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ABSTRACT

MODEL AUGMENTED DEEP NEURAL NETWORKS FOR MEDICAL
IMAGE RECONSTRUCTION PROBLEMS

by

Hongquan Zuo

The University of Wisconsin-Milwaukee, 2019

Under the Supervision of Professor Jun Zhang

Solving an ill-posed inverse problem is difficult because it doesn’t have a unique solution. In

practice, for some important inverse problems, the conventional methods, e.g. ordinary least

squares and iterative methods, cannot provide a good estimate. For example, for single image

super-resolution and CT reconstruction, the results of these conventional methods cannot satisfy

the requirements of these applications. While having more computational resources and high-

quality data, researchers try to use machine-learning-based methods, especially deep learning

to solve these ill-posed problems. In this dissertation, a model augmented recursive neural

network is proposed as a general inverse problem method to solve these difficult problems. In

the dissertation, experiments show the satisfactory performance of the proposed method for

single image super-resolution, CT reconstruction, and metal artifact reduction.
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Chapter 1

Introduction

1.1 Inverse Problems

Solving an inverse problem is a process that reconstructs un-observed variables from a set of

observed data. Inverse problem methods are widely used in signal processing, medical imaging,

computer vision, and many other applications. For example, cross-section images of a patien-

t can help radiologists to diagnose disease and injury, but they cannot be observed directly.

Computer tomography (CT) reconstruction is an inverse problem, which generates these cross-

section images from X-ray projection data acquired at many different angles around the patient.

Another example of inverse problems is image super-resolution techniques, which generate a

high-resolution image from one or a few observed low-resolution images.

Mathematically, in an inverse problem, a unknown variable x ∈ X → Rd1 is reconstructed

from an observed variable y ∈ Y → Rd2 , where d1 and d2 are dimension of space X and Y . It

is usually modeled as a linear system

y = Ax+ ε (1.1)

where A : X → Y is a linear projection model, ε is a random variable of noise. A could be a

human-designed projection matrix, or a learned function from a training data set.
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FIGURE 1.1: Difficulty of inverse problems and model complexity of their methods

1.2 Inverse Problem Methods

As shown in Figure 1.1, inverse problems have two difficulty categories: well-posed and ill-

posed. A well-posed inverse problem has two features: 1) the number of unknown x is smaller

than the number of observations y; 2) the condition number ofA is small. A well-posed problem

has a unique and stable solution. A simple method, like the ordinary least squares (OLS),

could generate a good result. On the contrary, in an ill-posed inverse problem, the number

of unknowns is more than observations, or the condition number of A is large, which causes

the numerical unstable problem or overfitting problem. “Unstable” means a small noise on y

generates a large error on x. In practice, many important inverse problems are ill-posed. For

example, single image super-resolution (SISR) and CT reconstruction with few views are two

ill-posed inverse problems that are addressed in this dissertation.

Based on model complexity, there are three kinds of inverse problem methods:

1. one-step inversion, e.g. weighted least squares (WLS) in SISR and filtered back-projection

(FBP) in CT reconstruction, see Appendix. The pros are simple and fast, the cons are low

performance and sensitive to noise.

2. iterative methods, e.g. gradient descent and coordinate descent. The pros are tolerant of

noise, no need to training data. The cons are slow convergence.

2



FIGURE 1.2: A comparison of inverse problem methods: one-step inversion methods, iterative
methods and machine-learning-based methods. For CT reconstruction, FBP is an one-step inversion

method.

3. machine-learning-based methods, especially deep learning for image reconstructions.

The pros are superior performance and fast while testing. The cons are that it needs a

large amount of training data and it is difficult to train a deep neural network.

An inverse problem and its method should have matched difficulty of the problem, model com-

plexity of its method, and computational resources. The computational resources include com-

putational power and training data sets. If the model complexity is higher than the difficulty,

the method wastes computational resources and requires more training data. If the model com-

plexity is lower than the difficulty, the result is not good.

Regularization functions is a popular tool to solve ill-posed inverse problems. A regularization

function usually is an energy function, which has a sparse probability distribution. L1-norm

[15], L2-norm or total variant (TV) of local gradients are common regularization functions.

For example, TV regularization is used in CT reconstruction to preserve edges in CT images

[65]. Mathematically, a regularization function reduces the condition number of A to reduce

the ill-posedness of an inverse problem. In Bayesian statistics, maximum a posteriori proba-

bility (MAP) estimate is a popular method to estimate a solution of an inverse problem with

regularization functions. Iterative methods, e.g. gradient descent or coordinate descent, are

3



used to solve MAP estimation and get close to the mode of this posterior distribution. If the

problem is a convex problem [8], the mode of the posterior is the global optimum.

In practice, one-step inversion is too sensitive to noise ε. Meanwhile, iterative methods usually

have a slow convergence and unsatisfactory results. For example, for low-dose CT recon-

struction, the CT scan data has a strong Poisson noise. Then the reconstructed images have

many artifacts, and it takes more iterations to get results. Now people can have more power-

ful computers and access more high-quality data, so they can choose machine-learning-based

methods with a more complex model. deep learning, as a hot topic in machine learning, shows

the superior performance upper-bound in many image reconstruction applications, e.g. image

recognition [37], super-resolution [39] and segmentation [19].

1.3 Deep Learning for Image Reconstructions

deep learning is a family of machine learning methods to use artificial neural networks to learn

the hierarchical representation of data. In recent years, deep learning has many success stories

in inverse problems. Four main factors drive the growth of deep learning: structures, optimiza-

tion algorithms, hardware and software platforms, and high-quality data sets.

Structures LeCun et al. [41] in 1989 proposed convolutional neural networks (CNN) and

backpropagation algorithms to recognize hand write digit numbers. Alex et al. [37] used deep

CNN AlexNet in ImageNet Large Scale Visual Recognition Challenge [12] and dramatically

boosted the classification accuracy. People were excited by AlexNet’s superior performance

that reduced the classification error from 26.1% to 15.3%, also were inspired by how to use

graphics processing unit (GPU) to accelerate deep neural network training. Simonyan et al.

proposed VGGNet [49] to further improve the classification accuracy, which only stacks 3x3

CNN to build a very deep CNN. Because of the vanishing gradient problem (VGP), training a

very deep neural network is very slow even stopped. He et al. [24] proposed ResNet structure,

which contains bypass paths to do residual learning and directly backpropagation gradient to

4



parameters in front layers. Even more than 1000 layer CNNs can be trained with ResNet

structure.

Optimization algorithms Deep learning optimization algorithms are also important to train a

deep neural network. A typical deep neural network has millions trainable parameter, which are

trained by Stochastic gradient descent (SGD) algorithm or Mini Batch gradient descent. Mo-

mentum [51] uses accumulated gradients and leads to faster and stable convergence. Nesterov

accelerated gradient (NAG) [45] estimates new gradients to aggressively accelerate conver-

gence. Adagrad [16] uses a adaptive learning Rate for every parameter. Adam [36] estimates

mean and uncentered variance of gradients and reduce learning rate of the parameters, which

have large variances of gradients.

Hardware and software platforms Besides many novel deep neural network structures, the

developments of GPU and deep learning software platforms also support the growth of deep

learning. Now the game-driven GPU industry has become Deep-Learning-driven. In our exper-

iments, training a deep neural network with a GPU is 30 times faster than the training without

GPU. The software platform like Caffe [32], Tensorflow [1], Pytorch [33], Theano [6], and

Keras [21] reduce the workload to write a Deep Learing program, and lower the bar of studying

deep learning.

High-quality data sets The MNIST database (Modified National Institute of Standards and

Technology database) [41] is a large database of handwritten digits that is commonly used as a

benchmark data set for training and testing of a deep neural network. It contains 60,000 train-

ing images and 10,000 testing images. ImageNet Large Scale Visual Recognition Challenge

[12] data set contains more than 14 million hand-annotated images with more than 20,000 cat-

egories. DIV2K [4] is used in the SISR competitions NTIRE (CVPR 2017/2018) and PIRM

(ECCV 2018).

Combine a model into a deep neural network An inverse problems usually have a projec-

tion matrix A to model the forward process from unknown x to observation y. Researchers

5



tried to combine A in to the structure of a deep neural network in order to provide more in-

formation and improve results. Weber et al. introduce Imagination-Augmented Agents (I2As)

[60] to combine model-free and model-based aspects for deep reinforcement learning. Adler

and Oktem [2] use iterative deep neural network as a gradient descent optimization process

to reconstruct CT images. In their method, a deep CNN extracts features from gradient of

likelihood function and prior function. The gradient of the likelihood function includes the pro-

jection matrix A. In this dissertation, we independently develop a similar structure as a general

framework to solve ill-posed inverse problems. In our neural network, there are two feature

extraction blocks, a model-related likelihood block and a model-free prior block. Comparing

to Adler’s network, our network has more trainable parameters in the likelihood block to focus

on the functionality of likelihood block. Adler didn’t study which branch gives more improve-

ment. In this dissertation, an experiment in Chapter 4 proves that while working with a noised

data, the likelihood block works better than the prior block.

TABLE 1.1: List of important deep learning network structures

Year Structure
1989 LeNet [41]
2012 AlexNet [37]
2014 VGG [49]
2016 ResNet [24]
2017 DenseNet [27]

1.4 Contributions

The contributions of this dissertation are listed below:

1. Proposed a model augmented recursive neural network (MARS) structure as a framework

to solve ill-posed inverse problems.

2. Used MARS in medical image Single Image Super-resolution (SISR). Address three spe-

cial problems in medical image SISR to improve the resolution enhancement.
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3. Used the proposed model augmented recursive neural network (MARS) in CT image

reconstruction and metal artifact reduction (MAR)

4. Built a guideline of adjusting the distribution of trainable parameters in the proposed

MARS neural networks: when the observed data contains strong noise, the likelihood

block should have more trainable parameters. An experiment in this chapter demonstrat-

ed that when the initial solution, e.g. FBP, contained strong artifacts, the model-based

likelihood block provided more improvements than the model-free prior block.

5. Used deep learning optimization algorithms, e.g. Momentum and Adam, for CT image

iterative reconstructions.

This dissertation is organized as follows: Chapter 2 describes the motivation and variants of the

proposed MARS neural network as a general framework to solve ill-posed inverse problems.

Chapter 3 reviews SISR methods for natural and medical images. MARS is compared with a

state-of-the-art SISR method for natural image SISR to demonstrate the functionality of MARS.

Then MARS is used for medical image SISR. Chapter 4 reviews CT reconstruction methods and

provides two experiments by using deep learning techniques for CT reconstruction: the first one

is using two deep learning optimization algorithms to accelerate iterative CT reconstruction; the

second experiment is using MARS for CT reconstruction and metal artifact reduction. Chapter

5 summarizes the main findings in this dissertation, and then discusses the limits of MARS and

our future works.
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Chapter 2

Model Augmented RecurSive Neural Networks for

Ill-posed Inverse Problems

A model augmented recursive neural network (MARS) is proposed to solve ill-posed inverse

problems. MARS combines human-designed projection and back-projection models into the

structure of a deep neural network, to simplify the structure of a neural network and improve

its performance. This chapter is organized as follows: Section 2.1 introduces the mathematics

motivation of MARS, which is originally inspired by an iterative gradient descent algorithm to

solve regularized inverse problems. Section 2.2 describes the structure of MARS and its main

parts.

2.1 Motivation of Model Augmented RecurSive Neural Net-

works

2.1.1 MAP Optimization

A common procedure to solve an ill-posed inverse problem with some regularization is the

following:

1. Build a projection model A while using the knowledge of generating y from x.
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2. Apply a noise model of ε to build a probability likelihood function. The simplest case is

to model ε as Gaussian random variables. Then the negative log-likelihood function is a

weighted squared Euclidean distance between y and Ax.

3. In the Bayesian framework, add an extra constraint function P (x) as a prior function to

regularize x, then the inverse problem becomes a MAP optimization. In regularization

theory, regularization can reduce the phenomenon of overfitting. total variation (TV)

and generalized Gaussian Markov random field (GGMRF) are popular non-linear edge

preserved smooth priors. Recently Data-driven priors [50], [55] give more competitive

results.

x̂ = argmin
x
LossMAP (x, y)

= argmin
x

(− logP (y|x)− logP (x))

= argmin
x

(F1(x, y) + F2(x))

(2.1)

where LossMAP (x, y) = − logP (y|x) − logP (x)) is loss function of the MAP esti-

mation. The first and second terms in Equation (2.1) are likelihood and prior functions,

denoted by F1(x, y) and F2(x).

4. Solved the MAP estimation by iterative methods Equation (2.2).

xt+1 = xt +Rθ(x
t, y) (2.2)

where t is the index of iterations, Rθ(x
t, y) a residual function to iteratively reduce re-

construction error, θ is fixed or learned parameters. Rθ(x
t, y) could be a human designed

function or a machine learning based estimator. gradient descent (GD) or coordinate de-

scent (CD) algorithms are first-order iterative methods. Second-order iterative methods,

for instance Newton’s method or quasi-Newton’s method (BFGS), can improve optimiza-

tion, but with intensive computation.
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FIGURE 2.1: Iterative method structure

2.1.2 Gradient Descent for MAP

If both of the likelihood and prior functions have the first derivative, an iterative gradient descent

solution at t iteration is

xt+1 = xt +RGD(x
t, y)

= xt − α∇LossMAP (x
t, y)

= xt − αG(xt, y)

= xt − α(∇xF1(x
t, y) +∇xF2(x

t))

(2.3)

where α is a learning rate or step size of GD, Rθ(x
t, y) = RGD(x

t, y) is a fixed function

without trainable parameters, ∇x is the gradient of a function with respect to x given y and

G(xt, y) = ∇LossMAP (x
t, y) is gradient at iteration t to compensate reconstruction error in

xt. The −αG(xt, y) is a greedy estimate of the ground truth of residual Rgt = xgt − xt, where

xgt is the ground truth of x.

Based on a simple assumption that ε in Equation (1.1) is a Gaussian noise, the negative log

likelihood function is

F1(x) = − logP (y|x)

= − log e−
1
2
(y−Ax)TD(y−Ax)

=
1

2
(y − Ax)TD(y − Ax)

(2.4)
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where D is the inverse matrix of the covariance matrix of noise ε. If ε is a standardized inde-

pendent and identically distributed (i.i.d.) Gaussian noise, D is the identity matrix, so

F1(x) =
1

2
|y − Ax|2 (2.5)

In this case, the gradient from the likelihood function F1(x
t, y) is

∇xF1(x
t, y) = A∗(Axt − y) (2.6)

where A∗ is the adjoint operator of A. If A is a matrix, A∗ is AT , which is the transpose of A. A

and AT are called projections and back-projection models. In fact, ∇xF1(x
t) = AT (Axt − y)

has a nice interpretation of being the back-projected reconstruction error in the image domain

from the reconstruction error y − Axt.

Traditionally prior term F2(x
t) is an human designed energy function of xt, for example, total

variation (TV) and generalized Gaussian Markov random field (GGMRF), as non-linear edge

preserved priors. Now both of the likelihood and prior functions are human designed, so the

gradient GGD(x
t, y) is a fixed function of xt given y.

GGD(x
t, y) = AT (Axt − y) +∇xF2(x

t) (2.7)

2.1.3 Projection and Back-projection Models

In iterative methods, both xt and y are representations of the same image in latent space X

and observation space Y . To measure inconsistency between xt and y, there should be a pro-

jection model A : X → Y and a back-projection model B : Y → X to connect these two

spaces. Because A is designed directly from the knowledge of an imaging system, A is accu-

rate and reliable. Furthermore, a fixed A makes the problem simpler than a learned projection
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FIGURE 2.2: The structure of gradient descent.

model. So in this dissertation, A is a human-designed projection model. But there are two

options for B: one is AT , which is not the inversion of A and is just a back-projection with

some statistic assumptions. AT is a simple and low-cost back-projection model. Another is a

machine-learning-based function BML, which is a sophisticated but high-cost back-projection

model. The choice between AT and BML depends on the cost-effectiveness for different appli-

cations.

In CT reconstructions, both of A and B are “global models”. X and Y are high-dimensional

space. This high dimensionality causes two problems: first, it is a difficult task to train a

model, e.g. Multilayer perceptrons (MLP), as a back-projection operator with a huge amount

of parameters. Second, the number of parameters is too large to fit into a common computer

system. For instance, x is a 1024 × 1024 CT image, and y is a 1000 × 1000 sinogram (CT

data). The back-projection matrix is a 10242 × 10002 sparse matrix. If using 32-bit float, it

needs almost 4 TB memory to store a full back-projection model BML. But after building a

human-designed sparse matrix AT [48] based on the geometric knowledge of a CT system, it

only needs 2 GB to store AT in a sparse matrix format. So AT is used in CT reconstructions.

In SISR problems, both A and B are “local models”. A is a down-sample and blurry operator,

and B should be an up-sample and sharpening operator. Because B has local support regions,

the parameter of BML is sparse with fixed grids. The transpose convolutional neural network
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can be trained as BML with an affordable computational cost. So BML is used in SR problems.

In the sake of simplicity, BML is replaced by B.

2.1.4 Deep Convolutional Neural Network Based Residual Estimator

In conventional methods, both of likelihood and prior terms in equation (2.7) are human-

designed. However, encouraged by the recent success of deep learning methods, especially

in image reconstruction applications, a deep learning method is proposed to estimate the resid-

ual R(xt, y), from a large amount of training data. An MLP is a common neural network in

deep learning. In MLP one neuron of one layer is fully connected to all neurons in the next

layer. The amount of parameters is large, and it is easy to overfit. Some regularization on

neural network parameters is needed to reduce the number of parameters and improve its gen-

eralization. Because images have localization and spatial invariant properties, convolutional

neural network (CNN) is developed which adds a spatial parameter sharing regularization and

learns a hierarchical feature bank with a local support region. In the proposed MARS method,

a CNN based Rθ(x
t, y) is trained to approximate Rgt(x

t, y), where θ is the set of all trainable

parameters.

In Rθ(x
t, y), there are two inputs: previous solution xt and observed y. Some researchers just

use one, xt or y, as the input of a CNN to estimate the residual Rgt(x
t). Both of these networks

produce competitive results. However, one intuitive question is: could we use both of xt and y

as inputs and how?

Some researchers apply the model augmented idea in [47] [2] to combine human-designed A

and AT into a neural network. Taking advantage of the known projection and back-projection

models, the learning complexity of a neural network is reduced.

2.1.5 Residual Learning in MARS

The backpropagation is an efficient training algorithm in deep learning, which applies the chain

rule of derivatives to layer-by-layer backward propagates the gradient of a loss function to
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the trainable parameters in a gradient descent strategy. So a loss function is the source of

informative feedbacks to adjust the parameters. Suppose in training data, ground truth xgt is

known, then the target residual at T iteration is also known, RT
gt = xgt − xT−1, where T is the

number of iterations. So the final target variable to learn is the residual RT
gt, not the original

target variable xgt. By default, the loss function is an L2-norm,

LossML(x
T−1; y, θ) = |xgt − (xT−1 +Rθ(x

T−1, y))|2

= |xgt − xT−1 −Rθ(x
T−1, y)|2

= |RT
gt −Rθ(x

T−1, y)|2

(2.8)

θT = argmin
θ
LossML(x

T−1; y, θ)

= argmin
θ
|RT

gt −Rθ(x
T−1, y)|2

(2.9)

Notice xT = xT−1 + Rθ(x
T−1, y) = xT−1 + Rθ(Rθ(x

T−2 + xT−2, y), y) = ... is a recursive

function. The unrolled graph of the whole network is a deep feedforward network from y to xT

with shared parameters θ

2.2 Structure of MARS

MARS uses the iterative strategy of estimating residuals from a CNN based neural network.

MARS has one bypass branch and three CNN blocks: likelihood, prior and reconstruction

block. In the likelihood block, augmented with the human-designed A and A∗ to project and

back-project error between xt and y.
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2.2.1 Bypass Branch

A bypass branch directly sends xt to xt+1, which fits the equation of iterative methods equation

(2.2). Furthermore, this bypass branch is also inspired by ResNets [24], which solves the

vanishing gradient problem (VGP) while training a very deep neural network.

Vanishing Gradient Problem (VGP) Researchers demonstrated that compared with a shal-

low neural network, a deeper neural network has a higher representational capacity and po-

tentially a higher-performance upper bound [40]. But simply stacking more layers does not

improve even degrades the learning performance. The reason is that while doing backpropaga-

tion, the magnitude of gradients is reducing until smaller than the magnitude of noise. Then the

training stops and no update for the parameters in front layers [25].

Solve VGP A solution of VGP is the multi-stage training method. Recently, ResNets showed

that the bypass branches in neural networks are another solution of VGP. The bypass branches

directly send the gradients into the parameters in front layers. Researchers [56] claim that

ResNets is ensembles of relatively shallow networks and yields superior performance. For

image reconstructions, usually xt is a low frequency passed version of xgt, and residual xgt−xt

is a high frequency passed version which has more high-frequency information.

xt = LPFt(xgt)

xgt − xt = HPFt(xgt)
(2.10)

where LPFt() is low-pass filters and HPFt() is high-pass filters.

2.2.2 Likelihood Block

A CNN C1(x
t, y) extracts non-linear features f t1 from the back-projected reconstruction error

B(y −Axt) with a human-designed projection model A and a fixed or learned back-projection
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models B. This block has two inputs, y, and xt. Because y is directly observed from sensors

or other data equipment, and xt may have overfitting error, so y is much reliable than xt. But

xt and the target xgt are in the same space. The correction procedure is: first, project xt to Axt;

second, measure error y − Axt; third, back-project/spread this error to all related unknown

variables B(y −Axt). Models A and B have augmented blocks in a neural network to provide

refined features, so this structure is called model augmented. This branch is a model augmented

likelihood branch or called the likelihood block in this dissertation.

2.2.3 Prior Block

A CNN C2(x
t) directly extracts features f t2 from xt. In some networks, the input of C2() is

∇xF2(x
t) [2], where F2(x

t) is a human-designed prior function, e.g. TV. Because the purpose

of this dissertation is to demonstrate the functionality of likelihood block. We only use x as

input of the prior block C2(x
t).

2.2.4 Reconstruction Block

The reconstruction block C3(f
t
1, f

t
2) is a multi-layer CNN with the likelihood and prior features

f t1, f
t
2 as inputs. There are two methods to combine these two groups of input features to a new

feature f t3: one naive method is using the matrix sum operation directly add these two features,

f t3 = f t1 + f t2; another is a matrix concatenation [f t1, f
t
2] followed by a C1×1(), which is a 1× 1

kernel size CNN layer. It is easy to show that the first operation is a special case of the second

operation with fixed and sparse parameters in C1×1(). The MARS with the first operation is

called Naive MARS, and the second operation is called MARS. The experiments are Chapters

3, 4 show that MARS has a better performance than Naive MARS.
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FIGURE 2.3: The structure of naive MARS.

f t1 = C1(x
t, y) = C1(A

T (y − Axt))

f t2 = C2(x
t)

f t3 = f t1 + f t2

f t4 = C3(f
t
3)

xt+1 = xt + f t4

(2.11)

f t3 = C1×1([f
t
1, f

t
2]) (2.12)

where [, ] is the feature concatenate operation in neural network, and C1×1() is a 1 × 1 CNN

layer with a linear activation function.
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FIGURE 2.4: The structure of MARS.
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Algorithm 1: Naive MARS
Data: y, A, B

Result: xT

1 Initial solution x0;

2 for t = 0, 1, ..., T − 1 do

3 likelihood features: f t1 = C1(x
t, y) = C1(B(y − Axt));

4 prior features: f t2 = C2(x
t);

5 combined features: f t3 = f t1 + f t2;

6 residual reconstruction: f t4 = C3(f
t
3);

7 new solution: xt+1 = xt + f t4;

8 end

Algorithm 2: MARS
Data: y, A, B

Result: xT

1 Initial solution x0;

2 for t = 0, 1, ..., T − 1 do

3 likelihood features: f t1 = C1(x
t, y) = C1(B(y − Axt));

4 prior features: f t2 = C2(x
t);

5 combined features: f t3 = C1×1([f
t
1, f

t
2]);

6 residual reconstruction: f t4 = C3(f
t
3);

7 new solution: xt+1 = xt + f t4;

8 end

2.3 Summary

This chapter introduced the proposed MARS neural network frame to iteratively solve ill-posed

inverse problems. In inverse problems, there are two representations (xt and y) in two different

spaces (X and Y ). MARS is trained to give an estimate xT , which is close to ground truth
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xgt, meanwhile consistent with observation y. In MARS, a model augmented branch is de-

signed to measure the difference between xt and y and extract features from this difference.

These reconstruction error features f t1 is used to compensate the next estimate xt+1. Chapters

3 and 4 describe the applications of MARS in medical image super-resolution and CT image

reconstruction.
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Chapter 3

Single Image Super-Resolution For Medical Images

3.1 Introduction

3.1.1 What is Super-Resolution

Super-resolution(SR) technique produces one high-resolution (HR) image from one or multi-

frame of low-resolution (LR) images. Since the number of observations is much smaller than

the number of unknown HR pixels, the SR problem is an ill-conditioned or ill-posed inverse

problem, and it is hard to reconstruct a stable and visual pleasured HR image.

In equation (1.1), the latent variable x ∈ Rd1 and the observation y ∈ Rd2 , where d2 � d1. In

the SR problem, A is generally modeled as a down-sample and blurry matrix, ε is an additive

white Gaussian noise. The pseudoinverse inverse A+ is unstable and generates artifacts in

high-resolution results.

To solve the SR problem, there are two methods to add more constraints and reduce the ill-

posedness of SR problems. One conventional method is multi-frame super-resolution (MFSR)

which uses multi-frame of related LR images to increase the number of observed data d2 and

provide more constraints on HR image, [18] [17]. For instance, some recent flagship cell phones

are equipped with two/three LR cameras, in order to simultaneously take multiple LR pictures

at the same scene, and then fuse these LR pictures at a sub-pixel level. Another method is
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FIGURE 3.1: An illustration of a SISR problem. The forward process from HR to LR are down-
sampling and blurring. Super-resolution is a inverse process to reconstruct HR from LR.

Single Image Super-Resolution (SISR) with some prior information from general models(like

TV, L1-norm) or data-driven models(example based, deep learning). SISR is a hot topic in the

computer vision community since for some situations, only one LR image can be provided to

generate an HR image. For example, in many cases, only one copy is provided when applying

SR to a historical picture. In another example, a low-end surveillance camera system can only

give one observed LR image for the sake of cost-efficiency.

3.1.2 Why Use SISR for Medical Images

For medical imaging applications, HR images are desired to provide more information about

patients to help doctors or radiologists to make decisions. Furthermore, machine learning-

based medical diagnosis techniques have been emerging in recent years in medical imaging to

increase diagnosis accuracy and reduce medical costs. As an important pre-processing step to
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enhance the resolution of medical images, the SR technique is used to improve the performance

of diagnosis machines [46] [57] [30].

When compared with MFSR, SISR is widely used in medical imaging, especially in X-ray

imaging, due to the following two reasons: 1) SISR can be used to reduce the risks of cancer

caused by x-radiation. For example, for X-ray imaging, some studies [43] [7] show a theoreti-

cal link between X-ray radiation and risk of cancers; therefore, the low dose of X-ray is often

desired for X-ray imaging, which produces medical images with lower resolution. Similarly,

Multi-frame X-ray imaging is usually restricted as it requires more X-ray exposure time and

thus brings a higher risk of radiation-related diseases. SISR provides an effective way to obtain

relatively high-quality medical images while reducing the patients’ exposure to x-ray radiation.

2) SISR can be used to improve the cost-effectiveness of medical imaging. The image resolution

and the cost of hardware in a medical imaging system are often in a nonlinear relationship. For

example, machines that use 100-micron detector cell X-ray panels (higher-resolution or high-

res) cost much higher than that use 200-micron detector cells (lower-resolution or low-res). Due

to economic considerations, lower-res machines still have a lot of customers, especially in de-

veloping economies. In order to balance the quality of images and the cost of medical imaging

hardware, a strategy is to use LR hardware with a lower cost to first obtain LR images and then

enhance these low-resolution images by software, like SISR, to provide similar performance of

HR hardware. This is the motivation of our SR project to apply SISR to increase the resolution

and quality of LR X-ray images and approaching images from HR X-ray hardware.

3.1.3 Organization of Chapter 3

The rest of this chapter is organized as follows: Section 2.2 reviews related works of SISR,

before and after deep learning; Section 2.3 describes how to use the proposed MARS method

for medical image SISR, particularly for X-ray imaging; Section 2.4 has three SISR experi-

ments: the first preliminary experiment shows the upper-bound performance of MARS SISR;

the second natural image SISR experiment demonstrates that MARS has a comparable perfor-

mance to state-of-the-art deep-learning-based SISR methods; the third chest X-ray image SISR
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experiment shows the performance of MARS SISR, meanwhile emphasizing the contributions

of the MARS method. Section 2.5 is the conclusion of medical image SISR with MARS.

3.2 Related Work

SISR techniques are driven by the development of deep learning techniques. Due to the superior

performance of Deep learning, almost all winners of SISR competitions or tasks were using

deep-learning-based methods after 2015 when Deep learning was [13]. Therefore, we divide

the SISR literature into two categories based on whether deep-learning is applied or not: Non-

deep-learning-based and deep-learning-based, or prior to deep learning and post deep learning.

This review of related SISR literature primarily focuses on Deep learning-based methods, in

order to guide the design of the proposed MARS method.

3.2.1 Before Deep Learning

Traditionally, interpolation techniques (e.g., cubic splines) have been used by many researchers

to increase resolution. However, the resulting images are often blurry creating problems with

accurate diagnoses. To increase sharpness, gradient enhancement techniques such as [23] were

used to enhance edges in the increased-resolution image. Similarly, total variation (TV) and

sparseness priors have also been used for the same purpose [44]. While useful in improving

the sharpness of edges, these techniques are not very effective in improving textural details.

To solve this problem, a number of learning based techniques were proposed, e.g. [14][10].

The learning-based techniques use a database of high-res images (and their low-res versions)

to learn a predictive relationship between a low-res image patch and its corresponding high-

res image patch; this relationship is used to generating high-res patches for low-res images

whose high-res versions are not available. This approach can be quite effective but it generally

requires a large database of high-res images whose low-res versions are very similar to the

low-res images to be enhanced. The approach also raised concerns from some radiologists who
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questioned whether high-res image patches from the patient database can or should be used to

estimate high-res image patches for another patient.

Meanwhile, an effective alternative was proposed in [29]. This approach, known as self-

exemplar SISR. The basic idea here is closely related to that of self-similarity or fractals: in a

natural image, the same patterns can often be observed at different scales. The main advantage

of this approach is that it does not require a database of training/example images, potentially

increasing acceptance by radiologists. Based on this self-exemplar concept, Huang et al. [28]

introduced more transformation to find potential similar patches from just one single image.

Yang et al. [62] applied coupled dictionary learning with sparse coding prior to SISR, based

on an assumption that a pair of HR and LR patches should have the same sparse code. This

assumption is used as a regularization while alternatively training a couple of HR dictionary

and LR dictionary. From the view of deep learning, the LR dictionary is a linear coder with

one-layer CNN, and the HR dictionary is a linear decoder with one-layer CNN. So this method

can be implemented as a two-layer auto-encoder with sparse code. This auto-encoder is shallow

and wide with 1024 codes. It has potential value to be combined with a deep neural network as

a “wide and deep” structure [11].

3.2.2 Deep Learning

A deep CNN [41] learns hierarchical representations of images from a large-size training data

set. Encouraged by many deep learning success stories, SRCNN [13] uses only 3 CNN layers

and shows superior performance than previous non-deep learning method. SRCNN builds a

benchmark framework for end-to-end style SISR methods: feature extraction, feature non-

linear mapping, and reconstruction. The SISR methods based on this framework have four

questions, arise and inspire improvements of SISR:

Where to obtain high-quality training data? The quality of the data set is crucial to the

results of SISR. Researchers collect images from the Internet as a data set. Set5, Set14 [64],

BSDS100 [5], Urban100 [28] are public high quality training data or benchmark testing data.
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DIV2K [4] is used in the SISR competitions NTIRE (CVPR 2017/2018) and PIRM (ECCV

2018). Imagenet [12] is a large image data set, which has 14 million manually annotated

images. Data augmentation is another strategy to increase the number of data set. Common

data augmentation methods are random crops, rotation, and flip [37]. Data augmentation is one

of the seven methods to improve SR in [54].

Use data augmentation for medical images? A simple answer is “No”. A deep neural

network learns non-linear mapping (correlation) functions between input and the target xgt.

The input could be the original input or pre-processed input. For example, in SISR, SRCNN

[13] uses interpolated HR images x0 = bicubic(y, 4) as the input,where bicubic(, 4) is the 4x

bicubic up-sample, and trained a CNN to learn the mapping functions between x0 and xgt. The

advantage is that the mapping function is simpler because x0 and xgt are in the same space

X . The disadvantage is information might be removed by the bicubic interpolation. LapSRN

[38] directly learn the mapping functions between y and xgt. The advantage is y has all the

information. The disadvantage is a non-linear up-sample operate B should be learned from a

training data set. DBPN [22] uses both of x0 and y as inputs and iteratively reconstruct HR and

LR images. This structure is similar to [3], which applies a deep neural network to iteratively

solve a primal-dual problem. In the proposed MARS structure, both xt and y−Axt are inputs.

So features in the spaces X and Y are extracted and mapped to xgt.

The deeper, the better? One trend of deep learning is that researchers are applying deeper

neural network to achieve superior performance. A review paper [63] goes through the devel-

opment of deep learning SISR methods. This paper also compares the deep learning structures

of recent SISR methods. One trend of deep learning SISR is the deeper, the better. Kim et al.

proposed VDSR [34], which is a 20-layer deep VGG-style [49] SISR model. Kim et al. further

introduce a deep 16x recursive neural network DRCN [35] which shares parameters among

layers, in order to use a few parameters to build a deeper neural network. DRRN [52] and

MS-LapSRN [39] build very deep neural networks on this recursive neural network structure.

The proposed MARS is also a recursive neural network with shared parameters, see Figure 2.1.
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How to train a deep neural network? Because of the vanishing gradient problem, it is d-

ifficult to train a plain VGG-style deep neural network. ResNet [24] and DenseNet [27] show

that bypass links among CNN layers can speed up learning convergence and boost performance.

One reason is that these bypass links directly back-propagate gradients to deeper layers. ResNet

has shallow and deep these two kinds of paths. The shallow paths learn low-frequency informa-

tion, and deep paths learn high-frequency residual information. So it is called Residual learning

Network.

Progressive learning is one technique to train a deep neural network. The outputs of interme-

diate layers are raw estimate xt of HR xgt. The loss functions between xt and xgt are added

to the total loss function, as regularizer on the intermediate representation of an image. These

intermediate loss terms guide the reconstruction of xt close to a reasonable solution xgt. For

example, an 8x MS-LapSRN generates 2x/4x/8x reconstructions progressively and uses all loss

function at different scales (2x/4x/8x).

The proposed MARS uses residual learning and progressive learning techniques to train a very

deep recursive neural network.

3.3 Contributions and Proposed Methods

3.3.1 Contributions

The contributions of this chapter are listed below:

1. Used the proposed model augmented recursive neural network (MARS) in medical image

single image super-resolution (SISR).

2. Addressed a class imbalance problem in medical image SISR to improve the resolution

enhancement.

3. Analyzed data augmentations for medical images. Used a merged training data set with

90% original data and 10% augmented data.
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3.3.2 MARS for Medical Image SISR

The proposed model augmented recursive neural networks (MARS) in Algorithm 2 can be

used for medical image SISR. The MARS is originally motivated by gradient descent (GD)

algorithm to iteratively solve an ill-posed inverse problem Equation (2.3). As described in 2.2,

MARS has one bypass branch and three CNN blocks (likelihood, prior and reconstruction).

3.3.2.1 Bypass branch

One bypass branch passes a current high-resolution estimate xt to a next iteration/stage estimate

xt+1. The target output of MARS is the difference between the ground truth xgt and xt. This

new target is called residual in boosting algorithms that convert a group of weak learners to

a strong learner in order to reduce bias and variance of estimation. The bypassed signal xt

keeps low-frequency information and the residual Rt has high-frequency information which is

the learning target of our neural network. The high-frequency information provides more detail

information to help doctors to make medical decisions .

3.3.2.2 Likelihood Block

There are two image representations with inconsistency between them: an observed low-resolution

image y, and an imperfect estimated high-resolution image xt. They cannot be compared di-

rectly since they are at different resolution levels. A project model A is build to transform

a high-resolution image to a low-resolution image, and a back-projection model B does the

inverse/back projection.

Fixed Down-sample and Learned Up-sample. As mentioned in Chapter 2, both projection

and back-projection models can be fixed human-designed models or learned from training da-

ta. The fixed models make methods simple and low-cost, and the learned models increase the

learning capacity of methods with a higher computational cost. Considering A is directly build
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from the knowledge of problems, and B is indirectly built from A and some statistic assump-

tion, e.g. noise is i.i.d. Gaussian, A is more accurate than B. To balance the computational cost

and performance of MARS, a fixed A and a learned back-projection model U is used in MARS

SISR, where U is a one layer transpose CNN.

By using these two models A and U , MARS measures and reduces the inconsistency (recon-

struction error) between y and xt. Firstly, projects xt to low-resolution Axt from a down-

sample function A. Secondly, measures the low-resolution inconsistency y − Axt. Thirdly,

back-projects the low-resolution inconsistency to high-resolution U(y − Axt). Finally extract-

s features of the high-resolution inconsistency and trains a CNN as a regressor to map these

features to the target residual Rt.

3.3.2.3 Prior Block

The traditional prior models are usually sparsity-driven energy functions of x, such as Tikhonov,

total variation (TV) and generalized Gaussian Markov random field (GGMRF). These func-

tions rely on some general sparse models of the image gradient. For example, the probability

distribution of image gradients is Gaussian or Laplacian distribution, then the corresponding

regularization/ prior model is L2-norm or L1-norm of image gradients. However these sparse

prior models emphasize the generalization for all of the natural images, then they provide weak

constraints to reconstruction. Data-driven models, e.g. deep learning, can learn more complex

mapping functions in a large amount of training data [55] [13]. In proposed MARS, a CNN

block is used to learn a prior model based on a natural or medical image data set.

3.3.2.4 Reconstruction Block

The reconstruction block in MARS is a CNN block, whose works are:

1. using a 1x1 CNN layer to compressed features [f1, f2] from the likelihood feature block

and the prior feature block. Comparing to a popular VGG-style [49] 3x3 CNN layer, this

1x1 CNN layer only has 1/9 trainable parameters.
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2. doing feature embedding with a 5-layer CNN block.

3. the finial reconstruction layer is a 5x5 CNN layer with the linear activation function.

Actually, this layer learns a linear regression between the embedded features and residual

Rt.

3.3.3 Multi-channel MARS for SISR

In the SISR problem, x is a high-resolution image and y is an observed low-resolution image.

For medical images, x and y usually are grayscale images, which have only one intensity chan-

nel; for natural images, x and y are RGB three-channel images. To have the same structure

for both medical and natural images, RGB images are transformed into YCbCr format, then

MARS is used on the brightness Y channel and bicubic interpolations are used on the CbCr

channels. After super-resolution, the resolution enhanced YCbCr images are converted back to

RGB format. So for all SISR applications, x and y are one channel images.

The original MARS for SISR is applied to grayscale images which are a one-channel repre-

sentation of images. The human-designed projection model A and back-projection model B

connect one-channel images x and y. One intuitive question is could one-channel MARS be

expanded to multi-channel MARS (MMARS). In other word, could these one-channel models

A and B be used on multi-channel features? The idea of coupled features at low and high

resolution in used in [62] that is if fx(x) and fy(y) are coupled filter banks of x and y which

are trained together, these two multi-channel signals could have correlated representation coef-

ficients. CNN could be used to learn these coupled linear or non-linear filter banks fx(x) and

fy(y) from training data, in Equation (3.1). Two CNN blocks are trained as coupled feature

extractors of x and y.

f tx = Cx(x
t)

fy = Cy(y)
(3.1)
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FIGURE 3.2: The structure of MMARS.

where Cx(xt) and Cy(y) are CNN based feature extractors, f tx are features of high-resolution

images, fy are features of low-resolution images. These two features are coupled by A and B

which means B(Afx(x)− fy(y)) ≈ 0.

f̃ t1 = C1(f
t
x, fy) = C1(B(fy − Af tx))

f̃ t2 = C2(f
t
x)

f̃ t3 = C3([f̃ t1, f̃
t
2])

xt+1 = xt + f t3

(3.2)

where C1(), C2(), C3() are three CNN blocks, f̃ t1 are features from back-projected reconstruc-

tion features B(fy − Af tx) call likelihood features, f̃ t2 are features from previous solution f tx

called prior features. f̃ t3 are residual reconstruction at iteration t.
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Algorithm 3: MMARS
Data: y, A, B

Result: xT

1 Initial solution x0;

2 features of y: fy = Cy(y);

3 for t = 0, 1, ..., T − 1 do

4 features of xt: f tx = Cx(x
t);

5 likelihood features: f̃ t1 = C1(f
t
x, fy) = C1(B(fy − Af tx));

6 prior features: f̃ t2 = C2(f
t
x);

7 residual reconstruction: f t3 = C3([f̃ t1, f̃
t
2]);

8 xt+1 = xt + f t3;

9 end

3.3.4 Progressive Learning Structure of MARS

Many SISR methods use one step up-sample to directly reconstruct y from x, which makes

learning mapping function R(xt, y) for a large up-sample scale factor (e.g. 4 or 8) more d-

ifficult. The multilevel progressive learning structure is widely used in image reconstruction

applications in a coarse-to-fine fashion. A MARS is designed to progressively upsample 2X

higher resolution images at each resolution level from y to x. For example, if the scaling factor

is 4, the intermediate images z1, z2 are generated with up-sample scaling factor 2 and 4.

zt+1
1 =MARS2(z

t
1, y)

zt+1
2 =MARS2(z

t
2, z

t+1
1 )

xt+1 =MARS2(x
t, zt+1

2 )

(3.3)

where MARS2 is a proposed neural network with a constant up-sample factor 2. The initial

solution of z1, z2 are bicubic interpolations from y. The synthetic ground truth of z1, z2 are
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FIGURE 3.3: The structure of progressive learning. z is an intermediate resolution image.

bicubic down-samples from xgt.

z01 = bicubic(y, 2)

z02 = bicubic(y, 4)

z1gt = bicubic(xgt, 1/4)

z2gt = bicubic(xgt, 1/2)

(3.4)

where bicubic(a, b) is the bicubic function with input a and scaling factor b.

Multi-resolution Loss. The intermediate loss functions between reconstructions zT1 , z
T
2 and

synthetic ground truth z1gt, z2gt can be added into the original loss function Equation (2.8).

Loss(θ, xT−1, y) = l(xgt − xT ) + γ
2∑
j=1

l(zjgt − zTj ) (3.5)

where l() is the squared L2-norm or Charbonnier penalty function Equation (3.6), γ is a bal-

ancing hyper-parameter. Notice the first term is the real target of the learning, other terms are

just guides of intermediate representations, in order to speed up the learning convergency and
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regularize parameters in the intermediate CNN layers. So γ = 0.1 forces the learning focus on

the final result xT .

There are two reasons to add the intermediate loss functions: first, without these intermediate

loss functions, it is difficult to control the intermediate reconstruction results zt1, z
t
2. These

intermediate loss functions serve as extra regularization to guide zt1, z
t
2. Second, while training

a deep neural network, the vanishing gradient problem degrades the gain of simply increasing

the number of layers. The intermediate loss functions directly go into the intermediate layers

of a deep neural network and supply a stronger gradient to the parameters in front layers. For

example, if the up-sample scaling factor is 8, the proposed neural network has MARS2 blocks,

and each MARS2 has 10 CNN layers. The entrance of the first intermediate loss function

l(z1gt, z
T
1 ) is the layer 10, and the entrance of the original loss function l(xgt, xT ) is the layer 30.

Assume after passing a layer, the magnitude of a gradient is half of the previous one. So in layer

1, the magnitudes of the gradients from the original and the first intermediate loss functions are

2−29 and 2−9 which means the second gradients are 220 larger than the first gradients.

3.3.5 Special Problems for Medical Image SISR

The proposed MARS SISR method can be used for natural and medical images. However,

the difference between natural and medical images causes three special problems for medical

image SISR should be considered in this dissertation. One contribution of this dissertation is

solving these problems in MARS method and improving results.

3.3.5.1 Class Imbalance Problem

Compared to natural images, medical images have a class imbalance problem, since “smooth

pixels” are much more than “texture pixels” in medical images. For example, in a chest X-ray

image, the background is smooth scanning data of air. But in a picture of zebras in a wild

environment, the background is grass or forest with textures. A SR neural network or regressor

is trained as a “smooth” region regressor, not for texture regions. But texture regions provide

more diagnosis information to doctors, like bone fractures and breast cancer.
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The target of the SR regressor is to learn residuals between bicubic and target HR images, which

is a high-pass version of target HR images. The signal to noise ratio (SNR) in smooth regions

is lower than SNR in the texture region. After high pass filtering, the SNR gap between texture

and smooth regions increases. This means it is worth to train a sophisticated regressor/neural

network to learn mapping functions within texture regions. For smooth regions, the bicubic

interpolation works well.

The mathematic reason for the classes-imbalance problem is that all pixels have equal weights

in the loss function, so a larger class has a larger accumulative weights. An intuitive assumption

is that each class should have equivalent accumulative weights. One re-balancing method is to

sub-sample over-represented smooth class or over-sample under-represented but more impor-

tant texture class. Another re-balancing method is each class multiply a re-balancing scalar in

the loss function, focusing on errors from texture pixels, which have more interesting medical

information.

3.3.5.2 Should Use Training Data Augmentation?

A simple answer is “No”. The training data augmentation is a popular technique to generate

more synthetic training images by randomly shifting, rotation, scaling and flip. Many state-of-

the-art deep learning methods for natural images tasks [37] [39] use the data augmentation to

prevent overfitting and improve testing generalization. But in our medical image SISR experi-

ments, a heavy performance drop is observed after using the data augmentation. The reason is

that objects in natural images have highly random positions, directions, and scales. After the

data augmentation, the synthetic training data can cover more patterns with different directions

and scales. But it is a different story for medical images. For example, the design of X-ray

equipment and the procedure manuals in clinics force the chest X-ray images are pre-aligned

with a similar location, direction, and scale. To reconstruct patches of rib and shoulder bones,

similar patterns can be found around the same location in other original training images. This

pre-registration of medical images makes the original medical images are better than the aug-

mented medical images for SISR applications. In addition, image rotation and resizing degrade
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FIGURE 3.4: Compare high-frequency patterns in medical images and natural images. Solbel op-
erator is a high-pass edge detection function. The absolute value of Solbel operator is used to
measure the magnitude of high-frequency components. This picture shows natural images has more

high-frequency patterns.

the resolution of training images. The proposed MARS is trained by a merged training data:

90% from the original training data and 10% from the augmented training data.

3.3.5.3 Use L1-norm Loss Function for Medical Image SISR

In image reconstruction applications, the L2-norm loss function usually generates blurry images

to have small mean squared error (MSE). Comparing to natural images, there are more smooth

pixels in medical images, so this blurry problem is more serious in medical images while using

L2-norm loss function. In order to get sharp edges and more textures in images, researchers

use the L1-norm loss function [42] or Charbonnier penalty [39], which is a robust version of

L1-norm.
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LossChar(θ, x
T−1, y) = ρ(RT

gt −Rθ(x
T−1, y)) (3.6)

where ρ(x) =
√
x2 + ε2char is Charbonnier penalty function with a small constant hyperparam-

eter εchar.

3.4 Experimental Results

Three SISR experiments demonstrate the performance of the proposed MARS SISR method.

1. A preliminary experiment with human-crafted synthetic training data proves if having

enough and good training data, MARS SISR can break the limitation of Nyquist frequen-

cy and reconstruct high-frequency patterns even from aliasing patterns. This experiment

shows the upper-bound performance of MARS SISR.

2. A natural images SISR with public training/testing data. Because state-of-the-art SISR

methods are focusing on natural image SISR, it is not fair to these natural image methods

to compare SISR performance with the proposed MARS methods, in a new environment

of medical images. For example, the hyperparameter fine-tuning is crucial for SISR

performance, and these methods search hyperparameters for natural images, not medical

images. In addition, three special problems for medical image SISR are concerned in

MARS, not in these methods. It is a fair play game for both MARS and these methods

within the same natural image environment.

3. A chest X-ray images SISR shows that MARS can dramatically enhance the resolution

of medical images.

3.4.1 A preliminary Experiment

A preliminary experiment shows that if it has enough good quality training data, it is possible to

use MARS dramatically boost SISR results. This experiment only uses one sun-shape phantom
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X-ray image Figure 3.5(A), which is provided by GE Healthcare. The testing patch is one

64x64 center patch from the left side of the image. The testing patches are randomly cropped

from the right side of the images. The raw training patches are resized to 64x64, randomly

rotated within [180,270] degree. After the rotation, the training patches have many similar

patterns with the testing patch. 1000 synthetic training patches are generated. The LR patches

are generated by a 4x down-sample bicubic function. The initial solution is also from a 4x

up-sample bicubic function.

The neural network is a simple version of MARS: the reconstruction is directly from 1x to

4x, so A and B are 4x down/up-sample bicubic interpolation; the number of layers in a CNN

block is 2; the number of stages is 1; 100 epochs for training. The results are shown in Figure

3.5. The PSNR of the 4x bicubic interpolation is 16.56 dB and the PSNR of the MARS result

is 29.92 dB. So MARS boosts 13.36 dB from the bicubic interpolation. Because the spatial

resolution is too low to satisfy the Nyquist frequency, the aliasing artifacts can be seen in the

bicubic interpolation. The MARS result breaks the limitation of the Nyquist frequency and

reconstructs high-frequency information from low-frequency patterns, even aliasing patterns.

3.4.2 Natural Image SISR

Data Set: The training image data set is DIV2K data set [4], which is used in the SISR

competitions NTIRE (CVPR 2017/2018) and PIRM (ECCV 2018). DIV2K includes 800 high-

quality natural images. The testing data is a public benchmark dataset Set14 [64], which has

14 natural images. The high-resolution patch size is 128x128. The down-sample scale factor

is 4x. In this experiment, the LR image y is 4x bicubic down-sample image from the ground

truth image xgt. The initial solution x0 is 4x bicubic up-sample image from y. The intermediate

images zgt = bicubic(xgt, 0.5), and z0 = bicubic(y, 2).

Configuration of MARS. The default configuration of the proposed method is: the number

of filters is 64; batch size is 16, and each epoch has 100 batches; the epoch number is 300;

the optimizer is Adam with the initial learning rate is α = 0.001, and after every 30 epochs
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FIGURE 3.5: A preliminary Phantom X-ray image SISR
(A) training and testing data from a phantom X-ray image, (B) is ground truth (C) is a bicubic
interpolation from 4x down-sample LR (PSNR=16.56dB) (D) is the proposed MARS result
(PSNR=29.92dB). This experiment shows the upper-bound performance of MARS SISR. With
good training data, MARS SISR can recover high-frequency patterns from low-resolution pat-
terns with strong aliasing artifacts.
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α = α/1.2; loss function is Charbonnier penalty function with εchar = 0.01. The PSNR

and SSIM of testing data are performance metrics to measure the quality of testing results. 3

stages/iterations multi-channel MARS is used. The number of channels of all CNN layers is 64.

MMARS uses the pyramid structure in Figure 3.3. The intermediate image zt and HR images

xt are progressively reconstructed. The multi-resolution loss is used.

y = bicubic(xgt, 0.25)

x0 = bicubic(y, 4)
(3.7)

TABLE 3.1: Configurations of natural image SISR methods. Recon. means reconstruction strategy.
Direct recon. is one-step up-sampling from LR to HR; progressive recon. only up-sample 2x at
each stage. RL is “Residual Learning”, which means there are bypass connections between CNN

layers, globally or locally.

Method Input Recon. Depth Parameters RL Loss
SRCNN [13] Bicubic Direct 3 57k N l2
LapSRN [38] LR Progressive 24 812k Y Charbonnier

MS-LapSRN [39] LR Progressive 84 222 Y Charbonnier
MMARS LR + Bicubic Progressive 78 788k Y Charbonnier

The MARS SISR codes are built on Tensorflow [1]. with a GPU Geforce 1080(8Gb memory).

PSNR and SSIM [59] are used to evaluate SISR performance. Visual comparisons are shown

in Figure 3.6

3.4.2.1 Comparisons with state-of-the-art SISR methods

The proposed MARS SISR is compared to the bicubic interpolation and state-of-the-art method

MS-LapSRN [39].

Table 3.2 shows MMARS has higher PSNR but lower SSIM. This experiment proves that M-

MARS has comparable performance to state-of-the-art SISR methods in a natural image envi-

ronment. The next step is to use MMARS SISR with a medical image data set.
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FIGURE 3.6: SISR results: (A) is ground truth, (B) is bicubic interpolation (C) is MS-LapSRN [39]
result (D) is the proposed MMARS result.
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TABLE 3.2: Average PSNR and SSIM for natural image SISR methods. Other methods’ PSNRs
and SSIMs is from [39]. The red numbers are highest PSNR or SSIM.

Method PSNR SSIM
Bicubic 25.85 0.660

SRCNN [13] 27.52 0.753
LapSRN [38] 28.19 0.772

MS-LapSRN [39] 28.26 0.774
MARS 27.73 0.744

MMARS 28.49 0.758

TABLE 3.3: Training/ testing time of LapSRN and MARS for SISR.

For a SISR problem, from 128x128 to 512x512, the testing time of one image is 0.0069×16 =
0.1104 sec/image.

Method HR Patch size Depth # of parameters Train (sec/patch) Test (sec/patch)
LapSRN [38] 128x128 24 812k N/A 0.0078

MARS 128x128 78 788k 0.0145 0.0069

3.4.3 Chest X-ray image

3.4.3.1 Data Set and Platform

The data set is a Chest X-ray image data set [58]. There are 10000 images that are randomly

split to 8000 training images and 2000 testing images. These images are already normalized to

0-255. The original image size is 1024x1024. The used training/testing images are 2x down-

sample of the original images. The HR patch size is 128x128. The down-sample scale factor

is 4x. In this experiment, the LR image y is 4x bicubic down-sample image from the ground

truth image xgt. The initial solution x0 is 4x bicubic up-sample image from y. Uses the same

configuration of MARS in the last section.

3.4.4 Results and Analysis

The analysis of results in Table 3.4:
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TABLE 3.4: Average PSNR/ SSIM of X-ray image SISR

The red numbers are highest PSNR or SSIM.

Model PSNR SSIM
Bicubic 38.68 0.884

MMARS 5 stages 41.54 0.925
MMARS 3 stages 41.46 0.925

MMARS 3 stages + no prior 41.37 0.924
MMARS 3 stages + no likelihood 41.03 0.921

MMARS 3 stages 4x 40.61 0.915
MMARS 3 stages + no mask 40.13 0.913

TABLE 3.5: PSNR/ SSIM of Figure 3.9

Bicubic MMARS without likelihood MMARS
24.94/ 0.7716 25.72/ 0.8737 27.53/ 0.9161
21.39/ 0.7796 23.18/ 0.8988 24.62/ 0.9194
25.00/ 0.9093 24.43/ 0.9319 25.57/ 0.9493

1. Model augmented structure improves the performance of the proposed neural network.

The differences are PSNR 41.46− 41.03 = 0.43dB and SSIM 0.925− 0.921 = 0.004.

2. Prior block also improves results. The differences are PSNR 41.46 − 41.37 = 0.09dB

and SSIM 0.925− 0.924 = 0.001.

3. More stages,better performance. The 5 stage result is slightly better than 3 stage result.

The differences are PSNR 41.54− 41.46 = 0.08dB and SSIM 0.925− 0.925 = 0.000.

4. Progressive reconstruction is better than direct reconstruction. The differences are PSNR

41.46− 40.61 = 0.85dB and SSIM 0.925− 0.915 = 0.010.

5. Balancing mask improves results. The differences are PSNR 41.46 − 40.13 = 1.33dB

and SSIM 0.925− 0.913 = 0.012.

An experiment shows the performance of the balancing mask. The balancing mask is showed

in Figure 3.7. The results are the upper row in Figure ??. The lower picture is profiles from the

result. This experiment demonstrates that the balancing mask makes the result sharper.
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FIGURE 3.7: Balancing mask in MARS SISR: (A) is ground truth, (B) is the balancing mask used
in loss function. The mask is a binary image, black is 0.01 and white is 1.

FIGURE 3.8: Without a balancing mask vs with a balancing mask. The first column is ground truth,
the second column is bicubic interpolation, the third column is from MMARS without the balancing
mask, the fourth is from MMARS with the balancing mask. The result with the balancing mask is

much closer to the ground truth.
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FIGURE 3.9: Chest X-ray SISR results. The first column is ground truth, the second column is a
bicubic interpolation, the third column is from MMARS without the likelihood block, the fourth is
from MMARS with the likelihood block. This figure shows that the likelihood block improves the

results of the proposed MARS SISR, which have more shape edges and fine patterns.

3.4.4.1 Limitations

The Figure 3.11 shows the 2x/4x/8x up-sample results. The proposed MARS SISR can handle

a large up-sample scale 8x for some simple cases, e.g. bone edges. But it cannot reconstruct

words in the image with higher frequencies. For 4x up-sampling, MARS can generate the

words in the image.
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FIGURE 3.10: Chest X-ray SISR results: absolute errors of reconstructions. The first column is
ground truth xgt, the second column is the absolute error between ground truth and the bicubic
interpolation |xgt − bicubic(y, 4)|, the third column is the second column is the absolute error
between ground truth and the MMARS result |xgt − xT |. The absolute error of the MMARS result

is smaller than that of the bicubic interpolation.

FIGURE 3.11: Chest X-ray 2x/4x/8x SISR results. The first row is the bicubic interpolation, the
second row is MMARS results. The first/second/third column is 2x/4x/8x SISR.
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3.4.5 conclusion

This chapter describes the proposed MARS method for natural and medical image SISR. Three

experiments show MARS SISR can compete with state-of-the-art SISR methods. It also can

handle medical image SISR after addressing the classes-imbalance problem and the data aug-

mentation problem.
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Chapter 4

CT Reconstruction

4.1 Introduction

Computed tomography (CT) generates patient cross-section images and is one of the most

important medical imaging modalities in use today. In CT imaging, X-ray energy goes through

the body of patient in a number of directions and the resulting projections are collected and

used in an inverse process to reconstruct the cross-section images [26] [9]. A simple 2D parallel

CT scan data is called sinogram, which is an 2D Radon transform of objects, see Figure 4.1.

The CT reconstruction is an inverse process to estimate a cross-section image of objects from

a sinogram, see Figure 4.2. There are three categories of CT reconstruction methods: the

conventional one-step inversion methods (e.g. filtered back projection (FBP)), iterative methods

and machine-learning-based methods. A comparison of three categories of CT reconstruction

methods is showed in Figure 1.2 and reviewed in this introduction.
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FIGURE 4.1: A simple parallel CT scan that is an 2D Radon transform of objects. The picture is
from Matlab’s web site.

FIGURE 4.2: The right hand side is a sinogram of CT scan data and the left hand side is an cross-
section image. The CT reconstruction estimates the cross-section image from the sinogram.
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4.2 Related Works

4.2.1 Filtered Back-Projection

Mathematically, the projections and cross-section images in 2D CT are related through a Radon

transform and this transform can be approximately inverted by the filtered back-projection (F-

BP) algorithm to produce the cross-section images [26][9]. The Radon transform is showed

in Figure 4.2. The FBP is computationally efficient because it uses the fast fourier transform

(FFT), and thus has become a dominant reconstruction technology in commercial CT products.

The FBP algorithm, however, also has some problems. Specifically, the X-ray projection pro-

cess is inherently stochastic, with the received X-ray energy fluctuating at the detectors (re-

ceivers), but FBP treats it essentially as deterministic. As a result, “outliers” or more extreme

projection values, even small in number, can still produce significant artifacts. Furthermore, the

FBP algorithm is spatially global in that it does not allow spatially local feature specific treat-

ment, even though such treatment could be quite useful in artifact reduction. Finally, 3D CT

techniques such as cone beam CT usually have more complex geometries and the FBP cannot

adapt easily, leading to some geometrical artifacts [53]. To solve these problems, a stochas-

tic approach known as statistical iterative reconstruction has attracted more attention (e.g., see

[53].

4.2.2 Iterative Methods

The statistical iterative reconstruction is also known as stochastic iterative reconstruction or

model-based iterative reconstruction). In an iterative reconstruction approach, the cross-section

images to be reconstructed and the imaging (projection) process are modeled as stochastic pro-

cesses and reconstruction is achieved by iteratively maximizing the posterior probability distri-

bution of the cross-section images. The stochastic models allow one to account and compensate

for outliers and incorporate spatially local models and these have led to artifact reduction and

image quality improvement; this approach is especially useful when the dose of the X-ray is
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reduced (a trend in CT), where the imaging process becomes more stochastic. Iterative re-

construction has achieved some commercial successes as well, and it has been incorporated

into some companies’ CT products. Despite these advantages and successes, iterative recon-

struction also has a weakness, i.e., it is computationally expensive and, even with powerful

hardware, it still could take a long time to generate a reconstructed 3D image. Consequently,

there is great interest in faster iterative reconstruction. For iterative reconstruction, the problem

of being computationally expensive stems from the fact that it is optimizing a function with a

large number of intertwined variables (pixels) by iteration and the convergence is slow. Previ-

ously proposed acceleration techniques, such as coordinate descent, provide improvements but

a significant part of the problem still remains.

4.2.2.1 Statistical Model

Follow the notations in Chapter 2, let x = {xj} be the image to be reconstructed, where j

indicates a pixel location. Similarly, let y = {yi} be the received projection X-ray energy that

went through a patient’s body, where i indicates a particular projection angle and a particular

detector location in that angle. The CT image reconstruction problem is then: find x from y.

In iterative reconstruction, both x and y are modeled as stochastic, with probability distribu-

tions P (x) and P (y|x) and the problem is to find the best x, denoted as x̂, by maximizing the

posterior distribution P (x|y). For the sake of convenience, equation (2.1) is written here again,

x̂ = argmin
x
LossMAP (x, y)

= argmin
x

(− logP (y|x)− logP (x))

= argmin
x

(F1(x, y) + F2(x))

= argmin
x
F (x, y)

(4.1)

where LossMAP (x, y) = − logP (y|x)− logP (x)) is loss function of the MAP estimation. The

first and second terms in equation (4.1) are likelihood and prior functions, denoted by F1(x, y)

and F2(x).
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Typically, P (y|x) is a conditionally independent Poisson model with mean Ax, where A is a

linear projection that captures the imaging geometry. In practice, the Poisson model is often

approximated by a Gaussian with spatially varying variances [53], with

F1(x) = − logP (y|x)

= − log e−
1
2
(y−Ax)TD(y−Ax)

=
1

2
(y − Ax)TD(y − Ax) + cont1

(4.2)

where D is the covariance matrix of noise, cont1 is a constant. In CT reconstruction, D is

a diagonal matrix, with the ith element di proportional to received photon count of the ith

detector, and di is the inverse of the variance of the received photon count at the ith detector.

λi = I0e
−yi (4.3)

where I0 is received photon count of the ith detector when scanning air (not dependent on i)

4.2.2.2 Prior

P (x) is a prior model that incorporates various constraints about image x, such as “it is s-

mooth except at region boundaries.” P (x) often is an energy function with a sparse probability

distribution and comes in the form of a Markov random field (MRF) [53]. The probability

distribution of an MRF usually has the form

F2(x) = − logP (x)

= β
∑
j

Vj(x) + cont2
(4.4)

52



where β > 0 and cont2 are constants and Vj(x) is local function of xj and its neighbors (al-

so known as a clique function). For example, a simple “edge-preserving smoothness” local

function with

Vj(x) =
1

2

∑
k∈Nj

|xj − xk| (4.5)

where Nj set of four immediate neighbors of location j; other types of Vj(x) can also be used.

4.2.2.3 Optimization

equation (4.1) is designed as a convex optimization problem. Iterative reconstruction generally

solves the reconstruction problem by (iterative) gradient descent

xt+1 = xt − α∇xF (x
t, y) (4.6)

where xt is the reconstructed image at tth iteration. In actual implementation, coordinate de-

scent (CD) is often used to make the algorithm faster. In this technique, iteration is done pixel

by pixel, rather than altogether to improve the speed of convergence.

4.3 Contributions and Proposed Methods

4.3.1 Contributions

The contributions of this chapter are listed below:

1. Used the proposed model augmented recursive neural networks (MARS) in CT image

reconstruction and metal artifact reduction (MAR)
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2. Built a guideline of adjusting the distribution of trainable parameters in the proposed

MARS neural networks: when the observed data contains strong noise, the likelihood

block should have more trainable parameters. An experiment in this chapter demonstrat-

ed that when the initial solution, e.g. FBP, contained strong artifacts, the model-based

likelihood block provided more improvements than the model-free prior block.

3. Used deep learning optimization algorithms, e.g. Momentum and Adam, for CT image

iterative reconstructions.

4.3.2 MARS for CT Reconstructions

The proposed model augmented recursive neural networks (MARS) in Algorithm 2 is used for

CT reconstruction. The structure of MARS for CT reconstruction is similar to MARS for SISR.

4.3.2.1 Bypass Branch

One bypass branch passes a current estimate of a CT image xt to a next iteration/stage estimate

of a CT image xt+1. The target of MARS is to minimize the difference between the ground truth

image xgt and the final estimate of a CT image xT . This new target is called residual in boosting

algorithms that convert a group of weak learners to a strong learner in order to reduce bias

and variance of estimation. The bypassed signal xt keeps low-frequency information and the

residual Rt has high-frequency information which is the learning target of our neural network.

The high-frequency information provides more detail information to help doctors or machines

to know inside of patient’s bodies.

4.3.2.2 Likelihood Feature Block

Fixed projection and back-projection. For CT reconstruction, a fixed transpose matrix AT

is used as the back-projection B. The reason was mentioned in Chapter 2: for CT reconstruc-

tion, the projection A and the back-projectionB are both global operators. In neural network

structures, a global operator is a fully-connected layer with sparse non-zero parameters. The
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space complexity of a fully-connected layer is O(nm), where n is the size of a CT image and

m is the size of a CT sinogram. For example, A CT system has 1024 × 1024 images x and

1000×1000 sinograms y (1000 views and 1000 detectors). Then the B is 10002×10242 sparse

matrix. It needs 4TB memory to store B in a full matrix format. Tensorflow does not support

sparse trainable variables. So it is impossible to train B in Tensorflow. Meanwhile, the fixed

matrix AT only needs 2Gb to be stored in a sparse matrix format.

4.3.2.3 Prior Feature Block

The traditional prior models are usually smooth functions of x, such as Tikhonov [31], total

variation (TV) [65] and Generalized Gaussian Markov random Field (GGMRF) [53]. These

functions rely on some general sparse models of the image gradient. For example, the probabil-

ity distribution of image gradients is Gaussian or Laplacian distribution, then the corresponding

regularization/ prior model is L2-norm or L1-norm of image gradients. However these sparse

prior models emphasize the generalization for all of the natural images, then they provide weak

constraints to reconstruction. Data-driven models, e.g. deep learning, can learn more complex

mapping functions in a large amount of training data [55]. In proposed MARS, a CNN block is

used to learn a prior model based on a medical image data set.

4.3.3 Experimental Results of MARS for CT Reconstructions

A CT reconstruction simulation is designed to show the performance of MARS neural network.

The original data is the DeepLesion CT images [61] from NIH Clinical Center. Randomly

choose 1000 images and split them into 800 training images and 200 testing images. Finally,

crop the center 64×64 patch. A 50 views projection matrixA is generated by Siddon algorithm

[48]. The sinogram is a 95× 50 matrix, which has 50 views and 95 detectors.

Controlled Noise Level. In this CT reconstruction experiment, the Poisson noise level can

be controlled by a hyper-parameter. In addition, one or two 2 × 2 metal blocks are added into

ground truth 64 × 64 patches at random location. These metal blocks generate strong metal
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TABLE 4.1: Average PSNR/ SSIM of CT reconstruction results

Noise Method PSNR SSIM
weak FBP 24.08 0.516
weak MARS w/LP 32.75 0.847
weak MARS w/P 32.66 0.843
weak MARS w/L 32.78 0.845
strong FBP 2.54 0.543
strong MARS w/LP 25.78 0.979
strong MARS w/P 24.08 0.975
strong MARS w/L 25.76 0.979

TABLE 4.2: Training/ testing time of MARS for CT reconstruction. For a 512x512 CT recon-
struction problem, the testing time of one image is 0.00248 × 64 = 0.15872 sec/image. The
iterative method with Adam has 10000 iterations. MARS only has 3 stages/iterations. MARS is

152.602/0.00248= 61533 times faster than an iterative method with Adam.

Method HR Patch size Train (sec/patch) Test (sec/patch)
Iterative method with GD 64x64 NA 302.445

Iterative method with Momentum 64x64 NA 450.635
Iterative method with Adam 64x64 NA 152.602

MARS 64x64 0.00537 0.00248

artifacts. The purpose of adding noise and metal artifacts is to make the reconstruction task

more difficult and give more space to show the improvement from MARS. Otherwise, for an

easy reconstruction task, FBP can provide good results. Based on the experiment results shown

in Figure 4.6 and Table 4.1, when the noise is weak, the FBP results are good, and the likelihood

block cannot improve the results. When noise is strong, the FBP results are unacceptable, and

the likelihood block improves the results.

4.3.4 Deep Learning Optimization Algorithms for Iterative Methods

Iterative methods CT reconstruction by gradient descent or coordinate descent algorithms still

have two problems, which limit its clinic applications: first, because of the slow convergence

rate of these algorithms, it takes a long time to get a reconstruction image, (could take hours;)

second, iterative methods do not use external high-quality CT data to boost reconstruction
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FIGURE 4.3: CT reconstruction training and testing loss curves with 3 configurations. Left is train-
ing loss curves; right is testing loss curves. 3RNN means a 3-stage MARS with shared parameters.
LP means with both the likelihood and prior blocks, L means with the likelihood block and without
the prior block, P means without the likelihood block and with the prior block. The loss function is

Charbonnier loss function.

FIGURE 4.4: CT reconstruction training and testing loss curves of each stages. Left is training
loss curves; right is testing loss curves. These 3 curves are for stage 1, 2, 3. The loss function is

Charbonnier loss function.
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FIGURE 4.5: CT reconstruction result while increasing Poisson noise. The first column is ground
truth, the second column is FBP, the third column is from MARS with the likelihood block and
prior block, the fourth is from MARS without the likelihood block and with the prior block, the fifth

column is from MARS with the likelihood block and without prior block.
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FIGURE 4.6: CT reconstruction results at two noise levels. The first to fifth columns are images:
ground truth; FBP; MARS with the likelihood and prior blocks; MARS only with the prior block;
MARS only with the likelihood block. The first row is images with a weak Poisson noise. It is an
easy case to remove artifacts. The second to fourth rows are images with strong Poisson noise and
metal artifacts. This picture shows that when the Poisson noise is weak, all these three models can
have good results. However, when the Poisson noise is strong, the likelihood block provides more

gains to reduce artifacts.

performance. This dissertation has addressed these two problems: 1) using deep learning opti-

mization algorithms to speed up the convergence of iterative methods; 2) training a deep MARS

neural network to improve reconstruction, even with a strong Poisson noise.

The past few years have seen a burst of advances in machine learning technologies, especially

in “deep learning” [40]. “Deep” neural networks of various kinds have achieved near-human

performances in speech and image recognition experiments. A “deep” neural network is es-

sentially a highly nested function with many layers, that provide the network the capacity to
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FIGURE 4.7: CT reconstruction results with strong noise and metal artifact. The first to third
columns are images: ground truth; FBP; MARS.
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represent/implement extremely complex functions and input-output relationships. Each layer

of a deep neural network comes with a number of parameters that have to be learned by us-

ing training data, which is usually a large number of example input-output pairs. The learning

process is an iterative optimization process, where the neural network is directed to adjust its

parameters to match the output for the input in the training data. Since the number of parame-

ters in a deep neural network can be extremely large, the iterative optimization process is very

challenging. Indeed, although deep neural networks were already studied in the 1980s, their ef-

fective training and applications have only become possible and successful recently as a result

of significant advances made in the iterative optimization algorithms over the past few years

[40][20].

In the study of neural networks, a basic gradient descent algorithm similar to equation (4.6) has

also been used for a long time to learn or estimate the network parameters from training data; the

algorithm is known as backpropagation [41]. For deep networks, this algorithm does not lead

to good convergence and for many years, deep neural networks had very limited success. This

situation has changed dramatically over the past few years with the advent of a new set of better

iterative optimization algorithms. These algorithms incorporate and combine a number of new

ideas/features into the original gradient descent algorithm, such as momentum (acceleration),

adaptive learning rate (faster in regions where the gradient is small and slower in regions where

the gradient is large), and better initialization. This has led to much better training algorithms

that finally made deep neural networks successful. Among these are “Momentum” [51] and

“Adam” [36]; the former is simple but very effective and has some relation to the conjugate

gradient method while the latter incorporates momentum and adaptive learning rates as well as

other ideas and is widely recognized as one of the best iterative optimization algorithms today

for deep neural network training.

Both Momentum and Adam are used as replacements to the basic gradient descent algorithm

for iterative reconstruction. Specifically, the Momentum algorithm is given by

mt = γmt−1 +∇xF (x
t, y)

xt+1 = xt − αmt
(4.7)

61



where mt is a momentum vector at the tth iteration, γ > 0 is a momentum hyper-parameter,

and F () is the loss function . The Adam algorithm expands the moment algorithm with

xt+1 = xt − αtmt � (
√
st + η) (4.8)

Here, mt is a momentum vector, st is a vector that makes the learning rate adaptive α > 0 is

a step size, η > 0 is a small constant vector, �is element-wise division; both mt and st are

functions of the gradient ∇xF (x
t, y) and their details can be found in [36]. Compared to the

basic gradient descent, Momentum and Adam are more powerful algorithms that provide better

and faster convergence.

4.3.5 Experimental Results of Deep Learning Optimization Algorithms

for Iterative Methods

One simulation experiment is designed to apply Momentum and Adam to interactive recon-

struction. A typical 64x64 phantom image used in CT image reconstruction simulations was

reconstructed from 50 views of Poisson distributed projections using the FBP, basic gradient

descent, coordinate descent, Momentum, and Adam algorithms. The projection matrix A is

generated by Siddon algorithm [48]. A is a 4750x4096 sparse matrix. The reconstructions by

Momentum and Adam are implemented using Tensorflow. In Figure 4.8, a typical phantom im-

age used in CT image reconstruction simulations was reconstructed from 50 views of Poisson

distributed projections using the FBP, basic gradient descent, coordinate descent, Momentum,

and Adam algorithms, with the last two implemented using Tensorflow; also shown in Fig. 1

are the MSE (mean square error) of each reconstruction. Here, we kept the number of pro-

jections to be relatively small because in many applications, such as CT imaging for air travel

security, having a smaller number of projections without sacrificing reconstruction quality too

much will help to reduce cost; furthermore, this situation is also more challenging to a recon-

struction algorithm. As shown in Figure 4.8, the FBP produced a very noisy reconstruction

while the basic gradient descent did not provide much improvement due to its relatively slow
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FIGURE 4.8: CT reconstruction results with iterative methods. (A) ground truth, (B) FBP,
mse=1254.14, (C) basic gradient descent, mse=505.16, (D) coordinate descent, mse=6.74, (E) Mo-

mentum, mse=6.36, (F) Adam, mse=6.09

convergence. Both Momentum and Adam algorithms, on the other hand, produced significant-

ly better results, as did coordinated descent. As a complement to Figure 4.8, the convergence

behavior of the algorithms in Figure 4.8, in terms of both the loss function and mean square

error (MSE) with respect to the ground truth, are shown in Figure 4.9, where Momentum and

Adam algorithm converged much faster than the basic gradient descent. Momentum and Adam

also converged faster than coordinate descent, especially in MSE. Furthermore, unlike coordi-

nate descent, which updates pixels in the reconstructed image sequentially, Momentum and the

Adam update all the pixels simultaneously hence can be implemented as parallel computations,

which can potentially be a lot faster.
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FIGURE 4.9: Convergence results with iterative methods. Left: curves of loss function, right:
curves of MSE between reconstructions and the ground truth.

4.4 Conclusions

This chapter reviews FBP, interactive methods and deep learning methods in CT reconstruction.

One experiment shows that the deep learning optimization algorithms Momentum and Adam

can accurate the convergence and improve results. The second experiment shows the proposed

MARS network can improve CT reconstruction results. Especially when the sinogram is noised

and the reconstruction has metal artifacts, MARS can reduce metal artifact and other artifacts.
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Chapter 5

Summary, Limitations and Future Works

The proposed model augmented recursive neural networks is a general deep neural network

structure to solve ill-posed inverse problems, e.g. single image super-resolution and CT recon-

struction. This network structure combines the projection model A and back-projection model

B into the structure of the neural network, which is called the likelihood block in MARS. The

likelihood block extracts reconstruction error and back-projection them to image space X to

compensate current estimation xt. MARS shows competitive performance with state-of-the-art

SISR method for natural images SISR and satisfactory results for medical image SISR. For

CT reconstruction when sinograms contain a strong Poisson noise, MARS can dramatically

improve reconstruction results and reduce metal artifacts, without any extra metal artifact re-

ducetion step.

The limitations of MARS are: 1) a MARS neural network needs a large amount of training

data and powerful computers with GPUs. If an inverse problem is well-posed, the conventional

methods can handle this problem. 2) The likelihood block in MARS can improve the result

if the observed data contains strong noise. Otherwise, it is hard to see improvement from the

likelihood block.

My future works are studying how to build Momentum, Adam, and other optimization algo-

rithms into neural network structure, in order to accelerate training convergences and improve

results.
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Appendix

Two examples of One-step Inversion: WLS and FBP

WLS (weighted least squares) Singular value decomposition (SVD) of A is

A = USV T

WLS solution is

x̂WLS = argmin
x

(Ax− y)TD(Ax− y)

= (ATDA)−1ATDy

where D is a weights matrix, which is usually the inverse matrix of the covariance matrix of y.

y = yj is a random vector. Assume yj are independent, then D is a diagonal matrix.

x̂WLS = (ATDA)−1ATDy

= (V SUTDUSV T )−1V SUTDy

= V (SDS)−1SDUTy

= V S−1UTy
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FBP (filtered back-projection) The ith view of the sinogram is yi = Ai∗x. According to the

central slice theorem and the geometry of CT [26], yi is a low-pass version of the real projection

of a cross-section image. High-Pass filtering is needed to compensate for the high-frequency

components. Filtered sinogram QFAi∗x, where Q is a diagonal matrix, the diagonal elements

qis are DFT coefficients of the ramp filter. F∗QF is a high-pass operator.

x̂FBP =
∑
i

ATi∗F∗QFyi

where F∗ is inverse DFT matrix.

Compare WLS and FBP One-step inversions have a similar procedure: first, from the ob-

servation space Y , projects y to a latent space; second, compensates weak components with

small singular values or high frequencies; third, back-project the compensated coefficients to

the target space X .
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