑗
𝑐,𝑠 ≤ 𝑦𝑖,𝑗

𝑐,𝑠𝑃𝑖,𝑗
𝑚𝑎𝑥 , (𝑖, 𝑗) ∈ 𝐿 (4.20) 

 𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔

𝑎 ≤ 𝑃𝑔
𝑚𝑎𝑥 , 𝑔 ∈ 𝐺 (4.21) 

 𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖

𝑎 ≤ 𝑉𝑖
𝑚𝑎𝑥 (4.22) 

 𝑃𝑔
𝑐,𝑠 − 𝑃𝑔

𝑎 ≤ 𝑃𝑔
𝑟𝑝.𝑚𝑎𝑥

∆𝑡, 𝑔 ∈ 𝐺 (4.23) 

 𝑦𝑖,𝑗
𝑐,𝑠 ≤ 𝑦𝑖,𝑗

𝑏 , (𝑖, 𝑗) ∈ 𝐿 (4.24) 

 ∑ 𝑦𝑖,𝑗
𝑎 𝑦𝑖,𝑗

𝑏 (1 − 𝑦𝑖,𝑗
𝑐 ) ≤ 𝐾𝐼

𝑐

(𝑖,𝑗)∈𝐿

 (4.25) 

 ∑ (1 − 𝑦𝑖,𝑗
𝑎 )𝑦𝑖,𝑗

𝑏 𝑦𝑖,𝑗
𝑐 ≤ 𝐾𝑂

𝑐

(𝑖,𝑗)∈𝐿

 (4.26) 

The second-stage constraints of distribution systems are represented by (4.16)-

(4.26), which are very similar to the first-stage constraints. Notice that second-stage 

constraints are applicable to each scenario. Constraint (4.16)-(4.19) ensure load balance 

for each bus and branch in distribution system after emergency response. Constraints 

(4.20)-(4.22) show the boundary of generator output, branch power flow and bus voltage 

magnitude. Constraint (4.23) shows the ramping limit of generator because of the short 

duration of emergency response. Constraint (4.24) indicate that damaged lines cannot 

be closed in the emergency response since it is already destroyed. Constraints (4.25) and 

(4.26) indicate that the number of in-service-lines that we can cut off is still limited in 

the emergency response, so as the number of off-service-lines that we can closed, which 

are represented by Kc,s
I and Kc,s

O. 
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4.3 Interpretation of the Model 

The objective function in this model is to find best preventive topology 

reconfiguration ya
i,j to minimize the total cost considering all possible consequence of a 

specific windstorm. As is mentioned before, the model is formulated as a two-stage 

problem. The first-stage cost is fixed once the preventive measures is employed, while 

the second stage cost are still uncertain and will be influenced by the possible damage 

status of system component.  

The first stage cost, topology switching cost, is expressed as |ya
i,j- y

0
i,j|c

a
i,j. In the 

emergency response, load shedding cost and topology switching cost are included. They 

both depend on the specific scenario, in which the damage status of a line is a random 

variable. In probability theory, the expected value X of a random variable with 

consequences x1, x2, …, xk and corresponding probabilities p1, p2, …, pk is: 

 E[𝑋] = ∑ 𝑥1𝑝1 + 𝑥2𝑝2 + ⋯ + 𝑥𝑘𝑝𝑘

𝑘

𝑖=1

 (4.27) 

Let Ωs be the outcome and Ps be the probability, the expected cost of second stage 

is expressed as: 

 ∑ 𝜔𝑠𝛺(𝑠)

𝑠∈𝑆

 (4.28) 

where the randomness comes from the uncertainty of the component damage status 

under windstorms. The probability ωs of scenario s is calculated by formula (3.3) and 

the outcome Ωs includes load shedding cost and topology switching cost. 

Generally, the first-stage constraints and second-stage constraints share many 

similarities and in same formulation. Power balance constraints, generator output limit 

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Random_variable
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and number of switching limit exist in both preventive response and emergency 

response. The main differences lay in the radial constraints in the first stage and the 

ramp rate constraints and the topology reconfiguration constraints in the second stage. 

Ramping rate constraint (4.23) is essential for load balance in the post-event state. 

As is mentioned before, the time period we focused on ends when the emergency 

measures are fully employed, which is set as an hour. The main grid power availability 

and distributed energy ramp constraint make impact on the power balance and the 

amount of load curtailment in the second stage, then load shedding cost. Besides, due 

to the short time duration of emergency responses, the damaged components are 

remained unrepaired in emergency measures. As constraint (4.24) shows, they can’t be 

switched on. Radial constraints appear only in the first-stage constraints. The radial 

system is simple and the least expensive, which can be easily expanded by the inclusion 

of additional transformers. However, the radial constraints may not hold after event 

because of the lacking of energy and equipment resources. 

4.4 Linearization  

The proposed two-stage stochastic program forms a linear model excepting 

objective function (4.1) (4.2) and first-stage constraints (4.5) (4.6). Second stage 

constraints (4.18) and (4.19) can be linearized by the same method as that in first-stage 

constraints since they share the same formulation. (4.25) and (4.26) also need to be 

linearized since they contain the multiproduct of binary variables. 

Absolute value in objective function (4.1) is easily eliminated by assuming that 

the initial system line status is predetermined. All no-tie branches are closed while all 
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tie branches are not. Then the topology switching occurs only if no-tie branches are 

switched off or tie branches are switched on. Objective function is rewritten as: 

 min ( ∑ (𝑦𝑖,𝑗
𝑎 − 𝑦𝑖,𝑗

0 )𝑐𝑖,𝑗
𝑎

(𝑖,𝑗)𝜖𝑆𝐿𝑡𝑖𝑒

+ ∑ (𝑦𝑖,𝑗
0 − 𝑦𝑖,𝑗

𝑎 )𝑐𝑖,𝑗
𝑎

(𝑖,𝑗)𝜖𝑆𝐿𝑛𝑜−𝑡𝑖𝑒

+ ∑ 𝜔𝑠𝛺(𝑠)

𝑠∈𝑆

 (4.29) 

where initial system line status y0
i,j is known. The only decision variables are preventive 

topology reconfiguration ya
i,j, making the objective function linear. 

Objective function (4.2) is equivalent to the flowing formulation with three 

additional constraints: 

 𝛺(𝑠) = min(𝑐𝑠ℎ𝑒𝑑 ∑ 𝑃𝑠ℎ𝑒𝑑
𝑐,𝑠 ∆𝑡

𝑖∈𝐷𝐵

+ ∑ 𝑀𝑖,𝑗𝑐𝑖,𝑗
𝑐

(𝑖,𝑗)∈𝑆𝐿

) (4.30) 

 𝑦𝑖,𝑗
𝑐 − 𝑦𝑖,𝑗

𝑐 𝑦𝑖,𝑗
𝑏 ≤ 𝑀𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝐿 (4.31) 

 𝑦𝑖,𝑗
𝑐 − 𝑦𝑖,𝑗

𝑐 𝑦𝑖,𝑗
𝑏 ≥ −𝑀𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝐿 (4.32) 

 𝑀𝑖,𝑗 ≥ 0 (4.33) 

Equations (4.5) and (4.6) are approximated as [57] follows and 𝜃 is bus voltage 

angle: 

 𝑃𝑖,𝑗
𝑎 = 𝐺𝑖,𝑗(𝑉𝑖 − 𝑉𝑗 − 𝑟(𝑖,𝑗) + 1) − 𝐵𝑖,𝑗(𝜃𝑖 − 𝜃𝑗) (4.34) 

 𝑄𝑖,𝑗
𝑎 = −𝐵𝑖,𝑗(𝑉𝑖 − 𝑉𝑗 − 𝑟(𝑖,𝑗) + 1) − 𝐺𝑖,𝑗(𝜃𝑖 − 𝜃𝑗) (4.35) 

where r(i,j) represents the linear approximation of cosθi,j which could also be wrote as 

follow formula: 

 𝑟(𝑖,𝑗) = 𝑑(𝑖,𝑗),𝑢(𝜃𝑖 − 𝜃𝑗) + 𝑒(𝑖,𝑗),𝑢 (4.36) 

To deal with quadratic terms and cubic terms in (4.25) and (4.26), three binary 

variables are introduced, yi,j,1= ya
i,j y

b
i,j, yi,j,2= yb

i,j y
c
i,j and yi,j,3= ya

i,j y
b

i,j y
c
i,j, then (4.25) 

and (4.26) become: 
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 ∑ (𝑦𝑖,𝑗,1 − 𝑦𝑖,𝑗,1)

(𝑖,𝑗)∈𝐿

≤ 𝐾𝐼
𝑐 (4.37) 

 ∑ (𝑦𝑖,𝑗,2 − 𝑦𝑖,𝑗,3)

(𝑖,𝑗)∈𝐿

≤ 𝐾𝑂
𝑐 (4.38) 

where yi,j,1, yi,j,2 and yi,j,3 are the products of several binary variables, which is calculated 

by following formula: 

 𝑦 = ∏ 𝑦𝑘

𝑘∈𝒩

⟺ {

𝑦 ≤ 𝑦𝑘 , 𝑘 ∈ 𝒩

𝑦 ≥ ∑ 𝑦𝑘

𝑘∈𝒩

− 𝑛𝑢𝑚(𝒩) + 1 (4.39) 

where num(·) is the elements number in set N, and yk and y are binary variables. 

In conclusion, the objective function of rewritten model is formula (4.29) and 

(4.30), while the constraints are (4.3), (4.4), (4.7)-(4.17), (4.20)-(4.26), (4.31)-(4.39). 

4.5 Progress Hedging Algorithm in the Model 

To make the discussion easier, a compact notation of proposed model is written as 

follows.  

 min   𝒄T(𝒙 − 𝒙𝟎) + ∑ 𝜔𝑠

𝑠∈𝑆

𝛺(𝒙, 𝑠) (4.40) 

 s. t.  𝑨𝒙 ≤ 𝒃 (4.41) 

x is the topology reconfiguration in preventive response and x0 is the initial line status. 

Vector c is the unit cost of topology switching. Constraint (4.41) corresponds to the 

first-stage constraints in the previous model. Ω(x,s) is the second-stage emergency 

response problem for scenario s, which can be formulated in: 

 𝛺(𝒙, 𝑠) = min  𝒈(𝑠)T𝒚(𝑠) (4.42) 

 s. t.  𝑭𝒚(𝑠) ≤ 𝒓(𝑠) − 𝒆(𝑠)𝒙 (4.43) 
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where y(s) is the topology reconfiguration in emergency response for scenario s and the 

second-stage constraints are represented by (4.43). g(s) is the unit topology switching 

cost and unit load shedding cost. 

Let (x, y(s))K(s) represents two stage constraints (4.41) and (4.43), the 

simplified-express model can be formulated as follows: 

 z = min  {𝒄T(𝒙 − 𝒙𝟎) + ∑ 𝜔𝑠

𝑠∈𝑆

𝒈(𝑠)T𝒚(𝑠), (𝒙, 𝒚(𝑠))𝐾(𝑠), 𝑠 ∈ 𝑆} (4.44) 

 

Figure 4.1 Steps of PH algorithm 

The detailed PH algorithm for this two-stage model is shown in Figure 3.4. Step 

1 is used to obtain the first-time solution of each scenario. In each iteration, the expected 

value xave
k is calculated using the probability and the solution of each scenario. And the 

item m(s)k are calculated in Step 4, which are further used in updating objective function 

in Step 5. Two penalty items are added in Step 5 to obtain the updated solution for each 
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scenario. The deviation of d(k) is expressed in Step 5 to test the termination criteria, 

where d(k) denotes the expected deviation between solution x(s)k for each scenario and 

expected value xave
k in kth iteration. 
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Chapter 5 Case Study 

This chapter does two case studies in IEEE 33 bus system and a modified 69 bus 

system to illustrate the correctness and effectiveness of proposed framework and model. 

The results show that employing the integrated response helps to improve distribution 

resilience, meanwhile the cost is minimized for both connected system and isolated 

system. Besides, parameter sensitivity analysis is developed in both cases. Finally, the 

case study conclusion is presented in section 3.  

5.1 Case Study in IEEE 33 Bus System 

5.1.1 System data and Parameters 

In this case study, IEEE 33 bus system is used to check the efficacy of the method 

and model. The system is set to connect to the bulk power system and bulk power 

system can provide power resources and ramping ability to distribution system. The 

initial topology of IEEE 33 bus system is shown in Appendix A [58]. The total load is 

3.715 MW and the maximum power main grid provide is set as equal to the total load. 

The base power is Sbase=100MW and base voltage is Vbase=12.66kV. The upper and 

lower boundary of bus voltage magnitude are set as 1.05 and 0.95, respectively.  

To eliminate the absolute value in objective function, all the five tie-branches are 

open at the initial state, when all the no-tie-branches are closed to guarantee the system 

normal operation. It is reasonable to assume that not all the branches are equipped with 

breakers. Assuming all tie-branches are with breakers and four no-tie-branches are with 

breakers, 6-7, 7-8, 9-10, 10-11. Seven distributed energies are attached on the system 

to maintain the bus voltage and related data is given in Table 5.1. The ramping limits 
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in preventive state and emergency state are set as 0.007MW and 0.003 MW respectively. 

To simplify the problem, these DGs are assumed to totally dispatchable and are not 

influenced by natural disasters. The unit load shedding cost is 10$/kWh. The preventive 

reconfiguration unit cost is $200 and $300 for no-tie-branches and tie-branches, 

respectively, while $400 and $1000 for no-tie-branches and tie-branches in emergency 

response since the lack of resources after windstorms. 

Table 5.1 DG locations and output limits. 

DG 

Number 

DG 

Location 

Pmax 

(MW) 

Pmin 

(MW) 

Qmax 

(MW) 

Qmin 

(MW) 

1 Bus 3 0.2 0.02 0.16 -0.16 

2 Bus 4 0.15 0.015 0.16 -0.16 

3 Bus 9 0.2 0.02 0.16 -0.16 

4 Bus 13 0.2 0.02 0.16 -0.16 

5 Bus 17 0.2 0.02 0.16 -0.16 

6 Bus 29 0.2 0.02 0.16 -0.16 

7 Bus 32 0.15 0.015 0.16 -0.16 

Figure 5.1 shows the relationship between component failure probability and wind 

speed [59]. In this case study wind speed is set as 45m/s and no weather forecast 

deviation is considered in the thesis. The single line failure probability is 0.3 and tower 

is 0.1. Branch 2-3, 5-6, 7-8, 10-11 are fragile lines and their failure probability is 

calculated by formula (3.1) and (3.2), while other lines are assumed to be strong enough 

to withstand the up-coming windstorms.  

The case study is programmed in Matlab 2018a and solved by CPLEX 12.4. 
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Figure 5.1 Component failure probability curve in distribution system. 

5.1.2 Scenario Generation 

Based on the component failure probability under wind speed 45m/s and formula 

(3.1) and (3.2), 16 scenarios are developed for 4 fragile lines and the scenario 

probability is shown in follow Table 5.2. Notice that the sum of all scenario probability 

is 1. 

Table 5.2 Line status and probability for all scenarios. 

Scenario 
Line 2-3 

Status 

Line 5-6 

Status 

Line 7-8 

Status 

Line 10-11 

Status 

Scenario 

Probability 

1 0 0 0 0 0.0978  

2 0 0 0 1 0.1281  

3 0 0 1 0 0.0579  

4 0 0 1 1 0.0759  

5 0 1 0 0 0.0492  

6 0 1 0 1 0.0645  

7 0 1 1 0 0.0292  

8 0 1 1 1 0.0382  

9 1 0 0 0 0.0831  

10 1 0 0 1 0.1088  

11 1 0 1 0 0.0492  

12 1 0 1 1 0.0644  

13 1 1 0 0 0.0418  

14 1 1 0 1 0.0548  

15 1 1 1 0 0.0248  

16 1 1 1 1 0.0324  
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5.1.3 Integrated Response Results  

 

Figure 5.2 Illustration of topology reconfiguration in preventive response. 

 
Figure 5.3 System topology after preventive response. 

In this case study, preventive topology reconfiguration, emergency generator 

redispatch as emergency topology reconfiguration are allowed to maximize the benefit 

of integrated response. The computation time is 269s and the total cost is $10,070. The 

computation time is acceptable when it comes to an operational problem since the 

system operators get the extreme weather alert 24-72 hours in advance. Figure 5.2 is 

an illustration of preventive response. There are four vulnerable lines in the system 
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which could be destroyed by windstorms with a certain probability correspond to the 

wind speed. Line 7-8 is open in preventive stage to cope with the possible damage 

caused by windstorms, while tie-branch 21-8 is closed to make the system operate in 

radial mode. The integrated response result is shown in Figure 5.3 and is implemented 

in preventive state. The emergency response will be carried out according to the damage 

of windstorms. The result provides a guideline to the distribution system operators that 

the integrated response can be employed to deal with the up-coming extreme weather 

event. 

5.1.4 Scenario Comparison 

To explore the effectiveness of proposed two-stage integrated response framework, 

5 scenarios are considered by the main three responses in the framework: preventive 

topology reconfiguration (Pre-To), emergency generator redispatch (Em-Gr) and 

emergency topology reconfiguration (Em-To). Notice that these scenarios are totally 

different from the scenarios in 3.2 and 3.3, which is caused by the uncertainty of 

weather impact to system component. The results of each scenarios are presented in 

Table 5.3 (✓ means employed  means not employed). 

Table 5.3 Five scenarios and the responses allowed. 

Scenario Pre-To Em-Gr Em-To 
Expected 

Total Cost ($) 
Pre-To Result 

1    15,448 No allowed 

2 ✓   13,477 7-8 off, 21-8 on 

3 ✓ ✓  12,394 6-7 off, 21-8 on 

4  ✓ ✓ 10,387 No allowed 

5 ✓ ✓ ✓ 10,070 7-8 off, 21-8 on 
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All the three responses are allowed in the case study in the last section, which is 

actually scenario 5 in Table 5.3. The total cost is reduced dramatically from $15,448 to 

$10,070 by employing the proposed integrated response framework, in which all the 

responses are allowed. It is because that topology reconfiguration in both two stages 

and generator redispatch in emergency state can provide flexibility to distribution 

system to mitigate the impact of windstorms. When no response is allowed in scenario 

1, there is only load shedding cost in total cost. Besides, the amount of load shedding 

in scenario 1 is 1.5548 MWh, while scenario 5 only has 0.9444 MWh load curtailment, 

which means that distribution system resilience is improved by integrated response in 

a minimum cost. 

It is obvious that total cost decreases gradually from scenario 1 to scenario 5 and 

the maximum gap is between scenario 1 and scenario 5, where all responses are allowed. 

It is also concluded that the benefit of integrated response is larger than the individual 

preventive and emergency response, since the total cost in scenario 5 is smaller than 

that in other scenarios. To explore the composition of total cost in the five scenarios, a 

detailed analysis of total cost is shown in Table 5.4. 

Table 5.4 Detailed expected total cost analysis. 

Scenario 
Pre-To 

Cost ($) 

Expected Load 

shedding Cost 

($) 

Expected 

Em-To 

Cost ($) 

Expected Total 

Cost ($) 

1 0 15,448 0 15,448 

2 500 12,977 0 13,477 

3 500 11,894 0 12,394 

4 0 9,444 943 10,387 

5 500 9,444 126 10,070 
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Compared to scenario 1, preventive topology reconfiguration is allowed in 

scenario 2. One no-tie-branch is open and one tie-branch is closed so the preventive 

cost is $500, and the load shedding cost is reduced dramatically by doing so. Once 

generator ramping is allowed in scenario 3, the load shedding cost is reduced furtherly 

since more load is supplied by the distributed generators. Only emergency response is 

allowed in scenario 4, where the post-event topology reconfiguration plays a significant 

role in improving system resilience and reducing load shedding cost. Comparing 

scenario 4 and 5, the load shedding cost is the same, while the total cost is reduced by 

doing topology reconfiguration before events. It is concluded that integrated response 

can improve resilience most with minimum cost. 

5.1.5 Sensitivity Analysis 

 

Figure 5.4 Expected total cost under different unit load shedding cost. 

The comparison between different scenarios shows and effectiveness of the 
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The amount of load curtailment after event is reduced by applying preventive topology 

reconfiguration. The emergency response is deployed after the event since the damage 

status of system component is detected by situational awareness. Sensitivity analysis 

aims to investigate the influence of parameters to the solution and the total cost. Three 

parameters are put into sensitivity analysis. 

It is obvious from Table 5.4 that load shedding cost plays a significant role in total 

cost. It is reasonable to check the influence of unit load curtailment cost to the expected 

total cost, and the unit load curtailment cost is checked from 1$/kWh to 15$/kWh in 

1$/kWh interval. As is shown in Figure 5.4, the total cost increases with the increasing 

of unit load shedding cost and the relationship between are regarded as linear. It is 

because in this case, the cost of distributed energy output is ignored and they produce 

the maximum output to reduce the load shedding. The reconfiguration cost under 

different unit load shedding cost is the same, and the only cost deviation comes from 

load shedding cost. 

Table 5.5 Ramping limit sensitivity analysis. 

Preventive 

Ramping Limit 

(MW/h) 

Emergency 

Ramping Limit 

(MW/h) 

Expected 

Total Cost ($) 

Expected Load 

curtailment 

(MWh) 

0.07 0.03 10,070 0.9444 

0.06 0.03 10,266 0.9640 

0.05 0.03 10,463 0.9837 

0.04 0.03 10,698 1.0334 

0.03 0.03 12,059 1.0223 

0.03 0.04 10,660 1.0334 

0.03 0.05 10,463 0.9837 

0.03 0.06 10,266 0.9640 

0.03 0.07 10,070 0.9440 

0.03 0.08 10,070 0.9440 
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Table 5.5 is the ramping limit sensitivity analysis. The total cost and load shedding 

are tested under different preventive ramping limit and emergency ramping limit. The 

total cost and load shedding change in same direction. Either the change in preventive 

ramping limit or emergency ramping limit cause the change in total cost and load 

shedding. It can be seen that when emergency ramping limit exceeds 0.08MW/h, the 

result will not be changed since the distributed generators have already produced the 

maximum output and the relax in ramping limit make no influence on the generator 

output in emergency response. 

As is mentioned before, wind speed determined by accurate weather forecast and 

is set as 45m/s in above study. Here the solutions in different wind speed are obtained 

to check the impact of the severity of windstorms to the total cost in resilience 

improvement. Figure 5.5 and Figure 5.6 are the expected load shedding and expected 

total cost of five scenarios with the change of wind speed. The first conclusion is that 

expected total cost and load shedding increases with the increase of wind speed since 

high wind speed increase the failure probability of system component. We can also see 

that the integrated response can produce more economic profit in resilience 

improvement than that in single preventive or emergency response. The total cost in 

single emergency response is less than that in preventive response. Besides, when the 

wind speed grows, the deviation between different scenarios decreases, which means 

that the effectiveness of resilience response decreases. 

The expected total cost in scenario 3 is lower than that in scenario 4 under wind 

speed 55m/s, while the expected load shedding is still higher. It is caused by the failure 
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probability of fragile lines and scenarios. The preventive switching cost for scenario 3 

is $500 and scenario 4 is $0 for all wind speed. The reduced expected load shedding 

cost under wind speed 55m/s is less than $500. Thus, the expected total cost in scenario 

3 is lower than that in scenario 4. 

 

Figure 5.5 Expected load shedding of five scenarios under different wind speed. 

 

Figure 5.6 Expected total cost of five scenarios under different wind speed.  
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5.2 Case Study in Modified 69 Bus System 

5.2.1 System Data and Scenario Generation 

A modified 69 bus system is studied in this section. The system topology is shown 

in Appendix C and the system load and line data are in Appendix D [60]. To make the 

two systems comparable in total load, the bus load is reduced to three quarters and the 

total load is 4.039 MW. The base power is Sbase=100MW and base voltage is Vbase=11kV. 

The upper and lower boundary of bus voltage magnitude are set as 1.05 and 0.95, 

respectively. Different form the IEEE bus system which is attached to the bulk power 

system, the 69 bus system is assumed to operate in isolated mode, which means that the 

system obtains no power from power grid and all the power is provided by distributed 

energy attached in the system. The locations, ramping limits and output limits of DGs 

are shown in Table 5.6. 

Table 5.6 DG locations, ramping and output limits. 

DG 

Number 

DG 

Location 
Pmax (MW) Pmin (MW) Qmax (MW) Qmin (MW) 

Ramping 

Limit 

(MW/h) 

1 Bus 4 1.2 0.12 1.2 0.12 0.25 

2 Bus 9 1.0 0.10 1.0 0.10 0.53 

3 Bus 17 1.3 0.13 1.3 0.13 0.25 

4 Bus 39 0.6 0.06 0.6 0.06 0.25 

5 Bus 47 0.7 0.07 0.7 0.07 0.25 

6 Bus 55 0.7 0.07 0.7 0.07 0.25 

To ensure the connectivity of initial system, tie-branch 1 and tie-branch 4 are set 

to closed at the initial state, while all the other tie-branches are open and all the no-tie-

branches are closed guarantee the system normal operation. Similar to the previous 

study, only four lines are with breakers, 19-20, 23-24, 37-38 and 42-43. These 
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distributed generators are assumed to totally dispatchable and are not influenced by 

natural disasters. The unit load shedding cost and unit reconfiguration unit cost is total 

the same as previous study to make comparison.  

Figure 5.1 is still used as fragility curves for modified 69 bus system. And the 

wind speed is set as 50m/s. Then the correspond single line failure probability and tower 

failure probability is 0.45 and 0.14. Calculated by formula (3.1) and (3.2), the fragile 

lines failure probability is in Table 5.7 (assume that line resistance is 0.4Ω/km and the 

interval between two towers is 250m). 

Table 5.7 Fragile line failure probability calculation. 

Fragile 

Lines 
Resistance (Ω) Distance(km) 

Number of 

towers 

Tower failure 

probability 

Line Failure 

Probability 

4-5 0.366 0.915 5 0.5296 0.7413 

21-22 0.475 1.188 6 0.4686 0.7077 

23-24 1.620 4.050 17 0.8332 0.9083 

34-35 0.768 1.920 9 0.6126 0.7869 

5.2.2 Integrated Response Results 

The program goes through 5 iterations until convergence, when the optimized 

solution is obtained. The computation time is 894s, which is acceptable for a system 

operation problem. The illustration of preventive topology reconfiguration is shown in 

Figure 5.7. The system reconfiguration after preventive response is shown in Figure 

5.8. To deal with the possible damage caused by windstorms, branch 23-24 and tie-

branch 1 are open while tie-branch 2 and 3 are closed to guarantee the radial topology 

in preventive state.  

To get better analysis of the system, it is reasonable to divide all the bus into four 

parts according to their location and the distribution of tie branches. Top left part has 
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bus 1~15, 68 and 69, while bus 16~29 is in top right part. The bottom left part consists 

of bus 30~50 and bottom right part has bus 51~67. The correspond total load of these 

four parts are 0.793MW, 0.790MW, 1.278MW and 1.178MW, respectively. Notice from 

Table 5.6 that the maximum output of distributed generators which located in 

counterpart in the system is 2.2MW, 1.3MW, 1.3MW and 0.7MW. The right two parts 

can’t provide enough power even when DG5 and DG6 are in fully output.  

Branch 23-24 is considered as fragile lines with failure probability of 0.9083. 

Meanwhile, there is breakers in branch 23-24. It is logical to open it before event comes 

since it has such a great failure probability to cause damage after the event. Opening it 

in preventive state does no harm to the normal operation for the system since there are 

dispatchable resources such as generators and breakers. Branch 21-22 is also fragile 

lines with 0.7077 failure probability. Once the branch 21-22 is destroyed by windstorms, 

the top left part and top right part can no longer provide power to the bottom right part 

since the connectivity is damaged. However, the DGs in the bottom part cannot supply 

its own demand. Then it is reasonable and profitable to closed tie-branch 2 to 

reconstruct the connectivity of top left part and bottom right part. The existence of other 

two fragile lines doesn’t influence the preventive reconfiguration since they are in the 

parts where power supply is sufficient. It is not economic to do other switching. In other 

words, the cost of doing other switching cannot is higher than the reduced cost in load 

shedding. 
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Figure 5.7 Illustration of topology reconfiguration in preventive response. 
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Figure 5.8 System topology after preventive response. 

The expected total cost is $4,800, in which $1,110 is preventive reconfiguration 

cost and $3,659 refers to the expected load shedding cost considering all 16 possible 

scenarios for four fragile lines. The expected emergency switching cost is $41.  
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5.2.3 Scenario Comparison 

According to the response that is deployed in the event, five scenarios are used to 

make comparison, same as previous study. The solution of five scenarios and the 

expected total cost is in Table 5.8. 

Table 5.8 Expected total cost and solution of five scenarios 

Scenario Pre-To Em-Gr Em-To 
Expected 

Total Cost ($) 
Solution 

1    -- 
Only scenario 11, 12, 

15 and 16 are feasible 

2 ✓   -- 
Only scenario 11, 12, 

15 and 16 are feasible 

3 ✓ ✓  5,027 
23-24 off, tie 1 off, 

tie 2 on, tie 3 on 

4  ✓ ✓ 5,154 
23-24 off, tie 1 off, 

tie 2 on, tie 3 on 

5 ✓ ✓ ✓ 4,800 
23-24 off, tie 1 off, 

tie 2 on, tie 3 on 

The first two scenarios have no global solution in preventive response 

reconfiguration. Only several scenarios are feasible for scenario 1 and 2. It is because 

generator redispatch is not allowed in these two scenarios, which limit the ramping 

ability of distributed generators. When system operates in normal condition, the total 

load is supplied and the generator output is equal to or more than total load. However, 

the windstorms cause damage to system component. The only way to keep power 

balance is carrying out load shedding and the generator must be dispatched to be 

equivalent to reduced load. If no ramping is allowed, the power balance constraints and 

the ramping limit contradictory to each other, making the problem infeasible. 

For scenario 3, 4 and 5, they are all feasible for all scenarios and have the same 

solution. Compare to scenario 3 and 4, scenario 5 has the least expected total cost 
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because preventive topology switching, emergency generator redispatch and 

emergency topology switching are all allowed in scenario 5, which is exactly integrated 

response in this thesis. The results show that the expected total cost can be minimized 

by utilizing all the responses, which reflects the correctness of the proposed 

optimization model. The expected total cost in scenario 3 is al little less than that in 

scenario 4. To explore the reason of that phenomenon, a detailed expected total cost 

analysis is shown in Table 5.9. Since the first two scenarios are not generally feasible, 

they are not included in the table. 

Table 5.9 Detailed expected total cost analysis 

Scenario 
Pre-To 

Cost ($) 

Expected Load 

shedding Cost ($) 

Expected 

Em-To Cost 

($) 

Expected 

Total Cost 

($) 

Expected Load 

shedding 

(MW) 

3 1,100 3,927 0 5,027 3.927 

4 0 3,273 1,881 5,154 3.273 

5 1,100 3,659 41 4,800 3.659 

Notice that when it comes to expected load shedding cost, scenario 4 is the best. 

Load shedding cost is the product of amount of load curtailment and unit load shedding 

cost. It can represent distribution resilience level. Thus scenario 4 has the best resilience 

level. It shows the good performance of emergency topology switching in isolated 

distribution systems. And the comparison of scenario 3 and 5 also illustrate the 

importance of emergency topology switching. By deploying emergency switching, the 

expected load shedding cost reduced from $3,927 to %3,659 with the cost of only $41 

expected emergency cost, which is absolutely cost-effective. 

The comparison between scenario 1 and 5 shows that the proposed integrated 

response framework can effectively help to improve the system operation condition in 
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a minimum cost and the system resilience is also improved by reducing load shedding. 

And the integrated response can improvement distribution system resilience while the 

expected total cost is minimized. 

5.2.4 Sensitivity Analysis 

To further explore the performance of integrated response in variant operation 

condition, parameter sensitivity analysis is done in this section. It should be mentioned 

that the modified 69 bus system is isolated from the main grid and all the load is 

supplied by DGs. In this circumstance, the availability and ramping ability of DGs is 

essential to the distributed system resilience level. 

The generator availability analysis is achieved by assuming that DG 1 is composed 

of 12 identical fuel cells with maximum output of 0.1 MW each. Figure 5.9 shows the 

amount of load shedding when several fuel cells are unavailable. 

 

Figure 5.9 Expected load shedding under fuel cells unavailability. 
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It can be seen that the availability of distributed generators plays an importance 

role in isolated systems resilience. When the number of unavailable fuel cells are 0, 1 

and 2, the expected load shedding doesn’t change at all since the total amount of DGs 

output is far more than total load and other DGs can make up the lacking power. 

However, when the maximum DG1 output is less than 1.0MW, the expected load 

shedding increases dramatically and when there are more than 6 unavailable fuel cells, 

the problem has no solution. We mentioned that the amount of load curtailment 

represents the distribution system resilience level. Thus, the availability of DGs is 

essential to distributed system resilience. 

Table 5.10 Emergency ramping limit sensitivity analysis. 

Emergency 

Ramping Limit of 

DG 2 (MW/h) 

Expected 

Total Cost ($) 

Expected Load 

Shedding 

(MWh) 

0.60 4,663 0.35632 

0.59 4,663 0.35632 

0.58 4,663 0.35632 

0.57 4,667 0.35667 

0.56 4,690 0.35675 

0.55 4,706 0.36060 

0.54 4,730 0.36294 

0.53 4,800 0.36590 

0.52 4,805 0.37050 

Table 5.10 shows the expected total cost and expected load curtailment cost when 

DG 2 has different ramping limit. The duration of emergency response is set as 1 hour 

and since the distribution system is total supplied by distributed energies, the ramping 

ability influence the resilience of system. It is concluded that worse ramping ability not 

only increases the cost of integrated response but also make the system less resilient to 

windstorms. 
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5.3 Conclusion 

The above two case studies on IEEE 33 bus system and modified 69 bus system 

illustrate the effectiveness and correctness of proposed integrated response framework 

and model. The two systems operate in connected mode and isolation mode, 

respectively. Distribution system operators can improve system resilience by 

employing the integrated response framework in a minimum cost in both modes. The 

main conclusions are listed as follows: 

⚫ Integrated response can improve distribution system resilience in a minimum 

cost in both connected system and isolated system. 

⚫ The effectiveness of integrated response is better than the individual 

preventive or emergency response. 

⚫ System parameters and abilities such as unit load shedding cost, ramping 

ability and generator availability influence the system resilience and expected 

total cost in different degree. 
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Chapter 6 Thesis conclusion and Future Work 

This thesis focuses on using integrated response to boost distribution system 

resilience. The preventive response includes topology reconfiguration, generator 

redispatch, while emergency response consists of topology reconfiguration, generator 

redispatch and load shedding. Load shedding is not allowed in preventive state since 

the main function of distribution system is to supply the load when it is in normal 

condition. 

The thesis first proposes a two-stage integrated response framework to mitigate 

the impact of extreme weathers especially windstorms. Then a two-stage mix-integer 

linear programming is formulated as the core of the framework since topology 

reconfiguration is involved in both preventive and emergency state. Progressive 

hedging algorithm is utilized to solve the two-stage stochastic model due to its good 

performance in integer-involved two-stage problem. Two case studies are carried out to 

verify the proposed method. 

IEEE 33 bus system is set to connect to the main grid with seven controllable 

distributed generators. The solution of integrated response is first presented by 

comparing the initial system reconfiguration and preventive state topology. Line7-8 is 

open and tie-branch 21-8 is closed in preventive response to cope with the up-coming 

windstorms, which provides a possible solution for distribution system operators to deal 

with the extreme weather events. The expected total cost is $10,070. Five scenarios are 

designed to make the problem clear and scenario comparison shows that integration of 

preventive response and emergency response can improve distribution resilience by 
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reducing the amount of load curtailment in a minimum cost, and the effect of integrated 

response is better than either single one. To further explore the impact of parameter 

changing to the problem solution, sensitivity analysis is carried out under different unit 

load shedding cost, ramping limit and forecast wind speed. The conclusion is that the 

expected total cost increases when unit load shedding cost increases and they are in 

linear relationship. Either the relax in preventive ramping limit or emergency ramping 

limit reduces the total but to a certain extent.  

The modified 69 bus system operates in an islanded mode, in which all the load is 

satisfied by distributed energies. Line 23-24 and tie-branch 1 are open while tie-branch 

2 and 3 are closed in preventive response when integrated response is allowed. The 

system resilience is improved compared to the system without response, when the 

system may break in several scenarios. The sensitivity analysis is done to emphasize 

the importance of availability and ramping ability of DGs in distribution systems. It is 

concluded that either the decrease in ramping ability or unavailable generators increases 

the risk of load shedding and expected total cost, then the system resilience is decreased. 

The case study shows that integrated response can improve distribution system 

resilience in a minimum cost in both connected system and isolation system. The 

integrated response has the least expected total cost compared to individual preventive 

or emergency response. System parameters and abilities such as unit load shedding cost, 

ramping ability and generator availability influence the system resilience and expected 

total cost in different degree. 

As is mention before, this thesis doesn’t consider the uncertainty of distributed 
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energies and weather event such as wind speed, which could be carried out in the future 

work about stochastic problems. The output of renewable energies and actual weather 

condition may differ from estimation. Besides, the computation burden increases with 

the increase of fragile lines. Some heuristic algorithm such as genetic algorithm could 

be used in solving such problems. 

Furthermore, the proposed work could also be extended to address the emerging 

cyber-physical resiliency when the power grid is under the potential cyber-physical 

attacks. 
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Appendices 

Appendix A: The 33-bus distribution test system 
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Appendix B: System data for 33 bus radial distribution system (‘*’ denotes a tie-bracnch) 

Number 
Sending 

Bus 

Receiving 

Bus 

Resistance 

(Ω) 

Reactance 

(Ω) 

Nominal Load at 

Receiving Bus 

P (kW)  
Q 

(kVAr) 

1 1 2 0.0922 0.047 100 60 

2 2 3 0.493 0.2511 90 40 

3 3 4 0.366 0.1864 120 80 

4 4 5 0.3811 0.1941 60 30 

5 5 6 0.819 0.707 60 20 

6 6 7 0.1872 0.6188 200 100 

7 7 8 0.7114 0.2351 200 100 

8 8 9 1.03 0.74 60 20 

9 9 10 1.044 0.74 60 20 

10 10 11 0.1966 0.065 45 30 

11 11 12 0.3744 0.1298 60 35 

12 12 13 1.468 1.155 60 35 

13 13 14 0.5416 0.7129 120 80 

14 14 15 0.591 0.526 60 10 

15 15 16 0.7463 0.545 60 20 

16 16 17 1.289 1.721 60 20 

17 17 18 0.732 0.574 90 40 

18 2 19 0.164 0.1565 90 40 

19 19 20 1.5042 1.3554 90 40 

20 20 21 0.4095 0.4784 90 40 

21 21 22 0.7089 0.9373 90 40 

22 3 23 0.4512 0.3083 90 50 

23 23 24 0.898 0.7091 420 200 

24 24 25 0.896 0.7011 420 200 

25 6 26 0.203 0.1034 60 25 

26 26 27 0.2842 0.1447 60 25 

27 27 28 1.059 0.9337 60 20 

28 28 29 0.8042 0.7006 120 70 

29 29 30 0.5075 0.2585 200 600 

30 30 31 0.9744 0.963 150 70 

31 31 32 0.3105 0.3619 210 100 

32 32 33 0.341 0.5302 60 40 

33* 21 8 2 2   

34* 9 15 2 2   

35* 12 22 2 2   

36* 18 33 0.5 0.5   

37* 25 29 0.5 0.5   
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Appendix C: Modified 69-bus distribution test system 
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Appendix D: System data for 69 bus radial distribution system (‘*’ denotes a tie-bracnch) 

Number i 
Sending 

Bus 

Receiving 

Bus 

Resistance 

(Ω) 

Reactance 

(Ω) 

Nominal Load at 

Bus i 

P (kW)  
Q 

(kVAr) 

1 1 2 1.097 1.074 0  0  

2 2 3 1.463 1.432 120.0  108.0  

3 3 4 0.731 0.716 72.0  48.0  

4 4 5 0.366 0.358 180.0  156.0  

5 5 6 1.828 1.79 90.0  60.0  

6 6 7 1.097 1.074 21.6  13.0  

7 7 8 0.731 0.716 21.6  17.0  

8 8 9 0.731 0.716 15.6  12.0  

9 4 10 1.08 0.734 19.0  13.0  

10 10 11 1.62 1.101 24.0  12.0  

11 11 12 1.08 0.734 19.2  11.0  

12 12 13 1.35 0.917 60.0  48.0  

13 13 14 0.81 0.55 126.0  108.0  

14 14 15 1.944 1.321 30.0  18.0  

15 7 68 1.08 0.734 48.0  30.0  

16 68 69 1.62 1.101 120.0  72.0  

17 1 16 1.097 1.074 48.0  36.0  

18 16 17 0.366 0.358 72.0  36.0  

19 17 18 1.463 1.432 48.0  30.0  

20 18 19 0.914 0.895 18.0  11.0  

21 19 20 0.804 0.787 15.6  8.4  

22 20 21 1.133 1.11 36.0  24.0  

23 21 22 0.475 0.465 108.0  60.0  

24 17 23 2.214 1.505 60.0  36.0  

25 23 24 1.62 1.11 72.0  48.0  

26 24 25 1.08 0.734 120.0  96.0  

27 25 26 0.54 0.367 96.0  78.0  

28 26 27 0.54 0.367 120.0  72.0  

29 27 28 1.08 0.734 120.0  66.0  

30 28 29 1.08 0.734 144.0  84.0  

31 30 31 0.731 0.716 126.0  84.0  

32 31 32 0.731 0.716 96.0  60.0  

33 32 33 0.804 0.787 72.0  48.0  

34 33 34 1.17 1.145 15.6  9.6  

35 34 35 0.768 0.752 19.2  11.8  

36 35 36 0.731 0.716 60.0  36.0  

37 36 37 1.097 1.074 48.0  33.6  
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38 37 38 1.463 1.432 72.0  48.0  

39 32 39 1.08 0.734 48.0  36.0  

40 39 40 0.54 0.367 36.0  30.0  

41 40 41 1.08 0.734 180.0  120.0  

42 41 42 1.836 1.248 72.0  42.0  

43 42 43 1.296 0.881 144.0  84.0  

44 40 44 1.188 0.807 108.0  72.0  

45 44 45 0.54 0.367 21.6  12.0  

46 42 46 1.08 0.734 19.2  12.0  

47 35 47 0.54 0.367 120.0  60.0  

48 47 48 1.08 0.734 72.0  48.0  

49 48 49 1.08 0.734 108.0  84.0  

50 49 50 1.08 0.734 122.4  79.2  

51 51 52 1.463 1.432 120.0  84.0  

52 52 53 1.463 1.432 168.0  108.0  

53 53 54 0.914 0.895 72.0  48.0  

54 54 55 1.097 1.074 24.0  13.2  

55 55 56 1.097 1.074 48.0  36.0  

56 52 57 0.27 0.183 43.2  28.8  

57 57 58 0.27 0.183 36.0  24.0  

58 58 59 0.81 0.55 51.6  36.0  

59 59 60 1.296 0.881 96.0  60.0  

60 55 61 1.188 0.807 288.0  144.0  

61 61 62 1.188 0.807 150.0  132.0  

62 62 63 0.81 0.55 30.0  12.0  

63 63 64 1.62 1.101 12.0  6.0  

64 62 65 1.08 0.734 180.0  156.0  

65 65 66 0.54 0.367 60.0  36.0  

66 66 67 1.08 0.734 36.0  24.0  

67* 22 67 0.381 0.2445 156.0  144.0  

68* 67 15 0.454 0.363 180.0  156.0  

69* 21 27 0.254 0.203 30.0  18.0  

70* 9 50 0.681 0.5445    

71* 29 64 0.681 0.5445   

72* 9 15 0.454  0.3630    

73* 45 60 0.254 0.203   

74* 43 38 0.254  0.2030    
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