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ABSTRACT 

A DATA-DRIVEN PREDICTIVE MODEL OF RELIABILITY ESTIMATION 
USING STATE-SPACE STOCHASTIC DEGRADATION MODEL 

by 

Farhad Balali 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Hamid Seifoddini (Advisor) 
Under the Supervision of Professor Adel Nasiri (Co-Advisor) 

 
ABSTRACT: The concept of the Industrial Internet of Things (IIoT) provides the 

foundation to apply data-driven methodologies. The data-driven predictive models of 

reliability estimation can become a major tool in increasing the life of assets, lowering 

capital cost, and reducing operating and maintenance costs. Classical models of reliability 

assessment mainly rely on lifetime data. Failure data may not be easily obtainable for 

highly reliable assets. Furthermore, the collected historical lifetime data may not be able 

to accurately describe the behavior of the asset in a unique application or environment. 

Therefore, it is not an optimal approach anymore to conduct a reliability estimation based 

on classical models. Fortunately, most of the industrial assets have performance 

characteristics whose degradation or decay over the operating time can be related to their 

reliability estimates. The application of the degradation methods has been recently 

increasing due to their ability to keep track of the dynamic conditions of the system over 

time. The main purpose of this study is to develop a data-driven predictive model of 

reliability assessment based on real-time data using a state-space stochastic degradation 

model to predict the critical time for initiating maintenance actions in order to enhance the 

value and prolonging the life of assets. The new degradation model developed in this 

thesis is introducing a new mapping function for the General Path Model based on  series 



 

iii 
 

of Gamma Processes degradation models in the state-space environment by considering 

Poisson distributed weights for each of the Gamma processes. The application of the 

developed algorithm is illustrated for the distributed electrical systems as a generic use 

case. A data-driven algorithm is developed in order to estimate the parameters of the new 

degradation model. Once the estimates of the parameters are available, distribution of 

the failure time, time-dependent distribution of the degradation, and reliability based on 

the current estimate of the degradation can be obtained.  
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1.  Chapter 1: Introduction  

1.1 Introduction  

The concept of Industrial Internet of Things (IIoT) such as new types of assets, data, 

sensor networks, data analytics, and processing power can provide the foundation to 

apply data-driven methodologies. The data-driven predictive models of reliability 

estimation can become a major tool in increasing the life of assets, lowering capital cost, 

and reducing operating and maintenance costs. Indeed, the predictive model of reliability 

estimation becoming a critical factor in the efficiency of capital-intensive corporations. The 

reliability of industrial systems, such as energy and water network, significantly impacts 

customers as well as providers’ bottom line. For instance, the reliability of the electrical 

power generation network significantly impacts customers as well as energy providers’ 

bottom line. In addition to that, the new types of assets such as distributed generations 

and smart loads have been emerged, which have motivated the researchers to develop 

a more robust predictive model of reliability estimation. In addition to that, connectivity 

between the various sectors of the electrical network has been expressively increased 

due to the high penetration of the new smart hardware and software tools. Therefore, an 

accurate predictive model of reliability estimation is necessary in order to optimize various 

types of decision such as maintenance policy, lifetime analysis, risk management, etc.  

The importance of the reliability estimation algorithm is not only limited to the electrical 

systems. A robust methodology may be applicable to other applications, which failure 

events may cause circumstances, with some modifications in defining the parameters 

governing the equipment or system under study. In this thesis, the application of the 
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developed algorithm is presented for the Distributed Electrical Systems (DESs) as the 

main generic use case. Continuous demand for electricity and a large number of 

applications and individuals which may be affected due to the electrical shortage states 

the reason for choosing DES as the case study. Furthermore, high penetration of the 

DESs may offer economic and environmental benefits, which are becoming the main 

concerns of the societies. Connectivity between the various sectors of the electrical 

network has been expressively increased due to the high penetration of the new smart 

hardware and software tools. This connectivity proposes a new potential era in the field 

of reliability assessment by providing real-time status of the equipment. Traditionally, the 

reliability of the equipment was estimated mainly based on the offline algorithms, which 

are independent of the real operational and environmental status of the system. 

Consequently, the accuracy of the developed algorithms may be affected due to this 

independency. High penetration of smart devices can provide real-time data regarding 

the status of the systems. Therefore, a data-driven predictive model of reliability 

estimation can be developed in order to optimize the maintenance dispatches, 

replacement schedules, availability, and reliability of the.  

Classical models of reliability estimation mainly rely on historical failure data. It 

should be considered that obtaining lifetime data in a timely manner is one of the current 

challenges. Failure data may not be easily obtainable for highly reliable assets. 

Furthermore, the collected historical lifetime data may not be able to accurately describe 

the behavior of the asset in a unique application or environment. For instance, if the 

lifetime data are collected based on the experimental tests given specific environmental 

and operational conditions, there is no guarantee that the asset behavior remains 
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unchanged in other conditions during its lifetime. Therefore, it is not an optimal approach 

anymore to estimate reliability based on classical models. 

Fortunately, most of the industrial assets have performance characteristics whose 

degradation or decay over the operating time can be related to their reliability estimates. 

Degradation indicates the process of lowering the rank, status, or grade, which leads to 

a less effective level of performance. Degradation based analysis is one of the valuable 

approaches of condition-based maintenance algorithms in order to obtain reliability 

information especially for highly reliable systems, critical assets, and recently developed 

products. The application of the degradation methods has been recently increasing due 

to their ability to keep track of the dynamic conditions of the system over time. The main 

purpose of the degradation-based models is to predict the future condition of the asset 

and perform the maintenance actions in an optimized time window before the actual 

failure of the system occurs. Since the degradation-based analysis defines the failure 

events based on the predefined threshold, the failure is said to have occurred as a soft 

failure. This indicates that the asset under the study is considered as a failed unit when 

the degradation profile hits the threshold for the first time.  

Inaccurate modeling of the degradation phenomenon leads to inaccurate 

estimation of reliability, maintenance policy, risk, lifetime prediction, etc. In this thesis, a 

wide variety of the currently developed models of degradation are studied in detail. 

Degradation models based on the Gamma process and General Path Model have been 

applied in various studies conducted by other researchers. The main purpose of this study 

is to develop a predictive model of reliability estimation based on a state-space stochastic 

degradation model to predict the critical time for initiating the maintenance actions in order 
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to enhance the value of the assets. Indeed, the new degradation model developed in this 

study extends the General Path Model based on a series of Gamma Processes 

degradation models in the state-space environment.  Poisson distributed weights are 

considered for each of the Gamma processes. Therefore, the main scientific contribution 

of the new degradation model is extending the General Path Model based on Series of 

Gamma Processes degradation models in the state-space environment by considering 

the Poisson distributed weights for each of the Gamma processes.  

Furthermore, a new data-driven algorithm is developed in order to estimate the 

parameters of the developed degradation model. The developed parameter estimator in 

this study in an alternative methodology to the “two-step parameter estimation approach” 

applied in the General Path degradation model. Once the estimates of the parameters 

are available, distribution of the failure time, time-dependent distribution of the 

degradation, and reliability based on the current estimate of the degradation can be 

obtained.  

To sum up, the main scientific contribution of this study are (1) developed a new state-

space stochastic degradation model to accurately capture the dynamic behavior of 

assets., (2) applied simulation techniques to estimate reliability of assets over time and 

estimate the critical failure time using the new developed model, (3) estimated the 

reliability based on analytical formulation for degradation prediction model, and (4) 

developed a new data-driven parameter estimation algorithm based on the new 

degradation model.    
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1.2 Problem Statement 

Classical models of reliability estimation mainly rely on historical failure data. It 

should be considered that obtaining lifetime data in a timely manner is one of the current 

challenges. Failure data may not be easily obtainable for highly reliable assets. 

Furthermore, the collected historical lifetime data may not be able to accurately describe 

the behavior of the asset in a unique application or operating environment. For instance, 

if the lifetime data are collected based on the experimental tests given specific 

environmental and operational conditions, it is not guaranteed that the asset behavior 

remains unchanged in other conditions during its lifetime. Most of the classical methods 

of reliability estimation have considered several assumptions regarding the evolution of 

the model parameters in order to be able to provide an estimate of the reliability, 

availability, probability of failure, etc. In the next steps, some assumptions regarding the 

distribution of the parameters can be made in order to obtain the reliability estimates.  For 

instance, in the area of reliability estimation, there are several developed algorithms that 

assume the rate of failure is known prior. Furthermore, the failure time or time between 

each failure event can be estimated based on the Poisson distribution. In most of the 

cases, the value of the λ is determined based on the engineering insights, laboratory 

experiments, standards, or history of the component. It should be noted that the same 

asset may behave completely different in each application. As an example, the optimized 

maintenance orders may not be similar for two transformers, which have been 

manufactured the same but have been installed in two different applications. Therefore, 

it is not an optimal approach anymore to estimate reliability based on classical models.  
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There are other types of classical algorithms of reliability estimation which seek to 

estimate the reliability based on the degradation models based on multiple observation 

of the degradation mechanism for the same asset. Although these types of analysis may 

seem more robust compared to the classical model of reliability estimation, they are not 

still an optimized solution in order to predict the future condition of an asset. The main 

concern is still the same. There is no guarantee that the same assets perform exactly 

similar under the same operating and environmental conditions. Indeed, a more robust 

algorithm of reliability estimation is needed to estimate the future condition of each asset 

based on the real-time status of that specific asset. Furthermore, obtaining the 

degradation observations may not be always possible in a timely manner at a reasonable 

cost especially for the destructive degradation tests. 

Fortunately, most of the industrial assets have performance characteristics whose 

degradation or decay over the operating time can be related to their reliability estimates. 

Degradation indicates the process of lowering the rank, status, or grade, which leads to 

a less effective level of performance. Degradation based analysis is one of the valuable 

approaches of condition-based maintenance algorithms in order to obtain reliability 

information especially for highly reliable systems, critical assets, and recently developed 

products. The application of the degradation methods has been recently increasing due 

to their ability to keep track of the dynamic conditions of the system over time. The main 

purpose of the degradation-based models is to predict the future condition of the asset 

and perform the maintenance actions in an optimized time window before the actual 

failure of the system occurs. Since the degradation-based analysis defines the failure 

events based on the predefined threshold, the failure is said to have occurred as a soft 
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failure. This indicates that the asset under the study is considered as a failed unit the 

degradation profile hits the threshold for the first time. Inaccurate modeling of the 

degradation phenomenon leads to inaccurate estimation of reliability, maintenance policy, 

risk, lifetime prediction, etc.  

Therefore, the main scientific contributions of this study are (1) developed a new state-

space stochastic degradation model to accurately capture the dynamic behavior of 

assets., (2) applied simulation techniques to estimate reliability of assets over time and 

estimate the critical failure time using the new degradation model, (3) estimated the 

reliability based on analytical formulation for degradation prediction model, and (4) 

developed a new data-driven parameter estimation algorithm based on the new 

degradation model.    

1.3 Motivations 

The concept of Industrial Internet of Things (IIoT) such as new types of assets, data, 

sensor networks, data analytics, and processing power can provide the foundation to 

apply data-driven methodologies. The data-driven predictive models of reliability 

estimation can become a major tool in increasing the life of assets, lowering capital cost, 

and reducing operating and maintenance costs. Indeed, the predictive Model of reliability 

estimation becoming a critical factor in the efficiency of capital-intensive corporations. The 

reliability of industrial systems, such as energy and water network, significantly impacts 

customers as well as providers’ bottom line. For instance, the reliability of the electrical 

power generation network significantly impacts customers as well as energy providers’ 

bottom line. In addition to that, the new types of assets such as distributed generations 

and smart loads have been emerged, which have motivated the researchers to develop 
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a more robust predictive model of reliability estimation. In addition to that, connectivity 

between the various sectors of the electrical network has been expressively increased 

due to the high penetration of the new smart hardware and software tools. Therefore, an 

accurate predictive model of reliability estimation is necessary in order to optimize various 

types of decision such as maintenance policy, lifetime analysis, risk management, etc. 

1.4 Purpose and Significance 

Traditionally, the lifetime of an asset could be determined using manufacturers’ 

suggestions, laboratory results, or well-defined standards. Obtaining life-time data is not 

always possible due to various reasons. For instance, technological development might 

lead to zero or a few failures during the test periods. Although an accelerated condition 

might increase the chance of observing the failure event, it should be considered that 

some of these tests are destructive which is not desirable especially for the expensive 

units.  It should be noted that these models might not be able to reflect the actual behavior 

of the asset during its lifetime. In addition to that, the same asset might behave totally 

different in each application.  

Maintenance dispatches and replacement schedules are determined based on the 

lifetime analysis of each asset. The scheduled maintenance could be categorized as 

follow based on the time of the maintenance actions and failure event.  

i. Too often, more than actual needs. 

ii. Too rare, less than actual needs which leads to failure. 

iii. Within an optimized interval which enhances the overall life-cycle cost of the 

network.  
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The need for applying a more robust model of reliability estimation became obvious 

during the last few years. The wide applications of the smart devices which lead to more 

connectivity in the network could significantly support the idea. An optimized methodology 

should consider the real-time health status of an asset as well as its history in order to 

obtain optimized network reliability. As a result, the main purpose of this study is to 

develop a data-driven predictive model of reliability estimation based on real-time data to 

predict the critical time for initiating maintenance actions in order to enhance the value 

and prolong the life of assets. 

It should be considered that collecting several measurements might not be able to 

reveal the most beneficial information. Therefore, the raw measurements of asset 

characteristics should be mapped to a healthy score, such as degradation value, in order 

to enhance the ability of the analytics to detect the upcoming failures or unreliable events. 

Determining the degradation estimates may need technical knowledge regarding the 

physics of the assets under study. Although the degradation models are developed in this 

study, the main purpose of this dissertation is not limited to the development of the 

degradation models.  

The primary purpose of this research is to develop a predictive model of reliability 

based on real-time data using a state-space stochastic degradation model to predict the 

critical time for initiating maintenance actions in order to enhance the value and prolong 

the life of assets. The new degradation model developed in this thesis is extending the 

General Path Model based on a series of Gamma Processes degradation models in the 

state-space environment by considering the Poisson distributed weights for each of the 

Gamma processes. Furthermore, the new parameter estimation model developed in this 
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study is an alternative methodology to the “two-step parameter estimation approach” 

applied in the General Path degradation model. 

1.5 Research Questions and Objectives 

As mentioned earlier, the classical models of reliability estimation are not providing an 

optimum estimate of the reliability since they are not able to reflect the actual status of 

the assets. High penetration of smart devices such as sensors and actuators provides 

time-series monitoring data which enables the analyst to obtain accurate real-time insight 

regarding how the assets perform. Since the raw measurements might not be able to 

reveal very beneficial information, health indicators should be clearly defined for the 

system under study. most of the industrial assets have performance characteristics 

whose degradation or decay over the operating time can be related to their reliability 

estimates. Degradation indicates the process of lowering the rank, status, or grade, which 

leads to a less effective level of performance. The main purpose of the degradation-based 

models is to predict the future condition of the asset and perform the maintenance actions 

in an optimized time window before the actual failure of the system occurs. Since the 

degradation-based analysis defines the failure events based on the predefined threshold, 

the failure is said to have occurred as a soft failure. This indicates that the asset under 

the study is considered as a failed unit when the degradation profile hits the threshold for 

the first time.  

The definition of the failure in the degradation-based models is completely different 

than classical models. Collected lifetime data for the classical methodologies are 

representing the actual physical failure of the asset. In the degradation-based models, 

failure events are said to be occurred since facing the actual physical failure of the system 
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is not desirable. Failure events are usually defined as a point of time when the degradation 

profile hits the critical limit or threshold defined in advanced. Therefore, predictive 

algorithms must be able to predict the critical failure time based on the first hitting time 

models to initiate maintenance before the failure occurs. It should be noted that synthetic 

data are used in this dissertation in order to verify the robustness of the developed 

models.  The followings were the primary objective of this study. 

I. Developed a new discrete-time state-space stochastic degradation model to 

accurately capture the dynamic behavior of assets.  

II. Estimated the reliability of an asset in the time domain and estimated the critical 

soft failure time using the new degradation model based on simulation techniques. 

III. Estimated the reliability of an asset in the degradation domain based on the 

analytical formulation of the new degradation model. 

IV. Developed a data-driven parameter estimation algorithm based on the new 

degradation model.  

1.6 Definition of Terms 
 

 Degradation profile: 

Degradation profile indicates a time-series estimates of the health condition of 

the asset under the study.  

 Degradation model: 

The degradation model specifies the model which is able to describe the 

behavior of the degradation profile. Degradation model may be obtained by 

fitting techniques based on the observed degradation values, and projection 
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methodologies in order to predict the future condition of an asset. In other 

words, a valid degradation model must be tuned in parameters by appropriate 

training, verification and validation approach based on past information. The 

obtained model can be adopted for predicting future values.  

 Data-Driven degradation model: 

The parameters of the data-driven degradation model may be defined based 

on the actual data representing the system under study.  

 Degradation threshold: 

Degradation threshold is a point of degradation estimates in which the asset is 

considered as a failed unit if the degradation estimator reaches that level.  

 Failure event (soft): 

In degradation-based analyses failure event refers to a point in which the 

values of the degradation estimates hit the degradation threshold for the first 

time.  

 Damage event (hazard increment): 

Damage event is defined as an incident of changes in the degradation 

estimator values. If the degradation value does not change for a few cycles, it 

means that no destructive event has occurred during this time interval.  

 Damage amount: 

Damage amount refers to the expected amount of damage due to a single 

destructive event. Since the uncertainty is considerable in defining this value, 

it has been assumed that the behavior of destruction amount can be explained 

by a statistical distribution.  
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 Cumulative damage amount: 

Cumulative damage amount denotes the changes in the values of degradation 

estimates from one cycle to another. It should be considered that the total 

destruction amount in a convolution of single destruction amounts.  

 Unreliability: 

Unreliability denotes a probability which the asset under study is not able to 

perform its intended functions for a given period of time under the specific 

working conditions. In this study, unreliability is defined based on each time 

interval. It means that reliability at time k, 𝑅 , is the probability that the asset 

under study is not able to perform its intended functions during the next 

upcoming cycle under the specific working conditions. 

1.7 Researcher Assumptions 
 

 The predictive model of reliability estimation provides the reliability estimates 

based on a time-series degradation profile. In this study, it has been assumed 

that the overall condition of the asset over time can be explained by a single 

degradation profile. The same methodology can be applied for the cases in 

which the asset has more than one degradation profile. In those cases, the 

estimated reliability is only reflecting the reliability of the asset with respect to 

the specific degradation profile. For instance, the overall degradation of an 

electrical transformer might be affected by both oil quality and vibration. In this 

case, the developed methodology in this study provides two estimates of the 

reliability based on the oil and vibration degradation profile. More detail of the 
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post-analysis for assets with multiple degradation profile is presented in the 

future work of this study.  

 It has been assumed that the frequency and intensity of changes in degradation 

estimates, known as damage events, are independent than each other. It has 

been assumed that the occurrence of damage events in each cycle, time 

horizon, will not affect the other cycles.  

 The frequency of damage events is assumed to follow a Poisson distribution. 

Poisson distribution expresses the probability of a given number of events 

occurring in a fixed interval of time if these events occur with a known rate (𝜆).  

 The robustness of the model can be affected by the approaches regarding the 

definition of the model parameters.  In this study, it has been assumed that the 

parameters of the new degradation models are time-invariant.  

 The value of the degradation estimator is expected to change each time in 

which a damage event occurs. In this study, it has been assumed that the 

cumulative damage amount occurred by a variable number of damages in each 

interval is explainable by statistical distributions. The parameters of the 

statistical distribution can be affected by the number of damage events. In this 

thesis, it has been assumed that the cumulative damage amount is obtained 

by linear summation of damages that occurred by each damage event. 

 Degradation profiles are monotonically increasing. It means that the occurred 

destructions cannot be healed without performing the maintenance or 

replacement actions.  
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 For the state-space degradation model considered in this study, the essence 

of the threshold is similar to the damage amount. In other words, the threshold 

value can be considered as the maximum value of the destructive amount, 

which if its occurrence leads to the failure. Therefore, it can be concluded that 

the statistical distribution of the threshold is similar to the distribution of the 

destructive amount. 

 It has been assumed that the degradation estimates cannot be greater than the 

threshold.  

 In this study, it has been assumed that the degradation estimator is providing 

the estimates within a certain interval. For instance, the estimates of the 

degradation estimator may always fall into [0 , 1] or [0 , 100].  

1.8 Summary 

The concept of Industrial Internet of Things (IIoT) such as new types of assets, data, 

sensor networks, data analytics, and processing power can provide the foundation to 

apply data-driven methodologies. The data-driven predictive models of reliability 

estimation can become a major tool in increasing the life of assets, lowering capital cost, 

and reducing operating and maintenance costs. Indeed, the predictive Model of reliability 

estimation becoming a critical factor in the efficiency of capital-intensive corporations. The 

reliability of industrial systems, such as energy and water network, significantly impacts 

customers as well as providers’ bottom line. An accurate predictive model of reliability 

estimation is necessary in order to optimize various types of decision such as 

maintenance policy, lifetime analysis, risk management, etc.  
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Classical models of reliability mainly rely on historical failure data. It should be 

considered that obtaining lifetime data in a timely manner is one of the current challenges. 

Failure data may not be easily obtainable for highly reliable assets. Furthermore, the 

collected historical lifetime data may not be able to accurately describe the behavior of 

the asset in a unique application or environment. For instance, if the lifetime data are 

collected based on the experimental tests given specific environmental and operational 

conditions, there is no guarantee that the asset behavior remains unchanged in other 

conditions during its lifetime. Therefore, it is not an optimal approach anymore to estimate 

reliability based on classical models. 

Fortunately, most of the industrial assets have performance characteristics whose 

degradation or decay over the operating time can be related to their reliability estimates. 

The main purpose of the degradation-based models is to predict the future condition of 

the asset and perform the maintenance actions in an optimized time window before the 

actual failure of the system occurs. Inaccurate modeling of the degradation phenomenon 

leads to inaccurate estimation of reliability, maintenance policy, risk, lifetime prediction, 

etc.  

In this thesis, a wide variety of the currently developed models of degradation are 

studied in detail. Degradation models based on the Gamma process and General Path 

Model have been applied in various studies. The main purpose of this study is to develop 

a data-driven predictive model of reliability based on real-time data using a state-space 

stochastic degradation model to predict the critical time for initiating maintenance actions 

in order to enhance the value and prolong the life of assets. Indeed, the new degradation 

model developed in this study extends the General Path Model based on a series of 
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Gamma Processes degradation models in the state-space environment.  Poisson 

distributed weights are considered for each of the Gamma processes. The application of 

the developed algorithm is illustrated for the distributed electrical systems as a generic 

use case.  

A new data-driven algorithm is developed in order to estimate the parameters of the 

developed degradation model. The developed parameter estimator in this study in an 

alternative methodology to the “two-step parameter estimation approach” applied in the 

General Path degradation model. Once the estimates of the parameters are available, 

distribution of the failure time, time-dependent distribution of the degradation, and 

reliability based on the current estimate of the degradation can be obtained.  

To sum up, the main scientific contributions of this study are (1) developed a new 

state-space stochastic degradation model to accurately capture the dynamic behavior of 

assets., (2) applied simulation techniques to estimate reliability of assets over time and 

estimate the critical failure time using the new developed model, (3) estimated the 

reliability based on analytical formulation for degradation prediction model, and (4) 

developed a new data-driven parameter estimation algorithm based on the new 

degradation model.    
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2.  Chapter 2: Background and Literature Review 

2.1 Background Review 

Predictive models of maintenance determine the optimized schedule of the 

maintenance actions based on the principles of condition-based maintenance (CBM) [1].  

Predictive models are in charge to make a decision using condition monitoring information 

to optimize the availability of operating plants. CBM empowers the early detection of faults 

or failures, which leads to reducing the downtime and operating costs, simplifying 

proactive responses, and enhancing the productivity, reliability, availability, 

maintainability, and safety (RAMS) of assets [2] [3] . Predictive maintenance models seek 

to estimate the Remaining Useful Life (RUL) and predict the future health conditions of 

the assets. It obtains information about the asset’s current condition and historical data 

from the same class of assets [4] . An efficient predictive model of maintenance must be 

able to predict defect evolution over time and offer enough time for maintenance 

operation. Most parts of the literature emphases on the application of RUL prediction to 

make reliability assessments [5]. For products that are highly reliable, assessing reliability 

based on the lifetime data is challenging. Few or perhaps no failures may occur during 

the monitoring time. Consequently, most of the observations are censored data, which 

cannot provide very beneficial information about the failed proportion of products [6]. 

Recently, degradation data have considered being a superior alternative to lifetime 

data since they are usually more informative compared with lifetime data [7]. Most failures 

arise from a degradation mechanism, such as the crack length of the filters. Most of the 

industrial assets have characteristics that degrade or grow over time [8]. These 
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characteristics may or may not be directly observable. To conduct a degradation-based 

analysis, one has to prespecify a threshold level of degradation, obtain degradation data 

over time, and define that failure occurs when the amount of degradation exceeds that 

level. For instance, the crack grows over time can be directly observed [9] [10]. Failure is 

defined to occur when the crack reaches a specified length. Another example is the 

brightness of fluorescent lights that decreases over time. Its failure is defined to occur 

when the light’s luminosity degrades to 60% or less of its luminosity at 100 hours of use 

[11]. These types of failures are referred to as “soft” failures because the units are still 

working, but their performance has become unacceptable. On the other hand, 

degradation of the characteristics may not be directly observable. For instance, air filter 

clogging may be mapped into the degradation of the characteristics based on the air mass 

flow, which may be calculated based on the sensor measurements at different points of 

the system and thermodynamics principles [12]. If the physics of the failure is well-known 

and accurately studied, mathematical equations, such as the Arrhenius equation in the 

evaluation of the kinetic degradation, can be applied. Accordingly, degradation data may 

provide some useful information to assess reliability even when failures do not occur 

during the monitoring period. Several failure mechanisms can be drawn to an underlying 

degradation process and the failure time distribution can be estimated earlier in 

degradation analysis. There is no need to wait for the actual failure point for degradation-

based analysis [13] [14].  

There are several important references that have used degradation data to assess 

reliability. Nelson [15] presented a survey of the degradation modeling methods until the 

1990s. Nelson (1981) studied a situation in which the degradation measurement is 
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destructive which means only one measurement could be made on each item. This 

indicates that obtaining several degradation profiles based on the actual tests on the 

asset may not have economic justification since the asset cannot stay in service after 

obtaining the degradation data. Nelson (1990) [16] reviewed the degradation literature, 

surveyed applications, described basic principles of degradation-base analysis. In the 

literature of degradation models, there are two major types of modeling for degradation 

data. One approach assumes that degradation is completely a random process in time. 

Doksum (1991) [17] applied a Wiener process model to analyze degradation data. Wiener 

process is a stochastic process that randomly projects the degradation based on the drift 

and shift parameter of the Wiener process over time. Tang & Chang (1995) [18] modeled 

nondestructive accelerated degradation data for the power supply units as a collection of 

stochastic processes. Whitmore & Schenkelberg (1997) [19] studied the degradation 

process based on a Wiener diffusion process with a time scale transformation. The 

performance of their developed model is demonstrated for self-regulating heating cables 

[20].  

An alternative approach to model the degradation process is to consider more general 

statistical models. In that case, degradation can be modeled by a function of time and 

some possibly multidimensional random variables. Lu & Meeker (1993) [21] [22] 

developed statistical methods, called the General Path model, using degradation 

measures to estimate a time-to-failure distribution for a broad class of degradation 

models. However, this model is based on the fact that a population of “identical” 

components has a common degradation form. They considered a linear and nonlinear 

mixed-effects model and developed a two-stage method to obtain estimates of the 
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parameter. It should be considered that a wide variety of the degradation models can be 

explained by the General Path model based on the unique definition of the function, which 

maps the time and explanatory variables into the degradation estimate.  

Tseng, Hamada & Chiao (1995) [23] presented a case study that used degradation 

data and a fractional factorial design to enhance the reliability assessment of fluorescent 

lamps. It should be considered that their model is only applicable to the cases in which 

the degradation process is observable.  Yacout, Salvatores & Orechwa (1996) [24], used 

degradation data of metallic Integral Fast reactor fuel pins irradiated in Experimental 

Breeder Reactor II to estimate the time-to-failure distribution. The time-to-failure 

distribution was obtained based on a fixed threshold failure model and the two-stage 

estimation approach proposed by Lu & Meeker (1993) [25]. Lu et al. (1997) [26] proposed 

a linear regression model with random regression coefficients and a standard-deviation 

function for investigating linear degradation data from semiconductors. Su et al. (1999) 

[27] considered a random coefficient degradation model with random sample size and 

used Maximum Likelihood Estimation (MLE) to estimate the parameters. They developed 

their model based on a data set from a semiconductor application to illustrate the use 

case of their methods [28]. One of the applicable models which have been used by 

several researchers in the various application was degradation path models developed 

by Meeker & Escobar (1998) [29] . Indeed, the developed model was an extension to the 

original General Path model by considering the effect of explanatory variables.  

Wu & Tsai (2000) [30] presented a fuzzy-weighted estimation method to modify the 

two-stage procedure proposed by Lu & Meeker (1993) [31]. The developed model was 

based on the degradation data of the metal film resistor of Wu & Shao (1999) [32]. The 
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former seemed to reduce the affection of different patterns of degradation paths and 

improve the estimation results of time-to-failure distribution providing much tighter 

confidence intervals [33]. Crk (2000) [34] proposed a model that covers many of the 

developed degradation models by that time and considers a component or a system 

performance degradation function whose parameters may be random, correlated and 

stress-dependent in the case of accelerated degradation tests. Jiang & Zhang (2002) [35] 

presented a dynamic model of degradation based on the data of fatigue crack growth.  

In the literature, degradation models can be categorized into two main categories as a 

stochastic process and the general degradation path model [36]. In the first approach, 

degradation is assumed to follow a stochastic process. This method requires selecting a 

probability distribution to represent the measurements at each observation time. Two 

main steps are involved in the process as (1) estimating the distribution parameters for 

each time and (2) fitting the estimates as functions of time [37]. The distribution can be 

obtained based on the principles of the probability distribution fitting. Another method 

includes considering the degradation as an independent increment process, such as the 

Wiener or Gamma process [38]. In these methods, the distribution of the failure time is 

generally estimated by maximizing the likelihood function. The main benefit of the 

stochastic process model is that the degradation process is fundamentally a continuous 

state stochastic process [22]. A Wiener process has found application as a degradation 

model in other studies, for example, Doksum and H´oyland (1992) [39] and Lu (1995) [40] 

[41].  

The degradation path approach is based on the profile of degradation over time. Two 

methods are widely applied in the literature [42]. One is based on the mixed-effects model, 
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which consists of two main steps as (1) selecting an appropriate relationship between 

degradation and time such as linear relationship, among which the parameters can be 

estimated for each item individually; and (2) estimating the distribution function of 

parameters for all items [43]. The other method is an approximate method also called the 

pseudo-failure-time-based method. In the approximate method, the pseudo-failure times 

are analyzed as a complete sample of failure times [44]. The advantage of the 

degradation path model is considering the unit-to-unit variation.  

The procedure that Lu and Meeker (1993) and Meeker and Escobar (1998) [42] [21] 

[45] developed to estimate reliability using a degradation measure can be summarized as 

follow: 

1. Fit a general path model. Least squares estimation can be used to estimate the 

parameters for each path. 

2. Determine the statistical distribution of each of the random parameters from 

the general path model. 

3. Use the resulting distributions to solve for the time to failure distribution FT(t) if 

a closed-form expression exists. 

4. If no closed-form expression for FT(t) exists, use the parameter distributions 

from (2) to simulate a large number N of random degradation paths. 

5. To estimate FT(t), compute the proportion of random paths generated in (3) that 

cross a pre-determined critical level (which defines failure) before time t. That 

proportion is the estimate of FT(t). 
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Distribution function of T, failure time, can be written as follow:
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 For simple path models, the distribution function 𝐹(𝑇) can be expressed in a 

closed-form. For many path models, however, this is not always possible. Lu & Meeker 

(1993) [22] proposed a two-stage method of estimation for the case where the vector of 

random effects or some appropriate reparameterization follows a Multivariate Normal 

Distribution [46] [47]. Since full maximum likelihood estimation of random-effect 

parameters in general, algebraically intractable and computationally intensive when they 

appear nonlinearly in the path model, the authors proposed this two-stage method as an 
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alternative to the computationally intensive ones [48]. Simulation studies showed that the 

method compared well with the more computationally intensive methods [49]. 

Pinheiro & Bates (1995) [50] [51] used Lindstrom and Bate’s method (Lindstrom & 

Bates, 1990) [52] to obtain an approximated maximum likelihood estimate of the 

parameters. The LME (linear mixed-effects models) and NLME (nonlinear mixed-effects 

models) functions, were developed to attain this goal (Pinheiro & Bates, 2000) [53]. In 

other words, these functions were developed for the specific case where the random 

effects follow a Multivariate Normal Distribution. Meeker & Escobar (1998) [29] used the 

numerical method with the NLME function developed by Pinheiro & Bates (1995, 2000) 

[54] in a number of examples. In all of them, the failure time distribution 𝐹(𝑇) was 

estimated numerically using Monte Carlo simulation. In addition, the authors presented 

two other methods of degradation data analysis, namely the approximate and the 

analytical method [55]. Both of them are difficult to apply when the degradation path model 

is nonlinear and has more than one random parameter. The methods described so far 

rely on maximum likelihood or least-squares estimation of the model parameters and 

Monte Carlo simulation [56] [57]. 

Figure 1 shows an example of a degradation profile where T is the time when the 

degradation estimates reach the critical value, D, for the first time [58]. As mentioned 

before, degradation-based model failure is said to be occurred [59] [60]. It means that the 

asset might be still working above the threshold value but, from the engineering point of 

view reliability has been degraded enough to be called a failed unit [61] [62].  
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Figure 1: An example of a degradation profile 
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The stochastic gamma process has been widely used to model uncertain degradation 

in engineering systems and structures [63]. The gamma process is an example of an 

analytically tractable stochastic cumulative process that is widely used to model 

degradation processes, such as corrosion, creep and wear, in engineering systems, 

structures and components [64]. The theory of gamma processes provides an analytical 

framework for predicting the reliability and estimating the maintenance cost, including 

costs of inspection, repair or replacements, and consequences of the failure [65] [66]. 

This probabilistic model can be subsequently used for cost optimization by appropriately 

choosing the inspection interval and preventive maintenance (PM) criterion. The periodic 

model of Condition-Based Maintenance (CBM) of components subjected to Gamma 

process degradation was presented by Abdel-Hameed (1987) [67] [68] and Park (1988) 

[69]. Other applications include recession of coastal cliffs, deterioration of coating on steel 

structures and concrete structure degradation are presented by Meadowcroft (2002) [70], 

Noortwijk (2007) [71] [72], and Frangopol (2004) [73], respectively. The model of non-

periodic CBM was presented by Grall et al. (2002) [74] and that of imperfect inspection 

by Kallen and van Noortwijk (2005) [75]. Castanier et al. (2003) [76] studied such a 

maintenance policy in which both the future maintenance and the inspection schedule 

depend on the magnitude of degradation. Optimization of inspection and repair for the 

Wiener and Gamma processes of degradations was discussed by Dagg (2004) [77]. A 

comprehensive review of the Gamma process model and its applications can be found in 

a recent review article of van Noortwijk (2009) [78] [79].  

Based on the references in the field, the Gamma process was first applied by Moran 

(1954) [80] [81] in a series of papers and a book published in the fifties of the last century 
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to model water flow into a dam. Abdel-Hameed (1975) [82] [83]  proposed to apply the 

Gamma process as a model for a deterioration occurring randomly in time. During the last 

few decades, Gamma processes were pleasingly fitted to data on creep of concrete 

(Bazˇant et al., 1977) [84] [85], fatigue crack growth (Crowder et al., 2004) [86], corroded 

steel gates (Noortwijk et al., 2004) [87], thinning due to corrosion (MJ et al., 2005) [88], 

and chloride ingress into concrete (JD et al., 2004) [89]. Statistical estimation methods 

that were established contain the maximum-likelihood method and method of moments 

(Bazˇant et al., 1977) [84], as well as the Bayesian method with perfect inspection 

(Dufresne et al, 1991) [90], and imperfect inspection (MJ et al., 2005) [91]. A method for 

estimating a gamma process by means of expert judgment is proposed by (Nicolai et al., 

2016) [92]. On the basis of the gamma deterioration processes, case studies have been 

performed to determine optimal dike heightening (Speijker LJP et al., 2000), optimal sand 

nourishment sizes (Noortwijk et al.,2000) [93], optimal maintenance decisions for steel 

coatings (Heutink A et al., 2004) [94], and optimal inspection intervals for high-speed 

railway tracks (Meier-Hirmer et al., 2005) [95], berm breakwaters (Noortwijk et al.,1996) 

[96] [97], and automobile brake pads (Crowder M et al., 2007) [98]. 

In order for the stochastic deterioration process to be monotonic, we can best consider 

it as a gamma process. In words, a gamma process is a stochastic process with 

independent, non-negative increments (e.g., the increments of the crest-level decline of 

a dike) having a gamma distribution with an identical scale parameter. In the case of a 

gamma deterioration, dikes can only decrease in height due to crest-level decline. Abdel-

Hameed (1975) [99] was the first to propose the gamma process as a proper model for a 

deterioration occurring randomly in time. In his two-page paper, he called this stochastic 
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process the ‘‘gamma wear process’’. An advantage of modeling deterioration processes 

through gamma processes is that the required mathematical calculations are relatively 

straightforward [100]. The gamma process is suitable to model gradual damage 

monotonically accumulating over time in a sequence of tiny increments, such as wear, 

fatigue, corrosion, crack growth, erosion, consumption, creep, swell, degrading health 

index, etc. In mathematical terms, the gamma process is defined as follows. Recall that 

a random quantity 𝑋 has a gamma distribution with shape parameter 𝛼 and scale 

parameter 𝛽 if its probability density function is given by Equation (6) [101] . 

𝐺𝑎𝑚𝑚𝑎(𝑥|𝛼, 𝛽) =
𝛽ఈ𝑥ఈିଵ𝑒ିఉ௫

𝛤(𝛼)
                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6) 

where 𝛼 and  𝛽 are the shape and scale parameters, respectively. The Gamma function 

for 𝛼 > 0 is 𝛤(𝛼) = ∫ 𝑧ఈିଵ𝑒ି௭𝑑𝑧
ஶ

௭ୀ
. Furthermore, let 𝛼(𝑡) be a non-decreasing, right-

continuous, real-valued function for 𝑡 ≥ 0, with 𝛼(0) ≡ 0. The Gamma process with 𝛼 and 

 𝛽 as shape and scale parameter is a continuous-time stochastic process with the 

following properties: 

 𝑋(0) = 0 with probability one 

 𝑋(𝜏) − 𝑋(𝑡) ~ 𝐺𝑎𝑚𝑚𝑎(𝛼(𝜏) − 𝛼(𝑡) , 𝛽 ) for all  𝜏 > 𝑡 ≥ 0 

 𝑋(𝑡) has independent increments 

Mean and variance of the Gamma process can be calculated as the following 

equations present.  

𝐸൫𝑋(𝑡)൯ =
𝛼(𝑡)

𝛽
                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7) 
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𝑉𝑎𝑟൫𝑋(𝑡)൯ =
𝛼(𝑡)

𝛽ଶ
                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (8) 

2.2 Review of Concepts Relevant to Research 

Questions 

2.2.1  Reliability 

 Degradation data provide a useful resource for obtaining reliability information for 

some highly reliable products and systems [102]. In addition to product/system 

degradation measurements, it is common nowadays to dynamically record 

product/system usage as well as other life-affecting environmental variables such as load, 

amount of use, temperature, and humidity. Often it is difficult to assess component 

reliability using traditional methods due to a lack of observed failures [103] [104]. For 

many such components, degradation measures, recorded over time, will contain 

important information about performance and reliability. These measures can be used to 

predict the remaining time to failure and to estimate the overall reliability distribution for 

that component. Degradation measures are inherent in situations where failure occurs 

due to a process of accumulation of damage [105].  

Reliability can have various definitions based on each application and level of 

analysis. Reliability analyses can be performed at either component or system level. 

Based on the ISO 8402, reliability can be defined as “the ability of an item to perform a 

required function, under given environmental and operational conditions for a stated 

period of time” [106]. The term ‘item’ might refer to a component, unit, or a complex 

system. Reliability can also define as “the probability that a product performs its intended 
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function without failure under specified conditions for a specified period of time”. 

Therefore, the reliability of a system is the likelihood that it will perform its required 

functions under stated conditions for a specified period of time [107]. Thus, unavoidably, 

engineering judgment is required in defining essential concepts such as “required 

functions,” “stated conditions,” and “specified period of time”.  Most of the definitions 

consider three main elements for reliability function as follow [108]: 

 The intended function might be a single or a combination of several functions in 

order to provide a predefined level of service. It should be considered that each 

component or system might have the ability to perform various functions. Each of 

these functions might be active or passive depending on the definition of the 

required service for estimating the reliability. In some cases, a product might be 

still in service while the performance of its functions might be deprived enough to 

be considered as an unreliable product.  

 Specified period of time is generally offered by manufacturers or service 

companies as lifetime or warrantee period. It should be noted that the suggested 

times are generally an estimate of the expected value for the lifetime. Therefore, 

in the case of customer dissatisfaction during these periods, the manufacturer or 

service company is in charge of repair or replacement.  

 Specified conditions are generally considered as a basis to evaluate the system 

performance and reliability of the equipment given those specific conditions. 

Various environmental, operational, and usage conditions lead to different 

reliability estimates for the same system or product. Sever conditions might cause 

immediate failures. Accelerated reliability experiments are based on exposing the 
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product in sever conditions to evaluate its performance and reliability. Therefore, 

reliability is highly tight to the specific conditions during the reliability function 

development. These environmental or operating working conditions are not always 

controllable or predictable in real-world applications. 

The North American Electric Reliability Council (NERC) [109] has introduced a more 

comprehensive definition of reliability. NERC defines the reliability of a system in terms 

of two basic functional aspects: 

 Adequacy which is always the ability of the systems to supply the aggregate 

demand and requirements of customers, taking into account scheduled and 

reasonably expected unscheduled outages of system elements. 

 Security is the ability of the systems to withstand sudden disturbances such as 

unanticipated loss of system elements. 

One of the purposes of reliability analysis is quantifying the probability by any attempt 

to measure it involving probabilistic and statistical methods. Reliability analysis 

incorporates activities to identify potential failure modes and mechanisms, to make 

reliability predictions, and to quantify risks for critical components in order to optimize the 

life-cycle costs for a product [110]. Prior experience and history can be helpful in this 

analysis. The data used to make reliability predictions may be historical, from the previous 

testing of similar products, or from the reported field failures of similar products. Reliability 

can be estimated from the test data using parametric or nonparametric techniques. In 

parametric estimation, the distribution of the test data should be known or assumed. 

Parametric techniques provide an inaccurate estimation if the assumptions are incorrect 

[111]. The parameters are the constants that describe the distribution. Nonparametric 
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estimates do not assume that the data belong to a given probability distribution. 

Generally, nonparametric estimates make fewer assumptions than parametric estimates. 

Reliability engineering tries to ensure that the unit is reliable during the operation in a 

specific condition by avoiding any failure. In other words, the purpose of reliability 

engineering is maximizing reliability while minimizing failure effects. The main purpose of 

the reliability modeling is to find the probability of failure at any instance of time-based on 

the ability of the components to perform their intended functions for a specific period 

(lifetime) under the specific conditions (environmental and operational). The main 

purposes of reliability modeling can be summarized as following [112] [113]: 

• Estimating the Probability of Failure 

• Predicting the future condition of the assets in order to prevent physical 

failure. 

• Providing advanced warning of failures. 

• Reducing life-cycle cost.  

• Monitoring the risk associated with each decision. 

• Minimizing unscheduled maintenances. 

• Improving the customer’s satisfaction.   

Performance is usually associated with the functionality of a product. Performance 

is related to the question, “How well does a product work?”  Reliability is associated with 

the ability of a product to perform as intended without failure and within specified 

performance limits for a specified time in its lifecycle. Based on the ISO 8402, quality is 

defined as “The totality of features and characteristics of a product or service that bear 

on its ability to satisfy stated or implied needs”. Quality is also sometimes defined as 



 

34 
 

“conformance to specifications” [114]. “To measure quality, we make a judgment about a 

product today. To measure reliability, we make judgments about what the product will be 

like in the future”. Reliability is, therefore, an extension of quality into the time domain. 

Product quality can impact product reliability but, it should be considered that a high-

quality product may or may not have high reliability [115].  

Reliability function or survival function or Cumulative Distribution Function (CDF) 

are representing the probability that a random variable falls above a certain level. Indeed, 

this indicates the probability of observing an event that did not happen before the time 𝑡 

[116].  

( ) ( ) 1 ( ) (9)

( ) Probability (Product Life )

( ) ( )
t

F t R t F t Equation

R t t

R t f d 


  
 

 

 

As Figure 2 presents, the failure rate function is implying the frequency of the failure 

over the unit of time [117].  

 Infant mortality (Decreasing): It rarely happens in the real-world unless for the 

stable state of the failure after the early stages. Most of the time, the units fail with 

higher probability as getting more age. It can be possible that a system has this 

behavior at least for a finite time. This step is also called burn-in. The evolution of 

software programs can be considered as an example of this type [118]. 

 Useful Life (Constant):  In many cases, for simplification of the problem it is 

assumed to have a constant value over time. In this case, the distribution family 

function is Exponential, and the calculations need less effort compared with other 
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scenarios. Usually, the product population reaches its lowest hazard rate during 

this period [119].  

 Wear out (Increasing): This indicates the end of useful life and the start of the wear-

out phase. In this case, the failure rate has an increasing trend over time. This step 

illustrates the aging stage. When the hazard rate becomes too high, replacement 

or repair of the population of products should be conducted [120]. 

 Combination of all the cases (bathtub curve): Useful life of an asset usually refers 

to the time between the worn-out and start-up points which mostly indicates a 

stable behavior. 

 

Figure 2: Bathtub hazard rate (failure function). 

Optimizing reliability must involve the consideration of the actual life-cycle periods. 

The actual hazard rate curve will be more complex in shape and may not even exhibit all 

of the three periods. For reliability prediction, moment-based parameters, such as the 

mean and variance of a lifetime, are often not of primary interest. Rather, engineers may 

be more interested in estimating quantiles of the lifetime or (similarly) failure probabilities 

for a given (fixed) mission lengths [121]. The choice of distribution to fit often involves the 
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phase of life that is of interest, as determined by the shape of the hazard function, and 

many techniques have been developed that address modeling the hazard rate directly as 

a linear or polynomial function. 

The mean or expected value of T, a measure of the central tendency of the random 

variable, also known as the first moment. 𝑀𝑇𝑇𝐹 is the expected life 𝐸(𝑇) of a non-

repairable product [122]. 

0 0

( ) ( ) (10)MTTF t f t dt R t dt Equation
 

    

This is also called the mean time between failures (MTBF) (mostly for repairable 

products) when the product exhibits a constant hazard rate; that is, the failure probability 

density function is an exponential [123] [124]. The MTTF should be used only when the 

failure distribution function is specified because the value of the reliability function at a 

given MTTF depends on the probability distribution function used to model the failure 

data. Furthermore, different failure distributions can have the same MTTF while having 

very different reliability functions [125]. 

2.2.2  Asset Management  

An asset is an item or entity that has potential or actual value to an organization. 

Assets are a resource with economic value that in the future can generate cash flow, 

reduce expenses, and improve sales [126]. Asset Management (AM) is an ongoing 

process of maintaining, upgrading, acquiring and operating the assets cost-effectively, 

based on a continuous condition assessment. AM is responsible to balance the costs, 
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opportunities, and risks against the desired performance of the assets. Data-driven AM 

activities can be viewed from different points of view [127].  

 

Figure 3: Data-Driven Asset Management. 

 

2.2.3  Maintenance Policies 

Maintenance policies can be categorized from different points of view. In general, 

there are three main categories for performing maintenance [128].  

i. Reactive Maintenance  

ii. Preventive Maintenance 

iii. Predictive Maintenance  

Reactive maintenance is mainly based on the run-to-failure strategy which lets the 

assets fail and then, schedule the maintenance. Preventive maintenance is regularly 

performed to reduce failure frequency and downtime [129]. In general, 80% of the failures 
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are planned and 20% are completely unexpected. Predictive maintenance is performed 

based on condition-based strategies [130]. Data-driven predictive maintenance 

approaches rely on the condition of equipment by providing full visibility of the asset’s 

status. Predictive algorithms are responsible to predict when an asset may fail before it 

happens [131]. Indeed, predictive maintenance is an intelligent health monitoring 

approach that tries to avoid future failures and optimize the maintenance schedule. Figure 

8 presents the optimal time interval for performing maintenance actions. If the 

maintenance is scheduled more too often, the life-cycle cost of the unit will increase. In 

some cases, too often maintenance might degrade the asset more quickly. On the other 

hand, if the maintenance is scheduled too late, the actual physical failure might happen. 

Therefore, finding an optimal interval for performing the maintenance actions is among 

one of the most important decisions [132]. 

 

Figure 4: Optimal time interval for performing maintenance actions. 

  

2.2.3.1 Challenges of Classical Models 

The most important challenges of the traditional models are as follow: 

 Lifetime data cannot be easily obtained.  
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 Deterministic models are not able to express the real behavior of the assets. 

 Technological developments lead to a few or zero failure data-sets as the 

result of the analysis.  

 Some of the laboratory tests and accelerating monitoring actions are 

expensive.  

2.2.4  Prognosis and Health Management (PHM) 

PHM is an intelligent condition monitoring approach to:  

 Predict the future units’ condition. 

 Predict event which system no longer performs its intended functions.  

 Estimate time to failure. 

PHM is an allowing discipline of technologies and methods with the potentials of 

enhancing reliability estimation that has been revealed due to complexities in 

environmental and operational usage conditions as well as the effects of maintenance 

actions [133]. Over the last few decades, several types of research have been conducted 

in PHM of information and electronics-rich systems as a means to provide advance 

warnings of failure, enable predictive maintenance, improve system identification, extend 

system life, and diagnose intermittent failures that can lead to field failure return exhibiting 

no-fault-found symptoms [134]. 

Extremely high operational availability of information regarding the behavior of the 

systems has been historically difficult to achieve [135]. The main reason is because of 

the lack of understanding of the interactions between the various covariates, application 

environments, and their effect on system degradation over time. Consequently, there is 



 

40 
 

a pressing need to develop new methods that apply in-situ system operational and 

environmental conditions to detect performance degradation. The most promising 

discipline of methods with the potential of enhancing the reliability, availability, and 

maintainability prediction is called PHM [136]. Traditionally, PHM has been implemented 

using methods that are either model-based or data-driven. The model-based approaches 

consider the physical processes and interactions between components in the system. 

The data-driven approaches use statistical pattern recognition and Machine Learning 

(ML) to detect changes in parameter data, thereby enabling diagnostic and prognostic 

measures to be calculated [137]. 

Data-driven techniques are utilized to learn from the data and intelligently provide 

valued information to enhance the decision-making process. They assume that the 

statistical characteristics of the system remain relatively stable until a fault arises in the 

system [138]. Anomalies and trends or patterns are detected in data collected by in situ 

monitoring to determine the health state of a system. The trends are then beneficial to 

predict the time to failure of the system [139]. 

Health assessment is carried out in real-time using the in-situ data and anomaly 

detection techniques. Knowledge regarding the physical processes in the system and 

steady-state conditions can help to select the appropriate data analytic techniques. ML is 

one of the methods to implement anomaly detection techniques, in which the monitored 

data are compared in real-time against a healthy baseline to check for possible 

anomalies. This is the semi-supervised learning approach wherein data representing all 

the possible healthy states of the system are assumed to be available a priori. The healthy 

baseline consists of a collection of parameter data that represent all the possible 
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variations of the healthy operating states of a system. The baseline data is collected 

during various combinations of operating states and loading conditions when the system 

is known to be functioning normally [140]. The baseline can also consist of threshold 

values based on specifications and standards. It is important that the baseline data should 

not contain any operational anomalies. The presence of anomalies in the base-line affects 

the definition of healthy system behavior and hence causes the misclassification of data.  

2.2.5  Degradation Mechanism 

There is a growing demand to validate asset reliability relatively quickly with minimal 

testing. As mentioned before, it might be possible that the output of the analysis includes 

zero or a few failure events due to technological developments.   Therefore, it might not 

be ideal to assess the reliability based on the traditional approaches. Alternatively, 

degradation measures will contain beneficial information regarding asset performance 

and reliability. Degradation measures are applied to estimate the unit condition over time 

by: 

 Preventing an unexpected failure. 

 Enhancing the service life/prognosis and monitoring.  

 Optimizing the reliability, availability, and risk.  

 Analyzing the component before the actual failure point. 

Figure 5 depicts a big picture of the degradation process. Consider that the goal is 

to obtain the degradation measures of an asset over time based on the history of the 

assets for the most critical internal and external covariates. It has been assumed that the 

acceptable range for the critical covariates is known prior. Therefore, any deviation from 
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the acceptable area might be an indication for upcoming failure or unpleasable events. 

As mentioned before, raw data might not reveal very beneficial information. They can 

convert to the health indicator statistics in order to extract the most helpful information. 

As an example, suppose that an electrical transformer is under the monitoring process. 

Based on initial analyses, a few covariates such as voltage, current, temperature, and 

etc. have been determined as critical covariates which directly affect the degradation 

measures. In the next step, the raw measurements can be turned into the health indicator 

statistics such as efficiency. Based on the Steady-State conditions, the efficiency of the 

transformer can be collected and monitored over time. Any abnormal trend in the health 

indicator estimates might be an indication of forthcoming failure.  

 

Figure 5: Big picture of degradation process. 
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As Figure 6 presents, degradation measures can be classified as transitory or 

permanent degradation. Transitory degradation measures are a part of the degradation 

process which can be restored by performing the needed maintenances.  In some cases, 

maintenance power is not able to restore the asset to the as good as new condition. The 

difference between the degradation estimates at time zero, when the unit is new, and 

degradation right after performing the maintenance can be considered as the permanent 

degradation. Permanent degradation can be used as an indication of replacing the asset 

over its lifetime.   

 

Figure 6: Major types of degradation estimates. 

Degradation models can be categorized as Model-Driven, Data-Driven, and Hybrid 

or Fusion models. Model-Driven algorithms are mostly based on the physics governing 

the system. Therefore, mathematical models are needed in order to reach a reliable 
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result. Data-Driven algorithms are very applicable when the system is complex or the 

physics of the failure governing the system is unknown. Data-Driven algorithms rely on 

the data-sets which present the system behaviors. ML algorithms are very applicable in 

order to perform statistical data analyses and extend outcomes over time. Hybrid or 

Fusion models are based on a combination of Model and Data-Driven algorithms. It 

means that the mathematical models are able to present the physics of the failure for 

some parts of the system. Data-Driven algorithms are in charge of the complex parts of 

the system.  

 

Figure 7: Categories of degradation prediction.  



 

45 
 

2.3 Review of Theories and Methods Relevant to 

Research Questions  

2.3.1  Monte Carlo Simulation 

Monte Carlo methods are an extensive class of computational algorithms that depend 

on repeated random sampling to acquire numerical results. The fundamental concept is 

to apply randomness to solve problems that might be deterministic [141]. They are often 

applied in physical and mathematical problems and are most applicable when it is 

problematic or impossible to use other approaches. Monte Carlo methods are mainly 

used in three problem categories as optimization, numerical integration, and generating 

draws from a probability distribution [142]. 

In application to systems engineering problems, Monte Carlo-based predictions are 

developed in order to predict the upcoming failures. In other problems, the objective is 

generating draws from a sequence of probability distributions satisfying a nonlinear 

evolution equation [143]. These streams of probability distributions can always be 

interpreted as the distributions of the random states of a Markov process whose transition 

probabilities rest on the distributions of the current random states. Monte Carlo methods 

vary, but lean towards to follow a particular class as follow: 

1. Define a domain of possible inputs 

2. Generate inputs randomly from a probability distribution over the domain 

3. Perform a deterministic computation on the inputs 

4. Aggregate the results 
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Monte Carlo simulation is drawing a large number of pseudo-random uniform 

variables at one time, or once at numerous different times.  The main idea behind this 

method is that the results are computed based on repeated random sampling and 

statistical analysis. Indeed, Monte Carlo simulation is random experimentations, in the 

case that, the results of these experiments are not well known. Monte Carlo simulations 

are characteristically characterized by several unknown parameters, many of which are 

difficult to find experimentally [144]. Monte Carlo simulations sample from a probability 

distribution for each variable to generate hundreds or thousands of possible outcomes. 

The results are analyzed to get probabilities of diverse outcomes occurring. Monte Carlo 

methods are especially useful for simulating phenomena with substantial uncertainty in 

inputs and systems with numerous degrees of freedom. 

2.3.2  Distribution Fitting  

Probability distribution fitting is the fitting of a probability distribution to a series of data 

regarding the repeated measurement of a random variable. The purpose of distribution 

fitting is to predict the probability or to forecast the frequency of incidence of the 

magnitude of the phenomenon in a certain interval. There are several probability 

distributions of which some can be fitted more closely to the observed data than others, 

depending on the features of the phenomenon and of the distribution [145]. The 

distribution giving a close fit is supposed to lead to accurate predictions. Therefore, the 

main purpose of distribution fitting is to select a distribution that suits the data well. 

Parametric methods of distribution fitting are the method of moments, maximum spacing 

estimation, method of moments, and, maximum likelihood estimation. Predictions of 



 

47 
 

incidence based on fitted probability distributions are subject to uncertainty, which may 

arise from the following situations [146]: 

• The true probability distribution of events may depart from the fitted 

distribution, as the observed data series may not be completely 

representative of the real probability of occurrence of the phenomenon 

based on a random error.  

• The occurrence of events in another situation may depart from the fitted 

distribution as this occurrence can also be dependent on random error. 

• A change of environmental and operational conditions may origin a 

change in the probability of occurrence of the phenomenon. 

Statistical techniques are applied to estimate the parameters of the various 

distributions. These parameters describe the distribution.  There are four major 

parameters used in distribution fitting as location, scale, shape, and threshold.  Not all 

parameters necessary exist for each distribution [147].  Distribution fitting includes 

estimating the parameters that define the various distributions. 

2.3.3  Poisson Distribution 

In probability theory and statistics, the Poisson distribution is a discrete probability 

distribution that indicates the probability of a given number of events occurring in a fixed 

interval of time if these events occur with a known constant rate and independently of the 

time since the last event. The Poisson distribution is a discrete probability distribution of 

the number of events occurring in a given time period, given the average number of times 

the event occurs over that time period [148] [149]. 
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 For instance, an individual may keep track of the car passing a signal light by the 

means of Poisson distribution. A Poisson process is a model for a sequence of discrete 

events where the average time between events is known, but the precise timing of events 

is random. The arrival of an event is independent of the event before. The Poisson 

distribution is a suitable model if the following assumptions are held [150].  

 k is the number of times an event occurs in an interval and k can take integer 

values.  

 The occurrence of one event does not affect the probability that another event will 

occur. That indicates that events happen independently. 

 The average rate at which events occur is assumed to be a constant value. 

 Two events cannot occur at exactly the same instant.  

Equation (11) presents the general formula for the probability distribution function 

of 𝑋, as a random variable, in which the rate of the events is assumed to be a constant 

value equal to 𝜆. 

𝑝(𝑋 = 𝑥) =
𝑒ିఒ𝜆௫

x!
                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (11) 

 

2.3.4  Gamma Distribution 

In probability theory and statistics, the gamma distribution is a two-parameter family 

of continuous probability distributions. A gamma distribution is a general type of statistical 

distribution that is related to the beta distribution and arises naturally in processes for 

which the waiting times between Poisson distributed events are relevant [151]. In other 

words, The Gamma distribution is a continuous, positive-only, unimodal distribution that 
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encodes the time required for alpha events to occur in a Poisson process with a mean 

arrival time of beta. The gamma distribution is a family of right-skewed, continuous 

probability distributions. These distributions are useful in real-life where something has a 

natural minimum of 0. For example, it is commonly used in finance, for elapsed times, or 

during Poisson processes. The exponential distribution, Erlang distribution, and chi-

squared distribution are special cases of the gamma distribution. The gamma distribution 

is another widely applied distribution. Its standing is mainly due to its relation to 

exponential and normal distributions. Equation (2.12) presents the general formula for the 

probability density function of the gamma distribution, where 𝛼 and 𝛽 are shape and scale 

parameters, respectively [152]. 

𝑓൫𝑥 ;  𝛼, 𝛽൯ =
𝛽ఈ𝑥ఈିଵ𝑒ିఉ௫

Γ(𝛼)
    𝑓𝑜𝑟 𝑥 > 0  ,  𝛽 > 0                       Equation(12) 

2.3.5  Mixture Distributions 

A mixture distribution is a mixture of two or more probability distributions. Random 

variables are drawn from more than one main population to generate a new distribution, 

which is a mixture of several distributions. All the distributions involved in the mixture 

model should either be all discrete probability distributions or all continuous probability 

distributions [153]. The distributions can be originated from diverse distributions (e.g. a 

normal distribution and a t-distribution) or they can be made up of the same distribution 

with different parameters [154]. Mixture distributions are a suitable way to demonstrate 

how variables can be differently distributed. An example of when mixture distribution 

might be applied is when there is not sufficient idea regarding the possible outcomes. A 

mixture distribution, sometimes also named a mixture density, is a distribution formed 
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from the weighted combination of two or more component distributions. The component 

distributions can be univariate or multivariate [155]. Assume you have a population, where 

each individual in the population belongs to exactly one of several groups. If you can 

estimate the distribution of some quantity for each group, the distribution for the 

population as a whole is obtained as a mixture of these, with each component weighted 

as the fraction of the total population represented by that group [156]. 

2.3.6  Truncated Distributions 

A truncated distribution is a conditional distribution that consequences from restricting 

the domain of probability distribution. Truncated distributions arise in applied statistics in 

cases where the ability to record, or even to know about, occurrences are limited to values 

that lie within a specified range [157]. Where sampling is such as to retain the knowledge 

of items that fall outside the required range, without recording the actual values, this is 

known as censoring, as opposed to the truncation here. A reason for applying a truncated 

distribution may be that there is no interest beyond the truncation point. Another reason 

for truncation is that the distribution is not valid beyond the truncation point. For example, 

the damage amount above a certain level may not be a valid outcome given a statistical 

distribution function. A truncated distribution has its domain limited to a certain range of 

values [158]. 

2.3.7  Convolutional Models 

The convolution of probability distributions arises in probability theory and statistics as 

the operation in terms of probability distributions that resemble the addition of 

independent random variables and, by extension, to creating linear combinations of 
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random variables [159]. The probability distribution of the sum of two or more independent 

random variables is the convolution of their individual distributions. The term is inspired 

by the fact that the probability density function of a sum of random variables is the 

convolution of their corresponding probability density functions respectively. In 

mathematics, convolution is a mathematical operation on two or more functions that 

produce another function stating how the shape of one is modified by the other. It is 

defined as the integral of the product of the two functions after one is reversed and shifted. 

The convolution of two vectors represents the area of overlap under the points as one 

slides across the other one. A convolution is integral that expresses the amount of overlap 

of one function as it is shifted over another function. The main application of convolution 

models in engineering is in describing the output of a linear, time-invariant system [160].  

2.3.8  Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a 

probability distribution by maximizing a likelihood function so that under the assumed 

statistical model the observed data is most possible [161]. The point in the parameter 

space that maximizes the likelihood function is called the maximum likelihood estimate. 

If the likelihood function is differentiable, the derivative test for determining maxima can 

be applied. In some cases, the first-order conditions of the likelihood function can be 

solved explicitly. As an example, the ordinary least squares estimator maximizes the 

likelihood of the linear regression model. Under some conditions, numerical methods will 

be essential to find the maximum of the likelihood function. From a statistical standpoint, 

a given set of observations are a random sample from an unknown population. The goal 

of maximum likelihood estimation is to make inferences about the population that is most 
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likely to have generated the sample. Maximum likelihood estimation is a method that 

determines values for the parameters of a model. The parameter values are found such 

that they maximize the likelihood that the process described by the model produced the 

data that were actually observed [162]. 

2.3.9  Expectation-Maximization Optimization 

Expectation-Maximization (EM) algorithm is an iterative method to find maximum 

likelihood or maximum posterior estimates of parameters in statistical models, where the 

model depends on unobserved latent variables. The EM iteration alternates between the 

execution of an expectation (E) step, which creates a function for the expectation of the 

log-likelihood evaluated using the current estimate for the parameters, and a 

maximization (M) step, which computes parameters maximizing the expected log-

likelihood found on the E step [163]. These parameter-estimates are then applied to 

determine the distribution of the latent variables in the next E step. The EM algorithm is 

used to find local maximum likelihood parameters of a statistical model in cases where 

the equations cannot be solved directly. Finding a maximum likelihood solution typically 

requires taking the derivatives of the likelihood function with respect to all the unknown 

values, the parameters, and the latent variables, and simultaneously solving the resulting 

equations. In some statistical models, the result may be a set of interlocking equations in 

which the solution to the parameters requires the values of the latent variables and vice 

versa but substituting one set of equations into the other produces an unsolvable equation 

[164]. 

The EM algorithm proceeds from the observation that there is a way to solve these two 

sets of equations numerically. One can simply pick random values for one of the two sets 
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of unknowns, use them to estimate the second set, then use these new values to find an 

improved estimate of the first set, and then keep alternating between the two until the 

resulting values both converge to fixed points. No guarantee exists that the sequence 

converges to a maximum likelihood estimator. For multimodal distributions, this means 

that an EM algorithm may converge to a local maximum of the observed data likelihood 

function, depending on starting values [165].  

2.3.10 Clustering Algorithms  

Clustering is a Machine Learning (ML) technique that includes the grouping of data 

points. Given a set of data, a clustering algorithm can be applied to classify each data 

point into a specific group. Ideally, data points that are in the same group should have 

similar properties, while data points in different groups should have highly dissimilar 

properties. Clustering is one of the most commonly used methods of unsupervised 

learning for statistical data analysis. Clustering methods can be applied to gain some 

valuable insights from the data by investigating what groups the data points fall into when 

we apply a clustering algorithm [166]. Therefore, the clustering task refers to grouping a 

set of data in such a way that data points in the same group, known as a cluster, are more 

similar, in some sense, to each other than to those in other groups. Clustering analysis is 

not itself one specific algorithm. Clusters can be obtained by various algorithms that differ 

significantly in terms of understanding of what establishes a cluster and how to efficiently 

the clusters can be constituted [167]. Clustering can, therefore, be formulated as a multi-

objective optimization problem. In general, clustering algorithms can be categorized as 

following [168]: 

• Connectivity-based clustering or hierarchical clustering 
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The core idea of objects being more related to nearby objects than to objects farther 

away. These algorithms connect "objects" to form "clusters" based on their distance. (Ex. 

Linkage clustering)  

• Centroid-based clustering 

In centroid-based clustering, clusters are represented by a central vector, which may 

not necessarily be a member of the data set. When the number of clusters is fixed to k, 

k-means clustering gives a formal definition as an optimization problem: find the k cluster 

centers and assign the objects to the nearest cluster center, such that the squared 

distances from the cluster are minimized. (Ex. K-means clustering) 

• Distribution-based clustering 

The clustering model most closely related to statistics is based on distribution models. 

Clusters can then easily be defined as objects belonging most likely to the same 

distribution. A convenient property of this approach is that this closely resembles the way 

artificial data sets are generated: by sampling random objects from a distribution. (Ex. 

Gaussian Mixture Model (GMM) clustering) 

• Density-based clustering 

In density-based clustering, clusters are defined as areas of higher density than the 

remainder of the data set. Objects in these sparse areas that are required to separate 

clusters are usually considered to be noise and border points. (Ex. Density-based spatial 

clustering of applications with noise (DBSCAN)) 

Clustering algorithms can be divided into two subgroups as the following present.  
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• Hard Clustering: In hard clustering, each data point either belongs to a 

cluster completely or not.  

• Soft Clustering: In soft clustering, instead of putting each data point into a 

separate cluster, a probability or likelihood of that data point to be in those 

clusters is assigned.  

2.3.11  K-means Clustering 

k-means clustering is a method of vector quantization, originally from signal 

processing, that is popular for cluster analysis in data mining. Partition the n 

observations,  𝑑 = ൛𝑑ଵ, 𝑑ଶ,  … . ,  𝑑ൟ into K clusters (K ≤ n) such that the sets minimize the 

within-cluster sum of squares. where 𝜇 is mean of the points in the cluster 𝑆  

 

Figure 8: A schematic view of k-mean clustering algorithm. 
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The problem is computationally difficult, NP-hard; however, efficient heuristic 

algorithms converge quickly to a local optimum. Some iterative methods such as 

Expectation-Maximization (EM) can be applied in order to find a local optimum point [169]. 

The algorithm has a loose relationship with the k-nearest neighbor classifier, a 
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widespread machine learning technique for classification that is often confused with k-

means due to the name. K-means clustering is one of the most common algorithms which 

uses an iterative refinement technique. it is also referred to as Lloyd's algorithm. The 

algorithm has converged when the assignments no longer change. The algorithm does 

not guarantee to reach the optimum point. The algorithm is often offered as assigning 

objects to the nearest cluster by distance. Applying a diverse distance function other than 

(squared) Euclidean distance may stop the algorithm from converging [170].   

2.3.12  Gaussian Mixture Model Clustering  

Gaussian mixture models can be used to cluster unlabeled data in much the same 

way as k-means. There are, however, a couple of advantages to using Gaussian mixture 

models over k-means. First and foremost, k-means does not account for variance. By 

variance, we are referring to the width of the bell shape curve. One way to consider the 

k-means model is that it places a circle at the center of each cluster, with a radius defined 

by the most distant point in the cluster. In contrast, Gaussian mixture models can handle 

even very oblong clusters [171]. The second difference between k-means and Gaussian 

mixture models is that the former performs hard classification whereas the latter performs 

soft classification. In other words, k-means tell us what data point belongs to which cluster 

but cannot provide the probabilities that a given data point belongs to each of the possible 

clusters. 
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Figure 9: A schematic view of the Gaussian Mixture Model clustering algorithm.  
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3. Chapter 3: Generic System Under Study 

Although the developed predictive model of reliability assessment in this thesis can 

be applied to various applications, the main motivations for conducting this research have 

been initially raised based on the reliability analysis of the electrical energy network. One 

of the primary concerns of the electrical energy networks is the ability to enhance the 

reliability of the assets and consequently, the overall electrical system. In general, a 

reliable asset is able to perform its intended function under the specific working conditions 

over the predefine cycles, known as the asset lifetime. The intended functions of an asset 

might include various roles. As a result, an asset might be still working while being 

considered as an unreliable asset. Specific working conditions are usually provided by 

the manufacturers or can be obtained as the results of laboratory tests. Specific working 

conditions are usually the nominal conditions that enable the owners to obtain more value 

of the asset by enhancing its life-cycle characters.  Furthermore, an expected lifetime for 

an asset is provided by the manufacturers or estimated by the decision-makers. It should 

be considered that an asset might face completely a unique condition over its upcoming 

cycles. On the other hand, an asset might behave entirely different in each application. 

Therefore, a more realistic measurement should consequently estimate the lifetime of the 

assets in order to optimize the assets’ value by keeping the reliability of the network above 

a certain level.  

Energy network reliability significantly impacts customer as well as energy providers’ 

bottom line. Obviously, any shortage in demand due to unreliable assets is not desirable 

from the energy providers’ point of view since, it leads to the loss of income and in some 
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cases, reputation. On the other hand, customers would like to always have access to a 

reliable electrical network in order to perform their desired functions.   

During the last decades, new types of assets such as distributed generations and 

smart loads have emerged. Some of these technologies such as Solar Photovoltaic (PV) 

panels and Wind turbines have existed for a few decades but, their applications are 

constantly increasing. There is a constant growth in energy consumption and 

consequently energy generation around the world. During recent decades, renewable 

energy sources took heed of scientists and policymakers as a remedy for substituting 

traditional sources. Wind and Solar are among the least reliable sources because of their 

dependence on wind speed and irradiance and therefore their intermittent nature. Energy 

storage systems are usually coupled with these sources to increase the reliability of the 

hybrid system. As a result, inherent unreliability is always attached to the wind and solar 

energy resources. 

Several studies have focused on the predictive models to enhance the reliability of the 

electrical network including the renewable facilities. It should be considered that these 

types of reliability assessment are mainly dealing with the uncertainty of energy 

resources. In order to enhance the overall reliability of the electrical network, the reliability 

of the components of the systems should be studied carefully. As an example, it might be 

possible that solar PV panels be able to convert the irradiance to the electrical energy 

but, the electrical inverters may not be able to perform their intended functions. 

Consequently, studying the uncertainty of the energy resources coupled with uncertainty 

in the future condition of the assets will enhance the overall reliability of the electrical 

energy networks. 
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New Hardware and Software tools for connectivity have been developed more than 

any time before. Decision-makers and analysts are usually able to have an insight 

regarding the asset performance close to real-time. Consequently, an optimized asset 

management policy can significantly enhance the reliability of the components and the 

overall network.  Therefore, RA becomes a critical factor in the efficiency of capital-

intensive corporations including the distributed electric power generation. The following 

are a summary of the primary motivations for conducting this research study.  

i. Energy network reliability significantly impacts customer as well as energy 

providers’ bottom line. Therefore, an accurate predictive model of RA must be 

applied in order to maintain the reliability of the electrical energy networks 

above a certain level. 

ii. Reliability Assessment is becoming a critical factor in the efficiency of capital-

intensive corporations including electrical power generation.  

iii. The new types of assets such as distributed generations and smart loads have 

been emerged. New H/W and S/W tools for connectivity have been integrated. 

Therefore, more information regarding the real-time condition of the assets 

must be available. This information is mapped into the degradation estimates 

as a health indicator., which can enhance the accuracy of the predictive model 

of RA based on the degradation models. 
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The application of the proposed methodology in Chapter 3 is illustrated for an electrical 

Distributed Energy System (DES). Asset Management (AM) related decisions are very 

critical for DES since interruption in electrical generation in not desirable either from 

energy providers or consumers’ point of view. The main purpose of this chapter is to 

provide information regarding the generic electrical system under study, especially for the 

critical components which are constantly subject to fail.  

The penetration of renewable energy resources is considerable in DES. Since the 

source of renewable energies is intermittent in nature, there is some level of uncertainty 

in the amount of forecasted energy generation. It should be considered that a DES should 

be reliable enough to be integrated into the energy supply chain of the upper stream 

entities. Failure of the critical assets of a DES might cause interruption to meet the 

electrical demand, which in some cases is not tolerable by the main utility company. 

Therefore, DESs should apply a robust predictive model of AM in order to guarantee the 

continuous generation as promised by Demand Response (DR) algorithms.  

It should be noted that this chapter does not seek to study the electrical components 

of the system from a technical point of view. In other words, this chapter briefly describes 

the most important feature of the critical components of the generic system under study. 

The provided information in this chapter might be helpful to define a robust health or 

degradation criteria.  For instance, the self-discharge rate can be considered as one of 

the health indicators which illustrate the degradation process. Degradation estimator 

definition can highly affect the outcome of the other algorithms since most of the data-

driven algorithms rely on degradation estimates in order to assess the performance of the 

asset. In this study, it has been assumed that the time-series degradation estimates are 
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available. Indeed, health indicator identification is out of the scope of this study. The rest 

of this chapter briefly explains the main features and common causes of failure for critical 

components of a DES.  

3.1 Distributed Generation (DG) 

The main purpose of the DGs are bringing the generation point closer to the 

customer to enhance the overall system efficiency and reliability. The sources of energy 

generation could be either from non-renewable or renewable resources but, there are 

more potentials for high penetration of renewable energy resources such as solar PV 

panels and wind turbines [172]. Figure 10 presents a schematic picture of the energy 

network including distributed generations. It should be noted that the utility grid is still 

playing an important role in the system to meet any remaining part of the loads. As a 

result, the overall reliability of the system can still remain high while relying more on 

distributed generation facilities [173]. Figure 11 shows a big picture of the electrical 

network diagram presenting the role of the DGs. 

 

Figure 10: A schematic picture of the energy network including distributed generations. 
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Figure 11: A big picture of the electrical network diagram presenting the role of the distributed 
generations. 

 

3.1.1  Scale of the Distributed Generation 

Figure 12 depicts a big picture of various scales of DGs for an electrical network. 

The application of the DGs could be at various points of the network either in large or 

small-scale.  
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Figure 12: Various scales of distributed generation. 

 

3.1.2  Distributed Generation Data Flow 

Figure 13 presents a schematic view of the data flow through a distributed generation 

network. The data analytics can be executed either at the component or system level. 

Fog and Edge analytics are primarily focusing on the component and a series of 

components respectively. Cloud analysis is more toward the high-level decision regarding 

the system with respect to the obtained insight of components. Cloud level decisions 

might not be close to the real-time decision due to data latency, bandwidth limitation, and 

etc.  
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Figure 13: Schematic view of the data flow through a distributed generation network. 

3.1.3  Distributed Generation – Smart Systems 

Figure 14 presents a bidirectional flow of power and information due to the wide 

application of the DGs. High penetration of the RESs and DGs would let some customers 

meet their demand based on their own local generation. In addition to that, they can sell 

the extra generated electricity back to the utility using the smart meters and electrical 

components [174].  



 

66 
 

It should be considered that Energy Storage Devices (ESDs) are able to expressively 

cut the electricity bills of the customer. Customers are able to store the generated energy 

for their own future consumption or sell the extra stored amount back to the utility. The 

proposer size of the ESDs significantly affects the Return on Investment (RoI) values.    

 

Figure 14: Bidirectional flow of power and information. 

Figure 15 depicts a schematic view of the smart distributed generation. 

Connectivity is the core of the smart DGs. A central control data center is constantly 

optimizing the schedule of the electrical equipment with respect to the various parameters 

such as the predicted generation, loads, and price of the energy resources. It should be 

noted the application of the ESDs and variable profile for the energy price is offering the 

potential for the customers in order to cut their electricity bills. In addition to the energy-

saving opportunities for the customers, there are some potentials for the energy providers 

as well. For instance, high penetration of the DGs make the energy providers able to 

reduce their peak capacity.  
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Figure 15: Schematic view of the smart distributed generation. 

 

3.2 Critical Component of the System Under Study 

3.2.2  Transformers 

Transformers are one of the most critical components of the electrical distribution 

network. Transformers are designed in order to step down and step up the voltage as 

needed at any point of the point from generation, transmission, and distribution sectors. 

Transformers usually connect the subsystem of a system and deliver the electricity to the 

end customers. The main application of the transformers is in the electrical power 

transmission and distribution network.  Based on the application of the devices, the size 

of the unit might vary. Generally, transformers are among the cost-expensive assets 

which are constantly subject to fail. It should be considered that the transformer failures 

can cause serious interruption for downstream customers. Therefore, an optimized 
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approach for monitoring and maintaining the transformers are essentials in order to 

enhance network reliability [175]. Figure 16 depicts the main parts of an electrical 

transformer. 

 

Figure 16: Main parts of an electrical transformer. (Copyright reserved for “engineeringworldchannel”) 

Although there are various reasons for a transformer to be failed, this study mainly 

focuses on the most common failures of a transformer as follow [176]: 

 High ambient temperature (Over-loading): If the temperatures are substantially 

higher than expected and the unit is not exposed to direct sunlight, then there’s 

most likely a problem with overloading and cooling. 

 High current and voltage (Insulation breakdown): High current and voltage 

which are high above the rated values are the main reasons. The major 

reasons for the insulation breakdown are, aging of insulation, Partial discharges 

in the insulation, Transient overvoltages due to lightning or switching in the 

network, Current forces on the windings due to external faults with high current. 

Insulation Breakdown of the windings will cause short circuits and /or earth 



 

69 
 

faults. These faults cause severe damaging to the windings and the transformer 

core. 

 Sudden high voltages (Partial discharge): Bushing failure usually occurs over 

time; Loosening of conductors is caused by transformer vibrations which result 

in overheating. Sudden high fault voltages causes’ partial discharge (the 

breakdown of solid/liquid electrical insulators) which damage the bushes and 

causes its degeneration and complete breakdown within hours.  

 Polluted oil or oil leakage (Internal over-flashing): Not replacing old oil over a 

long time or its deficiency due to leakage causes internal over-flashing. 

 Direct contact between core and winding (Over-heating): The over-heating 

reaches the core surface which is in direct contact with the windings.  

3.2.2 Natural Gas (NG) Generators 

The main function of the NG generators is generating the electricity by consuming 

natural gas as the fuel. The main application of the NG generators is for the situation in 

which access to the grid is limited or a back-up power source is essential. Since the 

system under study in this research is in island mode without any tie to the utility grid, the 

reliability of the NG generators should be high in order to meet the loads with the minimum 

shortage [177]. NG generator maintenance schedule should be carefully planned since 

too many maintenances accelerate the degradation of the unit and too rare maintenances 

would lead to facing the failure and interruption in the system. Figure 17 presents the 

main parts of natural gas generators. 
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Figure 17: Main parts of natural gas generators. (Copyright reserved for “Cregsedits ; Atlanta ; 2011”) 

 

Although there are various reasons for an NG generator to be failed, this study mainly 

focuses on the most common failures of an NG generator as follow : 

 Low ambient temperature. 

 Low coolant temperature. 

 Air in the fuel system. 

 Fuel filter clogging. 

 Oil, fuel, or coolant leaks. 

3.2.3 Inverters 

The main role of the electrical inverters is changing the DC to AC power. In this study, 

we assume the solar PV panels and wind turbines are always reliable and the 

components which are subject to fail are the inverter. This unit is a cost-expensive unit 

that needs a careful maintenance schedule. The most important features of an inverter 

are input voltage, output voltage, output power, and output frequency [178]. The following 

are the most common application of electrical inverters. 
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 DC power source usage 

 Uninterruptible Power Supply (UPS) 

 Electrical power transmission and distribution 

 Solar and Wind 

 Battery 

 Electric motor speed control 

Although there are various reasons for an inverter to be failed, this study mainly 

focuses on the most common failures of an inverter as follow [179]: 

 High temperature caused by high current value: Inverters are made up of 

electronic components, and therefore sensitive to temperatures. High 

temperatures will lead to a significant reduction in production and can even 

result in a production stop if the maximum operating temperature is 

reached. An assessment must, therefore, be made as early as the design 

stage to determine whether the proposed cooling technology is adequate 

and whether it has sufficient capacity. 

 Over and under-voltage: If either current or voltage increases to a level that 

the inverter is not rated for, it can cause damage to components in the 

device, most frequently the inverter bridge. Often this damage will be 

caused by the excess heat generated by the spike in voltage or current. 

Over-current can be avoided with fuses or circuit breakers but avoiding 

over-voltage can be tricky. 



 

72 
 

 Electro-mechanical wear on capacitors: Inverters rely on capacitors to 

provide a smooth power output at varying levels of current; however 

electrolytic capacitors have a limited lifespan and age faster than dry 

components. Capacitors are also extremely temperature-sensitive. 

Temperatures over the stated operating temperature, often caused by high 

current, can reduce the life of the component. However, as the electrolytes 

evaporate faster at higher temperatures, capacitor life increases when they 

are running at lower than operating temperature. 

 Isolation fault due to the short circuit: Another common problem is the 

“isolation fault”. This fault occurs as a result of a short circuit between 

various parts of the circuit, and the inverter will then report an “isolation 

alarm”. The short-circuit is usually the result of a combination of moisture 

and damage to the sleeve on the cabling, faulty installation, poor connection 

of the DC cables to the panel, or moisture in the connection part of the PV 

module. In the event of an isolation fault, the inverter will stop working 

completely or continue to work at the minimum “required” isolation level. 

 

3.2.4 Batteries 

Storing electrical energy means absorbing the electricity, storing for a period of time 

and then releasing it to the energy suppliers or power services. In this process, energy 

storage devices (ESDs) can be a temporal time bridge or covering a geographical gap 

between energy supply and demand [180]. Energy storage systems mediate between 

variable sources and variable loads. Energy storage systems can implement in large or 



 

73 
 

small scale from generation to final delivery to the customers. Reliability is one of the most 

important parameters in the electrical networks and ESDs increase the total reliability of 

the network. ESDs charge when the demand is lower than other periods and discharge 

during peak demand periods to smooth the generation system and prevent any shortage 

in the network [181]. ESDs can also be utilized in order to take some economic benefits. 

ESDs can be charged when the price of electricity is lower, usually off-peak periods, and 

the discharge to the system when the prices are higher. In addition to that, high 

penetration of the DGs significantly affects the application of the ESDs. For instance, for 

a small-scale DG which is supposed to meet its own demand, a battery can be coupled 

to the system in order to save the generated electricity from the solar PV panels for night 

time periods. It should also be considered that the peak generation of solar and wind 

energy resources are complementary to each other. The followings are the most 

important applications of the batteries [182].  

 Load leveling 

 Peak shaving 

 Frequency regulation 

 Spinning reserve 

 Capacity firming 

 Power quality 

Although there are various reasons for a battery to be failed, this study mainly 

focuses on the most common failures of a battery as follow: 

 Elevated Temperatures 
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 Repeated Cycling 

 Excessive DC Ripple Current 

 Over-charging / Under-charging/ Over-discharge 

 Vibration 

3.3 Generic System under Study 

Figure 18 depicts a generic system under the study in this research as an off-grid (1 

MW) micro-grid with deferable and non-deferable loads. This system is an off-grid system 

which means there is no connection to the utility grid and the loads should be met based 

on an island mode. The priority of the smart loads of the network is critical, essential, and 

normal loads. Normal or hotel loads are flexible to be met later. It has been assumed that 

the critical components of the systems are known prior as a result of engineering insights 

toward the system. Furthermore, the rest of the systems are assumed to be always 

reliable to perform their intended functions satisfactorily. In the next section, the most 

critical components of the system under study are briefly explained in terms of the 

functions, applications, main features, and common failures.  
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Figure 18: Off-Grid (1 MW) micro-grid with deferable and non-deferable loads. 

3.4 Concluding Remarks 

This main contribution of this study is the application of the data-driven degradation 

based first hitting time models for the distributed electrical systems by considering the 

time and critical covariate effects.  As mentioned before, the new era is highly relying on 

the real-time status of the units rather than the historical lifetime data. It should be noted 

that the core of the analysis is the degradation model predictions since it highly affects 

the reliability, availability, risk, and probability of failure for each asset and overall system. 

Therefore, any attempt to enhance the degradation model performance in order to be 

able to accurately describe the asset behavior in real-time would certainly enhance the 

upstream statistics such as reliability and risk.  
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4.  Chapter 4: Methodology 

4.1 Research Design 

As mentioned in Chapter 1, the main purpose of this thesis is to develop a predictive 

model of reliability estimation based on real-time data using a discrete-time state-space 

stochastic degradation model to prevent actual failure by predicting the time to 

maintenance (soft failure) in order to enhance the value and to prolong the life of assets. 

The main scientific contributions of this study are (1) developed a new state-space 

stochastic degradation model to accurately capture the dynamic behavior of assets, (2) 

applied simulation techniques to estimate reliability of assets over time and estimate the 

critical failure time using the new degradation model, (3) estimated the reliability based 

on analytical formulation for degradation prediction model, and (4) developed a new data-

driven parameter estimation algorithm based on the new degradation model.    

Classical models of reliability estimation mainly rely on historical failure data. It should 

be considered that obtaining lifetime data in a timely manner is one of the current 

challenges. Failure data may not be easily obtainable for highly reliable assets. 

Furthermore, the collected historical lifetime data may not be able to accurately describe 

the behavior of the asset in a unique application or environment. For instance, if the 

lifetime data are collected based on the experimental tests given specific environmental 

and operational conditions, there is no guarantee that the asset behavior remains 

unchanged in other conditions during its lifetime. Therefore, it is not an optimal approach 

anymore to estimate reliability based on classical models. 
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Fortunately, most of the industrial assets have performance characteristics whose 

degradation or decay over the operating time can be related to their reliability estimates. 

Degradation indicates the process of lowering the rank, status, or grade, which leads to 

a less effective level of performance. The application of the degradation methods has 

been recently increasing due to their ability to keep track of the dynamic conditions of the 

system over time. The main purpose of the degradation-based models is to predict the 

future condition of the asset and perform the maintenance actions in an optimized time 

window before the actual failure of the system occurs. Since the degradation-based 

analysis defines the failure events based on the predefined threshold, the failure is said 

to have occurred as a soft failure. This indicates that the asset under the study is 

considered as a failed unit when the degradation profile hits the threshold for the first 

time.  

Inaccurate modeling of the degradation phenomenon leads to inaccurate 

assessment of reliability, maintenance policy, risk, lifetime prediction, etc. In this thesis, a 

wide variety of the currently developed models of degradation are studied in detail. 

Degradation models based on the Gamma process and General Path Model have been 

applied in various studies. The main purpose of this study is to develop a new data-driven 

predictive model of reliability estimation based on real-time data using a state-space 

stochastic degradation model to predict the critical time for initiating maintenance actions 

in order to enhance the value and prolonging the life of assets. Indeed, the new 

degradation model developed in this study extended the General Path Model based on a 

series of Gamma Processes degradation models in the state-space environment.  

Poisson distributed weights are considered for each of the Gamma processes. Therefore, 
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the new degradation model developed in this thesis is based on the General Path Model 

which considers a series of Gamma Processes in the state-space environment by 

considering Poisson distributed weights for each of the Gamma processes.  

Monte Carlo simulation is applied in order to estimate the distribution of the time to 

soft failure based on the simulated degradation profiles. In addition to that, at each point 

of the time, the distributions of the degradation observations are also obtainable based 

on the generated degradation profiles. Therefore, one of the purposes is to develop 

predictive algorithms that are able to predict the critical failure time based on the first 

hitting time models to initiate maintenance before the failure occurs. It should be 

considered that degradation estimates might not be directly obtainable. In the next step 

of this study, an exact formulation of an analytical approach of reliability estimation is 

presented. The main benefit of the presented analytical approach is its dependency on 

the real-time status of the asset since the analyses are not based on the obtained 

distribution functions. The developed model in this step can be considered as a data-

driven algorithm due to the dependency of the degradation estimates to the real-time 

monitoring data. The followings are the primary steps of this thesis. 

I. Developed a new stochastic state-space degradation model, in the state-space 

environment or based on the first order Autoregressive models (AR) to accurately 

capture the dynamic behavior of assets.  

Based on the first-order AR model, or state-space model, considered in this thesis, 

the health condition of the asset in the next cycle highly depends on the current 

status of the system as well as the behavior of the stochastic process happening 

during that period of time. It should be considered that the health condition of the 
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asset is represented by time-series degradation estimates. Later, this stochastic 

process is introduced as the changes in the degradation estimator, which indicates 

the cumulative occurred damage.  

II. Applied Monte-Carlo simulation technique to estimate the reliability of assets over 

time. In addition to that, the critical soft failure time using the new degradation 

model is estimated based on the simulated degradation profiles.  

In this step, the main purpose is to estimate the distribution of the critical failure 

time based on the first hitting time degradation models to initiate the maintenance 

before the failure occurs. In should be noted that in degradation-based analysis 

failure occurs when the degradation estimate hits the predefined threshold for the 

first time. Several degradation profiles can be generated given the same set of 

model parameters based on the Monte-Carlo simulation. Therefore, the 

distribution of the critical failure time can be obtained based on the statistical 

inference. In addition to that, the time-dependent distribution of degradation can 

be also obtained based on simulated degradation profiles.  

III. Estimated the reliability based on an analytical formulation of reliability based on 

the new degradation model developed in this thesis. 

In this step, the probability that the degradation estimate reaches a predefined 

variable threshold defines as unreliability is analytically obtained based on the 

statistical tools. Indeed, unreliability and reliability can be estimated given the 

current degradation estimate at each point of time. The main motivation for the 

analytical formulation of reliability based on the degradation profile is to achieve 

an automatic, quick-responding, accurate, and robust scheme to estimate the 
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reliability of an asset based on the real-time monitoring data. For most of the 

applications, the threshold cannot be estimated without any uncertainty. Therefore, 

it has been considered that the threshold is a random variable following the same 

distribution as the destructive amount. It should be considered that the parameters 

of the model are assumed to be known prior. In the next step, unsupervised 

clustering techniques are deployed to introduce a data-driven algorithm to estimate 

the parameters of the new degradation model based on the observed time-series 

degradation estimates.  

IV. Developed an algorithmic data-driven parameter estimation model for the new 

degradation model.  

Parameters of the new degradation model are estimated based on the 

unsupervised clustering techniques. The main purpose of this step is to apply the 

clustering algorithms as an unsupervised learning technique to define the clusters 

in which the hazard, or damage, events occurred zero and only one time. 

Therefore, the parameters of the new degradation model can be estimated based 

on the share or weight, centroid, and variance of each cluster. 

4.2  Procedures 

4.2.1  Degradation Model 

In recent decades, highly reliable products are more often being designed and 

industrialized in a shorter amount of time.  Consequently, it is not usually possible to 

assess the new designs to failure under normal operating and environmental conditions. 

It may be possible to infer the reliability behavior of un-failed samples with only the 
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accumulated test time information. In these cases, some assumptions are made about 

the distribution of the parameters. However, this may end to a large level of uncertainty 

in the results. An alternative option in this situation is the application of degradation 

models. Degradation analysis involves the measurement of performance data that can 

be directly or indirectly translated into the health indicator in order to obtain information 

regarding the presumed level of failure. Therefore, the main purpose of the degradation 

models is to associate failure or damage mechanisms into the degradation estimates. 

The degradation-based analysis permits the analyst to extrapolate to an assumed failure 

time, defines as degradation or failure threshold, based on the measurements of 

degradation over time. 

Degradation estimates may be obtained either directly or indirectly. For some 

applications, it is possible to directly measure the degradation of a physical characteristic 

over time. For instance, wear of brake pads, propagation of crack size, the voltage of a 

battery, and flux of an LED bulb can be directly measured. If the physical characteristic 

can be measured directly, analysis refers to a Non-Destructive Degradation Analysis 

(NDDA) category. In other cases, direct measurement of degradation might not be 

possible without destructive measurement techniques that would directly affect the 

performance of the product. Consequently, only one degradation measurement is 

possible for each product. For instance, the measurement of corrosion in a chemical 

container or the strength measurement of an adhesive bond can be measured only once. 

These cases fit into the Destructive Degradation Analysis (DDA) category. It should be 

noted that the obtained time-dependent distributions of the degradation estimates are 

very applicable for assets in DDA category. In addition to that, the obtained distribution of 
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the time to soft failure can be more applicable for assets in the Non-Destructive 

Degradation Analysis (NDDA) category. 

As mentioned in Chapter 2, degradation models can be categorized into two main 

categories as physic-base and statistical-based models. The developed model in this 

thesis is based on the principles of the statistical-based models. From now on, the 

degradation model refers to the statistical-based degradation model. The followings are 

the main reason for selecting the statistical-based model. 

 It may be very time consuming to identify the physics of the degradation 

phenomenon. In some cases, it may not be possible to accurately obtain the 

model. There are more challenges to detect this relationship for new products.  

 There is no general physics-based model that can be easily adapted to various 

applications of the same product. The dynamic behavior of the system makes 

it impossible to develop a general degradation model.  

 Reliability estimation may not be accurately derived since the physic-base 

model may contain several parameters, which are indeed random variables in 

real-world applications.  

Statistical-based degradation models are more general which has led to the 

development of several statistical approaches for modeling degradation data. In this 

study, degradation models are developed based on the state-space or Autoregressive 

(AR) models.  

Equation (14) and (15) present the General Path Model developed by Lue and Meeker 

(1993). The detail of the General Path Model is presented in Chapter 2. The developed 
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degradation model in this study is primarily based on the General Path model with a 

unique definition for the path models or mapping function in the state-space environment. 

As mentioned in Chapter 2, a wide variety of the degradation models can be explained 

by General Path Model with a specific definition of the path model. The considered path 

model in this study is based on a first-order state-space stochastic model. The detail of 

the developed model is discussed in this chapter.  
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So far, it has been mentioned that a first-order state-space stochastic model is 

considered as a unique mapping function for the General Path Model to accurately model 

the time-series degradation data. Properties of the stochastic process embedded in the 



 

84 
 

degradation model highly affect the accuracy and robustness of the new degradation 

model. The gamma process is one of the most commonly applied degradation models for 

various applications. In this thesis, the stochastic nature of the degradation model is 

explained based on the main principles of Gamma processes. In each increment of time, 

the variable number of damage or hazard events may occur. The weight of each event is 

explained by a Poisson distribution. The amount of changes in the degradation estimates 

due to the stochastic process is assumed to follow a Gamma process. It has been also 

assumed that the number of damage events linearly affects the amount of damage. 

Therefore, the main scientific contribution of the new degradation model developed in this 

thesis is to define a new mapping function for the General Path Model based on a series 

of Gamma Processes degradation models in the state-space environment by considering 

Poisson distributed weights for each of the Gamma processes. The detail of the 

developed model is explained in this chapter.  

The developed degradation model in this thesis is based on the state-space models, 

which mainly rely on the past observed values of the process under study. Equation (16) 

presents a general form of degradation models applied in this study, while 𝑑௧ is the 

degradation value at time 𝑡, 𝑝 is the order of the AR model, 𝜂 is a function which maps 

the previous degradation values into the degradation estimate at time 𝑡. In other words, 

the presented model in Equation (17) is an 𝐴𝑅(𝑝), which represents an Autoregressive 

model of order 𝑝, which 𝜀௧ are assumed independent and following a 𝑁(0 , 𝜎ଶ) distribution. 

This indicates that it is expected to predict the future value of the degradation based on 

the obtained knowledge regarding the observed degradation values.  

𝑑௧ = 𝜂൫𝑑௧ି: 𝑑௧ିଵ൯ +  𝜀௧                                                                   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 16) 



 

85 
 

 

The 𝐴𝑅(𝑝) can be presented Equation (18), which considers a linear mapping function 

of past values into the estimate at time 𝑡, where 𝜑 = ൫𝜑ଵ , 𝜑ଶ , … , 𝜑൯
ᇱ
 is the vector of 

model coefficients. 

𝑑௧ =  𝜑 . 𝑑௧ି



ୀଵ

+  𝜀௧                                                                       (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 17) 

Yule Walker’s equations establish Equation (18).  

𝑑௧ = 𝜑ଵ. 𝑑௧ିଵ + 𝜑ଶ. 𝑑௧ିଶ + ⋯ +  𝜑. 𝑑௧ି  +  𝜀௧                          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 18) 

𝜑 = ൫𝜑ଵ , 𝜑ଶ , … , 𝜑൯
ᇱ
 can be obtained if we write these equations for 𝑗 = 1, 2, … , 𝑝. 

The first possibility is to form a set of direct inversions when 𝑝 = 1.  

𝑑௧ = 𝜑ଵ. 𝑑௧ିଵ +  𝜀௧                                                                            (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 19) 

Equation (20) forms the over-determined system which can be readily solved using 

the usual least-squares estimator as the Equation (21) presents. The overall concepts will 

remain the same for higher orders of the model.  

  ൭
𝑑ଶ

…
𝑑௧

൱ = ൭
𝑑ଵ

…
𝑑௧ିଵ

൱ . 𝜑ଵ                                                     (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 20) 

          b            A 

𝜑ොଵ = (𝐴்𝐴)ିଵ𝐴்𝑏                                                     (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 21) 
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In time series analysis, the partial autocorrelation function (PACF) gives the partial 

correlation of a stationary time series with its particular lagged values, regressed the 

values of the time series at all shorter lags. Given a time series 𝑑௧, the partial 

autocorrelation of lag 𝑝, is the autocorrelation between 𝑑௧ and 𝑑௧ା with the linear 

dependence of 𝑑௧ on 𝑑௧ାଵ through 𝑑௧ାିଵ removed. Partial autocorrelation plots such as 

Box and Jenkins, are a commonly used tool for identifying the order of an autoregressive 

model.  

In this thesis, a first-order AR model is considered with a unity coefficient matrix in 

order to predict the deterministic part of the model. However, a stochastic model is in 

charge to capture the changes in the values of degradation estimates in each time 

interval. The stochastic model has its own parameters in order to define the stochastic 

damage mechanism. Time-invariant parameters are considered for the parameters of the 

new degradation model. In the first part of this thesis, it has been assumed that sufficient 

engineering insight is available regarding the model parameters. In the next sections, a 

new data-driven algorithmic model is developed based on the unsupervised clustering 

techniques in order to estimate the model parameters.  

Equation (22) states the degradation model considered in this study where ∆௧ is a 

stochastic process of the cumulative amount of damage that occurred at time 𝑡. 

𝑑መ௧ = 𝑑௧ିଵ + ∆௧                                                                      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 22) 

 As mentioned before, at each point of the time, various numbers of damage events 

may occur with a specific weight which is explained by a Poisson distribution. In general, 

it can be stated that the changes in degradation estimate from time 𝑡 − 1 to time 𝑡 can be 
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estimated based on the expected value for the stochastic process, which represents the 

cumulative amount of damage. The expected value of the stochastic process can be 

evolved over time by considering the time-variant parameters for the developed 

degradation model.   

𝑑መ௧ = 𝑑௧ିଵ + 𝐸(𝛿௧)                                                     (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 23) 

Equation (24) presents the degradation estimate at time 𝑡, 𝑑௧, as a function of a 

known number of damage events occurred at time t, 𝐷, probability of observing 𝑋 event, 

𝑝(𝑋), and damage amount due to 𝑋 events occurred at time 𝑡, 𝛿,௧.  

𝑑መ௧ = 𝑑௧ିଵ +  𝑝(𝑋). 𝛿,௧



ୀ

                                           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 24) 

4.2.2  Degradation Model Properties 

In this section, the main properties of the presented degradation model are explained 

in detail. The main properties are (1) rate of observing the damage or hazard events and 

(2) damage amount occurred due to a single event, and (3) cumulation damage amount 

occurred in each cycle.  

4.2.2.1 Damage Events 

In probability theory and statistics, the binomial distribution with parameters n and p 

is the discrete probability distribution of the number of successes in a sequence of n 

independent experiments. Each of these experiments asking a yes or no questions, and 

each with its own Boolean-valued outcome as a success (with probability p) or 

failure/no/false/zero (with probability q = 1 − p). A single success/failure experiment is 
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also called a Bernoulli trial and a sequence of outcomes is named a Bernoulli process. 

The actual distribution of the Poisson is also given by Bernoulli distribution. Poisson 

distribution is a limiting version of the Binomial distribution which n becomes large and np 

approaches a value called rate of event, 𝜆. Figure (19) presents an overview of the 

relationship between the Bernoulli, Binomial, and Poisson distributions. 

 

Figure 19: An overview of the relationship between the Bernoulli, Binomial, and Poisson distributions. 

 In this thesis, it has been assumed that the rate of damage event is following a 

Poisson distribution. Poisson distribution is a discrete probability distribution that presents 

the probability of a given number of events occurring in a fixed interval of time or space if 

these events occur with a known constant rate, known as Poisson parameter, and 

independently of the time since the last event. The Poisson distribution is very popular for 

its properties to model the number of times an event occurs in an interval of time or space. 

The occurrence of one event does not affect the probability that another event will occur 

or not. This indicates that destructive events occur independently. In general, the average 

rate of Poisson events is constant unless the Poisson distribution is defined as a variable 

or function. For instance, the Poisson parameter can be defined as a function of time in 

order to indicate a higher rate of events over time. In addition to that, two events cannot 

occur at the same time. It means that there should be a subinterval in which the probability 
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of observing more than one event is zero. This assumption clearly presents the 

relationship between the Bernoulli and Poisson distributions. In this case, the probability 

of observing x destructive event, p(x), is following a Poisson distribution with the rate of 

λ, which can be a function of the age of the asset under study. This implies that destructive 

events will increase as the asset gets aged. Equation (25) presents the Probability 

Density Function (PDF) of a Poisson distribution. The following assumptions are 

considered in order to obtain the degradation estimate at each point of time.  

𝑝(𝑋 = 𝑥) =
𝑒ିఒ𝜆௫

𝑥!
                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (25) 

4.2.2.2 Damage Amount 

The Gamma distribution is another commonly used statistical distribution. Its 

reputation is largely due to its relation to Exponential and Normal distributions. The 

Gamma distribution is a two-parameter family of continuous probability distributions. The 

exponential distribution, Erlang distribution, and chi-squared distribution are special 

cases of the gamma distribution. Equation (26) presents the probability density function 

(PDF) of the Gamma distribution.  

𝑓(𝑥 ;  𝛼, 𝛽) =
𝛽ఈ𝑥ఈିଵ𝑒ିఉ௫

Γ(𝛼)
    𝑓𝑜𝑟 𝑥 > 0  , 𝛽 > 0                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (26) 

In this study, it has been assumed that damage amount due to a single damage event, 

𝛿ଵ,௧, is following a Gamma distribution with (𝛼, 𝛽) parameters as the shape and scale 

parameters, respectively. The main reason for considering the Gamma distribution over 

the Normal distribution is that the amount of damage cannot be a negative value. 
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It should be noted that the number of occurred damages or destructive events in each 

period is assumed to follow a Poisson distribution with a constant rate. In this study, it has 

been assumed that destruction amount due to a single destructive event, 𝛿ଵ,௧, is following 

a Gamma distribution with (𝛼, 𝛽) parameters as the shape and scale parameters, 

respectively. Furthermore, it has been considered that the damage amount has a linear 

effect with the number of damage events. The following table may clearly explain this 

assumption.  

Table 1: The detail of the cumulative damage amount. 

Number of Destructive 
Events (i) 

Distribution of the 
Destruction Amount 

Mean of Distribution of 
the Destruction Amount 

Variance of Distribution of 
the Destruction Amount 

0 N/A N/A N/A 

1 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 
𝛼

𝛽
 

𝛼

𝛽ଶ
 

2 𝐺𝑎𝑚𝑚𝑎(2𝛼, 𝛽) 
2𝛼

𝛽
 

2𝛼

𝛽ଶ
 

…. …. …. …. 

D 𝐺𝑎𝑚𝑚𝑎(𝐷𝛼, 𝛽) 
𝐷𝛼

𝛽
 

𝐷𝛼

𝛽ଶ
 

  

In Section 3.2.1, the detail of the degradation model considered in this thesis is 

explained in detail. The rest of the analyses are mainly based on the new degradation 

model. In Section 3.2.2, a simulation-based analysis is developed based on the Monte-

Carlo simulation techniques in order to obtain the distribution of time to failure and 

degradation estimates at each point of the time.  
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4.2.2.3 Degradation Threshold  

Degradation threshold is a point of degradation profile in which failure is said to occur 

when a degradation profile crosses that limit for the first time. For the state-space 

degradation model presented in Section 3.2.1, the essence of the threshold is similar to 

the damage amount. In other words, the threshold value can be considered as the 

maximum value of the destructive amount, which its occurrence leads to soft failure. 

Therefore, it can be concluded that the statistical distribution of the threshold is similar to 

the distribution of the damage amount. In the case of Gamma distribution, it has been 

assumed that the scale parameters of the Gamma distributions are the same for threshold 

and damage amount. Threshold properties are usually defined when the asset under 

study is working as good as new without any sign of degradation. It should be noted that 

the degradation threshold may have a unique definition for the same unit in different 

applications. 

4.3 Degradation Model Parameters for Generic Use 

Case Under Study 

As mentioned before, a degradation model parameter estimator is ultimately providing 

data-driven estimates of the parameters based on the unsupervised clustering algorithm. 

Before integrating the parameter estimator into the overall algorithm, it can be assumed 

that engineering insight is available in order to determine the properties of the degradation 

model. In this case, the robustness of the overall algorithm can also be verified since the 

true value of the model parameters is known prior. Therefore, it can be concluded that 
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the overall algorithm may offer a robust predictive model of reliability estimation when the 

time series degradation estimates are available.  

The technical detail of the degradation models applied in this study has been discussed 

in detail in Chapter 2 and Chapter 3. The degradation mechanism may behave differently. 

For some properties, degradation may arise gradually over time, while some other cases 

only face a few critical periods. It is expected that the new data-driven predictive model 

of reliability estimation performs acceptably for both of the cases.  

It should be noted that the new algorithm estimates the reliability based on the time-

series degradation profile. Some studies may have assumed that the overall health status 

of a single unit must be presented by a single health indicator, while others believe each 

degradation mechanism may have its own separate health indicator. Although the main 

principles of degradation estimators have been discussed in this study, the technical 

detail of the degradation estimator development is out of the scope of this study. As 

mentioned in Chapter 1, the main objective of this thesis is to develop a robust algorithm 

in order to map the time-series degradation data into the reliability estimate. The next 

sections of this chapter provide analysis based on the predetermined value of the 

degradation model parameters. The actual value of the model parameters may not be 

even obtainable for real-world scenarios. Indeed, it was among one of the main 

motivations for conducting this study. The assumed predetermined value for the 

degradation model parameters has been obtained based on several studies, laboratory 

tests, experimental analysis, standard, etc., which have been previously conducted by 

other researchers. The actual value of the parameters is not the point of concern in this 

study since the robustness of the overall algorithm is independent than the initial value of 
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the model parameters. Furthermore, it has been tried to cover most of the cases for the 

degradation paths in order to validate the robustness of the designed algorithm. The 

following Tables present the predefined value of the degradation model parameters for 

the critical equipment of the Generic system under study. At this point in the study, the 

focus is merely on obtaining the degradation profiles for the critical components of the 

system. In the next step, reliability estimation is conducted for each component by taking 

the independency between the common causes of failure into account.  In this thesis, it 

has been assumed that the overall health condition of the critical components can be 

presented by a single time-series degradation profile. The same methodology can be 

applied for the cases which presenting the overall health condition of an asset by a single 

time-series degradation profile might not be easily possible. For instance, more detail 

analysis can be conducted for the most common causes of failure, provided in Section 

4.2, for the most critical components of the system. In the next step of the detailed 

analysis, covariance analysis can reveal the correlation between each degradation profile 

either with or without considering some exogenous variables, which mainly affect the 

health status of several degradation mechanisms. Contrary to this method, it can be also 

assumed that degradation profiles are completely independent than each other, which 

may not be always true.  Finally, reliability estimation can be performed for each single 

time-series degradation profile either representing a single degradation mechanism or 

overall degradation status of the asset. It should be noted that the main objective of this 

thesis is to map the time-series degradation estimates into the reliability estimates. Table 

4 presents the predetermined degradation model parameters for the critical components 

of the generic system under study. It should be considered that the initial estimate of 
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these values might not be available or obtainable but, this study seeks to integrate an 

algorithmic data-driven parameter estimator into the algorithm to estimate the values of 

each of the model parameters. The performance of the degradation model parameter 

estimator can be evaluated since degradation profiles are generated based on the known 

values of the parameters.  

Table 2: Assumed degradation model parameters for considered degradation mechanism of the 
transformer under study. 

 

             Parameters 
 
Component 

Poisson 
Parameter for 

destructive 
events 

𝜆መ 

Gamma Shape 
Parameter for 

destruction 
amount  

𝛼ො 

Gamma Scale 
Parameter for 

destruction 
amount 

𝛽መ  

Gamma 
Shape 

Parameter 
based on 
maximum 
destructive 

events 

Transformer 0.1 40 20 30 

NG Generator 0.4 15 20 100 

Inverter 1.4 10 50 300 

Battery  0.35 20 50 150 

 

4.4 Degradation Path Generation  

Figure (20) presents the generated degradation profiles for the critical components of 

the system based on the predefined parameter of the degradation model. As the figure 

shows, transformer damage events occur less frequently but, with higher damage 

amount. In this thesis, it has been tried to cover the most possible forms of degradation 

profiles in terms of being either more toward discrete or continuous events. As mentioned 
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earlier, the value of the degradation model parameters will not be a concerning point if a 

robust degradation parameter estimator can be integrated into the overall algorithm.  

 

Figure 20: Generated degradation paths for critical components of the system based on the predefined 
parameter of the degradation model. 

In the next chapters, the application of the developed algorithm is illustrated for the 

critical components of the Generic System under study, which represents a Distributed 

Electrical System (DES). The main purpose of this chapter is to present the robustness 

of the developed algorithm. Simulation results are also provided in order to state the main 

motivations for developing a predictive model of Asset Management (AM) based on the 

exact analytical formulation. Furthermore, a data-driven method of estimation is also 

presented in order to state the robustness of the model for various applications.  
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5. Chapter 5: Simulation-Based Analysis 

As mentioned in Chapter 1, it has been assumed that sufficient engineering insight 

regarding the destruction frequency and intensity is available in the first step of the 

analysis. Therefore, degradation profiles can be generated based on the presented 

degradation model in Equation (8) and given the known model parameters, 𝜃 =  {𝜆 , 𝛼 , 𝛽}. 

Figure (21) and Figure (22) present two examples of the degradation profiles given the 

known model parameters. These two figures present degradation profiles generated 

based on two different concepts based on the model parameters. Figure (21) states a 

continuous case in which destructive events occur frequently but, the destruction amount 

is relatively small compared with the second case. Figure (22) presents a discrete case 

in which events occur less frequently but, the destruction properties are larger. 

 

Figure 21: An example of a degradation profile given the known model parameters. 
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Figure 22: An example of a degradation profile given the known model parameters. 

Degradation estimates can be generated based on the given values of the parameters 

of the model, which has been presented in Section 3.2.1. The robustness of the model is 

sufficient to cover the vast majority of the degradation mechanisms. Therefore, several 

degradation profiles can be generated for a given set of model parameters by applying 

the principles of the Monte-Carlo Simulation. As mentioned in Chapter 1, failure occurs 

when the degradation profile hits a predefined variable threshold for the first time. In this 

study, it has been assumed that the distribution of the threshold is as same as the 

distribution of the damage amount and its parameters can be determined prior based on 

the engineering insight. In addition to that, it can be stated that the result of the analysis 

highly depends on the considered value for the degradation threshold.  

As Section 3.2.2 presented, soft failure times can be obtained as the time which 

degradation profile hits the degradation threshold for the first time. In the next step of the 

analysis, the distribution of the time to failure and time-dependent degradation can be 
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obtained based on the statistical inferences. Sections 3.2.2.1 and 3.2.2.2 explain the 

detail of the mythology in detail.  

5.1 Methodologies 

5.1.1 Time-To-Failure Distribution 

As mentioned in Section 3.2.2, degradation profiles can be generated for a given set 

of model parameters based on the principles of the Monte-Carlo simulation. In the next 

step, the vector of failure times can be obtained as the point of time in which the 

degradation profile hits the threshold value. Figure (23) presents an overview of the 

approach in order to obtain the statistical distribution function of the time to failure. Only 

20 degradation profiles have been presented in Figure (23) to prevent visual confusion. 

The number of degradation profiles are needed in order to obtain the distribution function 

of the time to failure, shown by red circles.  

 

Figure 23: An example of failure points of 20 degradation profiles generated given the same set of 
parameters 
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5.1.2  Time-Dependent Degradation Distribution 

Degradation profiles evolve over time. In some applications, it might be possible that 

evolution starts after a certain point in time. In other words, degradation estimators might 

indicate completely healthy conditions up to a point of time, which degradation 

mechanism starts to evolve. As mentioned in Section 3.2.1, several degradation profiles 

can be obtained given the same set of model parameters due to the nature of the 

considered stochastic process. At each instant of time, distribution of the estimated or 

measured degradation profiles can be determined. The main application of this approach 

is for the cases in which the tests are destructive, and analysts cannot wait until the 

degradation estimator reaches its failure threshold. Figure 24 shows a schematic view of 

a few time-dependent degradation estimates of 20 degradation profiles, which have 

occurred given the same set of parameters. It should be considered that as the asset in-

service time increases, it is expected to observe more uncertainty in the degradation 

estimates at each instant of time. 

 

Figure 24: Time-Dependent Degradation Estimates of 20 Degradation Profiles Given Same Parameters. 



 

100 
 

5.1.3  Probability Distribution Fitting 

Probability distribution fitting refers to fitting a series of data concerning repeated 

measurements to a set of statistical distributions. The main purpose of distribution fitting 

is to predict the probability or to forecast the frequency of occurrence of the phenomenon 

in a certain interval. There are wide varieties of discrete and continuous probability 

distributions that can be fitted into the observed data. Probability distribution selection 

depends on the characteristics of the phenomenon and probability distribution. The 

distribution which closely fits the data is expected to provide reliable predictions if the 

characteristics of the population under the study remain as same as periods in which 

samples are collected. As a result of probability distribution fitting, distribution should be 

selected which suits the data well given the selection criteria.  

In this section, a framework is designed in order to fit the most applicable statistical 

distribution into the obtained failure times and degradation estimates at each instant of 

time. It should be considered that the number of failure times might be less than the 

number of degradation profiles since some of them might not cross the threshold during 

the considered horizon. In this study, the following continuous distributions are 

considered.  

 Normal 

 Exponential 

 Gamma 

 Logistic 

 T location-scale 

 Uniform 

 Rayleigh 
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 Beta 

 Inverse-Gaussian 

 Log-logistic 

 Lognormal 

 Weibull' 

Two selection criteria as “Log-Likelihood (LL)” and “Akaike Information Criterion (AIC)” 

are available in the designed framework. In this thesis, LL is mainly considered as the 

distribution function selection criteria. The detail of the Matlab code is presented in 

Appendix A.  

Figure 25 and Figure 26 present a schematic view of the distributions of failure times 

and degradation estimates at each instant of time for 20 degradation profiles, which have 

been generated given the same set of parameters.  

 

Figure 25: Failure points of 20 degradation profiles generated given the same set of parameters and 
schematic fitted distribution function to the obtained failure time. 
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Figure 26: Time-Dependent Degradation Distribution of 20 Degradation Profiles Given Same Parameters.  

5.2 Results 

In this section of the thesis, the main purpose is to obtain the distribution of the failure 

time and time-dependent degradation at each point of the time. Obviously, a single 

distribution can present the best fitted distribution to the obtained failure times and 

degradation data at each point of time.  

In this thesis, the overall approach of the Monte-Carlo simulation seeks to generate the 

degradation profiles for several times. It should be considered that all the degradation 

profiles must be generated based on the same set of degradation model parameters and 

the threshold value. In this study, Monte-Carlo iteration is set to 5000 times for each of 

the critical components. This indicates the statistical distributions are obtained based on 
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the analysis of 5000 degradation profiles. It should be noted that the number of failure 

times might be less than 5000 since some of the profiles might not hit the threshold during 

the considered horizon. The ability to generate several degradation profiles in a timely 

and costly manner is one of the main benefits of the proposed methodology.  

5.2.1 Transformer 

5.2.1.1 Time To Failure Distribution 

 

Figure 27: Fitted distribution of the time to failure for the transformer under study. 
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5.2.1.2  Reliability 

 

Figure 28: Obtained reliability function for the transformer under study. 

5.2.1.3  Time-Dependent Degradation Distribution 

 

Figure 29: Time-dependent degradation distribution for the transformer under study. 
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5.2.2  NG Generator 

5.2.2.1 Time To Failure Distribution 

 

Figure 30: Fitted distribution of the time to failure for the NG generator under study. 

5.2.2.2 Reliability 

 

Figure 31: Obtained reliability function for the NG generator under study. 
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5.2.2.3 Time-Dependent Degradation Distribution 

 

Figure 32: Time-dependent degradation distribution for the NG generator under study. 

5.2.3  Inverter 

5.2.3.1 Time To Failure Distribution 

 

Figure 33: Fitted distribution of the time to failure for the inverter under study. 
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5.2.3.2 Reliability 

 

Figure 34: Obtained reliability function for the inverter under study. 

5.2.3.3 Time-Dependent Degradation Distribution 

 

Figure 35: Time-dependent degradation distribution for the inverter under study. 
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5.2.4  Battery 

5.2.4.1 Time To Failure Distribution 

 

Figure 36: Fitted distribution of the time to failure for the battery under study. 

 

5.2.4.2 Reliability 

 

Figure 37: Obtained reliability function for the battery under study. 
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5.2.4.3 Time-Dependent Degradation Distribution 

 

Figure 38: Time-dependent degradation distribution for the battery under study. 

5.3 Concluding Remarks 
 

As mentioned in Chapter 1, the main purpose of this thesis is to develop a predictive 

model of reliability assessment based on real-time data using a discrete-time state-space 

stochastic degradation model to prevent actual failure by predicting the time to 

maintenance (soft failure) in order to enhance the value and to prolong the life of assets. 

Simulation techniques are applied to calculate the reliability of assets over time and 

estimate the critical failure time using the developed model 

Classical models of reliability assessment mainly rely on historical failure data. It 

should be considered that obtaining lifetime data in a timely manner is one of the current 

challenges. Failure data may not be easily obtainable for highly reliable assets. 

Furthermore, the collected historical lifetime data may not be able to accurately describe 

the behavior of the asset in a unique application or environment. For instance, if the 
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lifetime data are collected based on the experimental tests given specific environmental 

and operational conditions, there is no guarantee that the asset behavior remains 

unchanged in other conditions during its lifetime. Therefore, it is not an optimal approach 

anymore to conduct a reliability assessment based on classical models. 

Fortunately, most of the industrial assets have performance characteristics whose 

degradation or decay over the operating time can be related to their reliability estimates. 

Degradation indicates the process of lowering the rank, status, or grade, which leads to 

a less effective level of performance. The application of the degradation methods has 

been recently increasing due to their ability to keep track of the dynamic conditions of the 

system over time. The main purpose of the degradation-based models is to predict the 

future condition of the asset and perform the maintenance actions in an optimized time 

window before the actual failure of the system occurs. Since the degradation-based 

analysis defines the failure events based on the predefined threshold, the failure is said 

to be occurred as a soft failure. This indicates that the asset under the study is considered 

as a failed unit when the degradation profile hits the threshold for the first time.  

Monte Carlo simulation is applied in order to find the distribution of the time to failure 

based on the simulated degradation profiles. In addition to that, at each point of the time, 

the distributions of the degradation observations are also obtainable. Therefore, one of 

the purposes is to develop predictive algorithms which are able to predict the critical 

failure time based on the first hitting time models to initiate the maintenance before the 

failure occurs. In this section, the main steps of obtaining reliability based on the time, 

cycle, or in-service life, distribution of critical time to failure, and time-variant degradation 
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distribution are explained in detail. The results of the analyses are presented for the 

generic use case of this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

112 
 

6  Chapter 6: Analytical Formulation  

6.1 Methodologies 

In this chapter, reliability is estimated based on an analytical approach for the new 

degradation model developed in this study. The developed degradation model in this 

study offers a new mapping function for the General Path Model based on a series of 

Gamma Processes degradation models in the state-space environment.  Poisson 

distributed weights are considered for each of the Gamma processes. The detail of the 

concepts, which the developed degradation model relies on is explained in Chapter 4.  

The main purpose of this section of the study is to obtain the reliability given the 

estimate of degradation. In this case, finding the statistical distribution of the time to failure 

or degradation is not the point of interest. In other words, predictive models are not 

providing reliability estimates by fitting a statistical distribution into the observed or 

generated lifetime data. As mentioned before, it has been assumed that the data-driven 

time-series degradation estimates are available. Equation (27) and (28) are the 

considered degradation models presented in Section 3.2.1.  

𝑑௧ = 𝑑௧ିଵ + ∆௧                                                                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (27) 

𝑑መ௧ = 𝑑௧ିଵ +  𝑝(𝑋). 𝛿,௧



ୀ

                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (28)  

Probability of failure, or unreliability, at time 𝑡, 𝑃𝐹௧ can be defined as Equation (29) 

presents, while 𝑑ி is the degradation threshold in which failure is said to occur.  

𝑃𝐹௧ = 𝑝(𝑑௧ ≥ 𝑑ி)                                                              𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (29) 
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𝑃𝐹௧ = 𝑝 ൭𝑑௧ିଵ +  𝑝(𝑋). 𝛿,௧



ୀ

≥ 𝑑ி൱                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (30) 

𝑃𝐹௧ = 𝑝 ൭𝑑ி −  𝑝(𝑋). 𝛿ଡ଼,௧



ଡ଼ୀ

≤ 𝑑௧ିଵ൱                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (31) 

𝑖𝑓       𝑑ி −  𝑝(𝑋). 𝛿ଡ଼,௧



ଡ଼ୀ

= Φ      𝑡ℎ𝑒𝑛        𝑃𝐹௧ = 𝐶𝐷𝐹(𝑑௧ିଵ)            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (32) 

It should be considered that the value of 𝑑௧ିଵ has been observed in the last period. At 

the current period, the main purpose if to estimate the 𝑃𝐹௧ given the observed value of 

degradation in the previous period. Therefore, 𝑃𝐹௧ can be estimated if the CDF of 𝑑ி −

∑ 𝑝(𝑋). 𝛿ଡ଼,௧

ଡ଼ୀ  is obtainable.  

For the state-space degradation model presented in Section 3.2.1, the essence of the 

threshold is similar to the destruction amount. In other words, the threshold value can be 

considered as the maximum value of the destructive amount, which if its occurrence leads 

to the failure. Therefore, it can be concluded that the statistical distribution of the threshold 

is similar to the distribution of the destructive amount. In the case of Gamma distribution, 

it has been assumed that the scale parameters of the Gamma distributions are the same 

for threshold and destruction amount.  

Φ = 𝑑ி −  𝑝(𝑋). 𝛿ଡ଼,௧



ଡ଼ୀ

                                                             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (33)  

𝑤ℎ𝑖𝑙𝑒                                                                                                                 
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ቐ

𝑝(𝑋) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)              

𝛿ଡ଼,௧ ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼 , 𝛽)     

𝑑ி ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼ி  , 𝛽)     

                         (𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝐶𝑎𝑠𝑒) 

As mentioned in Section 1.7, the proposed degradation model in this study is always 

within a certain interval as [𝑑 , 𝑑௫]. This indicates that the estimates of the 

degradation estimator are always within [𝑑 , 𝑑௫]. Since this study does not seek to 

discuss the approaches for obtaining the degradation estimates, it can be assumed that 

the degradation estimates are normalized within [𝑑 , 𝑑௫], as a percentage value. 

Consequently, the failure threshold is also must be within the [𝑑 , 𝑑௫], since the 

threshold and destruction amount have a similar essence. 

0 ≤ 𝑑ி ≤ 𝑑௫                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (34) 

0 ≤  𝑝(𝑋). 𝛿ଡ଼,௧



ଡ଼ୀ

≤ 𝑑௫                                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (35) 

Equation (36) defines the boundaries of the Φ by considering that the failure threshold 

cannot be lower than degradation estimates.  

0 ≤ 𝑑ி −  𝑝(𝑋). 𝛿ଡ଼,௧



ଡ଼ୀ

≤ 𝑑௫                                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (36) 

In statistics and probability theory, a truncated distribution is a conditional distribution 

that results from limiting the domain of some other probability distribution. In practice, 

truncated distributions arise in cases in which the information regarding the occurrences 

is limited to values that are above or below a given threshold or within a specified range. 

Suppose that 𝑋 is a random variable distributed according to some PDF, 𝑓(𝑥), with CDF 
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𝐹(𝑥)  both of which have infinite support. Equation (37) presents the PDF of the truncated 

distribution, 𝑇𝑟(𝑥), after restricting the domain to be between two constants. 

𝑓(𝑥|𝑎 ≤ 𝑋 ≤ 𝑏) =
𝑓(𝑥)

𝐹(𝑏) − 𝐹(𝑎)
                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (37) 

 

Table 3 presents the detail of an illustrative example for the reason for considering 

the truncation functions. It has been assumed that the maximum number of destructive 

events that might occur in a cycle is 10. Figure 6 also presents the probability density of 

the Gamma distributions for the destruction amount based on the number of damages. It 

should be noted that the probability of observing more damages exponentially decreases.   

Table 3: Detail of an illustrative example for the reason of truncation. 

Number of Destructive 
Events (i) 

(α , β) 
Distribution of the 

Destruction Amount 

0 N/A N/A 

1 (5, 2) 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

2 (2*5, 2) 𝐺𝑎𝑚𝑚𝑎(2𝛼, 𝛽) 

…. …. …. 

10 (10*5, 2) 𝐺𝑎𝑚𝑚𝑎(10𝛼, 𝛽) 
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Figure 39: Probability density of the Gamma distributions for the destruction amount based on the number 
of damages. 

 

Assume that the degradation estimator is normalized to always provide estimates 

between [0 , 100]. Therefore, the domain of the threshold and total destruction amount 

occurred in each cycle should also have the same range as the degradation estimates. 

Equation (38) and (39) state the restriction of the domain of threshold and total destructive 

amount.  

𝐴𝑠𝑠𝑢𝑚𝑒 0 ≤ 𝑑௧ ≤ 100                                                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (38)  

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,   ൞

0 ≤ 𝑑ி ≤ 100                   

0 ≤  𝑝(𝑋). 𝛿,௧

ଵ

ୀ

≤ 100 
                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (39)   

Figure (40) presents the probability density of the truncated Gamma distributions for 

the destruction amount based on the number of damages of the illustrative example. It 
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should be noted that the properties of the truncated distributions might not be as same 

as the original distribution. For instance, the distribution of the total destruction amounts 

due to the 8, 9, and 10 damages might not be the Gamma.  

 

Figure 40: Probability density of the truncated Gamma distributions for the destruction amount based on 

the number of damages. 

Assume that finding the distribution of the 𝑌 = 𝑋ଵ + 𝑋ଶ is the point of interest where 

random variables are following 𝑋ଵ~𝐺𝑎𝑚𝑚𝑎(𝛼ଵ , 𝛽) and 𝑋ଶ~𝐺𝑎𝑚𝑚𝑎(𝛼ଶ , 𝛽). Based on the 

principles of the Moment Generating Functions, it can be proved that 𝑌~ 𝐺𝑎𝑚𝑚𝑎(𝛼ଵ +

𝛼ଶ , 𝛽) by assuming the independent variables. The following equations present the detail.  

𝐸൫𝑒(భାమ)௧൯ = 𝐸(𝑒భ௧𝑒మ௧) =  𝐸(𝑒భ௧). 𝐸(𝑒మ௧)   𝑋ଵ 𝑎𝑛𝑑 𝑋ଶ 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (40)   

 

𝑀(𝑡 ;  𝛼, 𝛽) = 𝐸(𝑒௧) = න 𝑒௫௧𝑓(𝑥 ;  𝛼, 𝛽)𝑑𝑥
ାஶ



                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (41) 

න 𝑒௫௧
𝛽ఈ𝑥ఈିଵ𝑒ିఉ

Γ(𝛼)
𝑑𝑥

ାஶ



=
𝛽ఈ

Γ(𝛼)
න 𝑥ఈିଵ𝑒ି(ఉି௧)௫𝑑𝑥

ାஶ



                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (42) 
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𝛽ఈ

Γ(𝛼)
.

Γ(𝛼)

(𝛽 − 𝑡)ఈ
=

1

(1 −
𝑡
𝛽

)ఈ
                                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (43)  

By using the property of independent random variables: 

𝑀(భାమ)௧ = 𝑀భ௧. 𝑀మ௧                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (44) 

𝑀(భାమ)௧ =
1

(1 −
𝑡
𝛽

)ఈభ

.
1

(1 −
𝑡
𝛽

)ఈమ

 =
1

(1 −
𝑡
𝛽

)ఈభାఈమ

                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (45) 

Therefore, it can be concluded that 𝑌~ 𝐺𝑎𝑚𝑚𝑎(𝛼ଵ + 𝛼ଶ , 𝛽) by assuming the 

independent variables. 

The problem at this phase is regarding the assumptions of the individual random and 

independent Gamma variables after truncations. Fits of all, it cannot be easily assumed 

that the distribution of the damage amount is still a Gamma distribution after truncation. 

Secondly, there is no guarantee that the scale parameters remain the same in order to 

be able to apply the properties of the Gamma distribution for several random independent 

variables. Consequently, convolutional models need to be applied in order to find the 

distribution of the total destruction amount.  

The convolution of probability distributions arises in probability theory and statistics as 

the operation in terms of probability distributions that correspond to the addition of 

independent random variables and, by extension, to forming linear combinations of 

random variables. The general formula for the distribution of the sum 𝑍 = 𝑋 + 𝑌 of two 

independent continuously distributed random variables with density functions 𝑓, 𝑔 is as 

the following shows.   
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ℎ(𝑧) = (𝑓 ∗ 𝑔)(𝑧) = න 𝑓(𝑧 − 𝑡)𝑔(𝑡)𝑑𝑡
ାஶ

ିஶ

                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (46) 

Therefore, the PDF of the Φ = 𝑑ி(𝜃ி) − ∑ 𝑝(𝑖). 𝛿,௧(𝜃)
ୀ  can be obtained by applying 

the convolutional model on the truncated distributions as the Equation (51) presents. 

𝛷ᇱ = 𝑇𝑟(𝑑ி) − 𝑇𝑟 ൭ 𝑝(𝑋). 𝛿ଡ଼,௧



ଡ଼ୀ

൱                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (47) 

𝑙𝑒𝑡       𝑋 = 𝑇𝑟(𝑑ி)      𝑎𝑛𝑑     𝑌 = 𝑇𝑟 ൭ 𝑝(𝑋). 𝛿ଡ଼,௧



ଡ଼ୀ

൱                                             

𝑙𝑒𝑡       𝑋~𝑓(𝑥)      𝑎𝑛𝑑      𝑌~𝑓(𝑦)   ,     𝑍 = 𝑋 + (−𝑌) 

𝑓Z(z) = න 𝑓X(x)𝑓-(z-x)𝑑𝑥
ାஶ

ିஶ

                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (48)  

𝑠𝑖𝑛𝑐𝑒 𝑓-(𝑧 − 𝑥)= 𝑓(𝑥 − 𝑧)                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (49) 

𝑓Z(z) = න 𝑓X(𝑥)𝑓(𝑥 − 𝑧)𝑑𝑥
ାஶ

ିஶ

                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (50) 

Therefore, 

𝑓(𝛷) = 𝐶𝑜𝑛𝑣

⎝

⎜⎜
⎛

𝑇𝑟൫𝑑ி~𝐺𝑎𝑚𝑚𝑎(𝛼ி , 𝛽)൯ , − 𝑇𝑟

⎝

⎜
⎛



𝑒ିఒ𝜆௫

 𝑥!

∑
𝑒ିఒ𝜆௫

 𝑥!

௫ୀ

. 𝐺𝑎𝑚𝑚𝑎(𝑥𝛼, 𝛽)



୶ୀ

⎠

⎟
⎞

⎠

⎟⎟
⎞

  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (51) 

Therefore, 𝑃𝐹௧ , unreliability, and 𝑅௧, reliability can be estimated given the degradation 

estimate, in degradation domain, at last cycle as the Equation (52) presents.  

𝑃𝐹௧ = 𝐶𝐷𝐹ః(𝑑௧ିଵ) = න 𝑓(Φ)𝑑(𝑑)
ௗషభ

ିஶ

                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (52) 
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𝑅௧ = 1 −  𝑃𝐹௧                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (53) 

 

6.2  Results 

The results of Monte-Carlo simulation, presented in Chapter 5, are obtained based on 

the statistical distribution fitting principles over the cycles. This indicates that the 

estimates of reliability and probability of failure are based on the behavior of the obtained 

distribution over the cycles. One of the main concerns is the robustness of the approach. 

It may be possible that the same asset under study behaves completely unique after a 

point of time. In this scenario, the results of the analysis based on the statistical 

distribution may not be able to reveal the actual health status of the asset. Therefore, an 

exact analytical formulation of a data-driven predictive model of Asset Management (AM) 

is presented in this chapter. It is expected to reach a more robust approach since the 

estimates are not completely based on what occurred in the past.  

In the first steps of the analysis, I have tried to enhance the performance of the 

simulation-based analysis by assigning higher weights to the most recent failure data 

points. The main problem, which is difficulties in obtaining the real-time estimates of 

several degradation profiles, still exists. Therefore, the reliance on the real-time estimates 

of several degradation profiles is the main motivation to develop an exact formulation of 

a data-driven predictive model of reliability estimation.  

It should be noted that in Chapter 5, the estimates of the reliability and probability of 

failure are based on the cycles. In Chapter 6, all the estimates are based on the current 

estimate of the degradation regardless of the point of the time which degradation 
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estimator reaches to that level. It is expected to obtain more robust and realistic results 

since the degradation profiles are mainly based on the real-time data collected from smart 

devices and sensors. Figure 41 presents an illustrative example of the time independency 

assumption of the analytical approach. 

 

Figure 41: An illustrative example of the time independency assumption of the analytical approach. 

 

 

 

Figure 42: Degradation-base reliability estimation for transformer under study. 
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Figure 43: Degradation-base reliability estimation for NG Generator under study 

 

 

Figure 44: Degradation-base reliability estimation for inverter under study 

 

Figure 45: Degradation-base reliability estimation for battery under study 
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6.3  Concluding Remarks 

In this chapter, reliability is estimated based on an analytical formulation of the 

reliability with respect to the new degradation model developed in this study. The new 

degradation model in this study presented a new mapping function for the General Path 

Model based on a series of Gamma Processes degradation models in the state-space 

environment.  Poisson distributed weights were considered for each of the Gamma 

processes. The main purpose of this chapter was to obtain the degradation-base reliability 

estimate based on an analytical formulation. The developed reliability estimation 

framework can be implemented to estimate the reliability based on the real-time 

degradation data, which is able to perform automatic, quick-responding, accurate, and 

robust.  Predictive models based on the analytical formulation are not relying on fitting the 

statistical distributions into the observed or generated data, which may not be able to 

accurately describe the behavior of the critical time to failure. The formulated model of 

degradation-based reliability is computationally faster than the simulation-based analysis. 

The accuracy of the reliability assessment highly ties to the accuracy of the approaches 

for obtaining the time-series degradation profile. This indicates that reliability may be 

inaccurately estimated if the time-series degradation data cannot accurately describe the 

real status of the asset under study. The detail of the algorithm is presented in the 

appendix of this study based on Matlab.  
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7  Chapter 7:  Data-Driven Estimate of the 

Parameters 

7.1 Methodologies 

So far, it has been assumed that the engineering insights are sufficient to define the 

properties of the degradation model, known as model parameters. These parameters are 

expected to have a unique value for each piece of equipment. In real-world applications, 

these parameters might not be the same for completely similar assets. On the other hand, 

these values are usually determined by experimental tests in laboratories or standards, 

which typically provide the same values for similar assets. For this reason, the output of 

the proposed methodology may not be able to precisely reflect the actual status of the 

equipment. In addition to that, the proposed models may not be efficiently applied to the 

other applications if the values of the parameters are not known prior. Therefore, the 

effectiveness of the overall framework of the proposed model can be enhanced by 

integrating a robust model to estimate the degradation model parameters.  

This section presents a new data-driven algorithm in order to estimate the parameters 

of the new degradation model developed in this thesis. The proposed algorithm is mainly 

based on clustering principles as unsupervised learning. Once the parameters of the 

degradation are estimated based on the time series degradation data, it can be concluded 

that the overall algorithms proposed in this thesis are data-driven. Therefore, the main 

goal of this thesis, which is providing a data-driven predictive model reliability estimation, 

is reached based on the data-driven state-space stochastic models.  
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7.2 Motivations for Developing a Data-Driven 

Parameter Estimator 

Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of 

distribution by maximizing its likelihood function. If the likelihood function is differentiable, 

the derivative assessment for determining maxima can be applied. For some cases, such 

as the linear regression model, the first-order conditions of the likelihood function can be 

solved explicitly. In the case of the linear regression model, the ordinary least squares 

estimator maximizes the likelihood of the linear regression model. Under most 

circumstances, numerical methods will be necessary to find the maximum of the likelihood 

function. The detail of the MLE method is presented in Chapter 2.  

In order to find the optimal value of the parameters of the proposed degradation 

model based on the MLE approach, it is necessary to derive the likelihood function and 

maximize its value by defining the derivative of the logarithmic equations with respect to 

the parameters. Following Equations state the MLE equations, while 𝑥 = {𝑥ଵ, 𝑥ଶ, … . , 𝑥} 

are random observations drawn from an unknown population, 𝜃 is the vector of unknown 

parameters,  𝐿(𝜃 ; 𝑥) is the likelihood function, and k is the number of unknown 

parameters.  

𝐿(𝜃 ; 𝑥) = ෑ 𝑓(𝑥 , 𝜃)



ୀଵ

                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (54) 

 

𝜄(𝜃 ; 𝑥) = 𝑙𝑛𝐿(𝜃 ; 𝑥)                                                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (55) 
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డఐ(ఏ ;௬)

డఏభ
= 0   ;  

డఐ(ఏ ;௬)

డఏమ
= 0      ; … . . ;  

డఐ(ఏ ;௬)

డఏೖ
= 0             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (56)  

For instance, for the case of Poisson rate of destructive events; 

𝐿(𝜆 , 𝛼 , 𝛽  ;  𝑥) = ෑ 𝑓(Φ)

ே

ୀଵ

                                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (57) 

𝐿(𝜆 , 𝛼 , 𝛽  ;  𝑥) =  ෑ 𝐶𝑜𝑛𝑣
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ୀଵ

  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (58) 

There is a logarithm that is affecting the second summation, which in this case is 

the main issue for calculating the derivative of this expression and then solving for the 

parameters. Therefore, the MLE approach is going to be computationally very tough. An 

iterative method should be applied to estimate the unknown parameters of the 

degradation model. 

As mentioned in Chapter 2, the Expectation-Maximization (EM) algorithm is used to 

find local maximum likelihood parameters of a statistical model in cases where the 

equations cannot be solved directly. In statistics, an EM algorithm is an iterative method 

to find maximum likelihood or maximum a posteriori estimate of parameters in statistical 

models, where the model depends on unobserved latent variables. The EM iteration 

alternates between performing an expectation (E) step, which creates a function for the 

expectation of the log-likelihood evaluated using the current estimate for the parameters, 

and a maximization (M) step, which computes parameters maximizing the expected log-

likelihood found on the E step. These parameter-estimates are then used to determine 

the distribution of the latent variables in the next E step. 
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Equation (59) and (60) can be achieved based on the Bayes Rule, where  𝑝(𝐶|𝑥) 

is the probability that 𝑥 generated by cluster 𝐶 and 𝜋 is the share or probability of the 

cluster c. 

𝑝(𝐶|𝑥) =
𝑝(𝑥 |𝐶 ). 𝑝(𝐶)

∑ 𝑝(𝑥 |𝐶  ). 𝑝(𝐶)

ୀଵ

                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (59) 

𝑝(𝐶|𝑥) =
𝜋𝑝(𝑥 |𝐶 )

∑ 𝜋𝑝(𝑥 |𝐶 )

ୀଵ

                                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (60) 

Steps of the EM algorithm can be summarized as follow: 

 Initialization Step:  

o Randomly assign samples without replacement from the dataset 𝑋 =

{𝑥ଵ, … . , 𝑥ே}. 

o Randomly assign mean to the component sample mean. For example, 

for 𝑘 = 2, 𝜇 ෝ ଵ = 𝑥ଵ and 𝜇 ෝ ଶ = 𝑥ଶହ. 

o Set all component variance estimates to the sample variance. 

 𝜎 ෝ ଵ
ଶ = ⋯ = 𝜎 ෝ 

ଶ =
ଵ

ே
∑ (𝑥 − �̅�)ே

ୀଵ    where    �̅� =
ଵ

ே
∑ 𝑥

ே
ୀଵ   

o Set all component distribution prior estimates to the uniform 

distribution. 

𝜋ොଵ = ⋯ =  𝜋ො =
1

𝐶
                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (61) 

 Expectation Step: 

𝛾ො, =
𝜋𝑝(𝑥 |�̂� , 𝜎ො )

∑ 𝜋𝑝(𝑥 |�̂� , 𝜎ො )

ୀଵ

                        ∀𝑛, 𝑘          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (62) 
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 Maximization Step: Using the 𝛾ො, calculated in the Expectation step, 

calculate the following in that order ∀𝑘. 

o 𝜋ො = ∑
ఊෝ,

ே
       ே

ୀଵ                                                                     𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (63) 

o �̂� =
∑ ఊෝ,

ಿ
సభ  .  ௫

∑ ఊෝ,
ಿ
సభ

                                                                      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (64) 

o 𝜎ො
ଶ =

∑ ఊෝ,
ಿ
సభ  .(௫ିఓෝ)మ

∑ ఊෝ,
ಿ
సభ

                                                           𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (65) 

When the number of clusters C is not known a priori, it is typical to guess the number 

of components and fit that model to the data using the EM algorithm. There are various 

criteria for selecting the optimal number of clusters. More detail of the optimal number of 

clusters will be discussed in section 2.4.2. Finally, the probability of observing destructive 

events can be estimated based on the filtered degradation data.  

For the case of Poisson damage events, the quality of the clustering task can highly 

affect the accuracy of the parameter estimation process. In this case, the analyst may 

define the degradation changes over time. It should be noted that it might be possible that 

more than one destructive event had happened during a specific week. Therefore, a 

robust clustering method is needed in order to accurately detect the cycles, which only 

one destructive event has occurred. The rate of the destructive event is expected to be 

estimated based on the information provided by the cluster which represents cycles with 

no destructive events.  

7.3 Algorithm Design 

Clustering is a Machine Learning (ML) technique that includes the grouping of data 

points. Given a set of data, a clustering algorithm can be applied to classify each data 
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point into a specific group. Ideally, data points that are in the same group should have 

similar properties, while data points in different groups should have highly dissimilar 

properties. Clustering is one of the most commonly used methods of unsupervised 

learning for statistical data analysis. Clustering methods can be applied to gain some 

valuable insights from the data by investigating what groups the data points fall into when 

we apply a clustering algorithm. Therefore, the clustering task refers to grouping a set of 

data in such a way that data points in the same group, known as a cluster, are more 

similar, in some sense, to each other than to those in other groups.  

More detail of the clustering algorithms is presented in Chapter 2. In this study, K-

means and Gaussian Mixture Models (GMM)clustering algorithms are applied in order to 

detect the cluster which represents the degradation data for the cycle which only one 

destructive event had occurred. The performance of each of these clustering methods is 

also compared in order to obtain a robust clustering approach.  

In this thesis, the performance of the following clustering approaches is evaluated.  

 K-Mean Clustering 

 Neural Network 

 Gaussian Mixture Models 

It should be considered that the number of clusters may highly affect the quality of 

the clustering task. There is not a single approach that performs well for all the datasets 

in order to define the optimal number of clusters. In addition to that, the type of the 

application and the motivations for performing a clustering task may highly affect the 
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optimal number of the clusters.  In this study, it has been assumed that the optimal 

number of clusters is determined based on the “Davies Bouldin” criteria.  

Since there is not a single clustering approach that may perform best on all the 

datasets, a more robust clustering algorithm is going to be considered. Indeed, an 

ensemble of all the considered clustering approaches is going to be studied rather than 

a single clustering approach. Given the same set of time-series degradation estimates, it 

is expected to obtain consistent results if the clustering task is performed several times. 

Therefore, the integration of an outlier detector may enhance the performance of the 

ensembles of clustering approaches. In this study, the Generalized Extreme Studentized 

Deviate (GESD) outlier detection method is applied to test for outliers. 

 

7.4 Results 

7.4.1 Results of each Clustering Method 

7.4.1.1 Transformer 
 

 

Figure 46: Detail of the degradation profile for the transformer under study. 
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Table 4: Estimated degradation model parameters for transformer based on the Gaussian Mixture Models 
(GMM) clustering algorithm with and without outlier detection method.  

 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 0.1 0.1013 1.25 % 

𝛼ො 40 32.13 - 19.67 % 

𝛽መ 20 15.26 - 23.7 % 

 

 

Table 5: Estimated degradation model parameters for transformer based on the k-means clustering 
algorithm with and without outlier detection method.  

 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 0.1 0.0982 - 1.82 %  

𝛼ො 40 35.21 - 11.97 % 

𝛽መ 20 16.85 - 15.75 % 
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7.4.1.2 NG Generator 
 

 

Figure 47: Detail of the degradation profile for the NG generator under study. 

Table 6: Estimated degradation model parameters for NG generator based on the Gaussian Mixture 
Models (GMM) clustering algorithm with and without outlier detection method.  

 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 0.4 0.4014 0.35 % 

𝛼ො 15 13.15 12.33 % 

𝛽መ 20 17.15 14.25 % 

 

Table 7: Estimated degradation model parameters for NG generator based on the K-Means clustering 
algorithm with and without outlier detection method. 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 0.4 0.3750 -6.25 % 

𝛼ො 15 15.51 3.44 % 

𝛽መ 20 21.06 5.33 % 
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7.4.1.3 Inverter 
 

 

Figure 48: Detail of the degradation profile for the inverter under study. 

Table 8: Estimated degradation model parameters for inverter based on the Gaussian Mixture Models 
(GMM) clustering algorithm with and without outlier detection method. 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 1.4 1.39 - 0.53 % 

𝛼ො 10 10.88 8.87 % 

𝛽መ 50 52.76 5.52 % 

 

Table 9: Estimated degradation model parameters for inverter based on the K-Means clustering algorithm 
with and without outlier detection method. 

 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 1.4 1.35 - 3.57 % 

𝛼ො 10 12.12 21.26 % 

𝛽መ 50 62.26 24.52 % 
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7.4.1.4 Battery  
 

 

Figure 49: Detail of the degradation profile for the battery under study. 

Table 10: Estimated degradation model parameters for battery based on the Gaussian Mixture Models 
(GMM) clustering algorithm with and without outlier detection method. 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 0.35 0.3520  0.56 % 

𝛼ො 20 22.20 11.04 % 

𝛽መ 50 54.62 9.24 % 

 

Table 11: Estimated degradation model parameters for battery based on the K-Means clustering 
algorithm with and without outlier detection method. 

 

 Actual 
Values 

Mean Estimated Values 
WITH outlier detection 

(n = 200) 

Mean Percentage Error WITH 
outlier detection 

(n = 200) 

𝜆መ 0.35 0.3297 - 5.78 % 

𝛼ො 20 22.85 14.27 % 

𝛽መ 50 57.02 14.04 % 
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7.5 Concluding Remarks 

The parameters of the new degradation model developed in this study are expected 

to have a unique value for each piece of equipment. In real-world applications, these 

parameters might not be the same for completely similar assets. On the other hand, these 

values are usually determined by experimental tests in laboratories or standards, which 

typically provide the same values for similar assets. For this reason, the output of the 

proposed methodology may not be able to precisely reflect the actual status of the 

equipment. In addition to that, the proposed models may not be efficiently applied to the 

other applications if the values of the parameters are not known prior. Therefore, the 

effectiveness of the overall framework of the proposed model can be enhanced by 

integrating a robust data-driven algorithm to estimate the parameters of the new 

degradation model. This section presented a new data-driven algorithm in order to 

estimate the parameters of the new degradation model developed in this thesis. The 

proposed algorithm is mainly based on clustering principles as unsupervised learning. 

Once the parameters of the degradation are estimated based on the time series 

degradation data, it can be concluded that the overall algorithms proposed in this thesis 

are data-driven. Therefore, the main goal of this thesis, which is providing a data-driven 

predictive model reliability estimation, is reached based on the data-driven state-space 

stochastic models of degeradation.  
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8  Chapter 8: Future Works and Conclusion 

8.1 Future Works 

8.1.1 Developing a Time-Varying Poisson parameter as 
a Function of In-Service Time 

 

The results of the developed data-driven predictive model of AM are presented in 

section 6.2. The obtained results are merely based on the degradation estimate, which is 

supposed to accurately describe the real-time health status of the asset under study. One 

of the main advantages of the developed model is its independence of the several 

historical degradation profiles. In addition to that, the analytical approach is 

computationally faster than the simulation-based analysis. Furthermore, the results of the 

analysis do not depend on any statistical distribution, which is fitted based on several 

historical or generated degradation profiles. The robustness of the analytical approach 

highly depends on the robustness of the degradation estimator. This indicates that upon 

the accurate estimate of the degradation, the developed analytical approach should be 

robust enough to provide an estimate of reliability and probability of failure. In the first 

step of this thesis, it has been assumed that sufficient engineering insight is available to 

provide the values of the degradation model parameters. Indeed, this assumption is not 

always true for real-world applications. Therefore, it can be concluded that the developed 

methodology may perform more effectiveness by integrating an algorithm, which is able 

to provide an estimate of the applied degradation model parameter. Chapter 7 presents 

the detail of the developed parameter estimator in order to enhance the robustness of the 
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overall approaches for various real-world applications. It should be noted that the 

parameter estimator is applicable for both simulation-based and analytical analysis.  

As mentioned in Chapter 1 of this thesis, the rates of destructive events are assumed 

to be constant over the monitoring period. This indicates that the probability of failure and 

reliability estimates do not consider the “in-service time” of the asset under study. It means 

that given the same degradation estimate, the probabilities of failure are the same for an 

asset which is somehow new or old. Therefore, in-service time is another factor that may 

enhance the robustness of the developed model. In order to consider the effect of in-

service time or age of the asset, a time-dependent rate of the destructive event may be 

applied. For instance, it can be assumed that in-service time of the asset can be mapped 

into the rate of destructive events as the Equation ( ) presents. Therefore, Figure ( ) shows 

the effect of considering the in-service time of the asset into the reliability and probability 

of failure estimations.   

𝜆௧ = 𝜆 + ൬
𝑖𝑛 − 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
൰ . 𝜆                                                  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (66) 

 

Figure 50: Effect of considering the in-service time of the asset into the reliability and probability of failure 
estimations 
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𝜆 = 0.1 + 0.001 ∗ 𝑎𝑔𝑒                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (67) 

 

Figure 51:Obtained distribution of time-to-soft-failure 

 

Figure 52: Obtained time-dependent distribution of the degradation estimates.  
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Figure 53: Comparison between the reliability function with time-varying and time-invariant parameter.  

8.1.2 Developing a Data-Driven Parameter Estimator in 
order to estimate the time-varying Poisson 
parameter. 

 

𝜆 = 0.1 + 0.001 ∗ 𝑎𝑔𝑒                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (68) 

𝜆መ = 0.098 + 0.0013 ∗ 𝑎𝑔𝑒                          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (69) 

 

Figure 54: Schematic view of data-driven parameter estimator in order to estimate the time-varying 
Poisson parameter. 
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8.1.3 Developing a Time-Varying parameter for the 

distribution of the destruction amount. 

In this case, the new degradation model developed in this thesis is able to reflect 

various types of degradation mechanisms such as linear, non-linear, piecewise, etc. The 

parameters of the damage amount, as a random variable, are expected to present higher 

expected value for the damage amount as the time moves forward and asset gets old.  

 

8.1.4 Considering Higher Orders for the State-Space 

Stochastic Degradation Model 

Once, the historical value of the degradation estimates are collected, higher orders for 

the AR model may perform more effectively.  

8.2 Conclusion 

The concept of Industrial Internet of Things (IIoT) such as new types of assets, data, 

sensor networks, data analytics, and processing power can provide the foundation to 

apply data-driven methodologies. The data-driven predictive models of reliability 

assessment can become a major tool in increasing the life of assets, lowering capital cost, 

and reducing operating and maintenance costs. Indeed, the predictive Model of reliability 

assessment becoming a critical factor in the efficiency of capital-intensive corporations. 

An accurate predictive model of reliability assessment is necessary in order to optimize 

various types of decision such as maintenance policy, lifetime analysis, risk management, 

etc.  
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Classical models of reliability assessment mainly rely on historical failure data. It 

should be considered that obtaining lifetime data in a timely manner is one of the current 

challenges. Failure data may not be easily obtainable for highly reliable assets. 

Furthermore, the collected historical lifetime data may not be able to accurately describe 

the behavior of the asset in a unique application or environment. For instance, if the 

lifetime data are collected based on the experimental tests given specific environmental 

and operational conditions, there is no guarantee that the asset behavior remains 

unchanged in other conditions during its lifetime. Therefore, it is not an optimal approach 

anymore to conduct a reliability assessment based on classical models. 

Fortunately, most of the industrial assets have performance characteristics whose 

degradation or decay over the operating time can be related to their reliability estimates. 

Degradation indicates the process of lowering the rank, status, or grade, which leads to 

a less effective level of performance. The application of the degradation methods has 

been recently increasing due to their ability to keep track of the dynamic conditions of the 

system over time. The main purpose of the degradation-based models is to predict the 

future condition of the asset and perform the maintenance actions in an optimized time 

window before the actual failure of the system occurs. Since the degradation-based 

analysis defines the failure events based on the predefined threshold, the failure is said 

to have occurred as a soft failure. This indicates that the asset under the study is 

considered as a failed unit when the degradation profile hits the threshold for the first 

time.  

Inaccurate modeling of the degradation phenomenon leads to inaccurate 

assessment of reliability, maintenance policy, risk, lifetime prediction, etc. In this thesis, a 
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wide variety of the currently developed models of degradation were studied in detail. 

Degradation models based on the Gamma process and General Path Model had been 

applied in various studies. The main purpose of this study was to develop a data-driven 

predictive model of reliability assessment based on real-time data using a state-space 

stochastic degradation model to predict the critical time for initiating maintenance actions 

in order to enhance the value and prolonging the life of assets. Indeed, the developed 

degradation model in this study extended the General Path Model based on a series of 

Gamma Processes degradation models in the State-Space environment.  Poisson 

distributed weights were considered for each of the Gamma processes. Therefore, the 

main scientific contribution of the developed degradation model was extending the 

General Path Model based on a series of Gamma Processes degradation models in the 

State-Space environment by considering Poisson distributed weights for each of the 

Gamma processes.  

The application of the developed algorithm was illustrated for the distributed 

electrical systems as a generic use case. The analyses were mostly focused on the critical 

components of the distributed electrical systems as natural gas generators, transformers, 

inverters, and batteries as energy storage devices. The main motivation for applying the 

same methodology to various components was to consider different types of degradation 

profiles in terms of being more toward either discrete or continuous events. It should be 

noted that the developed model can be applied to any application in which its time-series 

degradation profile is available. 

A data-driven algorithm was developed in order to estimate the parameters of the 

developed degradation model. The developed parameter estimator in this study was an 



 

143 
 

alternative methodology to the “two-step parameter estimation approach” applied in the 

General Path degradation model. Once the estimates of the parameters are available, 

distribution of the failure time, time-dependent distribution of the degradation, and 

reliability based on the current estimate of the degradation can be obtained.  

To sum up, the main scientific contribution of this study were (1) developed a state-

space stochastic degradation model to accurately capture the dynamic behavior of 

assets., (2) applied simulation techniques to calculate reliability of assets over time and 

estimate the critical failure time using the developed model, (3) formulated the reliability 

based on analytical formulation for degradation prediction model, and (4) applied a data-

driven parameter estimation model based on the developed degradation model.   

Furthermore, the application of the developed data-driven parameter estimation model 

was a novel approach that has been designed for the developed degradation model in 

this study. 
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Appendix 

Appendix A: Distribution Fitting – Matlab Code 
 

function F= DistributionFit(data,varargin) 
% DistributionFit finds best-fitting distribution for the failure data 
%   F= DistributionFit(data)fits all distributions available in MATLAB's 
function  
%   MLE to data in vector data and returns them ordered by some criterion:  
%   LogLikelihood or Akaike. Either 20 continuous or 5 discrete 
distributions  
%   are used based on user input or the type of data supplied (see below) 
% 
%   The function returns a structure array with fields:  
%   name: name of the distribution  
%   par:  vector of parameter estimates (1, 2 or 3 values) 
%   ci:   matrix of confidence interval, one column per parameter 
%   LL:   Log-Likelihood of the data 
%   aic:  Akaike Information Criterion 
% 
% 
%   Name            Value 
%   'dtype'     character string that specifies if the data are continuous  
%               ('cont') or discrete ('disc'). If missing, the function  
%               decides the data are discrete if all values of data are  
%               natural numbers. 
% 
%   'ntrials'   Specifies number of trials for the binomial distribution.  
%               NTRIALS must be either a scalar or a vector of the same  
%               size as data. If missing the binomial is not fitted. 
% 
%   'figure'    Either 'on' (default), or 'off'. If 'on' a plot of the  
%               data and the best fitting is produced (scaled to match the  
%               data). Requires aditional function 'plotfitdist'. 
% 
%   'alpha'     A value between 0 and 1 specifying a confidence level 
%               for CI of 100*(1-alpha) (default is 0.05). 
% 
%   'criterion' Criterion to use to order the fits. It can be: 'LL' for 
%               Log-Likelihood (default), or 'AIC' for Akaike. 
  
%   'output'    If set to 'off' supresses output to the command window. 
%               Default 'on' 
  
%   'pref'      Preferred distribution to plot 
% 
%   If data contains negative values, only the Normal distribution can be 
fitted. 
%   Also, if data contains values > 1 the Beta distribution is not fitted. 
If data 
%   contains 0 some distributions are not fitted. 
% 
%   Statistics Toolbox is Required 
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warning off 
% Defaults & Storage 
dtype= {}; 
ntrials= []; 
fig= 'on'; 
alpha= 0.05; 
criterion= 'LL'; 
output= 'on'; 
F= struct('name',{},'par',[],'ci',[],'LL',[],'aic',[]); 
prefdist= []; 
  
% Arguments 
for j= 1:2:length(varargin) 
    string= lower(varargin{j}); 
    switch string(1:min(3,length(string))) 
        case 'dty' 
            dtype= varargin{j+1}; 
        case 'ntr' 
            ntrials= varargin{j+1}; 
        case 'fig' 
            fig= varargin{j+1}; 
        case 'alp' 
            alpha= varargin{j+1}; 
        case 'cri' 
            criterion= varargin{j+1}; 
        case 'out' 
            output= varargin{j+1}; 
        case 'pre' 
            prefdist= varargin{j+1} 
        otherwise 
            error('Unknown argument name'); 
    end 
end 
  
% Distributions 
% remove any distribution which is not preferred 
Cdist= {'normal'; 'exponential'; 'gamma'; 'logistic'; ... 
          'tlocationscale';... 
          'uniform'; 'ev'; 'rayleigh'; 'gev'; 'beta'; ... 
          'nakagami'; 'rician'; 'inversegaussian'; 'birnbaumsaunders'; ... 
          'gp'; 'loglogistic'; 'lognormal'; 'weibull'}; 
  
mustbepos= 11; 
Ddist= {'binomial'; 'nbin'; 'unid';'geometric';'poisson'}; 
  
% Determine data type: Discrete or Continuous (avoid 0) 
if isempty(dtype) 
    if isempty(find(1- (data+1)./(fix(data)+1), 1))  
        dtype= 'disc'; 
    else 
        dtype= 'cont'; 
    end 
end 
  
% Fit Determined Distribution based on the defined criterion  
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switch dtype(1:4) 
    % Continuous 
    case 'cont' 
    for j= 1:numel(Cdist) 
        % If negative values, only fit normal 
        if min(data) < 0 
            [phat,pci]= mle(data,'distribution','normal','alpha',alpha); 
            F(j).name= Cdist{j}; 
            F(j).par= phat; 
            F(j).ci=  pci; 
            pdfv= pdf('normal',data,F(j).par(1),F(j).par(2)); 
            F(j).LL=  sum(log(pdfv(pdfv>0 & ~isinf(pdfv)))); 
            F(j).aic= 2*2- 2*F(j).LL; 
            break 
        % Check: if values > 1 for Beta, do nothing 
        elseif strcmp('beta',Cdist{j}) && max(data) > 1 
            F(j).name= 'beta'; 
            F(j).LL= -Inf; 
            F(j).aic= Inf; 
        % Check: if values > 0 for some distr. (they are sorted), do 
nothing 
        elseif  j >= mustbepos && min(data) == 0 
            F(j).name= Cdist{j}; 
            F(j).LL= -Inf; 
            F(j).aic= Inf; 
        % Any other case do the fit ... 
        else 
            [phat,pci]= mle(data,'distribution',Cdist{j},'alpha',alpha); 
            F(j).name= Cdist{j}; 
            F(j).par= phat; 
            F(j).ci=  pci; 
            if numel(F(j).par) == 1 
                pdfv= pdf(F(j).name,data,F(j).par(1)); 
            elseif numel(F(j).par) == 2 
                pdfv= pdf(F(j).name,data,F(j).par(1),F(j).par(2)); 
            else 
                pdfv= 
pdf(F(j).name,data,F(j).par(1),F(j).par(2),F(j).par(3)); 
            end 
            F(j).LL=  sum(log(pdfv(pdfv>0 & ~isinf(pdfv)))); 
            F(j).aic= 2*numel(F(j).par)- 2*F(j).LL; 
        end 
    end 
     
    % Discrete 
    case 'disc' 
    for j= 1:numel(Ddist) 
        % Binomial needs number of trials 
        if strcmp('binomial',Ddist{j})  
            F(j).name= 'binomial'; 
            if isempty(ntrials) || (numel(ntrials) > 1 && numel(data) ~= 
numel(ntrials)) 
                F(j).LL= -Inf; 
                F(j).aic= Inf; 
            else 
                [phat,pci]= 
mle(data,'ntrials',ntrials,'distribution','binomial','alpha',alpha); 
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                F(j).par= phat; 
                F(j).ci=  pci; 
                pdfv= pdf('bino',data,ntrials,F(j).par(1)); 
                F(j).LL=  sum(log(pdfv(pdfv>0 & ~isinf(pdfv)))); 
            end 
        else  
            [phat,pci]= mle(data,'distribution',Ddist{j},'alpha',alpha); 
            F(j).name= Ddist{j}; 
            F(j).par= phat; 
            F(j).ci=  pci; 
            if numel(F(j).par) == 1 
                pdfv= pdf(F(j).name,data,F(j).par(1)); 
            elseif numel(F(j).par) == 2 
                pdfv= pdf(F(j).name,data,F(j).par(1),F(j).par(2)); 
            else 
                pdfv= 
pdf(F(j).name,data,F(j).par(1),F(j).par(2),F(j).par(3)); 
            end 
            F(j).LL=  sum(log(pdfv(pdfv>0 & ~isinf(pdfv)))); 
            F(j).aic= 2*numel(F(j).par)- 2*F(j).LL; 
        end 
    end 
end 
  
% Order by criterion 
switch criterion 
    case 'LL' 
        index= sortrows([(1:size(F,2))',[F.LL]'],-2); 
    case 'AIC' 
        index= sortrows([(1:size(F,2))',[F.aic]'],2); 
end 
F= F(index(:,1)); 
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Appendix B: Generate Degradation Profiles 
 

function [degradation , failure] = generateDegradtionProfile (alpha , beta 
, lambda , SimulationHorizon , InitialDegradation , maxEvent) 
  
% This code generate the degradation profile suring the simulation horizon 
and initial degradtion value 
% given the set of input parameters.  
  
% Destruction Event 
%       This code defines the destruction events based on the Poisson 
distribution 
  
% Destruction Amount 
%       This code defines the destruction amounts based on the parameters 
of the gamma distribution 
%       Gamma parameters are mapped into mean and standard deviation to 
%       generate dgerdation profiles 
  
% Threshold 
%       This code defines the threshold based on the gamma distribution 
and 
%       maximum number of destrctuin events which leads to failure 
  
% Define Destruction Properties 
    destructionMean = alpha / beta ; 
    destructionStd = alpha / (beta^2) ; 
  
% Define Threshold Properties 
    thresholdMean = maxEvent * alpha / beta ; 
    thresholdStd = maxEvent * alpha / (beta^2) ; 
    Threshold = min(thresholdStd*randn + thresholdMean, 100);  
  
% Define destruction event and destruction amount variables     
    occuredDestructionEvent = zeros(SimulationHorizon , 1); 
    destructionAmount = zeros(SimulationHorizon , 1); 
    degradation = zeros(SimulationHorizon , 1); 
    degradation(1 , 1) = InitialDegradation; 
  
% Generate Degradation Profiles      
    for i = 1:SimulationHorizon 
        occuredDestructionEvent(i,1) = poissinv(rand, lambda); 
        destructionAmount(i,1) = max(sum( 
destructionStd*randn(occuredDestructionEvent(i,1), 1)+ destructionMean), 
0); 
        degradation(i+1 , 1) =  destructionAmount(i,1) + degradation(i , 
1); 
        if degradation(i,1) > Threshold 
            break 
        end 
    end 
  
% Define Failure Point     
    failureTime = find(degradation > Threshold, 1, 'first'); 
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    if isempty(failureTime) 
        failureTime = Input.SimulationIteration; 
        degradation(end:i) = nan; 
    end 
    failure = failureTime; 
end 
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Appendix C: Parameter Estimation Based on 
Gaussian Mixture Models 

 

function Output = 
DegradationModelParameterEstimator(HistoricalDegradationProfile , 
DegradationModelParameter) 
  
%%%% This code returns the estimate of the lambda, alpha, and beta 
%%%% based on the Gaussian Mixture Model clustering approach.  
  
%%%% Given a set of parameters, we first simulate a degradation profile 
and then,  
%%%% try to estimate the parameters. 
%%%% In real-world applications, Lambda, alpha, and beta are going to be 
estimated 
%%%% based on the Historical Time Series Degradation profile, which its 
%%%% properties are unknown.  
%%%% In this code, we try to simulate the 
%%%% degradation profiles with known parameters in order to test the 
robustness of the model 
  
%%%% Inputs:  
%%%%        HistoricalDegradationProfile : Estimated Degradation Profile 
%%%%        DegradationModelParameter 
%%%%            DegradationModelParameter(1): Lambda 
%%%%            DegradationModelParameter(2): Alpha 
%%%%            DegradationModelParameter(3): Beta 
 
    lambda = DegradationModelParameter(1); 
    destructionMean = DegradationModelParameter(2) / 
DegradationModelParameter(3); 
    destructionStd = sqrt(DegradationModelParameter(2) / 
(DegradationModelParameter(3) ^ 2)); 
    numberOfOccuredDestructionEvents = 0; 
  
        if isempty (HistoricalDegradationProfile)==0   
            for i=1:length(HistoricalDegradationProfile)-1 
                HistoricalDegradationProfileEvaluat(1,1) = 0; 
                HistoricalDegradationProfileEvaluat(i+1,1)= 
HistoricalDegradationProfile(i+1,1)- HistoricalDegradationProfile(i,1); 
            end 
                numberOfOccuredDestructionEvents = 
length(HistoricalDegradationProfileEvaluat(HistoricalDegradationProfileEva
luat>0)); 
        end 
  
         
  
        if isempty (HistoricalDegradationProfile)==1 || 
numberOfOccuredDestructionEvents<50 
                InitialDegradation = 0; 
                degradation(1,1)=InitialDegradation; 
                for k = 1:500 
                    damage(k,1) = poissinv(rand, lambda); 
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                    damageAmount(k,1) = 
max(sum(destructionStd*randn(damage(k,1), 1) + destructionMean), 0); 
                    degradation(k + 1,1) = damageAmount(k,1) + 
degradation(k,1); 
                end 
        end 
         
        if numberOfOccuredDestructionEvents > 50 
            degradation = HistoricalDegradationProfile; 
        end 
         
          
        for i=1:length(degradation)-1 
            damageAmountOcc(i,1)=degradation(i+1,1)-degradation(i,1); 
        end 
     
  
        MaxNumOfCluster = 10; 
        eva = 
evalclusters(damageAmountOcc,'gmdistribution','DaviesBouldin','KList',[1:M
axNumOfCluster]); 
        Optimalk = eva.OptimalK; 
         
        options = statset('MaxIter',500); 
        RegularizationValue = 0.0000001; 
         
        GMM = 
fitgmdist(damageAmountOcc,Optimalk,'Options',options,'RegularizationValue'
,RegularizationValue); 
  
        sortedMean = sort(GMM.mu); 
        destructionMeanHat = sortedMean(2); 
        [row] = find(GMM.mu == destructionMeanHat); 
        destructionStdHat = sqrt((GMM.Sigma(:,:,row))); 
         

 
        minMean = min(GMM.mu); 
        [row] = find(GMM.mu == minMean); 
        zeroDamageWeight = GMM.ComponentProportion(:,row); 
        lambdaHat = -log(zeroDamageWeight); 
         
                
%%%% Outputs 
        Output.destructionBeta= DegradationModelParameter(3);  
        Output.destructionBetaHat = destructionMeanHat / 
(destructionStdHat^2) ; 
         
        Output.destructionAlpha = DegradationModelParameter(2); 
        Output.destructionAlphaHat = Output.destructionBeta * 
destructionMeanHat; 
         
        Output.lambda = DegradationModelParameter(1);  
        Output.lambdaHat = lambdaHat; 
  
        Output.OptimalCluster = Optimalk; 
         
end 
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Appendix D: Parameter Estimation Based on K-
Means Clustering Algorithm 

 

function Output = ParameterEstimatorKmean(lambda , alpha , beta) 
  
%%%% This function estimates the degradation model parameter based on 
%%%% K-Mean clustering algorithm.  
%%%% Inputs: 
%%%%     lambda: Rate of Event 
%%%%     alpha : scale parameter of the Gamma distribution representing 
the destruction amount 
%%%%     beta : shape parameter of the Gamma distribution representing the 
destruction amount 
  
 
    gammaMean = alpha/beta; 
    gammaSigma = sqrt(alpha/(beta^2)); 
  
    InitialDegradation = 0; 
    degradation(1,1)=InitialDegradation; 
    for k = 1:500 
        destruction(k,1) = poissinv(rand, lambda); 
        destructionAmount(k,1) = 
max(sum(gammaSigma*randn(destruction(k,1), 1) + gammaMean), 0); 
        degradation(k + 1,1) = destructionAmount(k,1) + degradation(k,1); 
    end 
  
  
    for i=1:length(degradation)-1 
        if degradation(i,1)==degradation(i+1,1) 
            degradation(i,2)=0;   % destruction did not occure 
        else 
            degradation(i,2)=1;   % destruction occured 
        end 
    end 
  
    for i=1:length(degradation)-1 
        degradation(i,3)=degradation(i+1,1)-degradation(i,1); 
    end 
  
    destructionAmountOcc=degradation(:,3); 
    
ActualdestructionAmountOcc=destructionAmountOcc(destructionAmountOcc>0); 
  
  
    MaxNumOfCluster = 10; 
    eva = 
evalclusters(destructionAmountOcc,'gmdistribution','DaviesBouldin','KList'
,[1:MaxNumOfCluster]); 
    Optimalk=eva.OptimalK; 
  
    options = statset('MaxIter',500); 
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    [idx,C] = 
kmeans(destructionAmountOcc,Optimalk,'Options',options,'EmptyAction','drop
'); 
  
    sortedMean = sort(C); 
    gammaMeanHat = sortedMean(2); 
    [row] = find(C == gammaMeanHat); 
    gammaSigmaHat = sqrt(var(destructionAmountOcc(idx==row))); 
  
    [row2] = find(C == sortedMean(1)); 
    lambdaHat = -log(sum(idx==row2)./length(destructionAmount)); 
  
  
    betaHat = gammaMeanHat / (gammaSigmaHat^2); 
    alphaHat = gammaMeanHat * betaHat; 
  
    alphaHatPercErr = ((alphaHat-alpha)/alpha)*100; 
    betaHatPercErr = ((betaHat-beta)/beta)*100; 
    lambdaHatPercErr = ((lambdaHat-lambda)/lambda)*100; 
  
    %%%% Outputs 
    Output.alpha = alpha; 
    Output.alphaHat = alphaHat; 
    Output.alphaHatPercErr = alphaHatPercErr; 
    Output.beta = beta; 
    Output.betaHat = betaHat; 
    Output.betaHatPercErr = betaHatPercErr; 
    Output.lambda = lambda; 
    Output.lambdaHat = lambdaHat; 
    Output.lambdaHatPercErr=lambdaHatPercErr; 
    Output.OptimalCluster = Optimalk; 
    Output.TotalNumberOfObservations = 500; 
    Output.NumberOfOccdestruction = length(ActualdestructionAmountOcc)-1; 
  
end 
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Appendix E: Evaluate the Performance of the 
Parameter Estimation Algorithms 

 

function Output = parameterEstimationEvaluation(lambda , alpha , beta , 
estimationMethod, estimationIteration , outlierDetectionFlag) 
% This function evaluate the performance of the estimation algorithms. 
% INPUTS:  
%     lambda : rate of destructive events 
%     alpha : scale parameter of the Gamma distribution representing the 
destruction amount 
%     beta : shape parameter of the Gamma distribution representing the 
destruction amount 
%     estimationMethod: GMM - KMeans - NN 
%     estimationIteration : number of times to ignite the estimation 
algorithm  
%     outlierDetectionFlag : 0 (do not apply outlier detection) , 1 ( 
apply outlier detection) 
% OUTPUTS:  
%     alphaHat: MEAN estimate of alpha 
%     alphaMAPE: alpha Mean Absolute Percentage Error 
%     betaHat: MEAN estimate of beta 
%     betaMAPE: : beta Mean Absolute Percentage Error 
%     lambdaHat : MEAN estimate of lambda 
%     lambdaMAPE : : lambda Mean Absolute Percentage Error 
  
    alphaHat = zeros(estimationIteration , 1); 
    alphaHatPercErr = zeros(estimationIteration , 1); 
    betaHat = zeros(estimationIteration , 1); 
    betaHatPercErr  = zeros(estimationIteration , 1); 
    lambdaHat = zeros(estimationIteration , 1); 
    lambdaHatPercErr = zeros(estimationIteration , 1); 
     
    for i=1:estimationIteration 
        if strcmp(estimationMethod , 'GMM') 
            ParameterEstimator = ParEstimator(lambda , alpha , beta); 
        elseif strcmp(estimationMethod , 'KMeans') 
            ParameterEstimator = ParEstimatorKmean(lambda , alpha , beta); 
        elseif strcmp(estimationMethod , 'NN') 
            ParameterEstimator = ParEstimatorNN(lambda , alpha , beta); 
        else 
            error('select an existing estimation method') 
        end 
        alphaHat(i,1) = ParameterEstimator.alphaHat; 
        alphaHatPercErr(i,1)= ParameterEstimator.alphaHatPercErr; 
        betaHat(i,1) = ParameterEstimator.betaHat; 
        betaHatPercErr (i,1) = ParameterEstimator.betaHatPercErr; 
        lambdaHat(i,1) = ParameterEstimator.lambdaHat; 
        lambdaHatPercErr(i,1) = ParameterEstimator.lambdaHatPercErr; 
    end 
  
    ParEst = [alphaHat, alphaHatPercErr ,betaHat, betaHatPercErr , 
lambdaHat, lambdaHatPercErr]; 
    ParEst(any(isnan(ParEst),2),:) = []; 
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    alphaHat = ParEst(:,1); 
    alphaHatPercErr = ParEst(:,2); 
    betaHat = ParEst(:,3); 
    betaHatPercErr = ParEst(:,4); 
    lambdaHat = ParEst(:,5); 
    lambdaHatPercErr = ParEst(:,6); 
     
    if outlierDetectionFlag == 1 
        alphaOutlierMedian = isoutlier(alphaHat, 'median'); 
        alphaOutlierMean = isoutlier(alphaHat, 'mean'); 
        alphaOutlierQuartiles = isoutlier(alphaHat, 'quartiles'); 
        alphaOutlierGrubbs = isoutlier(alphaHat, 'grubbs'); 
        alphaOutlierGesd = isoutlier(alphaHat, 'gesd'); 
         
        betaOutlierMedian = isoutlier(betaHat, 'median'); 
        betaOutlierMean = isoutlier(betaHat, 'mean'); 
        betaOutlierQuartiles = isoutlier(betaHat, 'quartiles'); 
        betaOutlierGrubbs = isoutlier(betaHat, 'grubbs'); 
        betaOutlierGesd = isoutlier(betaHat, 'gesd'); 
         
        LambdaOutlierMedian = isoutlier(lambdaHat, 'median'); 
        LambdaOutlierMean = isoutlier(lambdaHat, 'mean'); 
        LambdaOutlierQuartiles = isoutlier(lambdaHat, 'quartiles'); 
        LambdaOutlierGrubbs = isoutlier(lambdaHat, 'grubbs'); 
        LambdaOutlierGesd = isoutlier(lambdaHat, 'gesd'); 
  
        Oulier = alphaOutlierMedian + alphaOutlierMean + 
alphaOutlierQuartiles + alphaOutlierGrubbs + alphaOutlierGesd +... 
            + betaOutlierMedian + betaOutlierMean + betaOutlierQuartiles + 
betaOutlierGrubbs + betaOutlierGesd + ... 
            + LambdaOutlierMedian + LambdaOutlierMean + 
LambdaOutlierQuartiles + LambdaOutlierGrubbs + LambdaOutlierGesd; 
  
        alphaHat(Oulier~=0)=[]; 
        alphaHatPercErr(Oulier~=0) = []; 
        betaHat(Oulier~=0)=[]; 
        betaHatPercErr(Oulier~=0) = []; 
        lambdaHat(Oulier~=0)=[]; 
        lambdaHatPercErr(Oulier~=0)=[]; 
  
        Output.TotalOutliers = Oulier(Oulier~=0); 
   end 
                 
   Output.alphaHat = mean(alphaHat); 
   Output.alphaMAPE = mean(abs(alphaHatPercErr(:,1))); 
   Output.betaHat = mean(betaHat); 
   Output.betaMAPE = mean(abs(betaHatPercErr(:,1))); 
   Output.lambdaHat = mean(lambdaHat); 
   Output.lambdaMAPE = mean(abs(lambdaHatPercErr(:,1))); 
                            
end 
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