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ABSTRACT 

EXPLORING PRIMITIVE LEGUME SYMBIOSIS USING Chamaecrista 

fasciculata AS A MODEL 

 

 
by 

Zachary Zawada 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Dr. Gyaneshwar Prasad 

 

 

 

Legumes form symbiotic associations with diazotrophs collectively termed “rhizobia” 

leading to the formation of nodules and N2-fixation and contribute significant amounts of fixed 

N to agricultural and natural environments. The mechanisms of nodulation and N2-fixation are 

extensively studied using model legumes that belong to the Papilionoideae, in which nodulation 

is widespread and advanced. In contrast, very little is known about the mechanisms of 

nodulation and N2-fixation in in basal Caesalpinioideae subfamily in which nodulation is rare. 

The nodulating caesalpiniod legume Chamaecrista fasciculata is widespread in North America 

and is suggested as a complementary model to study legume nodulation because of its 

divergence from the papilionoids nearly 60 million years ago. As a first step in understanding 

nodulation in basal legumes, we have isolated rhizobial strains from soils of Mid-Western USA 

that form N2-fixing nodules on C. fasciculata roots. Molecular phylogenetic analysis based on 

16S rDNA was performed on 13 unique isolates and revealed C. fasciculata is exclusively 

nodulated by Bradyrhizobium spp, a group of rhizobia considered more ancient than other 

papilionoid nodulating rhizobial strains. Multi-locus phylogenetic analysis using ITS, nodA, nifH, 
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recA, and dnaK was also used to further classify these unique isolates from one another. Using a 

GFP marker introduced in one unique isolate, as well as light microscopy and TEM, we were 

able to obtain a better understanding of how Bradyrhizobium spp is able to colonize and 

effectively nodulate in C. fasciculata. With the basic understanding of what these isolates are 

and how they compare to one another on a phylogenetic level, we looked at the growth 

promoting abilities of these isolates to determine nodulation and N2-fixing abilities of each and 

how they relate to one another.   
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Introduction: 

 

Nitrogen is one of the most essential nutrients in plants, responsible for many vital functions. 

Without nitrogen present, plants simply cannot function. Although nitrogen is one of the most 

abundant elements found in our atmosphere, it is found in an unusable form by plants, N2 gas. 

This creates a challenge for plants and makes nitrogen one of the limiting nutrients in terms of 

plant production (Fageria and Baligar, 2005). To get around this, we have found a way to create 

usable nitrogen sources for plants in the form of fertilizers using the Haber-Bosch process. This 

solves the issue of getting nitrogen to our plants but causes new issues in pollution and 

potentials for global warming (Razon, 2013) (Vitousek et al, 1997). The Haber-Bosch process 

uses extensive amounts of fossil fuels and releases tons of unnecessary greenhouse gases back 

into the atmosphere, approximately 3100 kg of CO2 per 1000 kg of liquid ammonia produced 

(Razon, 2013). And while the outcome of this process is essential to helping produce the large 

number of crops made around the world each year, the use of fertilizers is still less than ideal. 

When analyzing the nitrogen recovery in these plants, it has found that these plants retain less 

than half of the nitrogen that is placed down (Fageria and Baligar, 2005). A vast majority of the 

nitrogen used from these fertilizers is lost to the environment leading to contamination of 

ground and surface water sources as well as back to the atmosphere resulting in an increase in 

air pollution (Fageria and Baligar, 2005). This manipulation of available nitrogen has also had 

effects on the natural nitrogen cycle as well as approximately doubling the rate nitrogen 

entering the cycle. Increased nitrogen entering into the nitrogen cycle helps play a role in 

decreased soil fertility, air quality, and pollution as well as the decrease in biological diversity of 
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plants, animals, and microorganisms while also contributing to the long-term decline of coastal 

fisheries (Vitousek et al, 1997). It is therefore imperative to find more sustainable system to 

supply nitrogen to plants. An alternative to the chemical nitrogen in using biological nitrogen 

fixation (BNF). BNF is widespread in bacteria and archea and is postulated to fix significant 

amount of nitrogen in the globe. Of the various forms of BNF, the symbiosis between legumes 

and rhizobia is one of the most important contributors of fixed nitrogen in agricultural and 

aquatic systems.  

Legumes make up one of the largest flowering plant families, with over 700 genera and 

just under 20,000 species split between three distinct subfamilies, the Caesalpinioideae, the 

Mimosoideae, and the Papilionoideae (Singer et al. 2009). Legumes as a whole are one of the 

most studied plant groups in the world because of their unique ability to form a symbiotic 

relationship with a specific bacterial group, rhizobia (dos Santos et al. 2016). This symbiotic 

relationship leads to the formation of nodules on the roots of the plants which allows the 

bacteria inside the nodules to fix nitrogen into a usable state and supply it not only to the host 

plant, but also back into the environment. In exchange for fixing nitrogen, the bacteria is 

supplied with carbon which can be used as an energy source (Desbrosses and Stougaard, 2011) 

(dos Santos et al. 2016).  

Mechanisms of rhizobial-legume interactions 

Due to the importance of legumes in agriculture, their symbiosis with rhizobia has been 

extensively studied. The initiation of this symbiosis requires signal exchanges between the host 

plant and its microbial partner in which legume roots secrete flavonoids and isoflavonoids that 

activate the expression of bacterial nod genes (Venkateshwaran et al., 2013; Oldroyd, 2013). 
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The Nod proteins are involved in the production of signal molecules, called Nod factors (NFs), 

which harbor various substitutions on a lipochitooloigosaccharide (LCO) backbone. The NFs are 

then recognized by the legume host through specific receptors and trigger plasma membrane 

ion fluxes, root hair deformations, nuclear calcium spiking and “nodulin” gene expression 

(Dénarié et al., 1992, 1996; Madsen et al., 2003; Venkateshwaran et al. 2013; Oldroyd, 2013). 

Interestingly, a similar molecular dialog has been identified during the early steps of the 

arbuscular mycorrhizal symbiosis (Harrison, 2005; Maillet et al., 2011). The mechanisms of 

nodulation have been studied extensively in the Papilionoideae family due to the presence of a 

majority of the common and model legumes (Singer et al. 2009) in this family. In contrast, not 

much is known about nodulation mechanisms in subfamilies of more primitive legumes, where 

nodulation is rarer.  

Chamaecrista as a model for determining rhizobial interactions with primitive legumes.  

To fully understand symbiotic nitrogen fixation, it is important to extend research beyond the 

subfamily Papilionoideae (Sprent and James, 2007; Singer et al., 2009, Sprent et al., 2017). The 

paraphyletic subfamily Caesalpinioideae in the mimosoid clade diverged from the 

Papilionoideae nearly 60 million years ago (Lavin et al., 2005). The mimosoid clade comprises 

23% of legumes but has no model established model system. In contrast to Papilionoideae in 

which nodulation is widespread, nodulation in Caesalpinioideae is rare (LWG2017) but does 

occur in the genus Chamaecrista. It has been suggested that in Chamaecrista nodulation may 

have evolved independently from Papilionoideae but also from Mimosoideae (Doyle, 2011). A 

few studies have shown that Chamaecrista forms indeterminate nodules but also show 

presence of fixation thread, a trait considered primitive (Naisbitt et al., 1992). In addition, 
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Chamaecrista contain a putative ancestral hemoglobin that is an intermediate between non-

symbiotic and symbiotic hemoglobins. Owing to its nodulation ability, C. fasciculata was 

suggested to be a model for determining rhizobial interactions with Caesalpinioideae (Singer et 

al., 2009). Rhizobia from C. fasciculata nodules have been isolated and belong to the USDA 

collection. Apart from the potential to enhance fundamental knowledge, Chamaecrista is an 

ideal legume for establishing mixed prairie and can be an alternative crop for biofuels.  

C. fasciculata is a species of Chamaecrista that is native to North America and is 

commonly used as one of the model plants from the caesalpiniods (Cronk et al, 2006). Previous 

studies have revealed that Bradyrhizobium appears to be the primary nodulator in not only C. 

fasciculata, but in other legumes belonging to the Caesalpinioideae sub family as well (Parker, 

2014, Sprent et al, 2017). Studies on Chamaecrista native to Brazil and India have also revealed 

similar results, suggesting that Bradyrhizobium is the primary nodulator of Chamaecrista not 

only in the US but all over the world (dos Santos et al, 2016) (Rathi et al, 2018). Phylogenetic 

analysis of key genomic and symbiotic genes is necessary to not only confirm what other 

studies have shown but to also narrow down the evolutionary changes that have occurred in 

these strains over time and if these changes coincide with the evolutionary changes observed in 

the legume family. Unlike other strains of Rhizobia, Bradyrhizobium does not contain a 

symbiotic plasmid on which genes are able to spread. Instead they contain more of a symbiotic 

island of genes found clustered together on a portion of their chromosome (Parker, 2014). 

Analysis of genes found on this cluster could potential provide some insight into what makes 

this genus of bacteria the primary nodulator of the rarely nodulating Caesalpinioideae 

subfamily and how this relates evolutionarily to the rise of the Papilionoideae. 
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A few studies have isolated bradyrhizobial symbiont from C. fasciculata growing in USA. 

However, it is not known if Bradyrhizobia predominant in extended area or if there are other 

rhizobia that can nodulate C. fasciculata. In addition, the mechanisms important for 

colonization and nodulation of C. fasciculata are yet to be studied. This study was aimed at 

determining the rhizobial symbiont of C. fasciculata in the native soils of broader Mid-Western 

USA soils and to study the colonization and nodulation of C. fasciculata.  

 

Materials and Methods: 

 

Collection of nodules from field grown C. fasciculata and form C. fasciculata used as host-

trap. 

C. fasciculata plants were collected from fields grown on University of Wisconsin-Milwaukee’s 

campus and brought back to the lab. Plants were washed with dH2O to remove all excess soil 

and nodules were then isolated from the plant. Host trap C. fasciculata seeds were sterilized, 

germinated, and grown in pots with 3 plants per pot. For these plants, collected soils from 

various locations in mid-west states were used as inoculum (Table 2, Figure 1). Plants were 

allowed to grow for 21 days before being removed from their pot and checked for nodulation. 

Plants that had nodules were washed of excess soil and then the nodules were isolated from 

the plant. Typically, 2-5 nodules per plant were used to isolate bacteria from.   

 

Isolation of bacterial symbionts from nodules of C. fasciculata 

Nodules from C. fasciculata were removed from plant roots using sterile forceps and placed in 

an Eppendorf tube containing dH2O. After all of the nodules had been removed and placed in 

the Eppendorf tube, the dH2O was removed and the nodules were surfaced sterilized using 96% 
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ethanol for 5 minutes followed by 100% Clorox Bleach for 30 seconds. The nodules were then 

washed 6 times using sterile dH2O. The final wash was plated onto one TY and one YM plate as 

a control.  Surface-sterilized nodules were placed onto one TY and one YM plate containing 

100ng/µL of nystatin (to prevent fungal contamination). On average, 2-5 nodules from each 

plant were plated onto each plate type. Nodules were then squeezed with sterile forceps to 

release the contents of the nodules onto the plate. The contents of the nodules were streaked 

for isolation and allowed to incubate for 4-7 days, or until colonies began to grow. Colonies 

with distinct morphology were selected and plated out onto a fresh plate of the same media 

type. This process was replicated 4-6 times, until all of the bacteria on the plate had the same 

colony morphology. Each unique colony type was selected for further testing. Table 2 shows the 

name and location of all isolates used in this study.  

 

Isolation of genomic DNA.  

Cultures for genomic DNA isolation were grown by inoculating strains into yeast-Mannitol 

(Vincent, 1970) (YM) or Tryptone yeast-extract (TY) media. Cultures were grown aerobically at 

30°C. 2mL of culture was pelleted by centrifugation at 13,200 rpm for 1 minute and used for 

genomic DNA isolation using Wizard Genomic DNA Isolation Kit (Promega, USA) and following 

the manufacturer’s protocol.  

 

DNA quality and quantity estimations. 

The concentration and quality of genomic DNA isolations, PCR purifications, and gel 

purifications was determined using a NanoDrop ND-100 Spectrophotometer. The absorption of 

the samples were recorded and the 260/280 and the 260/280 wavelengths were recorded for 
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each sample to determine the concentration and quality of the samples. Samples were then 

stored at -20°C for further analysis. 

 

Primer design: 

Primers were designed to amplify specific regions/genes from various strains of 

Bradyrhizobium. Primers were typically designed to include between 18 and 22 base pairs of 

identity to the template genomic DNA with a GC content of around 50%. The Tm of the primers 

were designed to be within a few (2-5°C) of one another for proper annealing during PCR. 

Primer fragments that were to be used in restriction cloning had proper restriction sites added 

to the 5’ end of each primer. A web cutter tool was used to ensure that the restriction sites 

used in the primer didn’t cut inside of the template DNA. An oligo analysis program was used to 

calculate GC content as well as Tm for each primer.   

 

 

Table 1. Table showing the primers and PCR program conditions used throughout this study for 

amplification of genes for phylogenetic analysis, cloning, and screening of GFP strains.  

 

 

Primer Name Sequences 5' - 3' PCR Program Reference

16S F CAGGCCTAACACATGCAAGTC

16S R ACGGGCGGTGTGTACAAG

ITS F TCGGGCTGGATCACCTCCTT (dos Santos et al, 2017)

ITS R CCGGGTTTCCCCATTCGG (dos Santos et al, 2017)

NifH F AARGGNGGNATYGGHAARTC (dos Santos et al, 2017)

NifH R GCRTAVAKNGCCATCATYTC (dos Santos et al, 2017)

RecA F CAACTGCMYTGCGTATCGAAGG (dos Santos et al, 2017)

RecA R CGGATGTGGTTGATGAAGATCACCATG (dos Santos et al, 2017)

NodA 1 TGCRGTGGAARNTRNNCTGGGAAA

NodA 2 GGNCCGTCRTCRAAWGTCARGTA

DnaK F TTCGACATCGACGCSAACGG (dos Santos et al, 2017)

DnaK R GCCTGCTGCKTGTACATGGC (dos Santos et al, 2017)

p318GFP F GAGAGAACTAGTGGAGGAAGAAAAA

p319GFP R CTCTCGAGCTGATTTGTATAGTTCAT

NodAMut F CAGCGAATTCATGAACATTGCCGTCTCC

NodAMut R GTATGCGGCCGCTTCACAACTCAGGCCCGTTAC

NodA(Mut)Bjap F GATTCTAGATCAAGTGCAGTGGAGCCTTCG

NodA(Mut)Bjap R1 TACAGATCTACCAGTGCAGAGCCGTGAG

2' 95° C, 30 x (30'' 95° C, 30'' 55° C, 1' 72° C), 5' 72° C

2' 95° C, 30 x (30'' 95° C, 30'' 66° C, 1' 72° C), 5' 72° C

2' 95° C, 30 x (30'' 95° C, 1' 63° C, 1'30'' 72° C), 5' 72° C

2' 95° C, 30 x (30'' 95° C, 30'' 57° C, 2' 72° C), 5' 72° C

5' 94° C, 35 x (30'' 94° C, 30'' 55° C, 30'' 72° C), 7' 72° C

5' 94° C, 20 x (30'' 94° C, 30'' 60° C -0.5° C/cycle, 1' 72° C), 25 x 

(30'' 94° C, 30'' 50° C, 1' 72° C), 5' 72° C

2' 95° C, 35 x (45'' 95° C, 30'' 58° C, 1'30'' 72° C), 7' 72° C

2' 95° C, (30'' 95° C, 1' 49° C, 1' 72° C), 5' 72° C

2' 95° C, 35 x (45'' 95° C, 30'' 56.8° C, 1'30'' 72° C), 7' 72° C
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Amplification, purification and sequencing of gene fragments.  

Genomic DNA isolated from each strain was used as a template to amplify genes using 

polymerase chain reaction (PCR) and gene specific primers (Table 1). PCRs were set up 

according to the instructions for the GoTaq Green Master Mix (Promega). Master mix was 

diluted to 1x final concentration while the primers were diluted to .5 µM concentration. The 

final concentration of the template used was no more than 250ng of DNA, or 5µL of genomic 

DNA. The amplified products were separated by gel electrophoresis, stained with ethidium 

bromide and visualized under UV light.  The PCR products were purified using PureLink PCR 

Micro Kit (Invitrogen). In case of more than one PCR products, the band of expected size was 

excised from agarose gels and purified using Wizard SV Gel and PCR Clean-Up System kit 

(Promega). The purified products were sequenced at the University of Chicago DNA sequencing 

facility. Sequences were analyzed using the FinchTV program for completeness and accuracy by 

comparing peaks to the registered nucleotide. Sequences were analyzed through the NCBI Blast 

database to determine the closest match and accuracy of the amplification. Sequences were 

submitted to NCBIs GenBank.   

 

 

Construction of Phylogenetic Trees:  

Sequences of all strains for phylogenetic analysis were uploaded to NCBI GenBank. Sequences 

were then obtained from online and aligned using the Clustal W program. Aligned sequences 

were then used to construct phylogenetic trees utilizing the MEGA7 program. Neighbor-Joining 

trees were built in MEGA 7 using 1000 bootstrap replications for each phylogenetic tree. Table 

1 shows the primers and PCR settings for all sequences analyzed. 
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Plant colonization, nodulation and growth promotion.  

C. fasciculata and soybean seeds were surfaced sterilized by treatment with 96% ethanol for 5 

minutes followed by (1:1 v/v) of Clorox Bleach and sterile dH2O for 30 seconds. The seeds were 

then washed 6 times using sterile dH2O. After the final wash, seeds were treated with sulfuric 

acid for 10 minutes. Sulfuric acid was removed from the tube and the seeds were washed 6 

times using sterile dH20. After the final wash, the tube was filled with sterile dH2O to allow the 

seeds to imbibe water and seeds were incubated at 30˚C for 48 hours. After incubation, 

germinated seeds were then aseptically transferred onto the petri dishes lined with sterile 

paper towels, and further incubated at 30˚C for 48 hours. The seedlings were either planted 

into sterile pots or into sterile test tubes containing paper towels. Freshly planted seedlings 

were watered with sterile nitrogen free plant growth media (PGM) and placed into a growth 

chamber to begin growing for approximately 2-3 days before inoculation by the selected 

rhizobial isolates. Bradyrhizobium spp.  were grown in either YM broth or TY broth at 30˚C for 

approximately 4-7 days, depending on the media used. Cells were pelleted by centrifugation at 

13,200 rpm for 1 minute, washed with 1mL of nitrogen free PGM and centrifuged at 13,200 

rpm for 1 minute. The cell pellet was resuspended in fresh nitrogen free PGM. Each pot or test 

tube containing germinated seedlings were removed from the growth chamber and received 

1mL of 1.0 OD600nm culture. Plants grown in pots were watered with fresh nitrogen free PGM to 

allow the bacteria to spread throughout the entirety of the pot. Plants grown in test tubes were 

rewrapped with parafilm to secure seedlings so that the roots were still contacting the paper 

towel and to prevent contamination. Plants were allowed to grow in the growth chamber and 

watered daily. The plants were removed from the growth media, washed with tap water and 
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the roots were observed for nodule formation. The effectiveness of the symbiosis was 

determined by counting nodule numbers and nodule coloration (red, pink, white) and 

measuring plant dry weights.  

 

Plant growth promotion  

Plant growth promotion by the Bradyrhizobium spp. isolates was determined by analyzing the 

fresh and dry weight of the roots and shoots. Plants were grown in pots with 2-3 plants per pot, 

using two separate pots for each inoculated strain. Plants were removed from their pots at 40 

days after inoculation and their roots were washed with dH2O of all excess soil material. The 

roots and shoots for each plant were separated from one another and fresh weight was 

measured. After the initial fresh weight measurement, the individual roots and shoots for each 

plant were wrapped in foil and placed in an incubator at 65°C to dry. The weights for each plant 

were taken twice daily until there was no change in the weight between measurements. This 

weight was recorded for the final dry weight for each plant.   

 

Marking of Bradyrhizobium sp Nodule1 with β-glucuronidase (GUS) and green fluorescent 

protein (GFP) 

Bradyrhizobium sp. Nodule1 (isolated from nodule of C. fasciculata growing at UWM) was 

marked with a transposon containing a constitutively expressed GUS (Wilson et al., 1995) by 

conjugation. E. coli containing pCAM121 and Bradyrhizobium sp. Nodule1 were grown in LB or 

TY, respectively and then mixed 1:1, 1:3, and 1:5 ratios of E. coli to Bradyrhizobium. Mixed 

cultures were centrifuged for 1 minute at 8000 rpm to loosely pellet the cells. The supernatant 

was removed, and cells were concentrated into 30µL of TY media. Cells were placed onto sterile 
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filter discs on TY agar plates and incubated at 30°C for 2-3 days. After incubation, cells from the 

filter were resuspended into a test tube containing 1mL of fresh TY and plated out on TY 

containing spectinomycin and incubated at 30°C for 4-6 days. The transconjugants were 

purified 2 times and GUS activity was visualized by blue color in presence of X-gluc. One 

transconjugant showing GUS activity and no apparent growth defect as compared to the wild 

type strain was selected for further studies.  

 

The GUS expressing strain was further marked with GFP. A plasmid constitutively expressing 

GFP (pHC60) (Cheng and Walker 1998) was transferred from E. coli into the GUS marked strain 

by biparental conjugation. Transconjugants were selected on YM medium, containing 50 µg/ml 

tetracycline. The presence of plasmid in strains was confirmed by direct fluorescence 

microscopy. 

 

Construction of nod mutant of Bradyrhizobium sp. Nodule1  

To construct the nod mutant, the nodA gene was PCR-amplified using primers with restriction 

digest sites for XbaI, digested and ligated into a suicide vector pSUP202 pol4 digested with the 

same enzymes. E. coli DH5α was transformed with the ligation mixture and the recombinants 

were selected on LB media containing 10 µg/ml tetracycline.  The construct was then confirmed 

by PCR and recombinant plasmid was isolated and purified using ChargeSwitch Pro Plasmid 

MiniPrep Kit (Invitrogen). The recombinant plasmid was then transferred to Bradyrhizobium sp. 

Nodule1 by tri-parental conjugation using pRK2013 as helper plasmid or electroporation. The 

conjugated or the electroporated cells were plated onto selective media to isolate single 

recombinant cells that are disrupted by the suicide plasmid.  
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Histochemical and microscopic studies of plant root colonization by Bradyrhizobium sp. 

Nodule1.  

Seeds of C. fasciculata and soybean were surface-sterilized and germinated as described above. 

The contamination-free seedlings were transferred to small paper cups containing sterile 

vermiculite soaked with growth media or in glass tubes containing liquid growth media. The 

seedlings were inoculated with the GUS and GFP marked Bradyrhizobium sp. Nodule1 and 

incubated in the growth chamber. Plants were removed from the pots/tubes at 3, 5, 7, and 10 

days post inoculation (DPI) and stained for GUS activity as described (Mitra et al., 2016). Briefly, 

the plant roots were aseptically transferred to petri dishes containing sterile 0.1M phosphate 

buffer (pH 7.0) with 50µg per mL X-Gluc and placed in a vacuum chamber for 10 minutes. After 

vacuuming, the samples were incubated at 37˚C in dark and monitored for the formation of 

blue color indicating GUS activity. The GUS stained root portions were imaged, excised and 

fixed with 25% glutaraldehyde (Fisher Scientific) for further examination using light and 

electron microscopy.  

 

The colonization was also analyzed by visualizing GFP fluorescence using both epifluorescence 

and confocal microscopy. For epifluorescence microscopy, samples were prepared by placing a 

small portion of the plant material of interest (root section or nodule) onto a microscope slide 

containing a drop of dH2O. The slides were observed using a Zeiss Axio Imager M2 microscope 

using a Zeiss 424931 GFP cube. For confocal microscopy, slides were prepared by placing a 

small rubber spacer onto a glass slide. The spacer was filled with sterile dH2O and the sample 

was placed inside of the spacer. A No. 1½ 22mm2 glass cover slip was placed on top of the 
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spacer to create a seal. The prepared slides were then analyzed using a Leica DM R Confocal 

microscope to detect the GFP.  

 

Results: 

 

 

Isolation of nodulating strains from field-grown and “host trap” C. fasciculata. 

The symbionts of C. fasciculata growing in natural environments or in soils collected from 

various parts of Midwestern USA were isolated from surface-sterilized nodules using YM agar. 

C. fasciculata nodulated with all soils tested, except soils collected from Georgia red clay, 

Madison WI cornfield soil, Purdue IN cornfield soil, and Morris MN cornfield soil (Fig 1). The 

isolates from all the nodules showed a similar morphology and slow growth phenotype. Six 

isolates representing all the sites were selected for further analysis.  To these we added four C. 

fasciculata nodulating strains obtained from USDA rhizobial germplasm collection. The isolates 

and their isolation source are listed in Table 2.  

 

Table 2. Table showing the isolates used in this study as well as their isolation source. All strains 

used were found to nodulate in C. fasciculata. Soil from Georgia red clay, Madison Cornfield, 

Purdue cornfield, and Morris MN cornfield did not nodulate in the host-trap experiments and 

no isolates were able to be obtained from these soils.   

Isolate Isolation Source

Nodule 1 UWM Chamaecrista Isloate

Nodule 4 UWM Chamaecrista Isloate

ZZ#1 UWM Chamaecrista Isloate

USDA794 USDA Strain 3010

USDA797 USDA Strain 3014

USDA798 USDA Strain 3574

USDA800 USDA Strain 3572

ASDSOY Aurora South Dakota Soil

SDOY South Dakota Soybean Soil

MSOY Madison Soybean Soil

RMN Rosemont MN Soil

HUMN Hamline University MN Soil

HCOKY Henderson County Kentucky Soil
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Figure 1. Map of the US mid-west showing where the soils used in the host trap inoculation of 

C. fasciculata came from. Red X’s indicate that the soil from that location was used as inoculum 

but was unable to nodulate in C. fasciculata while the green stars indicate that soil from the 

location was used and was able to nodulate in C. fasciculata.  
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Figure 2. Phylogenetic tree based on the 16S rRNA sequences of bacteria isolated from 

Chamaecrista spp. Purple diamonds indicate strains used in this study; all other strains were 

taken from GenBank to use for comparison.  
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Phylogenetic analysis of 16S rRNA and ITS 

To identify the selected strains, approximately 1kb fragments of 16S rRNA gene were amplified 

by PCR and sequenced. Sequences were then aligned with database using NCBI’s BLASTn 

program. The 16S rRNA sequences form all isolates showed similarity with Bradyrhizobium spp.   

The phylogenetic analysis further showed the strains to be widely distributed within the 

Bradyrhizobium genera (Fig 2). Most of the strains clustered together and formed a separate 

clade. However, four of the thirteen strains showed more heterogeneous distribution indicating 

that the 16S rDNA sequences were not diverse enough for determining the phylogeny of the 

isolates. To further determine the phylogeny, the 16S-23S ribosomal RNA intergenic spacer 

(ITS) fragments of about 900-1000 base pairs were PCR-amplified, sequenced and analyzed. 

Bradyrhizobium strains that were isolated from the Brazilian Chamaecrista species; C. bahiae, C. 

desvauxii, C. ensiformis, C. flexuosa, C. rotundifolia, C. serpens, C. supplex, and Chamaecrista 

spp, were also included in this phylogenetic tree. The phylogeny based on ITS resolved the 

strain better than just the 16S rRNA sequences (Fig 3). Similar to the 16S rRNA phylogeny, nine 

strains formed a tight cluster and the remaining four formed two separate clusters (Fig 3).  
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Figure 3. Phylogenetic tree based on both 16S and ITS region sequences of bacteria isolated 

from Chamaecrista spp. Purple diamonds indicate strains used in this study while green 

triangles indicate strains isolated from Brazilian Chamaecrista; all other strains were taken from 

GenBank to use for comparison spp. 
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Phylogenetic analysis of housekeeping genes recA and dnaK 

Apart from 16S rRNA gene, bacterial phylogeny can be further resolved using other conserved 

housekeeping genes such as recA and dnaK. To further explore the phylogeny of the C. 

fasciculata symbionts, approximately 600 base pair fragments of recA and 300 base pair 

fragments of dnaK were PCR-amplified, sequenced and analyzed. The phylogeny based on these 

housekeeping genes correlated with the 16S-rRNA based phylogeny (Fig 4, 5). The eight strains 

grouped together. Bradyrhizobium spp USDA 800 and Bradyrhizobium spp USDA 797 showed 

more divergence but were still clustered.  Bradyrhizobium spp ASDSOY and Bradyrhizobium spp 

RMN appear to be closely related when looking at the housekeeping genes with 

Bradyrhizobium spp USDA 794 being further apart. This is different compared to the 16S rRNA + 

ITS tree where Bradyrhizobium spp ASDSOY was further apart and Bradyrhizobium spp RMN 

and Bradyrhizobium spp USDA 794 appeared to be closely related.  
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Figure 4. Phylogenetic tree based on the house keeping recA gene sequences of bacteria 

isolated from Chamaecrista spp. Purple diamonds indicate strains used in this study while green 

triangles indicate strains isolated from Brazilian Chamaecrista. The red squares indicate 

bacterial strains isolated from Indian Chamaecrista spp. while the maroon circles indicate 

strains isolated from African Chamaecrista spp. The blue triangles are strains that have also 

been isolated from Chamaecrista spp from US soils. All other strains were taken from GenBank 

to use for comparison spp. 
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Figure 5. Phylogenetic tree based on the house keeping dnaK gene sequences of bacteria 

isolated from Chamaecrista spp. Purple diamonds indicate strains used in this study while green 

triangles indicate strains isolated from Brazilian Chamaecrista. The red squares indicate 

bacterial strains isolated from Indian Chamaecrista spp. while the maroon circles indicate 

strains isolated from African Chamaecrista spp. The blue triangles are strains that have also 

been isolated from Chamaecrista spp from US soils. All other strains were taken from GenBank 

to use for comparison spp. 
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Phylogenetic analysis of symbiotic genes nodA and nifH 

To determine the genetics of symbiosis for the C. fasciculata nodulating strains two genes 

essential for symbiosis (nodA and nifH) were amplified by PCR, sequenced and analyzed.   

In the nodA gene phylogeny four distinct types were observed (Fig 6). Seven strains formed a 

distinct clade close to B. forestalis that was isolated from nodules of forest legumes in the 

Amazon (da Costa et al., 2018). The nodA sequences of three strains were identical to B. elkani, 

a strain that nodulate soybean.  In contrast to these nod genes, nodA of one strain was 

divergent from Bradyrhizobium and shared similarities with nodA of Ensifer meliloti, an alfalfa 

nodulating rhizobia. These results indicate that C. fasciculata is likely able to recognize diverse 

Nod factors secreted by the nodulating strains. The nifH phylogeny was similar to the nodA 

gene phylogeny as the eight strains clustered with B. forestalis. Other strains showed 

similarities to soybean nodulating B. elkani and B. japonicum (Fig 7). These results indicate tight 

linkage between the two symbiotic genes.  
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Figure 6. Phylogenetic tree based on the nodA nodulation gene sequences of bacteria isolated 

from Chamaecrista spp. Purple diamonds indicate strains used in this study while the red 

squares indicate bacterial strains isolated from Indian Chamaecrista spp. and the maroon circles 

indicate strains isolated from African Chamaecrista spp. All other strains were taken from 

GenBank to use for comparison spp. 
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Figure 7. Phylogenetic tree based on the nifH nitrogenase gene sequences of bacteria isolated 

from Chamaecrista spp. Purple diamonds indicate strains used in this study while blue triangles 

are strains that have also been isolated from Chamaecrista spp from US soils. The green 

triangles indicate strains isolated from Brazilian Chamaecrista and the red squares indicate 

bacterial strains isolated from Indian Chamaecrista spp. All other strains were taken from 

GenBank to use for comparison spp. 
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Nodulation and growth promotion of C. fasciculata and soybean by Bradyrhizobium spp 

isolates.  

The molecular phylogeny of C. fasciculata nodule isolates, especially the divergence of 

symbiotic genes indicates that these rhizobia could differ in their ability to nodulate and fix 

nitrogen. Additionally, the relatedness of these isolates to soybean symbionts coupled with the 

use of soybean farm soils as a source of these isolates suggests that these could also form 

symbiosis with soybean. To determine the symbiotic interactions, the thirteen isolates and B. 

japonicum USDA110 (a model soybean nodulating strain) were inoculated onto C. fasciculata 

and soybean seedlings under axenic conditions. The symbiosis was evaluated by determining 

the number of nodules and total plant dry weights. Non-inoculated seedlings served as a 

negative control. All strains formed nodules on C. fasciculata but there were significant 

differences in the ability of these strain to enhance plant-growth (Fig 8). These results indicate 

that there are phenotypic differences in the symbiotic interactions. In accordance with the 

molecular phylogeny of the symbiotic genes, all of these strains could also nodulate soybean, a 

legume that is phylogenetically distinct from C. fasciculata. Similar to the results with C. 

fasciculata, there were significant differences in the growth promotion of soybean by these 

isolates (Fig 9). In contrast, the soybean symbiont B. japonicum USDA110 formed only a few 

nodules on C. fasciculata and did not enhance plant growth (Fig 8).   
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Figure 8. Chamaecrista fasciculata plant growth promotion comparing fresh and dry weights of 

the whole plant as well as the nodules present, of all isolates from this study. Y-axis represents 

weight in mg. * denotes significance as determined by t-test assuming unequal variance (p < 

0.05).  

 

 

Figure 9. Soybean plant growth promotion comparing fresh and dry weights of the whole plant, 

of isolates used in this study. Y-axis represents weight in mg. * denotes significance as 

determined by t-test assuming unequal variance (p < 0.05).  
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Colonization and infection mechanisms of host-plant by Bradyrhizobium sp. Nodule1. 

In most of the well-studied legumes, rhizobia colonize and infect through root hair in which the 

bacteria invade plant root intracellularly via a root hair infection thread. However, in certain 

other legumes, rhizobia can infect intercellularly, either at fissures in the epidermal layer or 

through the cracks formed during lateral root formation (crack entry) (Ibáñez et al, 2016). These 

infection mechanisms have been studied in the more advanced papilionoid legumes. In 

contrast, very little is known about the infection mechanisms in the more primitive and 

ancestral caesalpiniod legumes such as C. fasciculata. To determine the infection mechanisms, 

Bradyrhizobium sp. Nodule1, isolated from the nodules of field-grown C. fasciculata was 

marked with GUS and GFP. The marked strain was inoculated onto C. fasciculata seedlings in 

axenic conditions and colonization and infection was studied using histochemical GUS staining, 

GFP fluorescence and microscopy of the fixed samples.  Roots of the inoculated plants were 

stained with X-gluc at various time points to localize the infecting bacteria. GUS staining (blue 

coloration) was observed both on the surface of the roots and in the root hairs (Fig 10). 

However, the staining was most intense on the root surface and no infection thread in the root 

hairs was observed. The GUS staining pattern indicates that Bradyrhizobium sp. Nodule1 likely 

infects C. fasciculata through epidermal layer although the root hair infection is also possible.  
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Figure 10. Chamaecrista fasciculata root samples that have been inoculated with 

Bradyrhizobium spp. strain containing the β-Glucuronidase reporter system and stained with 

the X-Gluc substrate. Presence of blue color on the roots indicates that bacteria is present to 

some extent. A. Shows highlights presence of bacteria associating with the root hairs. B. Shows 

spot on root surface as well as root hairs. 

 

 To further determine the root infection, the GUS stained root portions were examined 

for GFP fluorescence using microscopy. Epifluorescence microscopy showed that GFP 

expressing bacteria were present inside root hair (Fig 11). However, formation of an infection 

thread was not clearly seen. In addition, the root hair infecting bacteria did not extend into the 

cortical cells to form nodule primordia. To study the infection in more detail, confocal 

microscopy was utilized to get a better understanding. Confocal microscopy at 20x 

magnification reveals what does appear to be an infection thread running the entire length of a 

root hair (Figure 12). However, the infection thread did not propagate into internal cells of the 

root. In contrast to the cells within the root hair, GFP expressing cells were observed inside the 
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GUS stained nodule primordia that seem to have been infected by epidermal infection (Fig 14 

A, B). These results suggest that Bradyrhizobium sp. Nodule1 infects C. fasciculata by both root 

hair and intercellularly through epidermal layer, but the epidermal infection is likely to be 

involved in nodule formation.  

 

Figure 11. Fluorescent imaging of Chamaecrista fasciculata root samples inoculated with 

Bradyrhizobium spp. strain containing a GFP plasmid. Samples were imaged using 

epifluorescence. Imaging reveals potential infection thread inside of the root hair of plant.  

 

 
Figure 12. Fluorescent imaging of Chamaecrista fasciculata root samples grown aerobically 

inoculated with Bradyrhizobium spp. strain containing a GFP plasmid. Samples were imaged 

using confocal microscopy. A. Transmitted light image showing the outline of the root hair 

being observed. B. GFP overlay onto the transmitted light image, showing what appears to be 

an infection thread traveling the length of the root hair being shown.  
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In addition to the root hair and epidermal infection, some legumes (especially those 

growing in submerged conditions) form nodules through “crack entry”. To determine if 

Bradyrhizobium sp Nodule1 is able utilize “crack entry” for nodule formation the lateral root 

junctions were observed using confocal microscopy.  As shown in Fig 13B GFP fluorescence was 

observed at the junction between the main root and the lateral root. To further confirm the 

“crack entry” C. fasciculata seedlings were inoculated and grown in test tubes containing liquid 

media such that the roots were submerged. It is known that root growth in submerged 

conditions inhibit formation of root hair and thus allow bacteria to enter through lateral root 

cracks. Microscopic analysis of these roots showed that GFP fluorescent cells were Figure 13D 

shows a localization in between the cells of the main and lateral root. These results indicate 

that C. fasciculata could also be nodulated via “crack entry”.  
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Figure 13. Fluorescent imaging of Chamaecrista fasciculata root samples inoculated with 

Bradyrhizobium spp. strain containing a GFP plasmid. Samples were imaged using confocal 

microscopy. A. Transmitted light image showing the junction of the main root and a lateral root 

from Chamaecrista fasciculata grown aerobically. B. GFP overlay onto the transmitted light 

image shown in 10A. GFP signal is found mostly localized to the junction between the main root 

and the lateral root. C. Transmitted light image zoomed in on a lateral root from Chamaecrista 

fasciculata grown in submerged conditions. D. GFP overlay onto the transmitted light image 

shown in 10C. Faint GFP signal can be seen mostly localized to the space in between 

neighboring cells.  
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The results of fluorescent microscopy were further confirmed using light microscopy of 

the GUS stained root portions. The roots were fixed, and semi-thin sections were observed 

under microscope. The toluidine-blue staining of the root sections revealed that bacteria were 

located around the surface of the nodule primordia-like structure (Figure 14B). Observations 

under higher magnification (100x) showed bacteria likely entering the nodule primordia of C. 

fasciculata through spaces between the epidermal cells and progressing inside some internal 

cells that could presumably lead to nodule formation (Figure 14C and Figure 14D).  

 

Figure 14. Microscopy images analyzing the nodule primordial formed on Chamaecrista 

fasciculata roots. A. Epifluorescence imaging with GFP reveals that bacteria is present inside of 

the nodule primordial after entering into the root. B. Low magnification (40x) light microscopy 

image of semi-thin sections of Chamaecrista fasciculata root tissues 5 days post inoculation. 

Arrows indicate areas that were zoomed in and focused on in panels C and D. C and D.  High 

magnification (100x) light microscopy images of 14B. Arrows in these figures point out small 

portions of stained bacteria (in blue) that appear to be entering the nodule primordial through 

epidermal means rather than coming from traditional crack or root hair entry methods.  
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Microscopic analysis of C. fasciculata nodules   

The above results show that Bradyrhizobium sp. Nodule1 can infect C. fasciculata through 

epidermal fissures or through “crack entry” at the later root junctions. Irrespective of the entry 

mechanisms, the symbiotic interaction finally leads to the formation of nodules. To confirm that 

the observed nodules were formed by the GFP marked Bradyrhizobium sp. Nodule1, the 

nodules were observed by confocal microscopy. As shown in Fig 15B, GFP fluorescing bacteria 

could be seen inside intact nodule indicating that the GFP plasmid in stable and this marked 

strain can be used in further studies to identify the infection and nodulation mechanisms in 

more details.  

 To further analyze the symbiotic interaction ultrastructure of nodules were determined 

using transmission electron microscopy (TEM). The nodules were fixed into resin and ultra-thin 

sections were observed under TEM. TEM micrographs showed elongated bacteroids present 

inside the plant cells and were surrounded by the peri-bacteroid membrane (Fig 15C, D). 

However, the bacteroids seem to lack polyhydroxy butyrate granules that are the hallmark of 

soybean nodules formed by Bradyrhizobium spp. In addition, few cells were only partially filled 

with bacteroids (Fig 15D). These results indicate that symbiotic C. fasciculata nodules are 

different than the soybean nodules and this is likely reflecting the primitive symbiotic 

interactions.  
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Figure 15. Microscopy images analyzing the nodules of Chamaecrista fasciculata using both 

confocal and transmission electron microscopy imaging. A. Transmitted light image showing a 

nodule formed on the root of Chamaecrista fasciculata. B. GFP overlay onto the transmitted 

light image shown in 15A. GFP signal shows that the Bradyrhizobium spp. used in inoculation 

does in fact differentiate and form nodules in Chamaecrista fasciculata. C and D. TEM 

micrographs showing the inoculated Bradyrhizobium spp. inside the nodule from Chamaecrista 

fasciculata. Scale bars are included and labeled for each image for reference for 15C and 15D. 
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Discussion: 

 

 

Bradyrhizobium spp are the preferred symbionts of Chamaecrista fasciculata 

Chamaecrista is the only nodulating genus in the ancestral caesalpiniod subfamily of legumes 

and is of interest because of its primitive nodule morphology and its significance to understand 

evolution of nodulation and nitrogen fixation in legumes (dos Santos et al., 2017, Rathi et al., 

2018).  Diverse species of Bradyrhizobium have been reported to nodulate various 

Chamaecrista spp. found globally (dos Santos et al., 2017, Rathi et al., 2018). In accordance with 

these observations, our studies show that C. fasciculata is exclusively nodulated by 

Bradyrhizobium spp. in the Mid-Western USA. The strains were phylogenetically analyzed using 

sequences of multiple genes such as rrs, ITS, recA and dnaK. These strains are phylogenetically 

diverse and form novel clades and lineage. Further analysis using genomics is needed to 

determine if these are new species of Bradyrhizobium. Similarly, Rathi et al. (2018) reported the 

diversity of root nodule bacteria associated with C. pumila growing in alkaline-neutral-acidic 

soils of India based on multi locus sequence analysis. On comparative phylogenetic analysis of 

Bradyrhizobium strains reported to be associated with Chamaecrista species growing in alkaline 

and acidic soils of different continents it was revealed that except for the strain USDA 3010 all 

Bradyrhizobium strains from this study were genetically distinct from the Chamaecrista-

Bradyrhizobium strains isolated from India, Africa, Brazil (South America) and USA (North 

America). 
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Diversity of symbiotic genes in Bradyrhizobium strain nodulating species of Chamaecrista in 

different continents  

Symbiotic gene phylogenies (based on nodA and nifH genes) were in congruence with analysis 

done using conserved protein coding core genes (recA and dnaK) and 16S-23S ribosomal RNA 

intergenic spacer region. Such congruence is characteristic of genus Bradyrhizobium that possess 

symbiotic island on the chromosome. However there were differences in terms of the legume 

hosts for the strains that showed maximum similarities to the C. fasciculata isolates.  Only one of 

the ten C. fasciculata strains of Clade-I had nod and nif genes identical to B. japonicum and the 

strains clustering in this clade such as B. daqingense, B. huanghuaihaiense, B. liaoningense and 

B. ottawaense. All three strains of the different clade had nodA genes identical to B. elkanii USDA 

76T a microsymbiont of soybean. There are several reports of genetically diverse Bradyrhizobium 

strains possessing common nod sequences (Andrews et al., 2018).  

Based on nifH phylogeny strains ASDSOY and RMN shared close similarities with B. 

ferriligni CCBAU 51502T (isolated from root nodule of tree Erythrophloeum fordii and to B. elkanii 

whereas strain USDA 3010 shared high similarity with sequences of B. embrapense CNPSo 2833T, 

B. tropiciagri CNPSo 1112T, B. viridifuruti SEMIA 690T and microsymbionts of C. fasciculata from 

USA (Dorman and Wallace 2019) as observed for its analysis based on housekeeping genes. 

Except strain USDA 3010 all other Bradyrhizobium strains isolated from C. fasciculata in USA from 

this study were symbiotically and genetically distinct from previously reported strains of USA. 

Rathi et al. (2018) in their study reported about diversity in sym genes of Bradyrhizobium strains 

isolated from species of Chamaecrista growing in acidic soils in India, Africa and Brazil. In the 

present study, the C. fasciculata-Bradyrhizobium strains were also closely related to few (CPS1, 

CPS6 and CPS35) strains of Bradyrhizobium isolated from C. pumila (from acidic soils of Shillong, 
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India; Rathi et al., 2018) indicating that these (B. arachidis, B. forestalis and B. shewense) 

symbiotic genes have wide distribution both in the Old and the New World. This suggests that 

the Bradyrhizobium strains associated with species of Chamaecrista have genetically diverged in 

terms of their core genes but still harbouring closely related symbiotic genes in USA and India. In 

contrast to the strains from India, the C. fasciculata-Bradyrhizobium strains from this present 

study were symbiotically distinct from microsymbionts of Chamaecrista sp. reported from Africa 

and Brazil.  

 

Bradyrhizobium symbionts can enhance growth of C. fasciculata and soybean 

Earlier studies have isolated and phylogenetically characterized the C. fasciculata symbionts. 

However, the ability of these isolates to nodulate and enhance plant growth in axenic 

conditions is not known. It is possible that strains isolated from nodules may not reflect the 

most effective symbiotic strain and thus it is important to determine if the isolates can nodulate 

the host-legume in pure conditions. Our results show that all of the isolates formed pink 

nodules on C. fasciculata and significantly enhanced the growth of C. fasciculata in nitrogen-

free conditions demonstrating their nitrogen-fixing symbiosis. Interestingly, all isolates also 

formed effective symbiosis with soybean, a distantly related and more advanced legume. The 

ability of these isolates to nodulate soybean could be due to extensive soybean cultivation in 

Mid-Western USA soils, an environment native to C. fasciculata.  
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Bradyrhizobium spp infects Chamaecrista fasciculata through both intercellular and 

intracellular mechanisms. 

Rhizobia infect legumes by either inter and intra-cellular mechanisms (Wang et al, 2018) 

(Ibáñez et al, 2016). However, these infection mechanisms have been studied in the model 

legumes such as Medicago, Lotus and soybean that belong to the phylogenetically recent 

Papilionoideae subfamily. Our results using a GUS and GFP marked bradyrhizobial strain and 

microscopy demonstrate that C. fasciculata is nodulated most likely through bacterial entry 

intercellularly via gaps in epidermal cells. However, bacteria were also observed in the root 

hairs, but these did not lead to infection thread mediated invasion of cortical cells. In contrast 

to the epidermal infection in plants grown aerobically, the Bradyrhizobia was mostly localized 

at the lateral root junctions when plants were grown in submerged conditions. This indicates 

that C. fasciculata can also be infected via “crack entry” under aquatic environments.  More 

detailed imaging is needed to further confirm the infection mechanism that leads to nodule 

formation.  
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Conclusion: 

 

 

The results of this study show that an ancestral legume C. fasciculata is exclusively nodulated 

by Bradyrhizobium spp. in soils of Mid-Western USA. These isolates form separate phylogenetic 

clusters than the other known Bradyrhizobia but are similar to some of the soybean symbionts. 

These isolates are able to form nitrogen-fixing symbiosis with both C. fasciculata and soybean. 

One of these isolates marked with GUS and GFP showed that C. fasciculata is infected through 

epidermal layers as well as by “crack entry”. The occurrence of diverse and region-specific 

Bradyrhizobium strains as microsymbionts of species of Chamaecrista growing in different 

continents indicates the promiscuous nature of this genus, which has helped it to co-evolve 

with local rhizobia and effectively fix nitrogen in widespread habitats. 
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