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ABSTRACT 

CONSTRUCTION OF BISMUTH OXYHALIDE-BASED HETEROJUNCTION- 
STRUCTURED COMPOSITE AND ITS ENVIRONMENTAL APPLICATION 

FOR WATER TREATMENT  
 

by 
 

Li Wang 
                                                                

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Yin Wang 

 

With the rapid development of the global economy, environmental protection and sustainable 

development have become the main trends of current society. In particular, water pollution and 

energy shortage are outstanding issues that need to be solved in a clean and sustainable way. 

Recently, semiconductor-based photocatalytic technology, an environmentally friendly technique, 

has attracted enormous attention and become an emerging research hotspot in the application of 

water/wastewater treatment and generation of renewable energy as it can convert infinite solar 

energy into chemical energy. Conventional semiconductor materials usually have a relatively large 

band gap that only responds to the ultraviolet light, which largely limits their practical applications. 

Therefore, design of novel efficient photocatalytic materials that can be excited by visible light or 

solar light is a promising research direction. 

Bismuth oxyhalides have been drawing increasing interest as promising photocatalysts for their 

suitable band gaps, low cost, nontoxicity and chemical stability. Besides, formation of 

heterojunction structure by coupling two or more semiconductors is usually considered as an 

effective approach to further improve the photocatalytic activities of catalysts. Hence, in this study, 

BiOBr/Bi12O17Cl2 heterojunction-structured materials were synthesized by a facile in situ chemical 

deposition-precipitation method and a series of characterization methods were employed to 
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analyze the as-prepared samples. The photocatalytic properties were investigated by degrading 

several typical model organic contaminants under the irradiation of simulated solar light or visible 

light. The BiOBr/Bi12O17Cl2 composite exhibited superior photocatalytic performance over pure 

BiOBr and Bi12O17Cl2. Additionally, the mass ratio between BiOBr and Bi12O17Cl2 was optimized 

to get the heterojunction composite with highest photocatalytic activity. What’s more, the plausible 

reason for such enhancement of photocatalytic reaction and a possible photocatalytic mechanism 

interpreted through the quenching effect of different scavengers were discussed. The present work 

could provide a facile strategy to synthesize novel highly efficient and stable bismuth-based 

photocatalysts at room temperature for environmental applications. 
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Chapter 1 Introduction and Literature Review 

 

With the development of society and economy, we are now increasingly facing serious 

issues of energy shortage and environmental pollution. It is thus imperative to resolve the pollution 

problems of surface water and groundwater as the scarcity of freshwater resources and importance 

of clean water for a variety of crucial industries. Also, the presence of large amounts of 

contaminants in the aquatic environment would result in ecological and health hazards. These 

problems cause a growing demand for effective environmental remediation and energy conversion 

techniques. Conventional water and wastewater treatment methods consist of physical, chemical 

and biological processes. However, physical process usually merely covers phase transfer and 

pollutants themselves cannot be degraded even if it sometimes has pretty high reduction efficiency, 

such as adsorption or membrane separation of contaminants. For chemical process, it generally 

needs the application of a lot of chemical oxidants, which is not cost-effective or producing 

harmful by-products even if they can mineralize the pollutants with relatively high efficiency. For 

biological process, it normally takes a relatively long period of time to effectively degrade organic 

compounds in water as it imitates the activity of microorganisms, and there are also a large amount 

of nonbiodegradable compounds present in water/wastewater. [1] In addition, the search for clean 

and sustainable energy resources is important as well to address the energy demand and climate 

change. Hence, more and more efforts are being made to develop new approaches with lower cost 

and shorter time to deal with water and wastewater and to investigate alternative energies to tackle 

energy shortages.  

Among various renewable energy resources, solar energy represents the ultimate 

sustainable source. To date, it remains a significant challenge to efficiently harvest and convert 
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solar energy. Since the Japanese scientists Honda and Fujishima[2] made a breakthrough in 

photocatalysis research in 1972 showing that water could be split into oxygen and hydrogen after 

light irradiation on a titanium dioxide (TiO2) semiconductor electrode, the semiconductor-based 

photocatalytic technology, a kind of environmental-friendly advanced oxidation processes (AOPs), 

has been shown to be quite promising for renewable energy generation (such as water 

decomposition and reduction of carbon dioxide) and environmental remediation through using the 

inexhaustible. From then on, more and more research efforts are focusing on photocatalysis as a 

means of solar energy conversion given that solar energy is recognized as the ultimate renewable 

source, and the key requirement to achieve highly efficient photocatalytic process is the rational 

design of photocatalytic materials. 

1.1 Homogeneous photocatalysis 
 

Photocatalysis is the acceleration of a chemical reaction by the irradiation of light on a 

catalyst. Generally, photocatalysis can be divided into two categories, homogeneous 

photocatalysis and heterogeneous photocatalysis. In homogeneous photocatalysis, the 

photocatalysts and the reactants exist in the same phase, and the most studied homogeneous 

photocatalysis processes include ozonation, UV(ultraviolet)/hydrogen peroxide (H2O2), as well as 

the Fenton and photo-Fenton processes (Fe+ and Fe+/H2O2). [3] Commonly, these aqueous phase 

oxidation processes are based primarily on the production of hydroxyl radical (HO•) to destruct 

target pollutants. The generation of free radicals is accelerated by combining specific oxidizing 

agents such as H2O2 and ferrous iron. Specifically, the photo-Fenton process that consists of the 

combination of the classical Fenton reaction with the photo-assisted regeneration of Fe2+ from Fe3+ 

(Equations 1 – 2) is one of the most researched homogeneous photocatalysis process. [4] This 

process can work by irradiation of the solution up to a light wavelength of 600 nm[3]. However, 
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the drawbacks of this process include that the low pH (2.8-3.5)[4] values are required to avoid any 

precipitation of inactive iron oxyhydroxides, and the large amounts of dissolved iron needed to be 

removed after treatment. 

𝐹𝑒#$ + ℎ𝑣 + 𝐻)𝑂	 → 	𝐹𝑒)$ + 𝐻𝑂 ∙ 	+	𝐻$			(1) 

𝐹𝑒)$ 	+	𝐻)𝑂)		 → 	𝐹𝑒#$ + 	𝐻𝑂 ∙ 	+	𝑂𝐻1		(2) 

1.2  Heterogeneous photocatalysis 
 

For heterogeneous photocatalysis, the catalyst is present in a different phase from the 

reactants, and thus it can be easily recycled than the homogeneous one. Generally, heterogeneous 

photocatalysis refers to photoreactions with the use of semiconductor-based photocatalyst 

materials, where reactions occur on the surface of the photocatalyst. Compared to homogeneous 

photocatalysis and other water treatment options, heterogeneous photocatalysis has emerged as a 

fascinating technique because of its economic, nontoxic, safe and renewable features, and it has 

attracted considerable attention in the development of renewable energies,[5] water and 

wastewater treatment[6] and photosynthesis of value-added compounds[7] etc. The mechanism of 

heterogeneous photocatalysis is primarily described by the semiconductors’ capability to generate 

charge carriers under light irradiation followed by the generation of free radicals such as OH• 

which leads to further reactions. When it comes to the treatment of water contaminated by organic 

compounds, the advantages of semiconductor-based heterogeneous photocatalysis are that the 

reaction could be carried out under mild condition (e.g., ambient temperature), the process may 

completely decompose organic pollutants into carbon dioxide and other inorganic species, and the 

catalyst can be reused etc.[8] 

1.3  Fundamental principles of semiconductor-based photocatalysis 
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The principle of semiconductor photocatalysis is based on solid band energy theory. 

According to the band theory, the energy band of the semiconductor is discontinuous, which 

usually consists of a lower energy valance band (VB) filled with electrons and a higher energy 

unoccupied conduction band (CB), in which the electrons can move freely. The energy difference 

between valance band and conduction band is called bandgap, also known as the forbidden band 

(Eg). On the other hand, the size of band gap determines the range of light wavelength which the 

semiconductor can effectively absorb, and the positions of conduction band and valence band 

determine the redox ability of corresponding semiconductors in the photocatalytic reactions. 

Figure 1.1 shows the bandgaps and band positions of some typical semiconductors that have been 

widely studied in the photocatalysis field. 

 

Figure 1.1 Bandgaps and band-edge positions with respect to the vacuum level and NHE for selected 
semiconductors. The horizontal red lines represent the conduction-band edges. The horizontal green lines 

represent the valence-band edges.[9] 
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A given semiconductor photocatalyst can absorb and be excited by the incoming light 

(photon energy equals to or greater than its corresponding bandgap energy), and then convert the 

photon energy into chemical energy. The typical photocatalytic oxidation and reduction processes 

following reaction with electron acceptors (A) and donors (D) on a semiconductor are presented 

in Figure 1.2. Upon an appropriate light irradiation, the absorption of photons excites the 

negatively charged electrons from the valance band of the semiconductor which creates electron 

vacancies in the valance band that can be thought of as positively charged holes to the conduction 

band to form photo-induced electron/hole (e-/h+) pairs, transforming the semiconductor catalyst 

into the photoexcited state. Secondly, the photo-generated electron-hole pairs are separated and 

subsequently migrated to their active sites on the surface of the semiconductor photocatalyst, and 

they can participate in various oxidation and reduction reactions, thereby initiating redox chemical 

reactions with the adsorbed species. The photogenerated electrons and holes act as the reductant 

and oxidant to react with the electron acceptors (A) and electron donors (D) adsorbed on the 

semiconductor surface, respectively.[10] Besides, the recombination of photo-induced charge 

carriers on the surface or in the bulk of the semiconductor can also occur, dissipating the energy 

in the form of heat or emitted light. To achieve higher photocatalytic performance of a specific 

semiconductor photocatalyst, the photo-induced electron-hole pairs should be efficiently separated, 

suppressing the recombination of electrons and holes. 
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Figure 1.2 Schematic photoexcitation in a semiconductor photocatalyst followed by deexcitation 
paths.[11] 

 
So far, a number of semiconductor materials have been investigated for numerous 

applications in the photocatalysis field, such as TiO2[12], WO3[13], ZnO[14], CdS[15] and so on. 

Among them, the TiO2 semiconductor is widely considered as one of the excellent photocatalysts 

for oxidative decomposition of various organic compounds and water splitting due to its versatile, 

economical, stable, abundant, non-toxic and environmental-friendly properties. However, TiO2, 

with a large bandgap of around 3.2 eV, can only absorbs and be excited by ultraviolet light, which 

accounts for about 4% of the incoming solar light spectrum on earth.[16] In contrast, visible light 

and near-infrared (NIR) light contain > 90% of the solar light energy. In order to extend the optical 

response wavelength range of TiO2, a variety of ways have been applied to enhance its light 

absorption and photocatalytic performance in the visible light region or full-spectrum light, 

including doping, deposition of cocatalyst, coupling with other conductive materials or 

semiconductors of different energy levels, etc. 
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For instance, doping TiO2 with nonmetals has received specific attention nowadays. Yang 

and co-workers[16] synthesized N-doped anatase TiO2 samples through a solvothermal method, 

and characterization results showed that the nitrogen dopant had a significant effect on the 

crystallite size and optical absorption of TiO2, improving the absorption in the visible light region 

and exhibiting better photocatalytic degradation activity for model dyes under visible light 

irradiation. Zhu et al.[17] prepared a visible-light active S-doped TiO2 by a facile solvothermal 

approach, which displayed excellent photocatalytic performance toward the degradation of organic 

pollutants under visible and indoor sunlight illumination. Various kinds of cocatalysts have been 

applied on TiO2 to improve the photocatalytic activity by reducing recombination rate of photo-

induced charge carriers, of which loading metal cocatalysts are pretty common. For example, 

Chaker et al.[18] fabricated silver (Ag) doped mesoporous TiO2 catalysts by impregnation-

reduction method, and the photocatalytic activity for degradation of methyl orange (MO) under 

UV and simulated solar light was enhanced compared to the undoped catalyst. 

Modifying TiO2 with graphene substance, which is conductive and beneficial to separation 

of photo-generated electron/hole pairs, has been regarded as an effective way to enhance its 

photocatalytic performance. Pu et al.[19] demonstrated a facile and environmental-friendly 

strategy for in situ preparation of TiO2@rGO (i.e., reduced graphene oxide), and the obtained 

TiO2@rGO had a relatively high photocatalytic performance in the degradation reactions 

compared to commercial TiO2. Forming heterojunction by combining two or more semiconductors 

is another promising approach to reduce the recombination rate to achieve a higher photocatalytic 

activity. For example, Li et al.[20] synthesized g-C3N4@TiO2 nanostructures with hollow sphere 

morphology by the annealing method, and the obtained samples showed good photocatalytic 

property for hydrogen generation under visible light irradiation. Although the modification of TiO2 
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through the abovementioned methods can extend its response under visible light irradiation to 

some degree, its photocatalytic efficiency over a broad range of light spectrum other than 

ultraviolet light is still relatively low, making it difficult for practical applications under solar light. 

In addition to modification of commonly studied semiconductor materials, such as TiO2, another 

research direction in photocatalysis is to develop novel photocatalytic materials which can be 

driven by visible light or simulated sunlight.  

1.4 Bismuth-based photocatalytic materials 
 

Recently, bismuth-based nanomaterials have drawn considerable interest as promising 

candidates of photocatalysts for photocatalytic applications due to their narrow bandgaps, 

nontoxicity and low costs. It is noteworthy that the valance band mainly comprises of the 6s orbital 

of Bi and the 2p orbital of oxygen in the electronic structure of bismuth-based materials, and this 

crucial feature results in bismuth-based materials having bandgaps less than 3.0 eV. These well 

diffused Bi 6s and O 2p orbitals result in good dispersion of charge carriers and  therefore decreases 

the bandgap of the materials.[21] Several bismuth-based semiconductor materials have been 

widely explored in the photocatalysis field, including BiVO4, Bi2MO6 (M=Mo, W), BiOX (X=Cl, 

Br, I) and so on. 

1.4.1 Bismuth vanadate (BiVO4) 
 

BiVO4 has attracted significant attention owing to its outstanding features, such as plentiful 

abundance, low bandgap, non-toxicity, resistance to photo-corrosion and good photocatalytic 

performance in organic pollutant degradation under visible-light or sunlight irradiation. There are 

three crystal structures of BiVO4, namely monoclinic, orthorhombic and tetragonal crystal systems, 

among which the monoclinic one with a bandgap of around 2.4 eV exhibits better photocatalytic 

activity compared to the other two kinds.[22] Phase transition from tetragonal to monoclinic occurs 
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irreversibly at about 400-500 ºC. The basic structural unit is constructed by VO4 tetrahedron and 

BiO8 dodecahedron, as show in Figure 1.3. Moreover, the Bi atoms and V atoms arrange 

alternately along the crystallographic axis, making monoclinic BiVO4 exhibit the characteristics 

of layered structure.[23] Nevertheless, one limitation of the photocatalytic efficiency in BiVO4 is 

the fast recombination rate of photo-induced charge carriers because of its narrow bandgap energy. 

To further enhance the photocatalytic activity, a series of strategies have been adopted to improve 

the separation of photogenerated electron-hole pairs, such as morphology control, selectively 

depositing cocatalyst on reactive facets and coupling other semiconductors to construct 

heterostructures. 

 

Figure 1.3 (a) The crystal structure of monoclinic BiVO4 and (b) the corresponding polyhedron structure 
(blue: VO4 tetrahedron, purple: BiO8 dodecahedron); (c) top view and (d) side view of the structure.[23] 

 
For instance, Hu et al.[24] fabricated a novel oxygen-rich monoclinic BiVO4 nanotubes 

with largely exposed active {010} facets that displayed impressive photocatalytic performance. 

Dong et al.[25] synthesized ultrathin 2D BiVO4 nanosheets with monoclinic crystal structure and 

uniformly distributed oxygen vacancies through a convenient colloidal two-phase method, and the 

as-prepared sample largely exposed {010} planes. As a result, this ultrathin BiVO4 nanosheets 
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exhibited a superior photocatalytic activity for water oxidation under visible light irradiation. Li 

and co-workers selectively deposited the reduction and oxidation cocatalysts on the {010} and 

{110} facets respectively, leading to much higher photocatalytic water oxidation reactions.[26] A 

new pattern of Z-scheme heterojunction photocatalyst composed of BiVO4 nanowires and CdS 

nanoparticles was synthesized,[27] which demonstrated broader light absorption region and 

increased photocatalytic hydrogen (H2) generation.  

1.4.2 Bi2MO6 (M=Mo, W) compounds 
 

Bi2MO6 (M=Mo, W) materials are the simplest members of Aurivillius family, and they 

possess a layered structure which is composed of MO6 octahedral layers and Bi-O-Bi layers, which 

can facilitate the transfer of the excited charge carriers and have attracted special attention. Also, 

the MO6 (M=Mo, W) octahedrons are connected to each other by corner-sharing oxygen (O) atom 

and are sandwiched between the [Bi2O2]2+ layers,[28] as shown in Figure 1.4. As Bi-based ternary 

metal oxide photocatalysts, they usually display a certain level of photocatalytic activities under 

visible light irradiation because of the unique physical and chemical properties, such as chemical 

inertness, photo stability and environmental friendliness. Different from BiVO4, Bi2MO6 materials 

have two crystalline phases: monoclinic and orthorhombic structures. Moreover, the current 

studied Bi2MO6 photocatalysts are commonly orthorhombic phase. 
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Figure 1.4 (a) Layered structure and (b) slab structure of bulk Bi2WO6 and Bi2MoO6 compounds[29] 

 

As the bandgaps of Bi2WO6 and Bi2MoO6 fall nearly in the visible region, they are 

becoming promising for photocatalytic applications. Nanomaterials of Bi2MO6 with a variety of 

morphologies have been fabricated through hydrothermal or solvothermal method. For example, 

Zhang et al.[30] reported the synthesis of nanostructured Bi2WO6 bipyramids with a large fraction 

of {100} facets by solvothermal method using ethylene glycol (EG) as solvent, and the formation 

of “Bi-O” dimer vacancy pairs on the {100} high-energy facets is conductive to the reduction in 

bandgap and the decrease of recombination of photogenerated electron/hole pairs, significantly 

improving the photoactivity of Bi2WO6 under solar light. Long and co-workers synthesized 

Bi2MoO6 single-crystal nanobelts with dominant {010} facets, which exhibited facet-enhanced 

photocatalytic performance for the photodegradation of dye pollutants under visible light 

irradiation as the photo-induced charge carriers were efficiently separated on the low-index facets 

due to the exposure of more photoactive sites.[31] In addition, hierarchical structures were also 

explored, such as hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets with 

high selectivity for benzyl alcohol oxidation under light irradiation.[32] Besides, some methods 

are applied to improve the light harvesting of Bi2MO6 materials. For instance, a novel carbon 

quantum dots-modified Bi2WO6 ultrathin nanosheets prepared via hydrothermal method 

demonstrated relatively low recombination rate of photogenerated charge carriers and enhanced 

full spectrum light utilization toward organic pollutants.[33] Similar to other semiconductor 
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materials, heterojunction construction and cocatalysts were used to improve the photocatalytic 

activity of Bi2MO6 compounds as well. For example, Cao et al.[34] prepared a novel 2D/2D 

heterojunction of MXene(Ti3C2)/Bi2WO6 nanosheets through in situ growth of Bi2WO6 nanosheets 

on the surface of Ti3C2 ultrathin nanosheets, which held a short charge transport distance and a 

large contact area, displaying significant improvement on the photocatalytic activity for the 

reduction of carbon dioxide (CO2) under simulated solar irradiation.  

1.4.3 Bismuth oxyhalide 
 

As V-VI-VII ternary semiconductors, bismuth oxyhalide (BiOX, X=Cl, Br, I) is another 

category of bismuth-based semiconductors and a new class of promising layered materials for 

photocatalytic energy conversion and environmental remediation, and its layered crystalline 

structure is built by interlacing [Bi2O2]2+ slabs with double slabs of halogen atoms,[35] as shown 

in Figure 1.5. The intralayer atoms are connected by strong covalent bonding, while a weak van 

der Waals interaction exists between the interlayers.[36] The inherent internal static electric fields 

at the interlayer are formed along the crystal orientation perpendicular to the [X] and [Bi2O2] layers 

caused by polarization of related atoms and orbitals,[37] which is beneficial for the separation of 

photogenerated electron-hole pairs, and this can be used to explain the superior photocatalytic 

performance of BiOX materials to some degree. According to the density functional theory (DFT) 

calculations, the valance band maximum is dominated by O 2p states and X np (n=3, 4 and 5 X=Cl, 

Br and I) states, whereas the conduction band minimum mainly consists of Bi 6p orbitals.[36,38] 

Meanwhile, this type of bismuth-based materials is also chemically stable, nontoxic and corrosion-

resistant.  
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Figure 1.5 Schematic representation for the crystal structure of BiOX (X=Cl, Br, I): (a) Three-
dimensional projection and (b) [Bi2O2]2+ layers along [001] direction[35] 

 
Due to the unique 2D layered structure and suitable bandgap, BiOX-based photocatalysis 

has become a hot research topic, and various BiOX micro/nanostructures have been synthesized 

and applied as potential photocatalysts in different fields. For example, Jiang et al. [39] synthesized 

bismuth oxychloride (BiOCl) single-crystalline nanosheet via a facile hydrothermal route with 

exposed {001} facets, which exhibited higher activity for direct semiconductor photoexcitation 

pollutant degradation under UV light. Bismuth oxybromide (BiOBr) photocatalysts with oxygen-

deficient defects have been prepared, [40-41] achieving relatively high efficiency of visible-light-

driven CO2 reduction into renewable fuels, during which the oxygen-deficiency-induced defect 

states could effectively trap photogenerated electrons and thus improve the separation of charge 

carriers. Hierarchical bismuth oxyiodide (BiOI) microspheres[42] were successfully synthesized 

by a microwave-assisted solvothermal method, which displayed quite high photocatalytic 

hydrogen production rate from water splitting via the irradiation of visible light. To further 

improve the photocatalytic activity of BiOX materials and enable their potential industrial 

applications, a number of attempts have been made through increasing the light harvesting, 
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electronic structure tailoring, promoting the separation and transfer of photo-induced electron-hole 

pairs. 

Structural design of BiOX photocatalysts is an effective approach to modify the optical and 

catalytic properties because of the structure-property correlation. The optical property of one 

material is related to its underlying electronic and band structure, which could be tuned by doping 

of foreign atoms or introduction of defects.[43] For instance, BiOCl is a UV light sensitive 

photocatalyst with no response to visible light, which limits its practical applications in 

photocatalytic reactions. Wang et al.[44] synthesized cobalt (Co) doped BiOCl nanosheets using 

a simple hydrothermal method, which formed a doping energy level without changing the layered 

structure substantially. Most importantly, Co-doping expanded the light absorption region and 

enhanced separation efficiency of the photogenerated charge carriers, exhibiting a drastically 

improved photocatalytic activity toward bisphenol A degradation under visible light irradiation. 

Since BiOX compounds have similar layered structure, atomic arrangement and chemical 

composition to each other, doping halogen atoms to bismuth oxyhalide is theoretically feasible. 

Hierarchical nanostructured 3D flowerlike BiOClxBr1-x semiconductors[45] were synthesized via 

a simple procedure at room temperature and demonstrated an excellent photocatalytic activity 

driven by visible light. Xie et al.[46] prepared a series of BiOClxI1-x structures with improved 

photocatalytic degradation of Rhodamine B by a rapid and cheap solid-state chemical process 

through the adjustment of the ratio between Cl and I. Facet control is a way to design the structure 

of BiOX as different crystal facets of semiconductor crystals exhibit different reactivities and 

surface physical/chemical properties originating from various atomic arrangements and electronic 

structure. For example, two nanosheet-assembled BiOI microspheres with exposed {110} and 

{001} facets were prepared respectively, and the one with exposed {110} facets exhibited much 
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higher photocatalytic activity than that with exposed {001} facets in the visible light excited 

degradation of bisphenol A.[47] 

Constructing plasmonic photocatalysis system by anchoring metals to the surface of 

semiconductors is another commonly used method to improve light harvesting and to reduce the 

recombination rate of photo-charges. For example, a series of Ag/BiOI photocatalysts with 

different Ag contents were prepared by a combination of hydrothermal and photo-deposition 

methods, and the result revealed that Ag/BiOI composites displayed a much higher photocatalytic 

activity for degradation of several contaminants than that of pure BiOI under visible light. [48] Bi 

metal/defective BiOBr hierarchical microspheres were fabricated and exhibited highly enhanced 

photocatalytic NO oxidation under visible light as a result of synergistic effects of Bi metals and 

oxygen vacancies.[49] Similarly, Bi-nanowires-deposited BiOCl plasmonic photocatalysts were 

synthesized by partial reduction of Bi3+, and the Bi/BiOCl with exposed {010} facets demonstrated 

superior and stable photoactivity under visible light.[50]  

Additionally, heterojunction construction is also an effective way to improve the 

photocatalytic activity of bismuth oxyhalide by decreasing the recombination rate of 

photogenerated electron-hole pairs. So far, a lot of semiconductors have been coupled with BiOX 

to form heterojunction structures. For instance, 2D/2D BiOCl/g-C3N4[51] ultrathin heterostructure 

nanosheets demonstrated enhanced visible-light-driven photocatalytic activity in environmental 

remediation. BiOCl/Bi2S3 nano-heterostructures had been prepared through epitaxial growth of 

Bi2S3 nanorods on BiOCl nanosheets via solvothermal treatment,[52] which displayed better 

visible light absorption and photoelectrochemical performance by influencing the charge 

separation process. Wang et al.[53] fabricated a novel three-dimensional BiOBr/Bi2SiO5 p-n 

hetero-structured nanocomposite with improved photocatalytic degradation of tetracycline due to 
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enhancement of the separation efficiency of carriers. Li et al.[54] synthesized ZnWO4/BiOI 

heterostructure via chemical bath approach under mild conditions, which displayed high 

photocatalytic activities in degradation of methyl orange under visible light irradiation.  

Apart from the commonly used simple BiOX compounds, a series of bismuth oxyhalides with non-

stoichiometric ratios, also known as bismuth-rich bismuth oxyhalides (denoted as BixOyXz, X = 

Cl, Br and I), such as Bi4O5I2[55], Bi5O7I[56], Bi12O15Cl6[57], Bi12O17Cl2[58], Bi3O4Br[59], 

Bi4O5Br2[60] and Bi24O31Br10[61], have been extensively studied in photocatalysis field. Moreover, 

the layered structure is retained for BixOyXz materials, while the charge density of the [Bi-O] layer 

increased compared with that of double halogen slabs.[62] Theoretically, tuning the ratio of halides 

in bismuth oxyhalides could modulate the band structure and its bandgap energy by increasing the 

Bi and O contents and decreasing the X contents in BiOX compounds because of their band 

structure composition of valance band and conduction band, which represents another promising 

direction for their photocatalytic activity enhancement.  

Among the BixOyXz materials, Bi12O17Cl2 is a narrow bandgap semiconductor with a 

unique layered structure of Bi12O172+ and Cl22- slabs.[63] It can absorb visible light and has been 

applied to photodegrade organic pollutants and selective oxidation.[58,64] However, with a quick 

charge recombination of photogenerated electron-hole pairs, Bi12O17Cl2 still possesses relatively 

poor properties for the degradation of pollutants. Effective approaches to advance the 

photocatalytic performance of Bi12O17Cl2 were introduced by researchers recently, including 

morphology control, loading noble metals and forming heterojunction structure. For instance, Di 

et al.[65] designed a Bi12O17Cl2 superfine nanotubes with a bilayer thickness of the tube wall to 

achieve structural distortion for the creation of surface oxygen defects, which are conducive to the 

acceleration of carrier migration and promotion of CO2 activation, and the nanotube structure 
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boosts the photocatalytic CO2 reduction. Wang et al.[66] obtained ultrathin Bi12O17Cl2 nanosheets 

modified with Ag with enhanced visible light absorption and improved separation efficiency under 

visible light irradiation, resulting in better photocatalytic performance for Rhodamine B 

decomposition. 2D/2D layered g-C3N4/Bi12O17Cl2[67] and carbon-doped carbon 

nitride/Bi12O17Cl2[68] hybrid materials with matched energy band structure were constructed, and 

a clearly improved photocatalytic degradation reaction was observed, which can be ascribed to the 

strong interfacial contact between the C3N4 layers and Bi12O17Cl2 sheets with a promoted charge 

separation efficiency. He et al.[69] prepared a novel 3D flower-like Bi12O17Cl2/b-Bi2O3 composite 

by using a solvothermal-calcining process and evaluated their photocatalytic performance. The as-

synthesized hybrid materials possessed favorable band structure, heterojunction structure, 

relatively high specific surface areas and hierarchical nanostructure, and thus showed improved 

photocatalytic efficiency for the degradation of a representative alkylphenol. Huang et al.[70] 

developed a p-n junction BiOI@ Bi12O17Cl2 heterostructure via assembling BiOI onto Bi12O17Cl2, 

which enabled high exposure of {001} reactive facets of BiOI that resulted in a dramatically 

strengthened photocatalytic activity toward degradation of multiple industrial contaminants and 

antibiotics under visible light illumination. In addition, the n-n type bismuth oxychloride phase-

junction BiOCl/Bi12O17Cl2[71-72] composites were fabricated, which exhibited enhanced 

photocatalytic performance under simulated solar light and visible light. 

1.4.4 Other bismuth-based compounds 
 

In addition to the abovementioned commonly used bismuth-based materials in 

photocatalysis field, other bismuth-based semiconductor materials are also applied on various 

photocatalytic applications, such as Bi2O3[73], Bi2S3 and BiPO4. Among them, BiPO4 with a wide 

bandgap can only be excited by UV light and is an excellent UV light photocatalyst, while Bi2O3 
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and Bi2S3 can be used as visible light-response photocatalysts. Since Bi2S3 has a quite narrow 

bandgap, it is usually combined with other materials to form heterojunction structure to further 

improve activity by reducing the recombination rate of photo-induced charge carriers, like 

WO3/Bi2S3[74]. Similarly, BiPO4 is also coupled with a narrow bandgap semiconductor to achieve 

synergistic effect, improving the photocatalytic activity under visible light through the separation 

and transfer of charge carriers between these two semiconductors, such as BiPO4/BiOI 

composite[75]. 

1.5 Research objective  
 

Based on the above review, bismuth oxyhalide compounds, including BiOX and BixOyXz, 

are comparatively promising 2D layered materials for photocatalytic application in both energy 

conversion and environmental treatment due to their unique physical and chemical properties, 

including low cost, nontoxicity, strong oxidation ability, relatively high stability that can stand 

photo-corrosion, and suitable band structure for utilizing a wide range of light spectrum. 

Construction of heterojunction structures by coupling several semiconductor components 

with appropriate electronic structures has consistently been considered as an effective way to 

suppress the recombination of photo-induced charge carriers and therefore improve the 

photocatalytic performance for different applications in the photocatalysis field. Also, the layered 

structure of bismuth oxyhalide-based materials provides a good two-dimensional platform for the 

growth of other semiconductors. Herein, in this study, the objective was to form a novel 

heterojunction-structured photocatalyst by combining bismuth oxyhalide compound with bismuth-

rich bismuth oxyhalide compound, more specifically, BiOBr/Bi12O17Cl2, through in situ loading 

of one component onto the other to enhance their photocatalytic activity in water treatment 

application under visible light or solar light irradiation. Coupling of BiOBr and Bi12O17Cl2 



 19 

provides a new possibility to further promote the photocatalytic efficiency under solar light or 

visible light toward several different kinds of refractory organic compounds. 
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Chapter 2 Experimental Section 

 

2.1 Materials and instruments 
 

Materials used for the experiments are listed in table 2.1, and all reagents were used as 

received without further purification. The instruments used during the experiments are listed in 

table 2.2. 

Table 2.1 Raw materials and reagents used in experiments 

Materials Vendor Chemical formula 

Bismuth nitrate pentahydrate Acros Bi(NO3)3·5H2O 

Sodium chloride Fisher Scientific NaCl 

Sodium bromide Alfa Aesar NaBr 

Ethylene glycol Alfa Aesar C2H6O2 

4-Chlorophenol Acros C6H5ClO 

Tetracycline Alfa Aesar C22H24N2O8 

Methyl Orange Acros C14H14N3NaO3S 

Ammonium oxalate 

monohydrate 
Alfa Aesar (COONH4)2·H2O 

p-Benzoquinone Alfa Aesar C6H4O2 

2-Propanol (Isopropanol) Alfa Aesar (CH3)2CHOH 

 

Table 2.2 Instruments used during synthesis of materials 

Instrument Vendor Model 

Stirring Hotplate Fisher Scientific Isotemp 

Box furnace Fisher Scientific Lindberg/Blue M 

Analytical balance VWR 164-AC 

Isotemp Oven Fisher Scientific 737F 

Centrifuge Fisher Scientific Sorvall ST-16 
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2.2 Synthesis of BiOBr/Bi12O17Cl2 photocatalyst 
 
2.2.1 Synthesis of Bi12O17Cl2 layered structure 
 

The layer-structured Bi12O17Cl2 nanomaterial was obtained by a slightly modified 

solvothermal method[76] followed by calcination at a specific temperature. In a typical synthetic 

process, 9 mmol of Bi(NO3)3·5H2O and 1.5 mmol NaCl used as Bi source and Cl source were 

dissolved in 50 mL and 20mL ethylene glycol (EG) solution respectively to produce clear solution 

with the help of ultrasonication at room temperature. Then, NaCl solution was added to Bi(NO3)3 

solution dropwise under continuous stirring to form a transparent mixed solution. After keeping 

magnetically stirring for another 30 min, the resultant mixture was transferred to a 100 mL teflon-

coated autoclave and held at 160°C for 24 h. After being naturally cooled to room temperature, the 

precipitates formed in the solution were then collected through centrifugation, and washed with 

distilled water and ethanol for several times respectively. The products were dried at 60°C 

overnight. The final layered Bi12O17Cl2 nanomaterials were obtained after calcination of the above 

hydrothermal products at 450°C for 1 h at a ramping rate of 5 °C/min. 

2.2.2 Fabrication of BiOBr/Bi12O17Cl2 heterojunction composite 
 

The novel heterojunction composite material of Bi12O17Cl2 nanoplates coupled with 

different amounts of BiOBr (denoted as X-BiOBr/Bi12O17Cl2, X is the mass ratio of BiOBr to 

Bi12O17Cl2) was prepared by in situ deposition-precipitation method. Typically, an appropriate 

amount of Bi12O17Cl2 materials was dispersed to 25 mL EG under sonication for 20 min and 

subsequent agitation for 10 min. Then a desired amount of Bi(NO3)3·5H2O was added to the above 

Bi12O17Cl2 suspension with constant stirring. With the assist of sonication, Bi(NO3)3 was 

uniformly dissolved in the Bi12O17Cl2 suspension. A solution by dissolving NaBr with same 

stoichiometric as Bi(NO3)3  in 25 mL distilled water was added dropwise. Then the mixture was 
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stirred for another 6 h under dark condition until precipitates were generated. Finally, the obtained 

BiOBr/Bi12O17Cl2 product was centrifuged and washed with distilled water and ethanol separately 

and dried at 60°C	 overnight. A series of BiOBr/Bi12O17Cl2 composites with different mass 

proportions (X=60%, 80%, 100%, 125%, 150%) were fabricated using the same method by 

adjusting the amount of Bi(NO3)3 and NaBr added. In addition, pure BiOBr materials were also 

prepared for comparison following an identical method without addition of Bi12O17Cl2. 

2.3 Characterization of photocatalysts materials 
 
X-Ray Diffraction (XRD)  

The crystal structure of as-prepared samples was characterized at room temperature by 

using powder XRD on a Bruker D8 Discover X-ray diffractometer with Cu Ka radiation at a 

scanning speed of 8°min-1. An accelerating voltage of 40 kV and emission current of 40 mA were 

employed. 

Scanning Electron Microscope (SEM) 

SEM with energy dispersive X-ray spectroscopy (EDS) was performed on a Hitachi S-

4800 FE-SEM machine equipped with a Bruker energy-dispersive system detector, which was 

used to analyze the topography and morphology of the photocatalysts. 

Transmission electron microscopy (TEM) 

TEM was carried out on a Hitachi H-9000-NAR instrument to further observe the 

morphology and microstructure.  

Fourier transform infrared (FT-IR) 

FT-IR spectra were obtained on a Shimadzu IRTracer-100 spectroscopy to identify 

functional groups of as-prepared materials. 

Brunauer–Emmett–Teller (BET) 
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Nitrogen adsorption-desorption isotherms and BET surface areas were determined through 

a Micromeritics ASAP 2020 device, and the pore size distribution was calculated from the Barrett-

Joyner-Halenda (BJH) desorption branch. 

Diffuse reflectance spectra (DRS) 

Ultraviolet visible (UV-vis) DRS spectra were collected through a Shimadzu UV-2600 

spectrophotometer using BaSO4 as the reference. 

Photoluminescence (PL) spectra 

The PL spectra were acquired through a Cary Eclipse fluorescence spectrophotometer. 

Electrochemical impedance spectroscopy (EIS) 

EIS was carried out on a CHI 600 electrochemical workstation under ambient conditions 

in a standard three-electrode configuration with the as-prepared samples loaded on a glassy carbon 

electrode as the working electrode, a platinum wire as the counter electrode and a commercial 

Ag/AgCl electrode as the reference electrode. 0.1M Na2SO4 aqueous solution was used as the 

electrolyte.   

X-ray photoelectron spectroscopy (XPS) 

The surface chemical composition and elemental chemical states of samples were studied 

by XPS using a PerkinElmer PHI 5400 ESCA system equipped with Mg anode as X-ray source. 

2.4 Evaluation of photocatalytic activities 
 

The photocatalytic performance of the as-prepared samples was evaluated through the 

photodegradation of 4-chlorophenol (4-CP) under simulated sunlight irradiation and 

photodegradation of methyl orange (MO) and tetracycline (TC) under visible light irradiation in a 

photochemical reactor placed under a light source. The light source was a 300 W Xe arc lamp 

(Ceaulight, CEL-HXF300) equipped with a detachable 420 nm cut-off filter. During the process 
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of reaction, the temperature of the reaction system was controlled at a constant value by a 

circulating cooling device (Figure 2.1). 

 

Figure 2.1 Schematic illustration of experimental setup used in photoreaction experiments 

 
In a typical photocatalytic experiment, 25 mg of samples was added to 50 mL of a 4-CP 

solution (10 mg/L), a TC solution (20 mg/L) or a MO solution (10 mg/L) to obtain an aqueous 

suspension. Prior to irradiation, the suspension was ultrasonicated for 3 min and stirred in dark for 

30 min to achieve the adsorption-desorption equilibrium. During the photocatalytic tests, 2 mL of 

suspension was sampled at a certain time interval, followed by centrifugation at 11000 rpm for 5 

min to remove the photocatalyst materials. The concentration of 4-CP was quantified by a Thermo 

Ultimate 3000 high performance liquid chromatography (HPLC) equipped with a Thermo Acclaim 

C18 column and ultraviolet detector at l=282 nm. A mixture of methanol and water with 0.1% 

phosphoric acid (70:30, v/v) was applied as the isocratic eluent at a flow rate of 1.0 mL/min. The 

concentration of MO in the supernatant was determined by means of UV spectrophotometer 
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(Shimadzu UV-2600) at a wavelength of 464 nm, the characteristic absorption peak of MO. 

Similarly, the concentration of TC was analyzed using UV spectrophotometer at the maximal 

absorption wavelength of TC at 358 nm.  

The photocatalytic efficiency was calculated using the following equation: 

Photocatalytic efficiency = (C0-Ct)/C0 × 100%  (2.1) 

where C0 is the initial concentration of the pollutant, and Ct refers to the pollutant concentration at 

time t after light irradiation. 
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Chapter 3 Result and Discussion for BiOBr/Bi12O17Cl2 
heterojunction structure 

 

3.1 Introduction 
 

BiOBr and Bi12O17Cl2 are both layered bismuth oxyhalide compounds with narrow 

bandgaps and high chemical stability, which are of great research interest. However, high 

recombination rate of photo-induced electron/hole pairs limited their photocatalytic activities. In 

this work, we successfully coupled Bi12O17Cl2 with BiOBr to construct a novel heterostructured 

BiOBr/Bi12O17Cl2 composite through a facile and reproducible in situ deposition-precipitation 

method for the first time, where 2D Bi12O17Cl2 acted as the support for the growth of BiOBr 

nanoplates. The content of BiOBr in this novel composite photocatalyst was optimized. Several 

different organic compounds were selected to estimate the photocatalytic performance of 

BiOBr/Bi12O17Cl2 composites, including MO, TC and 4-CP.[77-78] Particularly, 4-CP has been 

recorded as a priority pollutant by the United States Environmental Protection Agency because of 

its wide use in the production of herbicides, insecticides and preservatives. Our results showed that 

the photocatalytic performance of the BiOBr/Bi12O17Cl2 composites was significantly enhanced in 

comparison to pure BiOBr and Bi12O17Cl2. Various characterization methods were applied to have 

a better understanding of the physicochemical properties of the as-prepared samples and the 

relationship between the specific structure and the enhancement of photocatalytic activity. In the 

meantime, a possible photocatalytic mechanism for the hierarchical BiOBr/Bi12O17Cl2 composite 

was also proposed. This work provided insight into guiding the design of BiOBr/Bi12O17Cl2 

photocatalytic materials and paved the road to the application of BiOBr/Bi12O17Cl2 as a low-cost, 

efficient and stable photocatalyst in water and wastewater treatment.  
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3.2 Characterization results of BiOBr/Bi12O17Cl2 composite photocatalysts 
 
3.2.1 XRD patterns 
 

XRD was used to examine the crystal structure of the photocatalyst materials. Figure 3.1 

showed the XRD patterns of bare Bi12O17Cl2, BiOBr and the obtained various BiOBr/Bi12O17Cl2 

composites with different ratios. For pure Bi12O17Cl2, the diffraction peaks at 23.2°, 24.3°, 26.4°, 

29.2°, 30.4°, 32.9°, 45.5°, 47.2°, 54.9° and 56.5° were ascribed to the (111), (113), (115), (117), 

(0012), (200), (2012), (220), (315) and (317) diffraction planes respectively, which were well 

indexed to the tetragonal Bi12O17Cl2 (JCPDS no. 37-0702, lattice constants a=b=5.443Å, 

c=35.200Å).[70, 79] While for the spectra of bare BiOBr, the characteristic diffraction peaks 

detected at 10.9°, 25.2°, 31.7°, 32.2°, 46.3° and 57.2° were respectively attributed to the (001), 

(101), (102), (110), (200) and (212) crystal planes, which were in accordance with the tetragonal 

phase of BiOBr (JCPDS 09-0393).[80] After deposition of BiOBr, the characteristic peaks belong 

to Bi12O17Cl2 in the BiOBr/Bi12O17Cl2 composites were detected, indicating that loading of BiOBr 

on Bi12O17Cl2 did not destroy the phase structure of the Bi12O17Cl2 support. With the increase of 

BiOBr content, the intensities of the characteristic peaks of BiOBr gradually strengthened in the 

BiOBr/Bi12O17Cl2 composites. The relative intensities of diffraction peaks of Bi12O17Cl2 were 

decreased, which were probably ascribed to the coverage of BiOBr on the surface of the Bi12O17Cl2 

nanoplates.[81] Both XRD patterns of Bi12O17Cl2 and BiOBr can be observed and no impurity 

peaks were detected in the BiOBr/Bi12O17Cl2 composites, which indicated the successfully 

synthesis of BiOBr/Bi12O17Cl2 composites. 
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Figure 3.1 XRD patterns of Bi12O17Cl2, BiOBr and BiOBr/Bi12O17Cl2 composites with different mass 
ratios. 

 

3.2.2 Morphology and microstructures 
 
3.2.2.1 SEM analysis 
 

The morphology and fine microstructure of Bi12O17Cl2, BiOBr and BiOBr/Bi12O17Cl2 

composite were revealed by SEM. Figure 3.2(A) illustrated the layered structure of Bi12O17Cl2 

with plenty of irregular 2D nanoplates tending to randomly aggregate to large clusters with smooth 

surfaces exposed, and the relatively large and flat Bi12O17Cl2 2D nanoplates may provide a good 

platform for BiOBr to grow on. For pure BiOBr, as shown in Figure 3.2(B), it presented a 

microsphere structure assembled by lots of nanosheets. After loading BiOBr on the surface of 

Bi12O17Cl2, the SEM image of BiOBr/Bi12O17Cl2 (X=100%), as displayed in Figure 3.2(C), was 

different from that of BiOBr and Bi12O17Cl2, and a large portion of BiOBr nanoplates were 
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vertically and uniformly attached on the surface of Bi12O17Cl2 nanoplates, which not only enabled 

intimate interfacial interaction between BiOBr and Bi12O17Cl2, but also prevented aggregation of 

BiOBr nanoplates, posing great effect on the photocatalytic activity. In the meantime, the EDS 

mapping was applied to determine the distribution of elements on the surface of the 100%-

BiOBr/Bi12O17Cl2 composite, as shown in Figure 3.3. All of the involved elements of Bi, O, Cl 

and Br could be clearly observed, and the homogeneity of the composite was also demonstrated 

through the uniform distribution of elements, suggesting the formation of the BiOBr/Bi12O17Cl2 

composite.  

 

 

 
Figure 3.2 SEM images of Bi12O17Cl2 (A), BiOBr (B) and BiOBr/Bi12O17Cl2 composite (X=100%) (C) 



 30 

 

Figure 3.3 EDX images of the BiOBr/Bi12O17Cl2 composite 

 

3.2.2.2 TEM analysis 
 

Further detailed information related to morphology and crystallography of the samples 

were studied by TEM, as exhibited in Figure 3.4. Notably, the pure Bi12O17Cl2 exhibited irregular 

thin and flat nanosheet structure as demonstrated in Figure 3.4(A), and pure BiOBr displayed an 

aggregated cluster composing of a vast of nanoplates with diameters ranging from around 50 to 

150 nm (Figure 3.4(B)). Besides, it can be seen that many BiOBr nanoplates were vertically 

attached onto Bi12O17Cl2 nanosheets through surface-to-surface contact from Figure 3.4(C) of the 

BiOBr/Bi12O17Cl2 composite. All of these TEM results agreed well with the SEM observations. 

To better understand the interfacial structure between these two phases, the composite sample was 

characterized by high-resolution TEM (HRTEM), as shown in Figure 3.4(D). The lattice fringes 

of 0.271 nm and 0.337 nm were assigned to the interplanar distance of (200) and (115) planes of 

Bi12O17Cl2, respectively.[68,70,82] Meanwhile, it can be seen that the clear and wide interplanar 
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d-spacing of about 0.814 nm taken from the side of BiOBr nanoplate, which could be ascribed to 

the (001) lattice plane of BiOBr.[83] The results indicated the formation of heterojunction 

structures with intimate interface contact between Bi12O17Cl2 and BiOBr, which would be 

beneficial for the electron transfer process during photoreactions. 

 

Figure 3.4 TEM images of Bi12O17Cl2 (A), BiOBr (B), BiOBr/Bi12O17Cl2 composite (X=100%) (C) and 
HRTEM of BiOBr/Bi12O17Cl2 composite (X=100%) (D). 

 

3.2.3 FT-IR analysis 
 

As shown in Figure 3.5, a comparison of the as-prepared BiOBr/Bi12O17Cl2 composites to 

pure BiOBr and Bi12O17Cl2 in functional groups were researched through using the FT-IR spectra 

to further characterize the samples. For pure BiOBr, an obvious absorption band appeared at 518 
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cm-1 which can be ascribed to the characteristic symmetrical A2u-type stretching vibrations of Bi-

O band[84-85], which became stronger as the content of BiOBr increased. For pure Bi12O17Cl2, 

the absorption peaks positioned around 460 cm-1 and 550 cm-1 (centered at nearly 500 cm-1) were 

assigned to the stretching vibrations of the Bi-O bands in Bi12O17Cl2, while the absorption peak at 

846 cm-1 can be attributed to the bending vibrations of the O-Bi-O bands.[86-87] The absorption 

peak at around 1394 cm-1 could be assigned to the asymmetric stretching vibration peak of Bi-Cl 

band in Bi12O17Cl2 structure.[88] As the content of BiOBr increased, its characteristic absorption 

peak appeared and intensified, while intensities of the characteristic absorption peaks for 

Bi12O17Cl2 reduced, which was consistent with the result of XRD patterns. Additionally, after 

forming BiOBr/Bi12O17Cl2 composites, the absorption peak of Bi12O17Cl2 at around 460 cm-1 

shifted to a slightly higher position, indicating the interfacial interactions caused by the 

construction of this heterojunction between BiOBr and Bi12O17Cl2, which was probably helpful 

for the transfer and separation of photoinduced electron-hole pairs as well as the improvement of 

photocatalytic activities. On the other hand, both the characteristic IR absorption peaks of BiOBr 

and Bi12O17Cl2 could be observed for the as-made BiOBr/Bi12O17Cl2 composites, further 

suggesting that the BiOBr/Bi12O17Cl2 photocatalyst materials have been synthesized. 
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Figure 3.5 FT-IR spectra of Bi12O17Cl2 (a), 60%-BiOBr/Bi12O17Cl2 (b), 80%-BiOBr/ Bi12O17Cl2 (c), 
100%-BiOBr/ Bi12O17Cl2 (d), 125%-BiOBr/ Bi12O17Cl2 (e), 150%-BiOBr/Bi12O17Cl2 (f) and BiOBr (g). 

 

3.2.4 XPS analysis 
 

XPS was carried out to further analyze the surface composition and chemical state of the 

as-synthesized samples. Figure 3.6 revealed the XPS survey spectra of Bi12O17Cl2, BiOBr and 

100%-BiOBr/Bi12O17Cl2 and the corresponding Bi 4f, Cl 2p, O 1s and Br 3d high-resolution 

spectra were illustrated in Fig. 3-7, through which the oxidation states and electronic environment 

of elements in these samples were analyzed. The survey spectra of these three samples contained 

adventitious carbon species and other relevant elements to their chemical compositions. In the Bi 

4f high-resolution XPS spectra (Figure 3.7(A)), there were two distinct binding energy peaks at 

158.7 eV and 164.0 eV for Bi12O17Cl2, which could be respectively ascribed to Bi 4f7/2 and Bi 4f5/2 

of characteristic Bi3+ ions with spin-orbit splitting of 5.3 eV.[89] Likewise, the binding energies 

of Bi 4f7/2 and Bi 4f5/2 were 159.4 eV and 164.7 eV for pure BiOBr in Figure 3.7(A). For Bi 4f of 
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100%-BiOBr/Bi12O17Cl2, there were two binding energy peaks separately situated at 159.1 eV for 

Bi 4f7/2  and 164.4 eV for 4f5/2, locating between Bi 4f of Bi12O17Cl2 and Bi 4f of BiOBr, which 

were different from both pure Bi12O17Cl2 and BiOBr, implying the existence of two kinds of 

chemical states of Bi[71] coming from both BiOBr and Bi12O17Cl2. Figure 3.7(B) exhibited the 

XPS spectra of Cl 2p for Bi12O17Cl2 , which can be divided into two individual peaks with binding 

energies at 197.6 eV and 199.1 eV that could be attributed to Cl 2p3/2 and Cl 2p1/2 of Cl-, 

respectively.[82] For 100%-BiOBr/Bi12O17Cl2, however, its binding energy peaks of Cl 2p 

increased by about 0.3, shifting to 197.9 eV and 199.4 eV, respectively. The Br 3d XPS spectra of 

BiOBr could be fitted into two peaks located at 68.4 eV and 69.6 eV separately, as displayed in 

Figure 3.7(C), which were characteristic of Br- in BiOBr material corresponding to Br 3d5/2 and 

Br 3d3/2, respectively.[90] In comparison to the XPS spectra of Br 3d in BiOBr, the 0.1 eV shifting 

towards lower binding energy (68.3 eV and 69.5 eV, respectively) was observed in Br 3d spectra 

for 100%-BiOBr/Bi12O17Cl2. In terms of the high-resolution XPS spectra for O 1s of pure 

Bi12O17Cl2 shown in Figure 3.7(D), it could be deconvoluted into two kinds of binding energies 

located at 532.3 eV and 530.0 eV, which could be assigned to adsorbed surface hydroxyl groups 

and the lattice oxygen (Bi-O), respectively.[91-92] Similarity, two peaks at 532.3 eV and 530.6 

eV were observed in O 1s XPS spectra for BiOBr. However, the binding energy peak ascribed to 

the lattice Bi-O in the 100%-BiOBr/Bi12O17Cl2 composite shifted to 530.2 eV, which was 

consistent with the result of Bi 4f XPS spectra. All above analysis suggested the presence of 

interaction between Bi12O17Cl2 and BiOBr in the BiOBr/Bi12O17Cl2 sample, which may slightly 

affect the chemical environment of individual elements. As a result, the chemical compositions 

and valance states revealed in the XPS spectra was coincident with the XRD, FT-IR and TEM 
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results and further confirmed the successful construction of BiOBr/Bi12O17Cl2 heterojunction 

composite by deposition-precipitation process. 

 

 

Figure 3.6 XPS survey spectra of Bi12O17Cl2 (A), BiOBr (B) and BiOBr/Bi12O17Cl2 composite (X=100%) 
(C) 
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Figure 3.7 XPS spectra of Bi 4f (A), Cl 2p (B), Br 3d (C) and O 1s (D) for Bi12O17Cl2 (a), BiOBr (b) and 
BiOBr/ Bi12O17Cl2 composite (X=100%) (c). 

 
 

3.2.5 BET analysis 
 

Photocatalytic reaction is a kind of interfacial reaction, so the contact of organic 

compounds with the surface of photocatalyst materials, which provides active sites, is a critical 

step to initiate the photocatalytic decomposition reaction. Thus, a larger specific surface area 

would be helpful for the adsorption of organic compound. The BET surface areas and porous 

structure of the as-prepared samples were investigated through the N2 adsorption-desorption 

isotherms, as presented in Figure 3.8. The N2 adsorption-desorption isotherms curves of pure 

Bi12O17Cl2, BiOBr and 100%-BiOBr/Bi12O17Cl2 can be indexed to type IV with a typical H3 

hysteresis loop observed at relatively high P/P0 between 0.7 and 1.0, which suggested the presence 
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of mesoporous structure[93]. The H3 hysteresis loop could probably be resulted from the 

aggregation of the nanosheets with slit-like pores[94], which was consistent with the SEM results. 

In addition, the corresponding pore size distribution curves calculated from the desorption branch 

were displayed in the insets of Figure 3.8, which confirmed that these materials contain a large 

portion of mesopores (2-50 nm). Table 3.1 listed the specific surface areas of the as-prepared 

samples through N2 adsorption-desorption analysis (BET method) and their corresponding average 

pore diameters, all of which were in the mesoporous range. It can be clearly seen that the 

combination of BiOBr with Bi12O17Cl2 could increase the surface area of the BiOBr/Bi12O17Cl2 

composites and all the BiOBr/Bi12O17Cl2 composite materials have much larger surface areas than 

that of pure Bi12O12Cl2. Moreover, the specific surface area first increased and then decreased with 

raising the amount of BiOBr in the composite, which may indicate that the existence of appropriate 

portion of Bi12O17Cl2 nanoplates as support could prevent the congregate of BiOBr nanoplates. 

The composite of 100%-BiOBr/Bi12O17Cl2 had the largest specific surface area among all samples, 

which was conducive to supply of more active sites, the adsorption of organic contaminants around 

active sites and then maximize the photocatalytic performance.[95] Therefore, the relatively high 

specific surface area was one of the factors that influenced the photocatalytic performance of 

BiOBr/Bi12O17Cl2 hybrid composites. 
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Table 3.1 BET surface areas and average pore sizes of the as-prepared samples 

Sample SBET (m2/g) Average pore 
diameter (nm) 

Bi12O17Cl2 9.4523 16.7 

60%BiOBr/Bi12O17Cl2 30.2761 14.3 

80%BiOBr/Bi12O17Cl2 37.1264 12.6 

100%BiOBr/Bi12O17Cl2 48.1407 11.9 

125%BiOBr/Bi12O17Cl2 43.0496 13.7 

150%BiOBr/Bi12O17Cl2 40.4553 12.4 

BiOBr 34.2868 18.1 
 

 

 

Figure 3.8 Nitrogen adsorption-desorption isotherms and corresponding pore size distribution curves 
(inset) of pure Bi12O17Cl2 (A), BiOBr (B) and BiOBr/Bi12O17Cl2 (X=100%) composite (C). 
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3.2.6 Optical absorption properties  
 

In photocatalysis field, optical absorption property is an important factor to consider when 

designing novel photocatalytic materials, and it may play a critical role in determining 

photocatalytic performance since all photochemical processes are initiated by light absorption. The 

optical properties and electronic structures of as-prepared samples were measured through UV-vis 

UV-vis DRS to determine their light absorption ability. Figure 3.9(A) showed the UV-vis DRS 

spectra of Bi12O17Cl2, BiOBr and BiOBr/Bi12O17Cl2 composites. It was clearly seen that the photo-

response of Bi12O17Cl2 ranged from UV light region to visible light region with the absorption 

edge around 530 nm, a characteristic band caused by the transition from valance band to the 

conduction band, indicating the satisfactory light response capacity and suitable band structure. 

While for BiOBr, it had an absorption edge ending up to approximately 430 nm absorbing the 

relatively short-wavelength light, which was attributed to electron transition from the valance band 

(hybridized O 2p and Br 4p orbit) to the conduction band (Bi 6p orbital).[96] After hybridization, 

the BiOBr/Bi12O17Cl2 composites exhibited enhanced absorption intensity in the visible light 

region as the content of Bi12O17Cl2 increased, which was in agreement with the colors of 

corresponding samples changing from white of BiOBr to pale yellow, and finally to bright yellow 

of Bi12O17Cl2. The composite that can absorb more light would be useful to generate photoinduced 

charges and promote the photoactivity. 
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Figure 3.9 (A) UV-vis diffuse reflectance spectra of Bi12O17Cl2, BiOBr and BiOBr/Bi12O17Cl2 composites 
with different ratios; (B) Plots of (αhv)1/2 vs photo energy (hv) for Bi12O17Cl2, BiOBr and 

BiOBr/Bi12O17Cl2 (X=100%) composite. 

It is well known that the bandgap energy of a semiconductor can be evaluated by the 

following equation:  

𝜶𝒉𝒗 = 𝑨	(𝒉𝒗 − 𝑬𝒈)𝒏/𝟐						(𝟑. 𝟏) 

where a, h, v, Eg and A are the absorption coefficient, Planck’s constant, light frequency, bandgap 

energy and a constant, respectively. Also, the value of n is determined by the type of optical 

transition of a semiconductor, that is, n=1 for direct transition and n=4 for indirect transition. It 

has been previously reported that both of Bi12O17Cl2 and BiOBr were classified as indirect 

transition[53,68], and thus their bandgap energies were respectively estimated to be 2.30 eV and 

2.78 eV through the Tauc Plots of the as-synthesized samples from which the bandgap of the 

semiconductor was governed by the  linear region. Although bandgap mainly reflected the optical 

property of a single semiconductor, the bandgap energy of 100%-BiOBr/Bi12O17Cl2 was calculated 

as about 2.28 eV using a similar fashion, as displayed in Figure 3.9(B). Compared to Bi12O17Cl2 

and BiOBr, the bandgap energy of the composite became slightly smaller after forming 
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heterojunction structure, and the narrowed bandgap may be beneficial to improving the ability of 

light harvest especially in the visible light region. 

 

3.3 Photocatalytic performance and stability of BiOBr/Bi12O17Cl2 composites 
 
3.3.1 Study of photocatalytic performance  
 

The photocatalytic activities of the as-prepared samples were evaluated by the degradation 

of 4-CP under simulated solar light irradiation. Figure 3.10(A) showed the photodegradation of 4-

CP as a function of irradiation time over different photocatalysts. A blank test in the absence of 

the photocatalyst confirmed that the self-photolysis of 4-CP was negligible after irradiation for 

120 min. Bare BiOBr and Bi12O17Cl2 achieved moderate photodegradation efficiencies of 74% and 

67% after 120 min, respectively, proving that 4-CP was decomposed in the presence of 

photocatalysts. Compared to pristine BiOBr and Bi12O17Cl2, all BiOBr/ Bi12O17Cl2 composites 

exhibited enhanced photocatalytic performance for degradation of 4-CP under the same condition. 

In particular, the content of BiOBr in the composite played a crucial role in the photocatalytic 

activity, and the photocatalytic efficiency of the composite increased initially as the loading 

amount of BiOBr raised. When the mass ratio between BiOBr and Bi12O17Cl2 reached 100% (i.e., 

100%-BiOBr/Bi12O17Cl2), the highest photocatalytic activity was achieved that approximately 95% 

of 4-CP was photodegraded even within 90 min. Besides, the photocatalytic activity of the 

corresponding mechanical mixture of BiOBr and Bi12O17Cl2 with a 1:1 mass ratio was also 

researched, and its photocatalytic performance for degradation of 4-CP under identical condition 

was much lower than that of the obtained 100%-BiOBr/Bi12O17Cl2 composite through deposition-

precipitation method, suggesting the presence of heterojunction through intimate interfacial 

contact between BiOBr and Bi12O17Cl2 in the composite material, which would be favorable for 
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the separation of photo-induced charges. However, further increasing the amount of BiOBr in the 

composite led to a decrease of photocatalytic activity toward degradation of 4-CP, which may due 

to the fact that the composite materials became agglomerated with too much BiOBr and the partial 

active sites on the surface of Bi12O17Cl2 thus were covered by excess BiOBr.[97] The excess BiOBr 

might also probably act as recombination centers for electron-hole pairs and hinder photo 

absorption as well.[53,98] As a result, 100%-BiOBr/Bi12O17Cl2 was the best candidate among all 

samples under the same condition that provided a maximal photocatalytic activity. These results 

revealed that the synergistic effect between BiOBr and Bi12O17Cl2 had an imperative impact on the 

improvement of photocatalytic performance. 

Generally, the photocatalytic decomposition of organic compounds over semiconductor 

photocatalysts follows the pseudo-first-order kinetics, so the degradation kinetics of 4-CP were 

investigated by fitting the experimental data to the following pseudo first-order kinetics 

equation[99]: 

− 𝐥𝐧 B
𝒄
𝒄𝟎
E = 𝒌𝒕						(𝟑. 𝟐) 

where c is the concentration of reactant, t is the reaction time and k is the apparent rate constant. 

Figure 3.10(B) displayed the corresponding linear relationship based on Equation 3.2 and the 

resulting rate constant k was given in Figure 3.10(C). The as-synthesized 100%-BiOBr/Bi12O17Cl2 

composite showed an excellent photodegradation efficiency of 4-CP with a k value of 0.0362 min-

1, which was approximately 4.07 times higher of that of single Bi12O17Cl2 (0.0089 min-1) and 3.23 

times higher than that of  pure BiOBr (0.0112 min-1), and it was larger than other BiOBr/Bi12O17Cl2 

composites with different ratios as well. In contrast to the 100%-BiOBr/Bi12O17Cl2, the 

corresponding mechanically mixed sample also exhibited lower rate constant, suggesting that the 
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construction of a heterostructure of BiOBr/Bi12O17Cl2 could be an efficient way to enhance the 

photocatalytic activities.  

 

Figure 3.10 Photocatalytic performance for the degradation of 4-CP (A) under simulated solar light and 
the corresponding kinetics curves over as-prepared catalysts (B) and apparent rate constants over a 

sprepared photocatalysts (C) under simulated solar light 

 

To further confirm the general application of 100%-BiOBr/Bi12O17Cl2 composite 

photocatalyst, another two typical pharmaceutical and industrial contaminants, TC and MO, were 
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adopted to be the target pollutants under the irradiation of visible light (l>420 nm). Figure 3.11(A) 

and Figure 3.11(B) exhibited the comparison results of BiOBr, Bi12O17Cl2 and 100%-

BiOBr/Bi12O17Cl2 composite for the decomposition of TC and MO, respectively. It was clearly to 

observe that the 100%-BiOBr/Bi12O17Cl2 composite material showed better photocatalytic 

degradation of both TC and MO than bare BiOBr and Bi12O17Cl2 under the illumination of visible 

light, and about 91% of initial TC was photodegraded within 40 min while nearly 95% of initial 

MO was degraded within 30 min. These results demonstrated that the BiOBr/Bi12O17Cl2 

heterostructures possessed excellent photocatalytic ability over a wide range of light spectrum, 

including the irradiation of solar light and visible light, which may hold great potentials for 

practical application in environmental remediation. 

 

 

Figure 3.11 Photocatalytic performance for the degradation of TC (A) within 40 min and MO (B) within 
30 min under visible light irradiation 

 

3.3.2 Stability analysis of the photocatalyst  
 

From the perspective of practical application, it is crucial to evaluate the stability and 

reusability of photocatalyst materials. Hence, the stability of the 100%-BiOBr/Bi12O17Cl2 
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photocatalyst was assessed via the cycling experiments of photocatalytic degradation of 4-CP 

under simulated solar light irradiation. Three consecutive cycles of photodegradation for 4-CP 

were carried out by collecting and reusing the photocatalyst under the same condition as mentioned 

above, and the result was presented in Figure 3.12. After three cycles of photocatalytic reaction, 

the 100%-BiOBr/Bi12O17Cl2 composite still possessed a relatively high photocatalytic efficiency 

of around 90% 4-CP photodegradation in 120 min, indicating the high stability of 

BiOBr/Bi12O17Cl2 catalysts. Compared with the photocatalytic efficiency of the first cycle, the 

slight decrease may be owing to the weight loss of the photocatalyst powders during the recycling 

process[81,84].  

 

Figure 3.12 Recycling test of 100%-BiOBr/Bi12O17Cl2 for the photodegradation of 4-CP under simulated 
solar light 
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3.4 The possible mechanism of the enhanced photocatalytic activity 
  

It is well known that the PL spectroscopy can reflect the migration transfer and separation 

efficiency of photogenerated electron-hole pairs that directly impact the photocatalytic 

performance of semiconductors. Specifically, the strength of PL emission intensity is positively 

proportional to the recombination of excited photoinduced charges; in another word, high intensity 

of PL emission spectra usually suggests high recombination rate.[79,100] PL spectra of the as-

synthesized samples, including BiOBr, Bi12O17Cl2 and 100%-BiOBr/Bi12O17Cl2, were recorded 

( Figure 3.13 (A)). The pure Bi12O17Cl2 and BiOBr displayed relatively strong PL intensities, 

implying the lower photo-induced charges separation efficiency. Notably, the PL intensity of 

BiOBr/Bi12O17Cl2 system decreased significantly compared to those of BiOBr and Bi12O17Cl2 and 

thus had the lowest PL response, indicating that the BiOBr/Bi12O17Cl2 composite had lower 

recombination rate of photoinduced electrons and holes after fabrication of heterojunction 

structure. Result was consistent with the highest photocatalytic activity of the BiOBr/Bi12O17Cl2 

composite for the degradation of 4-CP.  

 

Figure 3.13 (A) Photoluminescence (PL) spectra and (B) Nyquist impedance plots of Bi12O17Cl2, BiOBr 
and BiOBr/Bi12O17Cl2 composite (X=100%) 
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EIS is another useful technique to evaluate the interfacial properties between the electrode 

and electrolyte, such as conductivity and charge transport efficiency. To further verify the efficient 

separation of carriers, the EIS of BiOBr, Bi12O17Cl2 and 100%-BiOBr/Bi12O17Cl2 was measured, 

as depicted in Figure 3.13(B). The BiOBr/Bi12O17Cl2 composite exhibited an obvious smaller arc 

radius in the EIS Nynquist plots in comparison to pristine BiOBr and Bi12O17Cl2, suggesting a 

smaller interfacial resistance between electrode and electrolyte, and a higher efficiency of charge 

transfer on the surface, which may be instructive to the reduction for the recombination of electron-

hole pairs.[101] Together with the PL spectra and EIS measurements, it could be inferred that the 

existence of strong interfacial interaction between BiOBr and Bi12O17Cl2 in the heterojunction 

structures may be beneficial for the separation of electron-hole pairs and thus inhibit the 

recombination of photoinduced charge carriers, resulting in the enhancement of photocatalytic 

activities of the as-prepared composite materials. 

 

3.5 Study of photocatalytic reaction mechanism 
 
3.5.1 Exploration of active species during photoreaction 
 

To validate the photocatalytic active species and get insights into the photocatalytic 

reaction mechanism for the photodegradation process of the BiOBr/Bi12O17Cl2 composite, the 

trapping experiments for the composite were conducted to determine the main reactive species by 

adding various scavengers. In this study, isopropanol (IPA), benzoquinone (BQ) and ammonium 

oxalate (AO) were selected as scavengers of hydroxyl radical (×OH), superoxide radical (×O2-) and 

holes (h+), respectively.[66,102] As presented in Figure 3.14, when BQ or AO was used as 

scavengers, the photodegradation efficiency of 4-CP was greatly suppressed in the case of 100%-

BiOBr/Bi12O17Cl2 compared to that without scavengers, suggesting that ×O2- and h+ were likely to 
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be the main  active species that participated in the photocatalytic reaction. While after addition of 

IPA, the photocatalytic activity of the composite slightly decreased compared to that without 

scavenger, indicating that ×OH may not be the main active specie during the photodegradation 

process. Therefore, both ×O2- and the holes should be the dominant active species that contribute 

to the photodegradation of 4-CP under simulated solar light, while ×OH plays a minor role in the 

photocatalytic reaction. 

 

Figure 3.14 Effects of various scavengers on the photocatalytic activity of 100%-BiOBr/Bi12O17Cl2 
composite toward degradation of 4-CP under simulated solar light 

 

3.5.2 Proposed photocatalytic reaction mechanism 
 

The relatively high photocatalytic performance of the BiOBr/Bi12O17Cl2 depended on its 

photoinduced charge carrier generation and subsequent separation, which was probably related to 

the energy bands and nanostructures. The heterojunction comprising of two semiconductors with 

suitable band structures may be advantageous to the separation of charge carriers. Based on the 
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UV-vis DRS analysis, the bandgaps of Bi12O17Cl2 nanoplates and BiOBr were approximately 2.30 

eV and 2.78 eV, respectively. To better explain the photocatalytic mechanism and the enhanced 

photoactivity of BiOBr/Bi12O17Cl2 hybrid composite, the relative positions of valence band 

maximum for samples were measured by XPS valence spectra. As exhibited in Figure 3.15, the 

valence band maximum of Bi12O17Cl2 and BiOBr located respectively at about 1.45 eV and 2.17 

eV, which were similar to that previous reports,[65,103-104] and the BiOBr nanoplates displayed 

a more positive location that of Bi12O17Cl2 nanoplates. Consequently, it was reasonable to infer 

that their corresponding conduction band minimum was respectively –0.85 eV and -0.61 eV for 

Bi12O17Cl2 and BiOBr, according to the following equation: 

𝑬𝑪𝑩 = 𝑬𝑽𝑩 − 𝑬𝒈								(𝟑. 𝟑)  

 where ECB and EVB are the conduction band position and valance band position, respectively. It 

was obviously to see that Bi12O17Cl2 and BiOBr in the composites had complementary potentials 

of valance band and conduction band, and a well-matched band structure between two kinds of 

semiconductors could in turn effectively separate the photoinduced electron-hole pairs. 
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Figure 3.15 The VB XPS spectra for Bi12O17Cl2 and BiOBr 

 

In general, based on the experimental results, a proposed photocatalytic mechanism for 

photodegradation of organic pollutants over BiOBr/Bi12O17Cl2 hybrid composites was illustrated 

in Figure 3.16. Both BiOBr and Bi12O17Cl2 could be excited and generate the electrons (e-) and 

holes under light irradiation. The photoinduced charge carriers of bare BiOBr or Bi12O17Cl2 were 

likely to recombine quickly, causing relatively low photocatalytic activity. Whereas, for the 

BiOBr/Bi12O17Cl2 heterojunctions, the photoexcited electrons of Bi12O17Cl2 in the conduction 

band can be transferred to the conduction band of BiOBr due to the more negative conduction 

band position of Bi12O17Cl2. At the same time, the holes produced in the valence band of BiOBr 

could be migrated to the valance band of Bi12O17Cl2 as the valence band potential of Bi12O17Cl2 

was lower than that of BiOBr. This charge transfer effectively suppressed the recombination of 

photoinduced charges, resulting in more charge carriers to participate in the photoreaction. The 
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released electrons could be easily trapped by surface adsorbed oxygen (O2) of the composite to 

yield superoxide (×O2-) radicals since the conduction band potential of BiOBr (-0.61 eV) was more 

negative than the redox potential of E0 (O2/×O2-) (-0.33 eV vs. NHE)[58,105], and then react with 

organic compounds. However, the photogenerated holes cannot oxidize ambient OH-/H2O to 

produce ×OH due to the fact that the valence band potentials of BiOBr and Bi12O17Cl2 were more 

negative compared to the redox potential of OH-/×OH (2.38 eV vs. NHE)[58,106]. Instead, the 

holes in the valence band could directly oxidize the organic contaminants into small molecules. 

Additionally, a small part of ×O2- may react with H+/H2O and produce H2O2, which may be further 

excited by electrons to yield ×OH radicals.[107-108] In this route, it might explain the reason that 

×OH radicals had limited impact on the photodegradation efficiency of organic compounds, and 

the obtained main active species (holes and ×O2-) could photodegraded organic compounds into 

small intermediates or directly into end products (like carbon dioxide or water). Therefore, the 

interaction between BiOBr and Bi12O17Cl2 in the composite may promote the separation of charge 

carriers during the photoreaction process, leading to the improvement of photocatalytic 

performance. The following reactions possibly depicted the feasible reaction steps involved in the 

process of photodegradation: 

 

BiOBr/Bi12O17Cl2 + hv ® BiOBr/Bi12O17Cl2 (eCB- + hVB+)    (3.4) 

BiOBr/Bi12O17Cl2 (eCB- + hVB+) ® BiOBr(e-)/Bi12O17Cl2(h+)    (3.5) 

e- + O2 ® ×O2-  (3.6) 

×O2- + ×O2- + 2H+( or H2O) ® H2O2 + O2 + (2OH-)  (3.7) 

H2O2 + e- ® ×OH + OH-  (3.8) 

×OH + organic compound ® photodegradation   (3.9) 



 52 

×O2- + organic compounds ® CO2 + H2O  + other products    (3.10) 

h+ + organic compounds ® CO2 + H2O  + other products    (3.11) 

 

 

 
Figure 3.16 Schematic illustration of possible photo-induced electron-hole pairs separation-transport 
process under light illumination and photodegradation mechanism over BiOBr/Bi12O17Cl2 composite. 
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Chapter 4 Conclusion and Perspectives 

 

In summary, a novel BiOBr/Bi12O17Cl2 heterojunction composite, for the first time, had 

been successfully fabricated through a simple chemical precipitation method by in situ loading of 

BiOBr nanoplates on the surface of Bi12O17Cl2 layers. A series of characterization tools were 

applied to investigate the properties of the novel photocatalytic materials, including XRD for 

crystal structures, SEM and TEM for morphologies and microstructures, FT-IR for surface 

functional groups, DRS analysis for optical properties, N2 adsorption-desorption isotherms for 

specific surface area and pore size, and XPS for surface composition and chemical states. 

Compared to pristine BiOBr and Bi12O17Cl2, the as-obtained BiOBr/Bi12O17Cl2 composites 

exhibited better photocatalytic performance toward degradation of multiple organic compounds 

under wide-range light irradiation and kept relatively good recyclability during the 

photodegradation process. The ratio of BiOBr to Bi12O17Cl2 could be easily controlled and had 

great influence on the corresponding photocatalytic properties, among which 100%-

BiOBr/Bi12O17Cl2 was the most effective catalyst for 4-CP photodegradation. The enhancement of 

photocatalytic activity could be primarily ascribed to the increased separation efficiency of 

photogenerated electron-hole pairs at the surface of BiOBr and Bi12O17Cl2 caused by their matched 

band structure, extended light absorption range, as well as increased specific surface area. 

Moreover, the BiOBr/Bi12O17Cl2 composite displayed relatively good stability through several 

consecutive recycling tests, making it a promising photocatalyst in practical application. In 

addition, PL spectroscopy and EIS confirmed the promoted separation and inhibited recombination 

of photoinduced charges in the heterostructure. Moreover, the results of trapping experiments 

indicated that the superoxide radicals (×O2-) and photogenerated holes (h+) were main active species 
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for the photodegradation of 4-CP. At last, a possible photocatalytic mechanism was proposed 

based on the results observed in the experiments. 

To have a better understanding of the photocatalytic mechanism of the heterojunction 

structure and its applications in photocatalysis field, future research may be dedicated to the 

following directions. 

(1) All characterizations in this work did not involve in situ study. In situ characterization may 

help understand the reaction mechanism during the photoreaction, and thus future research 

can focus on in situ investigation of the reaction occurred on the surface of the 

heterojunction composite under the irradiation of light. 

(2) In this work, several organic compounds were selected as target pollutants to evaluate the 

photocatalytic activities of the catalysts individually. Nevertheless, the real water and 

wastewater can be far more complex. So, experiments under complex water matrices 

relevant to water and wastewater treatment should be explored in the future. 

(3) It may be worth exploring new synthesis method to fabricate heterojunction composite 

materials with advanced structure, like ultrathin nanosheet with exposed highly reactive 

facets, to further improve the photocatalytic performance. 

(4) Given the band structures and layered morphologies of the bismuth oxyhalides, the 

photocatalytic performance toward selective oxidation of organic compounds and CO2 

reduction can be explored to expand the scope of application in photocatalysis field. 

The present work sheds light on the rational design and development of more efficient and 

stable photocatalysts via a facile method at room temperature, and the resulting products will have 

far-reaching applications in solving environmental and energy issues with the development of 

improved photocatalytic technologies. 
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